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Abstract

The aim of this project is to study the Mellin representation of correlation
functions in perturbative scalar conformal field theory and investigate the
existence of Feynman rules that can be associated with perturbative dia-
grams. It is known that the Mellin representation of correlation functions
in CFTs makes the covariance with all conformal symmetries manifest. The
constraints on the Mellin variables that make the covariance of the ampli-
tude with special conformal symmetry manifest, can be interpreted as the
conservation of ’Mellin momentum’. The poles of a propagator in the com-
plex Mellin momentum plane correspond to the exchanged primary operator
and its descendants. Thus the Mellin space furnishes a spectral representa-
tion of n-point functions in conformal field theories. In this project, we have
been able to derive the Mellin amplitude for an arbitrary tree level diagram
and have found that we can associate a set of Feynman rules to these dia-
grams. We have been investigating the existence of similar rules for one-loop
diagrams. Preliminary investigations indicate that the Mellin amplitude for
such diagrams can be expressed as Mellin Barnes integrals analogous to loop
integrals in momentum space. However, we have not been able to establish
these results yet. We expect that this formulation of perturbative CFT in the
Mellin space can be employed in deriving a natural dual wordsheet descrip-
tion of string theory in Anti de Sitter space from a conformal field theory on
its boundary in the large N limit.
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Chapter 1

Introduction

The AdS/CFT correspondence is an explicit realisation of the idea of holo-
graphic duality which originates from string theory. The notion of holo-
graphic duality is motivated in part by a quest for a quantum theory of
gravity and in part by a study of the large N limit of gauge field theories.
Despite having an explicit example of a gauge string duality with strong evi-
dence in favour of it, we lack a concrete understanding of how such a duality
arises.

Open-closed string duality is considered to be the mechanism behind these
dualities. R. Gopakumar had attempted to proceed towards proving the
AdS/CFT correspondence by implementing the open-closed string duality
in the large N limit of the conformal gauge field theory [1][2][3]. The general
scheme in [1][2] was to take planar and higher genus diagrams for the field
theory, express the amplitude in the form of a (momentum space) Schwinger
parameter integral, and then glue up the holes in the planar diagram via a
change of variables on the Schwinger parameter space integral resulting in
an amplitude in AdS in one higher dimension.

The long term goal at which this project is aimed at is to implement a similar
procedure using a Mellin worldline formalism for the field theory correlation
functions. Since the Mellin representation makes the covariance of the CFT
correlation functions with all conformal symmetries manifest [4][5], it is ex-
pected that the AdS symmetries in the dual worldsheet description will also
be manifest. This makes the Mellin space a natural choice of representation
to implement the open closed string duality. The Mellin representation is
a natural choice also because it provides a spectral representation for the
correlation functions in a CFT [4][5].
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In this project, we have built upon the work done by Mack on CFT in the
Mellin space [4][5]. For quantum field theories, the momentum space repre-
sentation provides a simple set of Feynman rules and the Källeń Lehmann
spectral representation. For CFTs neither the position nor the momentum
space are very suitable in this regard. In any interacting CFT, an operator
product expansion (OPE) involves only a discrete set of operators (the ex-
changed primary operator and its descendants). So it would be nice to have
a representation in which this discrete spectrum is manifest. It had been pro-
posed by Mack (based on properties of conformal field theories and operator
product expansions) [4] that the Mellin space can provide a representation
for correlation functions in CFTs with the above desired properties, giving
evidence from the factorisation of amplitudes. Furthermore, Mack pointed
out that there is a correspondence between CFTs and dual resonance models
[5] (which were forerunners to string theory) the Mellin amplitudes in the
CFTs being analogous to the scattering amplitudes in the dual resonance
models.

Mack’s work was followed up by Penedones [6].In [7], Penedones et al showed
that the Mellin space is a suitable choice to write correlation functions of con-
formal field theories (CFT) with weakly coupled dual theories in the bulk.
This work leads to the speculation that it might be possible to develop a
formalism for perturbative CFT (that is in the weak coupling limit, without
any reference to the bulk dual) in the Mellin space.

In this project, we have investigated whether we can formulate Feynman
rules for perturbative CFT in the Mellin space. This formulation is a pre-
requisite for the implementation of our long term goal.

This report is organised into different sections in the following manner. In
Chapters 2 and 3, we acquaint ourselves with Mellin transforms and the gen-
eral mathematical environment in which this problem is set. In Chapters 4
and 5 respectively, we shall derive the Mellin amplitude of a one vertex in-
teraction and a two vertex interaction using tricks and techniques developed
by Symanzik [8] (streamlined later by Davydychev [9] and Paulos et al [10]
[11]). In Chapter 6 we shall derive a set of Mellin space Feynman rules for
a general tree level diagram in an interacting CFT. Finally, in Chapter 7 we
shall look at a class of relations between loops and trees and a promising
approach to one loop diagrams.
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Chapter 2

The Mellin Transform

This chapter is devoted to getting acquainted with the Mellin transform and
some of its properties.

2.1 Mellin transformation and its properties

The Mellin transform of a function f(x) of a real variable is defined by,

M{f(x)} ≡ F (s) =

∫ ∞
0

xs−1f (x) dx (2.1)

s is a complex number. It is easy to note from the definition of the Mellin
transform that it is closely related to the Laplace transform and the Fourier
transform. A very familiar example of a Mellin transform is the transform
of e−x, which is the Gamma function.∫ ∞

0

xs−1e−xdx = Γ(s) (2.2)

The Gamma function is meromorphic on the complex plane with simple poles
at 0 and all the negative integers.

The inverse Mellin transform is given by,

f (x) =
1

2πi

∫ c+i∞

c−i∞
F (s)x−sds (2.3)

c is a real number greater than 0.
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Some simple properties of the Mellin transform are,

M{f(ax)}(s) = a−sF (s) (2.4)
M{xaf(x)}(s) = F (s+ a) (2.5)
M{f(xa)}(s) = |a|−1F (s/a) a 6= 0 (2.6)
M{log xnf(x)}(s) = F (n)(s) (2.7)

M{f (n)(x)}(s) = (−1)n
Γ(s)

Γ(s− n)
F (s− n) (2.8)

Now we look at a convolution property of the Mellin transform. Let

F (s) =

∫ ∞
0

xs−1f(x)dx

G(s) =

∫ ∞
0

xs−1g(x)dx

Now using the definition of mellin transformation∫ ∞
0

xs−1f(x)g(x)dx =
1

2πi

∫ ∞
0

xs−1

∫ c+i∞

c−i∞
F (t)x−tdtg(x)dx

=
1

2πi

∫ c+i∞

c−i∞
F (t)

∫ ∞
0

xs−t−1g(x)dxdt

=
1

2πi

∫ c+i∞

c−i∞
F (t)G(s− t)dt (2.9)

For the special case of s = 1∫ ∞
0

f(x)g(x) dx =
1

2πi

∫ c+i∞

c−i∞
F (t)G(1− t)dt (2.10)

(2.10) is referred to as the Parseval’s formula.

2.2 Mellin-Barnes integrals

We shall look at a class of integrals called Mellin-Barnes integrals which shall
be occuring quite often in this formalism. A general Mellin-Barnes integral
over one variable is of the form,∫ c+i∞

c−i∞

∏
i Γ(t− ai)

∏
j Γ(bj − t)∏

k Γ(t− ck)
∏

l Γ(dl − t)
x−tdt (2.11)
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ai,bj,ck,dl are complex numbers.

The reciprocal Gamma function does not have any poles and hence all the
poles in the integrand of (2.11) come from the Gamma functions in the
numerator. The real number c should be chosen such that the contour sepa-
rates the poles of the

∏
i Γ(t− ai) from the poles of the

∏
j Γ(bj − t). If there

exists no such contour that is parallel to the imaginary axis, the contour can
be bent without passing any poles so that this separation of poles can be
achieved.

The inverse of the Mellin transform is a special case of this Mellin-Barnes
integral with only Gamma function.

Two special Mellin-Barnes integrals are particularly useful at times. These
go by the name of Barnes lemmas.

The First Barnes Lemma is,∫ c+i∞

c−i∞
dvβ (v + a,−v + b) β (−v + c, v + d) = β (a+ c, b+ d) (2.12)

The Second Barnes Lemma is,

1

2πi

∫ i∞

−i∞
dz

Γ(λ1 + z)Γ(λ2 + z)Γ(λ3 + z)Γ(λ4 − z)Γ(λ5 − z)

Γ(λ6 + z)

=
Γ(λ1 + λ4)Γ(λ2 + λ4)Γ(λ3 + λ4)Γ(λ1 + λ5)Γ(λ2 + λ5)Γ(λ3 + λ5)

Γ(λ1 + λ2 + λ4 + λ5)Γ(λ1 + λ3 + λ4 + λ5)Γ(λ3 + λ2 + λ4 + λ5)

(2.13)

with the constraint, λ6 = λ1 + λ2 + λ3 + λ4 + λ5

2.3 Mellin space delta function
In this section, we shall introduce a delta function that shall be very crucial
in the Mellin space representation of correlation functions.

We know that the following integral is not convergent.∫ ∞
−∞

e−kxdx (2.14)
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However ∫ i∞

−i∞

f(k)

2πi
dk

∫ ∞
−∞

e−kxdx = f(0) (2.15)

The above statement can be obtained simply by changing variables from k
to ik. Thus we see that inside the complex integral in (2.15), the integral
(2.14) acts like a delta function.

(2.14) can be morphed into
∫∞

0
t−k−1dt via a simple variable change putting

ex = t. Therefore we can write,

1

2πi

∫ ∞
0

t−k−1dt = δ̄(k) (2.16)

The bar over the delta function in (2.16) indicates that it is only a formal
delta function, which acts only inside the complex integral in (2.15). It is
important to reiterate that the integral on the left hand side of (2.16) is not
convergent by itself.

The delta function in (2.16) shall be used extensively in our calculations.

It is also relevant to ask if this usage of (2.16) is valid when the power
of t also has a real part (k being the imaginary part). In other words we
wish to know whether the integral

∫∞
0
t−k+a−1dt, a being real, can also act

as a delta function inside a complex integral like the one in (2.15).

It is easy to see that if the contour in (2.15) can be shifted by +a without
crossing any poles of f(k), then

∫∞
0
t−k+a−1dt can also act as a delta function

inside the complex integral. This is a necessary and sufficient condition.
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Chapter 3

The Mellin Amplitude

In this chapter, we shall have an introductory discussion on the Mellin ampli-
tude corresponding to Feynman diagrams in interacting scalar field theories.
This will give an overview of some ideas that will be used and elaborated on
in the next few chapters.

For a given Feynman diagram, we can write the position space amplitude
from the position space Feynman rules that are well known. For example
let’s consider the following Feynman diagram. We assume that each interac-

1

2

3

4

5 6

Figure 3.1: A Feynman Diagram

tion vertex comes with a weight equal to the coupling constant. For example
in Diagram 3.1, the two interaction vertices have weights g and g′ , the cou-
pling constants. We shall assume so throughout this work. Let the position
space coordinate of the vertex i be xi. Let the operator exchanged between
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the vertices ij have a scaling dimension γij. Therefore the position space
amplitude corresponding to Feynman diagram 3.1 is,

gg
′
∫
dDx3

∫
dDx5

1

(x1 − x3)2γ13(x2 − x3)2γ23(x3 − x5)2γ35(x4 − x5)2γ45(x5 − x6)2γ56

(3.1)
D is the dimension of the spacetime. From now on we shall not write the
coupling constants with the amplitudes explicitly.

We obtain the corresponding momentum space amplitude by Fourier trans-
forming the position space amplitude. Similarly, we shall obtain the Mellin
space amplitude by Mellin transforming the position space amplitude. How-
ever, the Mellin space amplitude is not directly the Mellin transform of the
position space amplitude.

We shall now define the Mellin amplitude following Mack [4]. Let A({xi}) be
the position space amplitude. The xi here refer to the external vertices only.
The Mellin amplitudeM(sij) is defined by the following equation, upto some
numerical constants (which shall be mentioned explicitly when we come to
some concrete examples).

A (x1, · · ·, xn) =

∫ cij+i∞

cij−i∞
[dsij]CM (sij)

∏
1≤i<j≤n

Γ (sij) (xi − xj)−2sij (3.2)

sij are the Mellin variables. It is important to remember that the xi in (3.2)
include only the external vertices and not the internal interaction vertices
that are integrated over in the position space amplitude. sij is obvisouly
symmetric about its two indices. If we are dealing with a conformal field
theory (CFT), the factor C will involve some delta functions between the
Mellin variables and hence all the n Mellin variables are not independent. If
the theory is not conformal invariant, then C = 1.

For example for the Feynman diagram 3.1, (3.2) is,

A (x1, x2, x4, x6) =

{∫ cij+i∞

cij−i∞
dsij

}
CM (s12, s14, s16, s24, s26, s46) Γ (s12) Γ (s14)

Γ (s16) Γ (s24) Γ (s26) Γ (s46) (x1 − x2)−2s12 (x1 − x4)−2s14

(x1 − x6)−2s16 (x2 − x4)−2s24 (x2 − x6)−2s26 (x4 − x6)−2s46

(3.3)

The delta functions in the factor C of (3.2) and (3.3) (for a CFT) will be
n in number, n being the number of external vertices. Thus even though
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we have n(n−1)
2

number of Mellin variables, the n number of constraints im-
posed by the delta functions on the Mellin variables will reduce the number
of Mellin variables to n(n−3)

2
. These aspects will become transparent once we

try to calculate the Mellin amplitude of a CFT Feynman diagram explicitly.

It should be noted that n(n−3)
2

is also the number of independent cross-ratios
between n points.

The delta functions constraints in C arise when we are dealing with a CFT.
But there is nothing in the position space amplitude as stated in (3.1) that is
specific to a CFT. We derive a set of constraints on the scaling dimensions of
the exchanged operators from the requirement that in a CFT the amplitude
will tansform in a given way under re-scaling and inversions. Once we im-
pose these constraints on the scaling dimensions, the amplitude (3.1) indeed
bears the signature of a CFT. And that is exactly how the delta function
constraints arise. We shall not have the occassion to see how it happens
explicitly in this chapter, but we shall derive the constraints on the scaling
dimensions that ensure the covariance of the amplitude with re-scaling and
inversions.

Let us first consider what happens to A (x1, x2, x4, x6) corresponding to the
Feynman diagram 3.1 under a re-scaling, given that we are dealing with a
CFT.

A (λx1, λx2, λx4, λx6) = λ−γ13−γ23−γ45−γ56A (x1, x2, x4, x6) (3.4)

We know that (3.4) is true from general properties of correlation functions
in a CFT. We have not used the form of A (x1, x2, x4, x6) explicitly yet. Now
we rescale x → λx in (3.1). It is easy to see that for (3.4) to be true, we
must have,

γ13 + γ23 + γ45 + γ56 + 2γ35 − 2D = 0 (3.5)
(3.5) is the constraint on the scaling dimensions that arises because we have
demanded the covariance of (3.1) with a rescaling of the position coordinates.

Next we look at what happens to A (x1, x2, x4, x6) under an inversion. Under
an inversion,

xµi →
xµi
|xi|2

(xi − xj)2 → (xi − xj)2

(xi)2(xj)2
dDu→ dDu

(|u|2)D
(3.6)

A

(
x1

|x1|2
,
x1

|x1|2
,
x2

|x2|2
,
x4

|x4|2
,
x6

|x6|2

)
= |x1|2γ13|x2|2γ23|x4|2γ45|x6|2γ56A (x1, x2, x4, x6)

(3.7)
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(3.7) is true owing to the transformation properties of correlation functions
in a CFT. However we can now employ (3.6) explicitly on (3.1). For (3.7)
to be true, the following two constraints must be satisfied.

γ13 + γ23 + γ35 −D = 0 (3.8)
γ45 + γ56 + γ35 −D = 0 (3.9)

We see that the (3.8) can be associated with the internal vertex 3 and (3.9)
can be associated with the internal vertex 5. Also the sum of (3.8) and
(3.9) is nothing but (3.5). Thus it is sufficient to satisfy the constraints
arising from the requirement that (3.1) transforms with inversion in a cer-
tain manner defined for correlation functions in a CFT. In general, it is true
that corresponding to each internal vertex there is a constraint between the
scaling dimensions of the operators interacting at that vertex (that is the
sum of these scaling dimensions is equal to D). These constraints together
also ensure the covariance of the amplitude with a rescaling.

With this discussion, now we are prepared to explicitly compute the Mellin
amplitude corresponding to some interaction diagrams. The next few chap-
ters will be devoted to this.
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Chapter 4

One Vertex Interaction

In this chapter, we shall explicitly calculate the Mellin amplitude correspond-
ing to a Feynman diagram for a one vertex interaction in a scalar field theory.
We shall start with the position space amplitude and then try to represent it
in the form of (3.2). We shall essentially be using tricks used in [8][9][10][11].
The Feynman diagram we are considering is,

u

x2 x3

xNx1

Figure 4.1: One Vertex Interaction

The scaling dimension of the external line correponding to the external ver-
tex xi is denoted by νi. With this convention, the position space amplitude
corresponding to this Feynman diagram 4.1 is,∫

dDu∏N
i=1(xi − u)2νi

(4.1)

We shall use the following identity (Schwinger paramterisation) on (4.1)
1

(x− y)2a
=

1

Γ(a)

∫ ∞
0

dt ta−1 exp
[
−t(x− y)2

]
(4.2)
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This gives us,

1∏N
i=1 Γ(νi)

∫ ∞
0

· · ·
∫ ∞

0

N∏
i=1

[
dtit

νi−1
i

] ∫
dDu exp

[
−

(
N∑
i=1

ti(xi − u)2

)]
(4.3)

Next we shall perform the Gaussian integral over u. This gives us, upto some
possible numerical factors,

1∏N
i=1 Γ(νi)

∫ ∞
0

· · ·
∫ ∞

0

∏
i dtit

νi−1
i

(
∑

j tj)
D/2

exp−

[∑
k

tkx
2
k −

(
∑

k tkxk)
2∑

k tk

]
(4.4)

The terms in the exponential factor in (4.4) can be manipulated to obtain,

1∏N
i=1 Γ(νi)

∫ ∞
0

· · ·
∫ ∞

0

∏N
i=1 dtit

νi−1
i

(
∑

i ti)
D
2

exp

[
− 1∑

i ti

(∑
j

∑
i<j

titj(xi − xj)2

)]
(4.5)

Now we shall perform a re-scaling trick that will render (4.5) particularly
suitable for imposing the contraints discussed in Chapter 3 (that are required
for the covariance of the amplitude with inversion).

We introduce a delta function (that can be integrated over to give 1) in
(4.5).

1∏N
i=1 Γ(νi)

∫ ∞
0

· · ·
∫ ∞

0

∏N
i=1 dtit

νi−1
i

(
∑

i ti)
D
2

∫ ∞
0

dvδ(v − (
∑

ti))

exp

[
− 1∑

i ti

(∑
j

∑
i<j

titj(xi − xj)2

)]
(4.6)

In the next step, we first take the v integral outside the integrals over the
Schwinger parameters ti. Then we make the change of variables, ti → ti

v
.

This gives us,

1∏N
i=1 Γ(νi)

∫ ∞
0

dv v
∑
i νi−

D
2
−1

∫ ∞
0

· · ·
∫ ∞

0

∏N
i=1 dtit

νi−1
i

(
∑

i ti)
D
2

δ(1− (
∑

ti))

exp

[
− v∑

i ti

(∑
j

∑
i<j

titj(xi − xj)2

)]
(4.7)
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By virtue of the delta function in (4.7), we can replace
∑

i ti by 1 to obtain,

1∏N
i=1 Γ(νi)

∫ ∞
0

dv v
∑
νi−D2 −1

∫ ∞
0

· · ·
∫ ∞

0

N∏
i=1

dtit
νi−1
i δ(1− (

∑
ti))

exp

[
−v

(∑
j

∑
i<j

titj(xi − xj)2

)]
(4.8)

In (4.8), we have got rid of the
∑

i ti from the denominators. Next we
perform another rescaling of the Schwinger paramters ti → ti

√
v. This gives

us,

1∏N
i=1 Γ(νi)

∫ ∞
0

dv v
∑
i
νi
2
−D

2

∫ ∞
0

· · ·
∫ ∞

0

N∏
i=1

dtit
νi−1
i

δ(v − (
∑

ti)
2) exp

[
−

(∑
j

∑
i<j

titj(xi − xj)2

)]
(4.9)

In (4.9), we have got rid of the v from the exponential term. Now we can
take the v integral inside all the Schwinger parameter integrals and perform
the integration over the delta function to obtain,

1∏N
i=1 Γ(νi)

∫ ∞
0

···
∫ ∞

0

N∏
i=1

dtit
νi−1
i

(∑
ti

)∑
i νi−D

exp−

(∑
j

∑
i<j

titj(xi − xj)2

)
(4.10)

The rescaling trick is now complete, and at the end of it we have got rid of
clumsy denominators and obtained an extra factor of (

∑
ti)

∑
i νi−D.

We wish to bring (4.10) to the form of the right hand side of (3.2). For
that we use the fact that the exponential term can be expressed as an inverse
Mellin transform of some Gamma functions (refer to Section 2.1).

e−x =
1

2πi

∫ i∞

−i∞
Γ(s)x−sds (4.11)

The contour of integration is along the imaginary axis, with an infinitesimal
curve around the origin to put the origin (a pole of the Gamma function) to
the left of the contour.
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Using (4.11) in the exponential term in (4.10), we can obtain,

1∏N
i=1 Γ(νi)

(
1

2πi

)N(N−1)
2

∫ i∞

−i∞
· · ·
∫ i∞

−i∞

∏
j

∏
i<j

[
dsij((xi − xj)2)−sijΓ(sij)

]
∫ ∞

0

· · ·
∫ ∞

0

∏
k

dtkt
ρk−1
k

(∑
tk

)∑
k νk−D

(4.12)

where
ρi = νi −

∑
j<i

sij −
∑
l>i

sli (4.13)

sij are our Mellin variables.

We are interesd in CFTs. Therefore, we can demand that our amplitude
transform in a prescribed manner, ie be covariant with conformal transfor-
mations.

We recall our discussion of constraints from covariance with inversion and
re-scaling in Chapter 3. Following that discussion, it is easy to figure out that
there is only one constraint here (corresponding to one interaction vertex).
This constraint is, ∑

i

νi −D = 0 (4.14)

Implementing (4.14) on (4.12), we are left with,

1∏N
i=1 Γ(νi)

(
1

2πi

)N(N−1)
2

∫ i∞

−i∞
· · ·
∫ i∞

−i∞

∏
j

∏
i<j

[
dsij((xi − xj)2)−sijΓ(sij)

]
∫ ∞

0

· · ·
∫ ∞

0

∏
k

dtkt
ρk−1
k

(4.15)

We look at the factor ∫ ∞
0

· · ·
∫ ∞

0

∏
i

dtit
ρi−1
i (4.16)

We should remember that this expression (4.16) is sitting inside the Mellin
inverse integral (4.15). This is where our discussion on the special Mellin
space delta function in Section 2.3 comes in handy.
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First we consider the contours of the sij integrals in (4.15). They are along
the imaginary axis with a little curve around the origin to put the origin
to the left of the contours. Now we consider the poles in the integrand of
(4.15). They are all contributed by the Gamma functions whose poles are at
the origin and the negative integers. Hence the contours of the sij integrals
can be shifted to the right freely.

Now we look at the terms ρi. The Mellin variables sij have a negative sign
in it, while the scaling dimensions νi have a positive sign (a negative scaling
dimension does not make any physical sense). From our dicussion in 2.3, we
know that (4.16) will act as N delta functions if we can shift each contour to
the right by an appropriate amount. Since we can shift our contours to the
right freely, we do not need to worry about the details of the contour shifts.
Thus we can write (formally, as indicated by the bar on the delta function),∫ ∞

0

· · ·
∫ ∞

0

∏
i

dtit
ρi−1
i = (2πi)N

∏
i

δ̄(ρi) (4.17)

Using (4.17) in (4.15), we have,

1∏N
i=1 Γ(νi)

(
1

2πi

)N(N−3)
2

∫ i∞

−i∞
· · ·
∫ i∞

−i∞

∏
j

∏
i<j

[
dsij((xi − xj)2)−sijΓ(sij)

]∏
i

δ(ρi)

(4.18)

The delta functions constitute the factor C in (3.2). These delta functions
effectively reduce the number of independent Mellin variables to N(N−3)

2
.

The delta functions in C have originated from our demand that the am-
plitude be covariant with scaling and inversion. Now we can have a careful
look at (4.18). The N delta functions in (4.18) force the (xi−xj)−2sij terms
to combine and form N(N−3)

2
cross ratios between the external vertices xi.

Thus the position space amplitude is an inverse Mellin transform, the argu-
ments of the position space amplitude being a set of independent cross ratios
between the external vertices, which is indeed how it should be for a CFT. In
fact this is the significance of having as many independent Mellin variables
as the number of independent cross ratios that can be constructed from the
external vertices. Thus the delta functions have expressed the position space
amplitude as a function of independent cross rations, thereby making it man-
ifestly covariant with special conformal transformation (and other conformal
transformations), a feature that is absent in the position space representa-
tion. This is an important virtue of the Mellin space representation of CFT
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correlation functions (true in general for all Feynman diagrams), that the
covariance with special conformal transformations is manifest.

The numerical factor that is absorbed into the Mellin measure is 1∏N
i=1 Γ(νi)

(
1

2πi

)N(N−3)
2 .

Let us compare (4.18) with (3.2) now. We can read off the Mellin am-
pltitude corresponding to the Feynman diagram 4.1.

We see that the Mellin amplitude is just 1.

All the jugglery in this chapter has thus given us an exceedingly simple
answer, that the Mellin amplitude of a one vertex interaction in a CFT is 1.
However this exercise will prove to be very useful as we shall repeat these
steps to calculate the Mellin amplitude of diagrams with higher number of
interaction vertices in the next few chapters.
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Chapter 5

Two Vertex Interaction

In this chapter, we shall calculate the Mellin amplitude corresponding to
two vertex tree level interactions. This will give us the propagator in Mellin
space. Once again, we shall follow the method by Paulos et al in [10] The
Feynman diagram we are considering is

u1 u2

xN y1

yMx1

γ

Figure 5.1: Two vertex tree

The scaling dimension of the internal line is γ as shown in Diagram 5.1. The
scaling dimension of the external line correponding to the external vertex xi
is denoted by νi, and that corresponding to the external vertex yi is denoted
by δi. The position space amplitude is then given by,∫ ∫

dDu1d
Du2∏

i(xi − u1)2νi
∏

j(yj − u2)2δj(u2 − u1)2γ
(5.1)

We shall repeat the same set of steps as in the one vertex case in Chapter
4, but for one internal vertex at a time. First we introduce the Schwinger
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parameters for all lines connected to vertex u1. We have,∫
dDu2

1∏
(yi − u2)2δi

1∏
Γ(νi)Γ(γ)

∫
dDu1

∫ ∞
0

· · ·
∫ ∞

0

∏
daidc

∏
aνi−1
i cγ−1

exp−
[∑

ai(xi − u1)2 + c(u2 − u1)2
]
(5.2)

ai are the Schwinger parameters corresponding to the external lines while c
is the Schwinger parameter corresponding to the internal line. Now we shall
carry out the Gaussian integral over u1 and introduce a delta function to
obtain,∫

dDu2
1∏

(yi − u2)2δi

1∏
Γ(νi)Γ(γ)

∫ ∞
0

· · ·
∫ ∞

0

∏
daidc

∏
aνi−1
i cγ−1

(
∑
ai + c)D/2

exp

[
− 1∑

ai + c

(∑∑
aiaj(xi − xj)2 +

∑
aic(xi − u2)2

)]
∫ ∞

0

dvδ(v − (
∑

ai + c)) (5.3)

Next we shall perform the same re-scaling trick on the Schwinger parameters
ai and c as in Chapter 4 (refer to steps (4.6) to (4.10)). We shall directly
write the result we obtain from this.∫

dDu2
1∏

(yi − u2)2δi

1∏
Γ(νi)Γ(γ)

∫ ∞
0

· · ·
∫ ∞

0

∏
daidc

∏
aνi−1
i cγ−1

(∑
ai + c

)νi+γ−D
exp

[
−
(∑∑

aiaj(xi − xj)2 +
∑

aic(xi − u2)2
)]

(5.4)

We repeat the same steps for the vertex u2 now. We introduce the Schwinger
parameters (say bi) for the remaining external lines and integrate over u2.
Then we perform the re-scaling trick on the Schwinger parameters bi and c
(it is important to note that we do not involve the ai in this round of the
re-scaling trick). All these steps finally give us,

1∏
Γ(νi)

∏
Γ(δj)Γ(γ)

∫ ∞
0

· · ·
∫ ∞

0

∏
dai
∏

dbjdc
∏

aνi−1
i

∏
bδj−1cγ−1

(∑
bi +

∑
aic
)∑ δi+γ−D [∑

ai + (
∑

bi +
∑

aic)c
]∑ νi+γ−D

exp
[
−
(
c
∑∑

biaj(yi − xj)2 +
∑∑

bibj(yi − yj)2
)]

exp
[
−
(

(1 + c2)
∑∑

aiaj(xi − xj)2
)]

(5.5)
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We can now follow step (4.12) of Chapter 4 to express (5.5) as an inverse

Mellin transform. We obtain, upto a factor of
(

1
2πi

) (N+M)(N+M−1)
2 ,

1∏
Γ(νi)

∏
Γ(δj)Γ(γ)

∫ i∞

−i∞
· · ·
∫ i∞

−i∞

[∏
j

∏
i<j

dpij(xi − xj)−2pijΓ(pij)

]
[∏

j

∏
i<j

dqij(yi − yj)−2qijΓ(qij)

][∏
i

∏
j

drij(xi − yj)−2rijΓ(rij)

]
∫ ∞

0

· · ·
∫ ∞

0

∏
dai
∏

aρi−1
i

∏
dbi
∏

bσi−1
i dccγ−1(1 + c2)−

∑
j

∑
i<j pijc−

∑
i

∑
j rij(∑

bi +
∑

aic
)∑ δi+γ−D [∑

ai + (
∑

bi +
∑

aic)c
]∑ νi+γ−D

(5.6)

where,

ρi = νi −
∑
j 6=i

pij −
∑
j

rij

σj = δj −
∑
i 6=j

qij −
∑
i

rij (5.7)

The conditions from the requirement of covariance with inversion for this
case are, ∑

δi + γ −D = 0∑
νi + γ −D = 0 (5.8)

Using (5.8) in (5.6) we get rid of the factors (
∑
bi +

∑
aic)

∑
δi+γ−D and

[
∑
ai + (

∑
bi +

∑
aic)c]

∑
νi+γ−D.

Now the ai and bi integrals give the N + M delta functions in the factor
C of (3.2). These reduce the number of Mellin variables from (N+M)(N+M−1)

2

to (N+M)(N+M−3)
2

.

After these steps, the Mellin amplitude corresponding to the two vertex tree
can be read off. It is,

1

Γ(γ)

∫ ∞
0

dccγ−1(1 + c2)−
∑
j

∑
i<j pijc−

∑
i

∑
j rij (5.9)
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Evaluating the Schwinger parameter integral in (5.9), we get,

1

2Γ(γ)
β

(
γ −

∑
j

∑
i rij

2
,
∑
j

∑
i<j

pij −
γ −

∑
i

∑
j rij

2

)
(5.10)

Now we shall introduce some notation to simplify the look of (5.10). We
introduce the convention,

KIJ =
∑
i∈I

∑
j∈J

sij with no overcounting (5.11)

Here sij represents a general Mellin variable between external vertices i and
j. I,J represent internal vertices or equivalently, the set of external vertices
connected to them.

In this notation, the Mellin amplitude becomes,

1

2Γ(γ)
β

(
γ −K12

2
, K11 −

γ −K12

2

)
(5.12)

We can already guess that (5.12) should be our propagator in the Mellin
space. However, this expression is not symmetric about the two internal
vertices u1 and u2. It seems to depend on which vertex among the two we
integrate over first. But obviously the order of integration should not create
a difference since we started out with the same expression. And it better not
create any difference if we intend to carry forward with our programme of
deriving Feynman rules for CFTs in the Mellin space because an ambiguity
of this sort in the propagator is not acceptable.

The expression (5.12) can be simplified using the equations of constraint
that we have used for ensuring covariance with inversion and re-scaling, and
also the constraints between the Mellin variables imposed by the N + M
delta functions.

Summing over all the constraints imposed by the delta functions obtained
from the ai integrals in (5.6) (in the conformal case), we get,∑

i∈1

νi − 2K11 −K12 = 0 (5.13)

The constraint from the conformal symmetry of our theory, corresponding to
vertex u1, is ∑

i∈1

νi + γ −D = 0 (5.14)
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Using (5.13) and (5.14), we can simplify (5.12) to obtain,

1

2Γ(γ)
β(
γ −K12

2
,
D

2
− γ) (5.15)

(5.15) is clearly symmetric about the two internal vertices. Thus we have
our Mellin space propagator in expression (5.15).

But this is of little use unless we can show that for any Feynman diagram (at
least at the tree level) the Mellin space amplitude factorises into a product
of propagators corresponding to each edge of the graph. We shall seek to do
so in the next chapter.

23



Chapter 6

A General Tree

In this chapter we shall prove that for any tree level interaction graph in
an interacting CFT, the Mellin amplitude is a product of propagators each
of which can be associated with one edge of the graph. Before coming to
the proof itself, we have to first develop a general algorithmic approach to
find the Mellin amplitude of any Feynman diagram as an integral over the
Schwinger parameters for the internal lines in the diagram.

We shall be using lower case indices when referring to external lines or ver-
tices and upper case indices when referring to internal lines and vertices. The
scaling dimensions of internal lines will be referred to as γI .

6.1 A Diagrammatic Algorithm

In this section, we discuss a diagrammatic algrithm to write down the Mellin
amplitude of any Feynman diagram (for tree and loop diagrams both) as an
integral over the internal Schwinger parameters. This algorithm mimicks the
steps that we have had some practice with in Chapters 4 and 5.

We basically construct a diagram (which we shall call a connection di-
agram) via the algorithm and then write the amplitude as an integral over
the internal Schwinger paramters from this connection diagram.

To begin with, we have to follow the following two steps to obtain the skele-
ton:

• Suppres all external lines to a point (represented by a dot).

• Represent the internal lines with dashed lines.
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The following diagrams explain these steps.

(1)

(2)

Figure 6.1: Skeleton: (1) Three vertex tree (2) Three vertex loop

Henceforth we shall never draw the external lines explicitly (for any Feynman
diagram, we shall only draw the skeleton).

We integrate over each of the internal vertices. When integrating over any
internal vertex, we have to do the following:

• Draw a loop at that vertex representing all the contractions between
external lines at that vertex and assign it a value of 1.

• Draw a solid line over each of the dashed line connections (if one is not
present already), representing a connection with the connected vertices.

• Assign a value equal to the Schwinger parameter to each of the solid
internal lines.

• Connect all vertices connected to the vertex in question with each
other, assigning a value which is the product of the two (corresponding)
Schwinger parameters (will be clear in the example below).

• If there are more than one solid line connections between two points,
replace it with one with a value which is the sum of all these.

• If there is already a loop at any of the vertices connected to the vertex
in question with a solid line, draw another loop at it, and assign it a
value which is the square of the Schwinger parameter (or the value) of
the line connecting the two vertices.
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vertex 1 vertex 2

vertex 3

vertex 4

t21

(a)

t2

t3

t2t3

t22

1

1

(b)

Figure 6.2: (a)Before and (b) after integrating over vertex 3

The figures 6.2 explain the steps outlined above that need to be followed
while integrating over an interaction vertex.

We have to complete the steps corresponding to integration over a vertex
for all the vertices. Then we can write the amplitude by the following rules:

• Include a factor of tγI−1
I for each internal line.

• Sum over the values of loops at each vertex, and raise the sum to the
power −KII .

• For each solid line, raise the net value of the line to the power −KIJ .

• Integrate over all internal Schwinger parameters, with the integrand
being a product of the above three contributions.

• Multiply by the reciprocal of Γ(γI) for each of the internal lines.

It should be noted that this algorithm has nothing to do with the conventions
used for indexing the Schwinger parameters or the scaling dimenions. We can
safely follow these steps for any self consistent convention for the indices.
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6.2 Mellin amplitude of a general tree
We are finally ready to calculate the Mellin amplitude of a general tree level
graph and show that we indeed arrive at a set of Feynman rules for the
tree level Feynman diagrams in an interacting CFT. We shall start from the
Mellin amplitude as an integral over the internal Schwinger parameters and
show that this is equal to a product of beta functions, each of which can be
interpreted as a propagator in the tree.

We already understand the rules to draw a connection diagram. We shall now
look closely at the integral over the Schwinger parameters (the amplitude)
which we call M .

M =

∫ (∏
P

dtP
tγP−1
P

Γ(γP )

)
I (6.1)

=

∫ ∏
P

DtPI (6.2)

The index P runs over all the internal lines. In the first step, we have called
the contribution to the integrand from the connection diagram as I, and in
the second step, we have redefined the measure of the integral.

One can easily find out from a few simple examples that I, for any given
graph, depends of the order of integration over the vertices while making the
connection diagram. For a straight chain of propagators the natural choice
is to go from left to right. For an arbitrary tree, we shall specify an order
that we shall consider in this derivation.

We have been referring to the Feynman diagram without the external lines
as the skeleton. All vertices in the skeleton shall be interchangably referred
to as node or vertex. Thus nodes are those vertices in the Feynman di-
agram that are integrated over in the position space amplitude. Any node
at which more than two lines are connected shall be called a branch node.
The term line and the corresponding Schwinger parameter shall be used in-
terchangably.

The order of integration is shown on a skeleton below with arrows. It is fixed
by the rule that there should be only one line at any branch node which goes
out, and all other lines should go in. Each branch node is integrated over
when all but one of the neighbouring nodes have been integrated over. Thus
there will be only one end line in the skeleton on which the arroe goes out.

27



(a)

Branch node

(b)

Figure 6.3: (a)A Feynman diagram and (b) the corresponding skeleton

This is the end point of the skeleton in a sense, and shall be referred to as
the exit. The Diagram 6.4 illustrates a compatible order of integration.

Each pair of nodes on the skeleton represents a connection. Suppose we draw
a continuous line (without raising the pen) between any two nodes on the
skeleton via the nodes that come in between. We shall call this the connect
route between the two points. Since we are considering a tree, there will
exist a node on the connect route that is nearest to the exit. The continuous
route from this node to the exit shall be referred to as the exit route for
the given connection ie the given pair of nodes (refer to Diagram 6.5).

A connection is denoted by (I, J). Since we shall have to deal with both
nodes and propagators on the skeleton and external lines and vertices, we
shall use upper case indices for the former and lower case indices for the
latter. However, in other discussions, when we shall have no need for such
disambiguation, we shall use lower case letters for both types of indices.

The integrand I, by construction of the connection diagram is given by the
product of all possible connections (self connections at each node and cross
connections between two different nodes) each raised to some appropriate
power.

We use a convention that the line coming out of a node P (as per the ar-
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1

2

3

4

5

6 7

8

9

10

Exit

Figure 6.4: Order of integration over the nodes depicted by the numbers (in
increasing order) and arrows.

rows) will be denoted by tP . Let I also denote the set of all external vertices
connected to the node I with the external lines.

From the discussion on how to write the amplitude as an integral over
Schwinger parameters from the connection diagram, we know that for any
two nodes I,J the value contributed by the corresponding connection is,

(I, J)−KIJ (6.3)

Next, we wish to know the functional dependence of a given (I, J) on the
Schwinger parameters.

Following the rules of the constructing the connection diagram, we can find
that,

(I, J) = [product of the Schwinger parameters on the (I, J) connect route][
1 + t2P (1 + t2P+1(... and so on along the (I, J) exit route) · ··)

]
(6.4)

In (6.4), P is the node on (I, J) connect route that is nearest to the exit.
The chain in the second factor in (6.4) terminates at the second last node,
ie at the node nearest to the exit on the exit route.

Note that in the second factor on the right hand side of the formula above,
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1
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5

6 7

8

9

10

Exit

Figure 6.5: Connect route (blue) and Exit route (red) for (3,5)

only those Schwinger parameters are involved that fall in the exit route of
the connection, and +1 in the index means one step next in the exit route,
and not necessarily in the general order of integration. For self contractions
at a node, the first factor is just one.

It should be emphasized that this functional dependence of (I, J) is true
only for the chosen order of integration and the formula does not hold in
general.

As an example, for the skeleton in the diagram (3), the connection (3, 5)
is equal to,

(3, 5) = t3t4t5
(
1 + t26

(
1 + t27

(
1 + t29

)))
(6.5)

At this point, we introduce one more notation. If we cut any line in the
skeleton, it is divided into two parts. We call the part of the diagram for
which the arrow at the cut is going into the cut line say tI , to be the Left,
and the set of nodes in this part as LI . Similarly we define the Right and
the corresponding set RI .

Keeping in mind the previous discussion, we now can easily write down the
factors in I and their respective powers to which they are raised.

Firstly we have each Schwinger parameter tP in the skeleton raised to the
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1
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5
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8
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10

Left Right

Cutting the line t7

L7 = 1, 2, 3, 4, 5, 6, 7 R7 = 8, 9, 10

Figure 6.6: Left and Right of a cut line

power,
−OP = −

∑
I∈LP

∑
J∈RP

KIJ (6.6)

Now we shall make a notational simplification to the second factor in (6.4).
We define AI corresponding to a line tI recursively as,

AI = 1 + t2IAI+1 (6.7)

Here too, the +1 in the index of A indicates a step next along an exit route.

Therefore the second factor in (6.4) for an exit route starting at node P
is,

1 + t2P (1 + t2P+1(... and so on along the (I, J) exit route ) · ··) = AP (6.8)

So the power to which each AP in I will be raised is,

−QP = −
∑̄

P 6=I∈LP

∑̄
P 6=J∈LP

KIJ −
∑
J∈Lp

KPJ (6.9)

The bar over the summation is to denote that I,J are not on the same branch.
Hence if P is not a branch node, then this entire term is absent.
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So now, we have,
I =

∏
all internal lines

t−OII A−QII (6.10)

We shall now carry out the integral over the internal Schwinger parame-
ters. The order of integration over the lines is the order followed for integra-
tion over the vertices. Say we are integrating out tI . We have,

1

Γ(γI)

∫
dtIt

γI−OI−1
I A

−Q′I
I (6.11)

We have taken an arbitrary Q′I here for reasons that will be clear soon. We
have to compute, ∫

dtI
tγI−OI−1
I

(1 + t2IAI+1)Q
′
I

(6.12)

=
1

2

∫
drI

r
γI−OI

2
−1

I

(1 + rIAI+1)Q
′
I

rI = t2I (6.13)

=

(
1

AI+1

) γI−OI
2 1

2

∫
drI

r
γI−OI

2
−1

I

(1 + rI)Q
′
I

(6.14)

=

(
1

AI+1

) γI−OI
2 1

2
β

(
γI −OI

2
, Q
′

I −
γI −OI

2

)
(6.15)

The factor of A−
γI−OI

2
I+1 goes into the integrand of the integral of the next line

along an exit route. That is why we had taken an arbitrary Q′i in (6.11). In
fact, that tells us,

Q
′

I = QI +
∑
a

γ
(a)
I−1 −O

(a)
I−1

2
(6.16)

Here a labels the lines that go into the node I (necessary when I is a branch
node).

Thus we see that the integral over a line tI gives us the following factor
for that line,

1

2Γ(γP )
β

(
γI −OI

2
, Q
′

I −
γI −OI

2

)
(6.17)

This is the propagator for the line tI (in the special case of a two vertex tree
we have our result (5.12) of Chapter 5).
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Carrying out this process over the entire skeleton clearly factories the M
into propagators for each line. Next we look at the beta function in the
propagator carefully.

We consider the beta function,

1

2
β

(
γP −OP

2
, Q
′

P −
γP −OP

2

)
(6.18)

But,

Q
′

P −
γP −OP

2

= QP −
γP −OP

2
+
∑
a

γ
(a)
P−1 −O

(a)
P−1

2
(6.19)

=
1

2
(
∑
a

γ
(a)
P−1 − γP ) +

1

2

∑
J∈LP ,J 6=P

KJP +
1

2

∑
J∈RP ,J 6=P

KPJ +KPP

(6.20)

From the delta function constraints, we have at each node P ,∑
i∈P

νi −
∑
J 6=P

KPJ − 2
∑

KPP = 0 (6.21)

Also from the conformal covariance of the amplitude, we have,∑
i∈P

νi + γP +
∑
a

γ
(a)
P−1 = D (6.22)

Using (6.21) and (6.22), we finally get the propagator for tP as,

1

2Γ(γP )
β

(
1

2

(
γP −

∑
I∈LP

∑
J∈RP

KIJ

)
,
D

2
− γP

)
(6.23)

Thus the full Mellin amplitude of an arbitrary tree is given by,

∏
P

1

2Γ(γP )
β

(
1

2

(
γP −

∑
I∈LP

∑
J∈RP

KIJ

)
,
D

2
− γP

)
(6.24)
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Thus we have shown that the Mellin amplitude corresponding to a general
tree level Feynman diagram is a product of some factors (propagators) each
of which can be associated with an internal line in the diagram. We have
arrived at a set of Feynman rules for tree level perturbative diagrams for
CFTs in the Mellin space.

These Feynman rules are:

• The propagator for any internal line is

1

2Γ(γp)
β

1

2

γp −∑
I∈Lp

∑
J∈Rp

KIJ

 ,
D

2
− γp


• Multiply the propagators of all the internal lines.

Since we are now convinced about the Mellin space propagator (6.23), we
wish to know about the pole structure of the propagator. This is what we
shall look into in the next section.

6.3 Spectral representation

For a general quantum field theory, the isolated poles of the momentum space
propagator correspond to single particle states and the branch cuts give the
multi-particle states. In a CFT we don’t really have single particle states
characterised by the masses since mass is a dimensionful parameter. There-
fore the momentum space does not provide any spectral representation for
CFT correlation functions. An operator product expansion (OPE) in an in-
teracting CFT involves a discrete set of operators, which are the exchanged
primary field and its descendants. So it is desirable to have a representation
for correlation functions in CFTs that makes this discrete spectrum manifest.
Mack had proposed that [4] [5] that Mellin space provides such a represen-
tation. This is exactly what we seek to show in this section using our Mellin
space Feynman rules.

We interpret a Mellin variable sij as,

sij = ki · kj (6.25)

with
k2
i = −νi (6.26)
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νi being the scaling dimension of the external line denoted by i. We shall
refer to ki as Mellin momentum flowing through the external vertex i. It is
a vector in any dimension.

Now we consider the constraint imposed by the delta function arising out
of the integration of this particular line (integration over the corresponding
Schwinger paramter),

νi −
∑

j∈{all other external vertices}

sij = 0 (6.27)

⇒ ki ·

 ∑
j∈{all external vertices}

kj

 = 0 (6.28)

This can be satisfied if, ∑
j∈{all external vertices}

kj = 0 (6.29)

This is the condition that the sum of all the Mellin momenta flowing into
the diagram is zero. In other words, Mellin momentum is conserved in any
interaction.

It is important to remember that the conservation of Mellin momentum is
not a necessary condition for (6.28) to be satisfied. We are just interpreting
(6.28) in this manner.

We consider the propagator corresponding to the internal line P

1

2Γ(γP )
β

(
1

2

(
γP −

∑
I∈LP

∑
J∈RP

KIJ

)
,
D

2
− γP

)
(6.30)

γP −
∑
I∈LP

∑
J∈RP

KIJ = γP −
∑
i∈LP

∑
j∈RP

sij = γP −
∑
i∈LP

∑
j∈RP

ki · kj

= γP −

(∑
i∈LP

ki

)
·

(∑
j∈RP

kj

)
(6.31)

Due to the overall conservation of Mellin momenta, this is equal to,

γP +

(∑
i∈LP

ki

)2

= γP + k2
P (6.32)
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Thus the KIJ are like Mandelstam variables here. kP is the total Mellin
momentum flowing through the internal line P . Putting this back into the
propagator, we have,

1

2Γ(γP )
β

(
1

2

(
γP + k2

P

)
,
D

2
− γP

)
=

1

Γ(γP )

∞∑
n=0

n−D
2

+γPCn
1

k2
P + γP + 2n

(6.33)
Thus the total Mellin momentum (squared) flowing through the line P has
poles at −γP − 2n. These correspond to the primary field corresponding to
the propagator and its descendants.

The Mellin space indeed furnishes a spectral representation for correlation
functions in conformal field theory.

We would like to wrap up this discussion with a brief recapitulation of
the most important points we have learnt so far. Mellin space provides a
manifestly covariant (with all conformal transformations) representation for
correlation functions in a CFT. At tree level (at least), there exists a set
of Mellin space Feynman rules that can be associated with Feynman dia-
grams in an interacting CFT. The Mellin variables can be interpreted as
Mandelstam variables constructed out of the (hypothetical) external Mellin
momenta flowing into the diagram. The covariance of the amplitude with
special conformal transformations allows for a statement of conservation of
Mellin momentum. All the Mellin variables (or equivalently all the Mandel-
stam variables) are not independent (because of the conservation of Mellin
momentum) and the number of independent Mellin variables is equal to the
number of independent cross rations between the external vertices in the di-
agram. Mellin space also allows a spectral representation for the correlation
functions as any propagator in the diagram has a discrete infinite set of poles
corresponding to the exchanged primary field and its descendants.

We shall conclude our discussion of the tree level here and move on to loop
diagrams.
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Chapter 7

One Loop Diagrams

This chapter is devoted to calculating the Mellin amplitude of one loop Feyn-
man diagrams. Since we have already understood the method to calculate
the Mellin amplitude of any diagram and also the Feynman rules correspond-
ing to tree level diagrams, the primary challenge lies in expressing the Mellin
amplitude of an n-gon (skeleton) in the best possible way. It is particularly
difficult because we have no prior clue of what would be the best way to
express the Mellin amplitude of an n-gon. In fact we cannot be sure that
there exists a set of Feynman rules for the Mellin amplitude in this case. We
have not been able to prove or disprove the existence of these rules explicitly
as of yet. However we shall present a calculation here which gives us a major
hint about the desired form of the Mellin amplitude. Before that we look at
a class of relations between loops and trees.

7.1 Star-delta relation
There exists a very obvious relation between a loop and a tree each with two
interaction vertices.∫ ∫

dDu1d
Du2

1∏
i(xi − u1)−2νi(u1 − u2)−2γ

∏
j(yj − u2)−2δj

=

∫ ∫
dDu1d

Du2
1∏

i(xi − u1)−2νi(u1 − u2)−2γ1(u2 − u1)−2γ2
∏

j(yj − u2)−2δj

(7.1)

where,

γ1 + γ2 = γ
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The left hand side of (7.1) is the position space amplitude for the tree, while
the right hand side is the position space amplitude for the two vertex loop.
(By vertex, we shall mean an interaction vertex unless stated otherwise.)
(7.1) tells us that the amplitude for the two vertex tree and loop are exactly
equal with the scaling dimension of the internal line in the tree being equal
to the sum of the scaling dimensions of the two internal lines in the loop.

In this section, we shall loop at a (not so obvious) relation between a four
vertex tree (a three pronged star) and a three vertex loop. Though this is a
well known relation, we shall derive it in our own way using the tricks used in
the calculation of Mellin amplitudes (the relation itself has no intrinsic con-
nection to the Mellin space though and is valid in any space). Furthermore
we shall consider a possible generalisation of this relation to a maximally
connected n-gon (Kn). (It is worth reiterating once that we are always talk-
ing about the skeleton and ignoring the external lines for convenience. For
example the n-gon just mentioned is only the skeleton and there are external
lines feeding into each of the n vertices.)

We shall also loosen up our conventions for indexing the internal lines from
here onwards. Since we shall not have much use of the external lines in this
chapter, we shall use lower case indices for the internal lines as well. We shall
still use γi for the scaling dimensions of the internal lines unless otherwise
stated.

Let us consider the position space amplitude of a star. We are consider-

u1 u2

u3

u4

Figure 7.1: A three pronged star

ing the case where there are no external vertices to u4. The position space
amplitude is given by,∫
· · ·
∫
dDu1 · · · dDu4

∏
(xi − u1)−2ai

∏
(yj − u2)−2bj

∏
(zk − u3)−2ck

(u1 − u4)2γ1(u2 − u4)2γ2(u3 − u4)2γ3
(7.2)
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We shall carry the integral over u4 following Schwinger parametrisation of
the three internal lines, leaving the rest of the expression intact. After this
Schwinger parametrisation we have,

A

∫
dDu4

∫ ∞
0

· · ·
∫ ∞

0

dt1dt2dt3
tγ1−1
1 tγ2−1

2 tγ3−1
3

Γ(γ1)Γ(γ2)Γ(γ3)

exp−
[
t1(u1 − u4)2 + t2(u2 − u4)2 + t3(u3 − u4)2

]
(7.3)

where,

A =

∫ ∫ ∫
dDu1d

Du2d
Du3

1∏
(xi − u1)2ai

∏
(yj − u2)2bj

∏
(zk − u3)2ck

(7.4)
We know from our experience with the tree level that (7.3) is equal to
(ignoring factors of 1

2πi
),

A

∫ i∞

−i∞

∫ i∞

−i∞

∫ i∞

−i∞
ds12ds13ds23

Γ(s12)Γ(s23)Γ(s13)

Γ(γ1)Γ(γ2)Γ(γ3)

δ(γ1 − s12 − s13)δ(γ2 − s12 − s23)δ(γ3 − s13 − s13)

(u1 − u2)2s12(u2 − u3)2s23(u3 − u1)2s13
(7.5)

Let’s consider the system of equations enforced by the delta functions,

γ1 − s12 − s13 = 0

γ2 − s12 − s23 = 0

γ3 − s23 − s13 = 0 (7.6)

There is a unique solution. Let it be s12 = p1,s23 = p2 and s13 = p3. We can
find pi from the γi and vice versa.

Carrying out the sij integrals in (7.5), we get,

A
Γ(p1)Γ(p2)Γ(p3)

Γ(γ1)Γ(γ2)Γ(γ3)

1

(u1 − u2)2p1(u2 − u3)2p2(u3 − u1)2p3

=
Γ(p1)Γ(p2)Γ(p3)

Γ(γ1)Γ(γ2)Γ(γ3)

∫ ∫ ∫
dDu1d

Du2d
Du3

∏
(xi − u1)−2ai

∏
(yj − u2)−2bj

∏
(zk − u3)−2ck

(u1 − u2)2p1(u2 − u3)2p2(u3 − u1)2p3

(7.7)

The position space amplitude of the three vertex loop (triangle) is given by
(7.7) (with a multiplicative factor that does not depend on any kinematical
variables). Thus from the above discussion we come to know that the ampli-
tude for the triangle loop in Diagram 7.2 is proportional to the amplitude
for the three pronged star (7.2).
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u1 u2

u3

Figure 7.2: Triangle loop

We should note that the γi are the scaling dimensions of the internal lines
of the star, while pi are the scaling dimensions of the internal lines of the
triangle. The convention followed for the triangle (evident from (7.7)) is
that the scaling dimension of the line opposite to the vertex i is pi.

Thus the duality can be formally stated in the position space as,

Γ(γ1)Γ(γ2)Γ(γ3)A3-pt star(γi) = Γ(p1)Γ(p2)Γ(p3)AK3(pi) (7.8)

K3 is the graph theoretic notation for the maximally connected 3 vertex
graph, which is the triangle. A refers to the position space amplitude. The
scaling dimensions on the external lines are the same for both the diagrams
(there are no external lines with the central vertex of the star), and the rela-
tion between γi and pi is given by (7.6). It is now trivial to state the duality
in any other space as well.

This relation (7.7) tells us the Mellin amplitude for the triangle loop di-
rectly (although this is not a preferable way to express Mellin amplitude of
loops since it does not generalize to other loops as we shall see later). We we
can write the Mellin amplitude of the triangle loop from the Mellin amplitude
for Diagram 7.1 using the discussion above,

1

Γ(p1)Γ(p2)Γ(p3)

1

2
β

(
p2 + p3 −K12 −K13

2
,
D

2
− γ1

)
1

2
β

(
p1 + p3 −K23 −K12

2
,
D

2
− γ2

)
1

2
β

(
p1 + p2 −K23 −K13

2
,
D

2
− γ3

)
(7.9)

(7.8) has a generalized version that gives a relation between the amplitude
of an n pronged star and Kn. The derivation is essentially the same as in
Section 7.1. However in this case there shall not be enough delta functions
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at the step (7.5) to fix the scaling dimensions of all internal lines and do
away with all the sij integrals. Therefore we shall have to solve for certain
of the scaling dimensions of Kn in terms of the others that will be integrated
over and the scaling dimensions of the internal lines in the n pronged star.
This generalisation of (7.8) is,

n∏
i=1

Γ(γi)An-pt star({γi}) =

∫ i∞

−i∞
···
∫ i∞

−i∞
dc1···dcm

n∏
i=1

Γ(bi)

n(n−3)
2∏
j=1

Γ(ci)AKn({bi}, {ci})

(7.10)
bi are the scaling dimensions of some of the internal lines of Kn that are fixed
in terms of γi and ci, ci being the scaling dimensions (that are not fixed and
are integrated over) of the remaining internal lines of Kn.

A natural question to ask at this juncture is which are the internal lines
in Kn for which we can fix the corresponding scaling dimensions, or in other
words how to choose the two sets of lines corresponding to bi and ci.

The answer to our question is that we can choose the n bi and the n(n−3)
2

cj freely as long as the corresponding set of equations (from the delta func-
tions) that determine bi in terms of γi and ci is solvable.

Classifying the allowed choices graph theoretically is an interesting exercise.
I shall directly state the answer here. The set of n lines whose scaling dimen-
sions would be bi should be chosen such that these lines form a connected
graph (with n vertices and n edges) which is an n-gon with odd n or has
a part that is a l-gon with odd l, or a disconnected graph each of whose
connected components is a one-loop graph of the same type.

7.2 n-gon

Now we come to our task of manipulating the Mellin amplitude of an n-gon
to extract something useful from it. As mentioned in the Section 7.1 we shall
use lower case indices for Schwinger parameters and scaling dimensions of in-
ternal lines (unlike in Chapter 6). We shall denote the Schwinger parameter
for the line connecting the vertices i and i+1 in the n-gon by ti+1 (n+1 ≡ 1).
The corresponding scaling dimension will be denoted by γi+1. We shall ignore
factors of 1

2πi
everywhere apart from stating independent identities or results.

The n-gon amplitude (for a cyclical order of integration over the interaction
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vertices) can be written as an integral over the Schwinger parameters (can
be deduced from the diagrammatic algorithm in Section 6.1 or otherwise),

∫ ∞
0

· · ·
∫ ∞

0

n∏
i=1

dtit
γi−1
i

n−1∏
j=1

[
n∏
k=j

(
Ck
j +BjBk

)−Kjk] (7.11)

with

Ck
j = tj+1 · · · tkAk 1 ≤ j < k < n

Cj
j = Aj 1 ≤ j < n

Cn
j = 0

Bi = t1 · · · tiAi + ti+1 · · · tn i ≤ n− 1

Bn = 1

Ai = 1 + t2i+1Ai+1 1 ≤ i < n− 1

An−1 = 1 (7.12)

We shall ingore the reciprocal Gamma functions (of the scaling dimensions
of the lines in the skeleton) in the Mellin amplitude in this entire chapter.
It is just a multiplicative constant, and since we shall not have the occasion
to calculate a final answer to our problem in this chapter (derive Feynman
rules for one-loop diagrams), this choice made for convenience will not come
in the way of what we wish to achieve here.

Now we shall introduce an identity that will be very important to us in
this chapter. This is nothing but the result for the Mellin inverse of the beta
function.

1

(1 + x)a
=

1

2πi

∫ c+i∞

c−i∞
x−wβ(w, a− w)dw (7.13)

Using (7.13), we can write (7.11) as,

∫ ∞
0

· · ·
∫ ∞

0

n∏
i=1

dtit
γi−1
i

[
n−1∏
j=1

n−1∏
k=j

∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

]
[
n−1∏
j=1

n−1∏
k=j

(
Ck
j

)−Kjk+ujk (BjBk)
−ujk

]
n−1∏
j=1

(BjBn)−Kjn

(7.14)
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Using (7.12), we can simplify (7.14) to the form,(
n−1∏
j=1

n−1∏
k=j

∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)∫ ∞
0

· · ·
∫ ∞

0

n∏
i=1

dtit
γi−1
i

n−1∏
i=1

(
B
−2uii−

∑
n>j 6=i uij−Kin

i

) n−2∏
i=1

(
A
−

∑
j∈L̄i+1

(Kij−uij)
i t

−
∑
j∈L̄i+1

∑
k∈R̄i+1

(Kjk−ujk)

i+1

)
(7.15)

L̄i is the set of all vertices from 1 to i − 1 and R̄i is the set of the rest of
the vertices except n, the order of integration over the vertices being 1 to n
cyclically. Please consider the usage of these symbols here to be independent
of the usage of similar symbols in the Chapter 6.

Now we introduce some notation for the powers. Let,

P 1
i = 2uii +

∑
n>j 6=i

uij +Kin

P 2
i =

∑
j∈Li+1

(Kij − uij)

P 3
i =

∑
j∈Li+1

∑
k∈R′i+1

(Kjk − ujk) (7.16)

So we can write (7.15) as,
n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)∫ ∞
0

· · ·
∫ ∞

0

n∏
i=1

dtit
γi−1
i

n−1∏
i=1(

B
−P 1

i
i

) n−2∏
i=1

(
A
−P 2

i
i t

−P 3
i

i+1

)
(7.17)

After using (7.13) on (7.17), and doing necessary simplifications, we obtain,
n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)
n−1∏
i=1

(∫ bi+i∞

bi−i∞
dviβ(vi, P

1
i − vi)

)
∫ ∞

0

· · ·
∫ ∞

0

n∏
i=1

dtit
γi−1
i

n−2∏
i=1

(
A
−P 2

i −vi
i t

−P 3
i −

∑
i+1≤j≤n−1 vj−

∑
j<i+1(P 1

j −vj)
i+1

)
n−2∏
i=1

(
A
−P 2

i −vi
i t

−P 3
i −

∑
i+1≤j≤n−1 vj−

∑
j<i+1(P 1

j −vj)
i+1

)
t
−

∑
j<n vj

1 t
−

∑
j<n(P 1

j −vj)
n

(7.18)
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Evaluating the integrals over the Schwinger parameters in (7.18) and sim-
plifying the results, we can get,

n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)
n−1∏
i=1

(∫ bi+i∞

bi−i∞
dviβ(vi, P

1
i − vi)

)
n−1∏
i=3

[
1

2
β

(
γi − P 4

i

2
, P 2

i−1 + vi−1 +
γi−1 − P 4

i−1

2
− γi − P 4

i

2

)]
δ

(
γ1 −

∑
j<n

vj

)
1

2
β

(
γ2 − P 4

2

2
, P 2

1 + v1 −
γ2 − P 4

2

2

)
δ

(
γn −

∑
j<n

(P 1
j − vj)

)
(7.19)

where,

P 4
i+1 = P 3

i +
∑

i+1≤j≤n−1

vj +
∑
j<i+1

(P 1
j − vj) (7.20)

We can see that the number of independent loop variables in (7.19) is
(n−2)(n+3)

2
.

We wish to simplify the arguments of the beta functions in (7.19) for the
edges i = {2, n− 1}. Using the definitions of P 1

i ,P 2
i and P 3

i (these cannot be
further simplified), we can find that,

P 4
i =

∑
j∈L′i

∑
k∈R′i

Kjk +
∑
j∈L′i

∑
k∈L′i

ujk +
∑

i≤j≤n−1

vj −
∑
j<i

vj +
∑
j∈L′i

ujj (7.21)

R
′
i is the set containing the vertex n and all the vertices contained in R̄i,

L̄i = L
′
i. Now we should put down clearly what L′i and R

′
i mean in this

context (refer to Diagram 7.3).

In diagram (7.3) the A1Ai line cuts the diagram into two parts. The L′i and
R
′
i contain the vertices on their respective sides as indicated in the diagram

above with i = 4.

We can simplify the arguments of the beta functions in (7.19) for the edges
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1

2 3

4

5

n− 1

n

A1

A4

L
′
4

R
′
4

Figure 7.3: L′i and R
′
i

i = {2, n− 1}, and obtain,

n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)
n−1∏
i=1

(∫ bi+i∞

bi−i∞
dviβ(vi, P

1
i − vi)

)
n−1∏
i=3

[
1

2
β

(
γi −

∑
j∈L′i

∑
k∈R′i

Kjk − Ei
2

,
D

2
− γi

)]
δ

(
γn −

∑
j<n

(P 1
j − vj)

)
1

2
β

(
γ2 −

∑
k≥2K1k − E2

2
,
D

2
− γ2 −

γ1

2
+
∑
j≤n−1

vj
2

)
δ

(
γ1 −

∑
j<n

vj

)
(7.22)

where,

Ei =
∑
j∈L′i

∑
k∈L′i

ujk +
∑

i≤j≤n−1

vj −
∑
j<i

vj +
∑
j∈L′i

ujj (7.23)

Since we have a δ
(
γ1 −

∑
j<n vj

)
inside the integral, we can replace

∑
j≤n−1

vj
2

with γ1

2
in the propagator for t2. Therefore we shall have from (7.22), with
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some manipulation,

n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)
n−1∏
i=1

(∫ bi+i∞

bi−i∞
dviβ(vi, P

1
i − vi)

)
n−1∏
i=2

[
1

2
β

(
γi −

∑
j∈L′i

∑
k∈R′i

Kjk − Ei
2

,
D

2
− γi

)]
δ

(
γ1 −

∑
j<n

vj

)

δ

γn −∑
j∈L′n

∑
k∈R′n

Kjk − En


(7.24)

If we define L′1 and R′1 to be empty sets, then we have a meaning for E1, and
we can write the amplitude as,

n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)
n−1∏
i=1

(∫ bi+i∞

bi−i∞
dviβ(vi, P

1
i − vi)

)
n−1∏
i=2

[
1

2
β

(
γi −

∑
j∈L′i

∑
k∈R′i

Kjk − Ei
2

,
D

2
− γi

)]
δ

γn −∑
j∈L′n

∑
k∈R′n

Kjk − En


δ

γ1 −
∑
j∈L′1

∑
k∈R′1

Kjk − E1


(7.25)

We shall not proceed further with the Mellin amplitude for the n-gon, but
rather look at the Mellin amplitude of the n vertex straight chain. Eventually,
we would compare the two.

7.3 n vertex chain
The integrand for the n-gon amplitude (the part coming from the Gaussian
integral over the vertices) is given by (7.11) and (7.12).

We know that setting any ti to zero in (7.11) makes the integrand reduce
to the corresponding result for the tree level. The form of the resulting in-
tegrand depends on which ti we set equal to zero. The different possible
integrands that one could obtain by putting different ti s to zero correspond
to different order of (Gaussian) integration over the internal vertices of the
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chain. However all of the integrals are equal as they are the same amplitude.
We set tn to zero in (7.11). We can see from (7.12) that this changes only
the Bi for i ≤ n− 1 keeping the form of (7.11) still valid. We get,

Bi = t1 · · · tiAi i ≤ n− 1 (7.26)

We should note that the diagram we are considering is Diagram 7.4

1
2 3 4

5n− 1n

t1

t2 t3 t4

t5

Figure 7.4: n vertex chain

The order of integration over the vertices that gives the integrand we are
dealing with here is 1 to n. It is important to note that in this order of inte-
gration over the vertices, we are not integrating from one end to the other,
in which case we get a rather simple integral that directly gives a product
of n − 1 beta functions. Due to the changed order of integration, the inte-
grand in the Schwinger paramter integral is more complicatd here. But it
can indeed be shown that both these Schwinger parameter integrals are equal
(though we shall not show it explicitly here).

The amplitude for the skeleton in Diagram 7.4 is,∫ ∞
0

· · ·
∫ ∞

0

n−1∏
i=1

dtit
γi−1
i

n−1∏
j=1

[
n∏
k=j

(
Ck
j +BjBk

)−Kjk] (7.27)

(7.27) can be written as,
n−1∏
j=1

n−1∏
k=j

∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

∫ ∞
0

· · ·
∫ ∞

0

n−1∏
i=1

(
dtit

γi−1
i A

−Q1
i

i t
−Q2

i
i

)
(7.28)

where,

Q2
i =

∑
j∈Li

∑
k∈Ri

Kjk +
∑
j∈L′i

∑
k∈L′i

ujk +
∑
j∈L′i

ujj

Q1
i =

∑
j∈Li

Kij +Kii +
∑
j∈Ri

uij (7.29)
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L
′
i and R

′
i have the same meaning as explained in Section 7.2, and Li and

Ri have the same meaning as defined in the Section 6.2 for the tree level
diagrams. One should however be careful with the meaning of the index i
here. Cutting the ith line means cutting the line between the vertices i and
i − 1 as we have already stated at the beginning of this chapter. In the
discussion on the tree level diagrams, by the ith line we had meant the line
connecting the vertices i and i+ 1.

We can perform manipulations similar to those in Section 7.2 on (7.28)
and then simplify it to obtain the Mellin amplitude,

n−1∏
j=1

n−1∏
k=j

∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)δ(γ1 −

∑
j∈L1

∑
k∈R1

Kjk −H1)

n−1∏
i=2

1

2
β

(
γi −

∑
j∈Li

∑
k∈Ri Kjk −Hi

2
,
D

2
− γi

)
(7.30)

where,
Hi =

∑
j∈L′i

∑
k∈L′i

ujk +
∑
j∈L′i

ujj (7.31)

We do not know yet how to integrate over the ujk in (7.30) to obtain the
tree level Mellin amplitude that we know from Section 6.2 to be a product
of beta functions each of which can be associated with one of the edges in
the skeleton. However that is not what we seek to do in this chapter. We are
rather interested in the result (7.30) itself as it is similar to result (7.25) for
the n-gon in some ways. We wish to look at the similarities and differences
between (7.25) and (7.30) and learn something about the Mellin amplitude
of the n-gon. This is what the next section is about.

7.4 A clue to the n-gon

First we rerwrite the amplitudes of the n vertex chain and the n gon that we
wish to compare. The n vertex chain amplitude is,

n−1∏
j=1

n−1∏
k=j

∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)δ(γ1 −

∑
j∈L1

∑
k∈R1

Kjk −H1)

n−1∏
i=2

1

2
β

(
γi −

∑
j∈Li

∑
k∈Ri Kjk −Hi

2
,
D

2
− γi

)
(7.32)
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where,
Hi =

∑
j∈L′i

∑
k∈L′i

ujk +
∑
j∈L′i

ujj

The n gon amplitude is,

n−1∏
j=1

n−1∏
k=j

(∫ ajk+i∞

ajk−i∞
dujkβ(ujk, Kjk − ujk)

)
n−1∏
i=1

(∫ bi+i∞

bi−i∞
dviβ(vi, P

1
i − vi)

)
n−1∏
i=2

[
1

2
β

(
γi −

∑
j∈L′i

∑
k∈R′i

Kjk − Ei
2

,
D

2
− γi

)]
δ

γn −∑
j∈L′n

∑
k∈R′n

Kjk − En


δ

γ1 −
∑
j∈L′1

∑
k∈R′1

Kjk − E1


(7.33)

where,
Ei =

∑
j∈L′i

∑
k∈L′i

ujk +
∑

i≤j≤n−1

vj −
∑
j<i

vj +
∑
j∈L′i

ujj

Let us consider the form of the Mellin amplitude of the n vertex chain in
(7.32). This is a Mellin Barnes type integral in effectively (n+1)(n−2)

2
indepen-

dent variables ujk. Though we do not know how to compute this integral and
obtain a product of n − 1 beta functions, from our knowledge of the Mellin
amplitude of a tree, we know that (7.32) should be equal to,

n−1∏
i=1

1

2
β

(
1

2
(γi −

∑
j∈Li

∑
k∈Rk

Kjk),
D

2
− γi

)
(7.34)

We get the form (7.34) quite easily if we integrate over the internal vertices
from one end to the other instead of the order we chose in Section 7.3.
Therefore uij integrals have resulted due to this difference in the order of
integration over the interaction vertices.

Now we consider the Mellin amplitude for the n-gon in the form (7.33)
and the Mellin amplitude for the n vertex chain in the form (7.32). We see
that the ways in which uij appear in the two Mellin Barnes integrals are very
similar. In fact, the n− 2 beta functions β

(
γi−

∑
j∈Li

∑
k∈Ri

Kjk−Hi
2

, D
2
− γi

)
in

(7.32) are very similar to the n−2 beta functions β
(
γi−

∑
j∈L′

i

∑
k∈R′

i
Kjk−Ei

2
, D

2
− γi

)
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in (7.33). There is an extra delta function in (7.33) (which is probably as-
sociated with the extra edge in the n-gon) but the most striking difference
between (7.33) and (7.32) is the presence of n− 1 number of vi integrals in
the the Mellin amplitude of the n-gon (7.33). Also we realize that there is
no natural order of integration for the n-gon analogous to the natural order
(from one end to the other) for the chain. These factors lead us to guess
that the uij integrals in the n-gon amplitude must also be due to the order
of integration over the vertices (which always has to start at an intermediate
vertex). It should not be essentially due to the fact that the diagram we are
considering is a one-loop diagram. The n− 1 vi integrals on the other hand
should be intrinsically connected with one-loop diagrams.

What gives us some amount of confidence on this guess is that there is a
way these extra n−1 vi integrals could be interpreted for one loop diagrams.
From our experience with general quantum field theories, we know that there
is an undetermined loop momentum associated with a loop. The Mellin mo-
mentum flowing throught the edges in the loop can be put to the form p and
qi + p (n − 1 in number), where p is the loop Mellin momentum and qi are
from the external lines. Therefore we can have n − 1 variables of the form
p · qi. These are what we think the vi may be. These can also be related to
Mandelstam like variables (qi + p)2.

Thus for one loop diagrams, we expect that our Feynman rules involve an
integration over n−1 undetermined variables of the form p · qi just like usual
momentum space Feynman rules for loop diagrams involve integration over
the unconstrained loop momentum. In principle, we should be able to inte-
grate over the uijs in (7.32) and obtain the answer (7.34). Based on that,
it is our guess that we can integrate over the uijs in (7.33) and obtain an
answer for the Mellin momentum of the n-gon which has n − 1 vi integrals
which can be interpreted as a loop integral.

Thus our problem of deriving Feynman rules for the n-gon is now reduced
to (in principle) integrating over uijs in (7.33) and getting an answer which
can be expressed as a Mellin Barnes integral over n − 1 variables, the inte-
grand having at least the n beta functions that can be associated with the n
internal lines of the n-gon. We have not been able to do this as of yet.
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Chapter 8

Conclusion

In this report we have studied the Mellin space representation of correlation
functions in perturbative CFT in some detail. The most important result
that we have obtained here is a set of Mellin space Feynman rules that can
be associated with tree level perturbative diagrams in any CFT. This work
also reviews two very important features of the Mellin representation. Firstly,
the Mellin amplitude makes all the conformal symmetries in the theory man-
ifest and the covariance with special conformal symmetry can be interpreted
as the conservation of ’Mellin momentum’. Secondly, the Mellin amplitude is
meromorphic with the poles of a propagator in the Mellin momentum space
corresponding to the scaling dimensions of the exchanged primary field and
its descendants. We have also cited some reason to believe that the Mellin
amplitude of a one loop diagram is a Mellin Barnes integral analogous to a
momentum space loop integral.

We wish to continue our work on loop diagrams and derive a set of Feynman
rules (at least in the one loop case). Thereafter we should be able to asso-
ciate a worldline interpretation to the Mellin amplitudes. This shall provide
us with the tools necessary to implement open-closed string duality in the
large N limit using this Mellin worldline formalism. Another interesting di-
rection to pursue would be to study the Mellin representation itself in further
detail and try to use this formalism in CFTs describing a physical system.
This can help us gain further understanding of Mellin momentum and its
physical significance (if any).
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