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Abstract

Let X = (X1, . . . , Xn) be the random sample obtained from some unknown distribution F .

Let θ = T (F ) be the parameter of interest estimated by θ̂ = S(X). We discuss bias and

variance estimators for θ̂ obtained by resampling methods such as jackknife and bootstrap.

Along these lines, we try to extrapolate these methods originally introduced for independent

data set to specific models such as linear model and Dependent data set. More specifically,

we consider least square estimates for the linear model and apply resampling methods for

the bias and the variance estimates for the same. Time series model has been looked at in

dependent data sequence and these resampling procedures have been modified to produce a

consistent estimates for the statistic of interest.
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Introduction

Statistical analysis is often concerned with making inferences about accuracy and distribu-

tions of statistics. While inferring, traditional approach involves dealing with underlying

distribution of the data. This distribution is itself hard to estimate or sometimes statistic is

too complicated to use this theoretical approach. Resampling methods resamples from the

obtained data and infer from the resampled data to estimate this underlying distribution

and make estimations about accuracy of the statistic of interest. Widely used resampling

methods are jackknife approach and bootstrap approach. Though these methods require

intensive computer operations, technology has made it easier to use these approaches.

In 1949, Quenouille introduced jackknife method. This method involves deleting one data

point from the original data set and making the inference based on this new data set to

estimate the properties of the statistic of interest. This method can be used to calculate

standard error and bias of the statistic based on i.i.d data set. Rather than considering,

delete-1-point subsets of the sample in jackknife, Hastigon (1969), thought of using all the

2n−1 nonempty subset of the data to improve the accuracy. But with the increased subsets,

more computer power was required to use this method. Over next several years many more

statistical methods were introduced which had broader applications. One of this methods is

bootstrap which was introduced by Efron. This method involves bootstrap samples obtained

randomly from the original sample. Accuracy of the statistic Tn as we have explained earlier

depends upon its distribution. Bootstrap can be used to estimate this distribution. Based

on this estimated distribution, various other accuracy results such as standard error and bias

can be obtained for the statistic Tn. Other applications of bootstrap consist of estimating

confidence interval of unknown parameter θ. This approach was introduced by Efron in 1982.

We will discuss all these approaches for i.i.d. case in details in Chapter 1. We will also

try to provide intuitive idea of why these approaches are good and also mention asymptotic
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properties when needed.

Other than the independent data set, two of the main applications of resampling meth-

ods are linear models and dependent data set. In 1974, Miller started working with the

applications of jackknife method on linear models. He later showed the inconsistency of bias

estimator for least square estimate. To compensate this lack of consistency, Hinkley(1977),

and Wu(1986) worked with weighted jackknife estimators and showed their consistency for

variance and bias estimates for least square estimates under certain conditions. Bootstrap

methods using the structure of linear models were introduced by Efron in 1979. These esti-

mates produced by jackknife and bootstrap method, seem to be robust in the following sense.

LSE estimates are based on the equal variance assumption. But even if this assumptions

are violated these resampling procedures produces fairly consistent estimates. Further study

regarding this robustness were studied by many statisticians (Hinkley, 1977; Wu,1986; Shao

and Wu, 1987; Shao, 1988a; Liu and Singh, 1992a). Another important application concern-

ing linear models is the prediction problem. Chapter 2 is entirely focused on the general

linear model and the prediction problem. Proofs of the asymptotic results are skipped, but

reader can refer to Shao (1988a, On resampling methods for variance and bias estimation in

linear models) and Shao(1988c, Bootstrap variance and bias estimation in linear models).

In 1981, Singh gave an example for the inadequacy of Efron’s bootstrap method if there

is any dependency in the data. Since then many have tried to modify bootstrap methods

for dependent data set. Chapter 3 describes some of these methods. We also discuss why

Efron’s bootstrap does not work for the dependent data by giving an example of m-dependent

data set. Last part of chapter-3 introduces bootstrap method for autoregressive model for

time series. Model structure of this particular time series is innovatively used to produce

consistent bootstrap estimates. We provide result based on higher properties of this pro-

cedure studied by Bose (1988, Edgeworth correction by bootstrap in autoregressions). We

have also tried working with some simulations to provide practical insight of the bootstrap

method for the time series model.

2



Chapter 1

Resampling Methods

1.1 Standard Errors and Bias

Accuracy of the statistic can be evaluated by standard error, Bias, confidence interval etc.

For example, mean of the population is generally estimated by sample average. Standard

error of the sample average has closed form, which might or might not be available for other

statistic. Resampling techniques such as Jackknife and Bootstrap can be used to estimate the

variance or Bias of the statistic of interest without going into theoretic calculations involving

underlying distribution.

1.1.1 Jackknife approach

Suppose we have sample X = (X1, X2, . . . , Xn) drawn from distribution F . Let θ be the

parameter of interest. Suppose we estimate this θ with say θ̂ = S(X) [Some function of data

X]. We wish to estimate the Standard error and the bias of θ̂.

Jackknife method works with leave one out samples. ConsiderX(i) = (X1, . . . , Xi−1, Xi+1 . . . , Xn)

for i = 1, . . . , n. X(i) is known as i-th Jackknife sample which consists of all the sample points

but the i-th one. Jackknife analogue of θ̂ is given by θ̂(i) = S(X(i)), for i = 1, . . . , n.
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Jackknife estimates for the Standard error and the bias of θ̂ are given by,

Ŝejack =

[
n− 1

n

n∑
i=1

{θ̂(i) − θ̂(.)}2
]1/2

where θ̂(.) =
∑n

i=1 θ̂(i)/n, and

B̂iasjack = (n− 1)(θ̂(.) − θ̂)

respectively.

Jackknife estimate for the standard error looks like the standard deviation of the n jackknife

analogues of θ̂ if we replace (n−1)/n by 1/n. In jackknife approach, for calculating jackknife

replica of θ̂, only one point Xi is excluded from the original sample X. Thus jackknife replicas

are usually numerically close to θ̂. As, (n− 1)/n is bigger than 1/n, intuitively speaking, it

compensates for this small difference between θ̂ and θ̂(i). Similar intuition can be given for

the term n−1 in the jackknife estimate for the bias. To get the exact form of leading terms,

consider θ̂ = X̄. Jackknife estimate for the standard error for this statistics turns out to be,

Ŝejack =
[∑n

i=1(Xi − X̄)2)

n(n− 1)

]1/2
To make this estimate approximately equal to the standard unbiased estimate of the sample

mean,
[
n−1
n

]1/2
needs to be multiplied. Similarly, consider Standard error as a statistics and

try to find jackknife estimate for its bias. In this case, leading term turns out to be (n− 1).

Hence it is arbitrary convention to use these factors in the jackknife estimates for standard

error and bias.

1.1.2 Bootstrap Approach

Let X = (X1, X2, ..., Xn) be the random sample chosen from some unknown distribution F .

Let F̂ be the corresponding empirical distribution which puts mass 1/n on each of the Xi

and θ̂ = S(X) be the statistics of interest.

Bootstrap sample X∗ is defined as the random sample of size n drawn from the empirical

distribution. Intuitively, it can be seen as a random sample of size n drawn from the data

points X1 = x1, . . . , Xn = xn with replacement. Bootstrap replication of θ̂ is defined as
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θ̂∗ = S(X∗). Ideal Bootstrap estimate of standard error of θ̂ is defined as

SeF̂ (θ̂∗) =
[
E∗(θ̂∗ − E∗(θ̂∗))2

]1/2
Where E∗ denotes that the expectation needed to calculate standard error are taken with

respect to the empirical distribution F̂ .

For most of the statistics other than the sample mean, there is no closed form for the ideal

bootstrap estimate. Bootstrap algorithm explained below tries to approximate the ideal

bootstrap estimate for the standard error.

Bootstrap Algorithm:

� Select B independent bootstrap samples X∗1, . . . , X∗B from the empirical distribution

as stated earlier. For good estimate B = 25 to 100 is sufficient.

� Calculate corresponding bootstrap replication: θ̂∗(b) = S(X∗b) for each b = 1, . . . , B.

� Then estimate the standard error of θ̂ by following ,

ŜEB = {
B∑
b=1

[θ̂∗(b)− θ̂∗(.)]2/(B − 1)}1/2

Where θ̂∗(.) =
∑B

b=1 θ̂
∗(b)/B

As B goes to infinity, Law of Large Numbers suggests that ŜEB will be exactly equal

to SeF̂ (θ̂∗).

Bootstrap can also be used to approximate the Bias of any estimator θ̂ = S(X) of θ = t(F ).

Bias of θ̂ = S(X) is defined as

Bias(θ̂) = E(S(X))− t(F )

Let t(F̂ ) be the Plug-in estimate for θ. The bootstrap estimate for the bias for θ̂ is defined

as,

BiasF̂ = EF̂ (S(X))− t(F̂ )

Thus, BiasF̂ is just a plug-in estimate for Bias(θ̂). Note that F̂ denotes that calculation

required for expectation of S(X) are taken with respect to emperical distribution.
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Similar to the standard error, there does not exist closed form for this bootstrap bias esti-

mate for most of the complicated statistics. Hence, Bootstrap algorithm approximates the

ideal bootstrap estimate for bias.

Bootstrap Algorithm:

� Generate B bootstrap samples namely X∗1, . . . , X∗B from emperical distribution cor-

responding to sample X.

� Then corresponding to each bootstrap sample X∗b, evaluate bootstrap replication of

the statistic θ̂ , which we will denote as , θ̂∗(b)

� Approximation to the ideal bootstrap estimate for bias of θ̂ is given by ,

B̂iasB = θ̂∗(.)− t(F̂ )

where θ̂∗(.) =
∑B

b=1 θ̂
∗(b)/B.

As B goes to infinity, Law of Large Numbers suggests that B̂ias will be exactly equal to

BiasF̂ .

When θ̂ = S(X) = t(F̂ ) i.e. the plug in estimate of θ = t(F ), the bias can be approx-

imated by a better estimate. Let X∗ = (X∗1 , . . . , X
∗
n) be the bootstrap sample same as

earlier. Let,

P ∗k = #{X∗i = Xk}/n

Pk can be thought of as the number in how much proportion Xk appears in the bootstrap

sample X∗. Then Resampling vector P ∗ is defined as,

P ∗ = (P ∗1 , . . . , P
∗
n)

It is easy to see that sum of all components of P adds upto 1. Let P 0 = (1/n, . . . , 1/n).

Hence P0 corresponds to the original sample X(Basically bootstrap sample in this case is

the original sample itself).

As we are dealing with the specific case of θ̂ being t(F̂ ), the bootstrap replication θ̂∗ = S(X∗)

then can be thought of a function of P . Let θ̂∗ = T (P ∗). Here, T (P 0) will be exactly equal

to θ̂.
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Let X∗1 , . . . , X
∗
B be the B bootstrap samples drawn from original sample X. Corresponding

to each bootstrap sample X∗b we have resampling vector P ∗b . Define P̄ ∗ as

P̄ ∗ =
B∑
b=1

P ∗b /B

Then the better bootstrap estimate of the Bias denoted by BiasB can be given by

BiasB = θ̂∗(.)− T (P̄ ∗)

Where θ̂∗(.) is the mean of bootstrap replications corresponding to X∗b . Note that the

bootstrap estimate we defined earlier is,

B̂iasB = θ̂∗(.)− T (P 0)

It seems that both B̂iasB and BiasB converges to BiasF̂ . But convergence rate of BiasB

is much faster than B̂iasB. Hence BiasB is a better bootstrap estimate than B̂iasB in this

particular case of plug in estimate.

1.2 Bootstrap Distribution Estimator

Let X1, . . . , Xn be the random variables from some model Pn. And our statistic of interest

is Tn = Tn(X1, . . . , Xn, Pn) which is dependent upon these variables and model Pn. Let HPn

be the sampling distribution of Tn with respect to the model Pn. That means

HPn(x) = P (Tn ≤ x|Pn)

Sometimes model Pn is determined by distribution F and in that case we use Hn,F or Hn

instead of HPn as our notation for the sampling distribution. Suppose based on the data

X1, . . . , Xn we estimate Pn. Let P̂n be this estimator(In general this is going to be emperical

distribution). Then, X∗1 , . . . , X
∗
n will be bootstrap sample drawn randomly from P̂n. And

T ∗n = Tn(X∗1 , . . . , X
∗
n, P̂n) will be the corresponding bootstrap replication of Tn. Let P∗

denote the conditional probability P (.|P̂n), then the estimator for the sampling distribution
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of Tn obtained by bootstrap approach is given by

HBoot(x) = P∗(T
∗
n ≤ x)

Definition 1.2.1. Suppose ρ is any metric on F = {all distribution on R}. Then HBoot is

said to be weakly ρ-consistent if ρ(HBoot, HPn) →p 0 as n → ∞. And HBoot is said to be

strongly ρ-consistent if ρ(HBoot, HPn)→a.s. 0 as n→∞.

Metric ρ∞ which is sup-norm metric is often used in such consistency problems. One

of the techniques that can be used in proving consistencies of bootstrap distributions has

been discussed later in this section. One way to prove consistency is to show that limiting

distributions of Tn and T ∗n are the same. Berry-Esseen inequality is one way to prove this.

Berry-Esseen inequality has following form: Suppose H is some distribution on R and

ρ∞(HPn , H) ≤ cBn(Pn)

here c is some constant independent of n and Bn is a function on Pn which satisfies Bn(Pn)→
0 as n→∞. Now if estimator P̂n of Pn satisfies this inequality with distribution Ĥ i.e.

ρ∞(HBoot, Ĥ) ≤ cBn(P̂n)

Then Singh(1981) used following technique to show the consistency of bootstrap distribution.

Note that

ρ∞(HBoot, HPn) ≤ ρ∞(HBoot, Ĥ) + ρ∞(Ĥ,H) + ρ∞((HPn , H)

So consistency of HBoot follows if we show that Bn(P̂n) →a.s 0 and ρ∞(Ĥ,H) →a.s 0. We

will illustrate this technique by considering statistic Tn =
√
n(X̄n − µ), where X̄ is sample

mean and µ = E(X1). Then bootstrap analog of Tn is T ∗n =
√
n(X̄∗n − X̄), where X̄∗n is the

mean of bootstrap sample obtained from emperical distribution based on X1, . . . , Xn. Let

V ar(X1) = σ2. If we apply Berry-Esseen’s theorem on i.i.d X∗1 . . . , X
∗
n, we get,

Sup
x
|P∗(T ∗n/Ŝn ≤ x)− φ(x)| ≤ 2.75∆̂n

Where Ŝn = E∗(X
∗
1−X̄n)2 (E∗ denotes expectation taken with respect to emperical distribu-

tion on X1, . . . , Xn), ∆̂n = E∗(|X∗1 − X̄n|)3/(Ŝn
3√
n) and φ(x) denotes distribution function
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of standard normal distribution. Hence,

Sup
x
|P∗(T ∗n/Ŝn ≤ x)− φ(x)| ≤ 2.75n−3/2Ŝn

−3
n∑
i=1

(|Xi − X̄n|3)

This can be rewritten as,

Sup
x
|HBoot(x)− φ(x/Ŝn)| ≤ 2.75n−3/2Ŝn

−3
n∑
i=1

(|Xi − X̄n|3)

By Marcinkiewicz strong law of large numbers we get that,

n−3/2
n∑
i=1

(|Xi −−X̄n|3)→a.s 0

Now by SLLN, Ŝn
2
→a.s σ

2. Hence, we have

Sup
x
|HBoot(x)− φ(x/Ŝn)| →a.s 0

Also note that, ρ∞(φ(x/Ŝn), φ(x/σ))→a.s 0 and by cental limit theorem, ρ∞(Hn, φ(x/σ))→a.s

0. Thus, we finally have

ρ∞(HBoot, Hn)→a.s 0

1.3 Confidence Intervals

Construction of the confidence interval and the hypothesis testing are two other major parts

of statistical inference. Here we will give brief introduction to confidence intervals.

Let X1, . . . , Xn be the i.i.d. random variables from some distribution F . Suppose In is the

function of these random variables (i.e. some subset of R) and if it follows that

P (θ ∈ In) = α

then In is said to be the confidence set with confidence coefficient α. If In turns out to be an

interval then it is known as the confidence interval. Statistical inference mainly focuses on

One sided intervals (−∞, θ̄] and [θ,∞) or two sided interval [θ, θ̄]. In this context, θ̄ will be
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referred as the upper bound and θ as the lower bound. Since there is structural similarities

between these intervals, we will focus on the lower confidence bound. If the Desired level 1−α
or 1−2α matches with the probability of θ being in the confidence interval then that interval

is known as the exact confidence interval. In standard approach of constructing confidence

interval we consider pivotal quantity, say Rn, whose distribution (say Gn) does not depend

on F . But it is usually hard to estimate the distribution of Rn and is usually estimated

by some distribution. In bootstrap approach we try to estimate the distribution Gn. Let

GBoot be the estimation of Gn. But as this is simply an approximation coverage probability

of the resultant confidence interval would be different than the desired level. Bootstrap

confidence interval seems to be easy to construct and they do have higher accuracy in the

sense of coverage probability. In this section we will discuss different bootstrap approach to

construct confidence interval. As stated earlier we will stick to the lower confidence bound.

1.3.1 The bootstrap-t interval

Let X∗1 , . . . , X
∗
n be the bootstrap sample from emperical distribution F̂ on random sample

X1, . . . , Xn drawn from F . In this bootstrap approach, we look at pivotal quantityRn = θ̂n−θ
σ̂n

.

Here, θ̂n is estimator of θ and σ̂2
n is variance estimator of θ̂n. Distribution of Rn (i.e. Gn) is

unknown in most of the cases hence we approximate it by bootstrap estimator GBoot. GBoot

is defined as follows,

GBoot(x) = P∗(
θ̂∗n − θ̂n
σ̂∗n

≤ x)

θ̂∗n and σ̂∗n are bootstrap replications of θ̂n and σ̂n, respectively. Definition of P∗ remains

same as in previous section. In this case, if we replace Gn in the confidence interval by GBoot,

we get following lower confidence bound

θBT = θ̂n − σ̂nG−1Boot(1− α)

This will be known as Bootstrap-t lower confidence bound.

The GBoot defined earlier can be used if we are able to find the distribution of R∗n = θ̂∗n−θ̂n
σ̂∗n

.

But in practice, we will have to approximate it based on data at hand. Based on independent

bootstrap samples X∗1 , . . . , X
∗
B drawn from F̂ , we will have bootstrap replications for R∗n,
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say R∗n(b). Then αth percentile for GBoot can be approximated by t̂(α) such that,

#{R∗n(b) ≤ t̂(α)}/B = α

That is, if 1000 bootstrap samples have been generated then 50th value of ordered list of

R∗n(b) is the estimate for 0.05th quantile.If B · α is not an integer then estimate the αth

quantile is defined by kth largest values of R∗n(b), respectively. Here, k = [(B + 1)α] where

[ ] denotes the greatest integer function.

Disadvantages:

1. Note that denominator of R∗n(b) is standard error of θ̂∗ for the b-th bootstrap sample.

Which means if the statistic is too complicated to have a closed form for standard

error, we will have to use another sequence of bootstrap on bootstrap sample B to

calculate standard error. This is computationally expensive.

2. Sometimes it is easier to transform the statistic to calculate confidence interval and

then transform it back to get the interval for the original statistic. Bootstrap t-method

highly depends on which scale confidence interval is being constructed. In other words

it is not transformation respecting.

1.3.2 Percentile Intervals

Rather than looking at the distribution of some pivotal quantity, this apporaoch directly

looks at the distribution of θ̂n. Distribution of θ̂n is estimated by distribution of its bootstrap

analog.

KBoot(x) = P∗(θ̂
∗
n ≤ x)

Based on this estimate, bootstrap percentile method provides following lower bound:

θBP = K−1Boot(α)

Unlike bootstrap-t interval approach this approach is invariant with respect to any reparametriza-

tion.
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In practice, approximation to this estimate can be done as follows: Draw B independent

bootstrap samples x∗1, . . . , x∗B. Corresponding bootstrap replications for θ̂ will be θ̂∗(b).

Then we approximate K−1Boot(α) by the B.αthe value of ordered list of above bootstrap repli-

cations. For example, if B = 1000 then K−1Boot(0.05) is approximated by 50th value of ordered

list of bootstrap replications. If B · α is not an integer then in that case approach is similar

to that of previous section.

Suppose that there exist an increasing function φn(x) such that

P (φ̂n − φn(θ) ≤ x) = ψ(x) (1.1)

is being satisfied by all distributions F including F̂ , where φ̂n = φn(θ̂) and ψ is some

increasing, continuous and symmetric distribution. If we know the transformation φn and

distribution ψ, then exact lower confidence bound (say θExact) for θ can be given as

θExact = φ−1n (φ̂+ zα) (1.2)

Here zα = ψ−1(α).

Let wn = φn(θBP ) + ψ̂. As stated earlier if we assume (1.1) holds in the case of F̂ and as ψ

is increasing, we get

ψ(wn) = ψ(φn(θBP ) + ψ̂) = P∗(θ̂
∗
n ≤ θBP )

Now according to definition of θBP ,

P∗(θ̂
∗
n ≤ θBP ) = α

Hence, wn = ψ−1(α) = zα. Using this we can rewrite θBP as

θBP = φ−1n (φ̂+ zα) = θExact

This shows that under the assumption (1.1) θBP = θExact. So even if φ̂ and ψ are unknown

we can still find exact lower confidence bound using θBP . Sometimes assumption (1.1) holds

if n is very large. So for large n, θBP will be a good approximation to exact lower confidence

bound. Frequently, φ̂n is not a linear function and hence the bias of φ̂n − φ(θ) does not

vanish rapidly as n becomes larger and larger. So approximation (1.1) will be good enough

only if n is very large. Efron suggested some relaxation on assumption (1.1), which lead to
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the development of the following two bootstrap methods.

1.3.3 The bootstrap bias-corrected percentile

Discussion of Bias not converging fast enough to 0 suggests that we should add some bias

term in the assumption (1.1). Consider the example of bivariate normal distribution F . Let

θ be the correlation coefficient and θ̂n be sample based correlation coefficient. For this setup,
√
n(tanh−1(θ̂n) − tanh−1(θ)) − θ/(2

√
n) seems to be better approximation to the standard

normal distribution than
√
n(tanh−1(θ̂n) − tanh−1(θ). In the view of such scenarios, Efron

suggested more general assumption than that of (1.1):

P (φ̂n − φn(θ) + z0 ≤ x) = ψ(x) (1.3)

Where notations φ̂n, φ, ψ mean exactly the same as that of in the previous subsection.

Considering this assumption, θExact can be written as,

θExact = φ−1n (φ̂n + zα + z0)

As, (1.3) is valid for F̂ also we get,

KBoot(θ̂n) = P∗(θ̂
∗
n ≤ θ̂n) = P∗(φ̂

∗
n − hatφn + zo ≤ z0) = ψ(z0)

Hence,

ψ−1(KBoot(θ̂n)) = z0

As ψ is symmetric and due to the form of the exact lower bound based on (1.3) we get,

1− α = ψ(−zα)

= ψ(φ̂n − φn(θExact) + z0)

= P∗(φ̂
∗
n − φ̂n ≤ φ̂n − φn(θExact))

= P∗(φ̂
∗
n ≤ 2φ̂n − φn(θExact))

= P∗(φ̂
∗
n ≤ φ̂n − zα − z0)

= P∗(φ̂
∗
n ≤ φ̂−1n (φ̂n − zα − z0))

= KBoot(φ̂
−1
n (φ̂n − zα − z0))
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This implies,

K−1Boot(1− α) = φ̂−1n (φ̂n − zα − z0)

As this is true for any α and also ψ is symmetric function, for any 0 < x < 1 we get,

K−1Boot(x) = φ̂−1n (φ̂n + ψ−1(x)− z0)

By the expression of θExact and above equation of K−1Boot(x) we finally get,

θExact = K−1Boot(ψ(zα + 2z0)) = K−1Boot(ψ(zα + 2ψ−1(KBoot(θ̂n))))

Hence if ψ is known, then the bootstrap bias-corrected percentile lower confidence bound for

θ is given by,

θBC = K−1Boot(ψ(zα + 2z0)) = K−1Boot(ψ(zα + 2ψ−1(KBoot(θ̂n))))

As bias term is included in the assumption (1.3), this should improve bootstrap percentile

approach. If (1.3) is exact then θBC is exact lower confidence bound. But if (1.3) holds for

large n , then θBC improves as n gets larger. Many examples still suggest that assumption

(1.3) is not satisfied nicely , hence more comprehensive assumption was taken into account,

which is explained in the subsequent section.

1.3.4 The bootstrap accelerated bias-corrected percentile

Schenker (1985) considered the example of normal distribution(denote it by F ), where the

parameter of interest was variance. He shown that even if distribution of sample mean

was transformed into that of a normal distribution, transformed variable’s variance is still

dependent on F . This shows that it is hard to obtain stabilization normally and variance

wise. Taking account of this example, Efron(1987) generalized assumption (1.3) even further.

More general assumption is,

P (
φ̂n − φn(θ)

1 + aφn(θ)
+ z0 ≤ x) = ψ(x) (1.4)

Here, notations are similar to that of previous section. The extra parameter a depends on

the distribution F and n, and is known as acceleration constant as it measures the change
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of standard deviation of φ̂n with respect to φn(θ).

In case when φ, ψ, z0 and a are known we can determine exact lower confidence bound

for θ. It turns out to be,

θExact = φ−1n (φ̂n + (zα + z0)(1 + aφ̂n)/[1− a(zα + z0)])

Similar to previous section we will show that θExact is equal to some percentile of KBoot. We

can note that calculation upto the part where we showed ψ−1(KBoot(θ̂n)) = z0 still holds.

However change in assumption gives us

K−1Boot(x) = φ̂−1n (φ̂n + [ψ−1(x)− z0](1 + aφ̂n))

For 0 < x < 1. Now let x = ψ(z0 + (zα + z0)/[1− a(zα + z0)])) we get,

K−1Boot(ψ(z0+(zα+z0)/[1−a(zα+z0)]))) = φ−1n (φ̂n+(zα+z0)(1+aφ̂n)/[1−a(zα+z0)]) = θExact

Hence if ψ and a are known , the lower confidence bound for θ obtained based on assumption

(1.4) is given by

θBCa
= K−1Boot(ψ(z0 + (zα + z0)/[1− a(zα + z0)])))

This is known as the bootstrap accelerated bias-corrected percentile lower confidence bound.

If a is unknown then we can estimate it by â, then the resulting confidence bound is obtained

by substituting â instead of a in above equation.

θBCa
= θBCa

(â)

But it should be known that parameter a is hard to estimate in some cases.

1.3.5 Consistency of Bootstrap confidence intervals

In bootstrap approach we approximate distribution of the pivotal quantity with its bootstrap

distribution. Also, latter techniques are based upon approximation of the distribution of

the transformation of a parameter. hence we would like to know that whether coverage

probability converges to the desired level as n → ∞. Consistency of confidence sets are

defined in the following way.
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Definition 1.3.1. A confidence set In for θ with desired level 1− α is said to be consistent

if,

P (θ ∈ In)→ 1− α

as n→∞.

Let Hn be the distribution of nt(θ̂n− θ), where t is a constant and Gn be the distribution

of pivotal quantity θ̂n−θ
σ̂n

. Let HBoot and GBoot be their bootstrap estimators, respectively.

Following theorem shows the consistency of bootstrap lower confidence bound.

Theorem 1.3.1. 1. If GBoot is consistent in the sense of(Definition 1.2.1), then θBT is

consistent.

2. Suppose HBoot is consistent and lim
n→∞

ρ∞(H,Hn) = 0 for a strictly increasing, contin-

uous and symmetric H. Then θBP , θBC, and θBCa
are consistent lower confidence

bound.

Proof. 1. As GBoot is consistent, ρ∞(GBoot, Gn)→ 0 as n→∞. Also note that functional

T (G) = G−1(1 − α) is continuous with respect to ρ∞. This proves the consistency of

θBT .

2. By definition of θBP ,

P (θBP ≤ θ) = P (α ≤ KBoot(θ))

= P (α ≤ P∗(θ̂
∗
n − θ̂n ≤ θ − θ̂n))

= P (α ≤ HBoot(n
t(θ − θ̂n)))

= P (nt(θ − θ̂n) ≥ H−1Boot(α))

(1.5)

Now as HBoot is consistent and lim
n→∞

ρ∞(H,Hn) = 0 we get,

P (θBP ≤ θ) = P (nt(θ̂n − θ) ≤ −H−1(α)) + o(1)

= H(−H−1(α)) + o(1)
(1.6)

As H is a symmetric function, we have H(−H−1(α)) = 1− α. Hence, P (θBP ≤ θ)→
1− α as n→∞.
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Note that, in case of θBC , and θBCa
we had,

z0 = ψ−1(KBoot(θ̂n)) = ψ−1(P∗(θ̂
∗
n ≤ θ̂n)) = ψ−1(P∗(θ̂

∗
n − θ̂n ≤ 0)) = ψ−1(HBoot(0))

Consistency of HBoot and lim
n→∞

ρ∞(H,Hn) = 0 gives us,

z0 →p ψ
−1(H(0)) = 0

This implies that asymptotically we will have ψ(zα) instead of α in above equations in

case of θBC , and θBCa
. But ψ(zα) = α. Hence all of the above equation goes through

in these cases also. Hence we have consistency for θBP , θBC , and θBCa
.

This theorem basically implies that all the bootstrap methods produces consistent lower

confidence bounds. Hence larger the n closer we will get to the desired level of confidence

set.
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Chapter 2

Linear Models

2.1 Introduction

Bootstrap methods can be applied to various problems. It is kind of model dependent

method in terms of generation of the bootstrap data which depends on specific model we

are dealing with. Generally bootstrap approaches can be applied to any model P where it

can be estimated by say P̂ . Performance of these approaches are dependent upon how good

estimate P̂ is and how the bootstrap data has been generated.

In this chapter, we will be dealing with the application of the bootstrap and the jackknife

to linear models. General linear model is given by:

yi = x′iβ + εi for i = 1, . . . , n. (2.1)

Here yi is i-th response, xi is a p-vectors of variables associated with response variable, a

p-vector of unknown parameters is denoted by β, and εi are random errors. In determin-

istic model, εi are independent and have mean , variance 0 and σ2 respectively. While in

correlation model, (yi, xi) are assumed to be independent and identically distributed with

E(yi|xi) = x′iβ and finite second order moment. We denote E(y2i |xi) by σ2
i . For simplicity,

from now onwards we will denote this conditional expectation and conditional variance by

E and V ar respectively for the rest of the chapter.

Most of the time it is assumed that εi have same variance, σ2
i = σ2. Under this assumption,
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usually β is estimated by least square estimate β̂LS given by,

β̂LS = (X ′X)−1X ′Y (2.2)

Where X is n× p matrix with xi as its i-th row and Y is n× p matrix with yi as i-th row.

It is assumed that X has rank p for simplicity and which assures the existence of inverse of

the matrix X ′X. it is easy to note that β̂LS is an unbiased estimator as E(β̂LS) = β.

If σ2
i = σ2, then

V ar(β̂LS) = V ar((X ′X)−1X ′Y ) = (X ′X)−1X ′V ar(Y )X(X ′X)−1 = σ2(X ′X)−1 (2.3)

Unbiased estimator for this variance is usually given by,

(
1

n− p

n∑
i=1

r2i )(X
′X)−1

where i-th residual ri is given by (yi−x′iβ̂LS). But like most of the problems, variance of other

estimates of β does not have closed form and hence we approximate them by asymptotic

approaches.

2.2 Variance and Bias Estimation

Let θ = g(β) and is estimated by θ̂ = g(β̂), where β̂ is an estimator of β. In this section,

estimators for variance and bias of θ̂ using the bootstrap and the jackknife approach have

been discussed. For simplicity we will stick to the least square estimate of β.

2.2.1 Jackknife Approach

Miller extended the jackknife method for the estimation of bias and variance of the statistic

θ̂LS = g(β̂LS). Extension is as follows: Suppose we have data (yi, xi), i = 1, . . . , n. Then

delete the i-th pair. Now consider the rest of the data and try to find β̂LS based on remaining

data points. Let us denote least square estimate we get after deleting i-th pair by β̂LS,i. Then

jackknife replication of θ̂ would be θ̂LS,i = g(β̂LS,i). Then bias and variance estimates are
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given by:

bJack =
n− 1

n

n∑
i=1

(θ̂LS,i − θ̂LS) (2.4)

And

vJack =
n− 1

n

n∑
i=1

(θ̂LS,i −
1

n

n∑
i=1

θ̂LS,i)
2 (2.5)

respectively. Note that β̂LS,i can be written as,

β̂LS,i = (X ′X − xix′i)−1(X ′Y − xiyi)

For vector c and matrix A we can show that inverse of (A− cc′) is

(A− cc′)−1 = (A−1 +
A−1cc′A−1

1− c′A−1c
)

Using this, we get,

β̂LS,i =

(
(X ′X)−1 +

X ′X)−1xix
′
iX
′X)−1

1− x′iX ′X)−1xi

)
(X ′Y − xiyi)

= β̂LS −
[
ziyi −

zix
′
iβ̂LS

1− hi
+
zihiyi
1− hi

]
= β̂LS −

ziri
1− hi

where hi = x′i(X
′X)−1xi, zi = (X ′X)−1xi and ri = yi− xiβ̂LS. In case when, θ = g(β) = c′β

then we have θ̂LS = g(β̂LS) = c′β̂LS. So,

bJack =
n− 1

n

n∑
i=1

c′ziri
1− hi

Note that
∑n

i=1 ziri = 0. So we can write bJack as,

bJack =
n− 1

n

n∑
i=1

(
c′ziri
1− hi

− c′ziri) =
n− 1

n

n∑
i=1

c′zihiri
1− hi

We already know that β̂LS is an unbiased estimator of β. So we expect θ̂LS to be unbiased

too. But from above equation we can deduce that bJack is not 0 if hi’s are not same for all i.
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And hence it may not converge to 0 rapidly. Similarly, for the same θ = g(β) = c′β, we have

vJack =
n− 1

n

n∑
i=1

(c′zi)
2r2i

(1− hi)2
− n− 1

n2
(
n∑
i=1

c′ziri
1− hi

)2

Miller(1974) proved that under weak conditions, vJack is a consistent estimator for variance.

He also showed that bJack may be inconsistent bias estimator (Which intuitively matches

with our discussion of hi not being same for all i).

Inconsistency of jackknife bias estimator can be explained as follows. Under linear model,

we assumed that E(yi) = x′iβ. Which may not be same for all i. This makes our linear

model kind of unbalanced in nature. Considering this unbalanced nature other jackknife

estimators were proposed. These are known as weighted jackknife estimators. We will list

some of them here.

Hinkley defined pseudovalues as follows:

θ̃i = θ̂LS + n(1− hi)(θ̂LS − θ̂LS,i) (2.6)

Based on these weighted pseudovalues, he gave following weighted jackknife variance and

bias estimator.

vHJack =
1

n(n− p)

n∑
i=1

(θ̃i −
1

n

n∑
i=1

θ̃i)
2

and

bHJack =
1

n

n∑
i=1

(θ̂LS − θ̃i)

If we put value of θ̃i in bHJack it can be easily shown that bHJack = 0. Hence this bHJack is

correct bias estimator.

Wu(1986) gave different weighted jackknife estimators for bias and variance. They are as

follows:

vWJack =
n∑
i=1

(1− hi)(θ̂LS,i − θ̂LS)2

and,

bWJack =
n∑
i=1

(1− hi)(θ̂LS,i − θ̂LS).

All these variance estimators are consistent in the following sense: Let θ = g(β) and is
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estimated by θ̂LS = g(β̂LS). Moreover let us assume that g is continuously differentiable and

Og(β) is not zero at β. Then

Theorem 2.2.1. If X ′X → ∞, hmax = max
i≤n

hi → 0, and lim Sup
n

max
i≤n

E|εi|(2+δ) < ∞ for

some δ > 0, then

v/Og(β)′V ar(β̂LS)Og(β)→p 1

Here v denotes either jackknife estimator or both weighted jackknife estimator for g(β̂LS).

2.2.2 Bootstrap Approach

As we have seen earlier, bootstrap variance and bias are defined as V ar∗(θ̂
∗) and E∗(θ̂

∗)− θ̂,
respectively, where θ̂∗ is bootstrap replica of θ̂. Here we will consider θ̂ = θ̂LS. For the

linear model, we have to apply bootstrap method in a different way. There are three types

of approaches in the literature:

Residual Based Bootstrap

In 1979, Efron proposed idea of residual based bootstrap (RB). General idea in bootstrap

, as we described earlier, is to estimate the model by some parameter. Then estimate the

parameter by some estimator based on data at hand to generate bootstrap data set. In

this case when xi are deterministic and errors are i.i.d., linear model can be identified with

two parameters: β and unknown distribution Fε (Distribution of εi ). As β is estimated

by least square estimate β̂LS, we only need to estimate Fε. Let ri = yi − x′iβ̂LS be the

i-th residual. Fε can be estimated by emperical distribution with respect to these centered

residuals i.e. putting n−1 mass on each ri − r̄, where r̄ =
∑n

i=1 ri/n. Let us denote this

emperical distibution by Fε̂. Hence for general linear model, (β, Fε) is estimated by (β̂LS, Fε̂).

An easy way to generate bootstrap data from this estimated model is as follows. Draw i.i.d.

random variables ε∗1, . . . , ε
∗
n from Fε̂) . Let y∗i = x′iβ̂LS + ε∗i for i = 1, . . . , n. Bootstrap data

obtained is thus (y∗1, x
′
1), . . . , (y

∗
n, x

′
n). Let β̂∗LS be the least square estimator obtained using

above bootstrap data. Thus,

β̂∗LS = (X ′X)−1X ′Y ∗
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Where Y ∗ = (y∗1, . . . , y
∗
n)′. Bootstrap replication of θ = g(β) will be given by θ̂∗LS = g(β̂∗LS).

Note that, E∗(y∗) = x′iβ̂LS as E∗(ε
∗
i ) = 0. This implies,

E∗(β̂
∗
LS) = (X ′X)−1X ′Xβ̂LS = β̂LS

and

V ar∗(β̂
∗
LS) = (X ′X)−1X ′V ar∗(Y )X(X ′X)−1 = [

1

n

n∑
i=1

(ri − r̄)2](X ′X)−1

Here E∗ denotes expectation with respect to emperical distribution Fε̂. Shao(1988c) showed

that the residual bootstrap procedure generates consistent estimator for bias and variance

of β̂LS and in turn, if g is smooth then some moment condition ensures consistency for θ̂LS

also.

Paired Bootstrap

In case when xis are random and data points (yi, x
′
i) are identically distributed and indepen-

dent, we can recognize the linear model by joint distribution of these data points. An obvious

estimate to this model would be , emperical distribution based on (y1, x
′
1), . . . , (yn, x

′
n). We

can thus generate bootstrap data set from drawing random points from this emperical dis-

tribution. This bootstrap method is known as paired bootstrap(PB). Application of this

bootstrap method is not confined to least square estimates.

In case of least square estimate β̂LS, notice that matrix X∗(replica of X) won’t have rank p.

Thus we have to derive the bootstrap replication of β̂LS using the generalized inverse of the

matrix X∗′X∗. Bootstrap replication of β̂LS is defined as

β̂∗LS =

(X∗′X∗)−1X∗′Y ∗, if λ∗ ≥ λ/2

β̂LS, otherwise
(2.7)

where λ∗ and λ are two smallest eigenvalues of (X∗′X∗) and (X ′X), respectively. It turns

out that approximately the expectation of β̂∗LS is β̂LS and variance of the same is same

as Hinley’s weighted variance estimator. Hence, under some regularity conditions, paired

bootstrap produces consistent estimators for variance and bias of θ̂LS.
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External Bootstrap

Wu(1986) proposed this method specifically for the least square estimates. ei for i = 1, . . . , n

be the i.i.d random variables drawn from some distribution with expectation 0 and variance

1. Then he generated bootstrap data set by

y∗i = x′iβ̂LS +
|ri|√
1− hi

e∗i

here ri and hi hold same meaning as that of in jackknife section. Hence the bootstrap analog

based on this bootstrap data set can be given by (X ′X)−1X ′Y ∗, where Y ∗ = (y∗1, . . . , y
∗
n)′. It

turns out that the variance estimator based on this method is same as that of Wu’s weighted

jackknife variance estimator. Thus external bootstrap also seems to produce consistent

variance and bias estimator.

2.3 Prediction

General linear model can be applied to the prediction of future values yf based on given

value of xf . Bootstrap method can be used to estimate the prediction error in the point

prediction problem. For model (2.1) with i.i.d error terms, point prediction is given by

ŷf = x′f β̂LS

In case of this point prediction, Mean squared prediction error is defined as,

mse(xf ) = E(yf − ŷf )2

Here expectation is taken over joint distribution of yf and ŷf . Note that mse(xf ) can also

be written as V ar(yf − ŷf ). Now in general, yf and y1, . . . , yn are independent. So yf and

ŷf are independent. Thus we can write this mean squared prediction error as,

mse(xf ) = V ar(yf ) + V ar(ŷf ) = σ2 + x′fV ar(β̂LS)xf = σ2 + σ2x′f (X
′X)−1xf

Residual bootstrap method can be applied to estimate this mean squared prediction error.

Recall that F̂ε denotes the emperical distribution with respect to adjusted residuals. Let
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ε∗1, . . . , ε
∗
n and ε∗f be the i.i.d random variables drawn from the distribution F̂ε. Bootstrap

replication for the least square estimate be the same as that of in section (2.2)(Residual

Bootstrap) and define the future value as y∗f = x′f β̂LS + ε∗f . Bootstrap prediction of this

future value is given by ŷ∗f = x′f β̂
∗
LS. Then bootstrap estimate for mse(xf ) is given by

m̂seBoot(xf ) = E∗(y
∗
f − ŷ∗f )

As ε∗f and all the other bootstrap errors are independent we have,

m̂seBoot(xf ) = V ar∗(y
∗
f ) + V ar∗(ŷ

∗
f )

= V ar∗(y
∗
f ) + V ar∗(x

′
f β̂
∗
LS)

= σ̂2 + σ̂2x′f (X
′X)−1xf

(2.8)

Here σ̂2 is similarly defined as that in residual bootstrap section. Notice that, σ̂2 is unbiased

estimator for σ2. Which implies m̂seBoot(xf ) is an unbiased estimator of mse(xf ).

Suppose instead of one value we have to estimate mean squared error of prediction for set of

values χ of xf .And let ν be the probability measure on χ. In that case average mean squared

error for predicting these values is∫
mse(xf ) dν(xf ) = σ2 + σ2

∫
x′f (X

′X)−1xf dν(xf )

Also, As being a scalar, x′f (X
′X)−1xf = tr(x′f (X

′X)−1xf ), where tr(A) denotes trace of the

matrix A. Hence we have,

E(x′f (X
′X)−1xf ) = E(tr(x′f (X

′X)−1xf )) = E(tr((X ′X)−1xfx
′
f )) = tr(E((X ′X)−1xfx

′
f ))

Thus,∫
mse(xf )d ν(xf ) = σ2 + σ2tr((X ′X)−1

∫
xfx

′
f dν(xf )) = σ2 + σ2tr((X ′X)−1Σx)

Here Σx =
∫
xfx

′
f dν(xf ).

It is easy to see that bootstrap estimator for average prediction error is,∫
m̂se(xf )Bootd ν(xf ) = σ̂2 + σ̂2tr((X ′X)−1Σx)
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Lets see an example. Suppose the set of values we want to predict are x1, . . . , xn itself. Then

we provide probability measure on this set by putting mass n−1 on each one of them. Note

that, (X ′X)−1 =
∑n

i=1 xix
′
i and Σx =

∑n
i=1 xix

′
i

n
. Then in this case average prediction error

and its bootstrap estimator are respectively given by,

σ2 + σ2p/n and σ̂2 + σ̂2p/n

2.4 Model selection

In model (2.1), not every component x is related to the response value y. For example

components those components of x won’t be important for the given response if their corre-

sponding components βi in true parameter β are zero. In this case it is better to remodel

the general linear model. Let α be any subset of set {1, . . . , p}. Suppose xiα and βα be

sub-vectors of x and β which considers components corresponding to the set α. Hence more

dense model for the linear problem can be given by,

yi = x′iαβα + εi, i = 1, . . . , n (2.9)

The ideal model in this case would be the model corresponding to α0 , where α0 is the set

containing all nonzero components of the true parameter β. But in our case β is unknown,

and in turn α0 is unknown. Thus optimal model based on the data (y1, x
′
1), . . . , (yn, x

′
n)

should be estimated.

Let S be the class of all models that can be selected. Without any loss of generality model

corresponding to (2.1) is assumed to be in S. For model α ∈ S, size of the model is given

be size of the set α. In this section, we will consider errors εi are i.i.d., and with mean

and variance to be 0 and 1, respectively. Corresponding to model the (2.10), least square

estimate of βα is given by

β̂α = (X ′αXα)−1X ′αY

Where Xα = (x1α, . . . , xnα)′. Hence the prediction for the future values based on the least

square estimate is given by,

ŷfα = x′fαβ̂α
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The model α can be judged based on the mean prediction error it is producing. Mean square

prediction error corresponding to model α is given by,

mse(xf , α) = E(yf − ŷfα)2

As, E(yf − ŷfα)2 = V ar(yf − ŷfα) + [E(yf − ŷfα)]2, mean squared error can be rewritten as,

mse(xf , α) = σ2 + σ2x′f (X
′
αXα)−1xf + [x′fβ − x′f (X ′αXα)−1Xβ]2

So, if we know the mse(xf , α), we can obtain optimal model by minimizing mse(xf , α) over

all α ∈ S. But we don’t know the mean prediction error corresponding to α, hence we will

first have to estimate it and then proceed with the minimization. We will discuss in short

about the model selection method known as cross-validation, which estimates mse(xf , α)

Cross-Validation

This method was based on jackknife approach. Let β̂α,i be the least square estimate based

on the data without the i-th point (yi, x
′
i). We can write β̂α,i as

β̂α,i = (
∑
j 6=i

xα,jx
′
α,j)
∑
j 6=i

xα,jyj

Optimal model α can also be estimated using mse based on set χ = {x1, . . . , xn}. In this

scenario, average mse can be given as,

mse(α) =
1

n

n∑
i=1

mse(xi, α) (2.10)

Considering this mean squared error and since yi and β̂α,i are independent to each other,

cross-validation gives following estimate for mse(α),

m̂se(α) =
1

n

n∑
i=1

(yi − x′α,iβ̂α,i)2

Then optimal model α can be determined by finding minimizer of estimate m̂se(α) over

α ∈ S.
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Chapter 3

Dependent Data Set

3.1 Introduction

In the previous chapters, we looked at problems that had data itself independent or had some

kind of structure where observation from different units were independent to each other. We

applied bootstrap to this independent clusters to get variance and other estimates. In this

chapter we will take a look at the dependent data set such as m-dependent data and time

series. For a generic dependent data, if we apply normal bootstrap approach it fails to capture

the essence of dependency between the data. Thus, We will look at the common modification

to bootstrap methods and other approaches that have been described in literatures to these

kind of dependent data sets.

3.2 m-dependent data

Definition 3.2.1 (Stationary sequence). Sequence of r.v. {Xi : i = ±0,±1, . . .} is said to be

strongly stationary sequence if for integers p > 0 and q, {X1, . . . , Xp} and {X1+q, . . . , Xp+q}
have same distributions.

All the random variable sequences are assumed to be strongly stationary for this section.
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Definition 3.2.2 (m-dependent data). Sequence of r.v. {Xi : i = ±0,±1, . . .} is called

m-dependent if there exist a non-negative integer m such that sequences {. . . , Xt−1, Xt} and

{Xt+m+1, Xt+m+2 . . .} are independent for all integers t..

3.2.1 Failure of i.i.d Boostrap in case of m-dependent sequence

Let {X1, X2, . . . , } be the m-dependent sequence. Moreover assume, E(X1) = µ and E(X2
1 ) <

∞. Also, we define,

σ2
m = V ar(X1) + 2

m−1∑
i=1

Cov(X1, Xi+1)

If, X̄ = 1
n

∑n
i=1Xi and σ2

m ∈ (0,∞), then by central limit theorem for m-dependent variables

we know that √
n(X̄ − µ)→d N(0, σ2

m)

For simplicity, let us denote
√
n(X̄ − µ) by Tn. As we have seen already Tn converges

to normal distribution with specific variance in distribution. But, let us try to find the

bootstrap distribution of Tn using i.i.d bootstrap approach and see where it converges.

Let us draw bootstrap sample from empirical distribution with respect to X1, . . . , Xn. Now,

in this case, bootstrap analog for Tn would be T ∗n =
√
n(X̄n

∗− X̄n) where X̄n
∗

= 1
n

∑n
i=1X

∗
i .

Following theorem suggest that distribution of T ∗n conditioned upon X1, . . . , Xn will converge

to the normal distribution with different mean.

Theorem 3.2.1. Let {X1, X2, . . . , } be the stationary m-dependent sequence of random vari-

ables such that E(X1) = µ and 0 < V ar(X1) <∞. Then,

sup
x
|P∗(T ∗n ≤ x)− φ(x/σ)| = o(1) as n→∞, a.s.

Proof. Proof is similar to the convergence of bootstrap distribution of Tn in i.i.d case. Berry-

Esseen Theorem still applies here and s2n → σ2. But Marcinkiewicz-Zygmund SLLN is for

i.i.d. case. Here we use the modified version of this theorem for m-dependent variables to

show that

n−3/2
n∑
i=1

|Xi|3 → 0 as n→∞, a.s.

This can be proved using following lemma:
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Lemma 3.2.2. Let {X1, X2, . . . , } be the stationary m-dependent sequence of random vari-

ables. Let f : R → R be a borel measurable function such that E(|f(X1)
p|) < ∞ for

o < p <∞ and E(f(X1)) = 0 if p ≥ 1. Then,

n−1/p
n∑
i=1

|f(Xi)| → 0 as n→∞, a.s.

Proof. Idea of the proof is as follows. Break {X1, X2, . . . , } into different subsequence. Let

Yji = Xj+(i−1)(m+1) for j = 1, . . . ,m + 1. Then Yji for i ≥ 1 is an i.i.d sequence. Thus,

n−1/p
∑n

i=1 |f(Xi)| can be divided into two summations over i and over j. As, Yji for i ≥ 1, is

an i.i.d sequence, we can apply Marcinkiewicz-Zygmund SLLN there with little modifications

in constants. This proves the lemma.

Thus we see that bootstrap distribution of T ∗n converges to a normal distribution with a

different variance. Thus i.i.d. bootstrap method proposed by Efron fails to work in the case

of m-dependent sequence. Intuitive idea for this failure is that bootstrap samples X∗i fails

to capture the dependency in the original sequence Xi. Next couple of sections will focus on

different approaches to modify the bootstrap method for certain kind of dependent models.

3.3 Bootstrap Based on lID Innovations

I.i.d. bootstrap can be modified based on the specific kind of model that is under consider-

ation. Let {Xn : n ≥ 1} be the sequence such that,

Xn = h(Xn−1, . . . , Xn−p; β) + εn

n > p and where β is a q × 1 vector and h : Rp+q → R is a borel measurable functions. Let

εi for i ≥ p be i.i.d sequence of random variables independent of {X1, . . . , Xp} and having

distribution F . For simplicity let us assume that E(ε1) = 0. This model implies that Xn is

dependent upon last p Xis below Xn and is basically driven by independent random errors

εi. In such kind of model, i.i.d. bootstrap approach proposed by Efron can easily be extended.
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Suppose that we have sample X = {X1, . . . , Xn} and we have to estimate the sample distri-

bution of Tn = tn(X; β, F ) which is based on some function tn. Now let β̂n be some estimator

of β based on sample X, it may be LSE or some other kind of estimator. Define residuals,

ε̂i as follows,

ε̂i = Xi − h(Xi−1, . . . , Xi−p; β̂n); p < i ≤ n

If, ε̄ = 1/(n− p)
∑n

i=p+1 ε̂i, them centered residuals can be given as, ε̃i = ε̂i− ε̄. Centering is

done just to match our assumption of errors having mean 0, otherwise it produces nonzero

bias later.

Let X∗i = Xi for i = 1, . . . , p and

X∗i = h(X∗i−1, . . . , X
∗
i−p; β̂n) + ε̃i for n ≥ i > p

Then bootstrap version for Tn can be defined as T ∗n = tn(X∗;Fn, β̂n) whereX∗ = {X∗1 , . . . , X∗n}
and Fn is an emperical distribution based on centered residuals ε̃i, p < i ≤ n. This sampling

distribution of Tn is estimated by sampling distribution of T ∗n conditioned on X under this

innovation of i.i.d. bootstrap approach. Autoregressive time series model is special case of

the model we considered in this section and we will dive more in depth for this special case

in Time series section.

3.4 Moving Block Bootstrap

In the last section, the idea was to use independence of residuals to apply bootstrap method.

But most of the time, we don’t know the underlying structure or model assumptions for the

model. In that case we can’t use any underlying independence structure to generate boot-

strap method. In the view of this lack of knowledge of underlying structure, Kiinsch (1989)

and Liu and Singh (1992) seperately formulated new resampling scheme known as Moving

Block Bootstrap(MBB). In this section we will describe this method and give intuitive idea

about why this approach works for dependent data.

Let {X1, X2, . . . , } denote the stationary sequence of random variables and let us say we

have obtained observations X = {X1, . . . , Xn}. We will provide the moving block bootstrap

version of statistics of the form, θ̂n = T (Fn), where Fn is the emperical distribution based
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on data X and T (.) is some real valued function.

We will not need following assumptions while introducing the theory of MBB, but in the

literature standard assumptions are as follows: Let l ∈ [1, n) be an integer, then we require

l→∞ and l/n→ 0 as n→∞

Introduction of MBB however does not depend on these assumptions. LetBi = {Xi, . . . , Xi+l−1

denote the l-sized block starting with Xi and 1 ≤ i ≤ N where N = n− l+1(Basically this is

to assure that we don’t go beyond Xn.). Also assume that k is the smallest integer such that

n ≤ kl. We now have N blocks B1, . . . , BN . To generate MBB samples , we randomly select

k blocks from these N blocks. Let us denote MBB sample as B∗1 , . . . , B
∗
k. Let us denote

elements in B∗i as X∗i , . . . , X
∗
i+l−1. Then if we assume sequence B∗1 , . . . , B

∗
k in a sequence then

first n elements will be X∗1 , . . . , X
∗
N . This is known as MBB sample. Then MBB version of

θ̂n is given as

θ̂∗n = T (F ∗n)

here, F ∗n denotes the emperical distribution based on MBB sample X∗1 , . . . , X
∗
n.

Note that, if l = 1 then this is basically i.i.d. bootstrap approach introduced by Efron(1979).

MBB basically draws blocks from given sample. So dependency structure of underlying de-

pendent data is still captures within each block. If {Xi}i≥1 have dependency stucture of finite

lags, then asymptotically, as l →∞, MBB captures this dependency structure successfully.

Typical choices for l includes l = Cnδ where δ ∈ (0, 1/2).

3.5 Non-overlapping Block Bootstrap

Note that, in MBB method, resampled blocks can overlap with each other. Carlstein (1986)

changed the blocking rule we used for MBB method. Initial Set-up is mostly similar to MBB.

Let l ∈ [1, n] and b be the largest integer satisfying lb ≤ n. We define blocks as follows:

B
(2)
i = (X(i−1)l+1, . . . , Xil) i = 1, . . . , b

Where superscript (2) denotes NBB (Non-overlapping Block Bootstrap) blocking. Note that

these blocks don’t overlap with each other unlike MBB approach. Then we we randomly
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select k blocks from these non-overlapping blocks, where k is same as that of in last section.

Let us denote resampled blocks as B
∗(2)
1 , . . . , B

∗(2)
k . We get sequence of random variables

X∗2,1, . . . , X
∗
2,n if we arrange resampled blocks in order. Let F

(2)∗
n be the emperical distribution

based on X∗2,1, . . . , X
∗
2,n. Then bootstrap version of θ̂n is

θ̂(2)∗n = T (F (2)∗
n )

It has been shown that, if the stationary sequence {X1, X2, . . . , } satisfies some moment

conditions then,

E(E∗(θ̂
∗
n)− E∗(θ̂(2)∗n ))2 = O(l/n2)

This means that bootstrap estimators produced by MBB and NBB will have small difference

if the sample size is large.

This methods are useful if we don’t know the underlying model structure possessed by the

stationary sequence under considerations. However if the model structure is known then it

will be to use that particular structure while resampling in bootstrap method. Next section

will deal with bootstrap modifications for the time series model.

3.6 Time series

In this section we will consider the time series model widely known as Autoregressive Pro-

cesses. In this type of model, ideas behind application of bootstrap on linear models are

modified so that it provides a consistent bootstrap estimates. We will consider Stationary

case. We will describe the modification of Efron’s bootstrap to this particular case and pro-

vide some theoretical results found in literatures. Autoregressive process {Xi}i∈Z of order p

(p ∈ Z) has following structure:

Xi = µ+ β1Xi−1 + . . .+ βpXi−p + εi

where µ, β1, . . . , βp are unknown autoregressive parameters and εi are i.i.d. random variables

with mean 0, variance σ2 and same distribution, say F . For simplicity we consider, µ = 0.
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3.6.1 Stationary Autoregressive Model

Autoregressive process is called stationary if

β(z) = 1−
p∑
i=1

βiz
p 6= 0, for z ∈ C and |z| ≤ 1

Note that here Xi are dependent, so we can use block bootstrap methods. But our approach

in this section will be to use model structure of autoregressive time series to generate boot-

strap data.

Suppose from the process {Xi}i∈Z, data X1, . . . , Xn is observed. Then least square estimates

β̂p1, . . . , β̂pn of β1, . . . , βp based on n observation satisfy

(β̂p1, . . . , β̂pn)′ = (V ′nVn)−1V ′n(Xp+1, . . . , Xn)′ (3.1)

Here Vn is a matrix whose i-th row is Xi+p−1, . . . , Xi and i varies from 1 to n− p. Residuals

are given by ε̂i = Xi− β̂1nXi−1 + . . .+ β̂pnXi−p for i = p+1 . . . , n . Note that ε̂i, using model

structure of autoregressive process, can also be written as ε̂j = εj −
∑p

i=1(β̂in − βi)Xj−i for

p+ 1 ≤ i ≤ n. If suppose β̂in →p βi for i = 1, . . . , p as n→∞, then ε̂j can be approximated

by εi, and thus are i.i.d under our assumptions. So we can use Efrons i.i.d bootstrap on

these residuals. But before that, to adapt our assumption of mean of εi being 0 we need to

center the residuals. New residuals are given by,

ε̃i = ε̂i − ε̄ for i = p+ 1, . . . , n

where ε̄ = (n−p)−1
∑n

i=p+1 ε̂i. From the emperical distribution based on ε̃i , i = p+1, . . . , n,

draw random sample ε∗i , i ∈ Z. Each of this ε∗i will have probability of being equal to ε̃i,

conditioned upon X1, . . . , Xn, 1/(n− p)
Bootstrap version of autoregressive process is given by

X∗i = β̂1nX
∗
i−1 + . . .+ β̂pnX

∗
i−p + ε∗i , i ∈ Z (3.2)

Let X∗i be the stationary solution of this process. When the condition β̂in →p βi is satisfied,

stationary solution for above equation exists with high probability for large n. But in prac-

tice we derive such stationary solution by following method. Let X∗i = Xi for i = 1, . . . , p.

Now if the β̂(z) = 1−
∑p

i=1 β̂inz
p 6= 0, for z ∈ C and |z| ≤ 1, then in the long run effects of
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first p coefficients die out fast enough. So we use bootstrap version of autoregressive process

recursively many times so that the desired stationary stage is reached.

The bootstrap version for autoregressive process for statistic Tn = tn(X1, . . . , Xn, β1, . . . , βp, F )

is given by

T ∗n = tn(X∗1 , . . . , X
∗
n, β̂1n, . . . , β̂pn, F̂n)

where F̂n is emperical distribution described earlier based on centered residuals. Bose(1988)

showed that ARB (Auto-regressive Bootstrap) approximation is better than normal approx-

imation which has error of O(n−1/2), while ARB has error rate of order o(n−1/2) .

Let Cov(Xi, Xj)/σ
2 be (i, j)th element of p × p matrix Σ. Let {X∗i }i∈Z be the station-

ary solution to (3.2) and let Cov∗(X
∗
i , X

∗
j )/V ar∗(X

∗
i ) be the (i, j)th element of Σ̂. Assume

that E|ε2(s+1)
1 | <∞ for some s ≥ 3 and (ε1, ε

2
1) satisfies following condition : For every c > 0

there is δc > 0 which satisfies sup
|u|>c
|ψ(u)| ≤ e−δc , where (ε1, ε

2
1) has charecteristic function

ψ(u). Let β = (β1, . . . , βp), β̂n = (β̂p1, . . . , β̂pn) and β̂∗n be the p-vector obtained by putting

X∗i in place of Xi in equation (3.1). If, Hn is the distribution of
√
nΣ(β̂n − β) and HBoot is

the distribution of
√
nΣ̂(β̂∗n − β̂n) then Bose(1988) proved that

sup
x
|HBoot(x)−Hn(x)| = o(n−1/2) a.s.

ARB tends to have more accuracy when data assumes the above given model structure.

When we know that data does not assume the stationary autoregressive structure, it is

better to apply moving block methods for greater accuracy.

3.7 Simulations

In this section we will provide some basic simulations to give insight on how the bootstrap

works.

We randomly generate 2-dimensional data having 50 data points. We can think of this as 2

test scores of the 50 students in the class. Suppose i-th data point is denoted as xi = (xi1, xi2).

We are interested in the correlation of vector xi1 and vector xi2, say θ̂. When we apply

bootstrap to this data. It resamples 50 data point x∗i from original data and calculate
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correlation coefficient for this new data. We carried out 1000 bootstrap replications for the

statistic θ̂. Following image shows their distribution. Original value of θ̂ is 0.138. Standard

error and bias estimates given by bootstrap method are 0.111 and -0.009 respectively. So if

in practice we need to estimate distribution of θ̂, we can use the simulated distribution to

get a nice approximation.

Figure 3.1: Correlation coefficient

Next, we will consider autoregressive time series model of order 1. So our model is Xi =

β1Xi−1 + εi. Here εi ∼ N(0, 1). We generate data set of 50 data points using this model and

β1 = 0.5. We will apply ARB method to generate a bootstrap version of above time series.

Original time series is shown in Figure 3.2.
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Figure 3.2: Original Time series

Figure 3.3: Bootstrap replication

Here least square estimate for β1 is β̂1 = 0.519. Corresponding to this estimate, we obtain

residuals and resample them after centering. The bootstrap replication of above time series

obtained using ARB method described in previous section is shown in Figure 3.3.

Let us consider statistic T = (
∑99

i=1X
2
i )1/2(β̂1 − β1). Bootstrap replica using ARB method
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would be T ∗ = (
∑99

i=1Xi∗2)1/2(β̂∗1 − β̂1). Sampling Distribution of T ∗ using 500 bootstraps

is shown in the following figure. Thus, in practice, distribution of T can be approximated

by following simulated distribution.

Figure 3.4: Bootstrap Distribution T ∗
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Chapter 4

Conclusion

We learned the variance and the bias estimates produced by the jackkife and the bootstrap

method in case of independent data set. We approximated the distribution of any given

statistic with its bootstrap distribution and showed one way of proving the consistency of

this bootstrap distribution. Based on this bootstrap distribution, there are two ways to

obtain confidence intervals. Based on certain assumptions, we showed why this confidence

interval will work. But in case, this assumption is violated, we improved its accuracy using

better approximation. Through this we obtained BC and BCa confidence intervals. Later

we showed the consistency of all of these intervals and showed that as sample size gets larger,

we will get closer to desired level of confidence.

Further, applications of these methods to the linear models and dependent data set have also

been studied. These resampling procedures are not only used to estimate variance and bias

but can also be used in prediction problem. We used bootstrap to estimate the prediction

error and by this procedure we can make sure if our linear model is accurate or not. One

important problem was model selection. And we looked at the resampling technique known

as cross validation to estimate the give model.

In dependent data structure, we first looked at why the Efron’s bootstrap does not work.

Later we looked at MBB and NBB methods and their relation with each other. Time series

model was also studeied to give some idea of how bootstrap method can be modified to the

specific structure of dependent data.
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