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Abstract
Sequential neuronal activity is associated with tasks like spatial navigation and encoding
memory and time. Recently, it has been shown that correlated spatial asymmetry in re-
current excitatory connections of neurons can generate neuronal activity sequences. In
present work, we show that correlated spatial asymmetry in any type of connections (i.e.
excitatory (E) to inhibitory (I), I to E, and I to I) is sufficient to generate neuronal activity
sequences. We found that when correlated spatial asymmetry is present in inhibitory con-
nections, sequences are slower. In these networks, the ratio of symmetric and asymmetric
connections is an important variable that determines whether the network will exhibit se-
quences or not and determines the stability of the ongoing activity state. On a structural
level correlated asymmetric connectivity introduces effective feedforward pathways in the
network, and here we demonstrate that such feedforward paths predict and are the causal
mechanism behind the emergence of activity sequences. We ask if this network can show
a spatially random background activity state, parallel to a biological network.
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Chapter 1

Introduction

One of the major goals of contemporary neuroscience is to understand how the brain pro-
cesses information about the external environment. This processing happens through the
activity of ensembles of neurons that corresponds to a function or behavioural state. For
example, the population activity of the neurons in the olfactory system represents which
odor is being sensed by the animal [Krofczik et al., 2009, Mazor and Laurent, 2005]. There-
fore, activity patterns in networks of neurons are important for understanding functioning
of the brain.

One such network activity pattern that has been observed in multiple regions of the
brain is sequential activity. Sequential neural activity refers to an ordered pattern of neu-
rons firing in a network. In this activity pattern, the temporal sequence of neurons (firing
in response to a task-related input) stays constant across trials, meaning that the order
of firing is determined by some property intrinsic to the network or by a property of the
sensory input. Sequential activity induced by sequential sensory input has been found in
the visual cortex [Muto et al., 2013] and in the context of prediction in the auditory cortex
[Bouchard and Brainard, 2016]. It has also been observed in pre-motor planning for song
vocalizations [Hahnloser et al., 2002]. Sequential activity has been seen in the hippocam-
pus while performing tasks like spatial navigation [Dragoi and Buzsáki, 2006, Dragoi and
Tonegawa, 2011] and tracking time [Modi et al., 2014]. It has been seen in the striatum
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and prefrontal cortex for encoding time [Bakhurin et al., 2017] and in the parietal cortex
while making choices [Harvey et al., 2012]. Thus, intrinsically generated sequential activ-
ity is observed in many behaviourally relevant functions. It is intuitive that there should be
sequential activity underlying behavior; any animal behavior is a well-ordered sequence
of actions [Lashley, 1951] and therefore neurons encoding those behaviors must also fire
in a well-ordered sequence [Hebb, 1949].

The mechanism of sequential activity generation in a network has received significant
attention by computational neuroscientists in the past and several mechanisms have been
proposed that can endow a network to generate sequential activity. A simple mechanism
of sequence generation is a feedforward network operating in the so-called synfire mode
[Abeles, 1991, Diesmann et al., 1999]. In this mechanism, ensembles of neurons prefer-
entially project to the next group of neurons thus creating an order for the firing neurons.
Such feedforward networks can be embedded in a recurrent random network and the lat-
ter can generate sequences spontaneously or in response to an external input [Kumar
et al., 2008]. A big limitation of this mechanism is that the sequences have to be manually
wired to generate sequential responses. Another method of creating sequential activity
uses attractor networks dynamics. Here, switching between different attractors through
spike threshold adaptation generates sequential activity [Azizi et al., 2013, Itskov et al.,
2011]. Recurrent networks can be trained to show sequential activity dynamics using su-
pervised learning rules [Goudar and Buonomano, 2015, Rajan et al., 2016, Sussillo and
Abbott, 2009] or in some cases unsupervised learning rule [Haga and Fukai, 2018]. In
some models, synaptic depression can be used to create sequential activity in recurrent
networks [Murray and Escola, 2017, York and van Rossum, 2009]. A more complete
overview of sequences and computational models used to explain their generation can be
found in [Bhalla, 2019].

A recent study showed that if the synaptic connectivity in a neural network is asym-
metrical and spatially correlated, then the network shows spontaneous spatiotemporal
activity sequences [Spreizer et al., 2019]. Previous models used either biologically un-
feasible connectivity or supervised learning algorithms to induce sequential activity in a
network. This model provided a biologically plausible generative rule which renders the
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network with an ability to exhibit sequences without explicitly learning or manual wiring of
connections.

In this model, sequences were shown when asymmetry was present in recurrent con-
nections among excitatory neurons (or among inhibitory neurons in a purely inhibitory net-
work). In a recurrent network of excitatory and inhibitory neurons there are four different
types of connections: from excitatory to excitatory neurons, from excitatory to inhibitory
neurons, from inhibitory to excitatory neurons, from inhibitory to inhibitory neurons. In this
work, we extend the model presented by Spreizer et al and ask if the asymmetry in any of
the remaining three types of connections can also give rise to sequences. Moreover, we
systematically characterize the effect of connection asymmetry on both sequential activity
and the stability of the ongoing activity.

To this end we implemented a new algorithm to wire the network with correlated asym-
metric connectivity in which we can not only choose the type of connections which are to
be wired in an asymmetric fashion but also control the ratio of symmetric to asymmetric
connections of a neuron. We observed that a network with both symmetric and asymmet-
ric connectivity can have different dynamical states. We probed the parameter space of
the model to check what can lead to the loss of activity sequences and cause different
dynamical states.

We also identified the mechanism underlying the emergence of sequences in this
model and asked if there exists a map from the underlying connectivity to the neural ac-
tivity path. Previously Spreizer et al. showed that underlying feedforward paths in the
network correlate with the presence of sequences. In this work, we verified if the feedfor-
ward paths predict and cause sequential activity in the simulated network.
A useful model needs to be relatable to the biological system it is modeling. Therefore,
we ask how verifiable this model is and if it can make certain predictions for the biological
system. The underlying assumption of spatially correlated asymmetry has some support
from previous work [Bernard and Wheal, 1994, Ishizuka et al., 1990, Shein-Idelson et al.,
2017]. However, it can be complicated to draw parallels between physical connectivity
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patterns and our connectivity assumption. Instead, we suggest that neural recordings of
the background activity in a network could have a signature of the structure of the network.
This can be related to either the connectivity in our model or the feedforward paths and
can lead to a testable prediction of the sequential paths formed in the network. For this
purpose, we need our model to show a background activity state. Therefore, we asked
if different kinds of input can make our model show separate background and sequential
activity states.
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Chapter 2

Methods

2.1 Neuron model

The neurons were modelled as leaky integrate and fire (LIF) neurons. Dynamics of each
neuron was described by:

Cm
dVi

dt
= −gL(Vi − EL) + Isynaptic(t) + µinput + σinput (2.1)

Where, Cm is membrane capacitance, Vi is the membrane potential, EL is the leak rever-
sal potential, gL is the leak conductance and Isynaptic is the current-based synaptic input
from presynaptic neurons. µinput and σinput are the mean and standard deviation of the
Gaussian white noise provided as external input to each neuron. The values of the pa-
rameters are provided in Table 2.1.

2.2 Synapse model

Neurons were connected using current-based synapses. Each presynaptic spike intro-
duced an alpha function shaped voltage transient post-synaptic potential in the postsy-
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Parameter Value
Membrane capacitance Cm 250 pF
Leak reversal potential ELeak -70 mV

tref 2 ms
τm = Cm/gL 10 ms

τminus 20 ms
Vreset -70 mV

Vthreshold -55 mV

Table 2.1: Leaky Integrate and Fire neuron parameters

naptic neuron. The shape of the PSP is described as:

Isynaptic(t) = Jsyn
t− t0
τsyn

e
− t−t0

τsyn (2.2)

Where, t0 = time of spike, τsyn is the synaptic time constant and Jsyn is the amplitude
of the voltage response in the postsynaptic neurons. The value of all the parameters of
excitatory and inhibitory synapses is provided in 2.2.

Parameter Value
τsyn for excitatory synapse 5 ms
τsyn for inhibitory synapse 5 ms

Synaptic weight Jsyn for excitatory synapses 10
Synaptic weight Jsyn for inhibitory synapses -80

Table 2.2: Alpha synapse parameters

2.3 Network connectivity

We simulated networks of 18,000 neurons (80 % excitatory and 20 % inhibitory).
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2.3.1 Spatial arrangement of the neurons

The neurons were arranged on a square grid with periodic boundary conditions. The
excitatory neuron grid was 2 times larger (4 timesmore number of neurons). The excitatory
(E) layer was of the size 120 x 120 neurons and the inhibitory (I) layer was of size 60 x 60
neurons (Figure 2.1).

Figure 2.1: Network structure.

2.3.2 Spatial connectivity rule

Each neuron was modeled to have local synapses in a region around the pre-synaptic
neuron (Figure 2.2). The probability of connections decreased monotonically according to
a two-dimensional Gaussian function. The spatial extent of the connectivity of a neuron
was determined by the standard deviation of the 2-DGaussian function (denoted as spatial
spread in Table 2.3). The probability of connection determines how many synapses a
neuron sends out in this given region.
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Figure 2.2: Spatial positions of local projections sent out by each neuron in the symmetric
case. Purple circle denotes the region of higher projections. Curves denote the variation
of number of synapses in the two axes.

Parameter Value
Probability of (E or I) to (E or I) connections 0.05

Spatial spread of (E or I) to E connections (model 1) 4 grid points
Spatial spread of (E or I) to I connections (model 1) 6 grid points
Spatial spread of (E or I) to E connections (model 2) 7 grid points
Spatial spread of (E or I) to I connections (model 2) 9 grid points

Table 2.3: Common connectivity parameters for simulations
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2.3.3 Spatially asymmetric connectivity: Model 1

To modify the circularly symmetric local connectivity of a region we followed the same
method as used by [Spreizer et al., 2019]. In this model we shifted the entire circular pro-
jection region of a neuron in a particular direction (Figure 2.3a). The shifting of this region
can be described by a vector connecting the center of the original and shifted circles. The
angle of these vectors is varied from 0 to 2π, in steps of π/4. Therefore, we have 8 direc-
tions of asymmetry specified by values from 0 to 7. The length of this vector determines
how far the circle shifts in these directions and was set to 1 in our simulations.

2.3.4 Spatially asymmetric connectivity: Model 2

In the second model to introduce spatially asymmetric connectivity we wired a neuron
such that it had a larger number of connections in one specific direction as compared to
other directions. For each asymmetry direction θ, we chose a sector going from θ−π/4 to
θ + π/4 (Figure 2.3b). We controlled the area of this sector by specifying its outer radius
(12 grid points) and inner radius (2 grid points). The relative number of synapses in the
asymmetric sector vs the symmetric circle was controlled by the parameter α. Any value
of α above 0.125 had denser directional synapses than symmetric synapses.

α =
Number of synapses in sector

Number of synapses in rest of the circle
(2.3)

EE EI IE II
Symmetric (1− αEE)pEE (1− αEI)pEI (1− αIE)pIE (1− αII)pII
Asymmetric αEEpEE αEIpEI αIEpIE αIIpII

Table 2.4: Probability of connections in asymmetry model 2 (If asymmetry is in E to E
connections, αEE = α, and all other αx = 0)

9



Figure 2.3: Two models of asymmetric connections.

Excitatory Inhibitory
Symmetric J −gJ
Asymmetric g2J −gg2J (if present)

Table 2.5: Synaptic weights in model 2 of asymmetry.

2.3.5 Model of spatial correlation in the connectivity of neighboring
neurons

Each neuron was given a value or direction of asymmetry, and these asymmetry values
varied across the neuron grid. To implement spatially correlated asymmetry, we used the
Perlin gradient noise which generates noise such that nearby nodes get similar values
[Perlin, 1985]. Using this noise, we generated values from 0 to 7 on a N x N neuron grid
and assigned asymmetry directions according to these. The parameter ’size’ determines
how frequently the values change in the grid, or how spatially inhomogeneous the values
in the grid are. When size = 0, the entire grid has one value. When size tends to infinity, the
values are spatially random with no order. In our simulations, we used size = 3 for a 120
by 120 E neuron grid. For a given size, a random seed sets the initial conditions, which
can be changed to generate many instances of the asymmetry values. These asymmetry
values on a grid determine how the activity in the neuronal grid will flow. This distribution
is called the ’landscape’ of the network in this thesis (Figure 2.4). In this thesis, multiple
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Figure 2.4: Spatial correlation in the asymmetric connections across the neuron grid. Ar-
rows (and color) denote the direction of preferential connections. Arrows are shown at a
lower resolution than color for better visibility.

landscapes refer to initialization with different initial random seed and same ’size’.

2.4 Input to the network

2.4.1 Uniform input

All neurons received a Gaussian white noise with a certain mean and standard deviation
(µinput and σinput in Equation 2.1). In results shown in this thesis, the mean was set to 400
pA and standard deviation to 100 pA.

2.4.2 Directed input

All neurons received a subthreshold input, and neurons in a specified region of the ex-
citatory grid received additional suprathreshold input for 100 ms in the beginning. The
subthreshold input to other neurons enables any activity to easily propagate in the net-
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work. In results shown in this thesis, the subthreshold input was set to mean = 290 pA
and standard deviation = 100 pA, and the additional suprathreshold input was set to mean
= 700 pA and standard deviation = 0 pA. We gave this directed input to 16 regions dis-
tributed uniformly on the grid.

2.5 Characterizing sequences

2.5.1 Number of sequences

To calculate how many sequential paths can be found in a network, we considered the
activity in uniform input simulations. We took the spatial positions of neurons that spike in
a given time interval (10 ms). We used the algorithm DBSCAN to spatially cluster these
neurons and counted the number of clusters found throughout the simulation [Ester et al.,
1996]. We used clustering parameters eps = 3 andminsamples = 10 to calculate the number
of activity bumps. This was kept constant across asymmetry models and type of connec-
tions, to reduce any bias.
The number of activity bumps moving around in a network is a function of the number of
sequential paths and the input magnitude. Higher input can lead to multiple bumps mov-
ing on the same activity path. Because we kept the input level constant in all simulations
with uniform input, the difference in number of activity bumps reflects the difference in the
number of sequential paths present in the network.
To track the movement of the activity bumps, we used the method used in previous study
[Spreizer et al., 2019]. We represented each spike in three dimensions, time and the spa-
tial positions x and y of the neuron (see axes in Figure 2.5). We used DBSCAN clustering
in this three-dimensional plot to track where the activity bump is moving. For this clus-
tering to work, a suitable scaling of the time axis is required. We scaled the time axis
down by a factor of 4 and used eps = 1.5 and minsamples = 10. The clusters formed here
represent each activity bump moving in time in a given direction. We found that clusters
of size more than 2000 spikes in the uniform input case and 1000 spikes in the directed
input case captured the activity bumps (Figure 2.5b). Smaller clusters captured random
and very small sequential activity in the network (Figure 2.5a).
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(a) (b)

Figure 2.5: Spiketime clusters using the DBSCAN algorithm in the case of directed input.
Clusters of size (a) less than 1000 points and (b) more than 1000 points

2.5.2 Speed of sequences

After recording moving activity bumps, we tracked the centroids of activity (in spatial axes
x and y) for each cluster and time interval. We calculated the speed of these centroids
on the E neuron grid. For sequences in uniform input simulations, we took the average
speed of each cluster found. For sequences evoked by directed input to multiple places
in the network, we averaged the speed of the cases where activity propagates out of the
initial input region.

2.6 Feedforward paths

2.6.1 Calculation of Feedforward paths

We defined a feedforward (FF) path to be the path of higher connectivity in the network.
To calculate this, we used the asymmetry direction vectors of each neuron. These vectors
denote the direction of preferential connections in the excitatory layer. We determined
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the following possible paths through which an excitatory (E) neuron can affect another E
neuron and their resultant effects:

• First-order connections:

– E to E (excitatory effect)

• Second-order connections:

– E to E to E (excitatory effect)

– E to I to E (inhibitory effect)

• Third-order connections:

– E to E to E to E (excitatory effect)

– E to I to I to E (excitatory effect)

– E to I to E to E (inhibitory effect)

– E to E to I to E (inhibitory effect)

We recorded asymmetry vectors for each E neuron through every path. We had im-
plemented spatially correlated asymmetry in different connections: from E to E, E to I, I to
E, or I to I neurons; the rest were symmetric. We included multiple order connections to
explain sequence formation in all these cases. When asymmetry is present in inhibitory
synapses, second and third order connections are required for prediction of FF paths. As
an example, suppose asymmetry is present in I to I connections. If we use only first order
connections (from E to E, which are symmetric), then there is no preferred direction of
excitation from each neuron and we cannot predict FF paths. Similarly, second order in-
teractions (from E to E to E and E to I to E) do not include the asymmetry information and
will suggest no preferred direction of excitation. Third order connections (through E to I to
I to E) will include asymmetry information in I to I connections and give us the preferred
direction of excitation at each step to predict FF paths.

We also took into account which neurons would be active by averaging over a circular
or elliptical region around each point. Because only some neurons will be active, the
projections by only those neurons will determine where the activity will go next.
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Algorithm to calculate FF paths (Figure 2.6):

• We calculated asymmetry vectors [length, direction] for all neurons based on which
direction has maximum projections. For example, we take an E neuron (index Ni)
located at (xi, yi) position and find the spatial positions of its postsynaptic E neu-
rons. Then, we take the centroid of these positions, which is (cxi, cyi). The vector
from (xi, yi) to (cxi, cyi) is the asymmetry direction vector of neuron Ni for E to E
connections. Whenever the connections are symmetric, we set the vector length
and direction to zero. We calculated asymmetry vectors for first, second and third
order connections by finding the postsynaptic neurons at each step and averaging
the centroids of excitatory neurons at the last step. For example, to calculate second
order (E to I to E) asymmetry vector from E neuron Ni at location (x, y), we calculate
Ni’s postsynaptic inhibitory neurons (A0, A1, A2, ....). Then we find each Ai’s postsy-
naptic excitatory neurons (Bi0, Bi1, Bi2, ...). We take the centroid of locations of all
Bij ’s to be (cx, cy) and record the vector from (x, y) to (cx, cy) as the second order
asymmetry vector for neuron Ni.

• Initial neuron’s location = (xi, yi)

• for n steps:

– SN = neurons surrounding point (xi, yi) in a circular or elliptical area

– for all neurons in SN:

* Calculate resultant excitatory vector by adding asymmetry vectors of first,
second and third orders with excitatory effect and subtracting the asymme-
try vectors of second and third orders with inhibitory effect.

– Vi = average of all resultant excitatory vectors of SN (weighted according to
distance)

– Next point = neuron at location (xi+1, yi+1) which Vi points to

– In the case of elliptical surrounding area, we tracked the tilt of ellipse and up-
dated it using the following rule:

New tilt = 2(old tilt) + (direction of Vi)

• The sequence of these points (x, y) forms the FF path
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Figure 2.6: Schematic for calculation of feedforward paths by considering a weighted
average of asymmetry directions over the area of activity. The next step in the path is
determined by the endpoint of the averaged vector.

2.6.2 Comparison of anatomical feedforward paths and simulated
sequential activity

We gave directed input to a region around the initial (xi, yi) and simulated the network for
2000 ms. We tracked the spatially localized activity in this simulation and recorded the
trajectory of its centroids as the activity path. We recorded the predicted FF path from
(xi, yi). To compare how similar the prediction and simulated activity are, we calculated
the distance between all points of FF path and activity path. For each point in the FF path,
we took the minimum distance to the activity path and vice versa. We averaged these
minimum distances and used it as a measure of the similarity between the predicted FF
path and simulated activity path. Low distances indicate that our prediction is close to the
simulation results.

2.6.3 Decreasing the weights of the feedforward path

We chose one region of sequences and found the corresponding predicted FF path. We
found the synapses present in this FF path. To check if FF paths are indeed the cause
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of sequences in this network, we reduced the weights of these synapses to zero. To
compensate for the lack of synaptic input to the neurons present in this path, we increased
the weight of the rest of the synapses by a certain amount. To avoid changing the structure
of the rest of the network, we uniformly increased the synaptic weights of all synapses in
the following way:

Initial sum of synaptic weights = J Ns (2.4)
New sum of synaptic weights = Jnew (Ns − Nfs) (2.5)

Where,
J = initial synaptic weight
Jnew = new synaptic weight
Ns = number of all excitatory synapses
Nfs = number of synapses in FF path
To conserve total synaptic input:

Jnew = J
Ns

Ns − Nfs

(2.6)

We first simulated a network with directed input to the region around (xi, yi) for 1000
ms. Then, we set the weight of FF path synapses to zero and non-FF path synapses to
Jnew. We simulated the network again with directed input to the region around (xi, yi) for
1000 ms. To check if the rest of the sequences are affected, we simulated the network
with directed input to a different sequence generating region around (xj, yj) for 1000 ms.
Then, we compared the number of activity bumps formed in these cases.

2.7 Search for background activity state

2.7.1 Globally random connections

Spatially correlated asymmetry generates sequences starting from a very low threshold.
To make the network more likely to sustain background activity, we added spatially random
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connections into the network. For this, half of the connections were wired according to
spatially correlated asymmetry (Model 1 of asymmetry), and the other half were random
global connections. The strength of connections was varied according to the parameters
in Tables 2.6 and 2.7.

Excitatory Inhibitory
Random global connections J −gJ
Asymmetric local connections g2J −gg2J

Table 2.6: Synaptic weights distribution in partially random networks

Parameter Value
g 8
J 10
g2 2

Table 2.7: Initial synaptic weight parameters in partially random networks

2.7.2 Parameter search with different input levels

If a network supports background activity state, it should show spatially random activity
at low input levels and sequential activity at high input levels. Using the above network,
we simulated multiple parameter combinations with different input levels to check if this
separation was present.

2.7.3 Parameter search with increasing and decreasing values

Apart from a parameter sweep, we also used a different approach of varying parameters
serially. For each parameter in the list (Table 2.8), we increased the value of this parameter
(say A) in steps. For each value of parameter A, we simulated the network for 1000 ms
and then changed the value of A to the next value. For each value of A, after the network
reaches a stable state, we recorded the sequential activity state by counting the number
of activity bumps present in the last 100 ms. We simulated the network with increasing
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and decreasing value of A in a given range and checked the presence of hysteresis in the
number of activity bumps. If hysteresis is present for some value of A, it implies that two
network states are possible in that parameter condition.

Parameter Value range
Network input 200 to 700 in steps of 50

Probability of E to E connections (pEE) 0.04 to 0.05 in steps of 0.002
Inhibition to excitation ratio (g) 5 to 15 in steps of 1

Synaptic strength (J) 5 to 25 in steps of 2.5

Table 2.8: List and range of values for serial parameter search for background activity
state
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Chapter 3

Results

Here we investigate the emergence of sequential firing of neurons in a locally connected
random network of excitatory and inhibitory neurons (EI-LCRN network). Specifically, we
are interested in understanding how spatial correlations in different types of recurrent con-
nections affect the properties of sequential activity and to what extent the network structure
predicts the neuronal activity sequences.

3.1 Sequential activity in networks with correlated spa-
tial asymmetry in EI and IE connections

Previously, [Spreizer et al., 2019] showed that in an EI network spatially correlated asym-
metric connections of individual neurons lead to spatiotemporal sequences of neuronal
activity. Similarly, in a purely inhibitory network sequences emerge when the recurrent in-
hibitory neurons are wired with spatially correlated asymmetry. However, it is not clear if in
an EI-LCRN, connection asymmetry in inhibitory to excitatory (IE) or excitatory to inhibitory
(EI) can also generate sequential activity. We simulated EI-LCRN (Figure 2.1) similar to
previous study [Spreizer et al., 2019]. We implemented spatially correlated asymmetry
individually in either E to E, E to I, I to E and I to I connections (will be denoted as EE, EI,
IE and II connections). We found that spatio-temporal sequences can be formed with any
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of these asymmetries (Figure 3.1). We detected the presence of sequences by counting

Figure 3.1: Sequential activity when spatially correlated asymmetry is present in connec-
tions from (a) E to E, (b) E to I, (c) I to E, and (d) I to I neurons. Low and high intensity of
color in the plots determines activity in different time points.

the number of localized activity regions or bumps using DBSCAN, a clustering algorithm
(Methods 2.5). The number of activity bumps is a readout of the number of sequential
paths present in the network. The average number of activity bumps for each type of con-
nection asymmetry is shown in Figure 3.2. We also compared the speed of each activity
bump as a measure of speed of sequences in the network for the different configurations
(Figure 3.2). While the number of sequential paths was similar in all asymmetry cases,
speed of sequences was much lower in the IE and II asymmetry case. These results con-
firm that as long as correlated connection asymmetry exists in the connection of excitatory
or inhibitory neurons, EI-LCRN can exhibit sequential activity.

3.2 Secondmodel of asymmetrywhich includes symmet-
ric connections also generates sequences

In a biological network, connections from one layer to another can happen throughmultiple
channels, and asymmetric and symmetric connections can be simultaneously present.
Therefore, we implemented a different model of asymmetry where both symmetric and
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Figure 3.2: (a) Number of sequential paths and (b) speed of sequences on the neuron grid
when spatially correlated asymmetry is present in different connections. The number and
speed values are averaged over 10 trials for 20 different connectivity landscapes. Error
bar denotes the standard deviation across landscapes

asymmetric connections can be included (Figure 2.3, Methods 2.3.4). Spatial correlation in
this second model of asymmetry also generates spontaneous sequences. Again, spatially
correlated asymmetry in any connections (EE, EI, IE, and II) gave rise to sequential activity
(Figure 3.3). As a higher spatial spread of connections was used in this case (Table 2.3),
the activity bumps created were larger in size compared to activity bumps formed using
model 1 of asymmetry (Figure 3.1). In some cases of asymmetry in E to E connections,
we observed the shape of the localized activity to be elliptical (Figure 3.4). In the rest of
the cases, the shape of the localized activity is circular (Figure 3.3 and 3.4 ). We presume
that elliptical activity bumps arise due to extended connectivity in one direction. We also
observed that sequential paths with elliptical bumps were much more spatially defined
and separated. Similar to the first model of asymmetry, we observed a similar number
of bumps for different types of connection asymmetries (Figure 3.5). However, with this
connectivity model, the speed of sequences was smaller when connection asymmetry was
in EI and IE connections.
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Figure 3.3: Sequential activity when spatial correlation is implemented using the second
model of asymmetry in connections from (a) E to E, (b) E to I, (c) I to E, and (d) I to I
neurons

Figure 3.4: Shapes of neural activity localization when spatially correlated asymmetry is
present in E to E connections with different levels of relative asymmetry. (a) Low relative
asymmetry causes circular activity regions, (b) Higher relative asymmetry causes elliptical
activity regions.

3.3 State transition to stationary activity due to relative
strength of asymmetry

We found that in certain parameter regimes, the second model of asymmetry gave rise
to spatially constricted stationary activity (Figure 3.6), that is bump speed was reduced
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Figure 3.5: (a) Number of sequential paths and (b) speed of sequences on the neuron grid
when spatially correlated asymmetry (second model) is present in different connections.
The number and speed values are averaged over 10 trials for 20 different connectivity
landscapes. The error bar denotes standard deviation across landscapes.

to zero. This dynamical state is similar to the k-winner-take-all solution often observed in
LCRNs [Roxin et al., 2005]. We found the following parameters to be important for this
state transition:

• Relative number of asymmetric to symmetric synapses = α

• Relative strength of asymmetric to symmetric synapses = g2

We simulated EI-LCRNs with a range of these two parameters and calculated the speed
of localized activity. Speed of sequences can be used as a proxy for sequential or sta-
tionary activity. When speed is high, the network has moving localized activity. When
speed is near zero, the network either has no localized activity or the localized activity
is stationary in the grid. We draw a phase plot of the network’s behavior relative to the
above parameters with asymmetry in different connections (Figure 3.7). Interestingly, the
transition to stationary bumps state occurred for different ranges of α and g2 in the four
connection asymmetry configurations. We observe that when asymmetry is in EE con-
nections, higher asymmetry gives faster sequences. However, when the asymmetry is in
EI, IE and II connections, an intermediate alpha is required for formation of sequences.
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Figure 3.6: Example raster plots and spatial network activity of (a), (c) stationary and
(b), (d) sequential activity formed by different amounts of relative asymmetry. The cases
shown here are for asymmetry in E to E connections. Stationary activity has g2 = 2.5,
α = 0.1 and sequential activity has g2 = 1, α = 0.1 (see values in phase plot Figure 3.7).

3.4 Embedded feedforward paths predict sequences

Why does such correlated asymmetric connectivity give rise to sequential activity? [Spreizer
et al., 2019] already indicated that such connectivity schemes result in formation of feed-
forward pathways in EI-LCRNs when connection asymmetry exists in EE connections.
However, it is not clear if the same argument can be extended to connection asymmetry
in EI and IE connections. We hypothesized that underlying paths of higher connectivity or
feedforward (FF) paths are the mechanism of sequences in this model. To test this, we
checked if FF paths can be found in different asymmetry configurations and if they pre-
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Figure 3.7: Phase plot of change in network dynamical state as a function of relative asym-
metry. X-axis and y-axis are the relative number and strength of asymmetric connections
respectively. Spatially correlated asymmetry was present in (a) E to E, (b) E to I, (c) I to
E, and (d) I to I connections. Color in the heatmap denotes the speed of localized activity
averaged over 5 different landscapes.

dict the sequences that arise in simulations. We estimated the path of high connectivity
from a given location (x, y) in the network (Methods 2.6). For each network, we did this
for 16 different locations uniformly distributed in the network. For each of these locations,
we simulated the network with directed input to an 8 by 8 region in the neuron network
around this location (Figure 3.8). Next, we compared the similarity between predicted FF
path and simulated activity path by calculating the distance between the two paths for dif-
ferent asymmetry configurations (Figure 3.9). We found that FF paths formed by adding
excitatory and subtracting inhibitory connectivity directions can predict the path taken by
sequential activity, as reflected by small distances (< 5 grid points) between the predicted
and simulated activity paths. When the activity bump is large and elliptical, it is important
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to include the shape of the activity bump to predict these sequences (Figure 3.8(e,j)).

Figure 3.8: Examples of predicted feedforward paths (a,b,c,d,e) and corresponding sim-
ulated activity path (f,g,h,i,j) starting from the same point (denoted by black square). (a,f):
(a) Anatomical FF path and (f) simulated activity sequence when spatially correlated asym-
metry was present in E to E connections wired using model 1 of asymmetry. (b,g): Same
as in (a,f) but when spatially correlated asymmetry was present in E to I connections (c,h):
Same as in (a,f) but when spatially correlated asymmetry was present in I to E connec-
tions (d,i): Same as in (a,f) but when spatially correlated asymmetry was present in I to I
connections (e,j): Same as in (a,f) but when spatially correlated asymmetry was present
in E to E connections using model 2 of asymmetry with elliptical activity bumps. Black
square denotes origin of predicted FF path and the location of directed input in simulated
activity path. The landscape, identical in all plots, is the same as in Figure 2.4.

3.5 Silencing embedded feedforward paths reduces the
sequences

We next asked if silencing FF paths prevents the spatiotemporal sequences from being
generated to establish a causal relationship between anatomical FF paths and neuronal

28



Figure 3.9: Distance between predicted feedforward paths and simulated activity path,
when asymmetry is present in different connections using Model 1 of asymmetry. Values
of distances are averaged over 16 positions for each of the 10 different landscapes.

activity sequences. To answer this, we simulate a network in sequence generating state
for 1000 ms. Then we reduce the synaptic weights of FF path synapses to zero (Figure
3.10) and continue to simulate the network for 1000 ms. Then, we simulate the network
again for 1000 ms giving directed input to another sequence generating region to check
if other sequences are affected. The number of sequences in these configurations of the
simulation when asymmetry is in EE connections using model 1 of asymmetry are com-
pared in Figure 3.11. Reducing the weights of FF paths impairs the number of sequences
present in that region. We also observed that only the reduced synaptic weights path is
affected; sequences in other regions remained intact.

3.6 Spatially random background activity state

We asked if this network can sustain a state with spatially random background activity
along with a sequential activity state. We aimed to achieve a state in which different input
configurations (high or low, uniform or directed) can give rise to either background activity
or sequential activity, without having to change the synaptic weights distribution of the
network. On trying multiple parameter sweeps, we found that it was non-trivial to have
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Figure 3.10: Schematic for simulation with reduced synaptic weights for the FF path. (a)
before and (b), (c) after reduction of weights. Examples of neural activity (d) before and
(e), (f) after reduction of FF path synaptic weights. The black square in all plots marks
the region of directed input. The black square in (a,b,d,e) marks the location (xi, yi) from
where the FF path was calculated.

two different activity states simultaneously in the network. Once the synaptic weights
and connectivity profile is specified, the network dynamics is limited to one of the two
desired states. Alternatively, we tried to change certain parameters incrementally in one
simulation (Methods 2.7). We tried a series of values for some parameters in increasing
and decreasing order and recorded the network activity state (as the number of activity
bumps) for each value. We found that for parameters that could be changed on the fly in
a simulation (Table 2.8), most do not lead to multiple network states (Figure 3.12).
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Figure 3.11: Number of sequences formed ’Before’ and ’After’ the reduction of FF path
(from region A) synaptic weights, directed input was given to region A. ’After B’ denotes the
part of simulation after reduction of FF path synaptic weights, when directed input given to
another sequence generating region B. Number of bumps are averaged over simulations
in 5 different landscapes where spatially correlated asymmetry (model 1) was present in
E to E connections

31



Figure 3.12: Number of activity bumps formed in a simulation as a proxy for network
activity states when parameter A on the x-axis is varied in increasing and decreasing
orders. Lighter traces show individual trials. Darker traces show the average number of
activity bumps across trials. Different parameters on x-axis are (a) Magnitude of network
input (µinput in Equation 2.1), (b) probability of recurrent excitatory connections pEE, (c)
Excitatory synaptic weight J, and (d) the ratio of inhibition to excitation g (see Table 2.8).
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Chapter 4

Discussion

Reliable sequential activation of neurons is necessary for animal behavior. Trivially, se-
quential activity of neurons can be a simple consequence of external input. However,
sequential activity is observed in cognitive tasks where there is no explicit ordered stim-
ulus. Therefore it is important to identify mechanisms that can give a network ability to
generate sequences intrinsically. Given their importance, a number of models have been
proposed to explain the emergence of sequential activity of neurons. But all those mecha-
nisms rely on supervised learning or manual wiring of connectivity in a specific manner. In
this work we investigate how a simple and biologically plausible generative rule can wire
the network in such a way to embed effective feedforward pathways which provide the
necessary structural substrate to generate reliable sequential activity. Our rule modifies
the projection region of each neuron by either shifting it or increasing the number of post-
synaptic neurons in a certain direction. We do this in a spatially correlated manner across
the network, such that spatially closer neurons have their projections regions shifted or
increased in similar directions.
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4.1 Mechanism for sequences when spatially correlated
asymmetry is present in EI, IE and II connections.

When asymmetry is present in recurrent excitatory connections, it is straightforward how
sequences are formed: each neuron projects to a certain direction and its nearby neurons
also project to the same region. This forms paths of higher connectivity, which is followed
by sequential neural activity.

However, in the case of asymmetry in the other connections (EI, IE, and II), the mecha-
nism of sequential activity is not straightforward. As we have shown in this work, correlated
asymmetry in EI, IE and II connections can also generate sequential activity. Here we pro-
pose a possible mechanism that underlies emergence of sequential activity in networks
with correlated asymmetry in EI, IE and II connections. Any activity in the excitatory (E)
layer, causes activity in the inhibitory (I) layer which gives wider feedback inhibition to the
E layer, thus localizing the E layer activity.

• When asymmetry is in E to I connections, the region of the I layer that gets activated
is shifted from the original position of activity on the E layer. Therefore, the feedback
inhibition to the E layer is also shifted in the direction of the asymmetry vector. Due
to recurrent E connections, net excitation in the E layer is shifted opposite to the
asymmetry vector directions and activity propagates in this path.

• When asymmetry is in I to E connections, the region in the I layer that gets activated
is the same, but the inhibition from I to E layer shifts in asymmetry vector direction.
Therefore, feedback inhibition to the E layer is shifted and net excitation is opposite
to the asymmetry vector direction, which is followed by the activity path.

• When asymmetry is in I to I connections, the region of the I layer activated by the E
layer is the same. As recurrent inhibition is higher in one direction, the active region
in the I layer shifts to the direction opposite of the asymmetry vector. The inhibition
from I layer to E layer is shifted opposite to the asymmetry vector directions, and the
net excitation follows the original asymmetry directions.
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As the directional activity has to go through multiple layers in these cases, the speed of
sequences is lower than when asymmetry is in recurrent excitatory connections.

4.2 Feedforward paths based on connectivity can be used
to predict sequences

Feedforward connectivity in a network is either manually built into models of sequences
generation or it is created through learning. Here, we have shown that there is another way
of generating feedforward paths in a network by changing the projection regions of neurons
in a spatially correlated manner. Our results prove that paths of higher net excitation
are the underlying mechanism of sequences in these networks. We have suggested a
method of relating the underlying connectivity to the order of neurons firing in a sequence.
This result opens the possibility of predicting which neurons will be part of a sequence in
biological networks if certain patterns of the underlying connectivity can be obtained.

4.3 Different states in new model of asymmetry

We observed that by changing the relative amount of asymmetry in the system using
model 2 of asymmetry, the network can shift between moving and stationary localized ac-
tivity states. For example in the case of EE asymmetry, higher and stronger asymmetric
connections make faster sequences. In the case of EI, IE and II asymmetry, an interme-
diate number of asymmetric connections is required. We also observed that whenever
stationary activity is found, it does not localize spatially into circular or elliptical bumps.
Rather, it localizes into larger regions without any particular shape (Figure 3.6).

When asymmetry is in EE connections, higher asymmetry formsmore distinct FF paths
and therefore, the likelihood of sequential activity increases with the amount of asymmetry.
When asymmetry is in EI, IE and II cases, both higher and lower numbers of asymmetric
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connections are detrimental for the movement of activity. In these cases, asymmetry goes
through the feedback inhibition from the I layer. This inhibition is also responsible for the
localization of activity into smaller bumps. Therefore, we suggest that when the number
of asymmetric connections is very high, the spatial spread of inhibition is insufficient to
localize the E layer neural activity into a bump. This results in large regions of active E
neurons with no net direction of higher excitation and we observe the stationary activity
state. When the number of asymmetric connections is very low, the push for directional
motion is not enough and we observe random activity. We can further speculate that if
projection regions of inhibition are larger or the spatial spread of I to E connections is in-
creased, sequences can be formed in some of the regions where we currently observe
the stationary localized activity states.

The importance of this result lies in the demonstration of the effect of the spatial distri-
bution of inhibitory input on a sequential network state. We have shown that for sequences
to be present in a network, the inhibitory synapses need to be distributed appropriately for
the network to show non-stationary activity.

4.4 Importance of spatial localization for sequential ac-
tivity

There are two important dynamical phenomena in this model: localization and movement
of neural activity. From previous work on the model, we know that spatially correlated
asymmetry generates the movement of activity. In this work, we prove that the underlying
asymmetry landscape causes the movement of neural activity through the formation of FF
paths.

In light of our results, we can comment on the importance of localization of activity.
Spatial localization of activity into small defined regions (like circles or ellipses) arises due
to local recurrent connections and feedback inhibition. Recurrent connections are cru-
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cial for the propagation of sequences by forming FF paths. They also control the shape
of spatial localization; elliptical activity regions are only formed when the second model
of asymmetry is used in recurrent excitatory connections. Different shapes of spatial lo-
calization can change the FF paths formed, even if the underlying landscape remains
identical. We also observed that appropriate inhibition is required for spatial localization
and a change in this inhibition can lead to loss of sequential activity.

When neural activity gets organized into smaller regions of activity, the active region
has a significant net excitation in a certain direction that arises from the underlying land-
scape. Only when this significant excitation in a particular direction is present, the neural
activity will move in that direction. When activity gets localized into large regions, the net
excitation is not significant and directional for the active region to move. Thus, appropriate
spatial localization is also crucial for the generation of sequences in this model.

Therefore, we conclude that recurrent connections and feedback inhibition in an EI
network would be prerequisite biological properties for this kind of sequence generation.
Additionally, the localization of neural activity to certain groups of neurons would be an
important phenomenon co-occurring with these kind of sequences.

4.5 Spatial structure of the network and background ac-
tivity state

We assume that an underlying spatial structure is present in neural networks. Local con-
nections, spatial localization of activity and spatially correlated asymmetry, all depend on
the arrangement of neurons on a two-dimensional grid. However, this arrangement is un-
likely to be true for a biological network. While some proof of global connectivity patterns
are present, spatially patterned activity has rarely been observed in biological network
recordings that contain both network activity and spatial position of neurons (for example
calcium imaging recordings). We can hypothesize that biological networks have a struc-
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ture similar to our model, but the biological spatial positions of the neurons are jumbled
up. However, we must compare the underlying structure of the biological network to our
model. In this work, we aimed to do this by comparing the background activity states of
the biological and model network. For this study, we defined background activity state to
be a spatially random activity state induced by low magnitude non-patterned input.

To induce a background activity state in our model, we need to prevent the spatial
localization of neural activity. We found that transient activation and inactivation of spatial
localization is unfeasible in most of the parameter space of our model. We varied the
factors that affect spatial localization (recurrent connections, inhibitory synaptic weights,
etc) and observed that most parameter combinations do not support a distinct background
activity state in these networks. We continue to check more parameters to rule out any
other possible cases. It is possible that a very fine balance of synaptic weights leads to
a network state that exhibits both the desired states. If it is entirely impossible to have
simultaneous background and sequential activity state in the model, then we would need
another way to relate the connectivity structure of biological networks to our model.
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