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Abstract
The discovery of the Higgs boson at the Large Hadron Collider (LHC) is the crowning achievement
of the Standard Model (SM) of particle physics. The SM is now proven to be a consistent field
theory describing a vast range of phenomena at the electroweak scale and below.

In this success of theoretical and experimental efforts, however, lies a pressing question: what is
the underlying physics at length scales shorter than the electroweak (EW) scale ⇠100 GeV�1?
Or turning it around, till what length scale are the rules of SM valid? One way to study this
question in a relatively model independent approach is to look for non-zero coefficients of local
higher dimensional operators of mass dimension greater than four. These coefficients, the so-
called Wilson Coefficients (WCs), can be directly constrained from experimental data collected at
the LHC. Another approach to put bounds on these WCs is developed using Machine Learning.

In the master’s thesis, my aim is to put bounds on some WC of the Standard Model Effective Field
Theory (SMEFT), using processes involving the top quark. This thesis sheds light on some prelim-
inary theory, followed by Cut and Count analysis to obtain bounds on the operator, and then meth-
ods in Machine Learning to improve the bound. For L = 1 TeV, the strongest bound at L =35.8
fb�1 obtained using Cut and Count analysis with Mtt̄ � pt

T distribution is CG 2 [�0.259,0.225].
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Chapter 1

Introduction

The Standard Model (SM) of particle physics has been very successful in explaining strong and
electroweak interactions at currently accessible energies. However, a few phenomena/anomalies
indicate that SM is not a complete description of nature. It does not account for dark matter, dark
energy, does not explain gravitational force, strong CP problem, etc. Consequently, we look for
possible new physics (NP) particles and interactions at higher energy scales.

Beyond SM or BSM physics can be analyzed and parametrized without loss of generality using
SMEFT (SM Effective Field Theory) [3, 4]. While preserving the SM gauge symmetries, higher-
dimensional operators can be augmented. This approach is justified when the scale upto which the
EFT is valid is given by L. This scale L is taken to be constrained as v/L< 1 and s/L2 < 1 where v
is the Electro-Weak Symmetry Breaking scale in the SM and

p
s is the experimental measurement

scale [5].

Existence of NP at higher energy scales which can modify interactions seen at hadron colliders
includes an interesting operator in the dimension-six gluon sector. Using gluon field strengths
given by Gµn

a = ∂ µGn
a � ∂ nGµ

a + gs fabcGµ
b Gn

c , one can build a gauge invariant CPT protecting
operator [6]:

OG = fabcGan
µ Gbr

n Gcµ
r . (1.1)

Top quark pair production serves as a clean and sensitive probe for OG [7]. Significant impact at
LHC energies can be observed even for small values of its Wilson coefficient. It dominates over
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other quark-involving operators with comparable coefficients. Also, contamination from higher
dimension gluon terms (dimension-8 and above) is small.

The parton distribution function of tt̄ production has highest contribution from di-gluon initial
states. So, in this thesis, we have approximated pp ! tt̄ with gg ! tt̄. The unfolded values of
differential cross-section at the parton level for kinematic variables in the tt̄ process provided by
CMS [1] collaboration enable us to perform all our analysis using parton level information.

Several important topics for this thesis are briefly described in the following sections. In chapter 2,
precision measurements in high energy tt̄ observables are performed to put constraints on CG, the
Wilson coefficient of OG. We call it Cut and Count analysis. We calculate Observed, Expected and
Linear (D6) bounds on CG at the luminosity of CMS data, Lexp = 35.8fb�1. Assuming scaling of
only the experimental uncertainties at high luminosities, we estimate high luminosity bounds.

In chapter 3, we try to improve bounds on CG using Machine Learning. Convolutional Neural
Networks (CNNs) are used as a classifier to distinguish signal against background. We perform
event-by-event classification in section 3.1, once with NP generated at a fixed energy scale and then
for three different energy scales with each sample as a separate classification category. Finally, we
describe a novel, physically intuitive method of bin-based classification in section 3.2.

In this thesis, I will be using Natural Units, where we take Planck’s constant and speed of light to
be unity, h = c = 1. This simplifies the dimensions of relevant physical quantities in terms of mass
or energy dimensions (refer to Table 1.1).

Quantity Dimensions in SI units Dimensions in Natural Units Formula

Mass kg E E = mc2

Length m E�1 E = hc /l
Time s E�1 c = 1, [L] = [E]�1

Energy kg.m2/s2 E �
Momentum kg.m2/s E E = pc

Table 1.1: Few physical quantities in SI and Natural Units.
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Figure 1.1: Standard Model of elementary particles [2].
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1.1 Standard Model Particles

In order to develop an intuition for SM particles’ behaviour, we look at their mass, full decay width
and mean lifetime values. Stability of the particle can be inferred from lifetime and decay width.
The relation between them is given by

t =
h̄
G
. (1.2)

Planck’s constant is given by h̄ ⇡ 6.58⇥ 10�16 eV.s. The experimental values for the following
tables are taken from PDG book, 2018 edition [8].

Quark Mass Quark Mass

u 2.2+0.5
�0.4 MeV c 1.275+0.025

�0.035 GeV
d 4.7+0.5

�0.3 MeV b 4.18+0.04
�0.03 GeV

s 95+9
�3 MeV t 173.1±0.9 GeV(Pole mass)

Table 1.2: Quark masses with experimental uncertainties.

Boson Mass Full Decay Width (G)

W 80.379±0.012 GeV 2.085±0.042 GeV
Z 91.1876±0.0021 GeV 2.4952±0.0023 GeV
g mg < 1⇥10�18 eV �

H0 125.18±0.16 GeV G < 0.013 GeV(CL= 95%)

Table 1.3: Boson masses and their full decay width (G) with experimental uncertainties.
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Lepton Mass Mean Lifetime (t)

e 0.5109989461±0.0000000031 MeV t > 6.6⇥1028 yr (CL= 90%)
µ 105.6583745±0.0000024 MeV (2.1969811±0.0000022)⇥10�6 s
t 1776.86±0.12 MeV (290.3±0.5)⇥10�15 s
n mn < 2 eV(tritium decay) t/m > 15.4 s/eV(CL= 90%, accelerator)

Table 1.4: Lepton masses and their lifetimes (t) with experimental uncertainties.

1.2 Large Hadron Collider

The Large Hadron Collider or LHC is the world’s highest energy collider. This superconducting
collider contains two proton beams in separate pipes throughout most of the circumference and
brings them together in a single pipe at particular interaction points (IP). The beam pipes are
kept at ultrahigh vacuum. Beams contain protons in bunches with short bunch spacing. At each
IP, approximately 30 head-on collisions happen through 120 m of common pipe [8]. There are
1.2⇥1011 protons per bunch and 2808 bunches per proton beam.

The number of events produced at the LHC are given by

Nexp = sexp ⇥
Z

L (t)dt , (1.3)

where Nexp : number of events, sexp : cross-section of interest and L (t) : instantaneous luminosity.

Around the accelerator ring, there are four particle detectors � ATLAS, CMS, ALICE and LHCb
where the beams are guided to collide.

1.2.1 CMS

CMS (formerly Compact Muon Solenoid) is a general-purpose detector in the LHC. The detector
has a large superconducting solenoid, 6m in diameter, which generates very high magnetic field
⇠3.8 T. Within the volume of solenoid, silicon tracker, electromagnetic calorimeter (ECAL) and
hadronic calorimeter (HCAL) are present. The tracker is made up of silicon pixels and strips. It
detects charged particle trajectories. ECAL is constituted of lead tungstate crystal while HCAL
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is made of brass and scintillator. Forward endcaps extend pseudorapidity coverage. Muons are
detected outside the solenoid in the gas-ionization chambers inside the steel magnetic flux-return
yoke. A two-tier trigger system based on hardware and software controls does event selection.

1.2.2 ATLAS

ATLAS is another general-purpose detector in LHC. It consists of an inner detector (ID), electro-
magnetic (EM) and hadronic calorimeters and a muon spectrometer (MS) [9, 10]. ID is located
within 2T axial magnetic field. It can measure charged particle momenta with �p  f  p and
|h | < 2.5. The calorimeter system covers pseudorapidity range |h | < 4.9. The EM calorime-
ters are high-granularity and consist of a barrel section (|h | < 1.475) and two endcap sections
(1.375 < |h | < 3.2). Hadronic calorimeters are scintillator-tile barrel calorimeter (|h | < 1.7) and
a copper liquid Argon endcap (1.7 < |h | < 3.2). The MS is capable of triggering and tests for
muons. It is located inside a toroidal magnetic field. Two zero-degree calorimeters (ZDCs) are
present to detect neutral particles with |h |> 8.5. Three-tier trigger system selects required events.
L1, L2 and EF (event filter) are based on hardware, online and offline reconstruction algorithms
respectively.

1.3 Kinematics

At LHC, a 2E=13 TeV center of mass energy proton-proton collision has incoming protons in z-
direction with respective momenta Pµ

1 =(E,0,0,E) and Pµ
2 =(E,0,0,�E). A proton is constituted

mostly by soft gluons and a few hard gluons, quarks and anti-quarks. On pp�collision, we get
a lot of soft gluon scattering which give minimum bias events. We are usually interested in hard
qg�scattering that might give detectable final particles transverse to the beam direction.

In a hard scatter, for the partons that collide, we can write their momenta in terms of proton
momenta as pµ

1 = x1Pµ
1 and pµ

2 = x2Pµ
2 . Here, xi gives the fraction of ith proton’s momentum

carried by its parton. According to the parton model, each xi is probabilistic and independent
distribution.

The angular information in an event can be captured using azimuthal angle f ranging from 0 to 2p
transverse to the beam line and polar angle q ranging from 0 to p with the beam line. We define a
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kinematic quantity called rapidity (y)

y =
1
2

log
E + pz

E � pz
.

Difference in rapidities, Dy = y1 � y2 is boost-invariant while y, by itself, is not. Hence, angular
separation is defined as R =

p
(Df)2 +(Dy)2 (boost-invariant). For massless particles, E = |~p|

which gives

y =
1
2

log
E + pz

E � pz
=

1
2

log
1+ cosq
1� cosq

=
1
2

log
2cos2 q/2
2sin2 q/2

=
1
2

logcot
q
2

(massless particles) .

This motivates the definition of pseudorapidity h ,

h =
1
2

logcot
q
2
. (1.4)

h a geometric quantity and is only boost-invariant for massless particles.

π

4

π

2

3π

4 π

θ

-4

-2

2

4

η

Figure 1.2: This plot shows pseudorapidity h as a function of polar angle q .

For a boost along z-direction, we have transverse momenta px and py. We use these to define
boost-invariant quantities ~pT ⌘ (px, py) and the scalar pT ⌘ |~pT|. Azimuthal angle f can also be
defined as f =tan�1(px/py) which is also boost-invariant.
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1.4 Standard Model

The Lagrangian in the Standard Model (SM), obeying SU(3)C ⇥ SU(2)L ⇥U(1)Y gauge symme-
tries, is given by

LSM =�1
4

GA
µnGAµn � 1

4
W I

µnW Iµn � 1
4

BµnBµn +(DµH)†(DµH)+µ2H†H �l (H†H)2

+ i
�
LDµgµL+ eRDµgµeR +QDµgµQ+uRDµgµuR +dRDµgµdR

�

�
�
LYe eRH +QYu uR eH +QYd dRH +h.c.

�
, (1.5)

where eH = is2H⇤, and the gauge-field strengths are defined as

GA
µn = ∂µGA

n �∂nGA
µ +gs f ABCGB

µGC
n , (1.6)

W I
µn = ∂µW I

n �∂nW I
µ +ge IJKW J

µW K
n , (1.7)

Bµn = ∂µBn �∂nBµ , (1.8)

where f ABC and e IJK are the structure constants of SU(3) and SU(2): [T A,T B] = i f ABCTC with
f ABC = i(T A)BC for SU(3), and [s I/2,s J/2] = ieJIKsK/2 with eJIK being the totally antisym-
metric tensor. We define the covariant derivative as

DµqL = (∂µ � igsT AGA
µ � igSIW I

µ � ig0YqBµ)qL (1.9)

for the left-handed quark, where T A = l A/2, SI = s I/2, and the hyper charge is normalized as
Yq = 1/6. The gauge quantum numbers of each field are summarized in Table 1.5.

The electroweak (EW) symmetry is spontaneously broken as the Higgs field acquires the non-zero
vacuum expectation value (VEV), v = µ/

p
l . In unitary gauge, the Higgs field H is written in

terms of v and the physical Higgs field h:

H =
vp
2

0

@
0

1+
h
v

1

A . (1.10)

For a general 2x2 matrix between H† and H,

H†

 
a11 a12

a21 a22

!
H =

1p
2

⇣
0 (v+h)†

⌘ a11 a12

a21 a22

!
1p
2

 
0

v+h

!
,
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Field SSSUUU(((333)))CCC SSSUUU(((222)))LLL UUU(((111)))YYY

GA
µ 8 1 0

W I
µ 1 3 0

Bµ 1 1 0

L =

0

@ nL

eL

1

A 1 2 �1/2

eR 1 1 �1

Q =

0

@ uL

dL

1

A 3 2 1/6

uR 3 1 2/3

dR 3 1 �1/3

H =

0

@ H+

H0

1

A 1 2 1/2

Table 1.5: Gauge quantum numbers of the SM fields.

=
1
2
|v+h|2a22. (1.11)

The Higgs kinetic term then yield the mass terms of the gauge bosons as well as hVV and hhVV
interactions:

(DµH)†(DµH) =
⇣

∂µH � ig
s I

2
W I

µH � ig0
1
2

BµH
⌘†⇣

∂ µH � ig
s J

2
W JµH � ig0

1
2

BµH
⌘
,

= (∂µH)†(∂ µH)+
g2

4
H†W I†

µ s Is JW JµH +
g02

4
H†B†

µBµH

+


i
g
2

H†W I†
µ s I(∂ µH)+ i

g0

2
H†B†

µ(∂ µH)+
gg0

4
H†W I†

µ s IBµH +h.c.
�
,

=
1
2
(∂µh)†(∂ µh)+

g2

8
|v+h|2W I†

µ (s Is J)22W Jµ +
g02

8
|v+h|2B†

µBµ

+


i
g
4
(v+h)†W I†

µ (s I)22(∂ µh)+ i
g0

4
(v+h)†B†

µ(∂ µh)

+
gg0

8
|v+h|2W I†

µ (s I)22Bµ +h.c.
�
,
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=
1
2
(∂µh)†(∂ µh)+

g2

8
|v+h|2

�
W 1†

µ W 1µ +W 2†
µ W 2µ +W 3†

µ W 3µ � iW 1†
µ W 2µ

+ iW 2†
µ W 1µ�+ 1

8
|v+h|2

�
g02B†

µBµ �gg0B†
µW 3µ �gg0W 3†

µ Bµ�

�


i
4
(v+h)†�gW 3†

µ �g0B†
µ
�
(∂ µh)+h.c.

�
,

=
1
2
(∂µh)†(∂ µh)+

g2

8
|v+h|2

�
W 1

µ � iW 2
µ
�†�W 1

µ � iW 2µ�

+
1
8
|v+h|2

�
gW 3

µ �g0Bµ
�†�gW 3µ �g0Bµ�

�


i
4
(v+h)†�gW 3

µ �g0Bµ
�†
(∂ µh)+h.c.

�
,

=
1
2
(∂µh)†(∂ µh)+

g2v2

4

✓
1+

2h
v
+

h2

v2

◆
W+†

µ W+µ

+
1
2
(g2 +g02)v2

4

✓
1+

2h
v
+

h2

v2

◆
Z†

µZµ

�


i(g2 +g02)1/2v
4

✓
1+

h†

v

◆
Z†

µ(∂ µh)+h.c.
�

| {z }
vanishes because Z†

µ=Zµ

,

=
1
2
(∂µh)†(∂ µh)+M2

WW�
µ W+µ +

1
2

M2
ZZµZµ

+
g2v2

4

✓
2h
v
+

h2

v2

◆
W�

µ W+µ +
1
2
(g2 +g02)v2

4

✓
2h
v
+

h2

v2

◆
ZµZµ , (1.12)

where the physical gauge-boson fields are defined as

W±
µ =

1p
2
(W 1

µ ⌥ iW 2
µ ) , (1.13)

 
Zµ

Aµ

!
=

 
cosqW �sinqW

sinqW cosqW

! 
W 3

µ
Bµ

!
, (1.14)

with the weak mixing angle qW defining through the relations,

cW ⌘ cosqW =
gp

g2 +g02
, (1.15)

sW ⌘ sinqW =
g0p

g2 +g02
, (1.16)

e2 = g2 sin2 qW = g2s2
W . (1.17)
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For the electric charge, we adopt the sign convention e = gsW . In the lagrangian density, mass term
for real vector field Z is 1

2m2ZµZµ and that for complex vector field W is m2W ⇤
µW µ . The masses

of the W and Z bosons are then given by

M2
W =

g2v2

4
, M2

Z =
(g2 +g02)v2

4
, (1.18)

which imply c2
W = M2

W/M2
Z . The Higgs VEV v can be estimated as

v =
1

(
p

2GF)1/2
⇡ 246 GeV, (1.19)

where GF =
p

2g2/(8M2
W ).

The kinetic terms of the gauge bosons involve the triple and quartic gauge-boson couplings:1

�1
4

GA
µnGAµn =�1

4
(∂µGA

n �∂nGA
µ +gs f ABCGB

µGC
n )(∂ µGAn �∂ nGAµ +gs f ADEGDµGEn) ,

��gs

2
f ABC(∂µGA

n �∂nGA
µ)G

BµGCn � g2
s

4
f ABC f ADEGB

µGC
n GDµGEn ,

=�gs f ABC(∂µGA
n)G

BµGCn � g2
s

4
f ABC f ADEGB

µGC
n GDµGEn , (1.20)

�1
4

W I
µnW Iµn =�1

4
(∂µW I

n �∂nW I
µ +ge IJKW J

µW K
n )(∂ µW In �∂ nW Iµ +ge ILMW LµW Mn) ,

=�1
4
(∂µW I

n �∂nW I
µ)(∂ µW In �∂ nW Iµ)

� g
2

e IJK(∂µW I
n �∂nW I

µ)W
JµW Kn � g2

4
e IJKe ILMW J

µW K
n W LµW Mn ,

=�1
4
(∂µW I

n �∂nW I
µ)(∂ µW In �∂ nW Iµ)

�g(∂µW 1
n �∂nW 1

µ )W
2µW 3n �g(∂µW 2

n �∂nW 2
µ )W

3µW 1n

�g(∂µW 3
n �∂nW 3

µ )W
1µW 2n � g2

4
(d JLd KM �d JMd KL)W J

µW K
n W LµW Mn ,

=�1
2
(∂µW+

n �∂nW+
µ )(∂ µW�n �∂ nW�µ)� c2

W
4
(∂µZn �∂nZµ)(∂ µZn �∂ nZµ)

� sW cW

2
(∂µZn �∂nZµ)(∂ µAn �∂ nAµ)� s2

W
4
(∂µAn �∂nAµ)(∂ µAn �∂ nAµ)

+ ig(∂µW+
n �∂nW+

µ )W�µW 3n � ig(∂µW�
n �∂nW�

µ )W+µW 3n

1Here we employ W 1
µ = (W+

µ +W�
µ )/

p
2, W 2

µ = i(W+
µ �W�

µ )/
p

2, W 3
µ = cW Zµ + sW Aµ , and W J

µW J
n =W+

µ W�
n +

W�
µ W+

n + c2
W Zµ Zn + sW cW (Zµ An +Aµ Zn)+ s2

W Aµ An .
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+ ig(∂µW 3
n �∂nW 3

µ )W
+µW�n � g2

4
W J

µW JµW K
n W Kn +

g2

4
W J

µW J
n W KµW Kn ,

=�1
2
(∂µW+

n �∂nW+
µ )(∂ µW�n �∂ nW�µ)� c2

W
4
(∂µZn �∂nZµ)(∂ µZn �∂ nZµ)

� sW cW

2
(∂µZn �∂nZµ)(∂ µAn �∂ nAµ)� s2

W
4
(∂µAn �∂nAµ)(∂ µAn �∂ nAµ)

+ i Â
V=Z,g

gWWV

h
(∂µW+

n �∂nW+
µ )W�µV n � (∂µW�

n �∂nW�
µ )W+µV n

+(∂µVn �∂nVµ)W+µW�n
i

+
g2

2
�
W+

µ W+µW�
n W�n �W+

µ W�µW+
n W�n�

+g2c2
W
�
W+

µ ZµW�
n Zn �W+

µ W�µZnZn�+g2s2
W
�
W+

µ AµW�
n An �W+

µ W�µAnAn�

+g2sW cW
�
W+

µ ZµW�
n An +W+

µ AµW�
n Zn �2W+

µ W�µZnAn� , (1.21)

�1
4

BµnBµn =�1
4
(∂µBn �∂nBµ)(∂ µBn �∂ nBµ) ,

=�s2
W
4
(∂µZn �∂nZµ)(∂ µZn �∂ nZµ)+

sW cW

2
(∂µZn �∂nZµ)(∂ µAn �∂ nAµ)

� c2
W
4
(∂µAn �∂nAµ)(∂ µAn �∂ nAµ) , (1.22)

where the triple gauge boson couplings are written as gWWZ = gcW = ecW/sW and gWWg = gsW = e.

Moreover, the Yukawa terms read

LYukawa =�
�
LYe eR H +QYu uR eH +QYd dR H

�
+h.c. ,

=�v+hp
2

�
eLYe eR +uLYu uR +dLYd dR

�
+h.c. (1.23)

The interactions between the gauge bosons and the left-handed fermions are then given by

f̄L i 6D fL � f̄Lgµ
⇣

gsT AGA
µ +gII

fW
I
µ +g0YfLBµ

⌘
fL ,

= f̄Lgµ
⇢

gsT AGA
µ +

ep
2sW

h
(I1

f + iI2
f )W

+
µ +(I1

f � iI2
f )W

�
µ

i

+
e

sW cW
(I3

f �Q f s2
W )Zµ + eQ f Aµ

�
fL , (1.24)

where II
f = s I/2 and Q f = I3

f +YfL . Similarly, the right-handed fermions have the following
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interactions:

f̄R i 6D fR � f̄Rgµ
⇣

gsT AGA
µ +g0YfRBµ

⌘
fR ,

= f̄Rgµ


gsT AGA
µ +

e
sW cW

(�Q f s2
W )Zµ + eQ f Aµ

�
fR . (1.25)

We define the effective couplings g f
V and g f

A for the interaction of the Z boson with the neutral
current as

L Z f f̄
eff =

e
2sW cW

Zµ Â
f

f̄ gµ
⇣

g f
V �g f

Ag5

⌘
f =

e
sW cW

Zµ Â
f

f̄ gµ
⇣

g f
LPL +g f

RPR

⌘
f , (1.26)

where PL = (1� g5)/2 and PR = (1+ g5)/2, and the tree-level couplings are given by g f
V = I3

f �
2Q f s2

W , g f
A = I3

f , g f
L = I3

f �Q f s2
W and g f

R =�Q f s2
W with g f

L = (g f
V +g f

A)/2 and g f
R = (g f

V �g f
A)/2.

Transformation of eH under SU(2)

We want to see how eH transforms when H ! UH where U is an order 2 unitary matrix. We had
defined eH = is2H⇤ which transforms as

eH = is2H⇤ ! is2(UH)⇤ = is2U⇤H⇤ . (1.27)

For an infinitesimal transformation,

U = ei~s .~q/2 = 12x2 +
i~s .~q

2
+
� i~s .~q

2
�2

+ ... ⇡ 1+
i~s .~q

2
,

U⇤ = 1� i
2

s⇤
i qi = 1� i

2
(s1q1 �s2q2 +s3q3) ,

where s⇤
1 = s1,s⇤

3 = s3 but s⇤
2 =�s2. Therefore, equation (1.27) becomes

eH ! is2

✓
1� i

2
(s1q1 �s2q2 +s3q3)

◆
H⇤ ,

= is2H⇤ � is2
i
2
(s1q1 �s2q2 +s3q3)H⇤ ,

= eH � i
2
(is2s1q1 � is2

2 q2 � is2s3q3)H⇤ ,

= eH � i
2
(s3q1 � iq2 �s1q3)H⇤ , (using (si)

2 = 1 & sis j = iei jksk)
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= eH � 1
2
(s3q1 � iq2 �s1q3)i(s2s2)H⇤ , (introducing s2

2 = 1)

= eH � 1
2
(s3.s2q1 � is2q2 �s1.s2q3) eH ,

= eH � 1
2
(�is1q1 � is2q2 � is3q3) eH ,

= eH +
i
2

siqi eH ,

=U eH . (1.28)

Thus equation (1.28) tells us that eH transforms similar to H under SU(2) symmetry group. The
need for eH arises because of hypercharge and not SU(2) symmetry.

1.4.1 CKM matrix

In the Standard Model lagrangian, LSM, (eq. 1.5) we can observe that the yukawa matrices are
not necessarily diagonal. No invariance condition on LSM imposes diagonal form on them. So,
we can assume yukawa matrices to be of general complex form, not necessarily diagonal. We can
diagonalize them so that the mass terms may be read out directly from the lagrangian.

We know that any hermitian operator can be diagonalized using a unitary operator. But a general
complex matrix can be diagonalized using bi-unitary transformation.

We diagonalize the yukawa matrix for the leptonic part of the lagrangian by doing a basis transfor-
mation.

Llep � LiY i j
e e j

RH + iLiDµgµLi + ei
RDµgµei

R . (1.29)

Let prime superscript denote initial basis. Operator transformations are given by:

L0 !ULL , e0R !UReR .

where UL and UR are unitary matrices. Now,

L0Ye e0RH ! LU†
L YeUR eRH = LY D

e eRH .

We can choose UL and UR such that U†
L YeUR = Y D

e is diagonal. If we do the same transformation
on other terms of the above lagrangian(eq. 1.29), then we see that they are still diagonal since

14



U†
L UL =U†

R UR = 1 .

iL0DµgµL0 ! iLU†
L Dµgµ UL L ,

= iLU†
L UL Dµgµ L ,

= iLDµgµL . (1.30)

e0RDµgµe0R ! eRU†
R Dµgµ UR eR ,

= eRU†
R UR Dµgµ eR ,

= eR Dµgµ eR . (1.31)

Thus, we see that all the terms of the leptonic lagrangian become diagonal under basis transforma-
tion.

Llep � LY D
e eRH + iLDµgµL+ eRDµgµeR . (1.32)

Since Ye is now diagonal, we can directly get mass terms from the lagrangian,

⇣
L1 L2 L3

⌘
0

B@
Ye 0 0
0 Yµ 0
0 0 Yt

1

CA

0

B@
eR

µR

tR

1

CAH ! gives mass terms .

There are no off-diagonal terms indicating flavor mixing. Hence, SM does not allow any vertex
that changes the flavor of lepton.

Now, we do a similar transformation for the quarks.

Lq � i
�
QDµgµQ+uRDµgµuR +dRDµgµdR

�
�
�
QYu uR eH +QYd dRH +h.c.

�
(1.33)

Q0Yu u0R eH = u0Li
Yui j u0R j

(v+h)/
p

2 (1.34)

Q0Yd d0
RH = d0

Li
Ydi j d0

R j
(v+h)/

p
2 (1.35)

Again, let prime superscript denote initial basis. Operator transformations are given by:

u0L !V u
L uL , u0R !V u

R uR

d0
L !V d

L dL , d0
R !V d

R dR (1.36)
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where VL and VR are unitary matrices. Now,

Lq � Q0Yu u0R eH +Q0Yd d0
RH ,

=
v+hp

2

�
u0Li

Yui j u0R j
+d0

Li
Ydi j d0

R j

�
,

! v+hp
2

�
uL (V u†

L YuV u
R )uR +dL (V d†

L Yd V d
R )dR

�
,

=
v+hp

2

�
uLY D

u uR +dLY D
d dR

�
. (1.37)

Thus, above terms get diagonalized under above basis transformation. Also, the kinetic terms for
the right-handed quarks get diagonalized for the same transformation:

Lq � i
�
u0RDµgµu0R +d0

RDµgµd0
R
�
,

! i
�
uRV u†

R DµgµV u
R uR +dRV d†

R DµgµV d
R dR

�
,

= i
�
uR (V u†

R V u
R )DµgµuR +dR(V d†

R V d
R )DµgµdR

�
,

= i
�
uRDµgµuR +dRDµgµdR

�
. (1.38)

However, if we focus on the kinetic term for the left-handed quarks,

Lq � iQ0DµgµQ0

=
⇣

u0L d0
L

⌘✓
∂µ12x2 +g

s I

2
W I

µ +g0Y Bµ12x2

◆
gµ

 
u0L
d0

L

!
. (1.39)

In above expression, the terms involving 12x2 and s3 do not give any off-diagonal elements. So
we write the terms with s1 and s2 explicitly while neglecting the constant factors:

⇣
u0L d0

L

⌘" 0 W 1
µ

W 1
µ 0

!
+

 
0 �iW 2

µ
iW 2

µ 0

!#
gµ

 
u0L
d0

L

!
= u0L(W

1
µ � iW 2

µ )gµd0
L

+d0
L(W

1
µ + iW 2

µ )gµu0L ,

= u0LW+
µ gµd0

L +d0
LW�

µ gµu0L ,

= u0LW+
µ gµd0

L +h.c. ,

! uLV u†
L W+

µ gµV d
L dL +h.c. ,

= uLW+
µ gµ(V u†

L V d
L )dL +h.c. ,

= uLW+
µ gµVCKMdL +h.c. (1.40)
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where VCKM is a 3x3 unitary matrix called Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix.
It is an off-diagonal matrix which gives flavor mixing of left-handed quarks.

VCKM ⌘V u†
L V d

L , (V †
CKMVCKM = 1) . (1.41)

The matrix VCKM can be written as

VCKM =

0

B@
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

1

CA . (1.42)

In conclusion, W± can change flavors of left-handed quarks � Flavor Changing Charged Current
(FCCC) � while right-handed quarks can’t change flavors. It is the only source of flavor and
generation mixing within the SM. W interactions violate parity. Also, regardless of chirality, a
neutral current cannot change flavor of a quark. Flavor Changing Neutral Currents (FCNCs) are
not present in SM at tree level.

1.5 Effective Field Theory

SM of particle physics has been quite successful as it agrees fairly well with experimental obser-
vations but it has its flaws. One of them is that it does not predict number of particles. Hence, at
higher energy scales, one may discover new particles or interactions. We can construct an effective
lagrangian keeping the symmetries/conservation laws in mind (SU(3)C ⇥ SU(2)L ⇥U(1)Y gauge
symmetries, baryon number conservation, etc.) without loss of generality [4]. New physics (NP)
phenomena and particles can be added to the SM lagrangian in full generality using higher dimen-
sional operators with dimension greater than or equal to four [11–13]. These effects may be too
heavy for direct access at the LHC. The effective lagrangian can be written as

Leff = LSM +
1
L Â

i
C(5)

i O(5)
i +

1
L2 Â

i
C(6)

i O(6)
i + ... (1.43)
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where O(n)
i denote dimension-n operators. The corresponding dimensionless coupling constants or

Wilson coefficients are denoted by C(n)
i . The operators are suppressed by powers of an unknown

NP scale L.

The EFT constructed out of SM fields is called SMEFT. We can use it for BSM (Beyond SM)
physics searches and to analyze deviations from SM. Considering a particular high-energy theory,
all the Wilson coefficients can be determined by integrating out the heavy fields.

Reasons for using EFTs

Consider a scalar field f which lies beyond NP scale L,

L =
1
2
(∂f)2 � 1

2
l2f 2 �l4f 4 �l6f 6 � ...

�l4,2f 2(∂f)2...�l6,2f 4(∂f)2...�l4,4(∂f)4... , (1.44)

where ln,m stands for n fields and m derivatives present in the term. Above equation (eq. 1.44) can
be rewritten using a super index I which counts all possible higher dimensional terms:

L =
1
2
(∂f)2 +Â

I
lIOI . (1.45)

Let dim (OI) = DI and lI = gI/LDI�4 where gI is dimensionless and very small in order to keep
perturbation theory valid at scale L (gI < O(1), neglecting orders of 4p).

From eq. 1.44, we can observe that l2 = m2 = g2L2. If order of mass is the same as that of
fundamental energy scale, i.e. O(m)⇡ O(L), then in relativistic theory, no different physics exists
at that scale because there exists no quanta with energy much less than m to scatter.

Assuming the lagrangian is perturbative, we compute 2 ! 2 scattering amplitude. At tree level,
A2!2 is dimensionless. Taking the term l4,2f 2(∂f)2 as an example, it clearly has dimension of
1/m2 and thus contributes a factor of E2 in the amplitude. Other terms can be written similarly.

A2!2 = A4�legs = l4 +l4,2E2 +l4,4E4 + ... (1.46)

For very small energies, the terms of O(E2) and higher are negligible compared to the leading
term. Now, if we look at A2!4, the term with coefficient l 2

4 has a propagator and it goes like
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l 2
4 /E2. Other terms behave similar to the way described earlier.

A2!4 = A6�legs = l 2
4

1
E2 +l6 +l6,2E2 + ... ,

=
1

E2

�
l 2

4 +l6E2 +l6,2E4 + ...
�
. (1.47)

Again, if we go to low enough energy, only one parameter is dominating the amplitude.

A simple analogy is that a complicated structure looks like a simple point object at large distances
and one cannot infer details about it without a very precise measurement. An experiment with
finite precision will only give leading term(s).

All the operators with DI � 4, affect An�legs as

An�legs = ENP(lIEDI�4) , (1.48)

where N depends on number of legs and P(lIEDI�4) is some polynomial such that couplings
have the right powers of E to make the input dimensionless. Hence, the coefficients of operators
of higher dimensionality will have increasingly lower contribution to amplitude.

Equation 1.48 implies that as we go to lower energy scales, all operators with DI > 4 have lesser
impact on the amplitude. Operators of dimension 4 remain unaffected by change of scale. Opera-
tors of dimensionality lower than mass are negligible at very large energy but become relevant as
energy scale approaches that of mass.

Using only dimensional analysis, we can conclude that for a complicated lagrangian with all the
terms, we only need terms with operator dimension less than or equal to 4 (DI  4) to reliably
compute the scattering amplitude at sufficiently low energies.

Advantages of using EFTs:

• EFTs deal with one energy scale at a time which makes it computationally easier to work
with. We can evaluate different terms at their own energy scale instead of using messy
complicated functions.

• It makes symmetries manifest. One can derive the consequences of manifest symmetry more
easily.

• EFTs provide a unified framework to efficiently describe all new physics theories using
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higher dimensional operators and their coefficients. Since all necessary symmetries are in-
corporated in the terms, finding bounds on Wilson coefficients meaningfully characterizes
the new physics.

1.6 Higher Dimensional Operators

In order to incorporate a NP interaction at certain energy scale, a higher dimension EFT operator
is added to the SM lagrangian density. As an example, we take a NP model for the process gg ! tt̄
given by an EFT operator of dimension-six containing a new tri-gluon interaction vertex [11, 12,
14]. Let this triple gluon field strength operator be OGwhere

OG = fabcGan
µ Gbr

n Gcµ
r . (1.49)

NP corresponds to the vertex: g

g

g

The lagrangian density becomes

Leff = LSM +LG = LSM +
1

L2CGOG . (1.50)

The corresponding processes are given by following four Feynman diagrams as shown in fig. 1.6.
Three of these are SM processes and one is a NP process.
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Figure 1.3: Feynman diagrams of all the possible vertices for the process gg ! tt̄. Figures 1.3(a),
1.3(b) and 1.3(c) are tree level SM diagrams while 1.3(d) comes from NP interaction.

1.6.1 cross-section

For the process gg ! tt̄, with proton center of mass (CM) energy
p

s = 2E = 13 TeV, let x1 be
fraction of proton momentum carried by gluon 1 and x2 be that carried by gluon 2.

plab
1 = x1(E,0,0,E) , (1.51)

plab
2 = x2(E,0,0,�E) , (1.52)

ŝ =
�
(x1 + x2)

2 � (x1 � x2)
2�E2 ,

= 4x1x2E2 , (1.53)

m2
tt̄ = (p3 + p4)

2 , (1.54)

Here we know mass of top quark mt = 173.8 GeV and ŝ, t̂, û are Mandelstam variables. In the gluon
CM frame, let Ê be the CM energy for gluons and q be the angle between outgoing top quark (p3)
and collision axis (z). Let E1 = E2 = Ê and E3 = E4 = E34.

pCM
1 = (Ê,0,0, Ê) , (1.55)
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pCM
2 = (Ê,0,0,�Ê) , (1.56)

pCM
3 = (E34,

q
E2

34 �m2
t sinq ,0,

q
E2

34 �m2
t cosq) , (1.57)

pCM
4 = (E34,�

q
E2

34 �m2
t sinq ,0,�

q
E2

34 �m2
t cosq) . (1.58)

Above momenta give

ŝ = 4Ê2 , (1.59)

m2
tt̄ = 4E2

34 , (1.60)

t̂ = m2
t �2ÊE34 +2Ê

q
E2

34 �m2
t cosq , (1.61)

û = m2
t �2ÊE34 �2Ê

q
E2

34 �m2
t cosq . (1.62)

In the gluon CM frame, the 2-body phase space is given by

Z
df2(p3, p4) =

Z d3 p3

(2p)32E3

d3 p4

(2p)32E4
(2p)4d (pµ

1 + pµ
2 � pµ

3 � pµ
4 ) ,

=
Z d3 p3

(2p)32E34

d3 p4

(2p)32E34
(2p)d (2Ê �2E34)(2p)3d (~p3 + ~p4) ,

=
Z d3 p

(2p)34E2
34
(2p)d (2Ê �2E34) ,

=
Z p2 d p d cosq df

(2p)34E2
34

(2p)d (2Ê �2E34) ,

=
Z 2p

0
df
Z p E34 dE34 d cosq

(2p)34E2
34

(2p)d (2Ê �2E34) ,

= (2p)
Z
q

E2
34 �m2

t E34 dE34 d cosq

(2p)24E2
34

d (2Ê �2E34) , (1.63)

where we have used |~p3|= |~p4|= p and d3 p = p2 d p d cosq df = pE34 dE34 d cosq df .

Now,

dŝ =
1

2E12E2|~v1 �~v2|
|M |2df2 ,

=
1

8Ê2 |M |2df2 ,
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=
1

8Ê2 |M |2

q
E2

34 �m2
t dE34 d cosq

(2p)4E34
d (2Ê �2E34) . (1.64)

Using equation (1.54 and 1.60),

dŝ =
1
2ŝ
|M |2

p
1� (2mt/mtt̄)2

8p
d cosq

2
dmtt̄ d (

p
ŝ�mtt̄) , (1.65)

dŝ
dmtt̄

=
1
2ŝ

p
1� (2mt/mtt̄)2

8p
d (

p
ŝ�mtt̄)

Z
|M |2 d cosq

2
. (1.66)
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Figure 1.4: Normalized overlay plot for calculated parton-level cross-section of process gg ! tt̄
for SM, New Physics and Interference terms in Lagrangian. On the x-axis, mtt̄ is plotted with
intercept at 2mt and steps of 50 GeV.

Consider f (x) to be parton distribution function, then total cross-section at proton level can be
written as

ŝ =
Z

f (x1) f (x2)dŝ ,
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=
Z

f (x1) f (x2)
1
2ŝ

p
1� (2mt/mtt̄)2

8p
d (

p
ŝ�mtt̄)dmtt̄ |M |2 d cosq

2
. (1.67)

Total gg ! tt̄ amplitude squared, averaged over initial, summed over final spins and colors is given
by Ref. [7]. Here, subscript ’int’ stands for interference term between SM and NP.

|M |2SM(gg ! tt̄) = g4
s

(
3
4
(m2

t � t̂)(m2
t � û)

ŝ2 � 1
24

m2
t (ŝ�4m2

t )

(m2
t � t̂)(m2

t � û)

+
1
6

h t̂ û�m2
t (3t̂ + û)�m4

t
(m2

t � t̂)2 +
t̂ û�m2

t (3û+ t̂)�m4
t

(m2
t � û)2

i

� 3
8

h t̂ û�2t̂m2
t +m4

t
(m2

t � t̂)ŝ
+

t̂ û�2ûm2
t +m4

t
(m2

t � û)ŝ

i)
, (1.68)

|M |2int(gg ! tt̄) =
1

L2

(
9
8

CG
m2

t (t̂ � û)2

(m2
t � t̂)(m2

t � û)

)
, (1.69)

|M |2NP2(gg ! tt̄) =
1

L4

(
27
4

C2
G(m

2
t � t̂)(m2

t � û)

)
. (1.70)

1.7 Convolutional Neural Network

Deep Convolutional Neural Networks or CNNs are powerful Machine Learning (ML) tools for
visual object recognition. For training, supervised learning is most common, where we show a
bunch of pictures to the machine for it to identify and learn patterns or motifs. Architectures with
multiple layers learn through simple stochastic gradient descent [15]. Chain rule of derivatives (or
gradients) gives a keen insight on this sort of training incorporating weights using backpropagation.

The following layers make up the architecture of a CNN. Convolutional (Conv) layer does most of
the computing involved. It detects local features, correlations, or conjunctions of an image through
learnable filters or kernels [16]. Kernel is a weights matrix created by the layer. Neurons/Units
here are arranged in feature maps. Each neuron is connected to local spots on feature maps of
the previous layer through a set of weights called filter banks. A non-linearity such as a rectified
linear unit or ReLU is then passed through the result of this local weighted sum. Pooling layer
merges similar features into one. It reduces the global computational complexity. Dense or Fully
Connected layer is like a regular NN, where all units are connected to all of the previous layer’s
units. As opposed to Conv layers, neurons do not have a spatial organization here. Dropout
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layer prevents overfitting and trains more robust parameters by dropping a fraction of input units.
Flatten layer reduces the dimensionality of input layer to prepare a vector for Fully Connected
layer.

ReLU activation returns element-wise max(x,0). ReLU has sparsity property and suffers less from
diminishing gradient flow [17]. Softmax activation function, S(yi) = eyi/Â j ey j , gives a vector
output representing the probability distributions of a list of potential outcomes.

In classification, the model fits parameters to predict the probability of an image being one of given
categories. The loss or objective function helps it evaluate the prediction probabilities. Higher the
loss function, worse are the predictions. For example, binary cross-entropy or log loss function
performs quite well for binary classifications. It is given by,

� 1
N

N

Â
i=1

⇥
yi.log(P(yi))+(1� yi).log(1�P(yi))

⇤
. (1.71)

Adam optimizer algorithm [18] can be used as an alternative/extension to stochastic gradient de-
scent for computational efficiency and other advantages. An epoch is an iteration over the entire
data provided. Batch size gives the number of samples per gradient update during training or
testing.
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Chapter 2

Cut and Count Analysis

The New Physics (NP) model is incorporated into the SM lagrangian using FeynRules [19] (refer
to Appendix A) to produce a model file. Here, I have taken the relevant energy scale, or scale
of NP, as L = 1 TeV and the Wilson coefficient CG = 1. This model file can be imported in
MadGraph [20] to generate samples of the process gg ! tt̄ incorporating the NP interaction. The
aim of the exercise is to put bounds on the Wilson coefficient of operator OG (eq. 1.49), denoted by
CG. This analysis has N = 106 events each for three different kinds of samples and the values are
scaled to correspond to integrated luminosity of 35.8 fb�1. MadGraph samples generated include

1. only SM processes (gives sSM LO)1,

2. only NP processes (gives sNP2),

3. combined sample with both SM and NP processes2 (gives sFull).

Let s (I)
Exp be experimentally observed binwise differential cross-section for the Ith bin in the distri-

bution of kinematic variables like Mtt̄ , pT
t(L) and |y(t)| given by CMS [1]. Mtt̄ denotes the invariant

top mass, pT
t(L) denotes Leading or highest pT top quark in the event, and y(t) denotes rapidity

of the leading top quark. Total experimental error on the bin, including statistical and systematic,
is denoted by Ds (I)

Exp, where

Ds (I)
Exp =

q
(Ds (I)

stat)2 +(Ds (I)
sys)2 . (2.1)

1LO stands for Leading Order.
2includes three different amplitudes: only SM, only NP and SM+NP interference.
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We construct the following cross-sections using the generated samples:

s (I)
int = s (I)

Full �s (I)
SM LO �s (I)

NP2 , (2.2)

s (I)
NP =

C2
G

(L/ TeV)4 s (I)
NP2 +

CG

(L/ TeV)2 s (I)
int . (2.3)

Now we take three cases for the analysis: Observed, Expected and D6/Linear. In the Observed
case, the constant term we add to s (I)

NP is k sSM LO (where k = sSM NNLO/sSM LO = 1.80269) [21]
while in the Expected case, the constant term added is sExp. k modifies SM contrto be NNLO
(Next-to-Next-to-Leading Order). The third case, D6 represents the (linear) cross-section when we
exclude the only NP contribution (C2

G term) from the Full Expected cross-section sExtd (eq. 2.6).
This ensures that the NP contribution comes purely from dimension-six term, i.e., the SM and NP
interference term in this (D6) case.

s (I)
Full = ks (I)

SM LO +s (I)
NP ,

= ks (I)
SM LO +

CG

(L/ TeV)2 s (I)
int +

C2
G

(L/ TeV)4 s (I)
NP2 , (2.4)

s (I)
Obs = k s (I)

SM LO +s (I)
NP , (where k = 1.80269) (2.5)

s (I)
Extd = s (I)

Exp +s (I)
NP , (2.6)

s (I)
D6 = s (I)

Exp +
CG

(L/ TeV)2 s (I)
int . (2.7)

In order to obtain constraints on CG, the following chi-square statistic (as a function of CG and L)
is constructed to evaluate goodness of fit:

c2 �CG/L2�= Â
I

(s (I)
Full �s (I)

Exp)
2

(Ds (I)
Exp)

2
, (2.8)

Dc2 �CG/L2�= c2 �CG/L2��c2
min
�
CG/L2� . (2.9)

The following tables (Table 2.1 - Table 2.5) show obtained MadGraph values for the cross-section
variables. Note that CMS measures cross-section multiplied by branching ratio, s ⇥BR`, of semi-
leptonic tt̄ events. At parton level, BR` ⇡ 0.29 [11].

28



Bin No. Mtt̄ s (I)
Full s (I)

SM LO s (I)
NP2 s (I)

int s (I)
Exp

[GeV] [pb] [pb] [pb] [pb] [pb]

1 300�360 18.76 13.21 1.78 3.77 51.10±11.91
2 360�430 154.49 128.55 14.89 11.05 260.93±22.31
3 430�500 132.55 107.54 15.22 9.79 190.93±17.01
4 500�580 99.64 76.80 14.92 7.92 133.79±8.98
5 580�680 72.88 52.11 14.77 6.01 90.00±7.03
6 680�800 47.63 30.52 13.34 3.76 51.72±4.22
7 800�1000 37.95 20.15 15.03 2.77 32.90±2.49
8 1000�1200 17.34 6.79 9.42 1.13 11.24±0.99
9 1200�1500 12.20 3.30 8.23 0.66 5.02±0.64

10 1500�2500 10.34 1.43 8.78 0.13 2.14±0.45

Table 2.1: This table gives the differential cross-section binned in the variable Mtt̄ for gg ! tt̄
process. These cross-section variables are described in section 2. The numbers are scaled to
integrated luminosity 35.8 fb�1. Note that CG=1 and L=1 TeV for the Full sample. To scale SM
LO value to NNLO, we use the k factor (k ⇡1.8).

29



Bin No. pT
t (L) s (I)

Full s (I)
SM LO s (I)

NP2 s (I)
int s (I)

Exp

[GeV] [pb] [pb] [pb] [pb] [pb]

1 0�40 53.63 44.37 3.41 5.85 45.93±4.42
2 40�80 128.21 105.86 9.05 13.30 171.59±13.33
3 80�120 133.11 109.12 12.15 11.84 201.38±15.23
4 120�160 98.92 78.70 12.80 7.42 167.31±13.02
5 160�200 63.09 46.89 12.08 4.13 107.17±7.37
6 200�240 38.38 25.44 10.70 2.22 64.55±4.33
7 240�280 23.78 13.47 9.24 1.07 35.59±2.25
8 280�330 18.40 8.44 9.49 0.48 23.28±1.62
9 330�380 11.92 3.99 7.62 0.31 11.60±0.92

10 380�430 8.17 1.95 6.10 0.12 5.93±0.69
11 430�500 7.86 1.26 6.56 0.04 3.79±0.39
12 500�800 14.40 0.91 13.22 0.31 3.27±0.37

Table 2.2: This table gives the differential cross-section binned in the variable pT
t (leading top or

L) for gg ! tt̄ process. These cross-section variables are described in section 2. The numbers are
scaled to integrated luminosity 35.8 fb�1. Note that CG=1 and L=1 TeV for the Full sample. To
scale SM LO value to NNLO, we use the k factor (k ⇡1.8).
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Bin No. |y(t)| s (I)
Full s (I)

SM LO s (I)
NP2 s (I)

int s (I)
Exp

[pb] [pb] [pb] [pb] [pb]

1 0.0�0.2 74.46 51.99 16.82 5.65 100.35±6.51
2 0.2�0.4 72.47 51.17 16.31 4.95 99.66±6.58
3 0.4�0.6 69.20 49.29 15.44 4.48 99.48±6.03
4 0.6�0.8 65.39 46.55 14.12 4.72 89.45±6.09
5 0.8�1.0 59.96 43.16 12.52 4.27 80.69±5.61
6 1.0�1.2 54.03 39.14 10.58 4.31 73.45±5.41
7 1.2�1.4 47.35 34.87 8.86 3.62 64.34±4.59
8 1.4�1.6 40.62 30.30 7.12 3.20 53.86±4.59
9 1.6�1.8 33.75 25.51 5.43 2.81 46.14±3.76

10 1.8�2.0 26.94 20.64 4.01 2.30 36.69±3.36
11 2.0�2.5 42.69 33.07 5.27 4.35 56.72±5.11

Table 2.3: This table gives the differential cross-section binned in the variable |y(t)| (of leading
top) for gg ! tt̄ process. These cross-section variables are described in section 2. The numbers
are scaled to integrated luminosity 35.8 fb�1. Note that CG=1 and L=1 TeV for the Full sample.
To scale SM LO value to NNLO, we use the k factor (k ⇡1.8).
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Mtt̄ s (I)
Full s (I)

SM LO s (I)
NP2 s (I)

int s (I)
Exp s (I)

Full s (I)
SM LO s (I)

NP2 s (I)
int s (I)

Exp

[GeV] [pb] [pb] [pb] [pb] [pb] [pb] [pb] [pb] [pb] [pb]

0 <pT
t < 90 90 <pT

t < 180
300�360 18.76 13.21 1.78 3.77 42.83±7.86 0 0 0 0 3.43±0.59
360�430 111.11 94.03 9.47 7.60 175.31±13.30 43.38 34.52 5.41 3.45 84.51±6.36
430�500 41.28 34.04 2.27 4.96 64.74±8.08 91.09 73.47 12.91 4.71 113.62±9.60
500�580 21.77 17.99 0.96 2.82 34.01±3.27 49.33 39.26 5.95 4.12 64.30±5.27
580�680 12.26 10.15 0.45 1.66 20.23±1.89 25.25 20.03 2.29 2.93 35.50±3.06
680�800 6.39 5.19 0.21 0.99 10.39±1.38 12.55 9.90 0.99 1.67 18.21±2.13

800�1000 3.68 3.01 0.12 0.55 5.96±1.22 7.20 5.76 0.51 0.93 10.68±1.24
1000�2000 1.78 1.46 0.05 0.26 3.51±1.11 3.45 2.74 0.21 0.50 5.25±1.27

180 <pT
t < 270 270 <pT

t < 800
300�430 0 0 0 0 4.24±1.19 0 0 0 0 0.74±0.29
430�500 0.19 0.02 0.04 0.12 12.45±0.92 0 0 0 0 1.80±0.30
500�580 28.54 19.55 8.01 0.97 33.02±2.42 0 0 0 0 2.87±0.49
580�680 31.99 20.31 10.25 1.43 29.08±2.36 3.38 1.61 1.78 �0.01 6.56±0.65
680�800 13.25 8.96 3.33 0.97 14.41±1.26 15.43 6.48 8.81 0.14 10.18±0.76

800�1000 7.26 4.97 1.47 0.82 8.32±0.84 19.82 6.41 12.93 0.48 9.47±0.75
1000�1200 2.18 1.51 0.37 0.30 2.71±0.44 11.90 2.63 8.88 0.40 3.75±0.38
1200�2000 1.30 0.95 0.20 0.14 1.29±0.42 14.59 1.99 12.23 0.38 2.95±0.33

Table 2.4: This table gives the differential cross-section binned in two variables Mtt̄ and pT
t(L)

for gg ! tt̄ process. These cross-section variables are described in section 2. The numbers are
scaled to integrated luminosity 35.8 fb�1. Note that CG=1 and L=1 TeV for the Full sample. To
scale SM LO value to NNLO, we use the k factor (k ⇡1.8).
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pT
t s (I)

Full s (I)
SM LO s (I)

NP2 s (I)
int s (I)

Exp s (I)
Full s (I)

SM LO s (I)
NP2 s (I)

int s (I)
Exp

[GeV] [pb] [pb] [pb] [pb] [pb] [pb] [pb] [pb] [pb] [pb]

0 < |y(t)|< 0.5 0.5 < |y(t)|< 1
0�40 14.61 12.19 0.96 1.46 26.34±1.81 13.16 10.84 0.87 1.45 23.24±1.88
40�80 35.61 29.33 2.57 3.70 58.62±4.02 31.96 26.59 2.32 3.05 52.34±3.75

80�120 37.71 30.98 3.53 3.20 59.31±4.16 33.97 27.87 3.19 2.91 52.83±3.88
120�160 28.85 23.14 3.86 1.86 42.90±2.99 25.65 20.51 3.42 1.72 37.79±3.05
160�200 19.27 14.15 3.75 1.38 27.17±1.87 16.87 12.69 3.28 0.90 23.03±1.67
200�240 12.20 8.06 3.43 0.71 15.52±1.04 10.51 7.02 3.02 0.48 13.18±0.98
240�280 7.72 4.38 3.11 0.23 8.80±0.53 6.73 3.76 2.64 0.32 7.31±0.48
280�330 6.30 2.78 3.30 0.23 5.77±0.37 5.32 2.47 2.80 0.05 4.84±0.31
330�380 4.27 1.37 2.74 0.16 2.96±0.22 3.58 1.20 2.34 0.04 2.47±0.22
380�450 4.01 0.89 3.09 0.03 1.81±0.18 3.29 0.76 2.58 �0.05 1.58±0.19
450�800 8.37 0.66 7.58 0.12 1.56±0.18 6.51 0.51 5.83 0.17 1.07±0.13

1 < |y(t)|< 1.5 1.5 < |y(t)|< 2.5
0�40 10.70 9.03 0.69 0.99 18.55±1.54 12.46 10.16 0.75 1.55 20.69±2.11
40�80 25.91 21.21 1.84 2.86 41.59±3.20 29.02 24.02 2.00 3.00 43.86±3.63

80�120 27.06 22.24 2.49 2.33 40.21±3.19 29.42 23.98 2.58 2.87 42.62±3.90
120�160 20.45 16.15 2.65 1.66 28.55±2.43 21.08 16.61 2.59 1.88 29.52±3.06
160�200 12.99 9.65 2.53 0.80 17.38±1.26 12.61 9.43 2.31 0.87 16.41±1.54
200�240 7.95 5.29 2.23 0.43 9.86±0.77 7.13 4.69 1.90 0.55 8.22±0.76
240�280 4.99 2.83 1.92 0.25 5.31±0.43 4.11 2.34 1.50 0.27 4.12±0.45
280�330 3.77 1.75 1.95 0.07 3.29±0.26 2.90 1.39 1.40 0.11 2.48±0.27
330�380 2.43 0.83 1.56 0.04 1.52±0.13 1.61 0.58 0.96 0.06 1.03±0.18
380�450 2.20 0.49 1.61 0.10 0.92±0.10 1.20 0.31 0.89 0.01 0.57±0.11
450�800 3.56 0.33 3.14 0.09 0.71±0.14 1.32 0.17 1.14 0.01 0.32±0.07

Table 2.5: This table gives the differential cross-section binned in two variables pT
t and |y(t)|

(of leading top) for gg ! tt̄ process. These cross-section variables are described in section 2. The
numbers are scaled to integrated luminosity 35.8 fb�1. Note that CG=1 and L=1 TeV for the Full
sample. To scale SM LO value to NNLO, we use the k factor (k ⇡1.8).
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The following normalized plots of kinematic variables Mtt̄ , pT
t and |y(t)|, provide an estimate of

NP contribution in their distribution by the quantity defined as Ratio=(Full-SM)/SM.
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Figure 2.1: In this figure, for the process gg ! tt̄, upper plots give overlay of SM and Full (CG=1,
L=1 TeV) samples for variables Mtt̄ , pT

t and |y(t)|. Lower plots show Ratio = (Full-SM)/SM.
Upper plots are normalized to 1.
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2.1 Cut and Count Results

Constraints obtained using Cut and Count analysis are tabulated here (Table 2.6 and Table 2.7).
Note that in the case of Mtt̄ & pT

t(L) (high pT), the bounds are calculated using only the high
pT bins of the 2-D distribution, i.e., in the range 270 < pT < 800.

We assume that only the experimental cross-section uncertainties scale corresponding to higher
luminosities as (Lhigh/Lexp)�1/2 for calculating high luminosity bounds. For the Observed cases,
when the c2 statistic gives a split region for bound on CG, one of them is reported here.

L Variable CCCGGG range (⇥101)

[fb�1] Observed case Expected case D6/linear case

35.8

Mtt̄ [�2.83,2.11] [�3.75,3.13] [�12.2,12.2]
pT

t(L) [�5.39,�3.70] [�2.85,2.60] [�13.6,13.6]
|y(t)| [�1.07,6.61] [�8.94,5.26] [�12.3,12.3]

Mtt̄ & pT
t(L) [�2.54,2.23] [�3.56,3.18] [�16.3,16.3]

pT
t(L) & |y(t)| [�3.64,3.58] [�3.05,2.77] [�15.5,15.5]

Mtt̄ & pT
t(L) (high pT) [�1.57,1.20] [�2.59,2.25] [�16.8,16.8]

300

Mtt̄ [�1.35,0.58] [�2.28,1.70] [�4.23,4.23]
pT

t(L) [�4.90,�4.33] [�1.70,1.46] [�4.69,4.69]
|y(t)| [�8.74,�5.73] [�6.18,2.58] [�4.27,4.27]

Mtt̄ & pT
t(L) [�1.07,0.79] [�2.14,1.78] [�5.62,5.62]

pT
t(L) & |y(t)| [1.45,2.74] [�1.83,1.56] [�5.35,5.35]

Mtt̄ & pT
t(L) (high pT) [�0.69,0.31] [�1.59,1.26] [�5.81,5.81]

3000

Mtt̄ [�0.71,�0.08] [�1.30,0.81] [�1.34,1.34]
pT

t(L) [�4.71,�4.53] [�0.96,0.74] [�1.48,1.48]
|y(t)| [�7.88,�6.96] [�4.37,1.06] [�1.35,1.35]

Mtt̄ & pT
t(L) [�0.43,0.16] [�1.22,0.89] [�1.78,1.78]

pT
t(L) & |y(t)| [1.98,2.37] [�1.05,0.79] [�1.69,1.69]

Mtt̄ & pT
t(L) (high pT) [�0.35,�0.03] [�0.98,0.65] [�1.84,1.84]

Table 2.6: For process gg ! tt̄, this table shows the bounds obtained on CG and that estimated at
high luminosities. These are obtained using Dc2  10 for 1-D analyses and using Dc2  nb (where
nb = no. of bins) for 2-D analyses.

35



L Variable Expression equated to CCCGGG///LLL222

1///L̃2 (((1///16p2)))(((g3
3///L̃2)))

[fb�1] [TeV] [TeV]

35.8

Mtt̄ L̃ > 1.79 L̃ > 0.14
pT

t L̃ > 1.96 L̃ > 0.16
|y(t)| L̃ > 1.38 L̃ > 0.11

Mtt̄ & pT
t(L) L̃ > 1.77 L̃ > 0.14

pT
t(L) & |y(t)| L̃ > 1.90 L̃ > 0.15

Mtt̄ & pT
t(L) (high pT) L̃ > 2.11 L̃ > 0.17

300

Mtt̄ L̃ > 2.43 L̃ > 0.19
pT

t L̃ > 2.62 L̃ > 0.21
|y(t)| L̃ > 1.97 L̃ > 0.16

Mtt̄ & pT
t(L) L̃ > 2.37 L̃ > 0.19

pT
t(L) & |y(t)| L̃ > 2.52 L̃ > 0.20

Mtt̄ & pT
t(L) (high pT) L̃ > 2.82 L̃ > 0.22

3000

Mtt̄ L̃ > 3.51 L̃ > 0.28
pT

t L̃ > 3.68 L̃ > 0.29
|y(t)| L̃ > 3.07 L̃ > 0.24

Mtt̄ & pT
t(L) L̃ > 3.35 L̃ > 0.27

pT
t(L) & |y(t)| L̃ > 3.56 L̃ > 0.28

Mtt̄ & pT
t(L) (high pT) L̃ > 3.92 L̃ > 0.31

Table 2.7: For process gg ! tt̄, the energy scales for NP process are constrained using kinematic
variable bounds on CG (Expected case) by equating CG/L2 (where L = 1 TeV) to expressions
mentioned in this table. Note that g3 = 1.
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Chapter 3

Machine Learning Analysis

In this chapter, I describe our approach to improve Cut and Count analysis results using Machine
Learning (ML). We construct Convolutional Neural Network (CNN) using Keras [22]. It is trained
as a classifier to distinguish signal against background. In general, for the following analyses,
signal represents Full while background represents pure SM sample. Details are mentioned in the
respective sections.

I describe two different approaches for training our CNN algorithm for such classification. These
approaches are henceforth named as event-based analysis and bin-based analysis. Monte Carlo
samples are generated using MadGraph for the parton-level gluons to top quarks (gg ! tt̄) process
along with the same process including one extra jet (gg ! tt̄g). This allows us to skip the k factor
since gg ! tt̄ including gg ! tt̄g gives a closer approximation to an NNLO tt̄ production sample.

3.1 Event-based Analysis

In event-based analysis, the CNN is trained on images in which each pixel corresponds to the
value of a kinematic variable at parton-level. Since we are considering four such variables, each
event can be visualised as a square greyscale image with four pixels. In order to make the event
kinematic variables represent an image, the values of these variables are rescaled to values in the
range 0 to 256 such that they correspond to the greyscale intensity at their assigned pixel location.
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A variable’s original value, say a, is rescaled as

a 7! 256⇥
✓

amax �a
amax �amin

◆
. (3.1)

At the time of analysis, these rescaled values are further normalized to 1.

Image as a 2⇥2 matrix :

"
pt

T(L) ptt̄
T

|y(t)| Mtt̄

#

Here, pt
T(L) is pT of leading top, ptt̄

T is invariant top pT (pT of four-vectorially added tops), |y(t)|
is rapidity of leading top, and Mtt̄ is invariant top mass.

The default MadGraph selections are used in addition to the following event selections at genera-
tion level:

• pT(t)> 400 GeV

• Mtt̄ > 1000 GeV

Note that the MadGraph cross-section for these processes are sSM ⇡ 6.44 pb and s2 TeV
Full ⇡ 11.8 pb.

3.1.1 Binary Training

The 2⇥2 image inputs are categorized into following two categories:

• SM represents events for gg ! tt̄ including gg ! tt̄g processes considering only SM inter-
actions, and

• Full represents events for above processes considering SM plus NP ggg vertex upto first
order at L = 2 TeV.

After training, the CNN algorithm can make predictions for the probability of a given event to be
SM or Full (2 TeV). We test our trained algorithm on statistically different MC samples of both
categories with 350,000 events each.
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Label SM Full (2TeV)

Train 500,000 500,000
Validation 150,000 150,000

Test 350,000 350,000

Table 3.1: No. of samples/images used for event-based binary training of the CNN algorithm.

CNN Architecture:

• Model ! Sequential.

• 2-D Conv layer with 32 filters, 2⇥2 kernel, ReLU activation, and same padding.

• 2-D Conv layer with 32 filters, 2⇥2 kernel, ReLU activation, and same padding.

• 2-D Conv layer with 64 filters, 1⇥1 kernel, ReLU activation, and same padding.

• Dropout layer dropping 25% units.

• Flatten layer.

• Dense layer with 128 units and ReLU activation.

• Dense layer with 50 units and ReLU activation.

• Dropout layer dropping 10% units.

• Dense layer with 2 units and softmax activation.

• Compiling ! Adam optimizer, binary cross-entropy loss function, and accuracy metric.

• Fitting/Training ! 50 epochs with batch size of 150.

3.1.2 Results for Binary Training

Label Accuracy (%)

Train 71.18
Validation 72.56

Test 72.51

Table 3.2: Accuracy obtained on binary training of the CNN algorithm.
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The probability of a test event to be predicted as SM event is given by P(SM).P(SM)=0 implies
Full event predicted and P(SM)=1 implies SM event predicted. The default threshold for binary
classification is 0.50, i.e., events with P(SM)> 0.50 are predicted to be SM events by the trained
CNN algorithm. Fig. 3.2 shows P(SM) plotted for various test samples. Table 3.3 shows P(SM)
while varying thresholds.

Label
Threshold of P(SM)

0.50 0.80 0.90 0.95

Signal events 222,717 135,767 132,231 130,590
Background events 127,283 214,233 217,769 219,410

S/
p

B 624.26 293.33 283.36 278.79

Table 3.3: This table shows the change in S/
p

B while varying threshold for classification. The
sample being tested is Full (2 TeV) with 350,000 events. Signal is predicted Full event while
background is predicted SM event.

The Receiver Operating Characteristic (ROC) plot gives Area Under Curve (AUC) = 0.8263.

(a) Model Accuracy (b) Model Loss (c) ROC curve

Figure 3.1: These plots depict the performance of CNN for the event-based analysis. CNN training
accuracy and loss are shown in fig. 3.1(a) and 3.1(b) respectively with the no. of epochs in the
x�axis. Fig. 3.1(c) shows the ROC curve.
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(a) 2 TeV

(b) 1 TeV (c) 3 TeV

Figure 3.2: P(SM) for binary event-based analysis � Trained model gives the prediction probability
P(SM) on the test samples. Test is performed on MC SM and Full samples at different energy scales
of L=1, 2 and 3 TeVwith 350,000 events each.

3.1.3 Multi-category Training

The 2⇥2 image inputs are categorized into following four categories:

• SM represents events for gg ! tt̄ including gg ! tt̄g processes considering only SM inter-
actions,

• Full (1, 2, 3 TeV) represent events for above processes considering SM plus NP ggg vertex
upto first order at three different energy scales, L = 1,2,3 TeV.
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Label SM
Full

(1TeV)
Full

(2TeV)
Full

(3TeV)

Train 500,000 500,000 500,000 500,000
Validation 150,000 150,000 150,000 150,000

Test 350,000 350,000 350,000 350,000

Table 3.4: No. of samples/images used for event-based multi-category training of the CNN algo-
rithm.

CNN Architecture:

• Model ! Sequential.

• 2-D Conv layer with 32 filters, 2⇥2 kernel, ReLU activation, and same padding.

• 2-D Conv layer with 32 filters, 2⇥2 kernel, ReLU activation, and same padding.

• 2-D Conv layer with 64 filters, 1⇥1 kernel, ReLU activation, and same padding.

• Dropout layer dropping 25% units.

• Flatten layer.

• Dense layer with 128 units and ReLU activation.

• Dense layer with 50 units and ReLU activation.

• Dropout layer dropping 20% units.

• Dense layer with 2 units and softmax activation.

• Compiling ! Adam optimizer, binary cross-entropy loss function, and accuracy metric.

• Fitting/Training ! 25 epochs with batch size of 50.

3.1.4 Results for Multi-Category Training

Label Accuracy (%)

Train 44.24
Validation 45.95

Test 45.95

Table 3.5: Accuracy obtained on multi-category training of the CNN algorithm.
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(a) Model Accuracy (b) Model Loss

Figure 3.3: These plots depict the performance of CNN for the multi-category training for event-
based analysis. CNN training accuracy and loss are shown in fig. 3.3(a) and 3.3(b) respectively
with the no. of epochs in the x�axis.
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Figure 3.4: P(SM) for multi-category event-based analysis � Trained model gives the prediction
probability P(SM) on the test samples. Test is performed on MC SM and Full samples at different
energy scales of L=1.5, 2.5 and 4 TeVwith 350,000 events each.

3.2 Bin-based Analysis

The NP vertex is enhanced at high energies and momenta, giving a difference in distribution of
kinematic variables at high-energy tails. We used this property to do the Cut and Count analysis.
In the bin-based approach, we exploit this property to get a better classification out of CNN al-
gorithm. In event-based analysis, one image represented an event but in bin-based analysis, each
image represents a 2-D Mtt̄ � pT (L) distribution made using 500,000 events. One pixel has infor-
mation about the number of events in specific bin ranges. We take last eight bins at the tail of the
distribution and normalize them to 1. These serve as the value of each pixel. Hence, each image
can be seen as a proxy for a normalized 2-D histogram made using 500,000 events. Given below
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is the input visualised in 2⇥4 matrix form (variable ranges in GeV).

Image as a 2⇥4 matrix :

Mtt̄2[680,800] Mtt̄2[800,1000] Mtt̄2[1000,1200] Mtt̄2[1200,2000]
 �

n11 n12 n13 n14 pT (L)2[180,270]

n21 n22 n23 n24 pT (L)2[270,800]

The default MadGraph selections are used in addition to the following event selections at genera-
tion level:

• 180 GeV < pT(t)< 800 GeV

• Mtt̄ > 680 GeV

Note that the cross-section for these processes with above event selections are sSM ⇡ 74.8 pb,
s1 TeV

Full ⇡ 224 pb, s2 TeV
Full ⇡ 84 pb, s2.5 TeV

Full ⇡ 78 pb, and s3 TeV
Full ⇡ 76 pb.

Sample images (Normalized to 1) :

SM :

 �
0.1958 0.1102 0.0331 0.0198
0.2383 0.2280 0.0982 0.0767 ,Full1 TeV :

 �
0.0985 0.0538 0.0162 0.0095
0.1980 0.2530 0.1596 0.2114 ,

Full2 TeV :

 �
0.1958 0.1102 0.0331 0.0198
0.2383 0.2280 0.0982 0.0767 ,Full2.5 TeV :

 �
0.1904 0.1071 0.0326 0.0190
0.2355 0.2294 0.1015 0.0845 ,

Full3 TeV :

 �
0.1935 0.1087 0.0334 0.0192
0.2371 0.2288 0.0999 0.0796 .

Range of values for uniformly distributed values within 1-s uncertainty (Data):

Data within 1-s :

 �
[0.1698,0.2195] [0.0935,0.1274] [0.0242,0.0426] [0.0114,0.0282]
[0.2191,0.2593] [0.2090,0.2507] [0.0878,0.1100] [0.0671,0.0855] .
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Cross-section (MadGraph):

sSM :

 �
14.6 8.2 2.5 1.5
17.8 17.1 7.3 5.8 ,s2 TeV

Full :

 �
15.2 8.6 2.6 1.5
19.2 19.5 9.1 8.2 .

Label SM Full(1TeV) Full(2TeV) Full(2.5TeV) Full(3TeV)

Train 50 25 50 25 25
Validation 15 10 15 10 10

Test 35 15 35 15 15

Table 3.6: No. of Samples/Images used for bin-based training of CNN algorithm.

After training the CNN, we use it to make predictions on publicly available CMS data. Similar to
the expected bounds in Cut and Count analysis, we use only the uncertainty on each bin by fixing
the central value of the bin to average of the value corresponding to MC SM sample. A set of
images is generated with central value fixed as described above and uncertainty on bin as reported
by CMS assuming a uniform distribution in that uncertainty band. Assuming uniform distribution
within 1�s uncertainty, a set of 1000 such images is generated representing data. Fig. 3.6 shows
the results for the same. The average values for P(SM) are reported in Table 3.9.

CNN Architecture:

• Model ! Sequential.

• 2-D Conv layer with 16 filters, 2⇥2 kernel, ReLU activation, and same padding.

• 2-D Conv layer with 32 filters, 2⇥2 kernel, ReLU activation, and same padding.

• 2-D Conv layer with 64 filters, 1⇥1 kernel, ReLU activation, and same padding.

• Dropout layer dropping 20% units.

• Flatten layer.

• Dense layer with 128 units and ReLU activation.

• Dense layer with 50 units and ReLU activation.

• Dropout layer dropping 20% units (only for 3 TeV case).

• Dense layer with 2 units and softmax activation.
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• Compiling ! Adam optimizer, binary cross-entropy loss function, and accuracy metric.

• Fitting/Training ! 50 epochs1 with batch size of 5.

Mtt̄ s (I)
Full, 2TeV s (I)

SM s (I)
Exp

[GeV] [pb] [pb] [pb]

180 <pT
t < 270

680�800 15.2 14.6 14.41±1.26
800�1000 8.6 8.2 8.32±0.84

1000�1200 2.6 2.5 2.71±0.44
1200�2000 1.5 1.5 1.29±0.42

270 <pT
t < 800

680�800 19.2 17.8 10.18±0.76
800�1000 19.5 17.1 9.47±0.75

1000�1200 9.1 7.3 3.75±0.38
1200�2000 8.2 5.8 2.95±0.33

Table 3.7: This table gives the double differential cross-sections binned in Mtt̄ and pT
t for the

processes gg ! tt̄ & gg ! tt̄g. It also contains experimentally obtained values for the double
differential cross-section at the parton level as a function of Mtt̄ and pT

t [1]. The numbers are
scaled to integrated luminosity 35.8 fb�1. Note that CG = 1 & L = 2 TeV.

3.2.1 Results for bin-based analysis

Label Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%)

Train 100 100 100 54
Validation 100 100 100 50

Test 100 100 100 50

Trained on: SM v 1TeV Full SM v 2TeV Full SM v 2.5TeV Full SM v 3TeV Full

Table 3.8: Accuracy results for bin-based analysis.

1epochs=150 & 500 for the 2.5 & 3 TeV case respectively
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The Receiver Operating Characteristic (ROC) plot gives Area Under Curve (AUC) = 1.

(a) Model Accuracy (b) Model Loss (c) ROC curve

Figure 3.5: These plots depict the performance of CNN for the bin-based analysis. CNN training
accuracy and loss are shown in fig. 3.5(a) and 3.5(b) respectively with the no. of epochs in x�axis.
Fig. 3.5(c) shows the ROC curve.

Training Categories P(SM) (%)

SM and 1 TeV Full 99.9989
SM and 2 TeV Full 99.6224

SM and 2.5 TeV Full 84.8864
SM and 3 TeV Full 50.4207

Table 3.9: Predictions on data images within 1-s uncertainty, averaged for 1000 such images. All
the Full samples are trained against SM individually.
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(a) SM and 1 TeV Full (b) SM and 2 TeV Full

(c) SM and 2.5 TeV Full (d) SM and 3 TeV Full

Figure 3.6: P(SM) for the bin-based analysis� Trained model gives the prediction probability
P(SM) on the test sample. These plots represents the model’s prediction on 1000 images repre-
senting CMS data for the 2-D Mtt̄ � pt

T(L) distribution within 1�s uncertainty.
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Chapter 4

Discussions and Outlook

In the Cut and Count analysis, we have reported three different bounds: Observed, Expected, and
Linear/D6 bounds. The Observed bounds are calculated using tree-level MadGraph simulations
representing the SM contribution. For top pair production, leading order (LO) simulations give
SM cross-section sSM LO ⇠ 400 pb while NNLO QCD cross-section is sSM ⇠ 800 pb. Even
though we have tried to correct for this discrepancy using the k factor, it is not good enough. The
k factor corrects for the overall cross-section while an ideal correction would be using bin-by-
bin cross-section correction factor. This could not be done since these numbers are not explicitly
reported [21]. With these numbers or QCD NNLO simulations, one can find a better and more
reliable bound in the Observed case.

The Expected bounds are computed by substituting the MadGraph SM cross-section values by
corresponding bin central values measured in the CMS experiment [1]. The Expected bound results
are fairly consistent using different kinematic variable distributions. The strongest bound on CG

and L is observed using the differential cross-section binned in 2-D distribution of Mtt̄ & pt
T(L) in

the high pT regime (270 < pT < 800 GeV). The NP energy scale we can roughly eliminate using
this analysis is L < 2 TeV. We report reliable conclusions from the Cut and Count analysis using
the Expected bound results.

The Linear bounds are calculated by omitting the higher order O(L�4) terms in the Expected case.
This leaves the SM ⇥ NP interference term as major contributor to the bound. They are fairly
weaker than the Expected bounds. This indicates that the significant contribution to the bound
does not come from the interference term of O(L�2).
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Next, we tried Machine Learning (ML) techniques for improving our results. For the event-based
analysis, firstly, we trained the CNN for binary classification under SM and Full categories. Each
event was fed as a 2⇥2 image with the pixels as normalized values of some important kinematic
variables. The hope was that the algorithm will learn some correlations or other hidden fea-
tures/motifs in these images which are not usually observed. This was successful to an extent,
giving an accuracy of ⇠ 70� 75% for classification. Since we did not have event-by-event data
information publicly available, the trained algorithm could not be tested on it. However, the qual-
itative results look quite promising and one can put bounds once eventwise data is available. We
also checked the performance of algorithm trained on 2 TeV Full sample against SM on other gen-
erated Full samples of 1 and 3 TeV NP scale. The performance on these samples was observed to
be poor which indicated that the algorithm is not learning Full vs SM but it is exclusively learning
Full sample at 2 TeV scale. This led us to try the multi-category analysis.

The multi-category classification was performed on SM and Full 1, 2 and 3 TeV samples. The
accuracy obtained was ⇠ 40� 45% which is relatively good when compared to purely random
prediction with 25% accuracy. The algorithm was tested on Full samples of different energy scales:
1.5, 2.5 and 4 TeV. The performance got poorer with increasing energy. It was best on 1.5 TeV,
then 2.5 TeV, and lastly on 4 TeV sample. One may expect this intuitively since L ! • would give
purely SM sample, meaning that with increasing L, we get closer to SM.

Finally, in the bin-based analysis, we thought of incorporating the fact that our NP vertex con-
tributes to high energy tails of the observables. This information was not obviously present in the
event-based analysis. A histogram with a sufficiently populated high energy tail can do the trick.
Our image input should reflect that. Hence, our image contains 8 pixels representing normalized
values for no. of events in the last 8 bins of 2-D Mtt̄ � pt

T(L) distribution. This method is compu-
tationally quite heavy but it produced nice qualitative results. Three different binary classification
trainings were done as an attempt to observe how the algorithm performs at different NP energy
scales (1, 2, 2.5 and 3 TeV). Since we had data available for these bins, we asked our trained model
to predict the probability of data within 1-s uncertainty being purely SM. Based on these results,
we can roughly estimate that L > 2.5 TeV. But proper quantification techniques have to be worked
out to estimate final bounds.

Translating the ML results into CG bounds is tricky and needs more sophisticated method(s) of
quantification and error estimation. We expect stronger bounds than Cut and Count using ML.
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Appendix A

FeynRules

Following lines were added from top EFT model (⇤.fr file) by author C. Degrande [23] to the SM
in order to incorporate new tri-gluon interaction (LG):

• Lambda== {
ParameterType -> External,
ParameterName -> Lambda,
BlockName -> DIM6,
InteractionOrder -> {NP,-1},
Value -> 1000,
TeX -> L,
Description -> ”Scale of the new physics”},

• CG== {
ParameterType -> External,
ParameterName -> CG,
BlockName -> DIM6,
Value -> 1,
TeX -> Subscript[C,G],
Description -> ”coefficient of OG”},

• LG := CG/Lambda2 Module[{aa, bb, cc, mu, nu, rho}, f[aa, bb, cc] FS[G, mu, nu, aa]
FS[G, nu, rho, bb] FS[G, rho, mu, cc]];
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