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Abstract
A high-mass X-ray binary (HMXB) is a binary system of a compact object, neutron

star or black hole and a companion high mass star. The compact object accretes from
its companion and the system emits strongly in X-ray. The proposed thesis project
deals with an HMXB with neutron star as the compact object. The infalling matter
from the companion star is obstructed by the magnetosphere of the neutron star and is
guided by the magnetic field lines leading up to the poles, forming an accretion column
along the magnetic field. This accretion column deposits the matter on the neutron
star surface as a result of which an accretion mound is formed at each magnetic pole
of the strongly magnetized neutron star. The mound distorts the local magnetic field,
the imprint of which can be observed via Cyclotron Resonance Scattering Features
(CRSF) in the X-ray spectrum. The spreading of matter onto the neutron star surface
from the magnetically confined accretion mound has so far been poorly understood.
How much matter can be retained in the mound and column is decided by interchange
instabilities - such as ballooning instability, fluting instability and Parker instability
- as well as dissipative processes such as ohmic diffusion and magnetic reconnection.
Numerical investigation of some of these processes are attempted in this thesis. The
matter accumulated in the mound adds a quadrupole moment to the mass distribution
of the star, which then leads to the generation of gravitational waves as the star
spins. The amplitude of these waves will be determined by the amount of mass in
the mound and its density distribution, both critically dependent on the instabilities
and dissipative processes. So, we try to understand the structure and stability of the
magnetically confined accretion mounds formed at the poles of neutron star.
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Chapter 1

Introduction

1.1 Neutron stars

1.1.1 History

According to the theoretically proposed idea by Baade and Zwicky(1934) neutron
stars are expected to be formed in supernova explosions [48]. Although Oppenheimer
and Volkoff (1939) modelled the neutron star matter as an ideal gas of free neutrons,
research in this field was not active until the discovery of radio pulsars in 1967 by
Jocelyn Bell. Franco Pacini (1967)[36] and Thomas Gold (1969)[18] independently
proposed that the pulsed radiation could be coming from a rotating neutron star
which is pumping the energy into the supernova remnant. This theory was soon
backed up by the discovery of Crab and Vela pulsars situated in supernova remnants.

Further theoretical research on properties of neutron stars was stimulated by the
discovery of compact X-ray sources like Cen X-3 and Her X-1, which were conjectured
to be accreting from their companions. Optical and X-ray observations of binary
sources were used to measure the masses of neutron stars [41]. Discovery of binary
pulsars was brilliantly speculated to be used for the testing of gravitational radiation
that have now been detected directly.
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Chapter 1. Introduction

1.1.2 Properties

Neutron stars are dense gravitationally bound objects supported by neutron degen-
eracy pressure and repulsive strong interaction, formed by the core-collapse of main
sequence stars of mass 8 − 30M� [43]. A typical neutron star has a mass 1.4M�

and a radius of around 10km. High density (∼ 107 g/cm3) at the interiors leads to
the neutronisation of matter through inverse beta decay[11][41]. They are formed at
a critical point of core-collapse of a star where the nuclear repulsive force is main
support against gravity. Neutron stars have a strong intrinsic magnetic field ∼ 1012G
which leads to the formation of a magnetosphere around them[7]. Although the strong
magnetic field was measured from the observation of spin down rates of radio pulsars,
the origin of the field is an active field of research[9]. These massive neutron stars
often form a binary system with other stars and accrete matter from them.

1.2 Accretion in neutron stars

When matter falls onto a compact object, it is acted upon by two major forces -
gravitational pull (towards the compact object) and the centrifugal force (away from
the compact object). As the matter falls in, gravitational energy is released which in
turn is converted into kinetic and thermal energy. If the matter had some angular
momentum(J) before getting accreted, it will revolve around the compact object
in an orbit where centrifugal force and gravitational force balance each other. On
the contrary, if the in-falling matter was at rest initially, there would be a radial
inflow of matter. Over time, matter loses angular momentum due to friction and falls
closer towards the compact object. This forms an accretion disk around the accreting
object. Loss of angular momentum occurs between the differentially rotating layers
at different radii. As this proceeds, matter eventually falls onto the compact object.

1.2.1 Effect of the magnetosphere during accretion

A magnetosphere is a space around the Neutron star where the flow of plasma is
dominated by the magnetic stress. It extends up to the characteristic Alfvén radius
where the magnetic energy density equals the kinetic energy density of the infalling
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1.2. Accretion in neutron stars

matter and stops the radial infall of the accreting matter from the companion star.
Matter accretes in a thin disk outside the magnetosphere[17]. The outer boundary of
the magnetosphere at Alfvén radius which contains ionized gas held by the magnetic
field is known as the Alfvén surface. The accreted matter is guided by the magnetic
field lines of the neutron star at the Alfvén velocity onto the poles. Due to various
plasma instabilities, matter slips into the magnetosphere by diffusion, reconnection
of the magnetic field with small-scale fields in the accreting matter or penetration
of plasma due to interchange instability[16]. The matter inside the Alfvén radius
co-rotates with the star i.e. with angular velocity Ω = Ωs, where Ωs is the angular
velocity of the neutron star. Well beyond the Alfvén surface, Ω is Keplerian in the disk
and increases inward till a point on the accretion disk where it attains a maximum.
Beyond this point, it starts to fall to match Ωs. This region is known as the transition
region where Ω has a maxima and the viscous stress vanishes[17].

The specific angular momentum, l is defined as-

l = Jin − Jout

m
= Ωr2 − ηr2

ρvr

dΩ
dr

(1.1)

where Jin is angular momentum imparted by the matter inward, Jout is the angular
momentum imparted by viscous stress outward, m is the mass of the accreting matter,
η is the coefficient of viscosity, ρ is the mass density and vr is the radial velocity of
the accreting matter. l is determined by matching the flow outside the transition
region on the disk to the flow in the transition region and then to the flow inside
the magnetosphere. Hence, the angular momentum flux is determined, which further
determines whether the star spins up or spins down.

Change in the energy of matter passing through the transition zone is equal to the
sum of the energy supplied to the exterior flow(due to viscous stress), the energy
transmitted into the magnetosphere by magnetic torques and the energy dissipated
in the transition layer. More the viscosity more is the dissipation rate and less is the
energy supplied to the disk. The rate of change of rotational energy of the star may
be written as-

dErot

dt
= Ṁ


lΩs − Ω2

s

2
M

I

dI

dM
R2

g


 (1.2)
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Chapter 1. Introduction

From the above equation a parameter ζ is constructed.

ζ = l

ΩsRg

�
M

I

dI

dM

�−1

(1.3)

Here I is the moment of inertia of the neutron star and Rg is the radius of gyration.
Consider M

I
dI

dM
> 1. If ζ < 1/2, dErot

dt
is negative, so the star loses rotational energy

and its spin decreases. This is called the spin-down of the neutron star. This is usually
satisfied by l < Ωs i.e. a fast rotating neutron star. If ζ > 1, star gains rotational
energy and starts spinning up. This happens when l > Ωs i.e. a slow rotating neutron
star. There is one more case, 1/2 < ζ < 1 when the star spins down even if rotational
energy is increasing. It is a trade-off between the amount of accreted mass and the
gain in angular momentum to determine angular velocity.

1.2.2 Accretion torque and pulse period

Let Nin be the torque transferred to the star by the magnetic field lines in the inner
transition zone of the magnetosphere and Nout be the torque transferred by the twisted
field lines in the outer transition zone that thread accreting matter and transfer
the angular momentum outward. Nin and Nout spin up and spin down the star
respectively. If these two balance on an average, then a more or less constant spin is
achieved by the compact star. Accretion torque on such a star then depends on the
fluctuations in the accretion rate (Ṁ) [25]. As Ṁ increases significantly, Ωs goes down
giving rise to strong spin-up torque to the star. Eventually, when accretion becomes
unstable and Ṁ starts decreasing, Ωs increases and there is a flip to spin-down torque
as spin-up torque falls. Rate of change of sign of angular velocity is an observable
phenomenon which gives an idea about mass accretion rate, effective viscosity and
angular velocity of the star[14]. Characteristics of mass transfer, the strength of star’s
dipole field and moment of inertia are predicted from the fluctuation in the pulsation
period of the star. Fluctuation in the period can highlight possible reasons such as
variation in angular momentum and fluctuations in accretion torque.

In a state where Ωs reaches an extremely high value, neutron star becomes very un-
stable (strong spin-up state). It then experiences a braking torque which supports
spin down episode without even losing mass from the neutron star[17]. It has been
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1.3. Field burial and evolution of neutron stars

theorized that during this process gravitational waves are generated[21]. So, to un-
derstand this process well, we need to model the accretion process and the structure
formed by accretion i.e. accretion mound at the neutron star poles, with a great deal
of accuracy.

1.3 Field burial and evolution of neutron stars

The evolution of a neutron star in a binary system has been observed to be different
from the solitary pulsars. Pulsars discovered in binary systems were found to have
relatively higher spin as compared to the isolated ones[20]. This observation played a
significant role in creating an interest in studying the relationship between accretion
and the spin of a neutron star. It was proposed by Smarr and Blandford (1976) [42]
and Srinivasan and van de Heuvel (1982) [44] that the neutron stars spin up as a
result of accretion when they accumulate matter on them and was later confirmed
by observation[3]. Another puzzle was introduced when it was discovered that fast-
spinning neutron stars have a low magnetic field. Certain theories were proposed to
explain this trend. Ideas like spontaneous Ohmic decay was attributed to the field
reduction, but later got ruled out due to lack of any clear observational evidence.
The theory that was adopted to explain this was the "accretion induced recycling of
pulsars"[8]. According to this theory, accretion by a neutron star from its companion
in a Roche Lobe overflow spins up the star and diminishes its magnetic field. The term
"recycling" highlights the normal pulsars get evolved into fast-spinning millisecond
pulsars by accreting matter from their companion [47]. So, it is important to study the
accretion process, structures and magnetic field configuration to address the above-
mentioned problems.

1.4 Accretion structures on neutron stars

In this thesis, we consider a Neutron star which is the compact object in a high mass
X-ray binary (HMXB) system and accretes from the companion star. This matter
accretes in a thin disk around the magnetosphere and threads into the magnetosphere
by diffusion, recombination or due to Interchange instability.

5



Chapter 1. Introduction

A strong magnetic field (1012G) constrains the accreted matter(plasma) to move along
the field lines to the pole. The size and structure of such a polar cap depend on the size
of the magnetosphere and the geometry of mass loading at the accretion disc[2][27].
The infalling matter in the accretion column goes through certain phases: impact,
deceleration, accumulation and outflow [40]. It experiences a shock upon entering
into the column as it interacts with the pre-existing matter and radiation field. The
infalling matter then decelerates due to Coulomb interaction and scattering.

Figure 1.1: Schematic diagram of accretion column and mound at the pole of a neu-
tron star with a radius of 1km and height within 100m. Source: Dipanjan Mukherjee’s
PhD thesis, 2014 [31]

Most of the kinetic energy of infalling matter gets converted into heat and is radiated
away. The density of the column increases as the decelerating matter gradually gets
accumulated in the region near the bottom of the column. Closer to the stellar
surface, very high density makes the gas degenerate. The degeneracy pressure which
balances the magnetic pressure at the walls of the column. Matter cools down and gets
deposited in the form of a static magnetically confined mountain which is commonly
known as accretion mound. Accretion is observed and quantified using X-ray emission
from the poles. The bending of field lines can be observed through the cyclotron
spectra arising from the resonant scattering of photons by electrons in the strong
magnetic field[33].

6



1.5. Previous work in modelling the mounds

1.5 Previous work in modelling the mounds
In this section, we discuss and compare the work of Payne et. al, 2004 [38] (PM04,
hereafter) and Mukherjee et. al, 2012 [33] (MB12, hereafter) on the modelling of
accretion mound. PM04 model the spreading of mound till the equator, having almost
63% of matter restricted to the polar cap at the poles. This happens as a consequence
of a distributed mass loading on field lines inside the magnetosphere, resulting in a
larger mound as compared to the model proposed by MB12. MB12 consider a more
realistic case where the mass loading from the accretion disk is restricted to the edge
of the magnetosphere as suggested by theory[17] and simulations(Romanova et. al
2008[39], Kulkarni et. al, 2008[23]). This leads to confinement of the accreted matter
to regions around the poles called the polar caps. In case of mounds proposed by
PM04, field lines until the equator provide additional lateral pressure to support a
larger mass in the elongated polar mound as compared to the mounds proposed by
MB12.

Moreover, PM04 consider an isothermal EOS (p = c2
sρ) which underestimates the

pressure as compared to the degenerate Fermi pressure (p = kadργ) by several orders
of magnitude. Higher pressure in degenerate Fermi EOS results in higher plasma beta
which makes the system more susceptible to pressure-driven instabilities. Mukherjee
et. al, 2013(I)[34] and Mukherjee et. al, 2013(II)[35] argue that the mounds cannot
exceed a threshold size as the instabilities in the accreted plasma would lead to mass
loss, hence ruling out PM04’s proposal of formation of large-scale mound extending
up to the equator. Therefore, the model proposed by MB12 is more realistic due to
the consideration of non-ideal plasma effects.

In a nutshell, magnetic field lines can drag the matter equatorward as matter keeps
accreting. But if matter keeps leaking out simultaneously from the magnetic field
confinement near the surface of a neutron star, the formation of a large-scale mound
would be hindered.

1.6 Motivation for the thesis

The effect of accretion on the spin and the magnetic field evolution of a neutron star
is yet to be understood fully. For a better understanding of the correlation between
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Chapter 1. Introduction

accretion and magnetic field evolution, we need to look into what the process of
accretion results into and track the evolution of the magnetic field. Moreover, to
investigate the hypothesis of field burial i.e reduction of magnetic field line strength
induced by accretion, it is necessary to study the effect of accreted matter in the
magnetic confinement of the neutron star.

In this thesis, we compare the earlier models and finally follow MB12 to do a de-
tailed analysis of the structure and stability of the magneto-static equations describ-
ing the accretion mound. MB12 use a non-relativistic degenerate Fermi equation of
state(EOS, hereafter) which describes the mound at the low-density regime of the
generalised EOS of Paczyński that captures the behavior of matter in both the rel-
ativistic and the non-relativistic regime. Mukherjee (2017) [32] has carried out an
analysis showing Paczyński EOS to be more appropriate for the confined matter due
to the high densities encountered. We attempt to check the stability of accretion
mounds constructed using the Paczyński EOS. We compare the structure and sta-
bility of the accretion mounds predicted by both the equations of state. We analyse
how the magnetohydrodynamic instabilities develop in response to perturbations and
behave as a function of mound height which is directly related to the confined mass.

8



Chapter 2

Static equilibrium structure of
accretion mound

2.1 Introduction

Grad Shafranov (GS, hereafter) equation describes a static, single fluid and ideal
magnetohydrodynamic (MHD, hereafter) equilibrium of a magnetically confined ax-
isymmetric plasma obtained by solving the force balance equation,

∇P = J × B (2.1)

where B is the divergence-free magnetic field and J = 1
µ0

∇×B is the plasma current.
In this chapter, we discuss the modelling of the structure of an accretion mound and
the state of the plasma inside it. We then formulate an equilibrium equation for an
accretion mound and highlight the solution and physical inferences.

2.2 Finding equilibrium solution for accretion mound

We consider a mound at equilibrium when there is neither any continued accretion
nor non-ideal dissipation effects. It is assumed to contain perfectly conducting fluid
with uniform composition. It is bounded at the bottom by a perfectly conducting

9



Chapter 2. Static equilibrium structure of accretion mound

rigid crust where magnetic field lines are tied. Single fluid MHD theory applies here.
Magneto-static condition is achieved where there exists a hydro-static equilibrium
and the field lines are frozen in plasma.

2.2.1 Construction of the Grad Shafranov equation

We consider an axisymmetric cylindrical coordinate system (r, θ, z) to model the
accretion mound. As a result of axisymmetry in the system, components of vectors
and scalars do not depend on θ. We can decompose the magnetic field of the star into
its poloidal and toroidal components. In case of an axisymmetric system, Bθ = 0.
So, B = Bp = ∇Ψ×θ̂

r
= Bz + Br.

Br = −1
r

∂Ψ
∂z

Bz = 1
r

∂Ψ
∂r

(2.2)

where Ψ = Ψ(r, z) is the flux function given by-

Ψ(r, z) = 1
2π

�

r̃
B(r̃, z) · ds (2.3)

Ψ is proportional to the total poloidal flux passing through the surface covered by a
circle of radius r around the axis of symmetry at a height z. As ∇Ψ ·B = 0, magnetic
field can be obtained from the contours of constant Ψ.

The lorentz force can be written as [24][31],

J × B
c

= 1
r2


Δ2Ψ

4π
∇Ψ + η∇η − ((∇η × ∇Ψ) · θ̂)θ̂


 (2.4)

where η = rBθ(r, z), Bθ(r, z) being the toroidal magnetic field component and
Δ2 = r ∂

∂r

�
1
r

∂
∂r

�
+ ∂2

∂z2 is an Elliptic operator known as the Grad-Shafranov operator..

The Euler equation for a system in static equilibrium is -

∇p + ρ∇φ = J × B
c

= ρ∇F (2.5)

where F is a function constant along a flux surface (∇F ×∇Ψ = 0) and Φ is the grav-
itational potential. Due to axisymmetry, ∇F · θ̂ = 0 ⇒ ∇η ×∇Ψ = 0 using equations

10



2.2. Finding equilibrium solution for accretion mound

2.4. We get the general Grad-Shafranov (GS) equation in cylindrical coordinates as
Eq. 2.7 from equations 2.4 and 2.5 -

Δ2Ψ
4π

∇Ψ + η∇η = −r2ρ∇F (2.6)

Δ2Ψ = −4πη
dη

dΨ − 4πr2ρ
dF

dΨ (2.7)

Next we modify Eq. 2.7 to obtain the GS equation for our system of magnetically
confined accretion mound on a neutron star. As Bθ and in turn, η are zero in the
axisymmetric scenario, using Eq. 2.4 the static Euler equation gets modified into -

∇p − ρg + Δ2Ψ
4πr2 ∇Ψ = 0 (2.8)

We separate the above equation into r and z components which makes it easier for
us to solve.

∂p

∂z
− ρg + Δ2Ψ

4πr2
∂Ψ
∂z

= 0 (2.9)

∂p

∂r
+ Δ2Ψ

4πr2
∂Ψ
∂r

= 0 (2.10)

Substituting Δ2Ψ
4πr2 from Eq. 2.10 in Eq. 2.9, we get -

∂p

∂r

∂Ψ
∂z

=
�

∂p

∂z
− ρg

�
∂Ψ
∂r

(2.11)

Eliminating Δ2Ψ
4πr2 from the above equations, we get,

dz
∂Ψ
∂z

= −∂Ψ
∂r

dr (2.12)

Substituting Eq. 2.12 in Eq. 2.11, we get,

dz = − dρ

ρg/cs
2 (2.13)

11



Chapter 2. Static equilibrium structure of accretion mound

where cs
2 = γp/ρ. From Eq. 2.12, we get that Ψ is constant. Integrating 2.13, we get

gz + γp

ρ(γ − 1) = F (Ψ) (2.14)

where F (Ψ) is the integration constant. Inverting the above equation, density can
be obtained as a function of Ψ.

2.2.2 Equation of State of accretion mound plasma

The density profile inside the mound can be determined by solving the Euler equation
which depends on the equation of state that relates density and pressure, p = f(ρ).

∇p + ρ∇Φ = J × B

c
= ρ∇F (Ψ) (2.15)

where Φ is the gravitational potential and F is a scalar function along a flux surface
(∇F × ∇Ψ = 0). Substituting the EOS and re-arranging Eq. 2.15 -

∇f(ρ)/ρ = ∇(F (Ψ) − Φ) (2.16)

1
ρ

df

dρ
∇ρ = ∇(F (Ψ) − Φ) (2.17)

1
ρ

df

dρ
= g(Z0(Ψ) − z) + C (2.18)

Integrating Eq. 2.17, we get Eq. 2.18 where C is the integration constant and
Z0(Ψ) = F (Ψ)/g is the mound height profile. As the mound height is of the order of
few tens of meters and gravitational potential varies by less than 1% in this region[33],
∇Φ = gz is a good approximation where g = 1.86 × 1014 g/cm2 is the gravity at the
crust of the neutron star. We evaluate the density profile for different EOS using Eq.
2.18.

2.2.3 Isothermal EOS

For an isothermal EOS, p = c2
sρ, where c2

s = kBT/(µemp), µe = 2 is the mean atomic
weight per electron, mp is the mass of a proton and T � 107K is the temperature

12



2.2. Finding equilibrium solution for accretion mound

inside the mound[38]. The density profile is given as

ρ = ρ0 exp[(Z0(Ψ) − z)/hiso] (2.19)

where hiso = c2
s/g is the isothermal scale height and C = hiso ln ρ0. While this EOS

has been employed in PM04, we do not use it in our work as it causes an under-
estimation of pressure and hence over-estimation of confined mass in the mound.

2.2.4 Non-relativistic Degenerate Fermi EOS

For a polytropic EOS, p = kργ where γ is the adiabatic index. After integrating, the
density profile turns out to be

ρ =

g(γ − 1)

γk




1/(γ−1)

(Z0(Ψ) − z)1/(γ−1) (2.20)

where C = 0.

The choice of EOS is crucial for determining the mound structure and is determined
by the maximum density inside the mound and the properties of the accreted plasma.
The state of matter is characterised by the electrostatic coupling parameter Γ [15]
[26]-

Γ = Z2e2

kBT


4πn

3




1/3

(2.21)

The plasma becomes liquid for density ∼ 108 g/cm3 near the base of the mound where
Γ � 1 and solidifies when density increases further making Γ ≥ 173. The degenerate
matter must have a maximum density less than 108 g/cm3 inside the mound above
the base for it to be in a gaseous form. This kind of matter would contribute to the
plasma pressure, majorly due to the degenerate electrons if TF > T , TF being the
Fermi temperature i.e. degeneracy pressure will be dominant at depths where the
plasma is cooler than TF ,

TF = mec
2

kb

(
�

x2
F + 1 − 1) (2.22)
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Chapter 2. Static equilibrium structure of accretion mound

where xF = pF /(mec) and pF = ( 3h3

8πµemp
)1/3ρ1/3 is the Fermi momentum.

From X-ray observations [12][6] of strongly magnetised pulsars, it is found that T ∼
5 − 10 keV in the hotspot. We need to find the density at which TF > 10 keV to
map the region where degeneracy pressure dominates. As per the calculations carried
out by MB12 by inverting Eq. 2.22, for TF = 10 keV ρ = 1.54 × 104 g/cm3 which
occurs at a depth of 0.01Z0(Ψ) from the top. Density increases up to the order of
106 g/cm3 as we go further into the mound and TF , in turn, will exceed 10 keV.
Hence, in the majority of the mound T << TF making the mound being constituted
of degenerate plasma. As degeneracy pressure is dominant over the thermal pressure,
for the modelling of the equation of state of the mound, we apply the pressure for
degenerate Fermi gas at T = 0 as

p = π

3
m4

ec
5

h3

�
xF (xF + 1)1/2(2x2

F − 3) + 3 ln (xF +
�

1 + x2
F )

�
(2.23)

This pressure can be represented in the form of p = kργ for both relativistic(xF << 1)
and non-relativistic(xF >> 1) plasma. γ is evaluated as dlnp

dlnρ
.

γ = 8
5

�
xF (xF

2 + 1)(2x2
F − 3) + 3(1 + x2

F )1/2 ln (xF +
�

1 + x2
F )

�−1
(2.24)

For ρ < 107g/cm3, γ asymptotically tends to 5/3. If we consider the matter inside
the mound to be in the gaseous phase, then the maximum densities are < 107g/cm3.
Hence, in that limit the EOS becomes

p = 3.122 × 1012ρ5/3dynes/cm2 (2.25)

2.2.5 Paczyński EOS

The description of the EOS through a single polytrope as in Eq. 2.25 does not cater
to the matter with a density greater than 107g/cm3 near the crust of the neutron
star, hence it cannot be used as a generalised EOS to model the whole mound. A

14



2.3. Solving GS equation

better approximate description of Fermi pressure was proposed by Paczyński [37] as

p = π

3
m4

ec
5

h3
8/5x5

F

(1 + 16/25x2
F )1/2 (2.26)

In this EOS, γ asymptotes to 4/3 for ρ < 107 i.e. xF << 1 and 5/3 for ρ > 107 i.e.
xF >> 1. Besides, it matches the Fermi pressure to within ≤ 1.8% [32]. Now using
Eq. 2.18, density profile is calculated for this EOS.

xF = 5
4


ξ2 − 8/3 + ξ

�
16/9 + ξ2

32/9


 (2.27)

where ξ = 16
15

µemp

mec2 (Z0(Ψ) − z) + 1

2.3 Solving GS equation

Different parameters in quantifying this physical phenomena are as follows-

• A neutron star of mass 1.44 M� and radius 10km

• Axisymmetric cylindrical coordinate system (r, θ, z) with the origin at the base
of a polar cap of radius 1km (adapting the model proposed by [33])

• The initial magnetic field when accretion has not happened is a uniform dipolar
field along z given as Bd = B0ẑ where B0 = 1012G. As the mound heights are
within 100m the local unloaded dipolar magnetic field can be approximated to
a uniform field.

• Newtonian gravitational field is considered. Acceleration due to gravity g is
given by -

g = GM

R2

= −1.86 × 1014
�

M∗
1.4M�

��
R∗
10

�−2
cm s−2 ẑ

(2.28)

• Accreted plasma is assumed to be in a polytropic state, p = kadργ.
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Chapter 2. Static equilibrium structure of accretion mound

• Using Eq. 2.20 we get the density profile for the accreted gas in the polytropic
EOS

ρ = A[Z0(Ψ) − z]
1

γ−1 (2.29)

where A = [g(γ − 1)/(γkad)]
1

γ−1 and Z0(Ψ) is the mound height profile as a
function of the flux coordinate Ψ.

• The values of P , ρ and their derivatives are set to vanish at the maximum
height of the mound i.e. matter density above the mound falls with height z

and becomes almost negligible in comparison to the mound.

Substituting Eq. 2.29 in Eq. 2.8, we get the Grad-Shafranov equation for a mag-
netically confined accretion mound with non-relativistic degenerate Fermi gas as-

Δ2Ψ
4πr2 = −ρ(Ψ)g dZ0(Ψ)

dΨ (2.30)

The mound height profile is chosen as -

Z0 = Zc

�
1 −

� Ψ
Ψp

�2�
(2.31)

where Zc is the maximum central height of the mound and Ψp is the maximum value
Ψ can take inside the mound. Z0(Ψ) is an analytic differentiable function of Ψ [19].
Here we have considered a parabolic profile of the mound in Ψ. Although a hollow
mound profile , e.g.

Z0(Ψ) = Zc

0.25


0.25 −


 Ψ

Ψp

− 0.25



2
 (2.32)

may be more realistic [33], a filled mound is also shown to represent the system quite
reasonably for the purpose of investigating instabilities [35].

We solve the GS equation numerically and report our results for different equations
of state in this section. Numerical methodology used for solving the second-order
elliptic GS equation is described in Appendix A.
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2.3. Solving GS equation

2.3.1 GS solutions for degenerate non-relativistic plasma

Figure 2.1: Ψ-profile for Zc = 45m (top) and Zc = 60m (bottom) in units
of 0.5 × 1012. The colorbar shows values of magnetic field flux. The solid lines
over-plotted in red and blue across the contour show the top boundary of the mound.

We have used the framework of MB12 to formulate and solve the GS equation for the
accretion mound of a neutron star. This problem has been approached by Hameury
et. al 1983 [19] where they had considered ultra-relativistic EOS with Γ = 4/3 which
models the high-density matter (ρ ≥ 107g/cm3) present near the base of the mound.
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Chapter 2. Static equilibrium structure of accretion mound

They also used µe = 1 plasma which corresponds to pure hydrogen composition. But
in case of a neutron star with a strong magnetic field, stable thermonuclear burning
will produce mixed ash for which µe = 2 is more accurate [10]. These shortcomings
are addressed by MB12 by considering a degenerate non-relativistic EOS for a µe = 2
plasma as mound densities in the polar caps are mostly less than 106g/cm3.

Zc Mass Max density
(in meters) (in M�) (in g/cm3)

45 0.52 × 10−12 3.5 × 107

60 1.23 × 10−12 5.4 × 107

70 2.17 × 10−12 6.8 × 107

Table 2.1: The maximum mass and density obtained from GS solution for different
mound heights. For a magnetic field of ∼ 1012G, a degenerate non-relativistic Fermi
mound can confine matter upto a threshold height of ∼ 72m.

In Figure 2.1, we have plotted the field line profile of mounds of height 45m and 60m.
The contours of constant flux represent the magnetic field lines. The magnetic field
lines, tied to the crust, move outwards from their initial configuration to support the
lateral movement of matter in the mound. Tension develops in the field lines which
supports the gas pressure gradient in the horizontal direction (∇p = B · ∇B). The
distortion of field lines increases with a larger base density as it gives rise to larger
pressure which in turn requires more curvature in field lines to balance the pressure
gradient. This leads to bunching of field lines and increased field strength. This can
be observed in Figure 2.1 where the field line curvature is more for the Zc = 60m
mound as compared to the Zc = 45m mound. But, for a given field strength a mound
can confine matter up to a maximum height. Beyond that threshold, the GS solution
does not converge and there is a loss of equilibrium. A field strength of B0 = 1012G
can confine mounds up to a height of around 72m.
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2.3. Solving GS equation

2.3.2 GS solution with Paczyński EOS

Figure 2.2: Ψ-profile for Zc = 50m in degenerate non-relativistic EOS (top) and
Zc = 50m in Paczyński EOS (bottom) in units of 0.5 × 1012. The colorbar shows
values of magnetic field flux. The solid lines over-plotted in blue across the contour
show the top boundary of the mound.

At the base of the mound, the density increases up to the order of magnitude of
107g/cm3. So, the Paczyński EOS can describe the Fermionic pressure in this domain
of density with better accuracy. We keep the same initial dipolar field configuration
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Chapter 2. Static equilibrium structure of accretion mound

tied to the crust and the other peripheral boundaries as in the mound with non-
relativistic EOS. We just change the expression for pressure to the general degenerate
Fermi pressure at T = 0. Figure 2.2 shows the comparison between field line profile
of mounds of height 50m for a degenerate non-relativistic EOS and Paczyński EOS.
The base densities and confined mass are higher for a Paczyński solution than the
non-relativistic EOS. As a smaller mound for Paczyński EOS can hold more mass, the
threshold height for stability for the same magnetic field strength is as low as ∼ 50m
as compared to ∼ 70m in degenerate non-relativistic EOS. Mass of a 40m high mound
with Paczyński EOS is 2.993 × 10−12M� and with non-relativistic degenerate Fermi
EOS is 0.384 × 10−12M�. This topic is taken up further in chapter 4.

2.4 Discussion

In this chapter, we have modelled the density and magnetic field profile of an accretion
mound by solving the GS equation. The accretion profile at the edge of the magneto-
sphere determines the mass-loading of the field lines threaded to the accretion disk,
which in turn determines the shape of the mound. The magnetic field configuration
is determined by the mound morphology. We have assumed a parabolic profile which
has a maximum mass at the central part and the mass falls towards the edge. Start-
ing with this initial guess for the mound shape, we computed the equilibrium mound
structure for different equations of state: a non-relativistic degenerate Fermi EOS
and Paczyński EOS. The magnetic field lines distort from the initial dipolar struc-
ture to confine the accreting matter and prevent its spreading towards the equator.
This restricts the growth of the mound up to a threshold height for a given magnetic
field strength. We also observed that the Paczyński mounds which involve relativistic
characteristics for degenerate plasma, confine more matter and hence reach a lower
threshold height as compared to the non-relativistic degenerate Fermi mounds.
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Chapter 3

Stability analysis of accretion
mounds in 2D

3.1 Introduction

Having obtained a numerical solution of the GS equation for an accretion mound as
explained in chapter 2, we analyse the stability of the equilibrium in this chapter.
We import the GS solution into the PLUTO MHD code (Mignone et. al, 2007 [30])
and evolve it as per the magnetohydrodynamics equations in time. We discuss the
problem setup in PLUTO, the initial conditions, boundary conditions and the choice
of the equation of state for the simulations.

Once we establish the stability of the solution, we perturb the solution to investigate
the local dynamics and to look for instabilities in the mound. We devise different ways
of adding perturbation to excite physical effects at various length and time scales. We
add zero-mean density perturbations (no extra mass added) i.e. re-arrange the matter
in the mound to study the pressure-driven instabilities. We also add non-zero mean
density perturbation (extra mass) to the mound to analyse the gravity-driven modes.
In this chapter, we perform the analysis on a mound with non-relativistic degenerate
Fermi plasma and discuss the stability analysis with the generalised EOS of Paczynśki
in chapter 4.
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Chapter 3. Stability analysis of accretion mounds in 2D

3.2 Numerical setup using PLUTO

PLUTO is a Godunov scheme [45] based tool to solve conservation equations of gas
dynamics (coupled hyperbolic and parabolic PDEs) numerically. The code supports
varieties of Riemann solvers, time-stepping and reconstruction algorithms that are
compatible with different physics modules (HD, MHD, RHD, RMHD) aiming to solve
a plethora of astrophysical problems. It integrates the coupled conservation equations
numerically and evolves the physical quantities in time, using the initial and boundary
conditions provided in terms of the primitive variables {ρ, v, p, B}. A conservation
equation is of the form -

∂U

∂t
+ ∇ · T(U) = S(U) (3.1)

where U is any conservative variable, �T (U) is the flux tensor of the correspond-
ing variable and S(U) is the source term. Using the solutions for primitive vari-
ables, conservative variables {ρ, ρv, E, B} can be defined, for example, total energy
E = ρ� + ρv2 + B2/2. Shocks and rarefactions are expressed in terms of primi-
tive variables. Moreover, it is better to implement the limiters on primitive rather
than the conservative variables as positivity of density and pressure can be directly
checked in each zone of the computational domain while integrating. By using the
approach of solving Riemann problem by finite volume method, PLUTO can handle
discontinuities and shock waves in fluid flows[5]. A Riemann problem is an initial
value problem composed of conservation equations with discontinuity. It is used as a
sample problem to build numerical schemes.

3.2.1 MHD Equations and numerical schemes in PLUTO

In this work, we use PLUTO’s MHD module which solves the Equations 3.2 - 3.5.
These equations are a combination of Navier-Stokes equations of fluid dynamics and
Maxwell’s equations of electrodynamics.

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v = 0 (3.2)
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3.2. Numerical setup using PLUTO

∂v
∂t

+ v · ∇v + 1
ρ

B × (∇ × B) + 1
ρ

∇p = g (3.3)

∂B
∂t

+ ∇ × (v × B) = 0 (3.4)

∂p

∂t
+ v · ∇p + ρc2

s∇ · v = 0 (3.5)

where g = g ẑ is the constant acceleration due to gravity and c2
s is the square of sound

speed. B has been normalised by a factor of 1/
√

4π. Eq. 3.2 is the continuity equation
which comes from mass conservation. Eq. 3.3 is the Euler equation (momentum
conservation) which is derived using force balance condition. Eq. 3.4 shows the
induction equation which is derived from Faraday’s law. Eq. 3.5 uses the energy
conservation principle where p is related to energy as E = p/(γ − 1) + ρv2/2 + B2/2.
PLUTO (v.4.3 June 2018, used in the thesis) incorporates modules to add dissipative
factors like viscosity, resistivity, thermal cooling, forced turbulence and magnetic
diffusivity to the ideal MHD setup.

Spatial reconstruction is carried out in primitive or characteristic variables using
high order interpolation methods like Piece-wise Parabolic Method (PPM), linear
Total Variation Diminishing (TVD) limiting or Weighted Essentially Non-Oscillatory
(WENO) [30]. PLUTO provides a block-structured adaptively refined grid (Adap-
tive Mesh refinement). This modular structure helps in the implementation of a
conservative finite volume discretization which evolves zone averages in time using
Corner-Transport-Upwind method (CTU). PLUTO carries out numerical integra-
tion of conservation laws through shock capturing-schemes using this finite volume
method. This scheme is second-order accurate in space and time and reduces the
numerical error arising from a sharp gradient in physical quantities.

Numerical errors can inevitably lead to unphysical features like monopoles (∇ · �B �=
0) in the simulation. Hence, divergence cleaning is implemented using Extended
Generalised Lagrange Multiplier (EGLM) to make the divergence zero explicitly. This
technique adds the divergence equation (∇ · �B = 0) as a constraint to the MHD
equations while solving them. This preserves the constraint condition up to high
accuracy [4].
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∂(ρ�v)
∂t

+ ∇ ·

ρ�v�v − �B �B + �I


p + B2

2





 = −(∇ · �B) �B + ρ�g (3.6)

∂E

∂t
+ ∇ ·





E + p + B2

2


�v − (�v · �B)


 = − �B · ∇Ψ (3.7)

∂ �B

∂t
+ ∇ · (�v × �B) = −∇Ψ (3.8)

∂Ψ
∂t

+ c2
h∇ · �B = −c2

h

c2
p

Ψ (3.9)

where ch is the maximum allowed speed of the local characteristics, cp =
�

Δlminch/α

is the diffusion coefficient and Ψ is the generalised Lagrange multiplier. This leads to
the natural evolution of the system towards a divergence-less state.

3.2.2 Choice of equation of state

PLUTO provides a pool of equations of state including IDEAL (pressure as a function
of density and temperature), ISOTHERMAL (pressure as a function of density only),
PVTE law (internal energy as a function of temperature and chemical potential,
used to study a partially ionized hydrogen gas in local thermodynamic limit), TAUB
EOS (adiabatic index is a function of temperature, γ → 5/3 at low temperature
and γ → 4/3 at high temperature, describes relativistic perfect gas). We modify
the ISOTHERMAL EOS into another form of BAROTROPIC EOS (degenerate non-
relativistic Fermi plasma) to model the matter inside the accretion mound in neutron
stars in the MHD regime. An EOS of a degenerate non-relativistic Fermi plasma is
used.

P = kadρ5/3 kad =

(3π2)2/3

5





 �2

me(µemp)5/3)


 (3.10)
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This above equation suggests
∂

∂t


 P

ργ


 = 0 (3.11)

where γ = 5/3 is the ratio of specific heats in the non-relativistic limit. Addition
of thermal or kinetic energy does not alter the pressure. With a time independent
pressure, the energy equation and is not required to be solved for this EOS.

3.3 Problem set up in PLUTO

Without perturbations, the equilibrium solution derived from the GS solution should
remain immutable over time. Numesrical errors, may, however, cause the solution
to evolve. To estimate this, we check the stability of the GS solution by evolving it
in time. Stability will be established if the solution remains static over a significant
timescale. We shall carry out the perturbation analysis only after confirming equi-
librium. We set up an environment in PLUTO according to the conditions in which
the GS equation was solved.

Integration scheme RK3
Spatial interpolation PPM

Riemann solver HLL, TVDLF

Table 3.1: List of numerical schemes chosen in PLUTO best suited for the problem
in this thesis

Given a set of initial system conditions and boundary specifications, PLUTO can
evolve the system in time based on the underlying magneto-hydrodynamic conser-
vation equations. We use the following computational framework and square cells
(Δr � Δz) to reduce numerical error. High (third) order integration (Runge Kutta-
RK3) and interpolation (Piecewise Parabolic Method-PPM) schemes are used to en-
hance accuracy. TVDLF and HLL are chosen as they are less diffusive Riemann
solvers.

3.3.1 Initial condition

We choose a small patch inside the mound as our computational domain as shown in
Figure 3.1 where we seek to establish the stability of equilibrium. The region is cho-
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Physical parameters Normalization constants
Density (ρ0) 106 g/cm3

Length (L0) 105 cm
Magnetic field (Bp) 1012 G

Velocity (v0) 2.82 × 108 cm/s
Time (t0) 3.55 × 10−4 s

Table 3.2: The normalization factors for density, length and magnetic field are fed
into PLUTO maintaining consistency with the GS solution

sen such that the local Alfvén speeds are non-relativistic. We feed in the equilibrium
solution obtained from the GS equation as an initial condition to PLUTO. The phys-
ical variables {ρ,�v, p, �B} are normalized in PLUTO and interpolated on the chosen
grid. These physical quantities are non-dimensionalized by introducing dimensioned
normalization factors. The normalization for density(ρ0), length(L0) and magnetic
field(B0) used while solving GS equation are supplied to PLUTO.

Dynamics in strongly magnetised plasma is characterised by the Alfvén waves (low-
frequency oscillations propagating in the system). Hence, velocity and time are nor-
malized with the Alfvén velocity (vA = Bp/

√
4πρ0) and Alfvén time (tA = L0/vA) of

the system. For the stability checking, we import the GS solution for the degener-
ate non-relativistic mound, discussed in chapter 2. Normalised density and magnetic
field are imported into PLUTO. Initial pressure is computed from imported density
as p = kad ργ. Initial velocities are set to zero.

3.3.2 Boundary condition

We have set the boundary of the computational domain to be fixed to its initial
values. We claim that if the solution is static i.e. there is no inflow or outflow within
the chosen box, then it doesn’t affect the dynamics of its neighbouring region and
hence equilibria must hold throughout the mound. For the implementation of a fixed
boundary, Q = Q0 and ∇Q = ∇Q0.

3.3.3 Equation of state

We choose to use a barotropic EOS as pressure and density are uniquely related(p =
kad ρ5/3) in non-relativistic degenerate Fermi EOS. This is set up by modifying
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3.4. Checking the stability of equilibrium solution using PLUTO

Figure 3.1: A Computational domain in PLUTO. A region is chosen well inside the
mound to obtain the numerical error in the equilibrium solution devoid the the nu-
merical artefacts due to boundary effects. Similar domains as mentioned in Table 3.3
are chosen for getting a better error limit.

PLUTO’s isothermal EOS module which is also of the barotropic form (p = c2
s ρ).

As pressure is not an independent variable anymore (p = p(ρ)), the energy equation
becomes redundant [29].

With the setup described above, we check for stability by considering different com-
putational domains throughout the mound. We budget for the maximum error that
we encounter closer the boundary. This is necessary to decide the order of magni-
tude of perturbations (which should be higher than the numerical error at machine
precision) in later work to study instabilities.

3.4 Checking the stability of equilibrium solution
using PLUTO

While dynamically evolving the equilibrium solution obtained by solving GS equation
using PLUTO, we check the amount of change in the mound density profile from the
equilibrium with time. We want to quantify these numerical inaccuracies and claim
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Figure 3.2: Histograms show the error distribution in density of a Zc = 60m mound at
t = 0 (top left) showing error close to zero at t = 50tA (top right) showing maximum
error within 0.4% and at t = 100tA (bottom) showing maximum error within 0.2% in
region 6 as per Table 3.3

that the equilibrium can be considered stable only up to a certain error limit. An
additional check on the stability of equilibrium can be done, if upon introducing small
random perturbations ξ in velocity or density field such that �ξ� = 0 and evolving,
the initial solution doesn’t change.

We consider an accretion mound of Zc = 60m. First, we calculate the over-density,
(ρ[t] − ρ[t = 0]/ρ[t = 0]) at each grid point to study the evolution of deviation of
density from equilibrium with time. We evolve it until 100 tA. We analyze the areas
near the boundaries of the mound.

The error mostly lies in a range of up to 1% around zero. But at the top-right edge,
numerical artefacts are more prominent as the value of the physical quantities is
smallest in the computational domain. Hence, the histograms show a comprehensive
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picture of the error distribution with the majority of the peaks around zero and a
very few peaks at maximum percentage errors (about one order of magnitude higher).
Table 3.3 presents the maximum error in overdensity closer to the boundary regions
of the mound.

Error at 100tA is higher than the error at 5tA due to building up of numerical error
through the computation time. In addition, the maximum internal flow velocity
(vmax ∼ 104m/s) is less than 1% of the local Alfvén velocities(∼ 108m/s). If we extend
the computational domain beyond these regions, we move closer to the boundary,
hence we get an error higher than other regions by at least an order of magnitude.
Maximum fluctuation in over-density after 100 tA approaches 0.3% when chosen away
from the boundaries. We choose the region (6) for perturbation analysis as it is the
region with less error and covers the region where magnetic field lines are bent the
most. Higher curvature of the field lines makes the system more prone to instabilities
like kink, interchange etc. Hence, we choose this region for further analysis.

Region r-range z-range % errormax % errormax vmax at
(in km) (in km) t = 5tA t = 100tA t = 100tA (in

2.82 × 104cm/s)
1 0.008 − 0.50 0.001 − 0.05 0.0075 0.042 0.56
2 0.25 − 0.65 0.03 − 0.05 0.018 0.28 3.2
3 0.3 − 0.7 0.02 − 0.04 0.16 0.35 1.0
4 0.5 − 0.95 0.001 − 0.008 0.24 0.15 7.2
5 0.007 − 0.3 0.042 − 0.0588 0.048 0.9 2.7
6 0.3 − 0.8 0.01 − 0.04 0.01 0.28 4.3

Table 3.3: Error in density over evolution through t = 0.0 to t = 100tA in different
regions as close to the boundary as possibe on all sides of a mound with Zc = 60m

With error less than 1% in all the chosen regions, we have a preliminary conclusion
that the equilibrium solution obtained is stable and it can be used for further per-
turbation analysis studies. In the next section, we report the results from adding
zero mean velocity perturbations ξ i.e. �ξ� = 0. This ensures that no centre of mass
velocity and no excess mass has been added to the mound matter. As no additional
mass is added to the computational region at equilibrium, there is no change in the
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Chapter 3. Stability analysis of accretion mounds in 2D

Figure 3.3: Normalised magnetic, internal and potential energy for the equilibrium so-
lution of Zc = 60m. The values of the energy are normalized to their initial values i.e.
Emag(t) → Emag(t)/Emag(0), Eint(t) → Eint(t)/Eint(0) and Epot(t) → Epot(t)/Epot(0)

internal energy and pressure becomes a function of density only. So, we use the
non-relativistic degenerate Fermi (a barotropic form) equation of state.

The evolution of magnetic energy (Emag), internal energy (Eint) and potential energy
(Epot) of the section of the mound through 100tA has been plotted in Figure 3.3. The
energies fluctuate during the evolution and end up within 0.1% error at 100tA which
can be attributed to the built up numerical artefacts. This constancy in energy also
hints at the stability of the GS solution.

3.4.1 Adding velocity perturbations

Being aware of the error values near boundaries of the mound, we first choose a com-
putational region away from the boundary to avoid related numerical artefacts. We
carefully choose a region capturing the curved field lines, to carry out the perturba-
tion analysis. Keeping in mind the error threshold for an equilibrium solution in the
chosen computational domain, next, we perturb the velocity field in a central region
kept away the boundary to study their evolution in the spatial domain.
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3.4. Checking the stability of equilibrium solution using PLUTO

Zc Perturbation Max % error Max % error
(in meters) Strength t = 5tA t = 100tA

5 1.0 0.5
10 2.0 1.2

45 15 2.8 2.0
20 4.0 3.2
5 1.2 0.24
10 1.5 0.5

60 15 3.2 0.8
20 4.0 1.0
5 0.6 0.2
10 1.2 0.4

70 15 1.8 0.42
20 2.5 0.55

Table 3.4: Error in density due to zero mean velocity perturbation is shown at t = 5tA

and t = 100tA in mounds of different heights while evolving the system through 100tA

To perturb any physical quantity at equilibrium, we add a normalized perturbation
field ξ(r, z) as follows -

Q = Q0(1 + ηξ(r, z)) (3.12)

where η is the perturbation strength and ξ(r, z) is a random value assigned at each
grid point in the perturbation zone such that �ξ� = 0 such that the centre of mass
remains stationary. Serious numerical artefacts can arise due to sharp gradients in
the edges of the perturbed region. So, we smoothen the cells in the perturbed region
using some exponential functions. The following expression depicts the smoothing-

Qptb → Qptb(1 − exp(−z/znorm))(1 − exp(−r/rnorm)) (3.13)

where Qptb is the perturbation introduced to physical quantity Q, (r, z) are the cylin-
drical coordinates and (rnorm, znorm) are the normalization constants on respective
coordinates.

We want to understand the dynamics of the instabilities as we transition from mounds
of lower height and mass (Zc < 60m) to higher ones (Zc ∼ 72m) beyond which the GS
solution does not converge. For mounds of height 45m, 60m and 70m, we track the
evolution of the perturbation till 100tA and report the maximum overdensity values
for different perturbation strength (η) such as 5%, 10%, 15% and 20% in Table 3.4. As
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Chapter 3. Stability analysis of accretion mounds in 2D

mentioned in the previous section, the distribution of error lies close to zero within
1% − 2% although a few grid points might have larger error values which do not
significantly affect the stability in the region. It is observed that there is a motion
of the plasma in the perturbed region due to the introduced non-zero velocity. This
leads to the formation of pockets of excess matter at some grid points and less dense
voids at others as shown in the middle panel of Figure 3.4. Eventually, the over-dense
packets spread out as shown in the bottom-most panel of Figure 3.4.

Figure 3.4: Over-density profiles of a mound with Zc = 45m and velocity perturbation
strength of 15% at different time steps

This makes the system return to an energy state close to equilibrium as shown in
Figure 3.5(top) where flow velocities are reduced by more than three orders of mag-
nitude at t = 100tA. But such perturbations do add non-zero kinetic energy to the
system. Introducing perturbation of strength more than 20% makes the system de-
part from equilibrium and creates a pressure imbalance which manifests in magnetic
field line distortion. This is shown in Figure 3.5(bottom) as the normalised magnetic
energy increases by more than an order of magnitude in comparison to the scenario
in Figure 3.5(top) where perturbation strength is 5%. So, velocity perturbation is a
good parameter to check the stability of the equilibrium for a small η (up to 20%).
It helps to probe the pressure-driven instabilities in toroidal modes as performed in
Mukherjee et. al (2013)[34][35]. In 3D, they can excite linear modes with even a
small η ∼ 2%.
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3.4. Checking the stability of equilibrium solution using PLUTO

Figure 3.5: Normalised magnetic, internal and potential energy for the equilibrium
solution of a Zc = 60m mound with 5% (top) and 50% (bottom) velocity perturbation

3.4.2 Adding density perturbation

With the analysis of velocity perturbation, we realise that beyond a threshold, the
excessive kinetic energy disturbs the equilibrium by distorting magnetic field lines.
Another method of verifying stability is by adding zero-mean �ξ� = 0 density pertur-
bations. It physically represents local re-arrangement of matter inside the perturbed
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Chapter 3. Stability analysis of accretion mounds in 2D

zone and does not enhance the energy of the mound significantly hence creating the
least disturbing effects. Therefore, it is an alternate way to check the stability of the
system when it is perturbed from the equilibrium. An analysis similar to previous
velocity perturbation is carried out with different mound heights and perturbation
strength as depicted in Table 3.5. But, with the same density perturbation strength,
field lines are not significantly distorted. By t = 5tA, the perturbation damps and
settles into pockets of perturbed density which eventually weaken further and vanish
at the boundaries by spreading. This is depicted in Figure 3.6.

Figure 3.6: Over-density profiles of a mound with Zc = 45m and a zero mean density
perturbation strength of 15% at different time steps

With increasing mound height (higher mass and pressure), it takes less time for the
overdensity to dissipate by spreading out of the clumps of overdense regions faster.

In this 2D axisymmetric case, there is no signature of instabilities in the mounds of
heights up to the threshold height (∼ 72m) for B = 1012G. This is in agreement with
Litwin et. al, 2001 [26] (LBR01, hereafter) which predicts the onset of interchange
or ballooning modes to have finite toroidal wave vectors perpendicular to the local
magnetic field, which requires a non-axisymmetric 3D system. It is crucial to model
this system in 3D to capture the effect of toroidal instabilities [35]. In the next section,
we intend to study the effect of non-zero mean density perturbations i.e. addition of
excess mass to the accretion mound to understand gravity-driven instabilities.

34



3.5. Adding excess mass

Zc Perturbation Max % error Max % error
(in meters) Strength t = 5tA t = 100tA

5 2.0 0.6
10 3.2 1.6

45 15 5.0 2.2
20 7.5 2.75
50 20.2 4.0
5 2.0 0.42
10 3.0 0.7

60 15 5.0 1.25
20 6.75 2.0
50 16.0 4.2
5 1.5 0.4
10 2.5 0.5

70 15 3.5 0.65
20 5.0 1.1
50 10.0 2.0

Table 3.5: Error in density due to zero mean density perturbation is shown at t = 5tA

and t = 100tA in mounds of different heights while evolving the system through 100tA

3.5 Adding excess mass

To understand the dynamics of excess mass in the accretion mound, we add positive
definite random number such that added matter is heavier than the environment and
falls under gravity. Density in the perturbation zone is introduced as ρ = ρ0(1 +
ηξ(r, z)) such that �ξ� > 0, without disturbing the pressure.

3.5.1 EOS

As extra mass is being added, it adds to the internal energy of the system which
makes pressure independent of density as p = ρe(γ − 1) where e in the internal
energy. This no longer keeps the energy equation redundant as in the barotropic case
where P = kadργ. So, we use the Ideal EOS which solves the energy equation as well.

Upon adding positive density perturbation in barotropic EOS, a region of excess
pressure is created which overcomes the effect of gravity acting downwards and pock-
ets of added matter rise upwards. Hence, adiabatic EOS is required to study the
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Chapter 3. Stability analysis of accretion mounds in 2D

gravity-driven mode as it enables the matter to descend.

3.5.2 Boundary condition

Inner boundaries at the bottom and left are kept fixed (Q = Q0) to their initial
values. The bottom boundary is fixed as it is close to the crust which we assume
to be solid [10]. The left boundary is close to the polar axis which has to be fixed
from the symmetry point of view - if not, then matter will leak out from the centre
in all direction leaving the centre empty. A fixed gradient condition is implemented
at the outer boundaries at top and right where the initial gradients are preserved.
This enables us to set the gradients of the perturbed quantities to zero (∇Q =
∇Q0 + ∇Q� → ∇Q0, ∇Q� = 0)[34].

3.5.3 Inferences and Discussion

We run simulations with different values of positive definite density perturbation on
mounds of different heights. Excess matter experiences a gravitational pull downward
and a force sideways due to the lateral pressure gradient. This leads to the departure
of the system from equilibrium.

There are two timescales involved: dynamical(tdyn) and Alfvén(tAlf ). tdyn is deter-
mined by the dominant acceleration due to gravity and tAlf is related to the charac-
teristics of the plasma.

tAlf = L0/vAlf = 3.546 × 10−4s (3.14)

tdyn =
�

L0/g = 0.232 × 10−4s (3.15)

This shows that the dynamical timescales is shorter (tdyn = 0.065 tAlf ) and hence
dominates over the Alfvén timescale. So, the matter falls under the influence of
gravity faster than spreading sideways. Figure 3.7 shows the predominantly downward
acceleration at t = 1tA. At t = 0, the pressure gradient in the z-direction(∇pz) is more
than that of the gradient in r-direction(∇pr) as depicted by Equations 2.9 and 2.10
and their difference is plotted in Figure 3.8 which is balanced at equilibrium (t = 0).
When additional density is introduced as a perturbation, ∇pz increases further but
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3.5. Adding excess mass

Figure 3.7: Normalised acceleration in the computational domain (scale shown in
colorbar) and the direction of acceleration (shown by white arrows).

∇pr does not change significantly due to no notable change in Ψ. Figure 3.9 highlights
this difference persisting even at t = 1tA after perturbations are introduced.

Figure 3.8: Difference between the pressure gradient in z and r direction is largely
positive implying ∇pz is more than ∇pr by at least an order of magnitude

Figure 3.9: Pressure gradient upon introducing non-zero mean density perturbation
along z(left) and r(right) at t = 1tA are shown here
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Chapter 3. Stability analysis of accretion mounds in 2D

η (in %) Zc (in m)

45 60 70

5 0.943 0.573 0.57
10 1.56 1.14 1.13
15 2.83 1.704 1.705
20 2.67 2.82 2.28
30 4.02 3.46 3.43
40 4.618 4.608 4.54
50 6.75 5.73 5.74

Table 3.6: Percentage of excess mass added to the mounds of different heights and
density perturbation strength (η)

When less matter (η < ηT i.e. threshold η) is added to the mound, it does not alter the
mass of the region enough to get affected by gravity. The matter is supported by the
lateral magnetic pressure and diffuses slightly into the surroundings. For high values
of η > ηT , as the added matter descends it accumulates in some high-density pockets
which distorts the equilibrium magnetic field topology and creates Parker instability
type features. Temporal evolution of such features are shown in Figure 3.10 and
Figure 3.11 for mounds of height 45m and 60m respectively. ηT for both the cases
are discussed later in this section.

To quantify the distortion in the field lines for various perturbation strengths and
mound heights, we measure the evolution of magnetic energy with time. Distortion
implies higher tension(B · ∇B/µ0) in the field lines which is of the order B2/L and
hence proportional to the magnetic energy B2/8π for a given length scale in the
mound. In Figure 3.12, we have plotted the evolution of total magnetic energy nor-
malised to its value at t = 0 for three different heights and for a various percentage
of mass loading. The first plot for Zc = 45m shows a distinctive behaviour in the
evolution trend beyond η = 30% of the existing mass in the computational domain.
The magnetic energy starts increasing contrary to the decreasing trend for η < 30%.
This kind of bifurcation is a qualitative signature of the onset of gravity-driven insta-
bilites. Similar behaviour is seen in the Zc = 60m mound for η ∼ 50%. In Zc = 70m,
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3.5. Adding excess mass

Figure 3.10: Over-density profiles of a mound with Zc = 45m and an excess mass of
4.02% (η = 30%) at different time steps

for η > 10% similar trend in magnetic energy is observed due to closeness to the
threshold height Zmax = 72m for the dipolar magnetic field strength of 1012G.

Figure 3.11: Over-density profiles of a mound with Zc = 60m and an excess mass of
3.46% (η = 30%) at different time steps
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Chapter 3. Stability analysis of accretion mounds in 2D

We also investigate the kinetic energy evolution as shown in Figure 3.13. Any distinct
qualitative difference in its behaviour is not observed. But for η > ηT , the kinetic
energy grows followed by a slower rate of growth which might lead to saturation
at a time when the excess matter would settle down near the surface. Below this
threshold, the kinetic energy asymptotes to a stable kinetic energy profile (note that
the kinetic energy is zero at equilibrium). ηT reduces with height. For Zc = 45m,
ηT ∼ 30% (4.02% excess mass); for Zc = 60m, ηT ∼ 20% (2.82% excess mass); for
Zc = 70m, ηT ∼ 10% (1.13% excess mass).

But given that the maximum mass accretion rate (Eddington limit),

ṀEdd = 1 × 10−3M� yr−1 Rstar

R�
(3.16)

for a neutron star of radius 10km is 1.438 × 10−8M� yr−1 [1] and the mass of a
stable mound is ∼ 10−12M�, it is unlikely to encounter a physical situation where an
excess mass in the order of 10−14M� is added over a timescale of seconds to initiate
instabilities. Presence and intensity of gravity-driven instability in a real scenario
have to be investigated further.
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3.5. Adding excess mass

Figure 3.12: The figure shows the evolution of magnetic energy in mounds of height
45m (top), 60m (middle) and 70m (bottom) for a range of density perturbation
strength from 5% to 50%
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Chapter 3. Stability analysis of accretion mounds in 2D

Figure 3.13: The figure shows the evolution of kinetic energy in mounds of height 45m
(top), 60m (middle) and 70m (bottom) for a range of perturbation strength from 5%
to 50%
42



Chapter 4

Polytropic vs Paczýnski

With the similar setup in PLUTO as described for the non-relativistic degenerate
Fermi EOS case (P = kadργ) (polytropic, hereafter), stability analysis of GS solution
is carried out for mounds with Paczyński EOS, a general EOS that accounts for
relativistic corrections. The expression for pressure in Paczyński EOS is given as

p = π

3
m4

ec
5

h3
8/5x5

F

(1 + 16/25x2
F )1/2 (4.1)

where xF is the Fermi momentum as given in Eq. 2.27. The maximum error in
overdensity in the computational domain turns out to be less than 1% implying our
GS solution to be stable up to a maximum error threshold of 1%. We budget for this
error while pursuing further dynamical studies.

In this chapter, we study the change in structure and magnetic field configuration
of the mound when modelled by Paczyński EOS as compared to polytropic EOS.
This will provide an idea about the offset in mound mass calculation when EOS is
approximated to cover a non-relativistic degenerate regime.

4.1 Comparison on the basis of threshold height

The GS solution does not converge beyond a threshold height. This implies that
the mound on a neutron star with a particular magnetic field can confine up to a
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Chapter 4. Polytropic vs Paczýnski

definite amount of matter while maintaining stability. The magnetic field lines cannot
tolerate more tension and get distorted beyond this threshold. The threshold height
for a polytropic and Paczyński mound is ∼ 72m and ∼ 56m respectively. Moreover,
a Paczyński mound confines more matter than a corresponding polytropic mound of
the same height. Because of the inclusion of relativity and in turn the softer equation
of states (P ∝ ρ4/3), a Paczyński mound of any height can contain matter of density
(≥ 107g/cm3). The threshold mass for Paczyński and non-relativistic case are around
11.08 × 10−12M� (height ∼ 56m) and 2.43 × 10−12M� (height ∼ 72m) respectively.

4.2 Comparison on the basis of mass

Figure 4.1: Comparison of confined mass in mounds of same height in Paczyński and
Non-relativistic EOS.

We simulate mounds of different maximum central height for the polytropic and the
Paczyński EOS, then we try to fit curves to find out a mathematical relation between
mass and maximum central height (h) of mound. The dependence of total mound
mass on the maximum central mound height can be can be approximated as m ∝ h2.72
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4.3. Adding zero mean density perturbation

for non-relativistic EOS and m ∝ h3.26 for Paczyński EOS. Paczyński mounds confine
more mass for a given central mound height and magnetic field. Paczyński mounds
manifest larger curvature and hence are more prone to interchange instabilities [35]
at lower heights as compared to the polytropic mounds described in chapter 3.

4.3 Adding zero mean density perturbation

Paczyński EOS is a barotropic form of EOS i.e. P = P (ρ). So, the qualitative
behaviour of the density distribution after adding zero-mean density perturbation is
similar to the non-relativistic degenerate polytropic EOS as mentioned in chapter 3.
Table 4.1 shows the evolution of overdensity at t = 5tA and t = 100tA in Paczyński
mounds of different heights. From the table, it can be inferred that the overdense re-
gions spread out and become homogenous faster in comparison to a polytropic mound
of the same central maximum height as mentioned in Table 3.5. This can be explained
by the higher density(pressure) in the Paczyński mounds than polytropic mounds of
comparable height. The initial overdensity is characterised by the density inside the
mound and hence the maximum overdensity increases with mound height. But the
dynamical parameters(velocity, acceleration due to gravity, lengthscale) determine
the timescale for the spreading of perturbations. After evolving the system for 100tA

the maximum overdensity in a mound decreases with increase in height(and mass) as
gravity influenced dynamical timescale dominates.

For a polytropic mound of height Zc = 45m(mass ∼ 1.04 × 10−12M�), the maximum
error in density for perturbation strength 5%, 10%, 15% and 20% are 0.6%, 1.6%, 2.2%
and 2.75% respectively which are greater than or equal to the error in case of a
comparable Paczyński mound (in terms of mass) of height Zc = 25m (mass ∼
1.30 × 10−12M�). So, Paczyński mounds reach steady-state almost at the same time
or earlier than a polytropic mound of similar mass. This implies that the mass con-
fined in the mound determines the timescale for the dynamics of the instabilities
i.e. relaxation of perturbed pockets of matter as the mound is stable to the applied
perturbations in 2D.
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Zc Perturbation Max % error Max % error
(in meters) Strength t = 5tA t = 100tA

5 2.2 0.75
25 10 4.2 1.4

15 8.0 1.8
20 6.8 2.7
5 2.0 0.5

30 10 4.0 1.25
15 7.0 1.75
20 7.5 1.8
5 2.2 0.6

40 10 4.5 1.0
15 6.0 1.4
20 8.0 2.8
5 2.5 0.4

50 10 5.1 0.8
15 6.2 0.85
20 10.0 1.3

Table 4.1: Error in density due to zero mean density perturbation is shown at t = 5tA

and t = 100tA in Paczyński mounds of different heights when the system is evolved
through 100tA

4.4 Discussion

Using Paczyński EOS, we do not find any evidence of interchange instability as the
mound settles down to a steady-state with an error of around 1% in density and
velocity in 2D. These simulations are sufficient to establish the difference in the
structure and stability of the mounds under different EOS, especially highlighting
the effect of inclusion of relativistic effects. Further instability analysis must be
implemented using Paczyński EOS.
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Chapter 5

Magnetohydrodynamic instabilities
in the accretion mound

The stability of a plasma system determines the dynamics of the perturbations,
whether they will grow or damp. Equilibrium is not permanent as perturbative
forces are inevitable in a non-ideal dynamical system. These perturbations play an
important role in energy conversion of modes and pose as the major hindrance for
plasma confinement. Grad Shafranov solution is susceptible to instability upon intro-
ducing perturbations in the physical quantities like density and velocity. This puts a
threshold on the maximum mound height and hence there exists a mass beyond which
the mound becomes unstable. MHD instabilities limit the formation of large scale
mounds as the GS solution becomes unstable under perturbations. In this chapter,
we discuss the nature of such instabilities as investigated by studies like MB13a and
MB13b.

5.1 Causes of instabilities

In this section, we discuss the possible origin of a few instabilities that have been
explored previously and some of them are verified in this thesis as well for different
equations of state.
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Chapter 5. Magnetohydrodynamic instabilities in the accretion mound

Figure 5.1: The magnetic flux profile for a mound of height Zc = 75m (higher than
Zmax) at an intermediate time step as the solution does not converge. The axis labels
show the number of grid points along that axis ranging upto 1km in x-axis and 0.1km
in y-axis depicting r and z coordinates respectively. The colorbar shows the value of
the magnetic flux contours.

Buoyancy related instabilities(Lack of numerical convergence)

Instability in GS solution is manifested in the form of closed loops in the mag-
netic flux profile when an iterative numerical scheme does not converge to a solution
[19][38][34][35]. Closed field lines as shown in Figure 5.1 are not just some numerical
discrepancy but are described as buoyant bubbles of plasma that rise from the surface
of the neutron star and are inherently allowed in the solution domain by the model
designed by PM04 and Vigelius and Melatos (2008)[46](VM08, hereafter). This hap-
pens when the tension in magnetic field lines (B · ∇B) can’t balance plasma pressure
gradients beyond a threshold mound height (mass). MB12 have proposed an ana-
lytical relation for determining the threshold height (Zmax) in terms of the normal
magnetic field (Bn) and polar cap radius (Rp) beyond which the solution does not
converge.

Zmax ∝ B4/7
n R2/7

p (5.1)

This result from the numerical study also agrees closely with the analytical stability
criterion provided by LBR01 as

log10(Zmax) > −5.1 + (4/7) log10 B (5.2)

which sets a limit for the onset of pressure-driven ballooning instabilities.
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5.1. Causes of instabilities

Pressure-driven instabilities

The pressure-driven instability (interchange/ballooning instability) caused by gradi-
ents in magnetic pressure has been observed in confined plasma for example, in toka-
mak reactors. Brown and Bildsen (1998) [10] suggested that interchange instability
could play a role in dragging magnetic field lines in accretion mounds equatorward
and matter leaking out of the confinement. Analysis of such an instability is carried
out by LBR01 for the plasma confined in the accretion mounds of a neutron star. As
the name interchange suggests, this instability is created by an exchange of position
of magnetic field line and plasma in the region where the confining magnetic field is
curved.LBR01 investigated analytically the possibility of interchange modes in the
accretion mound by using the energy principle. The energy integral of perturbed
potential energy, δW is given as-

δW =
�

δW (Ψ)dΨ (5.3)

where Ψ is the flux function used as a parameter and δW (Ψ) is the potential energy
per flux. By minimizing the energy integral, criteria for the onset of instability is
found as:

Δβ ≥ 7.8Rp/h (5.4)

Eq.5.4 ensures δW (Ψ) < 0 for some Ψ as it is a necessary and sufficient condition for
instability.

The threshold mass required for the onset of instability is

ΔM ≥ πR2
p(B2/8π)(Δβ/g)

= 3.8 × 10−13M�
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where Rp ∼ 10km is the radius of the polar cap, h = c2
s/g is the scale height, A is

the atomic number, Γ is the Coulomb coupling constant.

This predicts interchange instability to grow even in mounds much less massive than
the ones considered at magnetostatic equilibrium by Melatos & Phinney (2001)[28]
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and PM04. When the instabilities manifest, there would be a loss of equilibrium and
buoyant bubbles transport the magnetic flux upwards. Closed disconnected field lines
are formed. This would limit the formation of large scale mounds as predicted by
PM04.
MB13a test the stability of a magnetostatic accretion mound by using the MHD code
PLUTO. They perform perturbation analysis numerically and report no interchange
instability in a 2D axisymmetric mound. They highlight that the modes described
by LBR01 are toroidal wave vectors and hence do not show up in 2D. Although
they do not see any sign of the instability, they find that the maximum βmax from
their GS solution for a filled mound of certain height is greater than the threshold βT

evaluated from Eq.5.4 which calls for the onset of instability. It is also pointed out
that the offset in plasma beta(βmax −βT ) increases with mound height, hence roughly
implying that the instabilities grow faster with height(i.e. mass). This still keeps
open the possibility of interchange instabilities in a higher dimension. So MB13b
model the system in 3D, introduce velocity perturbations to initiate interchange
instability and establish the presence of interchange instability beyond a threshold
mass. They numerically simulate the excitation of ballooning modes exhibited in
the form of finger-like structures at the outer boundary of the mound, resulting in
mass loss. In chapter 4, we have showed the consistency of the results of MB13a in
2D axisymmetric mound with a better EOS of Paczyński. We find no evidence of
mass loss due to interchange instability in 2D and we observe that the system relaxes
back to equilibrium with an error less than 1% when zero mean density and velocity
perturbations are introduced.

Gravity-driven instabilities

In high mass mounds, MB13a [34] introduce excess mass as a perturbation to the
equilibrium to investigate gravity-driven instabilities. This adds more pressure which
in turn leads to the enhancement of the horizontal component of magnetic field making
it prone to Parker instabilities due to higher curvature. These are the regions of high
β where the matter is supported by tension from the field line curvature.
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5.2. Discussion

The energy integral derived from LBR01 for an adiabatic plasma is

δW = 1
2

�
d3x

�
B̃2

⊥
4π

+ B2

4π
(∇ · ξ⊥ + 2κc · ξ⊥)2 + γp(∇ · ξ − 2κg · ξ)2

− 2(κc + ∇φ/2c2
s) · ξ⊥ (∇p + ρ∇φ) · ξ⊥

�

where ξ is the displacement, B̃ = ∇ × (ξ× B) is the perturbed magnetic field,
κc = (b · ∇)b is the magnetic field curvature vector, cs is the sound speed and φ

is the gravitational potential. As per the energy principle, instability sets in when
δW < 0. MB13a and MB13b point out that if the terms containing field curvature,
gravity and pressure gradient are negative enough, then they can exceed the magnetic
pressure terms and render δW negative. This implies the presence of instabilities in
the form of closed loops in mounds where the confining magnetic field lines have high
curvature. MB13a induce such instability by adding positive density perturbation to
the mound at equilibrium. When the perturbation strength(η) is low, matter settles
down to a new equilibrium without disturbing the stability. When η ≥ ηT (threshold
perturbation strength limited by the threshold β), the descending matter leads to
bunching of field lines and reconnection leading to magnetic Rayleigh Taylor type
(Parker) instabilities. The stretching of field lines converts internal and gravitational
energy into magnetic energy and prevents the system from returning to a steady-state.

5.2 Discussion

From the previous studies, it can be concluded that the pressure-driven and the
gravity-driven modes are responsible for the departure of the magnetostatic mounds
from equilibrium beyond a certain threshold mound height(mass). They highlight the
requirement of 3D modelling to capture the toroidal modes in interchange instability.
In addition, they also managed to explain the mound stability up to a threshold
height for a fixed magnetic field by showing the onset of gravity-driven instabilities
due to the addition of excess mass. The works of Hameury et. al, 1983 [19], PM04
and VM08 establish the buoyancy related instabilities for the isothermal mounds.
But these mounds do not represent the correct physical picture of accretion onto a
neutron star. Nevertheless, the presence of buoyant topologically disconnected field
lines is consistent with our numerical simulations based on the mound proposed by
MB12.
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Chapter 6

Summary

In this chapter, we present a summary of the work done in this thesis and propose
future directions for the study.

6.1 Conclusions

• Solving GS equation: We solved the GS equation to understand the density
and magnetic field structure of the accretion mounds for a non-relativistic degen-
erate Fermi (polytropic) EOS and Paczyński EOS (relativistic). We analyzed
the relativistic effect on the matter confinement in the mound and concluded
that a Paczyński mound can hold more matter as compared to a non-relativistic
degenerate mound of the same height as a relativistic mound allows confinement
of denser matter.

• Checking stability: We implemented the non-relativistic degenerate Fermi
EOS and the relativistic Paczyński EOS in the MHD code PLUTO. Next,
we performed 2D simulations to check the stability of our GS solution using
PLUTO. After evolving the solution dynamically for 100tA, the error in density
and velocity turned out to be an order of magnitude less than 1% and hence we
concluded stability.

• Looking for instabilities: Taking into account the error from stabillity anal-
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ysis, we introduced velocity and density perturbations in the mound. We anal-
ysed the dynamics of the perturbation with respect to the height of the mound.
We found that the velocity and zero-mean density (no extra mass, just re-
arrangement of existing matter and field lines) perturbations relax to a steady-
state faster with an increase in mound height(mass). We do not find pressure-
driven interchange instabilities in our 2D simulations. 3D simulations as per-
formed by MB13b must be carried out for better understanding of interchange
instability. Next, we added excess mass to the mound. We observed magnetic
Rayleigh Taylor type features for perturbation strength η > ηT (threshold η de-
termined by plasma β) for a particular maximum central mound height (Zmax).
We find the results in agreement with MB13a. ηT and time of onset of such
features decrease with Zmax.

• Understanding MHD instabilities: Analysing and understanding the MHD
instabilities proposed by [26][34][35], we have tried to investigate those instabil-
ities in a Paczyński mound. PM04, VM08 and MB13 helped in understanding
the dynamical evolution of accretion mounds and gave an insight into the po-
tential future work. Implementing the instability analysis to a mound modelled
with Paczyński EOS leads to better representation of the problem.

6.2 Future Work

In the work done so far, a relation between the threshold mass(height) and distor-
tion of the magnetic field in a stable mound has been established, beyond which the
mound is de-stabilised [33]. The limitation is two-fold: the absence of continuous
accretion(inflow) and mass loss out of confinement(outflow). Although MB13b con-
firmed the presence of instabilities, they have not addressed the spreading of matter
out of the polar cap. The restrictive boundaries on the computational domain chosen
inside the model (away from boundaries) limit the understanding of the dynamical
evolution of the mound because of influx and outflux of matter at the system bound-
aries. Global magnetospheric accretion models [39] lack resolution to capture the flow
of matter and distortion of field structures near the neutron star surface.

In order to describe a more realistic scenario that can be observed through cyclotron
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lines, the inflow and outflow of matter need to be accounted for. This will give better
estimates of mound size, density profile and magnetic field structure. This, in turn,
will let us compare the simulated cyclotron lines with the observations and interpret
the effect of accretion rate from the properties of these lines. The following are some
improvements to be added -

• Semi-relativistic setup to model leakage out of mound: The interface
between the mound and the neutron star atmosphere is required to be modelled
to incorporate matter influx and spreading. The challenges ahead of us are - a
numerical scheme to include two types of matter composition, handling Alfvén
speeds close to the speed of light in low-density atmosphere and computational
power to simulate the whole mound and the star atmosphere [22].

• Non-uniform composition and thermal stratification: In this thesis, we
have considered the accretion mounds with uniform composition and tempera-
ture. But the infalling matter encounters a stratified density (105 − 106g/cm3)
and pressure increasing towards the surface in the accretion column where the
hydrogen and helium undergo nuclear reactions to get converted into carbon and
higher elements [10]. As the matter descends and cools down, matter settles
down in the form of a mound with a stratified chemical and thermal compo-
sition. Cumming et. al, 2001 [13] suggest buoyancy-driven instabilities due to
the stratification in the mound beyond a threshold magnetic field (1011 − 1012

G). They model this in a plane parallel geometry with a horizontal gradient
in magnetic field which is an over-simplification. This is a significant loophole
which misses out on the buoyancy related modes which must be included in
modelling the spreading of matter out of the confinement in all directions. An
EOS considering density as a function of matter composition and temperature
needs to be implemented to model the stratification in the mound.

• Interchange instabilities in 3D: Instability in the interchange modes sug-
gested by LBR01 is predominantly toroidal and has been numerically confirmed
by MB13b. The corrections suggested above should be implemented in 3D for
a self-consistent modelling of magnetic field configuration in the magnetically
confined accretion mound taking into consideration the instabilities.
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Appendix A

Numerical setup to solve GS
equation

We consider a grid with finer element in z-axis such that the distortions can be
captured well. A PDE has unique solution if appropriate boundary conditions are
specified. In a 2D space, the functional value (Ψ) or its normal derivative can be
specified on the edge of the curve depending on what kind of boundary it is, in case
of an elliptic PDE. The differential operators like the Grad-Shafranov operator are
discretized.

∂Ψ
∂x

→ Ψi+1,j − Ψi−1,j

Δx2 (A.1)

∂2Ψ
∂x2 → Ψi+1,j − Ψi,j + Ψi−1,j

Δx2 (A.2)

By this method, discretized Grad-Shafranov equation becomes-

Ψi,j =
Ψi+1,j( 1

Δr2 − 1
2rΔr

) + Ψi−1,j( 1
Δr2 + 1

2rΔr
) + Ψi,j−1( 1

Δz2 ) + Ψi,j+1( 1
Δz2 )

Kr2 + 2/Δr2 + 2/Δz2 (A.3)

where K = 2ρgZc4πr2

Ψ2
p

. An iterative method is used to solve this discretized equation.
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It is a method in which a first approximation for the solution is constructed. It is
used to obtain the second approximation which in turn is used to calculate the further
approximations that leads to the correct solution.

Ψ(n+1)
i,j = F (Ψn

i−1,j−1, ..., Ψn
i+1,j+1) (A.4)

Here n represents the number of the iteration. This procedure tends to converge when
the differences between the two successive iterations reaches a threshold value(tending
to zero) as decided for the physical problem at hand.

A.1 Successive Over Relaxation

This method is better than both Jacobi and Gauss-Seidel as it uses some values of
Ψi,j from the updated step, not the previous approximation. Here is an example using
a simple Laplacian equation with a source term Si,j and Δx = h = Δy, to show how
the convergence is improved considerably using linear combination of old and new
solutions.

Ψn+1
i,j = (1 − ω)Ψn

i,j + ω

4 (Ψn
i+1,j + Ψn+1

i−1,j + Ψn
i,j+1 + Ψn+1

i,j−1 + h2Si,j) (A.5)

In contrast, Gauss-Seidel method is as follows-

Ψn+1
i,j = (1 − ω)Ψn

i,j + ω

4 (Ψn
i+1,j + Ψn

i−1,j + Ψn
i,j+1 + Ψn

i,j−1 + h2Si,j) (A.6)

In case of Gauss-Seidel, ω = 1. SOR method converges faster if 1 < ω < 2. Let r be
the number of iterations required to to reduce the error by a factor of 10−p, then -

r = pN2/4 [Gauss − Seidel]
= pN/3 [SOR]

(A.7)

The generalized discretized PDE is formulated as follows-

aj,lΨj+1,j + bj,lΨj−1,l + cj,lΨj,l+1 + dj,lΨj,l−1 + ej,lΨj,l = fj,l (A.8)
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Ψold
j,l = 1

ej,l

[fj,l − aj,lΨj+1,j − bj,lΨj−1,l − cj,lΨj,l+1 − dj,lΨj,l−1] (A.9)

Ψnew
j,l = Ψold

j,l − resid

ej,l

(A.10)

where, resid = aj,lΨj+1,j + bj,lΨj−1,l + cj,lΨj,l+1 + dj,lΨj,l−1 + ej,lΨj,l − fj,l
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Appendix B

Equilibrium and stability in plasma
confinement

This section is in reference to the book Plasma Physics for Astrophysics by Russell
M. Kulsrud[24].

In an MHD system, motion is explained in terms of MHD waves. As magnetic field
lines are frozen in plasma, these waves show the interplay between the motion �v and
the magnetic field �B. Perturbations in {ρ,�v, p, �B} are manifested in the form of
waves about the equilibrium (smooth motion). When the scale of variation of pertur-
bation becomes comparable to the scale of variation of equilibrium (or the undisturbed
medium) the perturbations can grow and result into, either an oscillatory motion or
an unstable motion. In an analogy to motion in a potential well in quantum mechan-
ics, the negative and positive eigenfrequency modes corresponding to the bound and
unbound state, give rise to oscillatory and unstable motion respectively. In order to
understand the evolution of stability of a system, consider the following two cases.
First, when there exists a static equilibrium in a rigid, insulating system with �v = 0,
an instability can lead to conversion of potential energy (gravitational energy, pressure
energy, magnetic energy etc) into kinetic energy. Increase in perturbation demands a
growth in kinetic energy which is facilitated by the energy conversion. For example, a
static atmosphere gets unstable when convection sets in due to perturbation, beyond
a threshold temperature gradient. Second, in a non-static system (�v �= 0), the already
present kinetic energy is converted into other forms of kinetic energy. For example,
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a rotating accretion disc becomes unstable to turbulent motion. Stability analysis
enables us to study the growth of perturbations by varying some parameters specific
to the system and predict the state of the equilibrium in time. So, given a system in
static equilibrium we need to find parameters or constraints on normal modes which
cause instability. There are two approaches to analyze stability -

• Normal mode analysis : According to this formulation, we need to check all
modes to be sure about stability. If any one of the eigen modes is negative,
the system becomes unstable. So, it is difficult to evaluate stability if all modes
aren’t examined. But it is useful in knowing the range of modes for which
system is unstable unlike approaches which just give rise to a global instability.

• Perturbed potential energy : This method works by analyzing the perturbed
potential energy. If the perturbed potential energy is negative, then the system
is unstable. This method gives us information about global instability, not the
specific range of modes. For example, in the calculation of Jeans stability mass,
if we calculate by this method it justs tells that the system will collapse but
not the range of wavelength/modes where it will collapse. So, the normal mode
method works better in this example.

B.1 Energy Principle

Consider static equilibrium where {ρ,�j, p, �B} = {ρ0(r0),�j0(r0), p0(r0), �B0(r0)} are
functions of position at equilibrium and independent of time. The system is assumed
to be bound by a rigid wall and magnetic field is tangent to the surface, to ensure
conservation of energy in the volume of interest. At t = 0, perturbation is introduced
in initial position and velocity. Applying the action principle for MHD, equations
for the perturbed physical quantities ρ(t,�r),�j(t,�r), p(t,�r) and �B(t,�r) are obtained.
Using these perturbed quantities, the perturbed Euler equation is calculated which
is essentially the equation of motion for the perturbation at t > 0.

ρ0
∂2�ζ

∂t2 = �F (�ζ) (B.1)
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where �F (�ζ) describes first order in �ζ, the force per unit volume on each fluid particle
induced by the perturbation that accelerates the plasma. Energy(ε) is conserved for
any arbitrary displacement to all orders of magnitude. Consider accuracy till second
order for further calculations. So, we can write W by decomposing it into terms with
different order contributions in �ζ. W = W0 + W1(�ζ) + W2(�ζ, �ζ), where W0 is the
unperturbed value and W1 and W2 describe the potential energy density first order
and second order in �ζ respectively.

ε = 1
2

�
ρ0(�r)


∂�ζ

∂t




2

dV + W (�ζ, �ζ) (B.2)

Functional W is quadratic in �ζ and depicts the change in potential energy due to per-
turbation. We look at normal mode solutions in the form ζ = ζ̂eiωt for the perturbed
Euler equation. Substituting the normal mode solution and considering the force
equation and its complex conjugate, followed by some algebra gives some important
results. If ω2 > 0, then ω is real and the normal mode is stable. Otherwise when
ω2 < 0, ω = iλ gives solutions that either purely grow for λ > 0 or damp for λ < 0.
This implies that a mode can’t grow and oscillate at the same time. Now we define a
parameter Λ to track each normal mode as it transitions from stability to instability.

Λ = W2(�ζ, �ζ)
K(�ζ, �ζ)

(B.3)

where

K =
�

ρ0(�ζ)2dV W2 = −
�

ρ0(�ζ) · �F (�ζ)dV (B.4)

Using the expansion �ζ = �
an

�ζn as superposition of all modes and simplifying, we
find

Λ =
�

ω2
na2

n�
a2

n

≥ ω2
1. (B.5)

If Λ > 0 for all modes (�ζ), then the system is stable. Conversely, if Λ < 0 for any
normal mode then the whole system is unstable. As K being the mean squared
perturbed energy is always positive, a necessary and sufficient condition for stability
is that the change in perturbed potential energy W2 is positive for all modes. This
is the MHD energy principle. Furthermore, the perturbed potential energy integral
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can be minimized to obtain a better bound on the parameter tracing stability. It
isn’t straightforward to apply Energy principle to systems in non-static equilibrium
where a flow is present. By simply lowering the potential energy (δW < 0), it can’t
be expected to introduce instability.
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