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Abstract

Complex manifolds provide a fertile ground for studying Riemannian geometry as well as

algebraic geometry. Many complex manifolds admit Kähler metrics. Kähler metrics are

Riemannian metrics which tie in well with the complex structure and have a compatible

symplectic structure. In the 1930s, E. Calabi conjectured the existence of Kähler metrics

with good curvature properties on some compact complex manifolds. This conjecture was

resolved by Aubin and Yau in the 70s. In parallel, Yau also proved the existence of Kähler

metrics that are Einstein (Ric(!) = �!) in many cases (c1(M) > 0 and c1(M) = 0). In

the case of Fano manifolds (c1(M) > 0), the existence of Kähler-Einstein metrics is not

always true and is a much harder question. It was only recently completed thanks to the

works of Chen, Donaldson, Sun, and Tian (among others). The primary aim of the present

thesis is to study Yau’s proof of the Calabi conjecture (Chapter 4), as a part of which

we study the basics of complex and Kähler geometry (Chapter 2) and the theory of the

Monge-Ampère equation (Chapter 3). We will also look into a couple of applications of the

Calabi conjecture, and discuss about Kähler-Einstein metrics (Chapter 5). The necessary

preliminaries are presented in Chapter 1.
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Introduction

Kähler metrics are Riemannian metrics on complex manifolds that are compatible with the

complex structure as well as with the symplectic structure. From an analytic point of view,

the existence of local holomorphic normal coordinates on Kähler manifolds is important.

This concept was first introduced by Erich Kähler. Kähler manifolds are in the domain of

intersection of various research topics like algebraic geometry, di↵erential geometry, complex

analysis, geometric analysis and symplectic geometry.

The Calabi Conjecture is about the existence of ”nice” Riemaniann metrics on Kähler man-

ifolds. It was first stated by Aubin in the 1950s and Yau proved the conjecture in 1978. Yau

won the fields medal partly for the proof [3] and its applications in algebraic geometry [4]. A

problem closely related to the Calabi conjecture is the existence of Kähler-Einstein metrics

on Kähler manifolds. The existence of Kähler Einstein metrics for the cases c1(M) < 0

and c1(M) = 0 is very similar to the Calabi Conjecture and was studied alongside it. When

c1(M) > 0, Kähler-Einstein metrics do not always exist. There are certain algebro-geometric

obstructions to their existence. The case c1(M) > 0 was fully solved in 2015 by Chen-

Donaldson-Song and Tian (among others). Other problems like the existence of constant

scalar metrics are related to the existence of Kähler-Einstein metrics. The Calabi-Yau the-

orem which is stated below and is discussed in Chapter 4,

Theorem 4.0.1. (Calabi-Yau theorem) Let (M,!0) be a compact Kähler manifold such that

[!0] 2 H2(M,R)\H1,1(M,C). Given any ⌦ 2 2⇡c1(M), there exists a unique Kähler metric

! 2 [!0] such that Ric(!) = ⌦.

We will define and discuss most of the terminologies in the above theorem over the first

few chapters. But notice that the very nature of the theorem relates a topological invariant

(c1(M)) with a geometric concept (Ricci curvature).
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Overview of chapters

The thesis mainly deals with the Yau’s proof of the Calabi conjecture, also known as the

Calabi-Yau theorem. In Chapter 1, we introduce vector bundles and Riemannain metrics.

Here the intention is to review some of the definitions as well as set the tone for the notation

throughout thesis. We will also have a glance into connections on vector bundles. Chapter 2

begins by studying complex manifolds and later shifts the focus onto Kähler manifolds. We

will also look into a special connection called Chern connection on Kähler manifolds. The

primary example through out the chapter is mainly based on projective spaces. The chapter

sets up the geometric framework required for understanding the Calabi-Yau theorem.

We build the analytic framework, from analysis and PDE that will be required in the proof

of the Calabi-Yau theorem in Chapter 3. We will briefly touch up on Green’s function on a

manifold. Here, we will also look at some properties of Elliptic PDE. Chapter 4 is completely

dedicated to the proof of the Calabi-Yau theorem. We will see how the geometric problem

is converted into a nonlinear Partial Di↵erential Equation (PDE). We will prove uniqueness

and existence of solutions to the PDE. This chapter is the focal point of the thesis. Finally,

in Chapter 5 we look at a couple of applications of the Calabi-Yau theorem. It also discusses

the existence of Kähler-Einstein metrics on Kähler manifolds.
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Chapter 1

Preliminaries

Einstein summation convention

Throughout the thesis we will use the Einstein summation convention. As per the convention,

when an index occurs twice or more in a single term, then we will sum over that index.

The convention is used for notational easiness. As a part of the convention we will denote

coordinates of vectors with upper indices. For example, is v is a vector in a vector space V

with a basis {ei}, it will be denoted as,

v = viei.

Here vi does not mean we are taking powers, but rather {vi} is a collection of scalars.

1.1 Vector Bundles

A smooth vector bundle on a manifold M , is a smoothly varying vector spaces at each point

on M . Formally, it is defined as,

Definition 1.1.1. (Smooth Vector Bundle) A smooth Vector bundle of dimension r over a

manifold M , is a triplet is (V,M, ⇡), where

V and M are smooth manifolds, ⇡ : V ! M is a smooth map,
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for p 2 M, ⇡�1(p) known as the fiber at p, is a r-dimensional vector space over R, and
vector space structure varies smoothly, that is the scalar multiplication is a smooth map

from R⇥ V ! V . Similarly we will have a smoothness criterion for scalar addition,

that satisfies,

(local triviality) For any point p 2 M , there exist an open neighborhood U ⇢ M and a

di↵eomorphism

� : ⇡�1(U) ! U ⇥ Rr,

where for each x 2 U, � maps ⇡�1(x) to {x}⇥ Rr as a vector space isomorphism.

The simplest example of a vector bundle is the trivial bundle M ⇥ Rr. The local triviality

condition says that, locally in a neighborhood, a vector bundle is trivial. Equivalently, vector

bundles can be defined as a collection of open sets {U↵ ⇢ M : ↵ 2 ⇤} that cover M , and

smooth functions (called transition functions) g↵� : U↵ \ U� ! GL(r,R), where ↵, � 2 ⇤,

satisfying

g↵↵ = Id

g↵� = g�1
�↵ and,

g↵� � g�� � g�↵ = Id.

Given a collection of functions g↵� that satisfies the above three conditions, then the manifold

V :=
tU↵ ⇥ Rr

(p, v↵) ⇠ (p, g↵�v�)
,

is a vector bundle over M , with g↵� as transition functions. A vector bundle is a smoothly

varying choice of basis, and g↵� tells us how the basis transform on the intersection. Some

fundamental examples of vector bundles we will be interested in are, Tangent bundle, Cotan-

gent bundle, Normal bundle and bundle of di↵erential forms. Studying vector bundles helps

to learn and define properties common to all these bundles.

Given vector bundles V and W over M , we can derive new bundles like:

dual bundle, V ⇤; the fibers of V ⇤ are dual spaces to the fibers of V . The transition

functions are inverse transpose, g⇤ij = (g|)�1. The cotangent bundle is the dual to the

Tangent Bundle.

direct sum, V �W ; the fibers of V �W are direct sum of the fibers of V and W . The
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transition functions of V �W , is the direct sum of the transition functions of V and

W , that is

gV�W
↵� =

"
[gV↵ ] 0

0 [gW↵ ]

#

tensor product, V ⌦W ; a fiber of V ⌦W is obtained by taking fiberwise tensor product.

The transition functions gV⌦W
↵� is the Kronecker product of gV↵� and gW↵�.

A section s of a vector bundle V overM is a smooth map s : M ! V such that, s(p) 2 ⇡�1(p),

that is for each point in the manifold it maps to a vector on its fiber in a smooth way. The

simplest example is the zero section s0, where s0(p) = 0 for all p. The zero section gives

an embedding of M into V . In fact, every smooth real valued function on a manifold, is a

section of the trivial bundle. We denote �(V ), the set of all sections of a vector bundle V

over M . If {e}i is a local basis of a vector bundle V , then locally a section s can be written

as

s(p) = si(p)ei(p),

where si is a local real valued function. The basis elements ei, are examples what are

known as ”local” sections. Sections of the tangent bundle are called vector fields. In local

coordinates a vector field is denoted as,

X = ai
@

@xi
.

Vector bundles over complex manifolds (see Chapter 2), with the vector spaces being over

C, are known as complex vector bundles. More details on vector bundles are available in

[12], [5].

1.2 Riemannian manifolds

To do geometry on manifolds, we need the concept of length and angle. To do so we will

need a smoothly varying inner product on the tangent space. A metric on a vector bundle

V , is a section of V ⇤
⌦ V ⇤, such that on each fiber it is symmetric and positive definite.

A metric on the tangent bundle TM , is known as Riemannian metric. In local coordinates,
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a Riemannian metric g is represented as,

g = gijdx
i
⌦ dxj,

where gij = gji and (gij) is positive definite.

Once we have an inner product on the tangent space, we can calculate length of curves. If

� : [0, 1] ! M is a smooth path, then its length is given by

L(�) =

Z 1

0

s

g

✓
d�

dt
,
d�

dt

◆
.

We can find the minimizer of the length functional, known as geodesics (these are equivalent

to straight lines in Rn) by using the energy functional E(�) =
R 1

0 g
�
d�
dt ,

d�
dt

�
. Geodesics are

solution to
d2�k

dt2
+ �k

ij

d�i

dt

d�j

dt
= 0,

where

�k
ij = grl

1

2

✓
@gil
@xj

+
@gjl
@xi

�
@gij
@xl

◆
. (1.1)

Theorem 1.2.1. (normal coordinates) Given a Riemannian manifold (M, g), for a point

p 2 M , there exists a neighborhood U along with a coordinate system {xi}, such that

gij(x) = �ij(x) +O(|x2
|).

The theorem says that we can choose coordinates such that they are euclidean upto first

order. Interestingly the second order term cannot be removed and it is directly related to

the curvature of the manifold. There are a couple of simple ways to prove this, one is using

the exponential map and the fact that the exponential map is a local di↵eomorphism around

0. The other way is to make a suitable change of coordinates and eliminate the first order

terms.

1.3 Connections

A central idea in calculus is the notion of directional derivatives. In Rn, given two vector

fields X and Y , we can look at the directional derivative of Y along X, which is another
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vector field. Further note that, to define the notion of parallel vectors, we need the concept

of directional derivatives on manifolds.

Definition 1.3.1. Let V ! M be a smooth r-vector bundle. Let X be a vector field over

M , then a connection r on V is a map rX : �(TM)⇥ �(V ) ! �(V ) such that,

(Tensoriality in X) if X1 and X2 are vector fields over M , and f1, f2 are functions on

M , then

rf1X1+f2X2 = f1rX1 + f2rX2 ,

(Linearity in �(V )) ifX is a vector field, s1, s2 be sections of V , and c1, c2 are constants,

then

rX(c1s1 + c2s2) = c1rXs1 + c2rXs2,

(Leibniz rule) if X is a vector field, s is a section of V , f be a function on M , then

rX(fs) = X(f)s+ frXs.

A connection r, is a function from �(TM) ⇥ �(V ) ! �(V ), and is tensorial in �(TM),

hence r can be seen as a function r : �(V ) ! �(V ⌦ T ⇤M). Let s be a section of a vector

bundle V over M . In local coordinates, if s = siei, where ei is a local basis. Then,

rs = r(siei) = dsi ⌦ ei + sirei

= (dsi + Ai
js

j)⌦ ei,

where Ai
j is a matrix of one forms, which determines the connection. Given connections on

vector bundles V and W over M , we can define natural connections on their dual, direct

sum, tensor product. (see [12])

We will now see a special connection on the tangent bundle of a manifold.

Definition 1.3.2. The Levi-Civita connection over a Riemannian manifold (M, g) is the

unique connection on the tangent bundle that satisfies,

(metric compatability) d(g(X, Y )) = g(rX, Y ) + g(X,rY ),

(torsion free) rXY �rYX = [X, Y ],

where X and Y are vector fields and d is the covarient derivative.

7



The first condition is what we expect when we di↵erentiate across an inner product. It is

equivalent to saying that the inner product is preserved by parallel transport. If xi are local

coordinates, then .

r @
@xj

@

@xk
= �i

jk

@

@xi
,

where �i
jk known as Christo↵el symbols are given by equation (1.1).

Curvature is the connection composed with itself, very closed to the idea of attributing

curvature of a curve to its acceleration. Further details can be found in [7]. In this chapter

we have only covered an overview of vector bundles and Riemannian geometry. For more

details we refer to [5], see also [8], [7] and [12].
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Chapter 2

Complex and Kähler Manifolds

The aim of the present chapter is to introduce the concepts of Complex and Kähler Manifolds.

Complex manifolds arise naturally in the study of Riemannian geometry, complex analysis

and algebraic geometry. The central object of study in the thesis is about Kähler manifolds.

The material presented in this chapter is based on the book [1], see also [12] and [9].

2.1 Complex Manifolds

A complex manifold of dimension n is a smooth manifold M with an open cover {U↵ ⇢ M :

↵ 2 ⇤} and homeomorphisms �↵ : U↵ ! Cn such that

�↵� := �↵ � �
�1
� : ��(U↵ \ U�) ! �↵(U↵ \ U�)

is a holomorphic di↵eomorphism for all ↵, � 2 ⇤. The collection {(U↵,�↵) : ↵ 2 ⇤} is called

an atlas on the complex manifold. Here ⇤ is an index set.

A smooth manifold along with a complex atlas is called a complex structure. A complex

manifold of dimension n by definition is a real smooth manifold of dimension 2n, with the

additional structure on a complex manifold being that the transition functions are holo-

morphic. The transitions functions being holomorphic helps one define the concept of a

holomorphic function on complex manifolds.

A function on a complex manifold M , f : M ! Cn is holomorphic if for every chart {U↵,�↵},

9



the map f � ��1
↵ : �↵(U↵) ! Cn is holomorphic as a function on Cn. This is well defined

by the very fact that transition functions are holomorphic. This idea helps us to look at

complex manifolds as locally complex spaces Cn, and hence we can push forward many re-

sults in several complex variables like Lioville’s theorem, maximum modulus principle, local

power series etc to complex manifolds. Let us look at some examples of complex manifolds.

The simplest example of complex manifolds are open subsets of Cn with the atlas being the

identity map.

Example 1. (Riemann Sphere) Consider S2
⇢ R3, and identify the xy-plane with C. Let

U1 = S2
\ {(0, 0, 1)} and �1 : U1 ! C be the stereo-graphic projection from the north pole.

Let U2 = S2
\ {(0, 0,�1)} and �2 : U2 ! C be the complex conjugate of the stereo-graphic

projection from the south pole. Then {(U1,�1), (U2,�2)} is an atlas. More precisely,

�1(x, y, z) =

✓
x

1� z
,

y

1� z

◆
, �2(x, y, z) =

✓
x

z + 1
,
�y

z + 1

◆
.

Let Z = X +
p
�1Y , then the transition function �12 is,

�1 � �
�1
2 (X, Y ) = �1

✓
2X

X2 + Y 2 + 1
,

�2Y

X2 + Y 2 + 1
,
1�X2

� Y 2

X2 + Y 2 + 1

◆

=

✓
X

X2 + Y 2
,

�Y

X2 + Y 2

◆
=

z

|z|2
=

1

z
,

which is biholomorphic on C \ {0}, where z = X +
p
�1Y .

Example 2. (Zero sets of holomorphic mappings) Consider the following subset of C2,

S =
�
(z1, z2) 2 C2 : (z1)2 + (z2)2 � 1 = 0

 
,

which is a submanifold with transition functions that are holomorphic and hence it is a

complex manifold in its own right. Despite the reminiscence of this equation to a circle in

the real plane, the set S is not compact, for any large z1, we will still have a z2 such that

(z1)2+(z2)2 = 1. In fact the zero set of any holomorphic function is always non-compact. To

see this, let f : Cn
! Cn be holomorphic, and D = {z 2 Cn : f(z) = 0} be a submanifold.

For if D is compact, then the maximum modulus principle on the inclusion function will

imply that the inclusion function is constant. By the same reasoning one can see that,

unlike the theory of smooth manifolds we do not have a Whiteny/Nash Embedding type

theorem for complex manifolds, i.e not every complex manifold can be embedded in Cn as a

10



submanifold.

The next example will be an important class of compact manifolds which will also be the

foundation for many more examples of compact complex manifolds.

Example 3. (Complex projective spaces and Projective manifolds) An important and larger

class of compact complex manifolds are Complex projective spaces CPn. The nth complex

projective space consists of lines in Cn+1, or can also be seen as an equivalence relation

on Cn+1
\ {0}, where

�!
X s �

�!
X for some � 2 C \ {0}. Here the topology on CPn is the

quotient topology on this equivalence relation. We will denote the equivalence class [
�!
X ] as

[X0 : · · · : Xn], where
�!
X = (X0, . . . , Xn). To see why CPn is a complex manifold, we define

the following atlas: Let Ui = {[X0 : · · · : Xn] |X i
6= 0} and

�i : Ui ! Cn, as [X0 : · · · : Xn] 7!

 
X0

X i
, . . . ,

cX i

X i
, . . . ,

Xn

X i

!
,

where cXi

Xi denotes that the term is excluded. It is an easy exercise to see that the transition

functions are holomorphic di↵eomorphisms. Topologically, CPn ⇠= S2n+1/Sn and hence CPn

is compact.

In projective spaces, homogeneous polynomials play an important role. Homogeneous poly-

nomials are not well defined functions on projective spaces, but in the next section we will

realize them as sections of a complex line bundle. Momentarily to emphasis its importance,

note that given a homogeneous polynomial f on Cn+1, if z 2 Cn+1
\ {0} such that f(z) = 0,

then f is zero on the equivalence class [z]. Hence it makes sense to talk of the zero set of f

in CPn. If z is a regular value of f , then the zero set will be a complex submanifold which is

compact. The intersection of zero sets in CPn of one or more homogeneous polynomial are

called Projective manifolds. Projective manifolds are of high research interest and these are

important examples of compact complex manifolds.

2.2 Holomorphic Vector bundles

Holomorphic vector bundles are complex vector bundles with holomorphic transition func-

tions. Some of the principal examples are the holomorphic tangent and cotangent bundles. In

11



the following subsection we will look at the holomorphic line bundles on complex projective

spaces.

2.2.1 Line Bundles on the Complex Projective Space

The definition of a complex projective space, where every point in CPn is an equivalence

class which contains a line in Cn+1. This itself hints at a natural line bundle on CPn, where

for each point we look at the line passing through that point. More precisely, we consider

the manifold,

L = {(X, [l]) 2 Cn+1
⇥ CPn; X = �l,� 2 C},

and the projection map ⇡ : L ! CPn, where (X, [l]) 7! [l]. The fiber at a point in CPn is the

line passing through it. This line bundle is called the tautological line bundle and is denoted

by O(�1). For the trivializing open cover Ui described in Example 3 in the previous section,

define �i : ⇡�1(Ui) ! Ui ⇥ C

�i(�
�!
Z , [

�!
Z ]) = ([

�!
Z ],�Zi)

Then, the transition functions g(�1)
ij = �i � �

�1
j are given by

g(�1)
ij ([

�!
Z ]) =

Zi

Zj
. (2.1)

Let s be a global section of O(�1), and let ⇡1 : O(�1) ! Cn+1 be the projection map into

the first variable. Then ⇡1 � s is a holomorphic function from a compact complex manifold

to Cn+1 and hence it is a constant. Any non zero holomorphic function on Cn+1 will have a

non trivial kernel and hence s is a zero section.

The dual bundle of O(�1) is denoted as O(1) and it is called the hyperplane line bundle.

The transition functions of O(1) will be g(1)ij ([
�!
Z ]) = Zj

Zi . Another way to define O(1) is to

construct it using these as transition functions,

O(1) =
tUi ⇥ C

(p, vi) ⇠ (p, g(1)ij vj)
.

Let f be a homogeneous 1-degree polynomial in Cn+1. On Ui we can see this as the local

section corresponding to (Zi)�1f . Then the transition functions help us to patch up to get a

12



well defined global section of O(1). In fact, we can prove that any section of O(1) corresponds

to a homogeneous degree 1 polynomials on Cn+1.

One of the operation on line bundles that produce new line bundles are by taking tensor

products. We can define new line bundles O(m) for integers m, which are obtained by taking

tensor product of O(1) or O(�1), and it is defined as follows,

O(m) :=

(
O(1)⌦ · · ·⌦O(1), m times if , > 0

O(�1)⌦ · · ·⌦O(�1), �m times if m < 0.

Similar to equation 2.1, the transition function of O(m) is given by

g(m)
ij ([

�!
Z ]) =

✓
Zj

Zi

◆m

. (2.2)

For m > 0, sections of O(m) can be thought as homogeneous polynomials of degree m, where

restricted to Ui, a degree m homogeneous polynomial f can be thought of as a (Zi)�mf. In

fact every line bundle on CPn is isomorphic to O(m) for some integer m.

2.3 Almost Complex Structure

An almost complex structure on a smooth manifold is a bundle endomorphism, J : TM !

TM such that J2 = �Id. The intuition is, J acts like multiplication by
p
�1 on tangent

vectors. Now, J2 = �Id implies that M must be an even dimensional smooth manifold,

for if it is odd, then it must have a real eigenvalue. More importantly, we show that every

complex manifold has a canonical almost complex structure on it.

Given a complex manifold M , let z1, . . . , zn be local holomorphic coordinates around a point,

write zi = xi +
p
�1yi. Then,

⇢
@

@x1
, . . . ,

@

@xn
,
@

@y1
, . . . ,

@

@yn

�

is a local basis for TM . Define

J

✓
@

@xi

◆
=

@

@yi
, J

✓
@

@yi

◆
= �

@

@xi
. (2.3)

13



This endomorphism is well defined and independent of the choice of holomorphic coordinates.

Let {ezi} be another choice of local holomorphic coordinates, and let ezi = exi +
p
�1eyi. By

change of variable formula we have,

@

@exi
=
@xj

@exi

@

@xj
+
@yj

@exi

@

@yj
,

@

@eyi =
@xj

@eyi
@

@xj
+
@yj

@eyi
@

@yj
.

Then,

J

✓
@

@exi

◆
=
@xj

@exi

@

@yj
�
@yj

@exi

@

@xj
=
@yj

@eyi
@

@yj
+
@xj

@eyi
@

@xj
=

@

@eyi ,

where the last but one equality is by the Cauchy-Riemann equations. Similarly, we obtain

that J

✓
@

@eyi

◆
= �

@

@exi
. Hence, given a complex structure on a manifold we have a canonical

almost complex structure on it. In general, the converse is not true, that is every almost

complex structure does not arise from a complex structure. An example arises in S6, which

has an almost complex structure, which is not arising from a complex structure.

Till now we were dealing with the real tangent bundle TM , which is a C1 vector bundle

on the manifold. On complex manifolds it is more convenient to work with the complexified

tangent bundle,

TCM := TM ⌦R C.

We will denote v⌦
p
�1 as

p
�1v. The endomorphism J can be extended to an endomorphism

on the complex vector bundle TCM . Define

@

@zi
:=

1

2

✓
@

@xi
�

p
�1

@

@yi

◆
,

@

@zi
:=

1

2

✓
@

@xi
+
p
�1

@

@yi

◆
.

Then, ⇢
@

@z1
, . . . ,

@

@zn
,
@

@z1
, . . . ,

@

@zn

�
(2.4)

is a local basis for TCM . Observe that,

J

✓
@

@zi

◆
=

p
�1

@

@zi
, J

✓
@

@zi

◆
= �

p
�1

@

@zi
. (2.5)

We can decompose

TCM = T 1,0M � T 0,1M, (2.6)
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where T 1,0M and T 0,1M are the
p
�1 and �

p
�1 eigenspaces, respectively. By equation

(2.5),
�

@
@zi

 n
i=0

and
�

@
@zi

 n
i=0

are basis for T 1,0M and T 0,1M respectively. Observe that

T 1,0M will be a holomorphic vector bundle, and so will rightly be called the holomorphic

tangent bundle and T 1,0M will be called the anti holomorphic tangent bundle. The cotangent

bundle ⌦1
C(M) is the dual of the complex tangent bundle TCM . A basis for ⌦1

C(M) locally

is given by

{dz1, . . . , dzn, dz1, . . . dzn},

where zi = xi +
p
�1yi and zi = xi

�
p
�1yi. This basis is dual to (2.4). We can write

⌦1
C(M) = ⌦1,0M � ⌦0,1M , where ⌦1,0M and ⌦0,1M are spanned by {dzi}ni=1 and {dzi}ni=1.

Similarly we can decompose higher order forms as

⌦r
C =

M

p+q=r

⌦p,qM,

where ⌦p,qM in local coordinates is spanned by,

dzi1 ^ · · · ^ dzip ^ dzj1 ^ · · · ^ dzjq

for i1 < i2 < · · · < ip and j1 < j2 < · · · < jp.

2.4 Hermitian Metrics

The first chapter dealt with Riemannian metric, which is a smoothly varying inner product

on the tangent space of a manifold. Here we will be interested in Riemannian metrics on

complex manifolds that is compatible with the complex structure in a nice way. Our naive

intuition of an almost complex structure is that it acts like multiplication by
p
�1. So

informally, one would expect g(JX, JY ) =
p
�1

p
�1g(X, Y ) = g(X, Y ). In general, for a

Riemannian metric on a complex manifold, this need not be true.

Definition 2.4.1. A Riemannian metric g on a complex manifold M is called Hermitian if

g(JX, JY ) = g(X, Y ).

This essentially says that Hermitian metrics are Riemannian metrics such that J is orthog-

onal preserving. Splitting the complexified tangent space as TCM = T 1,0M �T 0,1M , let the

15



matrix corresponding to g in local coordinates be

[g] =

 
A B

C D

!
. (2.7)

Then,

Aij = g

✓
@

@zi
,
@

@zj

◆
= g

✓
J

✓
@

@zi

◆
, J

✓
@

@zj

◆◆

= g

✓
p
�1

@

@zi
,
p
�1

@

@zj

◆

= �g

✓
@

@zi
,
@

@zj

◆
= 0.

Similarly, D is also 0. Now consider,

Bij = g

✓
@

@zi
,
@

@zj

◆
= g

✓
@

@zi
,
@

@zj

◆
= Cij.

Since g is symmetric, B as a matrix will be Hermitian and hence locally,

(g) =

 
0 h

h 0

!

where h is a Hermitian matrix, and in local coordinates Hermitian metrics are determined

by the entries,

gij = g

✓
@

@zi
,
@

@zj

◆
, gij = gji.

Given a Hermitian metric g consider a 2-tensor ! defined as

!(X, Y ) := g(J, Y ).

Observe that !(X, Y ) = g(JX, Y ) = g(J2X, JY ) = �g(X, JY ) = �!(Y,X), implies that !

is a 1, 1 form, also called the metric form. In local coordinates, ! can be written as

! =
p
�1gijdz

i
^ dzj. (2.8)

The term Hermitian metric will be interchangeably used to describe g, ! or h. All three

encapsulate the same information, but can be useful in di↵erent scenarios.
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On a real manifold of dimension m, that the volume form is given by

vol(M) =
q
det(gij)dx

1
^ · · · ^ dxm.

On a complex manifold M of dimension n, equipped with a Riemannian Hermitian metric

!, the volume form is given by

vol(M) =
!n

n!
. (2.9)

2.5 Kähler Metrics

Definition 2.5.1. A Hermitian metric g, with a corresponding 1, 1 form ! is called Kähler

if d! = 0.

In local coordinates if,

! =
p
�1gijdz

i
^ dzj,

then

d! =
p
�1

@gij
@zk

dzk ^ dzi ^ dzj +
p
�1

@gij
@zk

dzk ^ dzi ^ dzj.

Hence ! is Kähler if and only if
@gij
@zk

=
@gkj
@zi

. (2.10)

A complex manifold M equipped with a Kähler metric ! is called a Kähler manifold. We

denote a Kähler manifold by (M,!). The above definition essentially describes a Kähler

metric as a complex manifold with a symplectic structure. This definition is useful when we

are given a Hermitian metric and want to check if it is Kähler. From an analytic point, of

view we will be interested in another equivalent formulation. Recall that, on real manifolds

we had the concept of normal coordinates. It is natural to ask if, for a Hermitian metric on

a complex manifold do we have holomorphic normal coordinates. In general the answer is

NO!!

Theorem 2.5.1. (Local holomorphic normal coordinates on Kähler manifolds) Let g be a

Hermitian metric on a complex manifold. Then g is Kähler if and only if for any point

17



p 2 M , there exist a holomorphic normal coordinates z1, . . . , zn, that is

gij(p) = �ij ;
@gij
@zk

(p) =
@gij
@zk

(p) = 0.

Proof. The idea of the proof is very similar to one of the proofs of normal coordinates on

Riemannian manifolds, but during the computation we will need the Kähler criterion.

Let p be a point on a Kähler manifold (M,!). We can always choose a local holomorphic

coordinates, w1, . . . , wn around p such that the metric egij(p) = �ij(p). In local coordinates

with respect to wi, let the metric be,

egij = �ij + aijkw
k + aijkw

k +O(|w|2),

where O(|w|2) denotes the terms of order greater than or equal to 2.

By the inverse function theorem, in a small neighborhood, we can define a new holomorphic

coordinates z1, . . . , zn satisfying

wi = zi �
1

2
bijkz

jzk

for some constants bijk, such that bijk = bikj. Now,

@wi

@zj
= �ij � bijkz

k.

Let gij be the metric in local coordinates with respect to zi. Then,

gij = �ij + aijkz
k + aijkz

k
� bjkiz

i
� bikjz

k +O(|z|2).

To obtain normal coordinates we will need that bjki = aijk and bikj = aijk = aijk. By equation

(2.10), the Kähler criterion is equivalent to aijk = akji, hence by defining bjki := aijk, we get

a local holomorphic normal coordinates at p.

To prove the converse, if in some local coordinates ! =
X

i

dzi ^ dzi + O(|z|2), then d! =

0.

The most trivial example of a Kähler manifold is Cn, where the tangent space at a point can

be canonically identified with Cn and the inner product on the tangent space is the normal

inner product on Cn. Let us explore another important example.
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Example 4. (Fubini-study metric) We have seen that projective spaces CPn are one of the

important examples of complex manifolds. Additionally, CPn has a natural Kähler metric

!FS. Recall the quotient map ⇡ : Cn+1
\{0} ! CPn. Let s : U ⇢ CPn

! Cn+1 be a local

section, that is ⇡ � s = id. Then, define

!FS =
p
�1@@ log ||s||2. (2.11)

To see this is well defined, if s0 : V ! Cn+1
\{0} is another section, then on U \ V we have,

s0 = fs for a holomorphic function f , and

p
�1@@ log ||s0||2 =

p
�1@@ log ||s||2 +

p
�1@@ log f +

p
�1@@ log f =

p
�1@@ log ||s||2.

Now consider a section of O(m), which is a m degree polynomial on Cn+1. Let D be the zero

of this section. Assume zero is a regular value of the polynomial, then D is a submanifold

of CPn and the fubini-study metric restricted to D will be a Kähler metric. This gives us a

simple recipe for getting a large number of examples of Kähler metrics.

Given a Kähler manifold (M,!), we know that ! is a closed real 2-form and hence it will

define a cohomology class in H2(M,R). The following lemma gives a parametrisation of a

cohomology class in compact Kähler manifolds. This lemma will play a key role in chapter

4, in converting our geometric problem into a partial di↵erential equation.

Lemma 2.5.2. (@@-Lemma) Let M be a compact Kähler manifold. If ↵ and ⌘ are two

real (1, 1) forms in the same cohomology class, then there is a global real valued function

f : M ! R such that,

⌘ = ↵ +
p
�1@@f.

The proof uses the Hodge decomposition theorem for Compact Kähler manifolds. It is

important to note that this lemma is true for Kähler manifolds and not in general for

Hermitian metric, and will be key in the proof of Calabi Conjecture.

2.6 Levi-Civita and Chern Connections

In the previous chapter, we saw connections on vector bundles as di↵erentiating a section

along a vector field. More importantly we saw a natural connection on the tangent bundle of a
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Riemannian manifold, the Levi-Civita connection. On a Kähler manifold, we can di↵erentiate

vector fields and even tensors by using the Levi-Civita connection. Since the connection

is compatible with the Riemannian metric we have, rg = 0. For a Kähler metric, in

holomorphic coordinates the almost complex structure is constant, implies rJ = 0 and

hence r! = 0.

For notational convenience from now onwards we will denote

@i :=
@

@zi
, @i :=

@

@zi
, ri := r @

@zi
, ri := r @

@zi
.

Taking analogy from Riemannian geometry, we can define Christo↵el symbols for the Levi-

Civita connection on a complex manifold as

rj@k = �i
jk@i + �i

jk@i.

In a similar manner, we can also define other Christo↵el symbols. For any vector field X,

we have

(rJ)X = r(J(X))� J(r(X)),

r(J(X)) = J(r(X)).

Now,

J(rj@k) = rjJ(@k) =
p
�1rj@k

and hence ri@k 2 T 1,0(M). Similarly, ri@k 2 T 1,0(M), and ri@k 2 T 0,1(M) for all i and k.

Since the connection is torsion free, we have,

ri@k = rk@i = 0.

Hence the Christo↵el symbol is completely determined by �i
jk, and

�i
jk = �i

jk
, (2.12)

and every other Christo↵el symbol is zero. We can calculate the Christo↵el symbol in terms

of the metric,

�i
jk = gil@jgkl. (2.13)
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This can also be seen from the formula for Christo↵el symbols in Riemannian geometry, and

substituting zero for the appropriate terms.

2.6.1 Chern connection

We have seen when a Riemannian metric on a complex tangent bundle is Hermitian. In

general a Hermitian metric on a complex vector bundle is a section h of the bundle V ⇤
⌦ V ⇤

such that,

1. (Positive definite) h(v ⌦ v) > 0 for all v 2 V , and

2. (Hermitian Symmetry) h(v ⌦ w) = h(w ⌦ v) for all v, w 2 V .

For a Riemannian Hermitian metric on the tangent bundle, the Hermitian metric corresponds

to it’s restriction the holomorphic tangent bundle T 1,0M . The metric h in local coordinates

corresponds to the matrix B in equation (2.7).

For a Riemannian metric, the Levi-Civita connection was the most natural connection that

respected the metric structure. On a holomorphic vector bundle with a Hermitian metric,

we need to know what is the most natural connection. In naive terms, the connection has

to respect both the structure, namely the Hermitian metric and the holomorphic structure

of the vector bundle.

Definition 2.6.1. (Chern Connections) Let (V,M) be a holomorphic vector bundle equipped

with a Hermitian metric h. The Chern connection is the unique connection satisfying

1. @k(hs1, s2i) = hrks1, s2i+ hs1,rks2i, for two local sections s1 and s2 and

2. ris = 0, for a holomorphic section s on V.

where < ., . > is the Hermitian inner product h, that is < s1, s2 > h(s1, s2) for sections s1

and s2.

Locally, the second criterion is the Cauchy Riemann equations. In general, the chern con-

nection does not commute and we can again define the curvature of the chern connection in

a similar manner.

For a complex manifold M , with a Hermitian metric on the holomorphic tangent bundle
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T 1,0M , we have two notions to di↵erentiate vector fields, the Levi-Civita connection and the

Chern connection. Due to the following theorem, we will not have this ambiguity on Kähler

manifolds.

Theorem 2.6.1. A Hermitian metric on a complex manifold M is Kähler if and only if the

Levi-Civita and Chern connections coincide on T 1,0M .

Curvature is the failure of the connection to commute, hence

R j

i kl
@j = (rkrl �rlrk)@i

= �rl�
j
ik@j

= �@l(�
j
ik)@j � �j

ikrl@j = �@l(�
j
ik)@j.

Thus,

R j

i kl
= �@l�

j
ik,

or

Rijkl = gmjR
m
i kl

= gmj@l�
m
ki. (2.14)

Substituting for �m
ki in terms of the metric, we get

Rijkl = �@k@lgij + gpq(@kgiq)(@lgpj). (2.15)

This expression is similar to that in Riemannian geometry, but actually simpler. In normal

coordinates, the expression for curvatures is of the form @@g. Hence, similar to Geodesic

normal coordinates, the coe�cient of the second order terms in holomorphic normal coordi-

nates is the curvature tensor.

The Ricci curvature denoted by Ric(g) is the trace of the Rijkl with two variables fixed.

That is

Ric(g) :=
p
�1Rijdz

i
^ dzj, (2.16)

where,

Rij = gklRijkl.

Theorem 2.6.2. Given a Kähler Manifold (M, g), the Ricci curvature is given by,

Ric(g) = �
p
�1@@ log det(g).
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It is a closed (1, 1) form and the cohomology class [Ric(g)] 2 H2(M,R) is independent of the
choice of the Kähler metric.

Proof. In local coordinates,

�@j@i log det(g) = �@j(g
kj@igkl) = �@j(�

k
ik)

= R k
k ij = Rij.

The Ricci curvature Ric(g) is closed, since d(Ric(g)) = d(�
p
�1@@ log det(g)) = 0. Let g, h

be two Riemannian Hermitian metrics and !g, !h be the respective metric forms. Then

Ric(g)�Ric(h) =
p
�1@@ log

✓
det(h)

det(g)

◆

=
p
�1@@ log

✓
!n
h

!n
g

◆
.

Since
!n
h

!n
g

is a globally defined function,

[Ric(g)] = [Ric(h)].

The first Chern class is defined as

c1(M) :=
1

2⇡
[Ric(g)] 2 H2(M,R). (2.17)

Here the 2⇡ is a normalization factor. The first Chern class c1(M) is one cohomology class

in a larger family of cohomology classes, known as Chern classes. Given a Kähler metric !,

we can define the matrix valued curvature 2-form F of type (1, 1) as

F j
i = gjpRipkldz

k
^ dzl.

Consider the polynomial,

det

✓
I + t

p
�1

2⇡
F

◆
= 1 + tc1(g) + t2c2(g) + . . .
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where ci(g) is a closed real (i, i) form. The class [ci(g)] will be independent of the metric g,

and hence we denote ci(M) := [ci(g)], also known as the ith chern class of the manifold. In

our case c1(M) := 1
2⇡ [Ric(g)], which intuitively makes sense as c1(M) is essentially taking

the trace of the curvature F .

Definition 2.6.2. A (1, 1) form ↵ is said to be positive (respectively negative) if in local

coordinates, the matrix is positive definite (respectively negative definite), that is if

↵ =
p
�1↵ijdz

i
^ dzj,

then ↵ is positive if the matrix (↵ij) is positive definite.

A cohomology class ⌦ 2 H2(M,R) is positive (resp negative) if there exists a ↵ 2 ⌦ such

that ↵ is positive (resp negative).

A cohomology class is said to be equal to zero if it is cohomologous to zero.

An important result related to Ricci curvature and the first chern class on Kähler manifolds

is the Calabi-Yau theorem. We will discuss more about the theorem, its proof and some

applications in chapters 4 and 5.
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Chapter 3

Analytic Framework

In this chapter, we discuss various concepts and results from analysis and PDE, that we

require over the course in the proof of the Calabi-Yau theorem. The Laplace’s and Poisson’s

equations are among the most basic partial di↵erential equations (PDE), with the equations

surfacing in Ohm’s law, Brownian motion, Edge detection to name a few. Given a function,

f : ⌦ ! R, where ⌦ is an open subset of Rn,

Laplace’s Equation : �u = 0

Poisson’s Equation : �u = f.

Solutions to the Laplace’s equation are called harmonic functions. An important rational

behind the study of Laplace equations is that it is the simplest example of a much larger class

of di↵erential operators, called Elliptic PDE. The techniques used to study the Laplacian

are heavily used in the study of general elliptic operators.

Harmonic functions can be also be defined via the mean value property due to the following

theorem.

Theorem 3.0.1. (Mean Value Theorem) Let U be a open set in Rn. A smooth function

u : U ! R is harmonic, if and only if for every x 2 U and Br(x) ⇢ U then,

u(x) =
1

V ol(@Br(x))

Z

@Br(x)

u(y)dy.

Here Br(x) is the open ball with center x and radius r.
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Harmonic functions are real analytic functions and thereby posses a lot of the properties

of real analytic functions (and more strikingly complex functions), like maximum modulus

principle, Liouville’s theorem and so on. A very standard reference for more properties of

the Laplace operator on Rn can be found in [10].

3.1 Laplacian on manifolds

On a manifold, we cannot define the Laplacian as just
P

i
@2

@xi@xi , the problem is that it

depends on the choice of coordinates xi and the expression changes when we change coor-

dinates. Another way to see the Laplacian, is the divergence of the gradient of a function.

So, let (M, g) be a Riemannian manifold with a Levi-Civita connection. If u : M ! R be a

function on M . The gradient of u is the vector field dual to the form du. Locally,

ru =
@u

@xj
gij

@

@xi
. (3.1)

The divergence is the dot product of the Levi-Civita connection with a vector field. For a

vector field X, the divergence is div(X) = r.X = @Xi

@xi + �i
ikX

k. The Laplacian of M can be

defined as

�u := div(ru) =
X

i

r.(ru) =
@

@xi

✓
gij

@u

@xj

◆
+ �i

ik

@u

@xj
gjk. (3.2)

In normal coordinates, it looks like the Laplacian on Rn. There are few di↵erent ways to

define the Laplace operator on riemanian manifolds. But we will stick to the above definition.

It is important to note that even for the Laplacian operator on Riemannian manifolds we

have results like the Stokes theorem, by parts formula.

On Kähler manifold we will use only one half of the Laplacian. If (M,!) is a Kähler manifold

then,

�u = gij@i@ju. (3.3)

Suppose we are looking for solutions to the equation�u = f on a compact complex manifold.

By applying integration by parts, we have that,
R
�udV = 0. Hence, a necessary condition

for �u = f to have a solution, is that
R
fdV = 0. On Kähler manifolds, in fact this is also

su�cient.
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Theorem 3.1.1. Let (M,!) be a Kähler manifold, f is a smooth function on M , and

Z
f!n = 0,

then there exist a smooth function u such that �u = f. More generally if f 2 C0(M)

then there exist a W 2,p(M) solution for all p in the weak sense and eventually, we get u is

a C1,↵(M) solution. Here W 2,p(M) are the standard Sobolev spaces and C1,↵(M) are the

Hölder spaces.

We will not go into the details of the proof.

3.2 Green’s function for the Laplacian operator

The fundamental solution of the Laplacian is defined as

�(x) :=

(
�

1
2⇡ ln |x| ; n = 2

1
n(n�2)↵(n)

1
|x|n�2 ; n > 2,

where x 6= 0, and ↵(n) is the volume of the unit ball in Rn. In modern terminology �

satisfies ��(x) = �0(x) in the sense of distributions. Then,

u(x) =

Z

M

��(x� y)u(y)dy =

Z

M

�(x� y)�u(y)dy.

We can use this to find solutions to the Poisson’s equations in Rn, that is a solution to

�u = f in Rn is u(x) =
R
M �(x � y)f(y)dy. The Green’s function is the extension of the

above idea to the boundary value problem. Let ⌦ be a bounded domain in R with C1

boundary and u is a solution to

��u = f in ⌦

u = g on @⌦.

For a fixed x, let �x be a solution of

���x = 0, in ⌦

�x = �(y � x), on @⌦.
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Define the Green’s function as

G(x, y) := �(y � x)� �x(y)

where x 6= y. Then,

u(x) =

Z

⌦

f(y)G(x, y)dy �

Z

@⌦

g(y)
@G

@⌫
(x, y)dy.

As a distribution G solves the equation

��Gx(y) = �x(y) in ⌦

Gx(y) = 0 on @⌦,

where Gx(y) = G(x, y) and �x is the Dirac delta with singularity at x.

3.2.1 Green’s function on Compact manifolds

The aim of this section is to define a Green’s function and Green’s function type formula

for compact Riemannian manifolds. The first question to ask whether we can again find a

function G, such that �Gx = �x. In Theorem 3.1.1 we saw that we can hope to have a

solution to �u = f only if
R
f = 0, but here

R
�x 6= 0. So we will define a Green’s function

on a manifold satisfying

�Gx = �x �
1

V
, (3.4)

where V is the volume of the manifold. Note that if G exists, it is smooth when x 6= y. Once

we have Green’s function that satisfies equation (3.4). Then, for any function �,

�(x) =

Z

M

�(y)�Gx(y)dy +
1

V

Z

M

�(y)dy

=

Z

M

��(y)Gx(y)dy +
1

V

Z

M

�(y)dy.

In deriving the existence Green’s function we will need the following lemma

Lemma 3.2.1. Let f, g be functions defined on ⌦⇥⌦\{(x, x)|x 2 ⌦}, where ⌦ is a bounded
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domain in Rn, and

|f(x, y)| 
C

d(x, y)p
,

|g(x, y)| 
C

d(x, y)q
,

where p, q 2 (0, n) and C is a constant, then

h(x, y) :=

Z

M

f(x, z)g(z, y)dz

is continuous for x 6= y and

|h(x, y)| < C if p+ q < n

|h(x, y)| < C(1 + | ln d(x, y)|) if p+ q = n

|h(x, y)| < Cd(x, y)n�p�q if p+ q > n.

Further in the first case where p+ q < n, h is continuous everywhere.

For a fixed x, in a small neighborhood, we expect the Green’s function to behave like the

fundamental solution. Consider,

eG(x, y) =

8
>>><

>>>:

�
ln(d(x, y))

2⇡
f(d(x, y)); n = 2

(n� 2)!(n)

d(x, y)n�2
f(d(x, y)); n > 2

where f is a real valued function on R, such that it is 1 in a neighborhood of 0, and zero

outside the injectivity radius. It is easy to see that,

|� eGx(y)| 
C

d(x, y)n�2
.

In a neighborhood, eG behave like the fundamental solution. Looking at � as distributional

derivative, we know that

Z

M

eGx(y)��(y)dy =

Z

M

� eGx(y)�(y)dy,
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and

�

Z

M

eGx(y)�(y)dy =

Z

M

� eGx(y)�(y)dy. (3.5)

The naive idea to get a Green’s function is to write

G(x, y) = eG(x, y) +  (x, y),

this implies

�y (x, y) = �x(y)�� eGx(y)�
1

V
.

Here we would want �x(y) � � eGx(y) to be C0 or better so that by Theorem 3.1.1, we will

have a solution  . Even if it was L2 we would have a result similar to Theorem 3.1.1. But

we will not be able to exactly do this, we will rather through an iterative process solve such

an equation.

Theorem 3.2.2. There exists a Green’s function G satisfying equation (3.4), such that for

any smooth function �

�(x) =
1

V

Z

M

�(y)dy +

Z

M

G(x, y)��(y)dy.

Proof. Let us define,

 1(x, y) = � eGx(y)� �x(y),

and

 i+1(x, y) =

Z

M

 i(x, z) 1(z, y)dz,

Since

| i(x, y)| 

8
<

:

C

d(x, y)n�2i
; i < n/2

C ; i > n/2

Fix a k such that n
2 < k  n, Consider

G(x, y) = eG(x, y) +
k�1X

i=0

Z

M

 i(x, z) eG(z, y)dz +  (x, y). (3.6)

Infact, we will show that there exists a  such that equation (3.4) is true. Taking Laplacian
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on both sides,

�Gx(y) = � eGx(y) +
k�1X

i=0

�y

Z

M

 i(x, z) eG(z, y)dz +�y (x, y). (3.7)

By equation (3.5),

�y

Z

M

 i(x, z) eG(z, y)dz =  i +

Z

M

 i(x, z) 1(z, y)dz =  i �  i+1

Hence, equation (3.7), reduces to

�x(y)�
1

V
= �x(y)�  1 +

k�1X

i=0

( i(x, y)�  i+1(x, y)) +�y (x, y).

So we need to find  such that,

� =  k(x, y)�
1

V
.

Since we started with k > n
2 , the function  k(x, y) �

1
V is C0 and hence by Theorem 3.1.1,

we have a C1,↵ solution  . The function  k(x, y) is smooth when x 6= y, hence  is smooth

when x 6= y, and

�(x) =
1

V

Z

M

�(y)dy +

Z

M

G(x, y)��(y)dy,

for any smooth function �.

The function  1 would not even be L2, so we iteratively repeated the process to ensure that

we have a su�ciently regular function. Since G is defined upto a constant, we can ensure

that 0 < G(x, y) or even ensure that
R
M G(x, y) = 0.

3.3 Elliptic Di↵erential Operators

We will look at a more general class of di↵erential operators called elliptic partial di↵erential

operators. For a domain ⌦ ⇢ Rn, a linear partial di↵erential operator

Lu =
X

|↵|k

a↵@
↵u
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is elliptic if
X

|↵|=k

a↵v
↵ is invertible for v 6= 0. We will be interested in second order linear

elliptic PDE. A second order linear PDE,

L =
X

i,j

aij
@2

@xi@xj
+
X

i

bi
@

@xi
+ c

is elliptic if and only if the matrix [aij] is positive definite. Elliptic operators tend to behave

like finite dimensional operators. We will need the following estimates on elliptic operators.

Theorem 3.3.1. (Schauder estimates) Let (M, g) be a compact Riemannian manifold. Let

L be a uniformly elliptic operator, and let ↵ 2 (0, 1), k be a positive integer. Then, there is

a constant C such that,

||u||Ck+2,↵(M)  C(||L(u)||Ck,↵(M) + ||u||L1(M)),

where C depends on the manifold , k, ↵, the ellipticity constants and the Ck,↵ norms of the

coe�cients of L. Additionally, if the coe�cients of L are in Ck,↵(M) and if u 2 C2 and

L(u) = f 2 Ck,↵ then u is in Ck+2,↵(M).

This is a consequence of the local Schauder estimates on domains in Rn. One of the con-

sequences of the Schauder estimates is, that the solution space of Elliptic PDE is finite

dimensional. We will use the Schauder estimate to prove higher regularity of solutions. For

example, if we have a C2 solution for an elliptic PDE with smooth coe�cients, then by

Schauder estimates we will in fact have smooth solutions. Another important result we will

require is given below,

Theorem 3.3.2. Let L be an elliptic second order operator with smooth coe�cients on a

compact Riemannian manifold M . For ↵ 2 (0, 1) and positive integer k, if ⇢ ? kerL⇤ with

respect to the L2-norm. Then, there exists a unique u such that

Lu = ⇢; u ? kerL.

Equivalently

L : (kerL)? \ Ck+2,↵
! (kerL⇤)? \ Ck,↵

is an isomorphism.

We will also need the following theorem, on Hölder spaces on compact manifolds.
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Theorem 3.3.3. (Compact Embedding) Given a Riemannian manifold (M, g), then the

normed linear space Ck,↵(M) is compactly contained in C l,�(M) for l + � < k + ↵, that is

if uk : M ! R is a bounded sequence of functions in Ck,↵(M), then it has a convergent

subsequence in C l,� for l + � < k + ↵.

The proof is a siple argument using the Arzela-Ascoli theorem. Apart from the above result

we will need the Poincare inequality and Sobolev inequality, both can be found in Evans

[10].
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Chapter 4

The Calabi Yau Theorem

This is the main chapter of the thesis, and here we discuss Yau’s celebrated proof of the

Calabi-Yau theorem [3]. It was first stated as a conjecture by Eugenio Calabi. Yau received

the fields medal partly for the proof of the theorem, and proving some results in algebraic

geometry using the Calabi-Yau theorem. The techniques used in the proof goes beyond just

this result, it has laid a foundation to solve other problems even in today’s research. In

fact a very closely related problem, the existence of Kähler-Einstein metrics, where the case

c1(M) > 0 was only resolved in this decade. A key aspect of the proof of the Calabi-Yau

theorem will involve solving complex Monge-Ampere type equations. Large parts of the

proof in this chapter are based of the references [2] and [1]. In Theorem 2.6.2, we had seen

that for a Kähler metric g, the cohomology class [Ric(g)] is independent of the metric g and

this cohomology class is 2⇡ times the first chern class, c1(M). In this chapter we look at

a converse problem to this theorem on Kähler manifolds. A cohomology class in H2(M,R)
contains real valued closed 2 forms on the manifold M , and a cohomology class in H1,1(M,C)
contains closed 1,1 form on the manifold M .

Theorem 4.0.1. (Calabi-Yau theorem) Let (M,!0) be a compact Kähler manifold such that

[!0] 2 H2(M,R)\H1,1(M,C). Given any ⌦ 2 2⇡c1(M), there exists a unique Kähler metric

! 2 [!0] such that Ric(!) = ⌦.

This is not just a converse to Theorem 2.6.2, but much stronger. It not only states that

every element of [Ric(g)] is Ricci of some Kähler metric, but in fact says that every element

of [Ric(g)], is the Ricci of a Kähler metric in any Kähler class. In the next chapter, we will
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discuss some applications of the theorem. For the rest of this chapter, our primary focus is

the proof of the Calabi-Yau theorem.

4.1 Geometric problem to a PDE

The first step in the proof is to reformulate the given geometric problem as a PDE. The

@@�lemma a the key tool in accomplishing this. In local coordinates, let

!0 =
p
�1gijdz

i
^ dzj.

By theorem 2.6.2, we have that the Ricci curvature of !0 is given by,

Ric(!0) = �
p
�1@@ log det g.

Since ⌦ and Ric(!0) are real (1, 1) forms in the same cohomology class, by the @@-lemma

there exists a smooth function f on M such that,

⌦0 = Ric(!0)�
p
�1@@f (4.1)

where f is unique upto a constant. Suppose there is a ! 2 [!0] such that Ric(!0) = ⌦, then

by the @@-lemma,

! = !0 +
p
�1@@� (4.2)

where � is a smooth function M . Since Ric(!) = ⌦ = Ric(!0)�
p
�1@@f , we have

�
p
�1@@ log det(g + @@�) = �

p
�1@@ log det(g)�

p
�1@@f

which is a non linear PDE of order 4. We now derive a second order non-linear PDE,

integrating both sides,

log det(g + @@�) = log det(g) + f, (4.3)

where constant due to integration has been absorbed into f . The above equation is equivalent

to

(!0 +
p
�1@@�)n = ef!n

0 .
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If ! = !0 +
p
�1@@� is Kähler, then

R !n
0
n! = V ol(M) =

R
!n

n! , and since f is defined upto a

constant, we can choose f such that

Z
(ef � 1)!n

0 = 0.

The Calabi-Yau theorem is equivalent to the existence of � : M ! R such that

(!0 +
p
�1@@�)n = ef!n

0

!0 +
p
�1@@� > 0

)
. (4.4)

Note that f is a given information of the problem and, is determined by ⌦, and the nor-

malization criterion
R
(ef � 1)!n

0 = 0. This equation is a second order non linear PDE, also

known as the complex Monge-Ampere equation. In general, Monge-Ampere equations are

second order nonlinear PDE whose leading term is the determinant of the hessian of the

unknown function.

We begin by proving the uniqueness of !0. Let !0,!1 2 [↵] be Kähler metrics such that,

Ric(!0) = Ric(!1) = ⌦.

Then by the @@-lemma,

!0 = !1 +
p
�1@@�.

Since Ric(!0) = Ric(!1), we get det(!0) = det(!1). Thus, we have

0 = !n
1 � !n

0

= (!0 +
p
�1@@�)� !n

0

=
p
�1@@� ^ (!n�1

0 + !n�2
0 ^ !1 + · · ·+ !n�1

1 )

Multiplying both sides by �� and integrating, we get

0 = �
p
�1

Z
�@@� ^ (!n�1

0 + · · ·+ !n�1
1 )

=
p
�1

Z
@� ^ @� ^ (!n�1

0 + · · ·+ !n�1
1 )

Since !0 and !1 are positive definite, that is !0,!1 > 0, we arrive at

0 = @� ^ @� ^ (!n�1
0 + · · ·+ !n�1

1 ) � @� ^ @� ^ !n�1
0 .
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To calculate @� ^ @� ^ !n�1
0 , consider normal coordinates on !0, then

@� ^ @� ^ !n�1
0 = @i�@i�dz

1
^ dz1 ^ · · · ^ dzn ^ dzn

= |@�|2!n
0 =

1

2
|r�|2!n

0 .

Hence we have, Z
|r�|2!n

0  0.

This implies that, r� = 0 and thus !0 = !1.

We just proved that if a solution exists, it is unique. We are now left with the herculean

task of showing that there exists a smooth solution to the equation (4.4).

The strategy is to have a family of equations which also depend on a new parameter s, where

s = 0 will correspond to a much simpler equation and at s = 1 we get the equation (4.4).

This method is known as the method of continuity. For 0  s  1, define

fs := sf + c(s) = 0,

where c(s) is a function such that

Z

M

(efs � 1)!n.

Consider the following equation depending on the parameter s,

(!0 +
p
�1@@�)n = efs!n

0

!0 +
p
�1@@� > 0

)
. (⇤s)

Note that f1 = f , and hence for s = 1 the equation reduces to the complex Monge-Ampere

which we are trying to solve. We will show that the set of s for which (⇤s) has a solution is

non empty, open, and closed. The idea for each step is as follows:

1. (Non-empty) For s = 0, f0 = 0 and hence � = 0 is a solution to (⇤0).

2. (Open) Using the Implicit function theorem for Banach manifolds, we show that if

there exists a solution to (⇤s), then for t close to s, (⇤t) has a solution.

3. (Closed) The aim will be to prove apriori estimates on the solution, and then use

Theorem 3.3.3 to prove that for a convergent sequence si such that (⇤si) has a solution,

then the limit of si also has a solution. This step is the hardest, and is one of the main

contributions by Yau.
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4.2 Openness

Assume that for s 2 [0, 1], (⇤s) has a solution. Let �s be a solution of (⇤s), that is

(!0 +
p
�1@@�s)

n = efs!0.

We need show that for t close to s, we have a solution for (⇤t). We need to find a solution

�t such that,

!0 +
p
�1@@�t = eft!0,

!0 +
p
�1@@�t > 0.

Defining, !s := !0 +
p
�1@@�s, the above equation is equivalent to solving for �t in,

(!s +
p
�1@@(�t � �s))

n = eft�fs!n
s .

Setting,  = �t � �s, we need to find a  such that for t close to s,

(!s +
p
�1@@ )n = eft�fs!n

s . (4.5)

We have essentially changed the problem of proving openness around the origin. From the

previous section we know that !s is unique, and hence �s is unique upto a constant. So,

without loss of generality we can can assume that

Z

M

�s!
n
0 = 0. Thereby we will restrict

ourselves to finding solutions in the space,

Ck,↵
0 (M) :=

⇢
� 2 Ck,↵

|

Z

M

�!n
0 = 0

�
. (4.6)

Define the following function between Banach spaces:

G : C2,↵
0 (M)⇥ [0, 1] ! C0,↵(M) by (�, t) 7! log

(!s +
p
�1@@�)n

!n
s

� ft + fs.

Since �s is a solution to (⇤s), consequently G(0, s) = 0. We will use the implicit function

theorem for Banach spaces to show that for each t in a small neighborhood of s there is a

 such that G( , t) = 0. To apply the implicit function theorem, we need to show that the

Gateaux derivative with respect to the  variable, at  ⌘ 0, is invertible.
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If we define � : C2,↵
0 (M) ! C0,↵(M), as

�( ) := log
(!s +

p
�1@@ )

!n
s

Then the derivative of � at  ⌘ 0 is

D� ⌘0 : C
2,↵
0 (M) ! V ⇢ C0,↵(M)

D� ⌘0(u) =
d
dt |t=0(!s +

p
�1@@tu)n

!n
s

We can di↵erentiate forms which depend on a variable, just like we do with normal functions.

If ↵(x), �(x) are forms which depend on a variable x, then

d

dx
(↵(x) ^ �(x)) =

✓
d

dx
↵(x)

◆
^ �(x) + ↵(x) ^

✓
d

dx
�(x)

◆

and hence,

D� ⌘0(u) =
n
p
�1@@u ^ !n�1

s

!n
s

.

Since !s is Kähler, we can choose normal coordinates with respect to !s. Then, it is easy to

see that

D� ⌘0(u) = �!s(u), (4.7)

where �!s is the Laplace operator with respect to the !s metric. The Laplacian is a self

adjoint elliptic second order operator, and observe that if u 2 Ker� = Ker�⇤, then

0 = 2n

Z

M

u�u!n
s =

Z

M

||ru||2!n
s .

Hence u is a constant, but since
R
u = 0 we get u = 0. Hence, (Ker�)? = C2,↵(M). By

theorem 3.3.2, D� ⌘0 is an isomorphism. Thus in a neighborhood of s, we have a C2,↵

function �t such that

(!0 +
p
�1@@�t)

n = eft!0. (4.8)

Observe that the coe�cients of equation (4.8) are C1 and hence by Schauder estimates, we

have that �t 2 Ck,↵(M) for all k which implies �t is smooth.

Since !s is positive definite, if required we can choose a smaller neighborhood of s and ensure

that !t is also positive definite. Hence, we have shown that the set of s for which (⇤s) has a
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solution is open.

4.3 Closedness

To show that the set of parameters s is closed, consider a sequence si 2 [0, 1] such that

si ! s. We need to show that if for each si, equation (⇤si) has a solution, then (⇤s) also has

a solution. We will find apriori estimates on ||�||C2,↵ , then by Theorem 3.3.3, we will have

a convergent subsequence of �i in C2(M). In order to find C2,↵ estimates we will first find

apriori uniform C0 and @@-estimates on the solution.

4.3.1 C0 estimate

The aim is to find a uniform estimate on the C0 norm of the solution. Yau in his original

paper witfully used a technique called Moser’s iteration method as a key step to find the

C0 estimate. Apart from that we will be using the Green’s formula for compact manifolds,

Sobolev inequality and Poincare inequality.

Since � is unique upto a constant, we can assume that sup� = �1 (This will help us in the

calculation ahead). Our aim is to prove that sup |�| < C where C does not depend on the

parameter s. It is easy to see that if we have a C0 bound on � such that sup� = �1, then

we also have a uniform C0 bound on � with zero integral.

In the previous chapter, we saw a Green’s formula for compact manifolds:

�(x) =
1

V

Z

M

�(y)!n
0 �

1

V

Z

M

��(y)G(x, y)!n
0 , (4.9)

where V =
R
M !n

0 . Since G is unique upto a constant, we can also ensure that,

0  G(x, y) 
C

d(x, y)2n�2
,

for some constant C. Since M is compact, assume that � achieves its supremum at xo, then

� 1 = �(x0) = �
1

V

Z

M

|�(y)|!n
0 �

1

V

Z

M

��(y)G(x0, y)!
n
0 . (4.10)
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Since !0 +
p
�1@@� is a metric, it is positive definite, hence it has a positive trace. Now !�

in normal coordinates with respect to !0 has diagonal elements 1 + @i@i, and hence trace of

!� is n+�� > 0. Substituting in equation (4.10), we get

�1 +
1

V

Z

M

|�(y)|!n
0 = �

1

V

Z

M

��(y)G(x0, y)!
n
0 

n

V

Z

M

G(x0, y)!
n
0 .

By using the bound on Green’s function and M is compact, we get

||�||L1 =
1

V

Z

M

|�(y)|!n
0  C. (4.11)

We have obtained a L1 bound on the solution. Now we get a bound on L2 norm of � in

terms of the L1 norm.

||�||L1 =
1

V

Z

M

|�(y)|!n
0 �

C

V

Z

M

(1� efs)�!n
0

�
C

V

Z

M

(!n
0 � (!0 +

p
�1@@�)n)�

�
C

V

Z

M

�@@� ^ !n�1
0 .

By the calculation in uniqueness section and by the Poincare inequality we get,

||�||L1 �
C

nV

Z

M

|r�|2!n
0

�
C

nV

 Z

M

|�|2!n
0 �

✓Z

M

�!n
0

◆2
!
.

Hence,

||�||2L2 
nV

C
||�||L1 + ||�||2L1  C. (4.12)

The last step to prove the the C0 estimate, involves showing that the C0 norm can be

bounded by some constant multiple of the L2 norm. Since �  �1, define e� := �� � 1 and

!� = !0 +
p
�1@@� = !0 �

p
�1@@e�. Note that working with e� will be easier than �. From

the Monge-Ampere equation,

(efs � 1)!n
0 = (!0 �

p
�1@@e�)n � (!0)

n

= �
p
�1@@e� ^ (!n�1

� + · · ·+ !n�1
0 ).

42



Let p � 1 be a real number, multiply both sides of the above equation by e�p and integrate,

to get Z

M

e�p(efs � 1)!n
0 = �

p
�1

Z

M

e�p@@e� ^ (!n�1
� + · · ·+ !n�1

0 ). (4.13)

Computing the right hand side, we have

�
1

V

Z

M

e�p@@e� ^ (!n�1
� + · · ·+ !n�1

0 ) �
1

V

Z

M

@e�p
^ @e� ^ !n�1

0

=
p

V

Z

M

e�p�1@e� ^ @e� ^ !n�1
0

=
p

V

Z

M

(e�
p�1
2 @e�) ^ (e�

p�1
2 @e�) ^ !n�1

0

=
4p

V (p+ 1)2

Z

M

@e�
p+1
2 @ ^ e�

p+1
2 ^ !n�1

0

=
4p

V (p+ 1)2

Z

M

|re�
p+1
2 |

2!n
0

Hence by the Poincare inequality, (Here n is the complex dimension, hence the real dim will

2n), the left hand side of the above expression is greater than or equal to

4p

(p+ 1)2

 
C1

✓
1

V

Z

M

|e�|
(p+1)n
n�1 !n

0

◆n�1
n

�
C2

V

Z

M

|e�|p+1!n
0

!
. (4.14)

On the other hand, computing the left hand side of equation (4.13),

Z

M

e�p(efs � 1)!n
0 

C

V

Z

M

e�p!n
0 

C

V

Z

M

e�p+1!n
0 . (4.15)

Combining the equations (4.14) and (4.15) we obtain,

4p

(p+ 1)2

 
C1

✓
1

V

Z

M

|e�|
(p+1)n
n�1 !n

0

◆n�1
n

�
C2

V

Z

M

|e�|p+1!n
0

!


C

V

Z

M

e�p+1!n
0 .

This implies that

✓
1

V

Z

M

|e�|
(p+1)n
n�1 !n

0

◆n�1
n


1

V

✓
C(p+ 1)

✓
p+ 1

p

◆◆Z

M

e�p+1!n
0 .
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Since p � 1, we see that p+1
p  2 and thus p+1

p can be absorbed in the constant. Further,

assuming p � 2, we may replace p+ 1 by p in the above inequality to get,

✓
1

V

Z

M

|e�|
pn
n�1!n

0

◆n�1
np



✓
Cp

V

Z

M

e�p!n
0

◆ 1
p

.

This implies,

||e�||
L

pn
n�1

 C||e�||Lp , (4.16)

where p � 2. Thus we have got an Lq bound of � in terms of an Lp bound, where p < q. We

now apply Moser’s iteration wherein the above inequality is employed iteratively to obtain

a C0 bound.

Define the following sequence,

p0 = 2; pi+1 =
n

n� 1
pi � 2.

Applying inequality (4.16) i times, we get ,

||�||Lpi 

i�1Y

j=0

(Cpj)
1
pj ||�||L2 . (4.17)

Claim: sup |�| = lim
p!1

||�||Lp .

Proof. Since M is compact,

||�||pLp =
1

V

Z

M

|�|p!n
0  (sup |�|)p

To prove the claim we need to show that sup |�|  lim
p!1

||�||Lp .

Let 0 < ✏ < 1, define M✏ := {x 2 M : |�(x)| > sup |�|� ✏},

||�||Lp =

✓
1

V

Z

M

|�|p
◆ 1

p

�

✓
1

V

Z

M✏

(sup |�|� ✏)p
◆ 1

p

� (sup |�|� ✏)V ol(M✏)
1
p

where V ol(M✏) is the volume or measure of M✏. Taking limit as p ! 1 on both sides, we

get

lim
p!1

||�||Lp � sup |�|� ✏,
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for all ✏. Hence sup |�| = lim
p!1

||�||Lp .

Using the above claim and taking limit as i tends to infinity on both sides of equation (4.17),

we get

sup |�| = lim
i!1

||�||Lpi 

1Y

j=0

(Cpj)
1
pj ||�||L2 .

We need to calculate
1Y

j=0

(cpj)
1
pj = e

P1
j=0

✓
1
pj

lnC+ 1
pj

ln pj

◆

,

and show it is finite. Now, pj = 2( n
n�1)

j, thus

1X

j=0

✓
1

pj
lnC +

1

pj
ln pj

◆
=

1

2

1X

j=0

✓
n� 1

n

◆j

lnC +
1

2

1X

j=0

j

✓
n� 1

n

◆j

ln 2.

The first term is a Geometric progression with a ratio less than 1 and hence finite. The

second term is of the form
P

jaj, |a| < 1, which is a Arithmetico-Geometric progression. It

can be calculated by di↵erentiating both sides of
P

an = 1
1�a and multiplying by a to obtain

P
nan = a

(1�a)2 for |a| < 1. Hence,

1Y

j=0

(cpj)
1
pj < 1,

and finally we have the estimate

sup |�| < C||�||L2 < C.

4.3.2 @@-estimates

In this section we derive a @i@j apriori estimates on the solution, which is a more di�cult

calculation. Observe that !� is a positive definite metric, and hence its eigenvalues are

positive. Thus,

||gij + @i@j�||g  tr !� = n+��,
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where tr !� is the trace of w� with respect to the metric g. Hence,

||@@�||C0  max{tr !�, n}.

To get a C0 bound on @@�, we need to get a bound on tr !� = n+��.

Let �0 denote the Laplacian taken with respect to the !� metric. A very naive idea to get

C0 bounds is to get an inequality of the form

�0(tr !�) � g(tr !�)� C,

for some nice enough function g. Then at the point of maximum, �0 is negative and use this

to get a bound on tr !�. In this proof, rather than applying this idea on tr !� we will work

with a di↵erent function. For ease of notation, let g0 := g + @@�. Firstly, let us calculate

�0(tr !�). In local coordinates.,

�0(tr !�) = �0(n+��)

= (g0)ij@i@j(g
kl@k@l�)

= (g0)ijgkl@i@j@k@l�+ (g0)ij(@i@jg
kl)(@k@l�) + first order terms containing @g.

Since g is Kähler, considering normal coordinates with respect to g, and substituting

@i@jg
kl = �@i@jgkl = Rijkl,

we get

�0(tr !�) = (g0)ij@i@j@k@k�+ (g0)ijRijkl@k@l�. (4.18)

The Laplacian of the trace has a fourth order term. The idea is to di↵erentiate the Monge-

Ampere equation twice to get a similar fourth order term. The complex Monge-Ampere

equation in local coordinates is,

log det(gij + @i@j�) = fs + log det gij.

Di↵erentiating with respect to @k,

@kfs = (g0)ij(@kgij + @i@j@k�)� gij@kgij,

46



and di↵erentiating again with respect to @l, we arrive at

@k@lfs = (g0)ij(@k@lgij + @i@j@k@l�)� (g0)tj(g0)ir(@lgtr + @t@r@l�)(@kgij + @i@j@k�)

�gij@k@lgij + gtjgis@lgts@kgij. (4.19)

Since we are working with normal coordinates, the above equation simplifies to,

�fs = (g0)ij@i@j@k@k�+ (g0)ijRijkk � (g0)tj(g0)ir(@t@r@k�)(@i@j@k�)�Riikk.

Substituting the fourth order term in equation (4.18), we get

�0(tr !�) = (g0)tj(g0)ir(@t@r@k�)(@i@j@k�)� (g0)ijRijkk

+Riikk + (g0)ijRijkl@k@l�+�fs. (4.20)

We can choose coordinates around a point, such that g at the point is identity matrix and

(@i@j�) is a diagonal matrix. This is possible, since a symmetric matrix (in fact for any

self adjoint matrix) can be diagonalised by an orthogonal matrix. Hence, we can start with

normal coordinates on g, and then diagonalise @@� using orthogonal matrices.

In this new coordinates system, note that

g0ij = �ij(1 + @i@i�), and (g0)ij =
�ij

1 + @i@i�
.

Thus the equation (4.20) reads as

�0(tr !�) =
1

(1 + @i@i�)(1 + @j@j�)
(@i@j@k�)(@i@j@k�) +

Riikk

1 + @i@i�

�Riikk +
Riikk

1 + @k@k�
@i@i�+�fs. (4.21)

By symmetry of the curvature tensor, we know that Riikk = Rkkii, and hence the above

equation reads,

�0(tr !�) =
1

(1 + @i@i�)(1 + @j@j�)
(@i@j@k�)(@i@j@k�)

+Riikk

✓
1 + @i@i�

1 + @k@k�
� 1

◆
+�fs. (4.22)
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The estimate we have got on the Laplacian of the trace still has a third order term. We will

work with a slightly di↵erent function and use the above estimate to remove the third order

term. Define a function,

 := e���tr !�.

Then,

�0 = e����0tr !� + gii@i@i(e
���)tr !� + g0ii@i(e

���)@itr !� + g0ii@i(e
���)@itr !�. (4.23)

Simplifying, we get

�0 = e����0tr !� + gii@i@i(e
���)tr !� � �(g0)ii@i�e

���@i(��)

��(g0)ii@i�e
���@i(��). (4.24)

Applying the Cauchy-Schwarz inequality on the second last term, we get

�@i�e
���@i(��) = (�@i�e

��
2 �(tr !�)

1
2 )(e

��
2 �@i(��)(tr !�)

�1
2 )


1

2
(�2@i�@i�e

���(tr !�) + e���@i(��)@i(��)(tr !�)
�1).

The last term of equation (4.24) will also give the same inequality. Hence, we have

�0 � e����0tr !� + gii@i@i(e
���)tr !�

�(g0)ii�
2@i�@i�e

���(tr !�)� (g0)iie
���@i(��)@i(��)(tr !�)

�1

Simplifying,

gii@i@i(e
���)tr !� = ����e���tr !� + �2(g0)ii@i�@i�e

���tr !�.

Combining the above analysis, we obtain

�0 � e����0tr !� + �2(g0)ii@i�@i�e
���tr !� � (g0)iie

���@i(��)@i(��)(tr !�)
�1. (4.25)

For the first term of the above equation, we already had an estimate which involves a third

order derivative term. Now considering the third term,

(g0)ii@i(��)@i(��) =
@i(��)@i(��)

1 + @i@i�
=

|
P

k @k@k@i�|
2

1 + @i@i�
.
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Splitting, |
P

k @k@k@i�|
2 =

����
P

k
@k@k@i�

(1+@k@k�)
1
2
(1 + @k@k�)

1
2

����
2

, and applying Cauchy-Schwarz in-

equality,

(g0)ii@i(��)@i(��) 
1

(1 + @i@i�)(1 + @k@k�)
(@k@k@i�)(@k@k@i�)(n+��)


1

(1 + @i@i�)(1 + @j@j�)
(@i@j@k�)(@i@j@k�)(n+��).

Observe that, the above inequality has the same third order term as �0tr !�. The whole trick

was to apply the Cauchy-Schwarz inequality, to ensure that we get the same coe�cients.

Substituting in equation (4.25), we see that

�0 � e�
✓
�fs + C(n+��)

1

1 + @i@i�
� C2

◆
� ���e���tr !�.

Observe that,

�0� =
@i@i�

1 + @i@i
= n�

1

1 + @i@i�
,

and choose � such that �+ C � 1, then

�0 � �c1e
���

� c2 + e���
1

1 + @i@i�
tr !�. (4.26)

Claim: X

i

1

1 + @i@i�
=

P
i(1 + @i@i�)Q
i(1 + @i@i�)

= e�
fs

n�1 (tr !�).

Proof. Note that 1+@i@i� are eigenvalues of a positive definite matrix, and hence are positive.

Define,

ai :=
1

1 + @i@i�
� 0.

We need to prove that  
X

i

ai

!n�1

�

X

k

Y

i 6=k

ai.

Now,

 
X

i

ai

!n�1

=

 
(n� 1)

X

k

X

i 6=k

ai
n� 1

!n�1

.
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Hence by the AM-GM inequality, we get

 
X

i

ai

!n�1

�

X

k

 
X

i 6=k

ai
n� 1

!n�1

�

X

k

 
Y

i 6=k

ai
n� 1

!n�1

.

Substituting in equation (4.26),

�0 � �C1e
���

� C2 + e
fs

n�1 e���(tr !�)
n

n�1

= �C1e
���

� C2 + C3 
n

n�1 ,

for some constants C1, C2 and C3. Assume that  achieves a maximum at x0, then

0 � � (x0) � �C1 � C2 (x0) + C3 (x0)
n

n�1 .

Hence for all x 2 M , we have

 (x)
n

n�1   (x0)
n

n�1  C(1 +  (x0)) < C,

and this implies

tr !�  C.

4.3.3 C2,↵ estimates

In the previous section, we proved a uniform @@ estimate on the solution. Yau in his original

proof of the Calabi Conjecture proved the C3 estimates by a similar method as in the previous

section. This calculation involves working with a fifth order di↵erential equation, which is

simplified using more tedious calculations. A su�cient, C2,↵ estimate can be obtained by

Evan-Krylov method (see [14] and [11]). The idea there is to adopt the Evans Krylov method

for complex spaces. Here we apply another trick using the Christo↵el symbol, to obtain a

C2,↵ estimates. This method can be found in Gábor’s book [1].

For a Kähler metric the Christo↵el symbols are given by,

�i
jk = gil@jgkl.
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Let �i
jk

0
be the Christo↵el symbol corresponding to g0 metric. Indeed � is not a tensor by

itself, but �0
� � is a tensor. Define,

Si
jk := �i

jk
0
� �i

jk

Now, instead of working with third order derivatives, we will get an estimate on the Laplacian

of S tensor. Consider the norm of S with respect to g0 = g +
p
�1@@ metric,

|S|2 = g0jqg0krg0ipS
i
jkS

p
qr

Taking Laplacian with respect to g0 on both sides, we get

�0
|S|2 = g0lm@l@m(g

0jqg0krg0ipS
i
jkS

p
qr)

= g0lmg0jqg0krg0ip@l@m(S
i
jkS

p
qr) + g0lmg0krg0ipS

i
jkS

p
qr@l@m(g

0jq)

+g0lmg0qsg0ipS
i
jkS

p
qr@l@m(g

0kr) + g0lmg0qsg0krSi
jkS

p
qr@l@m(g

0
ip) + terms containing @g0

Considering normal coordinates with respect to g0, we obtain

�|S|2 = @l@l(S
i
jkS

i
jk) + Si

jkS
i
qkRlljq + Si

jkS
i
jrRllkr � Si

jkS
p
jkRllip.

Now,

@l@l(S
i
jkS

i
jk) = @l@l(S

i
jk)S

i
jk + @l@l(S

i
jk)S

i
jk + @lS

i
jk@lS

i
jk + @lSi

jk@lS
i
jk,

and note that

@lS
i
jk@lS

i
jk = |@lS

i
jk|

2
� 0, @lSi

jk@lS
i
jk = |@lSi

jk|
2
� 0.

Hence,

@l@l(S
i
jkS

i
jk) � @l@l(S

i
jk)S

i
jk + @l@l(S

i
jk)S

i
jk.

We will now bound @l@l(S
i
jk), note that

@l@l(S
i
jk) = @l@l(�

i
jk

0
� �i

jk) = @lR
i
j kl

� @lR
i
j kl

,

where R0 is the curvature with respect to g0 metric. By the Bianchi identity,

@lR
0i
j kl

= r
0
lR

0i
j kl

= r
0
jR

0i
k
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and

@lR
i
j kl

= rlR
i
j kl

+ �Ri
j kl

.

The last term is bounded by bounded by C|S|. Hence,

@l@l(S
i
jk) < �C|S|� C 0. (4.27)

Thus,

�|S|2 � �C|S|2 � C 0
|S|. (4.28)

Using the @@-estimate, equation (4.21) simplifies to,

�tr !� � �C1 + ✏|S|2. (4.29)

We can multiply equation (4.29) by a large enough constant A, and adding equation (4.28),

to get

�(|S|2 + Atr !�) � |S|2 � C.

Similar to the @@-estimate, we will apply the maximum principle. Let |S|2 + Atr !� attain

its maximum at x0 2 M , then

|S|2(x0)  C.

Hence,

|S|2(x)  |S|2(x) + Atr !�(x)  |S|2(x0) + Atr !�(x0)  C 0.

We have got a bound on the |S|. Hence we have mixed third derivative bounds of �. In

particular, we get C↵ bounds on @@�. Now we can get uniform C2,↵ estimates of �. We can

use Schauder estimates to get a smooth solution.
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Chapter 5

Kähler-Einstein metrics

5.1 Applications of the Calabi-Yau theorem

A metric ! is said to Ricci flat if Ric(!) = 0. By considering ⌦ = 0 in the Calabi-Yau

theorem, we get that every Kähler class has a Ricci flat metric. Flat manifolds are locally

euclidean in terms of distance and angles. In fact, prior to the Calabi-Yau theorem, there

were no such result related to Ricci flatness on Riemannian manifolds. Ricci flat metrics

have application in physics, mainly related to Einstein’s equations. In the next section, we

will discuss about Kähler-Einstein metrics, where Ricci flat metrics will be one of the cases.

Before discussing the next application, observe that the Calabi-Yau theorem relates c1(M),

a topological invariant and the Ricci curvature. Hence, having a constrain or condition on

c1(M), will have implications on the geometry of the manifold. The following application is

such an example.

Theorem 5.1.1. Let M be a compact Kähler manifold such that c1(M) > 0, then M is

simply connected.

Proof. The proof will use some results and ideas from outside this thesis. But the main take

away here is to demonstrate how the Calabi-Yau theorem is being used.

The first part of the proof is to show that, if M is a compact Kähler manifold with positive

first chern class, then the fundamental group of M is finite. Since c1(M) > 0 there exists

⌦ 2 c1(M) such that ⌦ > 0. Hence, by the Calabi-Yau theorem, there exists a Kähler metric
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! such that Ric(!) = ⌦ > 0. Thus we have got a positively Ricci curved metric. Then by

Myer’s theorem (see [8]), we get that the fundamental group is finite. Note, this is the only

part of the proof, that will use the Calabi-Yau theorem.

The Dobeault cohomology groups are defined as follows,

Hp,q

@
(M) =

ker(@ : ⌦p,q(M) ! ⌦p,q+1(M))

im(@ : ⌦p,q�1(M) ! ⌦p,q(M))
.

These are essentially the cohomology groups corresponding to the @ operator. In similar

fashion to Euler characteristic on real manifolds, we can define the holomorphic Euler char-

acteristic as,

�(M) =
nX

i=0

(�1)i dimH i,0

@
(M).

For any compact connected Kähler manifold with c1(M) > 0, by the Kodiara vanishing

theorem (see [9]), we get

dimH i,0

@
(M) = 0 for i > 0.

Hence the holomorphic Euler characteristic of M , is �(M) = 1. The next step is to use all

these observations for a finite covering of M . Let fM be a k-fold covering of M . The main

reason we are interested in finite coverings of M is to find subgroups of ⇡1(M), and hence

deduce more about the fundamental group of M itself.

Since fM is a finite cover, fM is a compact Kähler manifold with c1(M) > 0. Again we have

�(fM) = 1. Similar to the real case for a k-fold covering fM over M , we have

�(fM) = k �(M).

The fact that the holomorphic Euler characteristic is multiplicative for covers is more di�cult

and follows from the Hirzebruch-Riemann-Roch theorem. Since �(fM) = 1 = �(M), we get

that fM is a one fold covering. Therefore, there are no non-trivial finite coverings of M .

Hence ⇡1(M) has no finite index subgroups. But since ⇡1(M) is a finite group, it implies

that M is simply connected

The only role the Calabi-Yau theorem played is to get a Ricci lower bound, from which we

could prove that the fundamental group is finite. Without the fundamental group being

finite, we would have only been able to conclude that there are no finite index subgroups.

There are other applications like showing that there is a unique complex structure which
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is homotopic to CP2. Yau along side with the proof of the conjecture, also proved few

applications of the theorem in Algebraic geometry [4]. The usefulness of the result goes

beyond just these applications, but it set the foundation of this subject as well as a learning

tool in solving many other related problems.

5.2 Kähler-Einstein metrics

Definition 5.2.1. A Kähler metric is called Kähler-Einstein if

Ric(!) = �!,

for some � 2 R.

By re-scaling the metric, we get three cases, namely

Ric(!) = !, Ric(!) = 0, Ric(!) = �!.

Einstein metrics appear in the Einstein equation in physics. Kähler-Einstein metrics are

also related to constant scalar curvature. The goal here is to study the existence of Kähler-

Einstein metrics on Kähler manifolds. Since, 2⇡c1(M) = [Ric(g)], we have the hope of

finding a Kähler-Einstein metrics only if c1(M) is positive, negative or zero. For c1(M) = 0,

we already discussed about Ricci flat metrics in the previous section, which was a corollary of

the Calabi-Yau theorem. In this case we will have a Kähler-Einstein metric in every Kähler

class. In the cases Ric(!) = ! and Ric(!) = �!, we can hope to find Kähelr-Einstein

metrics only if ! 2 2⇡c1(M) and ! 2 �2⇡c1(M) respectively.

5.2.1 C1(M) < 0

If c1(M) < 0, then we need to find a Kähler metric such that

Ric(!) = �!,

where ! 2 �2⇡c1(M).
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Theorem 5.2.1. Let M be a Kähler manifold with c1(M) < 0, then there exists a Kähler

metric ! 2 �2⇡c1(M), such that Ric(!) = �!.

The proof is similar to the Calabi Yau theorem, but some steps are actually simpler. Firstly

let us find the corresponding PDE to be solved.

If !0 is a Kähler metric in �2⇡c1(M), we need to find a ! 2 �2⇡c1(M) such that Ric(!) =

�!, then by the @@-lemma,

Ric(!0) = �!0 +
p
�1@@f,

where f is a smooth function, and

Ric(!) = Ric(!0)�
p
�1@@

!n

!m
0

.

Let � be a function such that

! = !0 +
p
�1@@�.

Then, by a simplification similar to the Calabi-Yau theorem, Theorem 5.2.1 is equivalent to

solving

(! +
p
�1@@�)n = ef+�!n

0

for �, while ensuring that !� is positive definite.

The main di↵erence of the above equation compared to equation (4.4) is the additional factor

of �. The additional � factor will be beneficial. The C0 estimate, in this case can be easily

derived using the maximum principle. To derive the C0 bound, let � achieve its maximum

at x0. Then in local coordinates @@� is negative semi definite at x0. This implies

det(g + @@�)(x0)  det(g)(x0).

Hence,

e(f+�)(x0) =
det(g + @@�)(x0)

det(g)(x0)
< 1,

this implies

f(x0) + �(x0) < 0.

Since � achieves its maxima at x0, we have

sup |�|  sup |f |.
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Thus by just using the maximum principle we were able to get a C0 estimate. The other

steps will be similar to the proof of the Calabi-Yau theorem. For the openness argument

the derivative will be �� Id rather than �. In the @@-estimate, we have to proceed in the

exactly same way, and the factor of � will get absorbed into the constants.

5.2.2 c1(M) > 0

When c1(M) > 0, the corresponding PDE will be

(! +
p
�1@@�)n = ef��!n

0 .

On the surface, the only di↵erence in comparison to the c1(M) < 0 is the negative sign.

Firstly proving openness is not easy, we will have to work with a di↵erent family of equations,

(! +
p
�1@@�)n = ef�t�!n

0

where 0  t  1. This is also equivalent to

Ric(!�) = t!� + (1� t)!0.

The main problem in the c1(M) > 0 will be showing the C0 estimate. Due to the negative

sign we cannot apply the maximum principle like in the c1(M) < 0 case. Unfortunately,

not all Kähler manifolds with c1(M) > 0 have a Kähler-Einstein metric. One invariant that

will help us find obstruction is the Futaki invariant (see [2], [1]). Using these we can get

examples of Kähler manifold with c1(M) > 0, that do not admit any Kähler-Einstein metric.

One such example is blowup of a point in CP2 (see [2] for more details). Trying to solve the

problem will have some algebro-geometric constraints, and was only resolved recently thanks

to the works of Chen, Donaldson, Sun, and Tian (among others).

Conclusion

The thesis describes my one year master’s project pursued at IISc Bangalore. The central

theme of thie project has been on the Yau’s proof of the Calabi Conjecture. The aim in

this thesis was to have an understanding of the proof from the perspective of a master’s
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student. In the journey of understanding the proof, I got the opportunity to read more on

Riemannian geometry, PDE, algebraic topology and geometric analysis.
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