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Abstract

Gravitational-wave astronomy promises to open a new window to viewing the universe
and a great amount of interesting physics is thought to come from the direct obser-
vation of gravitational waves (GWs).Coalescences of binaries comprising of compact ob-
jects(neutron stars or black holes) called CBCs are one of the most powerful and promising
sources for gravitational-wave detection. In order to understand and make sense of the
physical information we receive from such sources, it is important and imperative to ac-
curately estimate their characteristic parameters. Parameter estimation of such sources,
involves estimating quantities related to the binary, such as, the individual masses, spins,
luminosity distance of the binary, its sky location, polarization etc. Second-generation
interferometric detectors such as Advanced LIGO will be operational in the coming year
and the first direct detection of graviational waves (GWs) is expected. Thus, once the
GW signals are detected, parameter estimation becomes the next logical step in the anal-
ysis of the obtained gravitational-wave data. The aim of this project, therefore, is to
develop an efficient Bayesian parameter estimation code using an efficient Markov Chain
Monte Carlo (MCMC) algorithm, that can be used to get posterior distributions of the
binary parameters from GW observations.

We started out by writing a code to obtain the two-dimensional posterior distributions
for the chirp mass, defined later, and the luminosity distance of the binary, in the simple
case when the signal contains a Newtonian (the leading order approximation to the GW
signal) waveform added to white noise. The posteriors were obtained for signals in both
the time and frequency domains and they were compared. We then incorporated more re-
alistic and accurate waveforms with noise models and obtained posteriors for component
masses and equivalently for the chirp mass and symmetric mass ratio. The single chain
MCMC code was then parallelized to give data from multiple chains, starting at different
initial positions in the parameter space, using the Multiprocessing module in Python, the
programming language. Finally, we made the code run with a more sophisticated and
adaptive algorithm, called the ensemble sampler and obtained posteriors for the chirp
mass and mass ratio. We also found that this code is much more efficient and accurate
than the single-chain MCMC code.
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Chapter 1

Introduction

Gravitational waves, as predicted by Einstein’s Theory of Relativity [12], are freely prop-
agating perturbations of the gravitational field, travelling at the speed of light. Just like
light travels as oscillations of the electromagnetic field. But these perturbations are so fee-
ble that detectable amounts of gravitational radiation can only be obtatined from massive
and energetic astrophysical systems such as compact binary coalescences of black holes
and neutron stars. The first indirect evidence for the existence of gravitational waves was
provided by the observations of Hulse and Taylor [10] in the year 1974, where they dis-
covered the first binary pulsar. Since then, efforts have and are being made world-wide to
directly detect these perturbations and as a result of these efforts, a number of detectors
such as the Laser Interferometric Gravitational-wave Observatory(LIGO), VIRGO, GEO,
KAGRA etc. have been set up at different locations around the globe. These detectors
are expected to detect signals of gravitational waves in the near future and this will thus
open a new window onto the universe.

Compact binary coalescences (CBCs) can be divided into three phases with respect
to their evolution - inspiral, merger and ringdown. Due to numerous efforts in analytical
and numerical relativity, there has been great progress in modelling the gravitational
waveforms emitted by these coalescing compact binaries [6] in each of these phases. An-
alytical or Post-Newtonian methods as they are popularly known are valid only upto the
inspiral part of the evolution. Modelling the remaining two phases requires numerical
relativity. Current gravitational waveforms are generated by combining the results from
Post-Newtonian methods and numerical relativity.

A plethora of interesting and exciting physics is expected to come out from the direct
observation of gravitational waves [16] right from testing Einstein’s theory in strong-field
regimes to observations that may corroborate or change our ideas of various theories in
Quantum Gravity. But in order to make any conclusions, it is first necessary to analyze
the gravitational-wave signal or data that we obtain. An essential or rather the main goal
of this analysis would be to estimate the characteristic parameters of such binary sources
which are emitting gravitational radiation. These parameters include ones intrinsic to
the source such as the masses of the components in the binary and their spins, and also
extrinsic ones such as the sky location of the binary, its inclination angle with respect to
our line of sight etc. There are two main methods that have been developed for parame-
ter estimation from gravitational-wave data - the covariance matrix method and Markov
Chain Monte Carlo(MCMC) techniques. But as pointed out in [1,2,18], covariance ma-
trix methods do not give a very reliable estimate of the parameters. MCMC methods on
the other hand, can give more reliable results even though they can be computationally



expensive. We thus set out to create and implement efficient MCMC techniques which
can be used in parameter estimation and thus obtain the posterior distributions for these
parameters.

As seen above, there are a number of parameters that need to be estimated accurately
when it comes to gravitational wave data analysis. This implies that the space of these
parameters is multi-dimensional and really large. Sampling such a space upto a high res-
olution becomes practically impossible and we thus have to resort to stochastic methods
such as the MCMC [7]. There have been studies to see how MCMC methods can be used
for parameter estimation previously [3,5,14,15]. MCMC methods are essentially based
on the principles of Bayesian inference [17], where the probability of detecting the param-
eters is updated as additional data is acquired. This requires placing initial probability
bounds on the parameters called the prior probability.

The MCMC method that we have used in our work is based on the algorithm given
by Metropolis [13] and Hastings [9]. The exact working of this algorithm and how it is
implemented in our code is explained in later sections. Our initial code used a single
MCMC chain to sample the parameter space and return the posteriors. This is a highly
inefficient method compared to one in which several chains have been initiated. We test
and check this fact by incorporating multiple chains by using the Multiprocessing module
in Python. Further, when we found that the posteriors we obtained were not accurate,
inspite of using Multiprocessing, due to the likelihhod being biased towards the boundary
of the prior, we resorted to the sophisticated and efficient method of the ensemble sampler
which is discussed in [8]. The results of this method are again discussed later. In this
work we have tried to obtain posteriors on parameters such as the component masses,
chirp mass, mass ratio and luminosity distance.

The following section describes the theory of Markov Chain Monte Carlo methods
and how they are based on the principles of Bayesian statistics. It also gives a brief
description of the Metropolis-Hastings algorithm and also of the moves involved in the
ensemble sampler technique. Section 3 gives the methods used in this project to generate
the gravitational-wave data, the implementation of the single chain and multiple chain
MCMC codes and also of the ensemble sampler. Section 4 shows the posteriors obtained
from our codes for these different methods and the discussion for the same. We also dis-
cuss how the ensemble sampler method is more efficient than its single chain counterpart.
The sampling and computing challenges faced in this project are also described here.



Chapter 2

Theory

Parameter estimation, as stated, is carried out in this work using the stochastic methods of
Markov Chain Monte Carlo (MCMC). These MCMC methods are based on the principles
of Bayesian inference. Before understanding how these methods work and what are
the principles the rely on, it is essential to state certain preliminaries with respect to
gravitational waves from coalescing compact binaries and their detection.

2.1 Gravitational Waves

Analogous to light travelling as oscillations in the electromagnetic field, gravitational
waves are propagating perturbations of the gravitational field. They are generated by
accelerating masses just as electromagnetic waves are generated by accelerating charges.
Coalescing compact binaries are expected to generate large amounts of gravitational ra-
diation. The evolution of such binaries can be divided into three stages namely, the
inspiral, merger and ringdown. Three major approximation methods are used to model
the gravitational waves generated by such sources during the mentioned phases of their
evolution. [16]:

e Post-Newtonian Scheme: This involves deriving solutions to Einstein’s equa-
tions under the low-velocity (v/c) as well as weak-field (M /R) expansion. The zero
Post-Newtonian(PN) term describes a Newtonian binary system. In recent years,
the PN approximation has been evaluated upto very high orders in v /¢ since in the
late stages' of the evolution of the binary, the departure from Newtonian dynamics
is significant and we need to model this phase as accurately as possible. The PN
approximation breaks down before the coalescence of the binary and hence cannot
be used to model the further stages, merger and ringdown, of the system. We thus
need to resort to simulations from numerical relativity.

e Perturbation Theory: The expansion here is carried out in terms of the mass
ratio of the binary components. The approximation is being used to study the GW
signals from coalescing Stellar Mass Black Hole(SMBH) binaries.

Lupto inspiral



e Numerical Simulations: Numerical relativity is used to model the final stages
of the evolution of the binary, where Post-Newtonian analytic expressions are not
available.

2.1.1 Post-Newtonian waveform in the Fourier Domain

To get an idea of how a gravitational wave from an astrophysical source, such as a
compact binary, depends on its parameters, let us look at the mathematical form of this
dependance. From Post-Newtonian theory, the waveform of a binary in the Fourier or
frequency domain, H(f), can be written as -

H(f) = Af~Pexpli¥(f) + 5] = ha(f) + ihx(f) (2.1)

where, the Fourier amplitude A and phase W(f) are given as,

C Sv . (k=5)
_ o /6 _
A= s\ M v‘I’(f)—QWfto+‘I’c+zk:@k(7TMf) 3 (2.2)
Here, M = mj+msy, is the total mass of the binary, v is the symmetric mass ratio defined
as v = ml—T;LQ, C is a function of angles, and to and ®¢ denote the epoch of merger and

phase of the GW from the binary at that particular epoch respectively. The equation can
also be expressed in terms of a quantity called the chirp mass M, which is a combination
of the masses m; and msy and gives the leading order approximation to the gravitational
(mams)3/°
(7711 + 7Tl2)1/5.
phase in the Fourier domain and expressions for them are given in [16].

wave signal. M = The ay’s are the PN coefficients in the expansion of the

le-23

1.2}

1.0

0.8}

("

0.6

h_abs

0.4}

0.2}

0.0

200 400 600 800 1000
Frequency(Hz)

Figure 2.1: Fourier Domain Waveform: The absolute value of the Fourier domain
waveform for a binary with component masses of 10Mg,,, each.



2.1.2 Detector Noise and Power Spectral Density

The detection of gravitational waves is highly sensitive to the noise present in the detectors
used for detecting them. As stated in [16], the main sources of this noise are thermal noise,
sensor noise and quantum noise. The amplitude of the resultant noise in the detector
typically ranges from the order of that of the signal to two or three orders of magnitude
higher. Thus, we can essentially say that the GW signal we want to detect, is “buried”
in the noise. It is therefore important to model and characterize this noise as accurately
as possible, so that a correspondingly accurate detection can be claimed. The following
figure shows a noise realization for the detector and the corresponding power-spectral
density (PSD). The PSD is colored and one-sided.

6 le—21 :

107

Noise(n(t))
Power Spectral Density (PSD)

Time(s) Frequency(Hz)

Figure 2.2: Noise and Power Spectral Density for a detector: The above figures
show the noise of the LIGO detector in the time domain (left) and the corresponding
power spectral density (right).

In the following sections, the Fourier domain noise of the detector will be denoted by
n(f) and the PSD by S(f).

2.2 Bayesian Inference

The idea behind Bayesian inference simply follows from Bayes’ rule. Consider two hy-

potheses A and B. Then, the joint probability of both A and B being true is given as,
P(A,B) = P(A)P(B|A)orP(A, B) = P(B)P(A|B) (2.3)

From this we can derive Bayes’ rule as:

P(A)P(B]A)

PUAIB) = =5

(2.4)
The left-hand side of the above equation, P(A|B), is called the posterior probabilty of A
given B. The probability P(B|A), on the right, is the probabilty of B given A and is called
the likelihood. P(A) is the prior probability for A while P(B) serves as a normalization

7



constant, which is usually ignored.

Applying this analysis to our case, the hypotheses A and B become the parameters,
52, and data, X, respectively. So, the posterior probability that we want to obtain, that
is P(A]X), will be given as,

P(6)P(X|0)

POIX) = =5

(2.5)

—

Here, the likelihood P(X|6), denotes the probability of the data given the parameters,
P(g) is the prior probability on the parameters which, in this work, is taken to be uniform
over the range of parameters.

If h(f) and n(f) denote the gravitational-waveform template® and Fourier noise of the

detector respectively, then the data x(f) is simply,

z(f) = h(f) +n(f) (2.6)

z(f) is also called an injection. The functional form of the likelihood L(6|z) that we use
in our analysis, is then given as,

. (@(H)—=hz(H)2

Llz)=e ) — s ¥ (2.7)

where, hg(f) is the waveform template for a particular value of parameters, 5, and S(f)
is the power-spectral density for the noise realization n(f).

2.3 Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo, or MCMC for short, as the name suggests is Monte Carlo
integration carried out over Markov chains. MCMC methods are one of the most reliable
and efficient for parameter estimation, especially when the space of parameters to be
sampled is large and multi-dimensional. The book by Gilks et al [7] provides an excellent
introduction to the same and the concepts defined below are referred from it. We begin
by stating what a Markov chain is.

2.3.1 Markov Chain

A sequence of random variables Xy, X1, X5, X3, ..., such that at each time ¢ > 0, the state
X; is sampled from a distribution P(X;|X;_1) which depends only on the previous state
of the chain, X;_1, is called a Markov chain.

2where the arrow denotes more than one parameter
3for a particular value of the parameters



2.3.2 Monte Carlo integration

Lets say that we have to evaluate the expectation value, E[f(x)], of a function f. Monte
Carlo integration calculates this by drawing samples X;,t = 1, ....,n from a proposal dis-
tribution and then approximating,

n

Bl @) ~ 3 7% 2.

i=1

When the samples X, are independent, the approximate sample mean approaches the true
expectation value as n increases. This is the basic theme for Monte Carlo integrations.

2.3.3 Metropolis-Hastings Algorithm

The MCMC method used in the parameter estimation pipeline for this work depends on
the famous algorithm first given by Metropolis [13], and Hastings [9] who later extended
it to a general case. The algorithm is fairly simple yet it can sample and give accurate
posteriors, for most distributions, efficiently. The algorithm can be described as follows:
Let L be the likelihood function for a given problem.

1. Choose a point 0, at random in the parameter space.

2. Choose another point fs based on a proposal distribution ¢(62|0;), dependent only
on 0;. (This ensures the chain is Markovian. Usually the proposal distribution is a
Gaussian centered around 6;)

3. Generate a random number r € (0,1) from a uniform distribution.

L(0)

4. If r < man.(1,
( L(6h)

), then make a transition to 0, else stay at 6;.

5. Repeat steps 2 — 4.

-In(p(9))

Figure 2.3: Implementing MCMC:The Metropolis-Hastings algorithm showing how
the moves are proposed from a current point 6, to the next point 65 and so on.https:
//inspirehep.net/record/1283811/plots
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2.4 Ensemble MCMC Methods

Instead of employing a single MCMC chain to obtain the posterior distribution for the
parameters, another method or extension to this, which is used in this work, is to employ
multiple MCMC chains to sample the parameter space. Such a set of MCMC chains,
having different initial locations in the parameter space, is called an ensemble MCMC
sampler. This approach has two major advantages-Firstly, having more than one chain
ensures that a larger area of the parameter space is sampled. Secondly, and more im-
portantly, we can be more sure of the fact that the posterior actually includes the true
maximum likelihood. This is because with a single chain it is probable, and also as will
be later discussed, that it converges to a local maximum and not the global one which
corresponds to the injected parameters.Also, as shown in [8], ensemble methods com-
putationally outperform their single-chain MCMC counterparts. The ensemble-sampling
method used here is such that the updation of the state of any chain in the ensemble, de-
pends on the state of the other chains in the same ensemble. The specific moves proposed
in this ensemble-sampler method are described in general below. The specific values as-
sumed and results obtained will be discussed later.

Let X be an ensemble of L MCMC chains or walkers. That is, X = (X1, Xo, X3, .00y X1).
One MCMC step of the ensemble consists of updating all the L walkers. At any stage,
the next position of the k* walker, X}, depends on the current positions of the other
walkers in the ensemble. The other walkers form a complementary ensemble,

X (t) = (X0 (t+ 1), Xo(t+ 1), ooy Xpa (8 + 1), Xga (2), .. X1(2)) (2.9)

There are three types of moves or updations given in [8] and used in the ensemble-sampler
here:

1. Stretch: In a stretch move, the walker X} is updated using a walker from the
complementary ensemble Xy, say X;. The walker X; is chosen at random from
the complementary set. The proposed move is of the form,

Xie(t) =Y =X, + Z(Xi(t) — X) (2.10)
Here Z is a scaling factor (>1) which can be adjusted to improve performance.

2. Walk: The walk move involves choosing a subset S (|S| > 2) from XTk]. We
calculate the mean, Xg, of the walker positions in S as,

S 1
Xg = T > X, (2.11)
XjES

We then construct W, with mean zero and covariance same as walkers X; € S as,

W= Zj(X; - Xs) (2.12)

XjES
where Z; are univariate standard normals. The proposed move is then,

Xu(t) =Y = Xu(t) + W (2.13)

10
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X;

Figure 2.4: The Stretch move: Picture from Goodman and Weare(2010)

Figure 2.5: The Walk move: Picture from Goodman and Weare(2010)
3. Replace: The third type of move is the replace move. This move is the same as
the usual Metropolis-Hastings MCMC move as defined above.

Along with proposing these different types of moves, the ensemble sampler is different
from the single-chain MCMC in that it is adaptive with respect to the step size or variance
of the Gaussian proposal density used to propose the next move in the chain.

11



Chapter 3

Methods

The parameter estimation pipeline developed here completely relies on the MCMC algo-
rithm previously described. So we will look at, in detail, how the algorithm is exactly
used in this case. The use of single-chain MCMC routines, restricts the range of the pa-
rameter space sampled and, as shown later, turns out to be inaccurate and inefficient. In
order to overcome this, we try to make use of the Multiprocessing module from Python,
whereby we can employ multiple MCMC chains. These chains have different initial posi-
tions in the same parameter space and help in sampling more of the space. Finally, since
the results from using the Multiprocessing module were not adequate enough we also
implemented the ensemble MCMC sampler as described in the previous chapter. Let us
begin by looking at how the gravitational-wave data is generated and used in the pipeline.

3.1 Creating an injection

3.1.1 Generating the Waveform

Gravitational-wave data is generated by combining the waveform template with the noise
from the detector. Waveforms are obtained by using appropriate packages in the LIGO
Algorithm Library(LAL) [4], which contains routines in the language C, for carrying
out data analysis in gravitational-wave astronomy. These packages in LAL require an
input from the user for the values of the source parameters and return the waveform,
Ritemplate ( f)!, corresponding to these values. Some of the parameter inputs required by
the code in LAL are as follows,

m1, ms : The component masses of the binary.

Sz, S1y, S1z, S2, S2y, S2. + The spins of the individual components along all 3 axes.
e d; : Luminosity distance of the binary..

e ¢ : Inclination angle of the binary with respect to the line of sight.

e 0 : Declination of the binary.

e ¢ : Right ascension of the binary.

'hoth time and frequency domain waveforms can be generated

12



e ¢ : Polarization of the GW signal.
e ¢. : Reference phase.
e t.: Reference time of coalescence.

In principal, these are all the parameters that one can try and get estimates for. In
addition, there are certain other arguments that one is expected to pass in LAL. These
include the approximant to be used in generating the waveform, the PN order upto which
the template needs to be evaluated and the domain? of the waveform.

In the work done so far, we have considered non-spinning binaries only. This implies
that the six spin parameters stated above are set to zero. Also we have majorly used the
highly accurate phenomenological waveform TMRPhenomB’ upto the highest available
PN order, that is 3.5PN. All our calculations have been carried out in the Fourier domain.
A typical waveform looks as follows,

figure

3.1.2 Generating the Detector Noise

Once again, in order to create a noise realization, n(f), corresponding to a detector, we
use the packages in LAL. Information about various noise models is built-in in LAL and
we just need to provide the name of the noise model we need to use. For this work
we resorted to using the Advanced LIGO detector noise, whose PSD is as shown in the
previous section.

3.1.3 Data

Finally, we create the data, x(f) by summing the template hiempiate(f) and noise n(f)
obtained from above.

Zl?'(f) = h’template(f) + n(f) (31)

This data is called an injection.

3.2 Implementing the MCMC algorithm

Once the data is generated, the next step is to implement the Metropolis-Hastings algo-
rithm to generate the MCMC chain for the parameter estimation. As discussed in the
previous section, we need to consider a certain prior probability, P(#), for the parameters
and also need to have a functional form for the likelihood L(f|x) (eq.2.7). We assume
the prior probability to be uniform over a fixed range of the individual parameters and

zero for any value outside this range.
. g <m(f>—h§<f))2df
Thus, P(0) = Uniform(Omin, Omaez)® and L(f]z) = e 5(7) . Since the numbers

we obtain for the likelihood in a gravitational-wave analysis are extremely small and we

time or frequency
3where we specity 0,,in, Omae for each parameter

13



might encounter underflow errors, it is best to work with logarithm of the likelihood
which is what we use. The Loglikelihood will simply be the exponent in the expression
given above.The algorithm then proceeds as:

1. We choose a random point? to begin with in the multi-dimensional parameter space,
say 0.

2. We use a proposal distribution which is a Gaussian having a specified variance’

along each dimension of the parameter space and a mean equivalent to the position
0.

3. The next proposal point 0o is chosen using this Gaussian proposal distribution.
4. A random number r € Uniform(0,1) is chosen.

5. We evaluate Loglikelihood values at the positions 9: and 9;.

6. The comparison step in the MCMC algorithm then turns out to be - If log(r) <
logL(0s) — logL(0;), then make a transition to 6. Else we stay at 0.

7. We repeat this, each time using the proposal distribution to propose a new point
from the current point, for a large number of steps such that the chain will converge.

3.3 Multiprocessing from Python

Implementing the MCMC with a single chain can lead to inaccurate results as will be
shown later. This suggests that we try and use multiple MCMC chains, all having different
starting positions in the parameter space. This is most efficiently done by using the
Multiprocessing module in Python [11].

Multiprocessing allows the user to parallely use multiple processors of a computer and
one can submit multiple jobs with different initial values. This is usually done using the
Pool object of the module, which asks the user for the number of jobs to be submitted
and runs instances of the same program parallely. Thus, by supplying the number of
MCMC chains we need as an argument to the Pool object, we can run those many chains
on the same parameter space simultaneously. The results obtained by using this module
will be shown in the results section.

3.4 Ensemble Sampler

Moving on from using the Multiprocessing module, we implemented the Ensemble sam-
pler, so that the parameter space could be sampled more efficiently. The proposal moves
used in this ensemble sampler have been explained in the previous section. Another
aspect of this method is that it is adaptive with respect to the step sizes used in the
Gaussian proposal distribution as explained earlier. The steps for the updation of each
chain are similar to that of the simple single chain MCMC, except for the type of proposal
moves - the stretch,walk or replace. As said earlier, one step for the ensemble sampler

4The random number generator was used from Python’s NUMPY module
% Also referred to as the MCMC step size

14



involves updating the positions of all the walkers one-by-one in a cycle. In this algorithm,
a counter serially selects the walkers for updation. In our case, if the counter is a multiple
of 2, the walker corresponding to the counter undergoes a stretch move. If it is a multiple
of 3, it undergoes a walk move, else a replace move is carried out.

15



Chapter 4

Results

4.1 A simple exercise
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Figure 4.1: Time-Frequency domain comparison:Plots for the comparison between
the time(top panels) and frequency domain(bottom panels) posteriors for the chirp mass
(left) and luminosity distance (right).
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The above plots are the 1-d posterior distributions obtained for the chirp mass and
luminosity distance in the case of the data being a Newtonian i.e. 0PN or leading order
waveform with added Gaussian white noise.
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Figure 4.2: Time-Frequency domain comparison:Plots for the comparison between
the time(left) and frequency domain(right) 2-d posteriors of the chirp mass and lumi-
nosity distance for the same system as above.The confidence levels are shown by colored
lines:1o(black),20 (magenta),30 (cyan)

4.2 Single Chain MCMC
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Figure 4.3: Single chain MCMC posteriors:Posterior plots for the component masses
for a system with m; = 13Mg and ms = 11M. The first two plots show that the chain
has converged to the injected values while the next two have converged to the boundary.
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4.3 Multiprocessing Runs
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Figure 4.4: MCMC using MultiprocessingMultiple chains are used via the Multi-
processing module on the same system. Most of the chains have again converged to the
boundary while a few have converged to the injected values
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4.4 Ensemble Sampler
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system
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Figure 4.6: Chirp Mass and Mass ratio

system
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Chapter 5

Discussion

We discuss our results shown in the previous section and also the reasons for some of the
inaccurate posteriors obtained. As shown in Section 4.1, the posteriors in the time as
well as frequency domains for the same system is similar. This is expected since doing
a parameter estimation in either domains', does not change the parameters itself. The
minor differences that we can see in the plots, arise from the fact that the number of
samples taken is small, 10° in this case. As we increase the number of samples the two
posteriors will look more and more similar.

After having done this analysis, we moved onto the more realistic waveforms and noise
models, in particular the IMRPhenomB waveform and the colored noise of the Advanced
LIGO detector, respectively. The posteriors obtained from using these waveforms are
shown in section 4.2. We found that while some of the chains did converge to the injected
values, most of the other chains converged to the boundary of the prior as shown in the
other plots of the same section. This led to investigating the nature of the likelihood
being sampled for these MCMC chains. The following figure shows the numerical and
analytical plots of the likelihood for the same system.
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Figure 5.1: Numerical and analytical likelihoods

'Here it is possible only in the case of white noise
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The analytical likelihood in the above figure has been computed in the leading PN
order. Even in this case, we can see that the likelihood does rise towards the boundary
of the prior and hence it seems that this is not a numerical artifact. In other words, the
boundary behaves as a local maxima during the sampling of the mass parameter space,
causing many chains to converge and get “stuck” in this region. This is also the reason
why most of the runs using multiple chains from the Multiprocessing module converged
to the boundary of the prior. Thus, in order to get over this problem, we had to resort
to a more sophisticated, adaptive algorithm which is the one offered by the ensemble
sampler.

We have provided the plots of the posteriors on the chirp mass and mass ratio, ob-
tained from the ensemble sampler, in Section 4.4. We can clearly see that now almost all
the chains or MCMC walkers converge to the injected value with great accuracy. This is
because, during the updation of walkers in the ensemble sampler, the proposed moves of
stretching and walking force the state of one walker to be dependent on that of the others.
Thus, even if a few walkers are converging to the injected values of the parameters, they
can actually “pull” the other walkers stuck in other regions by this algorithm. We also
tested to see what is the approximate, optimum number of walkers needed to sample the
parameter space accurately and efficiently. The posterior plots using 10, 50, 100 and 1000
walkers is given below.
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Figure 5.2: Chirp Mass posteriors for different number of walkers:10 Walkers(top
left),50 Walkers(top right),100 Walkers(bottom left),1000 Walkers(bottom right)
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For the above plots, we kept the number of MCMC steps to be fixed and varied the
number of walkers. Thus, more the number of walkers meant that each walker underwent
fewer steps. From these plots it is clear that, the accuracy of the ensemble sampler is
higher when there are a fewer number of walkers undergoing greater number of steps.

The ensemble sampler has turned out to be the most efficient and accurate way to
estimate the parameters so far and we will be using the same to carry out parameter
estimation over even higher-dimensional spaces to estimate more parameters.
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Conclusion

To summarize, we created and implemented a Markov Chain Monte Carlo (MCMC)
parameter-estimation code based on the principles of Bayesian inference, and obtained
posteriors for parameters such as the chirp mass, luminosity distance and the component
masses of compact binaries. This single-chain MCMC code was then parallelized using
the Multiprocessing module in Python. In order to sample the parameter space more
accurately and efficiently, we implemented the ensemble sampling technique as described
by Goodman and Weare [8].

Now that we have obtained posteriors for some of the intrinsic parameters such as
the component masses etc., the next step would be to try and estimate some extrinsic
parametrs such as the sky location, inclination angle and polarization. In order to esti-
mate the sky location, we will need to extend this code to incorporate a multi-detector
analysis. For parameters such as the polarization, we need to fold in the antenna pat-
tern functions for the detector and the carry out the analysis. The final goal will be to
implement the estimation pipeline for the full 9-parameter space, in case of non-spinning
binaries. Another possible way of improving the estimation would be to search for even
more efficient techniques, compared to the ensemble sampler, to sample a large and
multi-dimensional space.
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