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Abstract

The top quark, the heaviest elementary particle, was discovered about 25 years ago. However,

many of its fundamental properties, including the nature of its gauge couplings, are not yet

accurately determined. The Standard Model (SM) predicts the top-photon vertex to be vectori-

ally coupled. Given that the SM does not explain all observed phenomena, this analysis looks

for additional axial-vector or tensor couplings using the Standard Model Effective Field The-

ory (SMEFT) approach. Three EFT operators that can affect the top-photon vertex are added

to the SM Lagrangian with a coupling coefficient. By varying contributions from these three

operators, 27 Monte Carlo samples are generated for the tt̄γ process. Changes were observed

in the shape of the distribution of various kinematic variables like the pT, η of the photon,

ΔRmin(γ,�), Δφ(�,�) and Δη(�,�). The differential cross-sections with respect to these ob-

servables are modelled as a second order polynomial function of the coupling coefficients to

interpolate between the generated SMEFT tt̄γ samples. With these polynomial functions, limits

are extracted on the coupling coefficients, namely CtW , CtZ and CtG, from the differential cross-

section measurements using the full run 2 data (L = 139 fb−1), from the ATLAS detector at

the Large Hadron Collider.
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1. Introduction

The curiosity to understand the way of nature has been intriguing humankind from the ancient
times. Many speculations about what everything is composed of have been made by philoso-
phers and thinkers like Democritus dating back to a few 100 BC. However, the first experimen-
tal evidence of a fundamental particle was made in 1897 when J. J. Thomson discovered the
electron [1] and made the first proposal for a model of an atom. Around 1910, H. Geiger and
E. Rutherford, hypothesised the existence of a nucleus in an atom, based on their alpha particle
scattering experiment [2], and in 1914 Niels Bohr named the proton and proposed the orbital
model of the hydrogen atom [3]. The discovery of the neutron by Chadwick in 1932 [4] gave
a sort of complete idea that matter is composed of protons, electrons and neutrons. Around the
1940s, observation of cosmic rays revealed the existence of muons [5] which demanded the
need for an improvement on the existing theory. Further, during the 1950s a large number of
new particles was observed, and the process of incorporating all of them into a fundamental
theory led to the birth of the Standard Model (SM) of particle physics.

The SM [6–16] (Section 2.1) is the most successful attempt till date at making one full theory
to explain the fundamental nature of the universe. A large number of predictions made by the
SM have been proven experimentally. This includes the discovery of the top quark [17, 18]
and the Higgs boson [19, 20]. Due to the massive nature of these particles, they can only be
observed in high energy collider experiments like the TEVATRON and the LHC. Despite being
very accurate in its predictions, some observations cannot be explained by the SM (Section 2.2).
Hence, the quest to find the fundamental theory of everything is still ongoing.

In the SM, the top quark decays before hadronisation (Section 2.1.1). Hence, the fun-
damental properties of a bare quark can be understood by studying the top quark. Precise
measurements of its properties are the key to understanding the basic principles of nature, and
this makes the top quark a good candidate for Beyond the Standard Model (BSM) studies. The
process of top-antitop-quark production in association with a photon (tt̄γ) allows for a measure-
ment of the electromagnetic coupling of the top quark with a photon. A precise measurement
of this coupling can help us to look for deviations from the SM.

The Standard Model Effective Field Theory (SMEFT) tries to explain these deviations by
adding higher-dimensional operators to the SM Lagrangian. Limits can be obtained on the
coupling strength of these operators using the measured inclusive and differential cross-section
of the tt̄γ process. Due to the high top quark production cross-section at the Large Hadron
Collider (LHC), the data collected over the years 2015-2018 at the ATLAS detector provides
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1. Introduction

the opportunity to study this rare process and extract these limits.
In this thesis, first, an introduction is given to the Standard Model in Section 2.1, here the

fundamental particles and their interactions are explained. Then, the tt̄γ process is introduced
in Section 2.1.1, with details on the special properties of the top quark. An introduction into
Beyond the Standard Model physics is given in Section 2.2, with an emphasis on EFT and
SMEFT. In Chapter 3, An overview of the LHC is given, and the working of the ATLAS detector
is explained. The strategies used for generating events are explained in Chapter 4. In Chapter 5,
steps taken to extract the limits are explained, and Chapter 6 summarises the results. Finally,
Chapter 7 lists possible studies that can be undertaken to improve the results of this analysis.
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2. Theoretical Background

This chapter gives a brief overview of some of the theoretical concepts that are necessary to
understand this analysis.

2.1. Standard Model

Quantum Field Theory (QFT) is a mathematical framework that combines quantum mechan-
ics, special relativity and classical field theory. The Standard Model of Particle Physics (SM)
is a combination of three local gauge-invariant QFTs. It has an underlying symmetry group
SU(3)C ×SU(2)L ×U(1)Y , where, SU(3) describes the strong interaction in the framework of
Quantum Chromodynamics (QCD) and SU(2)L×U(1)Y describes the electro-weak interaction.

In the SM, particles are classified on the basis of their spin into fermions (particles with half-
integer spins) and bosons (particles with integer spins). All matter is composed of fermions,
and they interact through the exchange of elementary gauge bosons. These fermions are fur-
ther divided into quarks and leptons. All the particles in the SM are displayed in Fig. 2.1.
Corresponding to each of these particles there exists an anti-particle in the SM.

There are three generations of leptons, each consisting of a charged (Q =−1e) lepton (�) and
its uncharged weak isospin partner, a neutrino (ν�). The leptons in the three generations vary
only in terms of their mass. The three generations are; electron (e) and electron neutrino (νe),
muon (µ) and muon neutrino (νµ ), and tauon (τ) and tauon neutrino (ντ ). The charged leptons
interact electro-weakly, while the neutrinos show only weak interactions.

There are six flavours of quarks. These are grouped into three generations. Each generation
has two quarks, one up-type quark with weak isospin (I3) of 1/2 and a down-type quark with
I3 = −1/2. Quarks in different generations show drastic variation in their mass as seen from
Fig. 2.1. The first generation consists of the up (u) and the down (d) quarks, the second has
the charm (c) and the strange (s) quarks, and the third includes the top (t) and the bottom (b)
quarks. In addition to electric charge, quarks also have a colour charge which makes them
interact through the electro-weak and the strong force. The colour charge is of three types, and
all stable particles are composed of combinations of quarks such that the net colour is neutral.

The Standard Model describes three out of the four fundamental forces. The electromagnetic
force is mediated by photons (γ) and is experienced by all electromagnetically charged parti-
cles. The gluon (g) is the force carrier particle for the strong force, and all coloured particles

3



2. Theoretical Background

Figure 2.1.: The Standard Model of particle physics: an overview.

interact via the strong force. The weak force is mediated by W± and Z bosons. The electro-
magnetic force and the weak force are unified in the electro-weak theory. The gravitational
force is not explained by the SM.

The Higgs boson is a massive (mH = 124.97± 0.24 GeV [21]) spin-zero [22] particle with
no charge. It was introduced to the SM to explain the massive nature of other gauge bosons
using the Brout-Englert-Higgs [23, 24] mechanism.

2.1.1. The top quark

The third generation of quarks was proposed by Kobayashi and Maskawa [25] in 1973 as an
explanation to the CP violation observed by Cronin et al. [26] in the 1960s. The discovery of
the τ lepton at SLAC [27] and the bottom-quark at FERMILAB [28] in 1977 strengthened the
feasibility of the existence of a third generation, and hence the top quark. The top quark was
first discovered by CDF and DØ in 1995 during the Run I at the TEVATRON [17, 29].

In the SM, the top quark is an up-type quark with spin s = 1/2 and charge Q =+2/3e. It is
the heaviest quark observed, with a mass equal to 172.69± 0.48 GeV [30], which is 30 times
more that the mass of the second heaviest quark. The mass distribution follows a Breit-Wigner

4



2.1. Standard Model

(a) From quark-anti-quark pairs

(b) From gluon-gluon fusion

Figure 2.2.: Leading-order diagrams for tt̄ production at hadron colliders.

function, a statistical probability function which describes resonances in high energy physics.
The lifetime is the inverse of the decay width (the full width at half maximum (FWHM)) of
the mass distribution. Hence, it has a very short lifetime of about 10−25s [31], which is shorter
than the QCD hadronisation time. Because of this short lifetime, it decays before hadronisation
can occur [31], and thus transfers its properties to its decay products. The properties of the top
quark can be measured from its decay products, making it easier to study the top quark.

Top quark production

Top quarks can be produced as a single quark or a top anti-top pair (tt̄). At the LHC, the top
quark is mainly produced in pairs. A top anti-top pair can be produced either from gluon-
gluon fusion or quark anti-quark annihilation, as shown in Fig. 2.2. The LHC is a proton-
proton collider, and since protons are compound particles, during a collision, the partons that
constitute the proton interact with each other and not the entire proton. Each parton has only a
fraction (x) of the total energy of the proton, and this fraction is given by the parton distribution
function [32], an example is shown in Fig. 2.3. To produce a real top-quark pair, it is required
that the interacting partons have

√
ŝ> 2mt . Given the centre of mass energy of the total collision

is
√

s,
√

ŝ = x
√

s. At the LHC, the probability of obtaining a gluon is much higher than the
probability of obtaining an anti-quark with a high enough x. Hence, about 90% of the tt̄ events
are produced through the gg → tt̄ process.

The production cross-section of a process can be calculated using the QCD factorisation
theorem [33]. Consider the two interacting partons to be i and j, with a PDF fi and f j, respec-
tively. The total cross-section can be computed from the partonic cross-section (σi j →tt̄) by
convoluting it with the PDFs and summing over all combinations of partons feasible as shown
in the equation below. The PDF is written as a function of xi and Q2, where, xi is the fraction
of the centre of mass energy carried by the parton and Q gives the factorisation scale.

5



2. Theoretical Background

Figure 2.3.: Parton Distribution Function for Q2 = 104 GeV.

σtt̄(
√

s,mt) = ∑ lim
i, j=q,q̄,g

�
dxidx j fi(xi,Q2) f j(x j,Q2)× σ̂i j→tt̄(ŝ,xi,x j,mt ,Q,α(Q2)) (2.1)

Top quark decay

The top quark decays almost exclusively to a W boson and a b quark. The rate of this decay can
be calculated from the corresponding Cabibbo Kobayashi Maskawa (CKM) matrix elements.
The CKM matrix elements contain information about the strength of flavour changing weak
decays. The rate of the t →Wb decay is given by the following equation:

R = B(t→Wb)
B(t→Wq) =

|Vtb|2
Σq|Vtq|2 ≈ 1

Hence, the decay of the top quark is classified on the basis of the decay of the W boson. The
W boson can decay into a quark anti-quark pair, or a charged lepton and its neutrino. In a tt̄

event, based on the decay of the W boson, there are three decay channels. (i) All hadronic: both
the W bosons decay into a quark and anti-quark. (ii) Dileptonic: both the quarks decay into a
lepton pair. (iii) Semileptonic: one of the quarks decays leptonically and the other hadronically.
The branching ratios for each of these channels are given in Fig. 2.4(b).

2.1.2. tt̄γ process

In Section 2.1.1, the production and decay modes of the tt̄ pair are explained. For the tt̄γ
process, the final states are similar to that of the tt̄ process, with an additional prompt photon.
This additional photon can have three different sources of origin. Some examples are shown in
Fig 2.5.

6



2.1. Standard Model

(a) Top quark decay

τ+τ   1%

τ+µ   2%

τ+e   
2%

µ+µ   1
%

µ+e  
 2%

e+e 
  1%

e+jets 15%

µ+jets 15%

τ+jets  15%

"alljets"  46%

"lepton+jets""dileptons"

Top Pair Branching Fractions

(b) Branching ratio of tt̄process

Figure 2.4.: Top quark decay and branching ratio.

(a) ISR (b) from top quark (c) FSR

Figure 2.5.: Feynman diagrams of tt̄γ production.

The photon can be radiated from one of the initial state partons; this is called Initial State
Radiation (ISR). As gluons cannot radiate a photon, the only contributors to this are processes
where tt̄ is produced from qq annihilation. At the LHC the fraction of tt̄ events that are
produced from qq annihilation is very low, and hence this channel has a very small contribution
to the total number of events. The photon can also be radiated directly from the top quark.
These events are important for studying the top-photon coupling. Another possibility is that the
photon is radiated from one of the charged decay products of the top quark. These are called
final-state radiation (FSR). The events that are most relevant for the study of the top-photon
coupling are those where the photon is radiated directly from the top quark. These processes
are hard to distinguish and have to be treated simultaneously with ISR and FSR processes. The
FSR photons have lower isolation compared to the photons radiated by the top quark. This can
be used to distinguish these events from the other tt̄γ events.

7



2. Theoretical Background

2.2. Beyond the Standard Model physics

In the current level of understanding that humankind has of the universe, all the observations at
an energy scale of less than a few 100 GeV can be explained by the SM. But few observations
are not understood within the SM. One such example is neutrino oscillations [34], which can
be explained only if the neutrinos are considered to be massive. But according to the SM,
neutrinos are massless. Some other examples of observations which are not explained by the
SM are the matter anti-matter asymmetry [35], the existence of dark matter [36, 37] and dark
energy [38]. Also, gravity is not explained by the SM.

Clearly, an improved theory or an extension of the SM is necessary to fulfil our quest of find-
ing a theory of everything. Several attempts have been made in this direction, which includes
alternative approaches to the SM, like string theory and extra dimensions. String theory uses
one dimensional objects called strings to explain all fundamental particles and their interac-
tions. At a scale larger that than of the string, these strings can be approximated to a particle,
and the vibrational state of the string determines the charge, mass and other properties of this
particle. In this approach, one of the vibrational states of the string corresponds to a particle
like graviton, and this provides a unified theory that can explain gravity as well, unlike the SM.
Another alternative approach aims to explain gravity and the hierarchy problem using extra
dimensions beyond the observed space-time [39].

There are also theories which are extensions of the SM, for example, Supersymmetry (SUSY).
SUSY attempts to solve the hierarchy problem by proposing a superpartner particle for each
SM particle which differs from its partner only in terms of its spin. Since these additional light
particles have not been observed, SUSY has to be broken in order to allow these superpartners
to have a higher mass. Extensions of SM can also be done using Effective Field Theoretic
approaches. This is explained in the next section.

2.2.1. Effective Field Theory (EFT)

An EFT [40] is a low energy/length scale approximation of an over-arching theory. Such
an approximation does not include a detailed description of the theory at the higher energy
sector. Hence, the EFT approach is a good tool to constrain an unknown over-arching theory
that describes processes at both high and low energy scales using a known theory at the low
energy scale. This approach works because the observables at one energy scale are not directly
sensitive to the physics at a different scale.

An example: Fermi weak theory

An easy way to understand the power of EFT is through an example. In this example, the over-
arching theory is the SM in which the exchange of W bosons (mass mW ) mediates the weak
interaction. Consider the case of a muon decay, with a coupling constant g and a 4-momentum

8



2.2. Beyond the Standard Model physics

Figure 2.6.: A low energy approximation of a muon decay [41].

exchange qµ through a W boson propagator, as shown in the left part of Fig. 2.6. The amplitude
for this full process is:

M f ull ∝
g2

q2 −m2
W

(2.2)

If qµ is small, the W boson can be replaced by a 4-fermion interaction as shown in Fig. 2.6 to
obtain an effective theory. The amplitude for this process is given by:

M f ull ∝ − g2

m2
W

(2.3)

These two amplitudes are equal when the momentum transfer is small. Hence, before the
discovery of the W boson, Enrico Fermi in 1933 proposed this four fermion interaction model
with the coupling constant G f to explain the muon decay. Later on, with the discovery of the
W boson, it was identified that G f is equivalent to g2

8m2
W

. Similarly, there could be other such
interactions at very high energy scales, that can be approximated to a low energy EFT at the
energy scales that are currently experimentally accessible. This gives the option to study BSM
physics in a model independent manner.

2.2.2. Building an EFT

An EFT can be described as a sum of operators Oi with a specific mass dimension and a
coupling constant in front of it. The coupling constant can be split into a dimensionless constant
(Wilson coefficient, ci), and a power of mass scale (Λ) at which the theory is written, as shown
below:

9



2. Theoretical Background

L = (kinetic and mass terms)+∑
i

ci

ΛDi−4 Oi (2.4)

According to QFT, the action has to be dimensionless and hence each term in the Lagrangian
has a mass dimension d = 4 in natural units (h̄ = c = 1). Hence, given the dimension of the
operator, the dimension of the coefficient can be calculated.

An EFT can be obtained using "top-down" or "bottom-up" approaches. A "top-down" ap-
proach is taken when a high-energy theory is known. In this case, a low-energy theory can be
made by eliminating high energy effects. For example, the particles which are more massive
than the energy scale of the effective theory can be omitted in this theory. This approach is used
to simplify a theory when applied at low-energy scales.

In the case that a re-normalisable theory at high energy is not known, an attempt to identify
this theory can be made using the "bottom-up" approach, by adding additional higher dimen-
sional interactions. Using this method, an effective theory can be described at an energy scale
E with an accuracy ε using a finite set of parameters to describe the interactions at each di-
mension (k−4). The coefficients of each of these interaction terms is less than or of the order
of:

1
Mk where E < M (2.5)

This is because the interactions of dimension k is proportional to

�
E
M

�k

(2.6)

and hence for an accuracy of ε only terms up to dimension ke are significant

�
E
M

�kε

≈ ε =⇒ kε ≈
ln(1/ε)

ln(M/E)
(2.7)

kε is finite and increases with energy.

2.2.3. Standard Model Effective Field Theory (SMEFT)

In SMEFT, the SM is considered as a low energy approximation of a complete theory. This
complete theory can be speculated using the bottom-up approach. Predictions are made on
the additional terms that should be added to the SM Lagrangian to obtain the full theory
by considering symmetries such as Lorentz and gauge symmetries. The SMEFT provides a
model-independent approach to study deviations from the Standard Model. These deviations
are explained using higher-dimensional operators (Oi), which are built from SM fields. These
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2.2. Beyond the Standard Model physics

operators modify the SM Lagrangian as per the following equation:

L = LSM +ΔL = LSM +Σi
Ci

Λ2 Oi +h.c. (2.8)

In this equation, Oi is the operator, Ci is the corresponding Wilson coefficient, which determines
the coupling strength of the operator and Λ corresponds to the energy scale under consideration.

The SMEFT model for top-quark physics

This analysis uses the SMEFT model called dim6top [42]. It is a leading order (LO) implemen-
tation of SMEFT operators that are relevant for top quark physics. It uses the Warsaw basis [43]
of gauge-invariant dimension-six operators. A U(2)q ×U(2)u ×U(2)d symmetry is assumed
between the first two generations of quarks. For simplicity, the CKM matrix is approximated
to a unit matrix, and masses of all the particles other than the top and the bottom quarks are ap-
proximated to zero. For leptons, flavour diagonality is assumed, with a U(1)l ×U(1)e diagonal
subgroup for each of the three generations. From this model, for the study of the top-photon
vertex, the relevant operators are chosen [44]. These are listed below:

OtG = ytgs(Q̄σ µνT At)ψ̄GA
µν

OtW = ytgw(Q̄σ µντ It)ψ̄W I
µν

OtB = ytgy(Q̄σ µνt)ψ̄Bµν

OtZ =−sin(θw)OtB + cos(θw)OtW

(2.9)

Here, yt is the Top-Yukawa coupling, gw, gy, gs are the SM gauge coupling constant, ψ is the
Higgs field and Q denotes the Quark doublet. W I

µν , Bµν and GA
µν are the field tensors.

The operator OtZ is a linear combination of the operators OtW and OtB, and θw is the weak
mixing angle. Hence, for this study, OtG, OtW and OtZ operators will be considered. As the
operator has a dimension six, the energy scale has to be of the order two so that the new term
added to the Lagrangian has a dimension four. In the dim6top model, the energy scale Λ has
been set to 1 TeV.
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3. Experimental Setup

Most of the fundamental particles in the Standard Model cannot be observed freely in nature.
Hence, from early times, attempts have been made to design accelerators and detectors to cre-
ate them in controlled environments to study their unique properties. Currently, the Large
Hadron Collider (LHC) [45] at CERN (European Organization for Nuclear Research) is the
most powerful particle accelerator in the world. At the LHC there are two general-purpose de-
tectors, namely, the ATLAS (A Toroidal LHC ApparatuS [46]) and the CMS (Compact Muon
Solenoid [47]) experiments as well as the two specialised experiments, the ALICE (A Large Ion
Collider Experiment [48]) and the LHCb (Large Hadron Collider beauty experiment [49]). In
this chapter an overview of the functioning of the LHC and the ATLAS detector is presented.

3.1. The Large Hadron Collider

The LHC is the largest particle accelerator ever built. It is a double ring synchrotron with
an approximate circumference of 27 km. It is constructed within the Large Electron-Positron
(LEP) tunnel and is located 100 m under the surface. The LHC is mainly designed as a proton-
proton collider, with a maximum design centre of mass energy

√
s of 14 TeV. Its construction

was approved in 1994, and the first successful proton beam test run was done on 10th September
2008. To keep the beam within the beam pipe, superconducting magnets are used, which
produces a magnetic field of 8.33T. To attain such high magnetic fields, the magnets are cooled
to 1.9 K using liquid helium. 1232 superconducting dipole magnets are located along the LHC

to keep the beam on track and 392 quadrupole magnets are used for focusing.
The two rings in the LHC consists of eight circular arcs and straight regions. The protons

are accelerated in opposite directions in the two beams. These are collided at four interaction
points, which hosts the detectors.

A chain of accelerators is used to increase the energy of the beam before it is injected into the
main LHC tunnel. These are shown in Fig. 3.1. As a first step, electrons are removed from hy-
drogen atoms using an electric field. These protons are then accelerated to an energy of 50 MeV
using a linear accelerator, LINAC2. During this, the beam is also split into bunches. These
bunches are injected into the Proton Synchrotron Booster (PSB) which increases the energy to
1.4 GeV. The energy of the beam is further increased to 25 GeV by the Proton Synchrotron (PS)
and finally, the Super Proton Synchrotron (SPS) accelerates the beam to an energy of 450 GeV,
before it is injected into the main LHC tunnel.
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3. Experimental Setup

Figure 3.1.: The LHC accelerator complex © CERN.

The beam from the SPS is split into two parts, and each of these are injected into the two
beam pipes of the LHC. Each of these beams contains 2808 bunches, with about 1.5× 1011

protons per bunch. 16 radio-frequency cavities are used to further accelerate the protons to the
desired final energy. The first high energy run started in March 2010 with

√
s = 13 TeV, which

was then enhanced to
√

s of 8 TeV in April 2012. This was further increased to
√

s = 7 TeV
during the Run II of the LHC which started in June 2015. Currently, the LHC is in the long
shutdown 2 and is expected to start running at its design energy of 14 TeV from spring 2021.

The LHC is designed to reach an instantaneous luminosity of L = 1034 cm−2 s−1. The in-
stantaneous luminosity can be calculated from the number of bunches (nB), number of bunches
per beam (N1,N2), frequency of revolution ( f ), and the beam size in x and y direction (σx and
σy) using the following equation,

L =
nbN1N2 f
4πσxσy

(3.1)

Further, the number of events for a particular process with a cross-section, σ can be calculated
as:

N = σ
�

t
L dt. (3.2)
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3.2. The A TLAS detector

Figure 3.2.: The ATLAS detector © CERN.

3.2. The ATLAS detector

The ATLAS detector is 44 m in length, 25 m in diameter and has an overall weight of 7000 t.
It is the largest detector in volume ever constructed for accelerator-based particle physics. A
schematic of the ATLAS detector is shown in Fig. 3.2. The ATLAS detector consists of three
main detector components: the Inner Detector (ID), the calorimeter system, and the muon
spectrometer. It also has several toroidal and solenoid shaped magnets to bend the tracks of the
charged particles produced in a collision. Fig. 3.3 shows details on how different particles can
be identified based on the signatures they leave in the ATLAS detector.

3.2.1. Inner Detector

The primary purpose of the ID is to reconstruct the tracks of the charged particles. With this
information, the charge and the momentum of the charged particles can be computed. For this,
the ID is composed of three sub-systems. The innermost layer close to the beam pipe is the
pixel detector, which is composed of three barrel-shaped layers, three additional disks on each
end and an Insertable B Layer (IBL). It consists of about 80 million silicon semiconductor
pixels with a minimum size of 50×400 µm2. Electron-hole pairs are produced when a charged
particle travels through the pixel. The electrical signals produced can be measured to identify
the location of the charged particle with a resolution of 14× 115 µm2 around the interaction
point.

The Semiconductor Tracker (SCT) surrounds the inner detector. It consists of four barrel
layers and a total of eighteen endcaps, which are made of single-sided p-in-n microstrips instead
of pixels and can achieve a resolution of 17 µm.
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The SCT is surrounded by the Transition Radiation Tracker (TRT). The TRT is made of
narrow tubes (diameter = 4 mm), filled with a gas mixture of Xe, CO2, and O2. A 0.03 mm thin
gold-plated tungsten wire is placed in the centre. Charged particles ionise the gas while passing
through it and the electrons produced undergo avalanche multiplication close to the wire. The
position of the particle is determined by measuring the current.

3.2.2. Calorimeters

The second major component of the detector is the calorimeter system. It consists of the electro-
magnetic and the Hadronic Calorimeter. Each of these have an absorber and an active medium.
It measures the energy of electrons, photons and jets by creating a particle shower in the ab-
sorber, till the total energy of the particle is deposited. The active medium converts these
deposits into a detectable signal.

There are two main types of calorimeters. The Electromagnetic Calorimeter (ECAL) mea-
sures the energy deposited by photons and electrons. It uses lead as the absorber and liquid
argon (LAr) as the active medium and has a barrel part and two end-caps. A particle shower in
ECAL mainly happens due to bremsstrahlung and pair production, hence other particles pass
through with very less energy losses. The coverage of the ECAL is up to |η |< 3.2. The ATLAS

Hadronic Tile Calorimeter surrounds the ECAL and measures the energy of the jets (coming
from hadrons). Steel is used as the absorber and the scintillating tiles act as the active medium
in the barrels, while copper and LAr are used as the absorber and active medium respectively
in the Hadronic End-Cap Calorimeter. The tile calorimeter covers a range of 0 < |η |< 1.7 and
the End-Cap calorimeter spans the region between 1.5 < |η |< 3.2.

3.2.3. Muon chamber

Muons pass through the tracker and the calorimeters without much energy loss. This is because
the probability to radiate bremsstrahlung is inversely proportional to the square of the mass of
the particle and muons are about 200 times more massive than electrons. Muons are bent by the
magnetic field produced by a toroidal magnet system and by measuring their trajectories, their
charge and momentum are determined. The muon detector consists of Thin Gap Chambers
(TGC), Resistive Plate Chambers (RPC), Monitored Drift Tubes (MDT), and Cathode Strip
Chambers (CSC).

3.2.4. Trigger system

At the LHC, a bunch crossing happens once every 25 ns. A large number of the proton-proton
collisions are not interesting for most physics analysis. It is not possible to record all the col-
lision information and is not necessary. Hence, a trigger system [50] is installed to select only
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3.2. The A TLAS detector

Figure 3.3.: A schematic of energy deposits and tracks as observed at the ATLAS detector
© CERN.

the events that could include some ’interesting’ physics observations. Two levels of trigger re-
duce the data collection rate from 40 MHz to 1 MHz. The first Level 1 trigger uses information
from calorimeters and muon chambers to attain this. This is further reduced to about 1 KHz
by the High-Level Trigger. In the ATLAS detector, Level 1 trigger is hardware based, and the
High-Level Trigger is run on a computing cluster.

3.2.5. Coordinate System

A cylindrical coordinate system is used to label particles within the detector. In this system,
the origin is at the interaction point of the two beams, which happens at the centre of the
detector. The z-axis is along the beam pipe. The azimuthal angle φ determines the position in
the transverse plane, with the zero set to the direction pointing to the centre of the ring. The
other polar angle θ is measured in the plane perpendicular to the ring, with the baseline along
the direction of the beam pipe. Commonly, the pseudorapidity (η) is used instead of the polar
angle θ and it is defined as:

η =− ln
�

tan
�

θ
2

��
. (3.3)
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4. Sample preparation

MADGRAPH [51] is a Next-to-Leading Order (NLO) event generator. It models events at parton
level using Monte Carlo (MC) simulations. Matrix elements can be calculated for any user-
defined Lagrangian using the MADGRAPH framework. A leading order implementation of
the SMEFT for MADGRAPH has been done in the dim6top [42] model. In this model, all
the dimension six SMEFT operators involving a top quark are included. The details of this
model are explained in Section 2.2.3. The dim6top model was imported into MADGRAPH for
generating the SMEFT samples.

As explained in Section 2.2.3, three operators are relevant for the tt̄γ production. These
operators are added to the SM Lagrangian with a dimensionless Wilson coefficient. The main
aim of this thesis is to extract limits on these Wilson coefficients. The tt̄γ process, explained in
Section 2.1.2, is ideal for extracting these limits as it includes events where a photon is radiated
directly from the top quark.

Generating the NLO samples for the tt̄γ process, including the full decay of the top quarks
is computationally intensive and cannot be completed within the time frame of this analysis.
Hence, in this analysis, LO samples will be used. Also, only one of the decay channels is
considered. To reduce the computational time further, the first set of studies is done on pp→tt̄γ
samples, without including the decay of the top quark. This is done to get a general idea on
the nature of the events, as well as identify a reasonable range of values for each of the Wilson
coefficients. For this first set of studies, a range of values for the Wilson coefficients are chosen
based on some previous measurements [52].

Samples are generated by varying one of the EFT operators and keeping the other two at
zero. Ten values were chosen for each of the Wilson coefficient within the existing limits for
generating these samples. The cross-section values for each of these points were plotted. With

Wilson Coefficient Limits from previous analysis Value Chosen
Negative Positive

CtW [-2.0, 1.0] -1.2 1.0
CtZ [-6.3, 7.4] -1.0 1.4
CtG [-0.4, 0.4] -0.4 0.4

Table 4.1.: Existing limits on the Wilson coefficients and the values chosen for sample genera-
tion [52].
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Figure 4.1.: Cross-section as a function of the Wilson coefficients. A second order polynomial
of the form p0 + p1C+ p2C2 is fitted to the simulated points.

the assumption that the cross-section can be expressed as a second-order polynomial function
of the Wilson coefficients, such a function is fit to the cross-section plot. These plots are shown
in Fig. 4.1.

The following concept is used to pick a value of the Wilson coefficient for generating the
tt̄γ sample, including the full decay of the top quark. The cross-section value corresponding
to a 10% deviation from the SM cross-section is calculated. This reflects the assumed order of
uncertainty in the tt̄γ cross-section measurement [53]. This value of the cross-section is substi-
tuted into the fit function and the two roots of the polynomial function are extracted. These two
values (a positive and a negative value) are used for generating the next set of samples. These
values are summarised in Table 4.1. Further, to study the differential cross-section, distribu-
tions of photon pT, photon |η | and ΔRmin(t,γ) were also made for these samples as seen in
Fig. 4.2. These distributions are normalised to the cross-section times luminosity to obtain the
differential cross-section. Some interesting trends can be observed in these plots, which will
help to extract better limits on the Wilson coefficients. For example: In the ΔRmin(t,γ) dis-
tribution, there is a difference in the nature of the distribution (a small bump around π) when
compared to the SM sample. Also for the photon pT distribution, the number of events with
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(a) Photon pT (b) Photon |η |

(c) ΔRmin(γ, t)

Figure 4.2.: Differential cross-section for a positive and negative addition of the OtW operator is
compared to the SM. Here, the black line corresponds to the SM like sample, blue
corresponds to the sample with a positive (1.0) and red corresponds to the negative
(-1.2) addition of the operator.
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Figure 4.3.: Cross-section as a function of Wilson coefficient for the samples generated using
the reweighting tool.

higher pT are higher for the EFT samples.

4.1. Reweighting tool

Since generating the EFT samples is computationally intensive and time-consuming, an attempt
was done to use a reweighting tool to generate multiple samples simultaneously. Using this
method, an SM event is generated and for each value of the Wilson coefficient, the probability
for this event to occur is calculated and stored as an event weight.

To test the validity of the reweighting tool, as a first step, pp →tt̄γ samples were generated
for the ten different Wilson coefficient values that were used previously, and the cross-section
was plotted as a function of the Wilson coefficient as before, and is shown in Fig. 4.3. It was
observed that for larger values of the Wilson coefficient, the uncertainty in the cross-section
measurement is very high.

To further identify how these uncertainties affect the differential cross-section measurements,
distributions of some of the kinematic variables like photon |η | and ΔRmin(t,γ) were plotted.
For some values of the observable, large uncertainties were observed. An example is shown
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(a) Photon η (b) ΔRmin(γ, t)

Figure 4.4.: For a positive addition of the OtW operator with the Wilson coefficient value of
1.0, the distributions are normalised to 1. The blue line represents the reweighted
sample, and the red line represents the reweighted sample including only the events
with a weight lower than 10.

in Fig. 4.4. This observation is because some of the events are scaled by very large weights,
which leads to high uncertainties in these bins. This means that there are a few events in the
SM which are expected to be observed much more frequently in the EFT model. As mentioned
in the documentation for the reweighting tool1, the events with a weight higher than ten can
lead to large statistical uncertainties, and in case these are very few they can be dropped. An
attempt was made to remove these events by placing a cut on the weights. In this case, it
was observed that the large error bars vanish. But along with that, the interesting features in
the distribution mentioned previously also vanish. Also, the ratio between the red (reweighted
sample after applying a cut on events with weights higher than 10) and black (non-reweighted
sample) distributions in Fig. 4.4 is not unity. Hence, applying a cut on the weights is not an
ideal solution. Therefore, the reweighting tool was not used for generating the sample.

4.2. Generating a tt̄γ sample in the eµ final state

An inclusive and differential cross-section measurement of the tt̄γ process with the full LHC

Run2 data corresponding to an integrated luminosity of 139 fb−1 has been done recently [53].
The differential cross-sections measured have been unfolded to parton level. Therefore these
measurements can be used directly to extract limits on the Wilson coefficients. The final sample
sets for this analysis have been generated using the same event selections and object definitions

1https://twiki.cern.ch/twiki/bin/viewauth/AtlasProtected/MadGraph5aMCatNLOreweight
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(a) CtW and CtZ (b) CtW and CtG

(c) CtZ and CtG

Figure 4.5.: Cross-section as a function of two Wilson coefficients simultaneously.

as done in that analysis. Only events in the eµ final state have been generated, i.e; events where
both the top quarks decay into two different leptons. The events where the top quark decays
into tau leptons is considered as background. The two processes studied in this analysis are:

pp → tt̄γ → e+µ−νeν̄µbb̄γ

pp → tt̄γ → e−µ+νµ ν̄ebb̄γ
(4.1)

As discussed in section 2.2.3, there are three relevant EFT operators. It is not necessary that
only one of these operators are present in the Lagrangian. The effects observed in nature could
be a combination of some or all of these operators. Also, these operators could have some
correlation with each other. To check for such effects, events were generated by varying two
operators simultaneously and keeping the contribution from the other operator as zero. The 3-D
plots with cross-section as a function of two Wilson coefficients can be seen in fig 4.5. These
points were then fit to a two-dimensional second-order polynomial. The fit functions are given
below in Eq. 4.2. All the three operators clearly show some correlation, as the coefficients of
the cross terms are non zero.
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σ(CtW ,CtZ) = 0.1444+5.2534×10−2CtW −2.7931×10−3CtZ −8.4904×10−3CtWCtZ

+1.2846×10−2C2
tW +3.8096×10−3C2

tZ

σ(CtW ,CtG) = 0.1444+5.1401×10−2CtW +4.1026×10−2CtG +1.2674×10−2CtWCtG

+1.2577×10−2C2
tW +4.8875×10−3C2

tG

σ(CtG,CtZ) = 0.1444−9.0435×10−4CtZ +3.9255×10−2CtG −7.9456×10−4CtZCtG

+3.909×10−3C2
tZ +4.4026×10−3C2

tG

(4.2)

Hence, effects due to all the three EFT operators have to be studied simultaneously. For this,
a positive, a negative and zero contribution is considered for each of the operators. This gives
a total of 27 possible combinations which are listed in table 5.1.
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5. Extracting limits on Wilson coefficients

As discussed above, 27 sample sets of the tt̄γ process with different EFT parameters were
generated in the eµ final state. As mentioned in Section 4.2, the limits in this analysis are
extracted using the results from a recent cross-section measurement of the tt̄γ process. To
match the fiducial phase space on which the measurement was done to the one used in this
analysis, the following selection cuts were made on the samples:

• Every event must have exactly one electron and one muon

• Two b quarks

• Leptons: pT > 25 GeV and |η |< 2.5

• Photons: ET > 20 GeV and |η |< 2.37

• b quarks: pT > 25 GeV and |η |< 2.5

• ΔR(�,γ)> 0.4, ΔR(e,µ)> 0.4, ΔR(b, b̄)> 0.4, ΔR(�,b)> 0.4

5.1. Obtaining the EFT parameterization equation

After applying the selection cuts on the sample, the selection efficiency was calculated by
taking the ratio of the number of events that pass the selection criteria and the total number of
events. Further, to make the cross-section comparable to the measurement, the fiducial cross-
section value was computed. This was done by taking the product of the cross-section and the
selection efficiency for each of the samples. These fiducial cross-section values were fit to a
general second-order function of the form shown below and the fit parameters were extracted.

σ = σSM +aCtW +bCtZ + cCtG +dC2
tW + eC2

tZ

+ fC2
tG +gCtWCtZ +hCtZCtG + iCtWCtG

(5.1)

Here, a,b,c,d,e, f ,g,h and i are the fit parameters and σSM is the Standard Model LO cross-
section value. The validation of this fit is done by calculating the ratio of the fiducial cross-
section and the value of the fit function, as shown in Table 5.1. This fitted function gives
the parametrisation over the full phase space formed by the three Wilson coefficients. The
parametrised equation obtained after the fit is given by:
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5. Extracting limits on Wilson coefficients

CtW CtZ CtG Fiducial
cross-section
(fb)

Fit
Value

Ratio CtW CtZ CtG Fiducial
cross-section
(fb)

Fit
Value

Ratio

0 0 0 27.01 ± 0.06 27.01 1.00 M 0 P 22.82 ± 0.03 22.57 0.99
0 0 P 29.93 ± 0.04 30.67 1.02 P P 0 36.38 ± 0.05 36.92 1.02
0 0 M 24.49 ± 0.04 23.90 0.98 M P 0 27.89 ± 0.05 28.72 1.03
0 P 0 29.54 ± 0.04 28.78 0.97 P M 0 49.42 ± 0.06 47.96 0.97
0 M 0 29.44 ± 0.04 30.29 1.03 M M 0 18.99 ± 0.03 18.80 0.99
P 0 0 40.23 ± 0.06 40.71 1.01 0 P M 27.36 ± 0.04 25.96 0.95
M 0 0 20.78 ± 0.03 20.28 0.98 P P M 32.73 ± 0.05 32.96 1.01
0 P P 33.37 ± 0.06 32.14 0.96 M P M 25.14 ± 0.05 27.29 1.09
0 M P 33.13 ± 0.06 34.16 1.03 P 0 M 35.76 ± 0.06 36.46 1.02
P P P 40.63 ± 0.05 41.44 1.02 M 0 M 18.65 ± 0.03 18.56 0.99
P M P 56.59 ± 0.07 52.98 0.94 P M M 43.15 ± 0.06 43.50 1.01
M P P 31.04 ± 0.05 30.71 0.99 0 M M 26.41 ± 0.04 26.97 1.02
M M P 20.99 ± 0.03 21.29 1.01 M M M 17.08 ± 0.03 16.86 0.99
P 0 P 45.21 ± 0.06 45.52 1.01

Table 5.1.: Fit Validation: The fiducial cross-section value is fitted to Equation 5.1, and values
of the fit parameters are extracted. The ratio of Equation 5.2 to the fiducial cross-
section is calculated to validate the fit. Here P corresponds to the positive value and
M corresponds to the negative value in Table 4.1

σ =27.01+10.02 CtW −1.39 CtZ +8.46 CtG +3.68 C2
tW +1.89 C2

tZ

+1.72 C2
tG −3.97 CtWCtZ +−0.52 CtZCtG +2.87 CtWCtG

(5.2)

It was observed that the predicted SM LO cross-section varies from the measured value by
about 25%, but the NLO cross-section is within the limits of the uncertainty of the measure-
ment. All the studies in this analysis are done at LO and to make it comparable to the measure-
ment, the fit functions are shifted by a constant value. The shift was done in a way that when
all the Wilson coefficients are set to zero, the function returns the SM NLO cross-section [54]
instead of the LO cross-section. This is done with the assumption that there are no additional
effects at NLO on the cross-section due to the EFT operators, other than a linear scaling. Also,
this scaling for all the EFT samples is considered to be same as the scaling for the SM sample.

5.1.1. EFT parametrisation from differential cross-section

Limits on three EFT parameters cannot be derived using just one parametrized equation. Also,
better limits on the Wilson coefficients can be obtained using the differential cross-section, as
it includes much more information. Hence, for each of these samples, the differential cross-
section as a function of photon pT, photon η , ΔRmin(γ,�), Δφ(�,�) and Δη(�,�) are also deter-
mined. For this, the distribution of each of these observables are plotted and then normalised to
the product of fiducial cross-section times the luminosity. This gives the cross-section for each
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5.1. Obtaining the EFT parameterization equation

Figure 5.1.: Differential cross-section with respect (a)photon pT, (b) photon |η |, (c)
ΔRmin(γ,�), (d) Δφ(�,�) and (e) Δη(�,�). Here the black line represents the SM
like sample. The blue line and red line are two samples with non zero contribution
from multiple EFT operators. These distributions are normalised to the product of
cross-section times the luminosity.
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5. Extracting limits on Wilson coefficients

bin. The binning for each of these distributions is adapted from the recent tt̄γ cross-section
measurements so that a comparison can be made. An example of these plots for three of the
samples overlayed can be seen in Fig. 5.1. Here, the blue line corresponds to the EFT sample
with CtW = -1.2, CtZ = 1.4 and CtG = 0.4, and the red line corresponds to CtW = -1.2, CtZ =
-1.0 and CtG = 0.4. These two samples are compared with the black line, which represents the
SM sample.

To extract EFT parametrisation from these differential cross-section plots, for each bin, the
cross-section values from all the 27 samples are obtained and fit to a second-order polynomial,
in the same manner as it was done for the inclusive cross-section values. This is done for all the
bins and for all the five observables. Similar to the fit function for the fiducial cross-section, all
the fit functions are shifted by a constant value to match the NLO SM cross-section to obtain
the final EFT parametrisation equations mentioned in Appendix A.

Testing the fit

To check the accuracy of the fit, these fit functions are tested by calculating the relative deviation
from the cross-section as per the following equation.

Relative deviation =
F(CtW ,CtZ,CtG)−Bin content

Bin content
(5.3)

Here, the bin content is the actual cross-section value obtained in each bin from the simulated
samples. For a good fit, the relative deviation would be very close to zero. For a distribution
with n bins, there will be n fit functions. Each of these functions are obtained by fitting 27
points. Hence, for each observable, there are n fit functions and 27n values of relative deviation.

The distributions of these relative deviations are shown in Fig. 5.2. As expected, it peaks at
zero, but there are a few points for which the relative deviation value is not close to zero and are
as high as 10%. Since the deviation from the fit is quite high for some points, these deviations
cannot be ignored,e and the fit cannot be considered ideal. Hence, these deviations are added
as an additional uncertainly while extracting the limits.

5.2. EFTfitter tool

The EFTfitter tool [55] is used to extract limits on the Wilson coefficients. This tool is devel-
oped using the Bayesian Analysis Toolkit (BAT) [56], which is based on the Bayes Theorem
and is implemented using the Markov Chain Monte Carlo method. In this section, working of
BAT is explained to understand the background of the EFTfitter tool. Further, it also explains
how to use the tool and validate it.
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5.2. EFTfitter tool

Figure 5.2.: The relative deviation of all the 27 points from the fit function is plotted for all the
bins in a distribution. (a) photon pT, (b) photon η , (c) ΔRmin(γ,�), (d) Δφ(�,�) and
(e) Δη(�,�)

5.2.1. Working of BAT

The main aim of BAT is to compare model predictions with data to validate the model or predict
the values of the parameters in the model. This can be done by comparing data (�D) with the
model. Consider a model M, with parameters �λ , the function g(�y|�λ ,M), gives the relative
frequency of getting the result�y from this model. This function should also satisfy:

g(�y|�λ ,M) ≥ 0 and
�

g(�y|�λ ,M)d�y = 1. (5.4)

But this function cannot be directly compared to data as the data includes effects from the
experimental setup. These effects can be either included in the model as additional (nuisance)
parameters or removed from the data by using methods like unfolding. In this analysis, the
detector effects on data have been removed using the unfolding procedure, and hence these
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5. Extracting limits on Wilson coefficients

nuisance parameters do not need to be considered in the model.
The probability of obtaining a particular value of�λ is given by P(�λ |M). This probability can

be obtained as per the Bayes theorem as follows:

Pi+1(�λ ,M|�D) =
P(�D|�λ ,M)Pi(�λ ,M)

P(�D)
. (5.5)

Pi(�λ ,M) is the prior, which is some initial information about the parameters. It also defines
the range of values the parameter can take. The term, P(�D|�λ ,M), is the likelihood function,
which must be defined for all possible values data can take. It is defined using the model and
includes the information about the detector setup. In this analysis, these are obtained from
the fit functions that are extracted from the differential cross-sections. Using this information,
Pi+1(�λ ,M|�D) is calculated, which is the posterior probability density function (pdf ). The pos-
terior pdf is computed iteratively over the variable i with the Markov Chain to optimise the
results.

The posterior pdf contains a lot of information and can be used to extract details like mean,
mode, median, marginalized pdf, correlations between parameters, central interval and smallest
interval. The smallest interval containing α of the probability is given by [P(�λ ∗|�D,M), Pmin]
which can be calculated from the following relation:

α =
� P(�λ ∗|�D,M)

Pmin

p(P(�λ |�D,M))dP(�λ |�D,M) (5.6)

Here, p(P(�λ |�D,M)) is the probability density of the posterior pdf. A numerical implementation
of this is done in BAT using the Markov Chain Monte Carlo method.

5.2.2. Using EFTfitter

EFTfitter is a tool that calculates the posterior probabilities of the free parameters in EFT, using
BAT. For calculating the probabilities, the tool requires the following as input:

• A description of the model in terms of the free parameters and measured observables.
These are given by the polynomial fit function mentioned in appendix A.

• The measured value of the observables (data) and the values of different types of mea-
surement uncertainties.

• Correlation matrix between the observables for each type of uncertainty.

Validation of EFTfitter

The EFTfitter tool has to be validated before using it for extracting the limits on the Wilson
coefficients. For this, values of cross-section corresponding to know values of Wilson coeffi-
cients are given as the measured value (pseudo data). The posterior probabilities are calculated
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5.3. Two-dimensional studies

Sample Wilson Coefficient Expected value Global Fit value
SM CtW 0 −0.009±3.90

CtZ 0 −0.007±3.34
CtG 0 0.0106±7.13

Non-SM CtW 0 −0.101±0.66
CtZ -1 −0.997±1.10
CtG 0.4 0.479±0.69

Table 5.2.: Closure test results for a SM-like and a non-SM-like points. The uncertainties on
the global fit value are the expected allowed 1σ ranges.

for the Wilson coefficients using EFTfitter. The global fit value for the Wilson coefficients are
compared to the expected value.

As a first test, the SM NLO differential cross-section with respect to photon pT is used as
the pseudo data. The systematic and statistical uncertainty from the measurement is combined
and added as an uncertainty. The deviation from the EFT parametrisation function obtained
in Fig. 5.2 is added as another uncertainty. The EFT parametrisation equations obtained from
the differential cross-section as a function of photon pT is used as the model description (listed
in Appendix A). Using these, the posterior probabilities were calculated for the three Wilson
coefficients.

The one dimensional and two dimensional marginalized distributions are shown in Fig. 5.3.
The global fit value for all the three Wilson coefficients is very close to zero as expected.
Similarly, the test was done for all the five observables, ie; photon pT, photon |η |, ΔRmin(γ,�),
Δφ(�,�) and Δη(�,�) and the results obtained were very close to zero just like the results
obtained for Photon pT.

Such validation tests were also done on the non-SM like points. For this, one of the non-SM
sample points is chosen. The difference between the LO and the NLO SM cross-section was
added to the LO cross-section of this point, to obtain the pseudo data. This value now corre-
sponds to the NLO cross-section for this point as per our assumption and can be compared to
the shifted fit function. Using this value as the pseudo data, posterior probabilities are calcu-
lated, and the marginalized distributions are plotted. For example, in Fig. 5.4 the point CtW = 0,
CtZ= -1 and CtG= 0.4 is chosen, and the marginalized posterior probabilities are computed for
the differential cross-section as a function of photon pT. As seen from the figure and Table 5.2,
the global fit value for the Wilson coefficients is very close to the expected value, proving that
the EFTfitter tool works as expected.

5.3. Two-dimensional studies

Given that five observables are unfolded to parton level in the latest tt̄γ analysis [53], using
all this information simultaneously could result in the extraction of the best limits. But as
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Figure 5.3.: Validation test for SM point for the photon pT observable: One dimensional
marginalized distributions for the three Wilson coefficients are on the left. The
two dimensional marginalized distributions are shown on the right.
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Figure 5.4.: Validation test for non-SM point for the photon pT observable: One and two di-
mensional marginalized distributions for the point CtW = 0, CtZ = -1, CtG = 0.4.
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5. Extracting limits on Wilson coefficients

Sample Correlation Sample Correlation Sample Correlation
ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 -0.026 1 1.4 0.4 -0.029 -1.2 -1 0 -0.038
0 0 0.4 -0.035 1 -1 0.4 -0.040 0 1.4 -0.4 -0.052
0 0 -0.4 -0.041 -1.2 1.4 0.4 -0.054 1 1.4 -0.4 -0.025
0 1.4 0 -0.044 -1.2 -1 0.4 -0.032 -1.2 1.4 -0.4 -0.067

( 0 -1 0 -0.019 1 0 0.4 -0.046 1 0 -0.4 -0.028
1 0 0 -0.026 -1.2 0 0.4 -0.049 -1.2 0 -0.4 -0.031

-1.2 0 0 -0.041 1 1.4 0 -0.022 1 -1 -0.4 -0.032
0 1.4 0.4 -0.034 -1.2 1.4 0 -0.061 0 -1 -0.4 -0.028
0 -1 0.4 -0.034 1 -1 0 -0.058 -1.2 -1 -0.4 -0.035

Table 5.3.: Correlation factor between Photon pT and Photon |η |

described in the Subsection 5.2.2, for using two of these observables simultaneously, for each
of the uncertainty, the correlation between the different bins of the observables is required.
Since in the latest measurement only one dimensional unfolding was done, these correlations
have not been computed and are not available.

Nevertheless, some two dimensional studies are done with the assumption that, if the direct
correlation between the different bins of the two observables is less than five per cent, it cannot
be observed and can be neglected. To check the correlation between pairs of observables,
two dimensional differential cross-section plots are made, and the correlation coefficients are
calculated. These plots for the SM like samples are shown in Fig. 5.5.

As seen from the plots, the correlation coefficients for most of the combinations are less
than 0.05 and can be considered simultaneously to extract limits as per the assumption. To
understand how these correlations vary in the presence of the EFT operators, similar plots were
made for all the other 26 samples and the correlation factors were calculated. As an example,
the correlation between photon pT and photon |η | is shown in Table 5.3. As seen from the table,
the correlation factors are about 5% for all the sample points. Hence the correlation can be
neglected. These correlation factors for all the pairs of operators can be found in Appendix B.
From these tables, it was found that for the following pairs of operators, the correlation between
them is low and can be ignored:

• Photon pT and photon |η |

• Photon pT and Δη(�,�)

• Photon |η | and ΔRmin(γ,�)

• Photon |η | and Δη(�,�)

• Photon |η | and Δφ(�,�)

• Δη(�,�) and Δφ(�,�)

36



5.3. Two-dimensional studies

Figure 5.5.: Two dimensional plots with two of the observables on the X and Y axis and the
cross-section is denoted by the colour scale. The correlation factor for the pair of
observables is mentioned on the plot.
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6. Results

Having validated the EFTfitter tool, the next step is to extract limits on the Wilson coefficients
using the measured cross-section (data). But before doing this, the best observable for ex-
tracting the limits has to be identified. Expected limits are calculated by using the SM NLO
cross-section as pseudo data for all the five observables. The result of this is summarised in
Table 6.1. As observed from the table, the limits with the best constraint are obtained when the
pT of the photon is used to extract the limits.

Wilson Coefficient CtW CtZ CtG

Observable limit Width limit Width limit Width
Photon pT [-0.59, 0.46] 1.05 [-0.63, 1.22] 1.85 [-0.53, 0.49] 1.02
Photon |η | [-1.22, 0.44] 1.66 [-0.75, 1.61] 2.36 [-0.58, 0.53] 1.11
ΔRmin(γ,�) [-0.67, 0.47] 1.14 [-0.95, 1.34] 2.29 [-0.58, 0.53] 1.11
Δη(�,�) [-1.63, 0.55] 2.18 [-0.83, 1.79] 2.62 [-0.71, 0.62] 1.33
Δφ(�,�) [-0.83, 0.41] 1.24 [-0.79, 1.77] 2.56 [-0.69, 0.45] 1.14

Table 6.1.: 68% confidence level intervals and uncertainties on the Wilson coefficients extracted
using one observable.

Wilson Coefficient CtW CtZ CtG

Observable limit Width limit Width limit Width
Photon pT & photon |η | [-0.68, 0.41] 1.09 [-0.72, 1.37] 2.09 [-0.53, 0.50] 1.03
Photon pT & Δη(�,�) [-0.71, 0.44] 1.15 [-0.72, 1.43] 2.15 [-0.55, 0.53] 1.08
Photon |η | & ΔRmin(γ,�) [-0.81, 0.44] 1.25 [-0.94, 1.49] 2.43 [-0.61, 0.54] 1.15
Photon |η | & Δη(�,�) [-1.41, 0.50] 1.91 [-0.89, 1.67] 2.56 [-0.67, 0.58] 1.25
Photon |η | & Δφ(�,�) [-1.05, 0.46] 1.51 [-0.80, 1.73] 2.53 [-0.67, 0.52] 1.19
Δη(�,�) & Δφ(�,�) [-1.13, 0.53] 1.66 [-0.82, 1.84] 2.66 [-0.78, 0.51] 1.29

Table 6.2.: 68% confidence level intervals and uncertainties on the Wilson coefficients extracted
using two observables.

As discussed in section 5.3, two observables can also be used simultaneously to extract
limits on the Wilson coefficients. Similar to the one dimensional analysis, limits were extracted
using NLO SM cross-section values as pseudo-data for all the pairs of observables listed in
Section 5.3. These values are shown in Table 6.2. The limits obtained from these combinations
are not as strong as the limits obtained using photon pT. This is because, in the two dimensional
distribution, the events in one bin of one of the observables get distributed over all the bins of
the other observable. Thus, lowering the statistics per bin.
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Figure 6.1.: One and two dimensional marginalized distribution of the posterior probabilities
for the pT of the photon computed from data.
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Posterior probabilities were calculated using EFTfitter for the measured photon pT values
taken from the cross-section analysis [53] with 139 fb−1 of ATLAS data. From these, the
smallest interval containing at least 68% probability is identified. These are:

CtW ∈ [-0.26, 0.93] CtZ ∈ [-0.22, 2.02] CtG ∈ [-0.42, 0.74]

These are the best limits that can be extracted from the differential cross-section measure-
ments [53] with an integrated luminosity of 139 fb−1. The one and two dimensional distribu-
tions of the marginalised posterior probabilities are shown in Fig. 6.1.

In comparison to previous results [52], especially the limits on CtW and CtZ has improved
significantly. This can be explained because this is the first analysis looking into the full ATLAS

dataset, which provides more information on differential quantities than previous measure-
ments. In addition, for the first time, the three relevant Wilson coefficients are fitted simultane-
ously by taking all correlations into account.
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7. Conclusion and Outlook

This analysis targeted the coupling between a top quark and a photon and investigated possible
BSM effects on this coupling by studying three relevant SMEFT operators. For this, limits were
extracted on the three Wilson coefficients associated with these operators. This was done using
the differential cross-section measurements with respect to the transverse momentum of the
photon produced in the tt̄γ process in the eµ channel. The extracted limits are well within the
SM predictions and hence do not show any hint towards BSM contributions to the SM vector
coupling of the photon to the top quark.

The limits on these Wilson coefficients could be further improved by increasing the statistics,
reducing systematic uncertainties, extracting limits from two dimensional unfolded data or
using better models to parametrise the Wilson coefficient phase space. A short study is done
on the effect of these changes and is presented in this chapter.

7.0.1. Effect of more data

In general, it is expected that an increase in statistics can help get better constraints on any mea-
surement as the statistical uncertainty would decrease with an increase in the number of events.
To understand how much improvement can be expected on the constraints with an integrated
luminosity of 500 and 1000 fb−1, the current uncertainties of the measurement were scaled by
a factor of 1/

√
n. The systematic uncertainties are kept constant. Posterior probabilities were

calculated for the SM NLO cross-section and the measured cross-section with the new scaled
values of uncertainty. The extracted limits using these new uncertainties are shown in Fig 7.1
and are summarised in Table 7.1

It can be observed that the expected limits are more constrained with an increase in luminos-
ity from 140 fb−1 to 500 fb−1. However, on an increase of luminosity from 500 fb−1 to 1000
fb−1 such an improvement in not observed. This could imply that the analysis is limited mainly
by systematic uncertainties in the measurement or other uncertainties like the deviation from
the second order polynomial model that was assumed in this analysis.

7.0.2. Effect of reduced systematic uncertainties

From the extrapolation of the statistical uncertainties to higher luminosities, it was observed
that there is only a small improvement in the constraints. The cross-section measurement is
also associated with systematic uncertainties that originate from measurement uncertainties
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7. Conclusion and Outlook

With error from the fit Without error from the fit
Luminosity Expected From data Expected From data

Limit Width Limit Width Limit Width Limit Width
CtW

140 fb−1 [-0.74, 0.50] 1.24 [-0.26, 0.93] 1.19 [-0.55, 0.47] 1.02 [-0.21, 0.9] 1.11
500 fb−1 [-0.55, 0.42] 0.97 [-0.17, 0.89] 1.06 [-0.45, 0.41] 0.86 [-0.10, 0.81] 0.91
1000 fb−1 [-0.49, 0.40] 0.89 [-0.16, 0.89] 1.05 [-0.42, 0.39] 0.81 [-0.06, 0.78] 0.84

CtZ

140 fb−1 [-0.83, 1.42] 2.25 [-0.20, 1.96] 2.16 [-0.55, 1.08] 1.63 [-0.02, 1.54] 1.56
500 fb−1 [-0.58, 1.26] 1.84 [-0.07, 1.94] 2.01 [-0.43, 1.01] 1.44 [-0.13, 1.38] 1.51
1000 fb−1 [-0.51, 1.16] 1.67 [-0.03, 1.95] 1.98 [-0.43, 0.96] 1.39 [-0.12, 1.31] 1.43

CtG

140 fb−1 [-0.59, 0.56] 1.15 [-0.40, 0.71] 1.11 [-0.49, 0.47] 0.96 [-0.69, 0.38] 1.07
500 fb−1 [-0.48, 0.47] 0.95 [-0.32, 0.71] 1.03 [-0.43, 0.42] 0.85 [-0.64, 0.25] 0.89
1000 fb−1 [-0.45, 0.44] 0.89 [-0.32, 0.71] 1.03 [-0.42, 0.40] 0.82 [-0.62, 0.22] 0.84

Table 7.1.: The dependence of the limits on luminosity and uncertainty in the modelling.

due to the resolution of the detector. These can be improved with detector upgrades and better
reconstruction techniques.

Another systematic uncertainty in this analysis comes from the model assumed to describe
the fiducial cross-section in the Wilson coefficient phase space. The second-order polynomial
fit model shows considerably high deviations for some of the EFT samples. A better fit function
could be chosen to reduce the uncertainty introduced by this model.

A second order polynomial fit function was chosen as the cross-section can be modelled well
using this function as seen in Figure 2.5. But for the fiducial cross-section, some of the points
are not modelled precisely by the fit functions as seen in the Section 5.2.2. To understand
the effect of this uncertainty on the extracted limits, it was assumed that the the parametrized
equations are a perfect model to describe the fiducial cross-section as a function of the Wilson
coefficients. In this case, the uncertainties in the model are considered to be zero and the
posterior fit functions are computed. From these, the limits on the Wilson coefficients are
extracted. These are shown in Fig. 7.2 and summarised in the right half of Table 7.1.

On comparing Fig. 7.2 and Fig. 7.1 it can be seen that there is a only small improvement in
the constraints. Hence, the major uncertainty in this analysis is from the systematic uncertainty
from the measurement. Even then, an approach that could be taken to avoid this additional
uncertainty in the EFT parametrisation by separately fitting the cross-section to a second or-
der polynomial and the selection efficiency to another function and taking a combination of
these two functions. This could potentially give a better fit function as observed in another
analysis [57].
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(a) CtW (b) CtZ

(c) CtG

Figure 7.1.: Dependence of the limits on integrated luminosity

7.0.3. Two dimensional studies

The results from the two dimensional analysis can be improved with additional information
like the correlation between the uncertainty in the measurement of these observables. As seen
from Table 5.3, there is a small negative correlation between the photon pT and the photon |η |
observables. This information is not included in this analysis, as two dimensional unfolding
has not been done on the differential cross-section measurements, and hence we do not have
access to these correlations. Having the correlations, we could also use them to gain extra
information, i.e. we could also study the fit result when fitting two variables that have a high
correlation. An improvement in the constraints can be expected when limits are extracted with
data that also includes this information.

7.0.4. Study of reconstruction effects

This analysis was performed on data that has been unfolded to the parton level. The unfolding
procedure takes into account migration effects between reconstructed, and truth level objects
and differential selection efficiencies are taken from the SM MC sample. Hence it is also
important to check the effect of these on the extracted limits. For this, samples with showering
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7. Conclusion and Outlook

(a) CtW (b) CtZ

(c) CtG

Figure 7.2.: Dependence of the limits on integrated luminosity if an ideal fit function is used to
model the cross-section as a function of the Wilson coefficients.

and detector simulation (AFII) are being generated so that comparisons can be made directly
at the detector level. The production of these samples is computationally expensive. Also, it
has to be done by the ATLAS central production team and cannot be done locally. Hence these
samples are not yet ready, and this part has not been included in this analysis.

7.0.5. Other studies

This analysis was designed to study the top-photon vertex. The tt̄γ process was chosen for this
purpose as it includes events where a photon is radiated directly from the top quark and hence
has higher sensitivity to this vertex. The developed analysis technique can be used to study
other top-couplings. For example, the kinematics of the Z boson can be analysed to understand
the weak interaction better. For this, a study should be done on the tt̄Z process, as this process
would be more sensitive to the top-Z boson vertex. A similar study can also be done on tt̄H

process to understand the Higgs coupling to the top quark.

For each of these two cases, the relevant EFT operators can be identified, and limits can be
extracted on the corresponding Wilson coefficients. But these studies will be more difficult
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and will have more uncertainties than the studies on tt̄γ . This is because photons are easier
to identify and reconstruct than Z or Higgs boson, which have to be reconstructed from their
decay products.
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A. EFT Parametrisation functions

A.0.1. The fit function for all the 16 bins in the photon pT distribution

Bin 1 = 5.36594 +CtG*1.08909 +CtG*CtG*0.142493 +CtG*CtW *0.274728 +CtW *1.21809
+CtW *CtW *0.191228 +CtW *CtZ* -0.0421518 +CtZ* -0.00409978 +CtZ*CtG*0.00089041
+CtZ*CtZ*0.0109672
Bin 2 = 4.2983 +CtG*0.889755 +CtG*CtG* -0.122166 +CtG*CtW *0.26998 +CtW *0.971638
+CtW *CtW *0.12092 +CtW *CtZ* -0.0682231 +CtZ* -0.0263854 +CtZ*CtG*0.0096366
+CtZ*CtZ*0.0227467
Bin 3 = 3.5492 +CtG*0.759639 +CtG*CtG*0.0108487 +CtG*CtW *0.207279 +CtW *0.80534
+CtW *CtW *0.131474 +CtW *CtZ* -0.050807 +CtZ* -0.0243516 +CtZ*CtG*0.00557761
+CtZ*CtZ*0.0343008
Bin 4 = 2.9244 +CtG*0.583985 +CtG*CtG*0.218036 +CtG*CtW *0.144482 +CtW *0.657298
+CtW *CtW *0.0928738 +CtW *CtZ* -0.0232478 +CtZ* -0.0192989 +CtZ*CtG*0.00980613
+CtZ*CtZ*0.0314106
Bin 5 = 2.43719 +CtG*0.544439 +CtG*CtG*0.401363 +CtG*CtW *0.153331 +CtW *0.578971
+CtW *CtW *0.148178 +CtW *CtZ* -0.0437224 +CtZ* -0.0310228 +CtZ*CtG* -0.0163047
+CtZ*CtZ*0.0651749
Bin 6 = 3.32691 +CtG*0.659452 +CtG*CtG* -0.052178 +CtG*CtW *0.192372 +CtW *0.76244
+CtW *CtW *0.156463 +CtW *CtZ* -0.0755405 +CtZ* -0.0321919 +CtZ*CtG*0.0105589
+CtZ*CtZ*0.047009
Bin 7 = 2.51702 +CtG*0.487623 +CtG*CtG*0.17766 +CtG*CtW *0.143703 +CtW *0.58919
+CtW *CtW *0.135541 +CtW *CtZ* -0.0796543 +CtZ* -0.0433925 +CtZ*CtG* -0.044831
+CtZ*CtZ*0.0401568
Bin 8 = 1.98657 +CtG*0.40665 +CtG*CtG*0.168036 +CtG*CtW *0.122393 +CtW *0.478315
+CtW *CtW *0.129437 +CtW *CtZ* -0.0696283 +CtZ* -0.0355266 +CtZ*CtG* -0.043006
+CtZ*CtZ*0.0460713
Bin 9 = 1.63934 +CtG*0.303827 +CtG*CtG*0.082584 +CtG*CtW *0.0650823 +CtW *0.37412
+CtW *CtW *0.0792857 +CtW *CtZ* -0.0773784 +CtZ* -0.030508 +CtZ*CtG* -0.00481607
+CtZ*CtZ*0.0335518
Bin 10 = 2.36194 +CtG*0.486802 +CtG*CtG*0.0186563 +CtG*CtW *0.183267 +CtW *0.612281
+CtW *CtW *0.182793 +CtW *CtZ* -0.16995 +CtZ* -0.0877826 +CtZ*CtG* -0.0125999
+CtZ*CtZ*0.0581085
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A. EFT Parametrisation functions

Bin 11 = 1.64695 +CtG*0.334549 +CtG*CtG*0.151356 +CtG*CtW *0.108796 +CtW *0.439191
+CtW *CtW *0.162041 +CtW *CtZ* -0.140969 +CtZ* -0.0665387 +CtZ*CtG*0.0145437
+CtZ*CtZ*0.0808295
Bin 12 = 1.18186 +CtG*0.269735 +CtG*CtG* -0.0819327 +CtG*CtW *0.0898474 +CtW *0.327125
+CtW *CtW *0.110652 +CtW *CtZ* -0.139526 +CtZ* -0.0636678 +CtZ*CtG*6.1372e -05
+CtZ*CtZ*0.0550297
Bin 13 = 1.26117 +CtG*0.262294 +CtG*CtG*0.238067 +CtG*CtW *0.088879 +CtW *0.367147
+CtW *CtW *0.18245 +CtW *CtZ* -0.211664 +CtZ* -0.0932278 +CtZ*CtG* -0.0121042
+CtZ*CtZ*0.0997453
Bin 14 = 1.5046 +CtG*0.342968 +CtG*CtG*0.0959147 +CtG*CtW *0.173693 +CtW *0.472098
+CtW *CtW *0.278805 +CtW *CtZ* -0.368237 +CtZ* -0.138652 +CtZ*CtG* -0.00220359
+CtZ*CtZ*0.170238
Bin 15 = 1.20619 +CtG*0.307513 +CtG*CtG*0.0448984 +CtG*CtW *0.115115 +CtW *0.453986
+CtW *CtW *0.348541 +CtW *CtZ* -0.517461 +CtZ* -0.16999 +CtZ*CtG*0.0262324
+CtZ*CtZ*0.227916
Bin 16 = 0.908855 +CtG*0.285347 +CtG*CtG*0.173556 +CtG*CtW *0.0976672 +CtW *0.467477
+CtW *CtW *0.591693 +CtW *CtZ* -0.905207 +CtZ* -0.221091 +CtZ*CtG* -0.00946917
+CtZ*CtZ*0.414074

A.0.2. The fit function for all the 16 bins in the photon |η | distribution

Bin 1 = 2.50706 + CtG*0.585603 + CtG*CtG*0.36304 + CtG*CtW *0.202514 + CtW *0.646746
+ CtW *CtW *0.254342 + CtW *CtZ*-0.267436 + CtZ*-0.0774951 + CtZ*CtG*0.000144649
+ CtZ*CtZ*0.147688
Bin 2 = 2.52113 + CtG*0.5669 + CtG*CtG*0.116286 + CtG*CtW *0.189327 + CtW *0.66484
+ CtW *CtW *0.250302 + CtW *CtZ*-0.27301 + CtZ*-0.0740248 + CtZ*CtG*0.0490424
+ CtZ*CtZ*0.117123
Bin 3 = 2.49361 + CtG*0.570679 + CtG*CtG*0.293362 + CtG*CtW *0.204935 + CtW *0.657439
+ CtW *CtW *0.260698 + CtW *CtZ*-0.267742 + CtZ*-0.0827759 + CtZ*CtG*-0.0156223
+ CtZ*CtZ*0.13594
Bin 4 = 2.39994 + CtG*0.535201 + CtG*CtG*0.364715 + CtG*CtW *0.211628 + CtW *0.646904
+ CtW *CtW *0.256106 + CtW *CtZ*-0.242954 + CtZ*-0.0767885 + CtZ*CtG*0.0116526
+ CtZ*CtZ*0.14204
Bin 5 = 2.3742 + CtG*0.529139 + CtG*CtG*0.0277372 + CtG*CtW *0.177948 + CtW *0.626585
+ CtW *CtW *0.236416 + CtW *CtZ*-0.234515 + CtZ*-0.0718184 + CtZ*CtG*0.00109925
+ CtZ*CtZ*0.124685
Bin 6 = 2.33103 + CtG*0.571118 + CtG*CtG*0.12895 + CtG*CtW *0.160556 + CtW *0.600412
+ CtW *CtW *0.219295 + CtW *CtZ*-0.221846 + CtZ*-0.0717909 + CtZ*CtG*-0.01065
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+ CtZ*CtZ*0.129068
Bin 7 = 2.24205 + CtG*0.55058 + CtG*CtG*0.256745 + CtG*CtW *0.156425 + CtW *0.58076
+ CtW *CtW *0.221441 + CtW *CtZ*-0.23983 + CtZ*-0.0796458 + CtZ*CtG*-0.00939805
+ CtZ*CtZ*0.125819
Bin 8 = 2.17694 + CtG*0.456319 + CtG*CtG*0.0462949 + CtG*CtW *0.101445 + CtW *0.567029
+ CtW *CtW *0.216771 + CtW *CtZ*-0.217736 + CtZ*-0.0628288 + CtZ*CtG*-0.0178434
+ CtZ*CtZ*0.0997241
Bin 9 = 2.0632 + CtG*0.414396 + CtG*CtG*0.0357581 + CtG*CtW *0.0874405 + CtW *0.539036
+ CtW *CtW *0.186317 + CtW *CtZ*-0.211076 + CtZ*-0.0654896 + CtZ*CtG*0.0247562
+ CtZ*CtZ*0.0942789
Bin 10 = 1.92476 + CtG*0.456273 + CtG*CtG*-0.0250657 + CtG*CtW *0.136794 + CtW *0.517113
+ CtW *CtW *0.174239 + CtW *CtZ*-0.188757 + CtZ*-0.0538122 + CtZ*CtG*0.0330439
+ CtZ*CtZ*0.0794356
Bin 11 = 1.82229 + CtG*0.425416 + CtG*CtG*0.00194258 + CtG*CtW *0.104685 + CtW *0.489707
+ CtW *CtW *0.163166 + CtW *CtZ*-0.17961 + CtZ*-0.06597 + CtZ*CtG*0.0270307
+ CtZ*CtZ*0.0921233
Bin 12 = 1.71862 + CtG*0.351344 + CtG*CtG*0.130238 + CtG*CtW *0.0876441 + CtW *0.46468
+ CtW *CtW *0.176496 + CtW *CtZ*-0.170569 + CtZ*-0.0683698 + CtZ*CtG*0.0106038
+ CtZ*CtZ*0.0851101
Bin 13 = 3.07902 + CtG*0.716672 + CtG*CtG*0.256297 + CtG*CtW *0.218345 + CtW *0.814448
+ CtW *CtW *0.287313 + CtW *CtZ*-0.293057 + CtZ*-0.106248 + CtZ*CtG*-0.0339969
+ CtZ*CtZ*0.144934
Bin 14 = 3.77958 + CtG*0.837202 + CtG*CtG*-0.14064 + CtG*CtW *0.299151 + CtW *0.961544
+ CtW *CtW *0.310645 + CtW *CtZ*-0.341187 + CtZ*-0.149671 + CtZ*CtG*-0.03216
+ CtZ*CtZ*0.134852
Bin 15 = 2.71704 + CtG*0.53421 + CtG*CtG*0.196963 + CtG*CtW *0.149552 + CtW *0.69023
+ CtW *CtW *0.216166 + CtW *CtZ*-0.219743 + CtZ*-0.101323 + CtZ*CtG*0.0165631
+ CtZ*CtZ*0.104745
Bin 16 = 2.25155 + CtG*0.39966 + CtG*CtG*0.000302506 + CtG*CtW *0.111953 + CtW *0.520158
+ CtW *CtW *0.164289 + CtW *CtZ*-0.170759 + CtZ*-0.0812136 + CtZ*CtG*-0.0159636
+ CtZ*CtZ*0.0505986

A.0.3. The fit function for all the 16 bins in the photon ΔRmin(γ,�)
distribution

Bin1 = 4.11556 + ctg*0.888731 + ctg*ctg*0.354993 + ctg*ctw*0.238034 + ctw*0.923109
+ ctw*ctw*0.195995 + CtW *CtZ*-0.0658494 + CtZ*-0.0308705 + CtZ*CtG*-0.027333
+ CtZ*CtZ*0.0624098
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A. EFT Parametrisation functions

Bin2 = 3.42886 + CtG*0.670982 + CtG*CtG*0.369633 + CtG*CtW *0.229214 + CtW *0.76974
+ CtW *CtW *0.166818 + CtW *CtZ*-0.0715886 + CtZ*-0.0401692 + CtZ*CtG*-0.0361812
+ CtZ*CtZ*0.052499
Bin3 = 2.87503 + CtG*0.631291 + CtG*CtG*0.232652 + CtG*CtW *0.195361 + CtW *0.66018
+ CtW *CtW *0.153966 + CtW *CtZ*-0.0760181 + CtZ*-0.0523361 + CtZ*CtG*-0.0305438
+ CtZ*CtZ*0.0716986
Bin4 = 2.46398 + CtG*0.565498 + CtG*CtG*-0.088392 + CtG*CtW *0.201851 + CtW *0.598547
+ CtW *CtW *0.109284 + CtW *CtZ*-0.0928642 + CtZ*-0.0441438 + CtZ*CtG*0.0137899
+ CtZ*CtZ*0.0423053
Bin5 = 2.21553 + CtG*0.463727 + CtG*CtG*0.0618886 + CtG*CtW *0.14961 + CtW *0.551628
+ CtW *CtW *0.129217 + CtW *CtZ*-0.101652 + CtZ*-0.031776 + CtZ*CtG*-0.00329803
+ CtZ*CtZ*0.0541695
Bin6 = 2.01165 + CtG*0.400745 + CtG*CtG*-0.0118613 + CtG*CtW *0.103051 + CtW *0.506884
+ CtW *CtW *0.132102 + CtW *CtZ*-0.120047 + CtZ*-0.0600086 + CtZ*CtG*0.0358481
+ CtZ*CtZ*0.0623383
Bin7 = 3.61494 + CtG*0.737627 + CtG*CtG*0.216928 + CtG*CtW *0.170473 + CtW *0.938463
+ CtW *CtW *0.319935 + CtW *CtZ*-0.259738 + CtZ*-0.0967356 + CtZ*CtG*0.00925232
+ CtZ*CtZ*0.13195
Bin8 = 3.15843 + CtG*0.743783 + CtG*CtG*0.238174 + CtG*CtW *0.217001 + CtW *0.873222
+ CtW *CtW *0.312774 + CtW *CtZ*-0.306329 + CtZ*-0.102387 + CtZ*CtG*0.0204031
+ CtZ*CtZ*0.137411
Bin9 = 2.75986 + CtG*0.607866 + CtG*CtG*-0.0214719 + CtG*CtW *0.189857 + CtW *0.796664
+ CtW *CtW *0.277078 + CtW *CtZ*-0.338857 + CtZ*-0.107388 + CtZ*CtG*8.30376e-05
+ CtZ*CtZ*0.143186
Bin10 = 2.49208 + CtG*0.577534 + CtG*CtG*0.0967376 + CtG*CtW *0.181732 + CtW *0.70231
+ CtW *CtW *0.293781 + CtW *CtZ*-0.353869 + CtZ*-0.118893 + CtZ*CtG*0.000208455
+ CtZ*CtZ*0.164667
Bin11 = 2.14617 + CtG*0.556689 + CtG*CtG*0.351131 + CtG*CtW *0.190239 + CtW *0.653654
+ CtW *CtW *0.316803 + CtW *CtZ*-0.366512 + CtZ*-0.111082 + CtZ*CtG*-0.017061
+ CtZ*CtZ*0.169816
Bin12 = 2.62039 + CtG*0.63185 + CtG*CtG*0.102395 + CtG*CtW *0.189569 + CtW *0.777124
+ CtW *CtW *0.381451 + CtW *CtZ*-0.538371 + CtZ*-0.164255 + CtZ*CtG*0.0126482
+ CtZ*CtZ*0.245801
Bin13 = 2.44783 + CtG*0.582592 + CtG*CtG*-0.0583117 + CtG*CtW *0.187932 + CtW *0.727729
+ CtW *CtW *0.444635 + CtW *CtZ*-0.578623 + CtZ*-0.187128 + CtZ*CtG*0.0217272
+ CtZ*CtZ*0.264106
Bin14 = 1.91249 + CtG*0.382723 + CtG*CtG*0.142933 + CtG*CtW *0.144883 + CtW *0.467069
+ CtW *CtW *0.339011 + CtW *CtZ*-0.468213 + CtZ*-0.123035 + CtZ*CtG*0.0128122
+ CtZ*CtZ*0.207122
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A.0.4. The fit function for all the 16 bins in the photon Δη(�,�)

distribution

Bin1 = 3.64181 + CtG*0.921586 + CtG*CtG*0.22311 + CtG*CtW *0.279163 + CtW *1.06812
+ CtW *CtW *0.366459 + CtW *CtZ*-0.353357 + CtZ*-0.153595 + CtZ*CtG*-0.00907912
+ CtZ*CtZ*0.183617
Bin2 = 3.70663 + CtG*0.896606 + CtG*CtG*0.129908 + CtG*CtW *0.27591 + CtW *1.07692
+ CtW *CtW *0.390407 + CtW *CtZ*-0.379972 + CtZ*-0.15677 + CtZ*CtG*-0.0338664
+ CtZ*CtZ*0.188075
Bin3 = 3.75636 + CtG*0.928634 + CtG*CtG*0.447808 + CtG*CtW *0.294927 + CtW *1.06737
+ CtW *CtW *0.385111 + CtW *CtZ*-0.384597 + CtZ*-0.178677 + CtZ*CtG*0.0208997
+ CtZ*CtZ*0.210373
Bin4 = 3.64494 + CtG*0.859522 + CtG*CtG*0.177081 + CtG*CtW *0.276957 + CtW *1.01846
+ CtW *CtW *0.373067 + CtW *CtZ*-0.35745 + CtZ*-0.146475 + CtZ*CtG*0.0890481
+ CtZ*CtZ*0.166207
Bin5 = 3.49465 + CtG*0.825653 + CtG*CtG*-0.0339647 + CtG*CtW *0.257487 + CtW *0.947741
+ CtW *CtW *0.313939 + CtW *CtZ*-0.347983 + CtZ*-0.136173 + CtZ*CtG*-0.010092
+ CtZ*CtZ*0.170554
Bin6 = 3.27473 + CtG*0.746877 + CtG*CtG*0.425755 + CtG*CtW *0.231758 + CtW *0.859625
+ CtW *CtW *0.32692 + CtW *CtZ*-0.324383 + CtZ*-0.123851 + CtZ*CtG*0.0177149
+ CtZ*CtZ*0.155724
Bin7 = 3.00419 + CtG*0.68387 + CtG*CtG*0.107811 + CtG*CtW *0.220003 + CtW *0.78074
+ CtW *CtW *0.281422 + CtW *CtZ*-0.285598 + CtZ*-0.101624 + CtZ*CtG*-0.0362323
+ CtZ*CtZ*0.155347
Bin8 = 2.66132 + CtG*0.59964 + CtG*CtG*0.114517 + CtG*CtW *0.17866 + CtW *0.670638
+ CtW *CtW *0.252051 + CtW *CtZ*-0.24678 + CtZ*-0.0578241 + CtZ*CtG*-0.0206433
+ CtZ*CtZ*0.0896821
Bin9 = 2.35726 + CtG*0.486922 + CtG*CtG*0.0881269 + CtG*CtW *0.148866 + CtW *0.576223
+ CtW *CtW *0.202331 + CtW *CtZ*-0.228376 + CtZ*-0.0611721 + CtZ*CtG*-0.0110881
+ CtZ*CtZ*0.0937644
Bin10 = 2.01557 + CtG*0.385356 + CtG*CtG*0.153571 + CtG*CtW *0.113621 + CtW *0.483315
+ CtW *CtW *0.17917 + CtW *CtZ*-0.189668 + CtZ*-0.0510229 + CtZ*CtG*-0.0114354
+ CtZ*CtZ*0.101839
Bin11 = 1.76832 + CtG*0.319825 + CtG*CtG*0.0638771 + CtG*CtW *0.0948345 + CtW *0.394256
+ CtW *CtW *0.127923 + CtW *CtZ*-0.162625 + CtZ*-0.0421722 + CtZ*CtG*0.0200735
+ CtZ*CtZ*0.0762895
Bin12 = 5.07623 + CtG*0.849478 + CtG*CtG*0.156361 + CtG*CtW *0.227148 + CtW *1.04529
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+ CtW *CtW *0.395301 + CtW *CtZ*-0.477468 + CtZ*-0.0794283 + CtZ*CtG*0.0262249
+ CtZ*CtZ*0.217506

A.0.5. The fit function for all the 16 bins in the photon Δφ(�,�)
distribution

Bin1 = 3.17207 + CtG*0.609016 + CtG*CtG*0.142259 + CtG*CtW *0.181856 + CtW *0.606893
+ CtW *CtW *0.315403 + CtW *CtZ*-0.364887 + CtZ*-0.109991 + CtZ*CtG*0.00582879
+ CtZ*CtZ*0.186275
Bin2 = 3.26992 + CtG*0.60904 + CtG*CtG*-0.102236 + CtG*CtW *0.164524 + CtW *0.620696
+ CtW *CtW *0.254012 + CtW *CtZ*-0.346666 + CtZ*-0.103281 + CtZ*CtG*0.000141402
+ CtZ*CtZ*0.153215
Bin3 = 2.71748 + CtG*0.553266 + CtG*CtG*0.0621098 + CtG*CtW *0.137343 + CtW *0.589301
+ CtW *CtW *0.230156 + CtW *CtZ*-0.289602 + CtZ*-0.0970252 + CtZ*CtG*0.0275371
+ CtZ*CtZ*0.131661
Bin4 = 3.10072 + CtG*0.664628 + CtG*CtG*0.158952 + CtG*CtW *0.224136 + CtW *0.690511
+ CtW *CtW *0.284414 + CtW *CtZ*-0.315386 + CtZ*-0.118873 + CtZ*CtG*0.0036136
+ CtZ*CtZ*0.17201
Bin5 = 2.33119 + CtG*0.516702 + CtG*CtG*0.0911127 + CtG*CtW *0.163007 + CtW *0.553682
+ CtW *CtW *0.199142 + CtW *CtZ*-0.228208 + CtZ*-0.0500664 + CtZ*CtG*0.0549965
+ CtZ*CtZ*0.0994008
Bin6 = 2.57512 + CtG*0.593808 + CtG*CtG*0.29302 + CtG*CtW *0.168502 + CtW *0.626443
+ CtW *CtW *0.228054 + CtW *CtZ*-0.248353 + CtZ*-0.0924618 + CtZ*CtG*0.0121147
+ CtZ*CtZ*0.130337
Bin7 = 2.89449 + CtG*0.629912 + CtG*CtG*0.400949 + CtG*CtW *0.161363 + CtW *0.759623
+ CtW *CtW *0.283164 + CtW *CtZ*-0.259012 + CtZ*-0.0762069 + CtZ*CtG*0.0375043
+ CtZ*CtZ*0.135954
Bin8 = 3.09014 + CtG*0.743036 + CtG*CtG*0.279983 + CtG*CtW *0.232405 + CtW *0.862609
+ CtW *CtW *0.29231 + CtW *CtZ*-0.277791 + CtZ*-0.104817 + CtZ*CtG*0.0251414
+ CtZ*CtZ*0.161188
Bin9 = 3.33476 + CtG*0.808488 + CtG*CtG*0.26104 + CtG*CtW *0.312645 + CtW *0.959269
+ CtW *CtW *0.31445 + CtW *CtZ*-0.310431 + CtZ*-0.10793 + CtZ*CtG*-0.0483526
+ CtZ*CtZ*0.136281
Bin10 = 1.75585 + CtG*0.436321 + CtG*CtG*0.0537493 + CtG*CtW *0.11033 + CtW *0.516463
+ CtW *CtW *0.15137 + CtW *CtZ*-0.165633 + CtZ*-0.0590422 + CtZ*CtG*0.0102546
+ CtZ*CtZ*0.0786478
Bin11 = 1.7974 + CtG*0.391481 + CtG*CtG*0.0189036 + CtG*CtW *0.131682 + CtW *0.5353
+ CtW *CtW *0.163762 + CtW *CtZ*-0.166061 + CtZ*-0.0602787 + CtZ*CtG*-0.00114547
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+ CtZ*CtZ*0.0768295
Bin12 = 1.87882 + CtG*0.443758 + CtG*CtG*0.205103 + CtG*CtW *0.156036 + CtW *0.580755
+ CtW *CtW *0.204667 + CtW *CtZ*-0.160403 + CtZ*-0.0649014 + CtZ*CtG*-0.0235938
+ CtZ*CtZ*0.0817657
Bin13 = 1.85588 + CtG*0.422986 + CtG*CtG*-0.00802973 + CtG*CtW *0.102117 + CtW *0.593719
+ CtW *CtW *0.169326 + CtW *CtZ*-0.170191 + CtZ*-0.0562829 + CtZ*CtG*-0.0425269
+ CtZ*CtZ*0.0585579
Bin14 = 1.92329 + CtG*0.433895 + CtG*CtG*0.20544 + CtG*CtW *0.125176 + CtW *0.616821
+ CtW *CtW *0.205877 + CtW *CtZ*-0.190518 + CtZ*-0.0800421 + CtZ*CtG*-0.0265424
+ CtZ*CtZ*0.0884716
Bin15 = 2.69046 + CtG*0.634564 + CtG*CtG*-0.000631766 + CtG*CtW *0.22457 + CtW *0.86099
+ CtW *CtW *0.291893 + CtW *CtZ*-0.244023 + CtZ*-0.104322 + CtZ*CtG*0.00335257
+ CtZ*CtZ*0.118328
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B. Correlation between observables

B.0.1. Correlation factor between Photon pT and ΔRmin(γ,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 0.185 1 1.4 0.4 0.197 -1.2 -1 0 0.208

0 0 0.4 0.185 1 -1 0.4 0.313 0 1.4 -0.4 0.264

0 0 -0.4 0.192 -1.2 1.4 0.4 0.339 1 1.4 -0.4 0.191

0 1.4 0 0.268 -1.2 -1 0.4 0.197 -1.2 1.4 -0.4 0.334

0 -1 0 0.240 1 0 0.4 0.250 1 0 -0.4 0.246

1 0 0 0.244 -1.2 0 0.4 0.262 -1.2 0 -0.4 0.267

-1.2 0 0 0.259 1 1.4 0 0.200 1 -1 -0.4 0.301

0 1.4 0.4 0.261 -1.2 1.4 0 0.333 0 -1 -0.4 0.234

0 -1 0.4 0.236 1 -1 0 0.304 -1.2 -1 -0.4 0.188

B.0.2. Correlation factor between Photon pT and Δη(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 0.025 1 1.4 0.4 0.044 -1.2 -1 0 0.042

0 0 0.4 0.037 1 -1 0.4 0.017 0 1.4 -0.4 0.050

0 0 -0.4 0.031 -1.2 1.4 0.4 0.054 1 1.4 -0.4 0.044

0 1.4 0 0.058 -1.2 -1 0.4 0.043 -1.2 1.4 -0.4 0.049

0 -1 0 0.020 1 0 0.4 0.015 1 0 -0.4 0.026

1 0 0 0.027 -1.2 0 0.4 0.064 -1.2 0 -0.4 0.057

-1.2 0 0 0.065 1 1.4 0 0.032 1 -1 -0.4 0.034

0 1.4 0.4 0.062 -1.2 1.4 0 0.062 0 -1 -0.4 0.017

0 -1 0.4 0.014 1 -1 0 0.025 -1.2 -1 -0.4 0.042
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B. Correlation between observables

B.0.3. Correlation factor between Photon pT and Δη(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 -0.0027 1 1.4 0.4 -0.0140 -1.2 -1 0 -0.0214

0 0 0.4 -0.0048 1 -1 0.4 -0.0718 0 1.4 -0.4 -0.0519

0 0 -0.4 -0.0159 -1.2 1.4 0.4 -0.0958 1 1.4 -0.4 -0.0103

0 1.4 0 -0.0507 -1.2 -1 0.4 -0.0085 -1.2 1.4 -0.4 -0.0972

0 -1 0 -0.0259 1 0 0.4 -0.0347 1 0 -0.4 -0.0470

1 0 0 -0.0355 -1.2 0 0.4 -0.0504 -1.2 0 -0.4 -0.0515

-1.2 0 0 -0.0464 1 1.4 0 -0.0165 1 -1 -0.4 -0.0762

0 1.4 0.4 -0.0441 -1.2 1.4 0 -0.0931 0 -1 -0.4 -0.0377

0 -1 0.4 -0.0242 1 -1 0 -0.0811 -1.2 -1 -0.4 -0.0030

B.0.4. Correlation factor between Photon |η | and ΔRmin(γ,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 0.0334 1 1.4 0.4 0.0526 -1.2 -1 0 0.0468

0 0 0.4 0.0542 1 -1 0.4 0.0457 0 1.4 -0.4 0.0306

0 0 -0.4 0.0569 -1.2 1.4 0.4 0.0231 1 1.4 -0.4 0.0511

0 1.4 0 0.0424 -1.2 -1 0.4 0.0466 -1.2 1.4 -0.4 0.0251

0 -1 0 0.0529 1 0 0.4 0.0390 1 0 -0.4 0.0501

1 0 0 0.0473 -1.2 0 0.4 0.0439 -1.2 0 -0.4 0.0460

-1.2 0 0 0.0247 1 1.4 0 0.0625 1 -1 -0.4 0.0528

0 1.4 0.4 0.0482 -1.2 1.4 0 0.0162 0 -1 -0.4 0.0523

0 -1 0.4 0.0503 1 -1 0 0.0473 -1.2 -1 -0.4 0.0510

B.0.5. Correlation factor between Photon |η | and Δη(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 0.0046 1 1.4 0.4 0.0176 -1.2 -1 0 0.0207

0 0 0.4 0.0132 1 -1 0.4 0.0076 0 1.4 -0.4 0.0035

0 0 -0.4 0.0013 -1.2 1.4 0.4 0.0069 1 1.4 -0.4 0.0115

0 1.4 0 0.0087 -1.2 -1 0.4 0.0058 -1.2 1.4 -0.4 -0.0062

0 -1 0 0.0135 1 0 0.4 0.0165 1 0 -0.4 0.0097

1 0 0 0.0124 -1.2 0 0.4 0.0095 -1.2 0 -0.4 0.0007

-1.2 0 0 -0.0091 1 1.4 0 0.0229 1 -1 -0.4 0.0032

0 1.4 0.4 0.0050 -1.2 1.4 0 -0.0037 0 -1 -0.4 0.0167

0 -1 0.4 0.0191 1 -1 0 0.0142 -1.2 -1 -0.4 0.0047
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B.0.6. Correlation factor between Photon |η | and Δφ(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 0.0067 1 1.4 0.4 -0.0213 -1.2 -1 0 0.0109

0 0 0.4 0.0029 1 -1 0.4 0.0065 0 1.4 -0.4 -0.0027

0 0 -0.4 0.0011 -1.2 1.4 0.4 0.0137 1 1.4 -0.4 -0.0116

0 1.4 0 -0.0080 -1.2 -1 0.4 0.0050 -1.2 1.4 -0.4 0.0208

0 -1 0 -0.0002 1 0 0.4 0.0136 1 0 -0.4 0.0023

1 0 0 0.0117 -1.2 0 0.4 -0.0047 -1.2 0 -0.4 0.0032

-1.2 0 0 0.0050 1 1.4 0 -0.0045 1 -1 -0.4 0.0007

0 1.4 0.4 -0.0140 -1.2 1.4 0 0.0185 0 -1 -0.4 -0.0049

0 -1 0.4 0.0085 1 -1 0 0.0086 -1.2 -1 -0.4 -0.0058

B.0.7. Correlation factor between ΔRmin(γ,�) and Δη(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 0.136 1 1.4 0.4 0.151 -1.2 -1 0 0.150

0 0 0.4 0.143 1 -1 0.4 0.133 0 1.4 -0.4 0.167

0 0 -0.4 0.150 -1.2 1.4 0.4 0.176 1 1.4 -0.4 0.146

0 1.4 0 0.168 -1.2 -1 0.4 0.152 -1.2 1.4 -0.4 0.176

0 -1 0 0.133 1 0 0.4 0.131 1 0 -0.4 0.133

1 0 0 0.138 -1.2 0 0.4 0.174 -1.2 0 -0.4 0.176

-1.2 0 0 0.170 1 1.4 0 0.138 1 -1 -0.4 0.143

0 1.4 0.4 0.176 -1.2 1.4 0 0.177 0 -1 -0.4 0.137

0 -1 0.4 0.125 1 -1 0 0.151 -1.2 -1 -0.4 0.146

B.0.8. Correlation factor between ΔRmin(γ,�) and Δφ(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 -0.310 1 1.4 0.4 -0.313 -1.2 -1 0 -0.315

0 0 0.4 -0.313 1 -1 0.4 -0.405 0 1.4 -0.4 -0.351

0 0 -0.4 -0.314 -1.2 1.4 0.4 -0.409 1 1.4 -0.4 -0.318

0 1.4 0 -0.352 -1.2 -1 0.4 -0.306 -1.2 1.4 -0.4 -0.413

0 -1 0 -0.335 1 0 0.4 -0.343 1 0 -0.4 -0.352

1 0 0 -0.336 -1.2 0 0.4 -0.344 -1.2 0 -0.4 -0.351

-1.2 0 0 -0.347 1 1.4 0 -0.323 1 -1 -0.4 -0.402

0 1.4 0.4 -0.335 -1.2 1.4 0 -0.419 0 -1 -0.4 -0.329

0 -1 0.4 -0.334 1 -1 0 -0.400 -1.2 -1 -0.4 -0.312
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B. Correlation between observables

B.0.9. Correlation factor between ΔRmin(γ,�) and Δφ(�,�)

Sample Correlation Sample Correlation Sample Correlation

ctW ctZ ctG factor ctW ctZ ctG factor ctW ctZ ctG factor

0 0 0 -0.0318 1 1.4 0.4 -0.0328 -1.2 -1 0 -0.0281

0 0 0.4 -0.0324 1 -1 0.4 -0.0473 0 1.4 -0.4 -0.0414

0 0 -0.4 -0.0285 -1.2 1.4 0.4 -0.0478 1 1.4 -0.4 -0.0336

0 1.4 0 -0.0327 -1.2 -1 0.4 -0.0340 -1.2 1.4 -0.4 -0.0492

0 -1 0 -0.0279 1 0 0.4 -0.0312 1 0 -0.4 -0.0308

1 0 0 -0.0344 -1.2 0 0.4 -0.0361 -1.2 0 -0.4 -0.0438

-1.2 0 0 -0.0459 1 1.4 0 -0.0256 1 -1 -0.4 -0.0488

0 1.4 0.4 -0.0446 -1.2 1.4 0 -0.0541 0 -1 -0.4 -0.0317

0 -1 0.4 -0.0392 1 -1 0 -0.0484 -1.2 -1 -0.4 -0.0391
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