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Abstract

Correlation functions are a useful tool to investigate the interaction statistics in a quan-

tum many-body system such as ultracold atoms. Historically, the study of coherence and

correlations between pairs of photons in the famous Hanbury Brown and Twiss experiment

was pioneering to the field of quantum optics. Since then, the area of quantum atom-optics

has also gained momentum sparked by the development of lasers to cool atoms to ultra-low

temperatures and the formation of Bose-Einstein condensate.

This thesis reports on progress towards an experiment to measure the second-order cor-

relation function for a gas of ultracold metastable helium atoms. Metastable helium atoms

are a unique system with single-atom detection capability that enables one to measure the

correlation functions associated with the system. First, a numerical approach is taken to sim-

ulate the expected second-order correlation function for our system with given experimental

parameters. The experimental sequence is then characterised and optimised to allow for the

creation of a BEC. This is followed by the installation, optimisation and characterisation of

the microchannel plates and delay-line detector for far-field single-atom detection and the

measurement of correlation functions. This setup will form a powerful tool that can be used

to perform exciting experiments with correlation functions once some minor technical issues

have been resolved.
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Thesis Outline

The thesis is arranged as follows:

• The first two chapters cover the relevant background theory for ultracold atoms and

correlation functions. Chapter 1 describes the physical principles involved in cooling

and trapping atoms, it presents a few aspects of Bose-Einstein condensation and the

level structure of helium.

• Chapter 2 defines correlation functions, discussing the specific cases of 1st and 2nd

order correlation functions. As correlations are typically measured using time of flight

method, a few experimental considerations regarding the scaling of correlations with

the time of flight are discussed.

• Chapter 3 presents the numerical simulation of second-order correlation functions,

which is performed to investigate the effect of experimental factors like data-binning

and detector resolution on the correlation function. The procedure used to generate the

2nd order correlated dataset, method for calculating the 2nd order correlation function

and the results of the simulation are discussed.

• Chapter 4 describes our experimental apparatus used for generating a BEC of He*

atoms as well as the methods involved in the far-field single-atom detection and cor-

relation measurement. Two detection schemes, namely optical detection (absorption

imaging) for temperature estimation and electronic detection (with microchannel plates

and delay line detector) for far-field measurement are discussed.

• Chapter 5 concludes the thesis by summarising the key outcomes achieved during the

thesis. Outlook and possible future experiments are also discussed.
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Chapter 1

Ultracold atoms

Ultracold atomic gases are an excellent system to investigate quantum mechanical phe-

nomena, as cooling atoms down to temperatures close to absolute zero dramatically increases

their de Broglie wavelength. Furthermore, the ability to control inter-atomic interactions ei-

ther by changing the trap depth, or using an external magnetic field (Feshbach resonance)

to change the scattering length makes it a good quantum simulator for probing many-body

physics. For instance, one can use prototypical condensed matter systems such as the Hub-

bard model to simulate electrons in a solid by loading ultracold fermionic atoms like 6Li in

an optical lattice potential.

In this thesis, we use ultracold atoms to study the physics of quantum many-body sys-

tems by characterising their coherence using correlation functions. For this purpose we use

standard cooling and trapping techniques to cool a gas of metastable helium (He*) atoms

to ultra-low temperatures (∼ 10µK) and obtain a Bose-Einstein condensate of He*. We

use a cold gas of He* atoms, as it is a unique system that allows for position (and time)

measurement with single-atom precision. By dropping the cold atomic cloud from a trap and

measuring the 3D profile in far-field, one can obtain the momentum correlation functions

associated with the atomic cloud.
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1.1 Bose Einstein Condensation

The Bose-Einstein condensate (BEC) is a phase of matter which occurs at ultra-low

temperatures (close to absolute zero), when a significant fraction of bosonic particles occupy

the same wavefunction (usually the ground state). Satyendra Nath Bose and Albert Einstein

first predicted the phenomenon of Bose-Einstein condensation during 1924-25[1]. However,

it took almost 70 years for its first laboratory realisation in 1995 by the Cornell and Wieman

group, who achieved a BEC for Rb atoms[2]. The development of laser cooling and trapping

methods for neutral atoms during the 1980s was an essential step towards realising the first

BEC. The first set of atoms to be condensed were alkali metals because of their simple

electronic structure (ns1) and the ease of access to laser cooling transition by the available

lasers. The following sections present a few relevent aspects of the physics of BEC.

1.1.1 BEC in an ideal Bose gas

The uniform non-interacting Bose gas is a prototypical example of a system undergoing

a phase transition to reach Bose-Einstein condensation. One can obtain the critical tem-

perature for this transition[3], starting with the basic bosonic statistics. Using the bosonic

statistics, with energy E =
∑
niεi and number of particles N =

∑
ni, the grand partition

function is given by,

Z(β, µ) =
∞∑
N=0

∑
k

e−β(Ek−µN)

=
∏
i

∞∑
ni=0

e−βni(εi−µ)

=
∏
i

1

1− e−β(εi−µ)
.

(1.1)

Using the free energy Ω = −kBT lnZ, one obtains the following particle number distri-
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bution,

N = −∂Ω

∂µ
=
∑
i

1

eβ(εi−µ) − 1
=
∑
i

〈ni〉

= 〈n0〉+
∑
i 6=0

〈ni〉

≡ N0 +NT .

(1.2)

The average particle number in the ground state, N0 = 1/(eβ(ε0−µ) − 1) follows the

characteristic Bose-Einstein distribution for the condensate, with the remaining particles in

excited states contributing to the thermal fraction, NT =
∑

i 6=0〈ni〉. The critical temperature

of the ideal bose gas can be computed by applying the condition for the BEC phase transition,

with NT = N where NT is given by

NT =
V

(2π~)3

∫
4πp2dp

eβ(p2/2m−µ) − 1
=

V

λ3
T

· g3/2(eβµ), (1.3)

where, λT =
√

2π~2/mkBT is the thermal de Broglie wavelength, and

g3/2(z) =
2√
π

∫ √
xdx

(z−1ex − 1)
, (1.4)

is a special function called Bose function with z = eβµ. Setting µ = ε0 = 0 and NT = N at

the critical temperature Tc, one gets,

Tc =
2π~2

mkB
·
[

n

g3/2(1)

]2/3

. (1.5)

with g3/2(1) = 2.612. The above equation suggests that it is preferable to have a high

density of light atoms like H or He to obtain a high critical temperature. Although the

ideal non-interacting Bose gas is a good toy-model that shows how bosonic statistics may

lead to a phase transition, ignoring interactions leads to certain artefacts such as infinite

compressibility of Bose gas. These artefacts are rectified on the addition of interactions in

the system.
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1.1.2 BEC in a harmonic trap

We seldom study the case of uniform Bose gas during experiments, with cooling and

trapping methods naturally leading to the formation of Bose-Einstein condensate in a trap.

Hence, we discuss how the non-uniformity of a trap like magnetic or optical trap modifies

the physics of the trapped ultracold gas compared to a uniform Bose gas (section 1.1.1).

Rather than dealing with an arbitrary trap geometry, the simple case of a harmonic trap

is considered (following the treatment as in [4]). It’s reasonable to do so because many

traps1 close to their trap centre (minimum of the potential) can be well approximated by a

harmonic trap (to the lowest order in the distance from the centre). Furthermore, close to

zero temperature, the effect of two-body interactions is captured by the low energy s-wave

scattering length a, with constant interaction strength U0 = 4π~2a/m leading to the contact

potential U = U0δ(r − r
′
) in position space.

Consider a condensed state of a trapped Bose gas, with all N particles occupying the

same state φ(r). Using Hartree approximation, the full many-body wavefunction is given by

Φ(r1, . . . , rN) =
∏

i φ(ri). The Hamiltonian of this system is,

H =
N∑
i=1

p2
i

2m
+ V (ri) +

∑
j<i

U0δ(ri − rj), (1.6)

with V (r) being the external trapping potential. In terms of the wavefunction ψ(r) =√
Nφ(r) (Bogoluibov approximation), the energy functional E = 〈Φ|H|Φ〉 is given as,

E(ψ) =

∫
dr

~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 +

U0

2
|ψ(r)|4. (1.7)

Minimising E−µN with respect to ψ∗ yields the ground state wavefunction (with minimum

energy) given by, (
− ~2

2m
∇2 + V (r) + U0|ψ(r)|2

)
ψ(r) = µψ(r). (1.8)

This is the famous Gross-Pitaevskii equation that describes the physics of non-uniform

trapped condensates. Moreover, this equation resembles Schrödinger equation for a particle

experiencing an external trapping potential V (r) along with an effective potential U0|ψ(r)|2

1like magnetic trap with bias or optical dipole trap
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due to the interaction with all other particles.

For an atomic gas with a cloud size of the order ∼ R trapped in an isotropic harmonic

potential V (r) = 1
2
mw2

0r
2, potential energy for the ground state goes as ∼ mw2

0R
2/2 and

kinetic energy scales as ∼ ~2/2mR2. In the case of non-interacting particles in the harmonic

trap, the energy is minimised at aosc ≡ R =
√

~/mw0, which is a characteristic length scale

for the oscillator. The two-body interactions can be included by adding the term U0|ψ(r)|2

from the Gross-Pitaevskii equation with the density |ψ(r)|2 = n(r) ∼ N/R3.

As the number of atoms in the condensate N increases, we reach a strong coupling regime

where we can ignore the kinetic energy with respect to the interaction term. Thus the radius

of the interacting atomic cloud scales as R ∼ aosc(Na/aosc)
1/5[4]. Therefore, it is justified

to ignore the kinetic energy contribution for large N , which scales as 1/R2 ∼ (Na/aosc)
−2/5

compared to potential energy scaling as R2 ∼ (Na/aosc)
2/5. Ignoring the kinetic energy

contribution to the Gross-Pitaevskii equation is known as the Thomas-Fermi approximation,

which yields, (
V (r) + U0|ψ(r)|2

)
ψ(r) = µψ(r), (1.9)

with the harmonic potential V (r) = 1
2
m
(
ω2
xR

2
x+ω2

yR
2
y+ω2

zR
2
z

)
and the density |ψ(r)|2 = n(r)

given by,

n(r) = (µ− V (r))/U0, (1.10)

which has a parabolic shape due to the harmonic trapping. The boundary of the cloud is

given by r such that V (r) = µ, which gives the spatial extent of the cloud in the three

directions known as the Thomas-Fermi radii,

RTF
i =

√
2µ/mω2

i , i = x, y, z, (1.11)

where, the chemical potential is determined by the normalisation condition,
∫
n(r)dr = N ,

given by,

µ =
152/5

2

(
Na

a

)2/5

~ω, (1.12)

where, ω = (ωxωyωz)
1/3 and a =

√
~/mω. Thus by fitting the Bose-Einstein condensate

density profile to the Thomas-Fermi distribution and measuring the spatial extent of the

atomic cloud, one can determine the number of atoms in the condensed phase (using Eq 1.11

and Eq 1.12).
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1.2 Cooling and trapping atoms

To perform experiments such as measurement of correlation functions with ultracold

atoms, we first need to cool and trap the gas of atoms (He* in our case). For this purpose,

we can use the light-induced forces produced by a combination of laser beams and magnetic

field gradients. There are two types of light-induced forces, namely, velocity-dependent

friction-like forces which slow down atoms, and position-dependent forces which spatially

confine and trap the atoms. In the following sections, we briefly discuss Doppler cooling

(and optical molasses) which uses a velocity-dependent force, followed by Magneto-optical

trap which employs position-dependent force on top of the velocity-dependent force to cool

and trap atoms (by following the treatment as in [6]). We conclude this section by discussing

magnetic and optical dipole trap which play an integral role in the formation of a BEC.

1.2.1 Doppler cooling

Doppler cooling is a technique that employs a slightly off-resonant laser beam to laser cool

the atoms. Firstly, consider a simple scenario of a resonant laser beam shone onto stationary

atoms. When the laser beam of frequency ωL and wave vector k is incident on a stationary

atom in the ground state, with a resonant (natural) frequency ω0, if ωL = ω0 there is a high

probability that the atom would absorb this photon by stimulated absorption and quickly re-

emit it by spontaneous emission. After absorbing the photon, the atom gains a momentum

of p = ~k equal to the momentum of the photon, and hence it starts moving in the initial

direction of the photon. This is followed by spontaneous emission of the absorbed photon

in a random direction which again imparts a momentum kick ~k causing it to gain some

velocity in the direction opposite to the emitted photon. However, as the emission process

is random, after multiple absorption-emission cycles, the average momentum imparted due

to emission m〈v〉 → 0. Thus effectively, the net momentum transferred to the atom can be

taken to be ~k due to the absorbed photon.

The light-matter interaction, as discussed above, can be used to reduce the momentum of

an atom in motion by impinging the laser light in the direction opposite to the atom’s motion.

However, as the atom moves, it sees the laser frequency Doppler shifted. This Doppler shift

can be appropriately chosen to slow down the atoms. We now derive a quantitative expression

7



for the scattering force exerted by the laser beam. Consider an atom moving with a velocity

v, it sees the laser frequency shifted to ω′L = ωL + ωD, where ωD = −k · v is the Doppler

shift. This causes an increase in laser frequency seen by the atoms moving into the beam.

Hence to keep the laser beam resonant at the atomic transition ω0, the laser frequency is

detuned (lowered) by the amount δ = ωL − ω0 equal to the Doppler shift ωD (Fig.1.1).

ωL

ωD

ωL

ω0

v

ground state

excited state

δ

Absorption

Atom in
excited state

Emission

Figure 1.1: Left: A cartoon showing the steps involved in Doppler cooling for a single
absorption-emission cycle. Right: An atom moving into a red-detuned beam (ωL) sees it
Doppler shifted to ω′L = ωL + ωD.

This detuning causes atoms moving into the laser beam to be shifted towards resonance

and the atoms moving away from the beam to be shifted farther away from resonance. The

atoms moving into the beam would absorb more photons compared to the ones moving away,

thus slowing the atoms moving into the beam without much effect on the ones moving away.

With each absorption-emission cycle, the atom’s momentum is reduced by p = ~k. The

scattering force is given by [6]

F = ~k

{(
γ

2

)
I/I0

1 + (I/I0) + 4(∆/γ)2

}
, (1.13)

Where the quantity in the curly brackets is the scattering rate, I0 = πhc/3λ3τ is the satura-

tion intensity, γ = 1/τ is the natural linewidth of the transition, λ = 2π/k is the wavelength

of light and ∆ = δ + ωD. From the above expression for scattering force, one can see that

large intensity (I � I0) produces the maximum scattering force F = ~kγ/2 which is just

a product of momentum imparted by a photon times scattering rate γ/2. The factor of 2

comes from the fact that at high intensity the atoms are saturated to a stage where half the

atoms are in the ground state and the other half in the excited state. Furthermore, note

that the force scales inversely with the detuning ∆, with ∆ = 0 (or δ = −ωD) giving the

8



maximum force for a fixed intensity.

Using only one laser beam, we can only slow down atoms moving in one direction (into

the laser beam). However, we ultimately need to cool atoms moving in arbitrary directions,

which can be implemented by adding an additional counter-propagating laser beam to slow

atoms moving in both the directions in 1D. This scheme can be generalised to 3D by adding

three pairs of counter-propagating beams along the x,y and z axes. In 1D, the net scattering

force (along the direction of the motion of atom) due to the two beams, with one beam closer

to resonance than others is given by

Fnet = F (∆ = δ − kv)− F (∆ = δ + kv) ≈ −2kv
∂F

∂δ

= −
[(

8~δk2

γ

)
I/I0

[1 + (I/I0) + 4(δ/γ)2]2

]
v

= −αv,

(1.14)

where we have assumed a small Doppler shift kv � γ, the above expression for scattering

force causes velocity-dependent slowing (as F ∼ −αv) which resembles a frictional force.

This type of Doppler cooling with counter-propagating beams is known as optical molasses.

Furthermore, note that there is a limit to the minimum temperature achievable using Doppler

cooling known as the Doppler limit. The reason for this limit is that the spontaneous emission

heats the atoms. Although the average velocity imparted by emission, 〈v〉 → 0, yet the

energy added to the system for multiple absorption- emission cycles don’t average out to

zero, that is, the average kinetic energy imparted 1
2
m〈v2〉 is non-zero. The Doppler limited

temperature can be found by treating the photon absorption and emission as a random walk

with momentum steps of ~k. The minimum achievable temperature is given by TD = ~/2kBτ
which for He* is about 40µK (τ ∼ 98ns for 23P2 state).

In the treatment above we had fixed the detuning δ for laser cooling, however, after a

photon absorption-emission cycle, the atom would slow down, as a result, the Doppler shift

kv would also be reduced. The resonance condition of ∆ = 0 or ω0 = ωL+kv would no longer

be satisfied, and this would end the slowing process. However, by using a clever technique

called Zeeman slowing, one can get continued photon absorption-emission cycles even when

the Doppler shift is decreasing. Zeeman slowing works by compensating for the change in

9



Doppler shift by adding an appropriate Zeeman shift to restore the resonance condition

ω0 + µB(z)/~ = ωL + kv (1.15)

where µ is the magnetic moment associated with the transition of interest and B(z) is

the magnetic field along the direction of propagation of the atoms. The above condition is

known as the criteria for Zeeman slowing. The desired form of a magnetic field is achieved

by using an apparatus called Zeeman slower, which consists of multiple coils of gradually

decreasing radii (Fig 4.1). The form of the magnetic field depends upon the velocity profile

of the atoms as they traverse the Zeeman slower, which is given by v = v0

√
1− z/L with

the corresponding magnetic field B(z) = B0

√
1− z/L + Bbias where v0 and B0 + Bbias are

the velocity and magnetic field at the beginning of the Zeeman slower, L is the length of

the slower. The required length of the slower is determined by assuming that it slows down

the atoms to zero velocity by the end of the slower by applying a constant scattering force,

Fmax = ~kγ/2. This gives L = v2
0/2amax = mv2

0/~kγ.

1.2.2 Magneto-Optical Trap

Doppler cooling, as seen in the previous section, is a velocity-dependent force like friction

which slows down atoms, but it cannot confine or trap the atoms. In order to trap atoms

in space, one uses an apparatus called a magneto-optical trap (MOT). The MOT adds a

magnetic field gradient on top of the usual optical molasses (with circularly polarised beams)

to generate a position-dependent force.

Similar to optical molasses, the MOT consists of 3 pairs of counter-propagating laser

beams along the three directions, with each pair consisting of circularly polarised beams

(σ+ and σ−). Furthermore, a linear magnetic field gradient is typically produced by anti-

Helmholtz coils that results in the magnetic field B(z) ∼ αz, where α = dB/dz is the

magnetic field gradient (with a linear gradient in the radial direction as well). Consider a

case of a simple two-level system with angular momentum states J = 0 and J = 1. The three

magnetic sublevels Me = −1, 0, 1 in the excited (J = 1) state experience different Zeeman

shifts, and hence they split in energy by different amounts at points with different magnetic

fields (as shown in Fig 1.2). The electric dipole selection rules state that the transitions from

Mg = 0 to Me = −1, 0, 1 are respectively driven by σ−, π, σ+ polarised light beams. Hence

10



Figure 1.2: Configuration of MOT in 1D2

when in resonance, the right circularly polarised light (σ+) would drive the transition from

Mg = 0 to Me = +1 state and similarly a left polarised light (σ−) would drive the transition

to Me = −1. Both the circularly polarised beams in the MOT are red-detuned by a certain

amount.

In the region z > 0 the sublevel Me = +1 is shifted up and Me = −1 is shifted down in

energy by ∆E = gµBαz = ~βz where g is the Lande g-factor and µB is Bohr magneton and

β = gµBα/~. When an atom moves towards the positive z axis, it sees the beam σ− come

closer into resonance, and the beam σ+ move away from resonance. At the point z′ (Fig 1.2),

the atom comes into resonance with the beam σ− which drives the atom to Me = −1 excited

state by absorbing a photon, which reduces its momentum (Doppler cooling). Similarly,

in the region z < 0, the σ+ light would drive the atom to Me = +1 state and reduce its

momentum. Hence this position-dependent force disallows atoms from moving far away

from the centre (z = 0), trapping the atoms. Similar to optical molasses, the scattering force

exerted in the MOT is given by

Fnet = F (∆ = δ − kv − βz)− F (∆ = δ + kv + βz)

≈ −2(kv + βz)
∂F

∂δ

= −(αv + β′z).

(1.16)

2Source [6]
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Notice that the scattering force in the MOT contains an extra position-dependent term −β′z
compared to the optical molasses (Eq. 1.14). Thus the atoms are both cooled and trapped

by the velocity and position-dependent forces respectively. The MOT scheme, as discussed

above for J = 0→ J = 1 transition, also holds for any J → J + 1 transition.

1.2.3 Magnetic and optical dipole trap

The cooling in the MOT (∼ 1mK for our system) is insufficient to achieve a Bose-Einstein

condensate (with a critical temperature of ∼ 10µK for our system). Hence further cooling

to reach BEC state can be produced by evaporative cooling in an optical dipole trap (or

magnetic trap). We also have an additional cooling stage prior to evaporative cooling known

as in-trap cooling in the magnetic trap.

Magnetic Trap

The magnetic trap is used to confine atoms based on Zeeman effect. An atom with

magnetic moment µ placed in a magnetic field gradient B would experience a force, F =

−∇U with U = −µ · B. The magnetic field in the magnetic trap is produced by the

same set of anti-Helmholtz coils used to generate the MOT with a linear magnetic gradient

B ∼
√
r2 + 4z2, where z is the direction along the axis of the coils, and r is the radial

direction[6]. Depending upon the sign of the magnetic moment µ (which depends on the

level MJ of the atomic state), the atom is either attracted or repelled from the origin (except

MJ = 0 level which is unaffected by the field). Hence, only the atoms with MJ > 0 which are

attracted towards the origin (also known as low-field seekers) are trapped by the magnetic

trap with MJ < 0 states repelled away from the trap.

Although the trap can confine low-field seeking states, the atoms with sufficiently low

energy are able to escape the trap from the trap bottom (Zero-field point). This is because

the atoms with all MJ levels become degenerate at this point. Hence, the MJ > 0 states can

spin-flip to the magnetically insensitive (or high field seeking) MJ ≤ 0 states and fall out of

the trap (This is known as Majorana spin-flip). In order to prevent the atoms from escaping

the trap due to zero-field, we have an addition coil perpendicular to the anti-Helmholtz (or

quadrupole coils) known as the bias coil which lifts the zero of the magnetic field (This
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Figure 1.3: QUIC type magnetic trap (center) with the field profile along Z axis (left) and
X axis (right)

magnetic field configuration is known as Quadrupole Ioffe Configuration or QUIC). The

following Fig 1.3 shows the magnetic field profile along the axis of the quadrupole coils. In

our setup, we also shine a 1D resonant beam on the atoms trapped in the magnetic trap to

further cool the atoms by Doppler cooling (also known as in-trap cooling[22]).

Optical Dipole Trap

The optical dipole trap consists of a Gaussian beam (rather two perpendicular beams in

case of crossed dipole trap as in our system) with the intensity profile

I(r, z) =
I0√

1 + (z/zR)2
exp

(
−2r2

w(z)2

)
, (1.17)

where w(z) = w0

√
1 + (z/zR)2 is the beam waist and zR = πw2

0/λ is the Rayleigh length.

The electric field of the Gaussian beam interacts with an atom to induce a dipole moment per

unit volume proportional to the field, p(r) = αE(r), where α is the complex polarisability

of the atom. Two quantities of interest while dealing with optical dipole trap are the trap

potential U and dissipative scattering rate Γ given by [20]

U = −1

2
〈p(r) · E(r)〉 = −Re(α)I(r)

2ε0c

Γ = −〈ṗ(r) · E(r)〉
~ω

=
Im(α)I(r)

~ε0c
.

(1.18)

Substituting the expression for α obtained from Lorentz oscillator model of atom[20], and

using rotating wave approximation as the beam frequency ω is sufficiently close to resonance
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with atomic frequency ω0 (that is ∆ = ω − ω0 � ω0), we find

U =
3πc2

2ω3
0

γ

∆
I(r)

Γ =
3πc2

2ω3
0

( γ
∆

)2
I(r),

(1.19)

where γ is the atomic damping rate due to dipole radiation. Note that the trap potential

depth U ∼ I/∆ and the scattering rate Γ ∼ −I/∆2; thus by choosing a sufficiently detuned

beam (large ∆), the dissipative scattering of photons can be suppressed with respect to

the dipole trap depth. In case our case we use a far detuned 1550nm beam for the crossed

dipole trap in comparison with the He* laser cooling transition at 1083nm. For evaporatively

cooling the atomic gas in an optical dipole trap, the trap depth U is lowered by lowering I

which ‘spills’ out the highly energetic (hot) atoms for the trap and the atoms remaining in

the trap re-thermalise to a lower temperature.

1.3 Metastable Helium

In our experiments, we cool and trap a gas of helium atoms in its metastable state

(denoted by He*). The first excited state of 4He is a spin-triplet, 23S1 which is a metastable

state (Fig 1.4), that is, it has very high lifetime of ∼ 8000s (with typical lifetime for other

metastable noble gases being of the order 100s or less[7]) before decaying to the ground

state. The reason being that the ground state transition, 23S1 → 11S0 is doubly forbidden

by electric dipole transition (due to violation of parity rule ∆l = ±1) and spin selection rule

(∆s = 0)[8]. It can only decay slowly via a weaker mechanism of magnetic dipole transition.

Thus, the metastable state effectively acts at the ground state of the system due to its long

lifetime compared to the experimental time scale.

We cool and trap metastable helium atoms instead of the usual helium in the ground

state because the laser cooling transition for the helium atoms (11S0 − 23S1) corresponds

to a high energy of ∼ 20eV which is not easily accessible by the available lasers. However,

the cooling transition for metastable helium (23S1− 23P2) is readily accessible by a 1083nm

laser. By employing the cooling principles as discussed above, the Bose-Einstein condensate

of He* was first achieved during 2001[8].
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Figure 1.4: 4He energy level diagram

The high internal energy for He* atoms has both pros and cons. It is useful for single-

atom detection, which is made possible by the liberation of its high internal energy to eject an

electron from the detector surface. However, the same energy can also be liberated when the

He* atoms collide with each other, or the impurities in the chamber like water molecules, or

the walls of the chamber. This leads to a major loss mechanism known as Penning ionisation,

where inter-particle collisions between He* atoms causes loss of He* atoms via the following

reaction

He∗ +He∗ → He+He+ + e−. (1.20)

The atoms lost from the metastable state (He and He+) can no longer be cooled with the

laser beam resonant to the He* cooling transition at 1083nm. Loss of metastable atoms

would cause a reduction in the condensate fraction as well as trigger other collisions with

He* atoms leading to further loss of He* atoms. The Penning ionisation is suppressed by

total spin conservation in a spin polarised sample, that is, when the net spin on left hand

side of Eq.1.20 becomes S = 2 and the net spin on the right hand side cannot exceed S = 1

(as s = 0 for He, s = 1/2 for both He+ and e−).

1.4 Previous experiments with He*

Ultracold gas of He* atoms among other metastable noble gases have been used to study

topics like atom-optics, collisional properties, precision spectroscopic measurements and most
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notably correlation measurements using atoms instead of photons.

Spectroscopic measurements such lifetime of several excited states of He (see Fig. 1.4)

have been made during the past 3 decades[8], which includes the most notable measurement

of the lifetime of the long-lived metastable 23S1 state of He. The He* BEC group at the ANU

precisely measured the lifetime of the metastable 23S1 state of He to be 7870(510)s[7], which

is the longest of any known excited state measured for neutral atoms. Direct measurement

of the lifetime would require one to monitor the atom numbers for a sufficient fraction of the

lifetime to obtain a reliable exponential fit. However, with typical trap lifetimes of a couple

of seconds to minutes, it would not be very easy to get a good direct measurement of the

lifetime. The He* BEC group got around this issue by indirectly measuring the XUV photon

flux resulting from the decay of 23S1 relative to flux for 23P1 whose lifetime was previously

measured by the group. This allowed them to get a precise measurement of He* lifetime,

avoiding the difficulty of measuring the absolute atom numbers with time.

As BEC of He* atoms forms a coherent matter wave analogous to coherent laser beams

in optics, it has been used to in atom-optics experiments such as atom interferometry exper-

iments. The first atom-interferometry experiment with metastable Ne atoms was performed

by Shimizu et al. (1992)[21]. They observed interference between Ne* atoms out-coupled

from the MOT after passing through a double slit and hitting the phosphor screen after

accelerating through a micro-channel plate.

The ability to locate single atoms of metastable atoms paired with delayed coincidence

measurements (discussed in chap 2) have made it an ideal candidate system to measure

correlation functions for atoms. T. Jeltes el al(2007)[19] have performed an experiment using

bosonic and fermionic He species, where they measure and compare the 2nd order correlation

function for both these species which show bunching and anti-bunching respectively. This

experiment is an atomic variant of Hanbury Brown–Twiss experiment which highlights the

role of particle exchange symmetry for 2nd order coherence. Another experiment performed

by Hodgman et al. (2017)[14] measures higher-order momentum correlation function (up to

3rd order) for a halo of two colliding BECs of He* atoms.
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Chapter 2

Coherence and correlation functions

Solving for the full many-body wave-function in quantum mechanics is difficult owing to

the exponential increase in the size required to just store the information required to con-

struct the full wave-function. The work on quantum many-body microscope[14] suggests an

alternate approach to tackle the quantum many-body problem via measurement of correla-

tion functions. The idea is that any physical observable in second quantised formalism can

be expressed in terms of particle creation and annihilation operators. Thus measurement of

correlation functions between these creation and annihilation operators should furnish useful

information about the physical observable. For instance, the diagonal first-order correlation

function between momentum space creation/annihilation operators 〈a†pap〉 counts the num-

ber of the particles with momentum p. The second-order correlation function describes the

two-particle interaction statistics in the system. Furthermore, the higher-order correlations

give more detailed statistics of n−particle interactions in a given many-body system. Thus

it is interesting to investigate the correlation functions to gain insights into the physics of

quantum many-body systems.

2.1 Coherence

In classical optics, coherence describes the phase stability of light. As the phase is a

function of position and time, there are two types of coherence, namely, spatial and temporal

coherence. The coherence time τc gives the time up to which the phase of a wave remains
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stable, that is, given the knowledge of the phase at some time t1, one can predict the phase at

a later time t2 if |t1− t2| � τc. For instance, a plane wave E(t) = E0e
−iωt+φ(t) with φ(t) = φ0

has an infinite coherence time. However in a general situation one has randomly fluctuating

phase occurring due to factors like spectral broadening that can reduce τc. Similarly, the

coherence length Lc = cτc gives the spatial extent up to which a stable phase relationship

holds between a pair of spatially separated points at a given instant of time. Coherence

is a necessary condition to observe interference of light, which would be washed out by

fluctuations in phase for an otherwise incoherent light.

Although the classical notion of coherence (1st order) is useful for describing interference

of light which is really a single photon effect, it fails to capture the phenomenon of higher-

order interference between two or more photons. The famous experiment by Hanbury Brown

and Twiss performed in 1956[9] demonstrated that photons arriving from spatially separated

points of a star appear bunched, which could be understood as a two-photon interference-

effect. This experiment lead to the redefinition of coherence to incorporate the quantum

nature of light, which is summarised in the seminal paper by Glauber[15] (which also started

the field of quantum optics). In the following section, we define coherence and its relation

with correlation functions following the treatment of Glauber. This treatment for light can

be easily generalised to massive particles like helium atoms by replacing the electric field

operator for light with the corresponding bosonic/fermionic field operator for the massive

particles.

2.1.1 Correlation function

The concept of optical coherence (1st order) is related to the phase stability of the light.

To quantify this stability, one needs to compare the phase of light between pairs of points

separated in space (or time) and check for correlations in the electric field. In general, the

coherence can be quantified by specifying a sequence of correlation functions among the

field strengths at n spatially (or temporally) separated points. In this section, we define

correlation functions and discuss the criteria for coherence based on correlation functions.

In order to discuss correlations among electric fields at different points, consider the
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following electric field operator,

Ê(r, t) = Ê(+)(r, t) + Ê(−)(r, t), (2.1)

with Ê(+)(r, t) =
∫∞

0
â(ω, r)e−iωtdω and Ê(−)(r, t) = Ê(+)†(r, t). The positive frequency part,

Ê(+)(r, t) acts as a photon annihilation operator[15] which reduces an n photon state |n〉 to

state |n− 1〉. Similarly, the negative frequency part acts as a photon creation operator.

To measure the correlation statistics among one or more photons, one performs a photo-

detection experiment. A photo-detection experiment for single-photon involves absorption

(or annihilation) of a photon from initial state |i〉 to go to the final state |f〉 = ˆE(+)(r, t)|i〉.
The probability per unit time of occurrence of this single-photon detection event is given by

P1(r, t) =
∑
f

|〈f | ˆE(+)(r, t)|i〉|2 = 〈i| ˆE(−)(r, t) ˆE(+)(r, t)|i〉, (2.2)

where ˆE(+)(r, t) = ˆE(+)(r, t)·ε is the component of the annihilation operator along a direction

ε. It is easy to see from the form of P1 ∼ 〈i|â†â|i〉 that it counts the average number of

photons in state |i〉, hence the rate of photo-detection, P1 should be proportional to the

number of photons in the state. Similarly, a coincidence detection of two photons, one

measured at point the (r, t) by acting Ê(+)(r, t) followed by a second photon measured at

point the (r′, t′) by the action of Ê(+)(r′, t′) has a rate given by

P2(r, t) =
∑
f

|〈f | ˆE(+)(r′, t′) ˆE(+)(r, t)|i〉|2

= 〈i| ˆE(−)(r, t) ˆE(−)(r′, t′) ˆE(+)(r′, t′) ˆE(+)(r, t)|i〉.
(2.3)

One can notice a pattern from single and two-photon detection rates that an n-photon

detection rate is a product of n pairs of field creation and annihilation operators. The n-

photon coincidence rates are a special case of a more general definition of correlation functions

with the nth order correlation function defined as

G(n)(r1t1 . . . rntn, rn+1tn+1 . . . r2nt2n) = 〈 ˆ
E

(−)
1 · · · ˆ

E
(−)
n

ˆ
E

(+)
n+1 · · ·

ˆ
E

(+)
2n 〉, (2.4)

where
ˆ

E
(±)
i ≡ ˆE(±)(ri, ti) and the average 〈∗〉 is also taken over the ensemble of states of the
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field. The expressions for 1st and 2nd order correlation functions can be explicitly written as

G(1)(r1t1, r2t2) = 〈 ˆ
E

(−)
1

ˆ
E

(+)
2 〉,

G(2)(r1t1, . . . , r4t4) = 〈 ˆ
E

(−)
1

ˆ
E

(−)
2

ˆ
E

(+)
3

ˆ
E

(+)
4 〉.

(2.5)

These expressions for correlation functions reduce to photon count rate and two-photon

coincidence rate respectively in the special case when r1 = r2 ≡ r for G(1)(r, r) and r1 =

r4 ≡ r, r2 = r3 ≡ r′ for G(2)(r, r′, r′, r) at a given time t (cf. Eq(2.2) and Eq(2.3)). In

defining the correlation functions we had assumed a pure state |i〉 for the the field, however

in general we have a statistical ensemble of states instead of a pure state. To account for

the ensemble of field states given by density matrix ρ =
∑

i pi|i〉〈i|, one can replace the

expectation value of a given operator 〈Ô〉 by tr(ρÔ) in the density matrix formalism. Thus

the expression for an nth order correlation function (Eq 2.4) becomes

G(n)(r1t1 . . . rntn, rn+1tn+1 . . . r2nt2n) = tr(ρ
ˆ

E
(−)
1 · · · ˆ

E
(−)
n

ˆ
E

(+)
n+1 · · ·

ˆ
E

(+)
2n ). (2.6)

The form of G(n) correlation function as defined above scales with the size of the system

(or photon flux) hence making it difficult to compare systems with a different number of

photons. To overcome this difficulty, one normalises the correlation function with individual

photon flux at each detector (r, t) involved in the experiment. For instance, the 1st order

normalised correlation function is written as

g(1)(r1t1, r2t2) =
G(1)(r1t1, r2t2)√

G(1)(r1t1, r1t1) ·G(1)(r2t2, r2t2)
. (2.7)

Note that in the case of coincidence measurement with a single detector (r1 = r2 and

t1 = t2) both the numerator and denominator of g(1) reduces to the single photon count rate

G(1)(r1t1, r1t1) = 〈E(−)
1 E

(+)
1 〉 which scales with the photon flux, however g(1) = 1 independent

of the photon flux. The normalised nth order correlation function is defined as

g(n)(r1t1, . . . , r2nt2n) =
G(n)(r1t1, . . . , r2nt2n)∏2n

i=1

√
G(1)(riti, riti)

. (2.8)

Although the above definition for correlation function may seem abstract or tedious at first

glance, it carries a simple physical interpretation that an nth order correlation function is

proportional to the probability of joint detection of n photons at n spatially/temporally

separated detectors, normalised to a product of individual single-photon detection probabil-
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ities at the detectors. In the following section, we discuss simple examples of g(1) and g(2)

correlations to highlight the role of correlation functions for quantifying coherence.

Having defined the correlation functions, we can formally state the criteria for coherence.

A source of light is said to be coherent if it satisfies either of the following criteria based on

a sequence of correlation functions:

1. Fully coherent: This requires coherence upto all order, that is

|g(n)(r1t1, . . . , r2nt2n)| = 1, (2.9)

for n = 1, 2, . . .

2. Nth order or partially coherent: This requires coherence upto N th order given by

Eq(2.9) for n = 1, 2, . . . , N .

The criteria, as mentioned above for coherence, allows us to differentiate sources based on

coherence. For instance, a laser beam in principle is fully coherent compared to a monochro-

matic slice of thermal light which may be coherent only up to the 1st order. Hence, one would

not be able to differentiate a laser from a monochromatic section of thermal light based on

the classical definition of coherence (1st order) as both are at least 1st order coherent and

show interference pattern. Thus it is useful to analyse a sequence of correlation functions to

compare coherence of various sources.

2.2 1st order correlation and interference

In this section, we discuss the role of g(1) in a classical interference experiment[5]. In

classical optics, a light beam with electric field strength E(t) at a fixed point r has a temporal

1st order correlation function given by

g(1)(t, t′) =
G(1)(t, t′)√

G(1)(t, t)G(1)(t′, t′)
=

〈E∗(t)E(t′)〉√
〈|E(t)|2〉〈|E(t′)|2〉

. (2.10)

Let t′ = t + τ be the time at which electric field is measured with a time delay of τ after

the first measurement at t. Assuming that the light source has a constant average intensity,
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that is, 〈|E(t)|2〉 = 〈|E(t′)|2〉, we have

g(1)(τ) ≡ g(1)(t, t+ τ) =
〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

, (2.11)

where the average 〈∗〉 is taken with respect to time t (as the ensemble average of electric

fields separated by τ is just a time average over t). Before discussing the interference of two

beams of light, we first calculate g(1) for a single light beam with electric field (in the direction

of polarisation) given by E(t) = E0e
−iωt+φ(t). Plugging this into Eq(2.11) for g(1), we find

g(1)(τ) = e−iωτ 〈eφ(t+τ)−φ(t)〉. According to classical optics, a light wave is called coherent if

it maintains a constant phase difference with time, that is, φ(t+ τ)− φ(t) = k, which leads

to the condition |g(1)(τ)| = 1. On the other hand, if the phase oscillates randomly with

time, g(1)(τ) averages out to 0. Furthermore, note that the correlation function for any light

source starts out at g(1)(0) = 1 and stays |g(1)(τ)| = 1 if coherent, otherwise it drops to 0 for

partially coherent or incoherent light.

Now consider a Michelson–Morley type interference experiment with the beam in one

arm delayed by time τ with respect to the other. The electric field after interference is

given as Eint(t) = {E(t) + E(t + τ)}/
√

2 with average intensity 〈Iint(t)〉 ∼ 〈|Eint(t)|2〉 =

〈|E(t)|2+|E(t+τ)|2+2·Re{E∗(t)E(t+τ)}〉. Assuming constant average intensity 〈|E(t)|2〉 =

〈|E(t+ τ)|2〉, we have

〈Iint(t)〉 ∼ 〈|E(t)|2〉

(
1 +Re

{
〈E∗(t)E(t+ τ)〉
〈|E(t)|2〉

})
∼ 〈|E(t)|2〉(1 +Re{g(1)(τ)}).

(2.12)

The fringe visibility, V for interference is given by

V (τ) =
Imax − Imin
Imax + Imin

= |g(1)(τ)|, (2.13)

where we have used the fact that Imax = 〈|E(t)|2〉(1 + |g(1)|) and Imin = 〈|E(t)|2〉(1− |g(1)|)
from Eq(2.12). Qualitatively, the fringe visibility describes the contrast of the interference

pattern, and it is equal to the absolute value of the 1st order correlation function. Thus a

coherent light would have V = 1 as compared to incoherent light with 0 visibility.
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Figure 2.1: Michelson stellar interferometer: two light beams emanating from a star at an
angle θ are incident on the two mirrors separated by distance ∆r and interference pattern
is formed on the screen 1

Historically, a similar interferometry experiment known as Michelson stellar interferome-

ter (Fig 2.1) has been used to measure the angular diameter δθ of distant bright stars2. The

interferometer consists of two arms with mirrors located at positions r1 and r2 separated by

a distance ∆r, which redirect and focus light on a screen to observe interference. In order

to measure the δθ for a star, one can plot the spatial fringe visibility (analogous to Eq 2.13)

with respect to the separation ∆r to obtain |g(1)(∆r)|. This gives the associated correlation

length Lc (given by the width of the visibility distribution), which is related to the angular

separation θ of the light source by Lc = λ/θ. Thus by measuring the fringe visibility to

obtain |g(1)(∆r)|, one can determine the angular diameter of a star. For instance, consider

two points on a star emitting incoherent monochromatic light beams with wave-vectors k1

and k2 separated by angle θ between them (Fig 2.1). The two beams enter both arms of the

interferometer with electric fields Eje
ikj·rj with j = 1, 2 respectively, resulting in the average

intensity[17]

〈I(r1, r2)〉 ∝ 〈|E1(r1) + E2(r1) + E1(r2) + E2(r2)|2〉

= 4I0

(
1 + cos

(
k1 + k2

2
·∆r

)
cos

(
kθ∆r

2

))
,

(2.14)

2such as Betelgeuse during 1920s
1modified from wikimedia
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where we have used the fact the beams are incoherent, that is, 〈E∗i · Ej〉 = δijI0. When the

two beams arrive from the two ends of the star, θ = δθ gives the angular diameter. However

this method of optical interference is sensitive to fluctuations in refractive index caused by

motion of the atmosphere due to the cos((k1+k2)·∆r/2) term which rapidly fluctuates with

the orientations of k1 and k2. This reduces the fringe visibility, making it difficult to observe

the interference. A solution to this problem was proposed by Hanbury Brown and Twiss,

which employs intensity interferometry measuring g(2) instead of g(1)[9]. The reason being

that g(2) relies on intensity measurements that are insensitive to atmospheric fluctuations

(as discussed in the following section).

2.3 2nd order correlation and HBT effect

The temporal second order correlation function g(2)(t, t′) quantifies the correlation be-

tween intensities for two time separated points similar to g(1)(t, t′)(Eq 2.10), which correlates

the electric fields. Mathematically the 2nd order correlation function can be written as[5]

g(2)(t, t′) =
G(2)(t, t′)

G(1)(t, t)G(1)(t′, t′)
=
〈E∗(t)E∗(t′)E(t′)E(t)〉
〈|E(t)|2〉〈|E(t′)|2〉

=
〈I(t)I(t′)〉
〈I(t)〉〈I(t′)〉

.

(2.15)

Similarly, the 2nd order spatial correlation function for beam intensities measured at a sep-

aration ∆r is given by

g(2)(∆r) =
〈I(r)I(r + ∆r)〉
〈I(r)〉〈I(r + ∆r)〉

. (2.16)

For a thermal source such as star which emits light with fluctuations in the intensity, g(2)

starts with a value g(2)(0) = 〈I2(r)〉/〈I(r)〉2 > 1 and stays above 1 at least up to the coherence

length Lc. For large separations ∆r � Lc, the two intensities become uncorrelated, meaning

〈I(r)I(r + ∆r)〉 = 〈I(r)〉〈I(r + ∆r)〉〉 which gives g(2)(∆r) = 1. Thus by obtaining the g(2)

profile, one can determine Lc which in turn is related to the angular diameter of a star (as

discussed in section 2.2). On the other hand, comparing this to the case of a coherent laser

beam with constant intensity, we find g(2)(∆r) = 1 for arbitrary separations.

As discussed in the previous section, the measurement of angular diameter of stars using
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Michelson stellar interferometer suffered from atmospheric fluctuations. This lead Hanbury

Brown and Twiss to device a new kind of interferometer based on the second-order corre-

lation function. The intensity interferometry is useful because the term depending on the

atmospheric fluctuations drops out, which can be seen from the second-order correlation

function,

G(2)(r1, r2) ∝ 〈I(r1)I(r2)〉

= 4I2
0

(
1 +

1

2
cos(kθ∆r)

)
,

(2.17)

where I(rj) = |E1(rj) + E2(rj)|2 is the intensity of beams on the two detectors at r1 and r2

(which replace the mirrors in the usual Michelson interferometer). For a thermal source of

light such as a gas of atoms, it can be shown that [18]

g(2)(∆r) = 1 + |g(1)(∆r)|2. (2.18)

As g(1)(0) = 1, the second order correlation function takes a maximum value of g(2)(0) = 2.

For ∆r � Lc, g
(1)(∆r) → 0 and g(2)(∆r) → 1. This relative enhancement of intensity

correlation g(2)(∆r) for thermal light at short separations is known as the Hanbury Brown

Twiss (HBT) bunching effect. The following Fig 2.2 shows a typical correlation function

for light from thermal atoms and a coherent laser beam. The thermal light show the HBT

bunching effect while a coherent laser has a flat profile.
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Figure 2.2: Typical 2nd order correlation function for thermal light, which shows HBT bunch-
ing with correlation length Lc = 1, and a laser with infinite correlation length
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p1

p2

D1

D2

Figure 2.3: The two possible ways (Red and green) in which the particles p1, p2 can be
detected at the detectors D1 and D2.[credit:wikimedia]

The quantum treatment of the Hanbury Brown Twiss effect, which involves treating

light as photons results in an apparent conceptual difficulty regarding how two independent

photons emitted from the two extremes of a star interact to register correlations at the

photodetectors. This difficulty for the quantum picture of light can be resolved by considering

the fact that the two emitted photons that start out as uncorrelated from the source are

actually two indistinguishable bosons. This means that during the measurement process,

these photons must respect the particle exchange symmetry for bosons, hence although the

photons cannot interact physically, they interact via the bosonic exchange statistics which

causes the correlations. Furthermore, as bosons can occupy the same state, the probability

of joint detection of the two photons to lie on top of each other is enhanced, which results

in the Hanbury Brown Twiss effect.

In the photon picture of light, the classical field intensity is replaced by the photon

number operator n̂ = â†â resulting in the following form of 2nd order correlation function

g(2)(r1, r2) =
〈n̂(r1)n̂(r2)〉
〈n̂(r1)〉〈n̂(r2)〉

. (2.19)

The above has a simple physical interpretation that g(2)(r1, r2) is related to the probability of

finding a photon at r1 given a photon has been detected at r2. Another simple way to think

about the contribution of particle statistics in the g(2) function as suggested by Fano[10] is

presented below. Consider two particles p1, p2 and detectors D1, D2. There are 2 possible

scenarios that can happen when each detector receives one particle as shown in Fig 2.3. The

probability amplitude of measuring particle p1 at the detector D1 is written as 〈p1|D1〉. For

simplicity assume that probability for detecting a particle on either of the detectors is the

same, that is, 〈p1|D1〉 = 〈p1|D2〉 = p1 and 〈p2|D1〉 = 〈p2|D2〉 = p2.
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If the two particles are distinguishable thermal bosons, the probabilities simply add up

to give

Pd = |〈p1|D1〉〈p2|D2〉|2 + |〈p1|D2〉〈p2|D1〉|2 = 2|p1|2|p2|2. (2.20)

However, if the particles as indistinguishable thermal bosons, the amplitudes first add up to

give

Pi = |〈p1|D1〉〈p2|D2〉+ 〈p1|D2〉〈p2|D1〉|2 = 4|p1|2|p2|2 = 2Pd. (2.21)

The doubling of probability of finding indistinguishable bosons Pi relative to distinguishable

ones Pd is a manifestation of the Hanbury Brown Twiss bunching. Coherent bosons as in

bosons from a BEC occupy the same state and hence they are always indistinguishable,

with the detection probability given by Pi. For indistinguishable fermions, the wavefunction

anti-symmetry leads to

Pf = |〈p1|D1〉〈p2|D2〉 − 〈p1|D2〉〈p2|D1〉|2 = 0. (2.22)

The above is a manifestation of Pauli’s exclusion principle. This phenomenon of reduction in

joint detection probability is called anti-bunching, which is a purely quantum phenomenon.

2.4 Experimental consideration : Time of flight

In a cold atoms experiment such as ours, the objective is to measure the 2nd order

correlation function for a gas of cold atoms, which is released from a trap and allowed to

free-fall under gravity until it hits the detector. As factors such as trapping and free fall are

not present in an experiment with light, we need to understand how the time evolution of

trap eigenstates is modified during free fall onto the detector. These changes in wavefunction

would be reflected in the 2nd order correlation function. To understand the role of these

factors in the determination of correlation function, we follow the treatment of [13], which

considers freely falling non-interacting particles dropped from a harmonic trap.

We start by redefining correlation functions for bosonic atoms by replacing the electric

field operator in the case of light by the bosonic field operator,

Ψ̂(r) =
∑
i

φi(r)âi, (2.23)
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where âi is the usual annihilation operator that annihilates a particle in the eigenstate φi(r)

and Ψ̂(r) annihilates a particle at point r. Thus the correlation functions(Eq (2.5)) after

replacement with Ψ̂(r) become

G(1)(r1, r2) = 〈Ψ̂†(r1)Ψ̂(r2)〉,
G(2)(r1, r2) = 〈Ψ̂†(r1)Ψ̂(r1)Ψ̂†(r2)Ψ̂(r2)〉.

(2.24)

The single particle density is given by ρ(r) = G(1)(r, r). For bosonic atoms at a particular

temperature T , the 2nd order correlation function factorises in terms of 1st order correlation

function

G(2)(r1, r2) =
∑
ijkl

φ∗i (r1)φj(r1)φ∗k(r2)φl(r2)〈âi
†âjâk

†âl〉

=
∑
ijkl

φ∗i (r1)φj(r1)φ∗k(r2)φl(r2)(〈âi
†âk
†âjâl〉+ 〈âi

†âl〉δjk)

= ρ(r1)ρ(r2) + |G(1)(r1, r2)|2.

(2.25)

using the Wick’s theorem for factorisation of Gaussian expectations[13]. While writing the

final expression for Eq 2.25, we have ignored the term 〈âi
†âl〉δjk which is linear in density,

with the terms retained being quadratic in density. Note that the Wick’s factorisation

scheme only works when T is well above the critical temperature. When close to (or below)

the critical temperature for Bose-Einstein condensation, the condensate density ρ0(r) needs

to be taken into account, which can be incorporated by adding the result for condensate

density[13] to give,

G(2)(r1, r2) = ρ(r1)ρ(r2)− ρ0(r1)ρ0(r2) + |G(1)(r1, r2)|2. (2.26)

The correlation functions in Eq(2.25, 2.26) can be normalised (dividing by ρ(r1)ρ(r2))

to obtain g(2)(r1, r2). The g(2) function for a thermal cloud above the critical temperature

(Eq 2.25, which is same as Eq2.18) starts at g(2)(r, r) = 2 and decays to 1 as |r1− r2| → ∞.

This is the Hanbury Brown Twiss bunching effect. Comparing this to the condensate (Eq

2.26), where for T → 0 condensate state is fully occupied, which leads to cancellation of the

first 2 terms, and we find g(2)(r1, r2) = 1 for all r1, r2 (which is similar to the flat g(2) profile

for laser in Fig 2.2, as BEC is an atomic analogue of a coherent laser).

In a general time of flight experiment such as ours, we assume that position space cor-
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relation in far-field maps to the momentum space correlation length in a trap (cf section

3.1). This is an approximation that holds for a thermal cloud of atoms where the condensate

density ρ0 can be ignored[13].

Consider atoms in a 3D harmonic trap with frequencies ωα, α = x, y, z. The atoms

occupy the harmonic oscillator eigenfunctions. Using the bosonic field operator Ψ̂(r) with

the harmonic oscillator wavefunction, one can find the particle density ρ(r) = G(1)(r, r) and

the 1st order correlation function

G(1)(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 =
∑

m=(mx,my ,mz)

φ∗m(r)φm(r′)
1

eβ(ε̃m−µN) − 1
, (2.27)

where ε̃m is the harmonic oscillator energy without the zero point contribution 3~ω/2 and

µ is the chemical potential. In the high-temperature limit (with temperature above critical

temperature and µ→ −∞), one recovers the thermal correlation function with the familiar

Maxwell-Boltzmann density distribution

G(1)(r, r′) =
N

λ3

∏
α

ταe
− τα

2

(
rα+r′α
2σα

)2
e−π
(
rα−r′α
λ

)2
ρ(r) =

N

λ3

∏
α

ταe
− ταr

2
α

2σ2α ,

(2.28)

where τα = ~ω/kBT and λ = ~
√

2π/mkBT is the de Broglie wavelength, with the in-trap

correlation length given by l(i) = λ/
√
π.

The expression for the correlation function (Eq 2.28) is only valid for atoms in a trap. In

order to describe the correlations for atoms released from the harmonic trap under gravity,

falling onto the detector, one needs to propagate the in-trap harmonic oscillator wavefunc-

tion to the detector surface by using the appropriate Green’s function. Skipping over the

tedious mathematical steps[13], one arrives at a rather simple result that the expression

for wavefunction remains the same modulo phase factors and expansion factor of the form√
1 + ω2

αt
2 with the following re-scaling of coordinates,

(x, y, z)→
(
x̃ =

x√
1 + ω2

xt
2
, ỹ =

y√
1 + ω2

yt
2
, z̃ =

H − 1
2
gt2√

1 + ω2
zt

2

)
, (2.29)

where H is the location of the detector plane along the z-axis and time is measured from
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trap switch off time (t = 0). For detection in the far field (ωαt� 1), assuming that the drop

velocity is much larger than the spread in velocities in the atomic cloud (gt�
√
kBT/mω2

α),

the vertical co-ordinate z̃ ≈ g(t0 − t)/ωz scales linearly with time.

The 2nd order correlation function at the time of flight (TOF) detection is given by

G(2)(r̃1, t1; r̃2, t2) =

(
v(t1)v(t2)∏

α

√
(1 + ω2

αt
2
1)(1 + ω2

αt
2
2)

)
G(2)(r̃1, r̃2),

v(t) =
1

t

(
H +

1

2
gt2 − H − gt2/2

1 + ω2
zt

2

)
.

(2.30)

with the atomic flux velocity v(t). Comparing the expression for the in-trap 2nd order

correlation function (Eq. 2.26) with the expression after the TOF measurement (Eq. 2.30),

we see that the latter is just a re-scaled version of the in-trap correlation function. Luckily we

don’t have to worry about the expansion pre-factors which drop out on normalisation while

calculating g(2), which is expressible as a ratio of G(2)s (Eq 3.12). Moreover, for harmonic

potential the correlation lengths at the detector, l(d) increase linearly with the flight time

t given by l(d) = l
√

1 + ω2
αt

2 ≈ lωαt, with the in-trap correlation length l. The detector

resolution also has an effect on the observed correlation functions which is discussed in

section 3.4.

2.5 Previous correlation experiments

One of the first correlation experiments, as performed by Hanbury Brown and Twiss[9]

in 1956 was a pioneering experiment in the field of quantum optics. Although the first

correlation experiment was performed with light, the development of atom-optics have lead to

similar correlation experiments with atoms instead of photons. The first atomic correlation

experiment to measure the Hanbury Brown and Twiss bunching effect was performed by

Yasuda and Shimizu (1996)[11] where they used a thermal gas of metastable Ne atoms.

Furthermore, the realisation of Bose-Einstein condensation allowed one to measure the

correlations in a coherent matter wave made out of BEC, compared to its optical analogue

of coherent laser which has a flat g(2) profile (g(2)(τ) = 1). The experiment by Schellekens et

al.[12] (2005) used ultracold He* atoms to demonstrate bunching in thermal atoms and flat

g(2) profile for a BEC of He* atoms. For the correlation measurement they dropped a cloud
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of thermal and Bose-condensed atomic gas respectively from a magnetic trap onto a delay

line detector (preceded by a micro-channel plate), our experiment also consists of a similar

detection scheme (section 4.3).

A useful feature of performing correlation measurements with atoms compared to photons

is that atoms can be either fermionic or bosonic as compared to photons which are bosons.

Hence, atomic correlations allows investigation of particle statistics based on symmetry (or

anti-symmetry) of wavefunction, which is not possible with photons. An experiment per-

formed by Jeltes et al [19](2007) used both bosonic and fermionic species of helium (4He

and 3He respectively) and measured the corresponding 2nd order correlation functions. They

found the usual bunching effect for thermal bosons, however they observed a dip in g(2)(0)

for fermions (known as anti-bunching) due to Pauli’s exclusion principle (cf Eq 2.22).

As discussed above, typical correlation experiments performed measured 2nd order corre-

lation function. However, measurement of higher order correlations provides a more detailed

statistics of the many-body interactions as compared to 2nd order correlation function. An

experiment performed by Hodgman et al.[14](2017) characterises higher order correlation

functions (3rd order and higher) for a system of two colliding BECs. For this particular

system, they were able to characterise the higher order correlations as the functions factorise

into product of 2-operator expectation values (normal density 〈âp
†âp〉 and anomalous den-

sity 〈âp ˆa−p〉) by using Wick’s theorem. The experimental result for g(3) also verifies that

higher order correlation functions contain information about the lower order functions by

showing that g(3) → g(2) in some limit.
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Chapter 3

Simulation of 2nd order correlations

In this chapter, we discuss a simple model to simulate the 2nd order correlation function

for a gas of thermal bosonic atoms. The objective of the simulation is to generate a sample

of 2nd order correlated particles with given system parameters such as temperature, trap

frequencies and detector resolution.

As discussed in the section 2.3, a gas of bosonic atoms like 4He above the critical tem-

perature for condensation exhibits an enhanced probability for joint detection close to zero

separation, that is, it’s second-order correlation function is bunched (also known as the Han-

bury Brown Twiss bunching effect). To check whether we can observe the bunching effect

on dropping a thermal cloud of He* atoms from a trap on to the detector, we simulate the

g(2) correlation function for these thermal atoms of He* with the given system parameters.

We first generate a correlated data-set of multiple correlated pairs of atoms with the

desired g(2) function, that is, a bunched profile with g(2)(∆z = 0) = 2 for the thermal cloud

of atoms with our system parameters. This data-set is then fed as an input to our correlator,

which calculates the g(2) correlation function.

Possible approaches

An accurate (brute force) method to generate a correlated data-set would be to first

identify the functional form of the full many-body wavefunction for the particles, followed by
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sampling from the many-body probability distribution corresponding to the wavefunction.

However, a problem with this approach is that it is difficult to solve for the full many-

body wavefunction. Even if one succeeds in finding the high dimensional wavefunction (3N

dimensional for N particles), it would still be difficult to efficiently sample from the arbitrary

joint probability distribution resulting from the many-body wavefunction. Furthermore, to

add to the difficulties, random sampling methods such as Monte-Carlo simulation performs

poorly with an increase in dimensions of the distribution, that is, one would need to sample

more points in higher dimensions to represent the distribution accurately.

As the above method for generating the appropriately correlated sample of particles is

infeasible, we attempted implementing an alternate method that doesn’t require the knowl-

edge of the full many-body wavefunction. In this scheme, we work backwards and first try

to work out the probability distribution that would give the required 2nd order correlation

function. The idea is to incorporate the required correlations by sequentially sampling parti-

cles based on the distribution of initial particles. In other words, with an existing n particle

distribution the n+ 1th particle is sampled from a modified single-particle distribution with

an enhanced probability of joint detection close to the previous n particles. By appropriately

choosing the enhancement in probability, one can get the required correlation function. We

attempted a simulation with this scheme; however, we failed to reproduce the required cor-

relation distribution as the consecutive particles in the distribution kept clustering on top of

the previous particles (details in section 3.2).

Thus we decided to simplify the scheme even further to sample a pair of particles at a

time with the required correlation function. Although this method can only generate dis-

joint/independent pair of 2nd order correlated particles, it is still able to reasonably reproduce

the required correlation function as observed in an experiment (section 3.5).

3.1 Length scales in the simulation

To run the simulation for generating the two-particle correlated data-set, we work in the

units of thermal length (or the size of the atomic cloud). In order to do so, we find the

expressions for the two relevant length scales, namely, the thermal and correlation lengths

of the atomic cloud both in-trap (s
(t)
α , l

(t)
α ) and just before hitting the detector (s

(d)
α , l

(d)
α )

respectively.
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Figure 3.1: The setup of the experiment. The atomic cloud released from the trap expands
and falls towards the detector, which records the positions of the individual atoms.

Consider a trap which can be approximated by a harmonic potential with trapping fre-

quencies ωα(α = x, y, z) along the three axes. As the cloud is at an equilibrium temperature

T we have, 1
2
mω2

αs
2
α = 1

2
kBT . This gives the in-trap size of the cloud in the direction α as

s(t)
α =

√
kBT/mω2

α. (3.1)

In an experiment (that we are trying to model, Fig 3.1), we switch-off the trap and let

the atoms free fall towards the detector (which is positioned about 40cm below the trap).

While the atoms fall towards the detector, we measure their time of flight (TOF) profile,

that is, we record their positions as they hit the detector. After falling for a sufficiently long

time (tTOF ), that is, in the far field (ωαtTOF � 1), the atomic cloud expands by a factor

of
√

1 + ω2
αt

2
TOF ≈ ωαtTOF (see section 2.4 for details). Hence, the size of the cloud at the

detector is given by s
(d)
α = s

(t)
α ωαtTOF , that is,

s(d)
α =

√
kBT

m
tTOF . (3.2)

In the far field, the spatial distribution of the particles maps to the initial in-trap momentum

distribution, with the momentum correlation length pα = ~/s(t)
α being mapped to the spatial

correlation length at the detector[13],

l(d)
α =

(
pα
m

)
tTOF =

~tTOF
ms

(t)
α

= ~
√

1

mkBT
ωαtTOF . (3.3)
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Note that the correlation length l
(d)
α is proportional to the de Broglie wavelength, λ =

~
√

2π/mkBT . This gives a simple physical picture that the de Broglie wavelength, which is

a measure of length-scale for wave-function overlap is related to the correlation length. In

units of the thermal length, the dimensionless correlation length is given by,

l̃(d)
α =

l
(d)
α

s
(d)
α

=
~ωα
kBT

. (3.4)

3.2 Method for generating the correlated data-set

The objective of this simulation is to sample pairs of particles which follow the correlation

function for thermal bosons (similar to the thermal light in Fig 2.2), that is,

g(2)(∆x,∆y,∆z) = 1 + exp
(
− ∆x2

l2x
− ∆y2

l2y
− ∆z2

l2z

)
, (3.5)

with the pair separations ∆x,∆y,∆z and correlation lengths lx, ly, lz. The data-set is gen-

erated by sampling multiple pairs of second order correlated particles using the following

scheme:

1. The first particle in a correlated pair is sampled from a thermal distribution (Boltz-

mann distribution) with mean position=0 and spread in position (standard deviation

or source size) given by the thermal length,

sα =

√
kBT

mHe

· tTOF , (α = x, y, x). (3.6)

where kB is the Boltzmann constant, T is the temperature of the atomic gas cloud,

mHe is the mass of helium atom and tTOF is the time of flight from the trap to the

delay line detector. The explicit sampling distribution is given by,

P1(x, y, z) ≈ exp
(
− x2 + y2 + z2

2s2
α

)
. (3.7)

After sampling this particle, suppose that it lands at the position (x1, y1, z1). The left

plot of Fig 3.2 shows an example of sampling the first particle(x1) for a 1D section

through the distribution.
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Figure 3.2: The 1st particle is sampled from the thermal distribution (left) and say it lands
at x1. The 2nd particle is sampled from the modified distribution (right) with enhanced
probability of landing close to x1. The green region shows the range of sampling.

2. The second particle in the pair is sampled from a modified thermal distribution which

has an enhanced probability of joint detection close to the position of the first particle.

This is done by adding a Gaussian distribution with spread of the correlation length

onto the original thermal distribution (see Fig 3.2 right plot). The distribution for

sampling the second particle thus becomes,

P2(x, y, z) ≈ exp
(
− x

2 + y2 + z2

2s2
α

)
+f ·exp

(
− (x− x1)2

l2x
− (y − y1)2

l2y
− (z − z1)2

l2z

)
, (3.8)

where f = exp
(
− x21+y21+z21

2s2α

)
is the constant pre-factor of the correlation Gaussian term

which re-scales the amplitude so that we have double the joint detection probability

of finding the second particle close to the first one (the bunching factor for thermal

bosons with g(2)(∆r = 0) = 2). This condition can be explicitly written as,

P2(x1, y1, z1) = 2 · P1(x1, y1, z1). (3.9)

In order to sample form the P2 distribution, Monte-Carlo rejection sampling was used

(see Appendix A). The right trace in Fig 3.2 gives an example of sampling distribution

for the second particle. Note that we sample from the truncated distribution, that is,

the green shaded region cutoff at the length of about a bin width+3·resolution1 away

from the first particle and not the full distribution, to reduce the time required to

1see section 3.4 for details
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generate correlated pairs in 3D. If we were to sample from the full distribution, the

second particle would be sampled in larger region of space, hence reducing the chance

of it contributing to the correlations for the full 3D sampling.

3. Having successfully sampled a correlated pair, we also need to generate a corresponding

uncorrelated pair which would be used to normalise the second order correlation func-

tion (G(2)(∆z)). For this purpose, we repeat the same steps (1 and 2) for generating a

correlated pair, but instead of using a modified thermal distribution for sampling the

second particle we again use the thermal distribution (Fig 3.3)
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Figure 3.3: Both the 1st and 2nd particles are sampled from a thermal distribution (left and
right). However, to keep the sampling consistent with the sampling of correlated pairs, the
2nd particle is sampled from a similar restricted range (shown in green for the right plot).

4. Lastly, we calculate the correlation function G(2)(∆z) for both the generated correlated

and uncorrelated pairs by histogramming the pair separations along the vertical axis

(details in the next section). The normalised correlation function g(2)(∆z) is obtained

by dividing the correlation function for correlated pairs by the function for uncorrelated

pairs.

We use the above mentioned procedure to generate the pair-correlated data-set. How-

ever, an alternate approach (as suggested in the penultimate paragraph of the section on

possible approaches) would be to repeatedly sample new particles from modified distribu-

tion. Although, when we tried implementing this scheme, we noticed that as the second

particle gets sampled close to where the first particle landed, it enhances the probability of

having the third particle land in the same local neighbourhood of the previous two particles.

Moving further down the algorithm, the particles just tend to cluster together in a narrow
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region creating a highly peaked probability distribution in that region (for instance, a narrow

peak similar to the one in Fig 3.2 gets taller). This causes the particles sampled next in the

sequence to ignore the broad thermal background which is now much smaller than the large

peaked distribution, thus leading to a breakdown of this scheme to generate proper 2nd order

correlated data.

3.3 Calculation of the 2nd order correlation function

Having generated the 2nd order correlated data-set following previous sections with the

appropriate parameters like trap frequencies, temperature and time of flight, we are ready to

measure the 2nd order correlation function. Recalling the definition for 2nd order correlation

function, the unnormalised correlation function is given by,

G(2)(r1, r2) = 〈nr1nr2〉, (3.10)

where the averaging in the definition represents ensemble average over the pairs of all parti-

cles. It is related to the joint detection probability of finding a particle at r2 given a particle

at r1. The normalised 2nd order correlation function is given by,

g(2)(r1, r2) =
G(2)(r1, r2)

G(1)(r1, r1)G(1)(r2, r2)
=
〈nr1nr2〉
〈nr1〉〈nr2〉

, (3.11)

where the denominator consists of product of individual single particle densities, which are

difficult to evaluate in an experiment. This is because it requires the precise knowledge of the

local density, n(r) in order to compute 〈n(r)〉 =
∫
n(r)dr/V (which may vary with different

runs of the same experiment as the atomic cloud moves). Alternately, a more convenient way

to normalise G(2)(r1, r2) is to take the ratio between the correlation function for correlated

pairs, G
(2)
c (r1, r2) with the correlation function for uncorrelated pairs which factorises as,

G
(2)
u (r1, r2) = 〈nr1〉〈nr2〉. It is easier to determine G

(2)
u experimentally (or numerically)

by evaluating the G(2) for uncorrelated data. Hence, we work with the following form of

definition for g(2),

g(2)(r1, r2) =
G

(2)
c (r1, r2)

G
(2)
u (r1, r2)

. (3.12)
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In order to compute the correlation function G(2) one needs to histogram the pair separa-

tions between all possible pairs of particles in the ensembles, this would yield G(2)(∆r) ≡
G(2)(0,∆r) = 〈n0n∆r〉 for a given pair separation ∆r. However, this method of histogram-

ming pairs in 3D presents some problems such as unequal sizes of histogram bins (the volume

of a spherical shell bin of radius ∆r scales as ∆r2).

Δz

700μm

Atomic cloud

Cylindrical bin

Atom

x

y

z

Figure 3.4: Binning the pair separations ∆z for atoms lying within 700µm distance of the
selected atom in the xy plane.

Hence to overcome the difficulty presented above, we histogram the pair separations in

1D along the vertical z-axis, as it has a better resolution (∼ 10nm) compared to x and y axes

(∼ 150µm). To compute G(2)(∆z) we use the following binning scheme (Fig 3.4). For each

atom in the generated correlated pairs, we check whether its partner lies within a 700µm

radius bin in the xy plane, if so, we append its vertical separation ∆z to a list. If the partner

in the atom pair does not lie within the bin radius, the pair is discarded and we move to the

next pair. The list of pair separations thus obtained is histogrammed with a bin size of 0.2lz

to obtain correlated G
(2)
c (∆z). A similar histogram is made using the uncorrelated data-set

to obtain the uncorrelated G
(2)
u (∆z). Using the definition of g(2) as in Eq(3.12), we get the

normalised second order correlation function g(2)(∆z).
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3.4 Effect of finite detector resolution

In the computation of 2nd order correlation function in the previous section, a perfect

detector was assumed with arbitrarily low detector resolution. However, in practice the

detector only has a finite resolution which need to be taken into account while estimating

the reduction in the observed bunching amplitude in g(2) function. The effect of resolution

can be modelled by a Gaussian smearing (of width d) of the particle position[13] (Fig 3.5).

Numerically the resolution in incorporated by adding a Gaussian smear of width equal to

the resolution of d = (0.01, 150, 150)µm to the particle positions of both correlated and

uncorrelated data-sets.

x0 x

d

MCP Pores

Electron shower

Delay line wire

Figure 3.5: An oversimplified cartoon of how the Gaussian smearing of particle position due
to electron shower between MCP and DLD detector (section 4.3) may affect the resolution.

According to this model[13], the effect of resolution is captured by convolving with the

Gaussian resolution smear, D(x, x0) = exp(−(x − x0)2/2d2)/
√

2πd2. In a direction α = x

with source size ‘s’ and correlation length ‘l’ at the detector, the in-trap density ρ(x) =

ρ0 · exp(−x2/2s2) upon the Gaussian convolution becomes,

ρobs(x) =

∫
ρ(x0)D(x, x0)dx0 =

ρ0√
1 + d2/s2

· e−x2/2(s2+d2). (3.13)
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Similarly, the 1st order correlation, G(1)(x, x′) = ρ0 · e−
1
2

(x+x
′

2s
)2e−

1
2

(x−x
′

l
)2 scales as,

|G(1)
obs(x, x

′)|2 =

∫
|G(1)(x0, x

′
0)|2D(x, x0)D(x′, x′0)dx0dx

′
0

=
ρ2

0e
− (x+x′)2

4(s2+d2) e
− (x−x′)2

(l2+4d2)√
1 + d2/s2

√
1 + 4d2/l2

.

(3.14)

Thus the observed normalised second order correlation function is given by,

g
(2)
obs(0, 0) = 1 +

∣∣G(1)
obs(0, 0)

ρobs(0)

∣∣2 = 1 +
∏

α=x,y,z

√
1 + d2

α/s
2
α

1 + 4d2
α/l

2
α

. (3.15)

Hence, the observed width of the cloud in the direction α scales as sα →
√
s2
α + d2

α and

the correlation length increases as lα →
√
l2α + 4d2

α, hence reducing the bunching amplitude

(maximum value of HBT bunching) below g(2)(0, 0) = 2. However, note that this model does

not account for reduction in bunching amplitude due to binning.

As discussed in section 3.2 on the method for sampling particles, we fixed the cut-off

length for sampling the second particle in step 2 to be bin width+3d, where d is the resolution.

This length is chosen such that the bin width roughly covers the distribution upto the

correlation length, with the additional three standard deviations 3d covering about 99% of

the distribution under the resolution smearing Gaussian.

3.5 Benchmarking the simulation

We benchmark our code for generating a correlated data-set (as discussed in the pre-

vious sections) by attempting to reproduce the experimentally observed bunching excess

and correlation lengths for the experimental parameters as in [16]. We generate data for a

thermal cloud of 107 correlated pairs of atoms at various temperatures (including T=1.3µK

as in [16]), magnetic trap frequencies (ωx, ωy, ωz) = (51Hz, 565Hz, 565Hz), time of flight

tTOF=0.416 s and a detector resolution of RMS width d = 150µm in the XY-plane. This is

followed by the generation of 107 uncorrelated pairs for normalisation.

The second order correlation functions G(2)(∆z) and g(2)(∆z) are then calculated by

histogramming the pair separations using the procedure described in section 3.3. The ex-
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Figure 3.6: Unnormalised (left) and normalised (right) 2nd order correlation functions for a
thermal cloud at T=800 nK. We have shown the plot for T=800 nK (as a representative)
instead of T=1.3µK (which we intend to reproduce) as the bunching peak is much bigger
and clearer to see at T = 800nK.

pression for the second order correlation function (Eq 2.18, or Eq2.25 for the atomic variant)

is given by g(2)(∆x,∆y,∆z) = 1 + exp
(
− ∆x2

l2x
− ∆y2

l2y
− ∆z2

l2z

)
. Hence we fit g(2)(∆z) to the

following form

g(2)(∆z) = 1 + η · exp
(
− ∆z2

l2z

)
, (3.16)

With the free parameter η quantifying the bunching excess and lz being the correlation length

along the z-axis (vertical direction). Fig 3.6 shows a plot for simulation of unnormalised and

normalised 2nd order correlation functions for an atomic cloud at T = 800nK. Observe that

the bunching amplitude expected from theory (Hanbury Brown and Twiss effect for thermal

bosons, that is g(2)(0) = 2) is clearly reduced in the plot to g(2)(0) = 1.04(2) instead. The

reduction in bunching excess for thermal bosons can be attributed to the following physical

or experimental factors:

1. Binning of data: While histogramming the pair separations along the z axis, we

only considered correlations among particles which lie “close by” in the xy plane by

using a cylindrical bin (Fig 3.4). The particles that lie in the xy plane contribute to

the bunching excess η by the factor exp(−∆x2/l2x − ∆y2/l2y) (Eq 3.16). Choosing a

small enough bin (equivalently ∆x� lx and ∆y � ly) would prevent the suppression

in bunching excess at the cost of less pairs per bin, hence increasing the time required
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to run the simulation. On the other hand, if the bin size is large, it would have an

averaging effect that would reduce the bunching excess; however, we gain signal-to-

noise by having more pairs per bin. Hence, an optimal bin size should be comparable

to the correlation lengths, which in this case are lx ∼ 40µm and ly ∼ 450µm at 1.3µK.

The experiment[16] we are trying to reproduce chooses a bin size of 700µm (and so do

we) although their detector resolution (150µm) is much smaller than this.

2. Detector resolution: As discussed in section 3.4, the effect of detector resolution can

be modelled by adding a Gaussian smear to the particle positions. Thus this smearing

of data due to resolution can reduce the bunching excess. Upon assuming ideal binning

(one which doesn’t affect the bunching), the bunching excess η due to finite detector

resolution is given by (cf Eq 3.15)

η =
∏
α

√
1 + d2

α/s
2
α

1 + 4d2
α/(l

(d)
α )2

. (3.17)

Setting the RMS width of the detector resolution for experiment[16], d = 150µm in

the above formula gives a bunching excess η = 0.11 which overestimates the value

η = 0.022(2) as observed in the experiment by a factor of 5. This is because the

reduction in bunching due to binning (as discussed in point 1 above) is not accounted

for while calculating η in Eq 3.17.

3. Formation of condensate: After crossing the critical temperature for Bose-Einstein

condensation, the condensate density ρ0(r) cannot be ignored (cf Eq 2.26) in the ex-

pression for G(2) function. This results in the g(2)(0, 0) given by

g(2)(0, 0) =
G(2)(0, 0)

ρ(0)ρ(0)
= 1− ρ0(0)ρ0(0)

ρ(0)ρ(0)
+���

���
�:1

|g(1)(0, 0)|2 (3.18)

Thus the condensate density term (with ρ0(0)) is capable of pulling down the value

of g(2)(0, 0) below 2. However, In our case, this factor is not applicable as we are

simulating a thermal cloud of atoms above the critical temperature.

We simulate the correlation functions for a couple of temperatures including T = 1.3µK

in order to observe the scaling of correlation function with temperature (and to compare

it with theoretical scaling). The simulation results for scaling of correlation length and

bunching excess with temperatures ranging from 0.1µK-10µK are summarized in Fig 3.7.
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Figure 3.7: Scaling of correlation length and bunching excess with temperature obtained
from simulation. The orange diamond shows the experimental values[16] for the respective
plots. The grey shaded region represents the theoretical bounds on bunching excess due to
resolution as discussed in the last paragraph.

These plots are obtained by generating a 2nd order correlated data-set with fixed system

parameters as used in experiment[16] at different temperatures (Fig 3.6 shows a plot for

T = 800nK for instance) and fitting it to Eq 3.16. The fitting gives us the correlation length

lz and the bunching excess η. For each temperature, we average over 4 data-sets. In Fig

3.7, the left plot represents the correlation length of lz obtained from simulation with the

incorporation of resolution (Red line) compared to one without accounting for the resolution

(Blue line). Recall that the correlation length at a given temperature T (Eq 3.3) scales as

1/
√
T which is plotted as the green line.

For T = 1.3µK the experiment[16] obtains a value of correlation time of t = 90(10)µs

which can be converted to correlation length by multiplying with the velocity of the centre

of mass of the atomic cloud as it hits the detector, v = gtTOF ≈ 4m/s, giving a correlation

length of lz = vt = 360(40)µm. From our simulation, we obtain lz = 370(60)µm. Similarly,

the right plot in Fig 3.7 represents the fit values for bunching excess η obtained from sim-

ulation with and without resolution, respectively. The experiment[16] measures a bunching

excess of η = 0.022(2) and the simulation gives a bunching excess of η = 0.029(5). The

uncertainties in the simulation values for η and lz represent the standard deviation of the 4

data sets obtained from the simulation. The results are summarised in table 3.1.

From the plots in Fig 3.7, it seems that incorporating detector resolution into the simula-

tion has little effect on both correlation length and bunching excess. This could be because

the reduction in bunching caused by binning the data in 700µm bins may dominate the
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Bunching Excess(η) Correlation length(lz in µm)
Simulation 0.029(5) 370(60)
Theory[16] 0.025(5) 320(80)

Experiment[16] 0.022(2) 360(40)

Table 3.1: Simulation and experimental values[16] (with theoretical estimates) for bunching
excess and correlation length at 1.3µK.

reduction in bunching due to the detector resolution of 150µm. However, we can still use

the resolution of d = 150µm in Eq 3.15 to obtain a rough theoretical upper bound for the

expected bunching due to the finite resolution of the detector. Similarly, we can obtain a

lower bound for bunching by considering the extreme case with a detector resolution com-

parable to the bin size, that is d = 700µm. In Fig 3.7, the grey shaded region in the plot for

bunching excess represents the range of possible values of bunching excess calculated using

Eq 3.17 with 150µm < d < 700µm as discussed above.

3.6 Results: Expected bunching in our setup

Having benchmarked the simulation in the previous section, we repeat the simulation

with the trap parameters of our crossed optical dipole trap. We use the simulation to

estimate the 2nd order correlation expected from our system of He* atoms with temperature

T = 13µK trapped in a crossed optical dipole trap with trap frequencies (ωx, ωy, ωz) =

(1190Hz, 600Hz, 1340Hz), time of flight tTOF=0.298 s and a detector resolution of RMS

width d = 150µm in the XY-plane. For the purpose of the simulation, 107 correlated

and uncorrelated pairs are generated. Note that the above-mentioned trap frequencies are

calculated by using the powers in the beams of the dipole trap (by fitting a parabola to

the potential U obtained from Eq 1.19) and are yet to be experimentally measured. The

following plots in Fig 3.8 shows the simulation result for 2nd order correlation function with

our system parameters as mentioned above.

We obtain the following values (Table 3.2) for the expected bunching excess and corre-

lation length after averaging over 5 runs of simulations. Where the theoretical upper and

lower bounds for η are found using Eq 3.17 with the resolutions d = 150µm and d = 700µm

respectively following similar considerations as in section 3.5. Hence it is reasonable to as-
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Figure 3.8: Unnormalised (left) and normalised (right) 2nd order correlation functions for
thermal atoms in optical dipole trap.

Bunching Excess(η) Correlation length(lz in µm)
Simulation 0.040(4) 220(20)

Theory [Eq 3.17,3.3] 0.011-0.196 240

Table 3.2: Simulation and theory values for expected bunching excess and correlation length
for our system of thermal atoms in optical dipole trap.

sume that we can observe the bunching effect from the thermal cloud in our optical dipole

trap frequencies with the given detector resolution. Furthermore, we could optimise the

experimental sequence to compress the optical dipole trap after evaporation, which would

increase the trap frequencies and hence the correlation length, make the bunching even more

apparent. Additionally, the observed bunching could also be increased by using a smaller

bin size (compared to the currently used 700µm bin-size).
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Chapter 4

Experimental Methods and Results

4.1 The He* BEC Apparatus

In section 1.2, we discussed the physical principles involved in cooling and trapping atoms,

we now use these to describe the process involved in cooling and trapping He* atoms followed

by the formation of BEC of He* atoms[8].

The procedure for cooling He* atoms to achieve a Bose-Einstein condensate begins with a

discharge source which produces He* atoms moving at high velocities of the order 1000m/s.

These atoms are slowed down to velocities of the order 10cm/s by passing through various

cooling and trapping stages as a part of the He* BEC apparatus (Fig 4.1) to reach the

condensate phase.

The first stage of the apparatus consists of a high voltage cryogenically cooled DC dis-

charge source which excites the gas of He atoms to various excited states due to bombardment

with high energy electrons. The source is cooled by liquid nitrogen for the removal of excess

heat generated by the discharge and collision process, and it cools the atoms down to liquid

nitrogen temperatures (∼ 77K). From this soup of He excited states, electrons and ions

present in the source chamber, we are only interested in trapping atoms in the 1st excited

(metastable) state which constitutes only a tiny fraction(∼ 10−4 to 10−5)[8] of the total num-

ber of particles. As only the He* atoms interact with 1083nm laser light resonant with the

laser cooling transition for He* atoms, these atoms can be selectively targeted and separated
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Figure 4.1: A schematic diagram of the He* BEC apparatus

from the rest of the excited states by using this laser.

The atomic flux is then passed through a collimator which consists of two pairs of counter-

propagating red-detuned laser beams in the directions orthogonal to the axis of the He*

flux. It helps in reducing the velocities in the directions transverse to the desired direction

of propagation. The collimated flux is then fed into a Zeeman slower which slows down the

atoms from about 1000m/s to about 100m/s. As the atoms slow down, the Doppler shift

needs to be readjusted to match the resonance condition, which is achieved by a variable

magnetic field produced by the Zeeman slowing coils (as discussed in section 1.2.1).

After slowing down an order of magnitude in velocities from the source to Zeeman slower,

the atomic flux then enters the magneto-optical trap (MOT) which plays a crucial role in

the production of BEC by simultaneously cooling and trapping the atoms (section 1.2.2).In

our case we have two MOTs instead of one as the velocities of atoms in the 1st MOT are still

high enough(∼ 100 − 10m/s) for effectively capturing the atoms. To achieve high loading

rate and low two-body losses due to Penning ionisation, the MOT consists of laser beams

with large waists to have a large capture fraction, and it operates at low-density conditions

to prevent the losses. The density is increased after cooling by compressing the MOT.

The cooling in the MOT is insufficient to increase phase space density (∼ NT−3/2)
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beyond its critical value for Bose-Einstein condensation. Hence, the cold atoms (∼ 1mK

temperature) from the MOT are transferred to a conservative trapping potential such as a

magnetic trap for in-trap cooling, followed by an optical dipole trap for evaporative cooling.

In the case of an optical dipole trap, the height of the trap is lowered to allow the high

energy atoms to escape the trap, leaving behind atoms with a lower temperature. This gives

a high enough phase space density to achieve a quantum phase transition to a BEC.

4.2 Temperature estimation

We can estimate the temperature of a trapped atomic cloud by using a technique known

as absorption imaging. In this technique, a low-intensity near-resonant beam (λ = 1083nm)

is shone on an atomic cloud and an image of the shadow cast by the cloud after absorbing

the light is captured by a CCD camera (Fig 4.2 (a)). A similar image without the atomic

cloud is taken a few milliseconds after the first image (Fig 4.2 (b)). These images are filtered

by subtracting a reference image taken by blocking the Zeeman slower (i.e. with no atoms

trapped), this subtracts off the noise due to factors like scattered light, beam movement, etc

and we obtain a clearer image (Fig 4.2 (c) and (d)).
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Figure 4.2: (a) image with cloud (b) image without cloud. (c) and (d) represent background
subtracted images for (a) and (b) respectively. The xy axis represents camera pixels.

Beer’s law states that light intensity decreases exponentially from I0 to I after travelling

through a medium of optical density OD, that is, I = I0exp(−OD). Thus the optical density

of the medium is given by

OD = log
(I0

I
). (4.1)
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We use the 2D intensity profile for the absorption images with the cloud, I and without the

cloud, I0 to compute the optical density profile. This profile is then used to fit a 2D-Gaussian

along the r and z axes as shown in Fig 4.3 which contains the OD profile for an atomic cloud

trapped in a magnetic trap. The Gaussian widths of the cloud can be used to determine

the temperature after a time of flight measurement. For the time of flight measurement,

we release the atoms from the trap to free fall under gravity for a fixed interval of time,

during which the cloud expands with an RMS velocity v =
√
kBT/m in each direction. This

expansion of the cloud in a given direction with an initial width of σ0 for a time of flight

(TOF) t is given by

σ =
√
σ2

0 + v2 · t2. (4.2)

Thus by measuring the width of the cloud after several time of flight measurements, one can

obtain the temperature by fitting σ vs t.
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Figure 4.3: Typical optical density profile for atoms trapped in a magnetic trap. The two
plots on the top show the optical density profile (with raw image on the left and smoothened
image on the right), the bottom panel shows the Gaussian fit along z and r axes (1 pixel=
20µm).
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4.2.1 Results: Absorption imaging

Using absorption imaging as discussed in section 4.2, we estimate the temperature of

the cloud in the magnetic trap (with and without in-trap cooling) by using the technique of

absorption imaging.

We take the absorption images for the atomic cloud in the magnetic trap (in situ) and

after dropping the cloud from the magnetic trap for various time of flights ranging from 0 to

2ms. This is done for two different cases, namely, with 400ms of in-trap cooling present and

with in-trap cooling switched off respectively. We then obtain the widths of the expanded

clouds at a different time of flights by fitting the Gaussian optical density profile (see Fig 4.3

for example). The two Gaussian widths σz and σr along the vertical (z) and horizontal (r)

direction respectively are plotted with respect to time of flight to obtain the temperature

using Eq 4.2 for σ = σz and σ = σr. Fig 4.5 shows the results for σz and σr vs time of fight

t for the atomic cloud in magnetic trap without in-trap cooling, with Fig 4.4 showing a few

representative atomic cloud images (optical densities) for different time of flights.
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Figure 4.4: Time of flight profile without in-trap cooling (1 pixel = 20µm).
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Figure 4.5: Cloud widths vs time of flight with no in-trap cooling.
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The error bars on the plots (4.5) represent the data points for 2 sets of measurements

at a given time of flight. The first point with zero time of flight (in situ) is not used for a

fitting because it is imaged in the presence of a magnetic field in the magnetic trap and all

the others are time of flight measurements after magnetic trap switch off. Furthermore, the

widths of the in situ cloud seem to lie below the fit intercept σ0, a reason for this can be that

the laser beam in the magnetic trap is resonant only with some fraction of the cloud; hence

we can image only that fraction. Similarly, we plot the data for the atomic cloud with 400ms

of the in-trap cooling stage (that is by shining a red-detuned vertical laser beam for 400ms

before switching off the magnetic trap) as shown in Fig 4.6 and Fig 4.7. A possible reason

for the asymmetric expansion along the z and r axes of the cloud as seen in the Fig 4.6 could

be because the in-trap cooling beam may be compressing the cloud along the z axis (in the

image). This may also suggest that the cloud didn’t have sufficient time to re-thermalise,

leading to different temperature measurements along different directions (table 4.1).
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Figure 4.6: Time of flight profile with in-trap cooling (1 pixel = 20µm).
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Figure 4.7: Cloud widths vs time of flight with in-trap cooling.

Using the RMS velocities (obtained from fitting) we obtain the following temperature

of the atomic clouds with and without in-trap cooling as presented in Table 4.1. Thus we

see that the in-trap cooling stage cools the atoms by about a factor of 8 from T ∼ 1.6mK
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without in-trap cooling to T ∼ 260µK with in-trap cooling.

No in-trap cooling in-trap cooling
axis z r z r

v (in m/s) 1.93(6) 1.69(3) 0.55(2) 0.873(3)
T (in µK) 1800(60) 1380(25) 150(5) 370(1)

mean T (in µK) 1600(60) 260(5)

Table 4.1: Temperatures with and without in-trap cooling.

4.3 Far-field single atom detection

The single-atom detection capability offered by meta-stable helium enables us to recon-

struct the 3D profile of the cold atomic cloud. Using this profile, one can easily calculate the

second-order correlation function (or any order in general) by histogramming the particle

pair separations along the z-axis as discussed in section 3.3. Throughout the rest of this

thesis, we refer to the process of a particle hitting the detector as an event.

MCP

DLD

Figure 4.8: The microchannel plate and delay-line detector (left) with cross section of vacuum
chamber hosting the detector (right), with the detector sitting below the 2nd MOT chamber
(Fig 4.1).
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The detector apparatus for performing the far-field single-atom detection (and hence the

correlation function measurement) consists of a microchannel plate (MCP) and a delay line

detector (DLD) along with other auxiliary electronics (Fig 4.8). The raw data in the form of

pulse arrival times being output from the apparatus is reconstructed into meaningful events of

the location of atoms hitting the delay line detector using a script on the computer. Once the

events are reconstructed, another script can be used to calculate the second-order correlation

function (we have written the script but haven’t computed the correlation function due to

some technical issue as discussed in section 4.3.5). In this section, we will briefly discuss

about each of the above components involved in the far-field single atom detection (and

hence the correlation function measurement).

4.3.1 Microchannel plates (MCP)

The microchannel plates are a pair of 80mm wide stacked discs with an array of 12µm

diameter pores with each pore acting as an electron multiplier (Fig 4.9). In an event of a

He* atom hitting the MCP surface, one or more electrons are ejected from the surface by

releasing the high internal energy of the He* atom (∼ 20eV ) which is greater than the work

function for typical metals (∼ 5eV ). The ‘primary’ electron(s) triggers a shower of other

secondary electrons to be ejected down the MCP pore, thus amplifying the electron(s) to a

obtain a measurable current. The potential difference of 2.05kV between the front and back

faces of the MCP sets the amplification factor (∼ 107 [28]).

(a) (b)

Figure 4.9: (a) Cross section of a microchannel plate (MCP). (b) Two MCPs stacked in
chevron (or V-shape) configuration (image source: [27]).
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In order to extract the spatial location and timing of the event, the current from the

MCP is directed towards the DLD. However, even by itself, the MCP is a useful tool to

electronically detect the count rate of He* atoms and ions falling onto its surface. One can

measure the time of flight profile even for a very small number of atoms (say released from

the optical dipole trap) due to the single-atom detection capabilities, which is not usually

measurable by saturated absorption imaging (section 4.2), as that requires a larger number

of atoms for absorbing sufficient amount of light. On dropping a cold gas of atoms (below

its critical temperature for condensation) on the MCPs, the time of flight (TOF) obtained

provides a useful method to find the condensate fraction of the cloud by fitting the TOF

peak to a Thomas-Fermi profile with a thermal tail (as discussed in the following section

4.3.2).

Estimating the quantum efficiency of the MCPs

When the particles hit the MCPs, only a fraction of them get converted to counts on the

MCP. This fraction is known as the quantum efficiency (QE) of the detector. The QE is an

important parameter for the MCP which helps one convert the counts obtained on the MCP

to the number of atoms falling on the MCP. To determine the number of atoms falling on

the MCPs, we need to take into account the geometry of the MCPs and the spatial extent

of the atomic gas (Fig 4.10). We calibrate the total number of atoms falling on the MCP

from the MOT by measuring MOT fluorescence, which yields ∼ 1.2× 108 atoms at ∼ 1mK

(obtained from absorption imaging).

MCPs atoms that
fall on the MCPs

atoms outside
the MCP range

Figure 4.10: Out of the total atoms (blue) released from the MOT, only a fraction of atoms
in the cylindrical region above the 80mm diameter MCPs are incident on the MCP surface.
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The fraction of atoms, f , of the total number of atoms from the MOT that actually hit

the MCPs is given by

f =

∫
MCP

dx.dy.dz.exp(−x2+y2+z2

2σ2 )∫
Total

dx.dy.dz.exp(−x2+y2+z2

2σ2 )
=

∫ 4cm

0
rdr · exp(− r2

2σ2 )∫∞
0
rdr · exp(− r2

2σ2 )
= 1− e−8cm2/σ2

, (4.3)

where, atoms are assumed to occupy Boltzmann distribution at a temperature T with the

width, σ =
√
kBT/mtTOF and the time of flight tTOF = 0.29s. At 1mK, the width of the

atomic cloud, σ = 43cm is larger than the MCP diameter of 8cm, with f = 0.034. Thus

the fraction of atoms falling on the MCPs= f × 1.2× 108 = 4.08× 106 atoms. However the

MCP registers ∼ 2.3× 105 counts. Thus quantum efficiency is estimated to be

QE =
MCP counts

No. of atoms falling on MCP
=

2.3× 105

4.08× 106
= 5.6% (4.4)

4.3.2 Results: Time of flight signal from MCP

In this section, we present a typical time of flight trace obtained form the MCP, followed

by a discussion of the bi-modal distribution (of BEC and thermal atoms) that indicates the

onset of BEC. The following plot, Fig 4.11, represents a trace of spatially integrated (over

x-y plane) count rate of our experimental sequence for loading the optical dipole trap and

producing a BEC of He*.

The plot can be divided into 4 sections of interest,

1. MOT loading: The first broad signal occurring between t=0 to 1s represent MOT

loading. As the He* atoms enter the MOT, they undergo collisions among themselves

(Penning ionisation) as well as the walls of the vacuum chamber. This leads to ionisa-

tion of He* atoms which is registered as the broad ion signal on the MCP.

2. Untrapped atoms from the magnetic trap: The first big peak occurring close to

1.5s in the sequence occurs because during this time we are in the process of transferring

atoms from the MOT to a magnetic trap. The magnetic trap can only confine the low

field seekers, mJ = 1 sublevel and the remaining atoms in the mJ = 0,−1 sublevels

fall out of the trap and register a peak close to t=1.5s.
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Figure 4.11: MCP Trace for optical dipole trap loading to from condensate followed by a
time of flight measurement.

3. Magnetic trap ramp down: The second big peak occurs close to t=2.2-2.3s. Al-

though this ‘M’ shaped feature looks like twin peaks, however, it is just a single peak

that has saturated the MCPs, burning a hole at the centre of the peak. The hole is

filled after the MCPs regain their charge, which is seen as the 2nd peak of the ‘M’

shape. The peak occurs after we ramp down and switch off the magnetic trap, which

releases the He* atoms that are not captured by the dipole trap and fall onto the MCP

giving this peak.

4. Optical dipole trap switch off: From the magnetic trap, the atoms are transferred to

a tighter optical dipole potential (with larger trap frequencies) in order to evaporatively

cool the atoms to degeneracy and obtain a Bose-Einstein condensate. After evaporative

cooling, achieved by lowering the optical potential, we are left with a finite fraction of

atoms in the condensate phase, which are detected on the MCP by switching off the

optical dipole trap. We then fit this time of flight profile to a bi-modal distribution

(details in the following section) consisting of a Thomas-Fermi distribution for the BEC

fraction and a Boltzmann distribution for the thermal fraction as shown in the inset

(zoomed in on the peak).
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Fitting the bi-modal distribution

We fit the peak from the optical dipole trap switch off, Fig 4.11, as is shown in the

following Fig 4.12 with a bi-modal distribution. The bi-modal distribution represents a

Thomas-Fermi fit (section 1.1.2) for the BEC fraction and a Maxwell-Boltzmann fit to the

thermal fraction. This is an important plot which shows the onset of BEC. To obtain the

temperature from the thermal part of the cloud, we fit it to a Maxwell-Boltzmann distribution

spatially integrated in XY to give count rate of atoms as a function of time given by [23],

n(t) = πv2
mp

(
m

2πkBT

)3/2(
l0 + gt2/2

t2

)
exp

(
− (l0 − gt2/2)2

v2
mpt

2

)
, (4.5)

where, m is the mass of He, T is the temperature, l0 is the falling distance, vmp =
√

2kBT/m

is the most probable thermal velocity and t is the time of flight. From this fitting we obtain

a temperature of 8µK for the cloud. Given the trap frequencies used for the optical dipole

trap of (725, 370, 815)Hz and the total atom numbers N = 1.6 × 105, we obtain a critical

temperature[24] of Tc = 0.94~ω̃N1/3/kB = 9.96µK, where ω̃ is the geometric mean of the

trap frequencies. We obtain a condensate fraction of N0/N = 0.46, where N0 and N are the
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Figure 4.12: Bi-modal fit for the BEC fraction (Green) and the thermal fraction (Black).

number of atoms in the BEC and the total number of atoms respectively. The numbers,

N0, N are proportional to the area under the curve for BEC fit and the combined fit

respectively. Furthermore, as discussed in section 1.1.2, we fit the BEC fraction to a Thomas-

Fermi distribution with Thomas-Fermi radius ∼ 2cm (which reflects the momentum width

in far-field after trap switch-off).
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4.3.3 Delay line detector(DLD)

The MCP is useful for getting a spatially integrated time of flight profile for particles

falling on its surface. However, in order to compute correlation functions such as the 2nd

order correlation function, one also needs be able to spatially resolve the location of individual

particles in the XY plane (as required by the binning scheme in Fig 3.4). This is where the

delay line detector is useful to spatially resolve the particle positions in the XY plane, with

the fall time on the detector giving location along the Z axis.

x1

x2

y1

y2

z1

z2

w=(z1-z2).vp 

u=(x1-x2).vp 

v=(y1-y2).vp 

X

Y

(a)

x1

x2

X

Y

electron 
pulse 

(b)

Figure 4.13: (a) Hexagonal (u,v,w) and Cartesian (X,Y) coordinates on the DLD. The 3
wires shown in pink, green and purple are wound at an angle of 60o with each other. (b)
Pulse propagation on a single winding of DLD. Location of am event is inferred from the
arrival time difference between x1 and x2.

The Hexanode delay line detector consists of 3 wires wrapped along a hexagonal disc

(only one of the 3 wires in Fig 4.13a is shown in Fig.4.13b), each wire has two ends (labelled

x1 and x2 in this case). When the electron shower from the MCP strikes a wire, it causes

two pulses to travel in either direction along the wire (blue and red pluses in Fig. 4.13b).

Based on the difference in arrival times of the signals at both ends of the wire (x1−x2), one

can spatially pinpoint the location of the event of a He* atom hitting the detector along the

axis perpendicular to the direction of the wire winding. For instance, when the difference in

arrival times is 0, we know that the event should have occurred at the mid-point of the wire

and when the time difference takes its maximum possible value, the event can be located at

the edge of the detector. Perpendicular to the wire windings as shown in Fig 4.13b, the event

can be located at (x1 − x2) · vpx, where vpx is the velocity of propagation of the pulse in the
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direction perpendicular to the wire, which is typically of the order ∼ 1mm/ns. Similarly,

arrival times on the remaining two wires yields the following location (Fig 4.13a),

u = (x1 − x2) · vpx
v = (y1 − y2) · vpy
w = (z1 − z2) · vpz + o,

(4.6)

where vpi, i = x, y, z are the velocities of propagation for the corresponding wires, which in

general may be different considering that the lengths of the wires are slightly different. o

represents an offset which can be fixed by comparing u, v, w for the same event. Another

important quantity to consider is the time taken for a pulse to traverse the entire length of

the wire, known as the Tsum, which sets a time-scale for the reconstruction of the events.

To locate the event (atom hitting the detector) in the XY plane, we can use the location

of the event on any two of the three wires of the DLD (which is nice because we have

redundant information which can be used in case of missing pulse on up to 3 out of the 6

ends of the wires). The positions u, v, w are given in the hexagonal coordinates system which

can be transformed back into the usual XY coordinates in three possible ways depending

on the choice of two out of three hexagonal coordinates (u, v, w). A simple coordinate

transformation yields the following:

Xuv = u,

Yuv = (u− 2v)/
√

3.
(4.7)

Xuw = u,

Yuw = (2w − u)/
√

3.
(4.8)

Xvw = w + v,

Yvw = (w − v)/
√

3.
(4.9)

Having located the event in XY plane, we can determine its location on the Z axis (or

time t axis) by using the following constraint,

t =
1

2
(x1 + x2 − T xsum), (4.10)
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Where t is the arrival time of the atom on the detector and T xsum is the total propagation

time along the x wire winding. One can similarly use y1, y2 or z1, z2 to find t. As the atoms

free fall in the Z direction, the Z coordinate is given by Z = −gt2/2. The (X, Y, t) position

of the atoms thus obtained reflects the initial in-trap momentum-space distribution of the

atomic cloud in the far-field. This allows for empirical measurement of various orders of

momentum space correlation functions. In our case, we use the (X, Y, t) information to

compute the second-order correlation function by histogramming the pair separations, for

example by using the method as discussed in section 3.3.

4.3.4 Data Acquisition and Processing

In this section we take a short digression to discuss how raw pulses exiting the DLD wires

are converted into the location information of the particles. The hardware following the DLD

records the arrival times of the pulses arriving at the 6 ends of the 3 DLD wires. The small

analogue pulse at the end of the DLD is converted to a digital pulse to record its arrival time

(See Fig 4.14b, where an analogue pulse in top-yellow inset in converted to a digital pulse, as

shown by a yellow pulse in the bottom). The digital pulse is then binned into 25ps time bins

and written to a file with channel number vs time information. We have written a python

script that matches signals from each of the 6 channels (namely x1, x2, y1, y2, z1 and z2) of

the DLD, grouping them into an event (details in the next section). Lastly, by accounting

for the hexagonal geometry of the DLD wire windings and the time required by the pulse to

traverse the entire length of a wire, the event is assigned a position and time.

MCP DLD

FAMP CFD TDC

PC

Detector Stack:

Electronics:

Reconstruction & Analysis:

(x,y,t)

(Channel,t)

(a)

signal after FAMP

CFD signal: Analogue monitor

CFD signal: Digital monitor

Final digital CFD output

(b)

Figure 4.14: (a) Flowchart showing the pulse shape after each processing stage. (b) Oscil-
loscope trace showing the analogue pulse from FAMP (inset top-right) being converted to a
digital pulse (bottom, yellow) by the CFD.
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The auxiliary electronics like a fast-signal amplifier (FAMP), a constant fraction discrim-

inator (CFD) and a time to digital converter(TDC) help in converting the raw pulse from

DLD into channel number vs time data (4.14a). The FAMP or fast signal amplifier amplifies

the fast (pulse duration∼ 20ns) and weak (< 2mV ) analogue pules to a measurable value

of about 20mV. The CFD converts the amplified analogue pulse into a digital pulse which

can be timed (Fig 4.14b). The pulses arriving at the same time from the FAMP, usually

have variable amplitudes which can result in an error in estimating their time of arrival,

as is the case with leading-edge discriminators that record the time at with a pulse attains

certain specified slope (Fig 4.15b). However, the CFD circumvents this problem by inverting

a fraction of the original pulse and adding it to the original pulse with a delay (Fig 4.15a).

This results in an oscillatory pulse waveform (shown as the end product in Fig 4.15a) whose

zero crossing value can be used as an accurate time measurement (as shown in Fig 4.15b).

Hence, the CFD uses this timing information to output a digital pulse with the appropriate

arrival time.

(a)

t1 t2

t1=t2

Leading
Edge
Discriminator

Constant
Fraction
Discriminator

(b)

Figure 4.15: (a) Modification of analogue pulse to create a zero point crossing (along Y
axis)[28]. (b) Pulses of variable height timed by leading edge (top) vs constant fraction
discriminator (bottom).

The TDC then records these digital pulses by binning them into 25ps bins corresponding

to the channel number (1-6) on which the pulse had arrived. The channel number vs time

information is used by the PC to reconstruct events and write their position (X, Y) and time

(t) of hitting the detector surface (details in the next section).
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Event Reconstruction Algorithm

To obtain the (X, Y, t) coordinates of particles from the channel number vs time data

output by the TDC, one needs to match the different pulses on the 6 different channels and

group them into a single event (of a particle hitting the detector). It is usually the case

that we get a pulse train of closely occurring events instead of single widely spaced pulses,

and sometimes we may miss a pulse on one or more channels. Furthermore, we can have

multi-hits within a narrow window of time which are difficult to resolve into separate events

(In our case, we discard the multi-hits). Hence, to accurately reconstruct pulses into events,

one needs to systematically scan through the pulses on the 6 channels and check for specific

conditions for the pulses to be grouped into an event.

x1

x2

y1

y2

z1

z2

Pulses on the 6 DLD channels

event?

y1 x1 z2 y1 x2 y2 z1 y1x1 z2

TATB

TC

x1

x2

y1

y2

z1

z2

Figure 4.16: Grouping a set of 6 unique pulses from the ends of DLD (green) into an event
by checking for certain conditions as mentioned below. The red pulses are assumed to belong
to the neighbouring event while considering the green pulses as a candidate for an event.

To reconstruct the events we implement an algorithm to check for the following conditions

(refer to Fig 4.16):

1. Loop through all the pulses in the channel number vs time data-set and select 6 con-

secutive pulses in time (say the green pulses in Fig 4.16) to check whether they belong

63



to the same event.

2. Check whether the group of 6 selected pulses consist of pulses from all the 6 unique

channels (x1, x2, y1, y2, z1 and z2) and that they lie within a time window of Tsum from

each other, that is, TA < Tsum. The threshold is chosen to be Tsum as it’s the maximum

time that a pulse can take to arrive at the end of a DLD winding.

3. Check that this group is well separated in time from its neighbouring pulses to ensure

that it doesn’t contain a pulse that intersects with the neighbouring group (or event).

This is implemented by checking the conditions TB > Tsum for comparison with the

previous event and TC > Tsum +Tdead for comparison with the succeeding event, where

Tdead = 25ns is the dead time of the detector.

After reconstructing the events, one needs to convert the arrival time information into

(X, Y, t) following the scheme discussed in section 4.3.3.

Note that for the reconstruction we have assumed that pulses from all 6 channels are

present for the events. However, by making this assumption, we are ignoring events which

have missing pulses on one or more channels. This is where the redundant information carried

by the Hexanode delay line detector comes to the rescue, which allows one to reconstruct

events with up to 3 out of 6 missing channels. This can be done by using the fact that the

arrival time can be written in 3 different ways,

t =
1

2
(x1 + x2 − T xsum) =

1

2
(y1 + y2 − T ysum) =

1

2
(z1 + z2 − T zsum) (4.11)

As these are 3 equations with up to 3 unknowns (timings of the missing pulses), we can

figure out the value for the missing channel(s). For instance, in the case when one of the

channel is missing (say x1), we can salvage it by using the above equation in the following

possible ways,

x1 = y1 + y2 − x2 − T ysum + T xsum,

x1 = z1 + z2 − x2 − T zsum + T xsum.
(4.12)

Note that the redundant information reconstruction as discussed above was not tested or

implemented in our system due to time constraint, but is a next planned step for the detector.
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4.3.5 Results: Reconstruction of DLD signals

To calculate a correlation function, one needs to have the (X, Y, t) coordinates of the

atoms in the cloud as they hit the detector. As discussed in section 4.3.3, the signal arriving

at the DLD from the MCP can be resolved spatially to give the (X, Y, t) coordinates of

the atoms using the event reconstruction algorithm (section 4.3.4). We reconstruct the 3D

profile for atoms released from the optical dipole trap (corresponding to the rightmost peak

in the MCP trace 4.11) with and without evaporation cooling as summarised in Fig 4.17 and

Fig 4.18 respectively. These figures contain 4 different subplots, namely, X-t, Y-t and X-Y

histogram along with the full 3D XYt profile. The color-bar represents the number of atoms

in the histogram bins.

Figure 4.17: DLD reconstruction of atoms released from optical dipole trap with evaporative
cooling. The images show the bi-modal distribution (close to t=3.5s) with the BEC found
at the high density region, accompanied by a narrow thermal tail around it.

We can observe that the X-t and Y-t histograms fall in a narrow time window for the

cloud with evaporative cooling (Fig 4.17) than without the cooling (Fig 4.18). This is because

cooling reduces the spread in velocities for the thermal component which is reflected in the

65



Figure 4.18: DLD reconstruction of atoms released from optical dipole trap without evap-
orative cooling. As the BEC fraction is reduced compared to Fig 4.17, more atoms now
occupy the (broad) thermal part as seen in this figure.

temporal histograms. Furthermore, even the X-Y spatial widths of the cloud are narrower in

the case with evaporative cooling due to the same reason as discussed above. One can notice

that there seems to be a hole (lack of data points) around (0,0) in the X-Y histograms in

both the figures. This could possibly be due detector saturation. Furthermore, the paper[26]

shows the occurrence of a similar hole which it attributes to the electronic dead time of the

detector of ∼ 10ns, however the dead time is a single channel effect and we haven’t observed

any time delay across channels that could result in such a hole. Another point of concern is

that we get a horizontal streak pattern close to X=0 in the X-t histograms and Y=0 in the

Y-t histograms that suggest a lack of data on the streak line (clearer in Fig 4.18). Having

this hole and the streak in the data poses a problem for calculation of correlation function, as

some of the correlated data is lost. Apart from these issues, there is another major problem

of inconsistent reconstructions (discussed in section 4.3.5) that limits our ability to calculate

the correlation function using the above reconstructed 3D profile.
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Calibrating the DLD parameters

There are three possible ways to reconstruct the positions of the particles, namely by

using a pair of wires uv,uw or vw (see Eq 4.7, 4.8, 4.9). However, we observe that locations

of particles obtained from the 3 reconstructions are not consistent with each other, that is,

for a given particle, we obtain 3 different locations following the 3 reconstruction schemes.

This can be seen in Fig 4.19b where we show a sample of 10 reconstructed triplets for a given

data-set. From Fig 4.19b, notice that the 3 reconstructions are farther away from each other

for some points compared to others (for instance, the top half compared to the bottom). Fig

4.19a shows the reconstructed points stacked over the MCP area of 80mm diameter.
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Figure 4.19: (a) The three reconstructions over MCP area (black circle). (b) 10 sample
points from the three reconstructions.

Hence in an attempt to get the three reconstructions to agree (by bringing them as close

as possible), we try to optimize the DLD parameters such as velocities (vx, vy, vz) along

the 3 wires and the relative offset (o) in one of the wires (see Eq 4.6). For the optimiza-

tion, we define a cost function which is directly proportional to the distance between the 3

reconstructions, which we minimize with respect to the above mentioned free parameters.

Furthermore, in order to prevent all the points from collapsing onto the origin (0,0), which

may happen if the fit returns 0 velocities, we also penalize the cost function by dividing by

the average distance of the 3 reconstructions from the origin. We measure the success of the

optimization by the fraction of reconstructed triplets that lie within 1mm from their average

position. Even after running the optimization routine, we are only able to get about 60-70%
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of the triplets to lie within 1mm radius of each other (Fig 4.20a)
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Figure 4.20: (a) Histogram showing the distribution of distances among the 3 reconstructions.
(b) Estimating Tsum for each of the 3 wires by histogramming T isum

Furthermore, as an alternate scheme to determine the velocities of propagation perpen-

dicular to the 3 wires, we histogram the time sums x1 + x2, y1 + y2 and z1 + z2 to determine

the propagation time, Tsum for each wire (see Eq 4.11, section 4.3.3 for definitions). The

following Fig 4.20b shows a plot for T isum = ri1 + ri2 − 2t, where i = x, y, z and t is the

time of arrival of the particle on the MCP. From this plot, we obtain the values of Tsum as

summarised in the plot, which is ∼ 110ns.

Furthermore, while watching the real-time pulses on each of the 6 ends of DLD, we

observed that the pair of channels (y1, z2) and (y2, z1) had an artefact of correlated signals.

That is, if the channels were independent of each other, then given a pulse on say y1 at

t = t0, a pulse on z2 could occur anywhere between t0± Tsum. However, we observe that the

signal on z2 occurs within ∼ t0 ± Tsum/2 and hence doesn’t span its whole range, similar is

the case for (y2, z1) pair. This could be a possible cause for the disagreement between the 3

reconstructions as they use a different combination of u,v and w, which are now dependent on

each other. In order to compute the correlation function for a cloud with a typical correlation

length of 100µm, the 3 reconstructions should agree at least within this distance from each

other. Therefore, we cannot measure correlation functions until we can fix this issue. Due

to time constraints, this could not be finished before the end of this project.
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Chapter 5

Conclusion

In this thesis, we have achieved three broad outcomes, as presented below. Firstly, we

managed to cool the He* atoms to degeneracy to obtain a Bose-Einstein condensate. For this

purpose, we were required to optimise the cooling sequence focusing on in-trap cooling in the

magnetic trap and evaporative cooling in the optical dipole trap. Secondly, we could simulate

the 2nd order correlation function for a gas of thermal bosons. This was based on a simplistic

modelling of pair correlations instead of sampling from the full and complicated many-body

wavefunction for the bosons in a harmonic trap. However, this simplified approach was

shown to be consistent with the analytical theory and the experimental results.

Lastly, we managed to set up the electronic detection system comprising the microchannel

plates and the delay line detector which is useful for time of flight measurement for the

atomic cloud dropped from a trap and to measure the correlation functions associated with

the atomic cloud. Although due to the technical difficulties as highlighted in section 4.3.5,

and time constraints to fix those, we could not actually measure the correlation function.

The future plan for the experiment is to troubleshoot the technical difficulties such as

the artefact of inconsistent reconstruction, the hole and streak pattern in the reconstructed

images. Having resolved these issues, the correlation function for a thermal gas of atoms

and BEC can be measured and compared. Furthermore, interesting experiments such as

observing the rate of decay of coherence during a dimensional crossover achieved by switching

off one of the beams from the crossed optical dipole trap can be observed. This experiment

is similar to an experiment[25], where the rate of buildup of coherence is studied while
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crossing a Mott insulator to a superfluid phase transition. Furthermore, a long term plan

for the lab is to set up the optical lattice, that is, a standing wave of light created by

interference of two counter-propagating laser beams. The optical lattice would allow us to

simulate prototypical condensed matter Hamiltonians with tunable parameters such as the

Bose-Hubbard Hamiltonian, allowing us to perform experiments similar to the one described

above[25].

Lastly, for the numerical simulation of correlation functions, it would be interesting to

work out the details of how 3rd and higher order correlation functions could be incorporated

into the simulation. Including the higher order correlation functions should provide a more

accurate picture of the many-body interaction statistics.
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Appendix A

Monte-Carlo Rejection Sampling

Monte-Carlo Rejection (MCR) Sampling is a useful method for sampling form an arbi-

trary probability distribution P (x) using a random number generator. While sampling from

a 3D distribution, MCR has an advantage over the traditional inverse sampling method

which requires one to know the analytical form for the inverse cumulative distribution func-

tion for the full and marginal probability distribution functions. Moreover, being a stochastic

method, it provides a major speedup for the run-time.

As a simple example consider that one needs to sample from a Gaussian distribution

(need not be normalised) with the distribution function P1(x) = exp(−x2/8). To generate

points that follow this distribution, these steps can be followed:

1. Generate a random number from uniform distribution, x1 ∼ U [a, b] in the interval [a,b]

which roughly spans the region where the target distribution P1(x) is non-zero. In this

example we choose a = −4, b = −4 which are both equal to 2 standard deviations of

the Gaussian (see Fig A.1).

2. Generate another random number from uniform distribution, say x2 ∼ U [0, c] where

c = max(P1(x)). The probability that it lies under the target distribution is propor-

tional to P1(x1) at the point x1. So we accept the point x2 as following the distribution

if it satisfies the condition,

x2 < P1(x1) (A.1)

if it doesn’t satisfy this condition, we reject x2, otherwise we accept this trial point x2.
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Figure A.1: The 1st point is sampled at x1. If the 2nd sampled point lies under the curve,
that is, blue dotted line, it is accepted. If it lies on the red dotted line, it is rejected.
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