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Abstract
In this thesis, we introduce a new market model for the stock price dynamics. It is
a regime switching market where the parameters volatility and drift follows a semi-
Markov process. In addition to that along with the diffusion process, we incorporate
a term which give us the discontinuity in the market. We call this market model a
semi-Markov modulated jump diffusion model. Apart from defining a market model
by stochastic differential equation (SDE), we find the solution of this SDE. Then we
derive the infinitesimal generator associated with this model so that some further
investigations can be carried out. Finally we have shown that this model is arbitrage
free.
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Chapter 1

Introduction

Finding the value of option has always been a major concern in Mathematical Finance.
In 1965, a famous economist named Samuelson found a model for the stock price
dynamics called geometric Brownian motion model [33]. Eight years later, in 1973,
Black, Scholes and Merton [34] used this model to find a formula for the price of
European options. In their model, now known as B-S-M model, it is assumed that
the basic market parameters such as volatility, drift, bank interest rate are constant
during the entire period of the option. That is clearly not the case in the real market.
For rectifying this assumptions people proposed and tested many different models.

Firstly, many studies introduce the regime-switching model supported by a finite
state Markov chain to study the changing parameters depending on the state of the
economy. For instance, [3, 4, 5] considered the regime switching models of the financial
market. Secondly, some rare events may result in the rapid variations in asset prices
and many papers resort to jump-diffusion models to discuss the effects. [11] and
[31] studied different kinds of jump diffusion models. Unfortunately, an important
property of regime switching model or jump diffusion model or their combination is
the incompleteness of the financial market and[16, 17] had showed that there would
be infinitely many equivalent measures in that kind of market. Ever since then, lots
of researches have studied different methods to choose the pricing measures on basis
of different objectives.

The purpose of this thesis is to introduce a new market model for stock price dy-
namics. Before we introduce the model, we will visit chronologically different models
which are important and which have a significant improvements from the previous
ones. For simplicity, we would often mention just special cases and we would describe
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2 CHAPTER 1. INTRODUCTION

the models by stochastic differential equations (SDE).

As we have seen earlier, it is all started with the famous B-S-M model, where the
stock price follows a geometric Brownian motion as given below.

dSt = St(µdt+ σdWt),

where S0 > 0, µ denotes the drift(expected return) and σ denotes the volatility of the
asset(can be thought of as the standard deviation) and Wt is a Brownian motion.

Some years later, people came up with the regime switching model with the im-
proved version of B-S-M, where µ and σ follow either a Markov process or a semi-
Markov process . Markov modulated GBM is given below.

dSt = St(µ(Xt)dt+ σ(Xt)dWt),

where Xt is a Markov process. The above mentioned model appears in [1, 3, 4, 5, 6,
7, 8, 9].

Then [10] considers the semi-Markov modulated GBM

dSt = St(µ(Xt)dt+ σ(Xt)dWt),

where Xt is a semi-Markov process.

Some times some rare events may result in the rapid variations in asset prices. So
a new model called jump diffusion has proposed to incorporate discontinuity in stock
price dynamics.

dSt = St−(µdt+ σdWt +

∫
η(z)N(dt, dz)),

where η : R → R is continuous, bounded above and η(z) > −1, and N(dt, dz) is
a Poisson random measure with intensity measure ν(z)dt, where ν is a finite Borel
measure. [11] and [31] studied different kinds of jump diffusion models with some
relaxed assumptions.

Another model which is an improved version of both regime switching and the
jump diffusion is the jump diffusion model with regime switching.

dSt = St−(µ(Xt−)dt+ σ(Xt−)dWt +

∫
η(z)N(dt, dz))
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In [12] and [13] the above kind of model appears.
The model which I am studying is the semi-Markov modulated jump diffusion

model.
After specifying a market model, there are some important issues to be investig-

ated. These are no arbitrage (NA), Completeness of the market, derivation of the
price equation in the form of a partial differential equation, computation of the solu-
tion of the price equation, hedging computation etc. Addressing the above issues for
the model in which I am working is not straight forward. And these are not fully
answered in this thesis. I have found the strong solution of the stochastic differential
equation of this model. And I derived the infinitesimal generator associated with this
market model so that some of the above mentioned investigations can be carried out.

The rest of this thesis is arranged in the following manner. In Chapter 2, we
discuss briefly about B-S-M model [28], Black-Scholes partial differential equation
and its solution. Then we discuss about the arbitrage opportunities and completeness
of the market [20]. Finally, a brief description of locally risk minimizing hedging in a
general incomplete market is discussed [32]. In Chapter 3, we present the statements
of the Itô’s formula [22] for a right continuous with left limit [RCLL] path without
proof. Apart from this, we describe the new model by stochastic differential equations
and derive the strong solution we found for this SDE. We have also come up with an
infinitesimal generator associated with this market model, which has applications in
studying the model further. And in the final section we have shown that this model
is arbitrage free. In Chapter 4, we make some concluding remarks.
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Chapter 2

Theory of Option Pricing

2.1 B-S-M Theory

The B-S-M model is a mathematical model of a financial market containing only
two assets, of which one is risky and another is riskless. The risky asset is modeled
as geometric Brownian motion. And the riskless asset called bond Bt is given by
Bt = B0e

rt, where r is risk-free rate of interest associated with the currency in which
the asset is quoted. There are no dividends and no transaction costs on this assets.
Delta hedging is done continuously and arbitrage opportunities are not allowed in this
model. From this model, the Black-Scholes formula which gives the price of European
options can be deduced. We would first recall this model briefly.

Let φ(S, t) be the value of a European call option at time t provided the stock price
St = S. It depends on the following variables and parameters namely, S, t, σ, µ,K, T
and r. S, and t are variables for stock price and current time respectively, where as
σ and µ are parameters associated with the stock price dynamics called as volatility
and drift, respectively. Finally, K and T are parameters associated with the details
of the particular contract known as strike price and expiry time and r is as defined
above.

Let Π denote the value of a portfolio of one long option position and a short
position in some quantity ∆ of the underlying:

Π = φ(St, t)−∆St. (2.1)

5



6 CHAPTER 2. THEORY OF OPTION PRICING

In the B-S-M model, the stock price dynamics follows a geometric Brownian motion

dSt = St(µdt+ σdWt),

S0 ≥ 0. We can see that change in value of the portfolio from time t to t+ dt is given
by

dΠt = dφt −∆dSt.

From Itô’s formula we have

dφ(St, t) = ∂φ(St,t)
∂t

dt+ ∂φ(St,t)
∂S

dSt + 1
2
σ2S2

t
∂2φ(St,t)
∂S2 dt.

Therefore the portfolio changes by

dΠt = ∂φ(St,t)
∂t

dt+ ∂φ(St,t)
∂S

dSt + 1
2
σ2S2

t
∂2φ(St,t)
∂S2 dt−∆dSt. (2.2)

In the RHS of (2.2), the terms with the dt are the deterministic terms and those with
dS are the random. The random terms indicate the possible risk in our portfolio.
The random terms in (2.2) are (∂φ(St,t)

∂S
−∆)dSt. If we choose

∆ = ∂φ(St,t)
∂S

, (2.3)

then the randomness is reduces to zero. The phenomenon of reduction in random-
ness is called hedging and exploiting the correlation between instruments to perfectly
eliminate risk is called delta hedging.

Once we choose the value of ∆ such that randomness reduces to zero, value of the
portfolio changes by the amount as given below:

dΠt = (∂φ(St,t)
∂t

+ 1
2
σ2S2

t
∂2φ(St,t)
∂S2 )dt. (2.4)

Note that (2.4) does not have any terms which contain dSt which implies that the
change in the value of portfolio is completely riskless. This means that dΠt must be
equal to the growth in the amount that is deposited in a risk-free interest bearing
account. Thus,

dΠt = rΠdt. (2.5)
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The above mentioned is an example of no arbitrage principle.
Substituting (2.1), (2.3) and (2.4) into (2.5) we find that

(∂φ(St,t)
∂t

+ 1
2
σ2S2

t
∂2φ(St,t)
∂S2 )dt = r(φ(St, t)− St ∂φ(St,t)

∂S
)dt.

On dividing by dt and rearranging we get

∂φ(S,t)
∂t

+ 1
2
σ2S2 ∂2φ(S,t)

∂S2 + rS ∂φ(S,t)
∂S
− rφ(S, t) = 0.

This is known as Black-Scholes equation. This equation along with some appropriate
initial and boundary conditions admit a unique classical solution.

2.2 NA and Completeness

We model the stock price dynamics as some random process. But we need to check
whether the market model which we consider is really stable. And the necessary
condition for a stable market is no arbitrage.

Consider a market consisting of a bond, whose price at time t is S0
t , and k stocks,

whose prices are Sit , 1 ≤ i ≤ k which are assumed to be RCLL process. We will
consider a finite time horizon T , thus t ∈ [0, T ].
Let S̃it = Sit(S

0
t )
−1, Si0 = 1 - discounted price of the ith stock.

We denote S := (S0, ..., Sk) and {F st }t≥0 the filtration generated by S satisfying usual
hypothesis. Furthermore S is assumed to be a semimartingale w.r.t. F st .

We recall some of the important notions from [20] for our subsequent discussions
in the following definitions.

Definition 2.2.1. θ = (π0, π1, ..., πk) is said to be a trading strategy if (writing Ft
for F st )
(a) each πit is (Ft)- predictable,
(b) The stochastic integral

∫ T
0
πitdS̃

i
t exists for i = 0, ..., k

πit - no. or the amount of the ith stock held by the investor at time t (i = 0 corresponds
to the bond)
θ = (π0, π1, ..., πk) represents the holding of the investor at time t and is also known
as the investor’s portfolio.
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Definition 2.2.2. For a given portfolio θ = (π0, π1, ..., πk), its value or wealth process
is defined as Vt(θ) :=

∑k
i=0 π

i
tS

i
t, (t > 0).

Definition 2.2.3. The accumulated gains or losses up to (and including ) the instant
t are called the gains process and is given by Gt(θ) :=

∑k
i=0

∫ t
0
πiudS

i
u

The discounted value process Ṽt(θ) and the discounted gains process G̃t(θ) are
respectively given by Ṽt(θ) :=

∑k
i=0 π

i
tS̃

i
t = π0

t +
∑k

i=1 π
i
tS̃

i
t , G̃t(θ) :=

∑k
i=1

∫ t
0
πiudS̃

i
u

Definition 2.2.4. θ = (π0, π1, ..., πk) is said to be self-financing strategy if there is
no investment or consumption at any time t > 0. That is θ = (π0, π1, ..., πk) is a self-
financing strategy if Ṽt(θ) = Ṽ0(θ) + G̃t(θ) a.s 0 ≤ t ≤ T .

Definition 2.2.5. A self-financing strategy θ = (x, π1, ..., πk) is admissible (or tame)
if for some m <∞, P{Ṽt(θ) ≥ −m∀t} = 1

Definition 2.2.6. An admissible strategy θ = (x, π1, ..., πk) is said to be an arbitrage
opportunity if x = 0,

ṼT (θ) ≥ 0 (2.6)

P - a.s. and

P [ṼT (θ) > 0] > 0. (2.7)

Definition 2.2.7. S̃ = (S̃1, ..., S̃k) has the no arbitrage property (NA) if @ an ad-
missible strategy θ = (0, π) s.t (2.6) and (2.7) hold.

Definition 2.2.8. A probability measure Q is said to be equivalent martingale measure
(EMM) if Q ≡ P and the discounted stock prices {S̃it} are martingales with respect
to Q. Such a probability measure is also referred to as a risk neutral measure.

Definition 2.2.9. A contingent claim is an F st - measurable random variable ZT

satisfying ZT ≥ 0 a.s, EQ(ZT ) <∞.

Definition 2.2.10. A contingent claim is said to be attainable if there exists a strategy
θ = (x, π1, ..., πk) such that Ṽt(π) is a Q− martingale and

ṼT (θ) = ZT (2.8)
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a.s.

Definition 2.2.11. The strategy θ = (x, π1, ..., πk) satisfying (2.8) is said to be a
hedging strategy for the contingent claim ZT .

Definition 2.2.12. A market consisting of k− stocks (S1, S2, ..., Sk) and a bond (S0
t )

is said to be complete if every contingent claim is attainable.

Let µ(P ) = {Q : Q ≡ P and S̃it a Q- local martingale, 1 ≤ i ≤ k} be the class of
equivalent (local) martingale measures (EMM).

Theorem 2.2.1. Let Q ∈ µ(P ). For an admissible strategy θ = (x, π1, ..., πk), the
discounted gains process is a Q− local martingale and a Q− super martingale. Thus
µ(P ) 6= φ =⇒ NA.

Proof. Let us note that under Q, S̃i is a local martingale and hence the discounted
gains process, call it U is a stochastic integral with respect to S̃, is also a local
martingale.
If {τn} is an increasing sequence of stopping times such that P (τn = T ) → 1 and
Un
t = Ut∧τn is a Q− martingale. Then for s ≤ t, EQ(Un

t |F ss ) = Un
s . In view of the

admissibility of π, Un
t ≥ −m for some m and hence, by Fatou’s lemma for conditional

expectation, we get
EQ(Ut|F ss ) = EQ(lim inf Un

t |F ss ) ≤ lim inf EQ(Un
t |F ss ) = lim inf Un

s = Us

This proves that Ut is a Q− supermartingale. In particular, EQ(Ut) ≤ EQ(U0) = 0.
Thus if P (UT ≥ 0) = 1, then Q(UT ≥ 0) = 1. Hence EQ(Ut) ≤ 0 ⇒ Q(Ut = 0) = 1.
Therefore P (Ut = 0) = 1. Thus NA holds.

Remark 2.2.1. One can show that Black-Scholes market is complete and arbitrage
free.

We have seen that existence of an EMM implies NA. Following theorem from [29]
known as Girsanov theorem will give us the existence of an EMM.

Theorem 2.2.2 (Girsanov theorem for Itô processes). Let X(t) be an n-dimensional
Itô process of the form

dX(t) = α(t, ω)dt+ σ(t, ω)dB(t); 0 ≤ t ≤ T
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where α(t) = α(t, ω) ∈ Rn, σ(t) = σ(t, ω) ∈ Rn×m and B(t) ∈ Rm. Assume that there
exists a process θ(t) ∈ Rm such that

σ(t)θ(t) = α(t)

for a.a. (t, ω) ∈ [0, T ]× Ω and such that the process Z(t) defined for0 ≤ t ≤ T by

Z(t) := exp{−
∫ t

0

θ(s)dB(s)− 1
2

∫ t

0

θ2(s)ds}

exists. Define a measure Q on Ft by dQ(ω) = Z(T )dP (ω). Assume that EP [Z(T )] =

1. Then Q is a probability measure on Ft, Q is equivalent to P and X(t) is a local
martingale with respect to Q.

For a more general model further extension of this theorem is required.

2.3 Pricing in a Fair Market

In B-S-M market the price function φ(S, t) of a European Call option is the solution
of the following partial differential equation (PDE) known as Black-Scholes PDE

∂φ
∂t

+ 1
2
σ2S2 ∂2φ

∂S2 + rS ∂φ
∂S
− rφ = 0

subjected to the boundary condition: φ(S, T ) = (S −K)+, and φ(0, t) = 0 ∀t.
Solution of this PDE is unique and is given by

φ(S, t) = SΦ(g(S, T − t))−Ke−r(T−t)Φ(h(S, T − t)).

Where g and h are defined as follows.

g(S, t) :=
log

S
K

+(r+
1
2
σ2)t

σ
√
t

,

h(S, t) := g(S, t)− σ
√
t.

And Φ is the distribution function of the standard normal distribution.
But when we consider a general market model, it is unlikely that it would become

a complete market. In a complete market, we can hedge the contingent claim per-
fectly with a self-financing strategy as we did in B-S-M market. But in an incomplete
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market, it is not possible with a self-financing strategy. So pricing problem becomes
difficult in an incomplete market. But there are different approach to solve this prob-
lem. One of the approach to do this is the locally risk minimization method. In this
method, we allow additional cash to flow through out the period of the option. And
we replicate the claim at the maturity time by this particular strategy in which one
minimizes a certain measure of the accumulated cash flow known as quadratic resid-
ual risk (QRR) under a certain set of constraints. This minimizing strategy is known
as the optimal hedging. It is shown in [18] that the existence of an optimal hedging
is equivalent to that of Föllmer Schweizer decomposition of the relevant discounted
claim. Following [18] we present a brief description of locally risk minimizing hedging
in a general incomplete market.

Consider a market consist of two assets, a stock {S1
t }t≥0 and a bond {S0

t }t≥0. Let
θ = (π0, π1) is an admissible strategy as defined in Definition 2.2.5. One can write
the value of the portfolio at time t as

Vt = π0
tS

0
t + π1

tS
1
t (2.9)

from Definition 2.2.2. Let Ct be the accumulated additional cash flow due to a strategy
θ at time t. Then Vt can also be written as sum of two quantities, one is the return
of the investment at an earlier instant t −∆ and the other one is the instantaneous
cash flow (∆Ct) as shown below.

Vt = π0
t−∆S

0
t + π1

t−∆S
1
t + ∆Ct (2.10)

From (2.9) and (2.10), one can write

Vt − Vt−∆ = π0
t−∆(S0

t − S0
t−∆) + π1

t−∆(S1
t − S1

t−∆) + ∆Ct

or equivalently the SDE

dVt = π0
t dS

0
t + π1

t dS
1
t + dCt.

For a self-financing strategy, dCt = 0. So in a complete market we can replicate
the claim without adding any external cash. That is not the case in an incomplete
market. It is shown in [18] that if the market is arbitrage free, the existence of an
optimal strategy for hedging an FT measurable claim H, is equivalent to the existence
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of Föllmer Schweizer decomposition of discounted claim H∗ := B−1
T H in the form

H∗ = H0 +

∫ T

0

πH
∗

t dS∗t + LH∗T

where H0 ∈ L2(Ω,F0, P ), LH∗ = {LH∗t }0≤t≤T is a square integrable martingale start-
ing with zero and orthogonal to the martingale part of S1

t . Further πH∗t appeared
in the decomposition, constitutes the optimal strategy. Indeed the optimal strategy
θ = (π0

t , π
1
t ) is given by

π1
t := πH

∗

t ,

V ∗t := H0 +

∫ t

0

π1
udS

∗
u + LH

∗

t ,

π1
t := V ∗t − π1

tS
∗
t ,

and S0
t V
∗
t represents the pseudo locally risk minimizing pricing at time t of the claim

H. Hence the Föllmer Schweizer decomposition is the key thing to verify to settle
the pricing and hedging problems in any given market.



Chapter 3

A New Market Model

Finding the value of option has always been a major concern in Mathematical Fin-
ance. In 1973 Black and Scholes proposed a model called Black-Scholes model for the
option pricing problem. But they assumed that the basic market parameters such as
volatility and drift are constant during the entire period of the option. That is clearly
not the case in the real market. For rectifying this assumption people proposed and
tested many different models. Few of those are stochastic volatility models, jump-
diffusion models, and Levy processes, regime-switching models. The market of these
models are incomplete. For past few years there has been a considerable amount
of attention paid to the regime-switching models. The important aspect of regime-
switching models is that in this model we consider volatility and drift to follow either
a Markov process or a semi-Markov process whose states represent states of business
cycles. One can refer to [6, 12, 30]. In this thesis, we model the stock price by the
semi-Markov modulated jump-diffusion model.

In this chapter we first provide the sketch of proof of Itô’s formula for continuous
path processes. And then we state Itô’s formula for RCLL path without a proof.
We apply that to obtain infinitesimal generator of a certain Markov process which
arises from our stock price dynamics model. To this end we recall few definitions and
notations which would be used through out this thesis.

3.1 Itô’s Formula

Let x be a real valued function on [0,∞) which is right continuous and has left limits
(RCLL). We use the following notation: xt := x(t), ∆xt := xt − xt−, ∆x2

t := (∆xt)
2.

13



14 CHAPTER 3. A NEW MARKET MODEL

We start with a fixed sequence (τn)n=1,2,... of finite partitions τn = {0 = t0 < t1 <

... < tin <∞} of [0,∞) with tin →n ∞ and |τn| = supti∈τn |ti+1 − ti| →n 0.
Definition: A measure on real line is called discrete measure if its support is at most
a countable set. Equivalently, a measure ε is called discrete measure if it is of the
form ε =

∑
i aiεti , where ai ≥ 0, (ti) is a sequence of real numbers and εti(A) = 1 if

ti ∈ A, otherwise 0 for a measurable set A.
Definition: We say that x is of quadratic variation along (τn) if the discrete measures

ξn =
∑
ti∈τn

(xti+1
− xti)2εti (3.1)

converge weakly to a Radon measure ξ on [0,∞]. The distribution function of ξ is
denoted by [x, x] and given by [x, x]t := ξ(0, t) and satisfies

[x, x]t = [x, x]ct +
∑
u≤t

∆x2
u, (3.2)

where [x, x]ct is the the distribution function of the absolutely continuous part of ξ
and

∑
u≤t ∆x2

u is the distribution function corresponding to discrete part of ξ.

Let X : [0,∞] → R be a real valued continuous function and F ∈ C2(R). Then
Taylor’s theorem states

∆F (Xt) = F (Xt+∆t)− F (Xt) = F ′(Xt)∆Xt +
1

2
F ′′(Xt′)(∆Xt)

2,

with ∆Xt = Xt+∆t −Xt and some t′ ∈ [t, t+ ∆t].

If Xt is of bounded variation (B.V), then taking the limit for ∆t → 0 gives
dF (Xt) = F ′(Xt)dXt. Since the second term in the Taylor series disappears as [X]t =

0 (Quadratic variation of Xt). If Xt is of unbounded variation, we get dF (Xt) =

F ′(Xt)dXt + 1
2
F ′′(Xt)(dXt)

2, since [Xt] 6= 0. Or, we can write this as,

F (Xt) = F (X0) +

∫ t

0

F ′(Xu)dXu +
1

2

∫ t

0

F ′′(Xu)(dXu)
2

The second integral in the above equation is well defined for finite quadratic variation
of Xt. However, the task of giving a precise meaning of the first integral where both
the argument of the integrand and the integrator are of unbounded variation on any
arbitrary small time interval remained unsolved for a long time. This task was first
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solved by Itô. Hence called as Itô calculus.
So for functions of bounded variation, we can apply classical calculus. But in

finance we need functions of unbounded variation as integrator. So we need Itô
calculus. We encounter portfolio which should represent in terms of some integral
where allocation appears in the integrand and the asset prices should be the integrator.
In particular, we need the following theorem from [22] which is renowned as Itô’s
formula for RCLL path.

Theorem 3.1.1. Let x be of quadratic variation along (τn) and F a function of class
C2 on R. Then the Itô formula

F (xt) = F (x0) +

∫ t

0

F ′(xu−)dxu +
1

2

∫
(0,t]

F ′′(xu−)d[x, x]u

+
∑
u≤t

[F (xu)− F (xu−)− F ′(xu−)∆xu −
1

2
F ′′(xu−)∆x2

u], (3.3)

holds with ∫ t

0

F
′
(xu−)dxu = lim

n

∑
τn3ti≤t

F
′
(xti)(xti+1

− xti), (3.4)

and the series in (3.4) is absolutely convergent.

3.2 Model Description

Our market consist of two types of securities. A risky asset whose price can go up or
down and a riskless security called bond, where one always gets back the investment,
plus interest. We are going to consider options on this risky asset called the stock.

LetX := {Xt}0≤t≤T be a semi-Markov process on the state space χ = {1, 2, 3, ..., k},
with conditional distribution of holding time P (Tn+1−Tn ≤ y|XTn = i) = F (y|i) and
the transition probabilities P (XTn = j|XTn−1 = i) = pij. Define λij(y) := f(y|i)

1−F (y|i)pij

where f is the derivative of F , provided F is differentiable and less than 1. Let

h(i, y, z) : =
∑
j 6=i

(j − i)1Λij(y)(z)

g(i, y, z) : = y
∑
j 6=i

1Λij(y)(z)
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It is shown in [32] that one can write the above semi-Markov process in an integral
form as given below.

Xt = X0 +

∫ t

0

∫
R
h(Xu−, Yu−, z)℘(du, dz) (3.5)

Yt = t−
∫ t

0

∫
R
g(Xu−, Yu−, z)℘(du, dz), (3.6)

where ℘ is Poisson random measure with intensity measure dudz and Yt is the holding
time. And let S = (St)0≤t≤T be a risky asset which follows a semi-Markov modulated
jump diffusion model as given below.

dSt = St−(µt−dt+ σt−dWt +

∫ ∞
−∞

f(z1)N(dz1, dt)), (3.7)

where S0 > 0, µt− := µ(Xt−) denotes the drift(expected return) and σt− := σ(Xt−)

denotes the volatility of the asset(can be thought of as the standard deviation) that
follows a semi-Markov process, f : R→ R is continuous, bounded above and f(z1) >

−1, Wt is a Brownian motion and N(dz1, dt) is a Poisson random measure with
intensity measure ν(z1)dt, where ν is a finite Borel measure. Also we assume W , X
and N(dt, dz1) are independent.

It turns out that the SDE (3.7) has a strong solution.

Theorem 3.2.1. The SDE (3.7) has a strong solution which is given by

St = S0 exp[

∫ t

0

(µu− −
1

2
σ2
u−)du+

∫ t

0

σu−dWu +

∫ t

0

∫
R

ln(1 + f(z1))N(dz1, dt)] (3.8)

Proof. We can see that jumps of this process are coming from last term on the RHS
of (3.7). So we can write

∆St = St − St− = St−

∫
R
f(z1)N(dz1, dt) (3.9)

St = St− + St−

∫
R
f(z1)N(dz1, dt) = St−(1 +

∫
R
f(z1)N(dz1, dt)) = St−(1 + f(z2))

=

∫
R
St−(1 + f(z1))N(dz1, dt).
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And we observe that

dScu = Su−(µu−du+ σu−dWu) (3.10)

because only first two terms on RHS of (3.7) contributes to the continuous part. And

d[S]cu = S2
u−σ

2
u−du (3.11)

because µu is of finite variation and [W ]u = u (Levy’s theorem).

Let τ = min(t|St ≤ 0) is a stopping time and let Zt = lnSt. Applying Itô’s
formula on lnSt for 0 ≤ t < τ and using (3.10) and (3.11), we get

dZt =
dSct
St−
− 1

2

d[Sc]t
S2
t−

+ lnSt − lnSt−

= µt−dt+ σt−dWt −
1

2
σ2
t−dt+ lnSt − lnSt−

= (µt− −
1

2
σ2
t−)dt+ σt−dWt + lnSt − lnSt−.

Where the last term of the RHS can be written as

lnSt − lnSt− = ln( St

St−
) = ln(St−+St−St−

St−
) = ln(1 + ∆St

St−
)

= ln(1 +

∫
R
f(z1)N(dz1, dt)) =

∫
R

ln(1 + f(z1))N(dz1, dt).

After substituting back this into the equation, we get

dZt = (µt− −
1

2
σ2
t−)dt+ σt−dWt +

∫
R

ln(1 + f(z1))N(dz1, dt).

Integrate it 0 to t, where 0 ≤ t < τ to get

Zt − Z0 = ln( St

S0
) =

∫ t

0

(µu− −
1

2
σ2
u−)du+

∫ t

0

σu−dWu +

∫ t

0

∫
R

ln(1 + f(z1))N(dz1, dt).

So solution of the SDE (3.7) has the above form for 0 ≤ t < τ .

Choose ω ∈ Ω such that τ(ω) is finite else we are done as τ =∞ P a.s. and St > 0

a.s. Now let t → τ(ω) and see by (3.8) Sτ(ω)− > 0. Hence non-positivity may occur
only by jump. And (3.9) makes clear that non-positivity of St does not happen with
our assumption f(z1) > −1. Hence τ = ∞ P a.s. and St > 0 P a.s. ∀t ∈ (0,∞).
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Hence the proof.

Let Yt be the holding time for the semi-Markov process Xt. Then we know that
(St, Xt, Yt) is a Markov process. We also know that if A is the infinitesimal generator of
(St, Xt, Yt) then for any φ ∈ C∞c , φ(St, Xt, Yt)−φ(S0, X0, Y0)−

∫ t
0
Aφ(Su−, Xu−, Yu−)du

is martingale w.r.t.Ft. We would use this result for the following derivation. Now
we are going to find the generator of this Markov process. Applying Itô’s formula on
φ(St, Xt, Yt), we get

φ(St, Xt, Yt) = φ(S0, X0, Y0) +

∫ t

0

∂
∂S
φ(Su−, Xu−, Yu−)dScu

+
1

2

∫ t

0

∂2

∂S2φ(Su−, Xu−, Yu−)d[S]cu +

∫ t

0

∂
∂y
φ(Su−, Xu−, Yu−)dYu

+
∑
u≤t

[φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)]. (3.12)

Substitute the expression of dScu and d[S]cu in (3.12), RHS becomes

φ(S0, X0, Y0) +

∫ t

0

∂
∂S
φ(Su−, Xu−, Yu−)[Su−(µudu+ σudWu)]

+
1

2

∫ t

0

∂2

∂S2φ(Su−, Xu−, Yu−)S2
u−σ

2
u−du+

∫ t

0

∂
∂y
φ(Su−, Xu−, Yu−)du

+
∑
u≤t

[φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)].

Taking all du terms together, we can rewrite this as

φ(S0, X0, Y0) + (

∫ t

0

∂
∂S
φ(Su−, Xu−, Yu−)Su−µu

+
1

2

∫ t

0

∂2

∂S2φ(Su−, Xu−, Yu−)S2
u−σ

2
u− +

∫ t

0

∂
∂y
φ(Su−, Xu−, Yu−))du

+

∫ t

0

∂
∂S
φ(Su−, Xu−, Yu−)Su−σudWu +

∑
u≤t

[φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)].

Define dM1
t :=

∫ t
0

∂
∂S
φ(Su−, Xu−, Yu−)Su−σudWu which is a martingale process. Thus
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our equation becomes

φ(St, Xt, Yt) = φ(S0, X0, Y0) +

∫ t

0

(Su−µu−
∂
∂S

+
1

2
S2
u−σ

2
u−

∂2

∂S2 + ∂
∂y

)φdu+ dM1
t

+
∑
u≤t

[φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)]. (3.13)

To compute the last term on the RHS, we observe

φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)

= (φ(Su, Xu, Yu)− φ(Su−, Xu, Yu)) + φ(Su−, Xu, Yu)− φ(Su−, Xu−, Yu−) (3.14)

= φ(Su−(1 +

∫
f(z1)N(du, dz1)), Xu, Yu)− φ(Su−, Xu, Yu)

+φ(Su−, Xu− +

∫
h(Xu−, Yu, z)℘(du, dz), Yu− −

∫
g(Xu−, Yu−, z)℘(du, dz))

−φ(Su, Xu−, Yu−).

As I shown before, we can take the integration outside. Then we get

=

∫
(φ(Su−(1 + f(z1)), Xu, Yu)− φ(Su−, Xu, Yu))N(du, dz1)

+

∫
(φ(Su−, Xu− + h(Xu−, Yu, z), Yu− − g(Xu−, Yu−, z))− φ(Su, Xu−, Yu−))℘(du, dz).

=

∫
(φ(Su−(1 + f(z1)), Xu, Yu)− φ(Su−, Xu, Yu))(n(du, dz1) + ν(dz1)du)

+

∫
(φ(Su−, Xu− + h(Xu−, Yu, z), Yu− − g(Xu−, Yu−, z))

−φ(Su, Xu−, Yu−))(p(du, dz) + dudz),

where n and p are compensated measures corresponding to N and ℘. Now define
dM2

t :=
∫

(φ(Su−(1+f(z1)), Xu, Yu)−φ(Su−, Xu, Yu))n(du, dz1) and dM3
t :=

∫
(φ(Su−, Xu−+

h(Xu−, Yu, z), Yu−− g(Xu−, Yu−, z))−φ(Su, Xu−, Yu−))p(du, dz) which are martingale
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processes. Thus equation (3.14) becomes

φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)

= dM2
t + dM3

t +

∫
(φ(Su−(1 + f(z1)), Xu, Yu)− φ(Su−, Xu, Yu))ν(dz1)du (3.15)

+

∫
(φ(Su−, Xu− + h(Xu−, Yu, z), Yu− − g(Xu−, Yu−, z))− φ(Su, Xu−, Yu−))dudz.

Using the definition of h and g, we get

i+ h(i, y, z) =
∑
j

(j − i)1Λij(y)(z) + i(
∑
j

1Λij(y) + 1⋃
j Λij(y)c)

=
∑
j

j1Λij(y)(z) + i1⋃
j Λij(y)c(z)

Xu− + h(Xu−, Yu−, z) =
∑
j

j1ΛXu−j(y)(z) + (Xu−)1⋃
j ΛXu−j(y)c(z)

y − g(i, y, z) = y1⋃
j ΛXu−j(y)c(z) = y1ki(z).

And we substitute above expressions into (3.15), we get

φ(Su, Xu, Yu)− φ(Su−, Xu−, Yu−)

= dM2
t + dM3

t +

∫
(φ(Su−(1 + f(z1)), Xu, Yu)− φ(Su−, Xu, Yu))ν(dz1)du

+

∫
[φ(Su−,

∑
j

j1ΛXu−j(y)(z) +Xu−1k(z), y1kXu−(z))− φ(Su, Xu−, Yu−)]dudz

= dM2
t + dM3

t +

∫
[φ(Su−(1 + f(z1)), Xu, Yu)− φ(Su−, Xu, Yu)]ν(dz1)du

+
∑
Xu− 6=j

[φ(Su−, j, 0)− φ(Su, Xu−, Yu−)]λXu−,j(Yu−)du.

Now replace (3.13) by above expression, we get

φ(St, Xt, Yt) = φ(S0, X0, Y0) +

∫ t

0

(Su−µu−
∂
∂S

+
1

2
S2
u−σ

2
u−

∂2

∂S2 + ∂
∂y

)φdu

+

∫ t

0

∑
Xu− 6=j

[φ(Su−, j, 0)− φ(Su, Xu−, Yu−)]λXu−,j(Yu−)du

+

∫ t

0

∫
R
(φ(Su−(1 + f(z1)), Xu, Yu)− φ(Su−, Xu, Yu))ν(dz1)du+ dMt,
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where dMt = dM1
t + dM2

t + dM3
t .

Let

Dφ(S, i, y) = (Sµ(i) ∂
∂S

+
1

2
S2σ2(i) ∂2

∂S2 + ∂
∂y

)φ(S, i, y)

Lφ(S, i, y) =
∑
i 6=j

[φ(S, j, 0)− φ(S, i, y)]λi,j(y)

Iφ(S, i, y) =

∫
R
(φ(S(1 + f(z1)), i, y)− φ(S, i, y))ν(dz1)

Then we can write

φ(St, Xt, Yt) = φ(S0, X0, Y0) +
∫ t

0
Aφ(Su−, Xu−, Yu−)du+ dMt

where A = D + L+ I is the generator.

3.3 NA

Now we will prove in this section that our model is arbitrage free. For proving no
arbitrage we need to find an EMM for this market model. From the following lemma
we can construct such a martingale measure. Before stating the lemma, we will recall
the definition of Borel previsible process.

Let P denote the previsible σ− algebra on Ω× R+ associated with the filtration
{Ft} and let P̃ = P ×B where B is the Borel σ− algebra on R. A function H(ω, t, x)

which is P̃− measurable will be called Borel previsible. Thus, suppressing the explicit
dependence on ω, a Borel previsible function or process H(t, x) is one such that the
process t → H(t, x) is previsible for fixed x and the function x → H(t, x) is Borel-
measurable for fixed t.

Lemma 3.3.1. Let Z = {Zt; t ∈ [0, T ]} be a Radon-Nikodym process which is defined
as follows

Zt = exp{
∫ t

0

φudWu − 1
2

∫ t

0

φ2
udu+

∫ t

0

∫
R

lnH(z, u)N(dz, du)−
∫ t

0

∫
R
[H(z, u)− 1]ν(dz)du},

where φ = {φt; t ∈ [0, T ]} and H = {H(., t); t ∈ [0, T ]} are previsible and Borel
previsible processes such that E[

∫ t
0
φ2
udu] < ∞ and H > 0, respectively. Then Z is a

positive local martingale under P with Z0 = 1.
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Proof. Z is always positive and Z0 = 1.

∆Zt = Zt − Zt−

= exp{
∫ t

0

φudWu − 1
2

∫ t

0

φ2
udu−

∫ t

0

∫
R
[H(z, u)− 1]ν(dz)du}

exp{
∫ t

0

∫
R

lnH(z, u)N(dz, du)}

− exp{
∫ t

0

φudWu − 1
2

∫ t

0

φ2
udu−

∫ t

0

∫
R
[H(z, u)− 1]ν(dz)du}

exp{
∫

[0,t)

∫
R

lnH(z, u)N(dz, du)}

= Zt−[(

∫ t

0

∫
R
H(z, u)N(dz, du)− 1]

= Zt−[H(∆Zt, t)− 1]

Apply Itô formula on Zt = exp{Yt}.

Where

Yt :=

∫ t

0

φudWu− 1
2

∫ t

0

φ2
udu+

∫ t

0

∫
R

lnH(z, u)N(dz, du)−
∫ t

0

∫
R
[H(z, u)−1]ν(dz)du.

We get

Zt − Z0 =

∫ t

0

Zu−dYu + 1
2

∫ t

0

Zu−d[Y ]cu +
∑

0<u≤t

[Zu − Zu− − Zu− lnH(∆Zu, u)]

Zt − 1 =

∫ t

0

Zu−[φudWu − 1
2
φ2
udu+

∫
R

lnH(z, u)N(dz, du)−
∫
R
[H(z, u)− 1]ν(dz)du]

+1
2

∫ t

0

Zu−φ
2
udu+

∫ t

0

∫
R
Zu−[H(z, u)− 1− lnH(z, u)]N(dz, du)

=

∫ t

0

Zu−φudWu +

∫ t

0

∫
R
Zu−[H(z, u)− 1]Ñ(dz, du) (3.16)

The last formula states that Z = {Zt; t ∈ [0, T ]} is a local P−martingale. The
next theorem will give us the existence of an EMM.

Theorem 3.3.1. Let Q be defined on Ft by dQ
dP

= ZT . Then Q is a martingale
measure.
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We need the following lemma from [26] to prove this theorem.

Lemma 3.3.2. Define a new measure Q as above. Then the process W̃t = Wt −∫ t
0
φudu is a Winer process under Q and∫ t

0

∫
R
[H(z, u)− 1](N(dz, du)−H(z, u)ν(dz)du) :=

∫ t

0

∫
R
[H(z, u)− 1]M̃(dz, du)

is a Q−martingale with respect to its natural filtration which implies that the com-
pensator measure of N(dz, dt) is given by ν̃(dz, dt) = H(z, t)ν(dz)dt.

We prove the Theorem 3.3.1 below.
Proof. Recall that our stock price satisfying the following SDE.

dSt = St−(µt−dt+ σt−dWt +

∫
R
f(z)N(dz, dt))

Solution of this SDE is

St = S0 exp{
∫ t

0

[µ(Xu)− 1
2
σ2(Xu)]du+

∫ t

0

σ(Xu)dWu +

∫ t

0

∫
R

ln(1 + f(z)N(dz, du)}

Discounted stock price is given by

S̃t = St

Bt
= St

exp{
∫ t
0 r(Xu)du}} = exp{−

∫ t

0

r(Xu)du}St

Apply Itô’s formula on S̃t. We get

dS̃t = exp{−
∫ t

0

r(Xu)du}dSt − St exp{−
∫ t

0

r(Xu)du}r(Xt)dt

= exp{−
∫ t

0

r(Xu)du}[dSt − St−r(Xt)dt]

= exp{−
∫ t

0

r(Xu)du}[St−(utdt+ σtdWt +

∫
R
f(z)N(dz, dt))− St−r(Xt)dt]

= [µ(Xt)− r(Xt)]S̃t−dt+ σ(Xt)S̃t−dWt +

∫
R
S̃t−f(z)N(dz, dt)
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Replace dWt and N(dz, dt) as below.

dS̃t = [µ(Xt)− r(Xt)]S̃t−dt+ σ(Xt)S̃t−[dW̃t + φ(Xt)dt] +

∫
R
S̃t−f(z)[M̃(dz, dt) +H(z, t)ν(dz)dt]

= [µ(Xt)− r(Xt) + σ(Xt)φ(Xt) +

∫
R
f(z)H(z, t)ν(dz)]S̃t−dt+ S̃t−σ(Xt)dW̃t

+

∫
R
S̃t−f(z)M̃(dz, dt) (3.17)

It is well known that when the price of the underlying asset is governed by the classical
Black-Scholes model, the unique equivalent martingale measure Q is given by

dQ
dP
|Ft = ΛT ,

where Λ satisfies

Λt = Λ0 +

∫ t

0

ΨuΛudWu

and the process Ψ is chosen so as to ensure the discounted process S̃ a Q− martin-
gale. In our model (3.7), a natural analogue of this would be to use the equivalent
martingale measure Q and the Radon-Nikodym process Z will satisfies the following
equation

dZt = ΨtZt−(σ(Xt)dWt +

∫
R
f(z)N(dz, dt)). (3.18)

Compare (3.18) and (3.16) we get

Ψtσ(Xt) = φt

and
Ψtf(z) = H(z, t)− 1

Discounted stock price becomes martingale under Q only when the drift term becomes
zero. So we have

µ(Xt)− r(Xt) + φ(Xt)σ(Xt) +

∫
R
f(z)H(z, t)ν(dz) = 0
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From this, we get

φ(Xt)σ(Xt) = r(Xt)− µ(Xt)−
∫
R
f(z)H(z, t)ν(dz)

Replace φt with Ψtσ(Xt) and H(z, t) with 1 + Ψtf(z) we get

Ψtσ
2(Xt) = r(Xt)− µ(Xt)−

∫
R
f(z)(1 + Ψtf(z))ν(dz)

= r(Xt)− µ(Xt)−
∫
R
f(z)ν(dz)−

∫
R
f 2(z)Ψtν(dz)

Take Ψt terms together

Ψt[σ
2(Xt) +

∫
R
f 2(z)ν(dz)] = r(Xt)− µ(Xt)−

∫
R
f(z)ν(dz)

⇒ Ψt =
r(Xt)−µ(Xt)−

∫
R f(z)ν(dz)

σ2(Xt)+
∫
R f

2(z)ν(dz)

And
H(z, t) =

r(Xt)−µ(Xt)−
∫
R f(z)ν(dz)

σ2(Xt)+
∫
R f

2(z)ν(dz)
f(z) + 1

φt =
r(Xt)−µ(Xt)−

∫
R f(z)ν(dz)

σ2(Xt)+
∫
R f

2(z)ν(dz)
σ(Xt)

We need the following condition

r(Xt)−µ(Xt)−
∫
R f(z)ν(dz)

σ2(Xt)+
∫
R f

2(z)ν(dz)
f(z) > −1

to ensure that H(z, t) > 0. Now substitute the expression of H and φ into (3.17).
[µ(Xt)− r(Xt) + σ(Xt)φ(Xt) +

∫
R f(z)H(z, t)ν(dz)] becomes zero. Therefore,

S̃t − S̃0 =

∫ t

0

˜Su−σ(Xu)dWu +

∫ t

0

S̃u−[µ(Xu)− r(Xu)]du+

∫ t

0

∫
R
S̃u−f(z)N(dz, du)

=

∫ t

0

S̃u−σ(Xu)dW̃u +

∫ t

0

∫
R
Su−f(z)M̃(dz, du)

becomes a Q−martingale by the Lemma 3.3.2. Hence the proof.
Therefore we have shown the existence of an Equivalent Martingale Measure for

our market model. By Theorem 2.2.1 we get that the market model which we con-
sidered is arbitrage free.
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Chapter 4

Conclusion

The model presented in Chapter 3 is a generalization of jump-diffusion model available
in the literature [12, 13, 11]. We have shown that this model we proposed is arbitrage
free. Our next aim is to address the pricing problem in this market model. It is
unlikely that the market would be complete. So the risk-minimizing pricing approach
could be adapted in this regard. Currently I am doing research in the above direction.

27
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