
An overview of Homotopy type
theory and Formal methods

A Thesis

submitted to

Indian Institute of Science Education and Research Pune

in partial fulfillment of the requirements for the

BS-MS Dual Degree Programme

by

Harsha Nyapathi

Indian Institute of Science Education and Research Pune

Dr. Homi Bhabha Road,

Pashan, Pune 411008, INDIA.

April, 2020

Supervisor: Dr. Siddhartha Gadgil

c© Harsha Nyapathi 2020

All rights reserved

This thesis is dedicated to my well wishers

Declaration

I hereby declare that the matter embodied in the report entitled An overview of Homotopy

type theory and Formal methods are the results of the work carried out by me at the

Department of Mathematics, Indian Institute of Science, Bangalore, under the supervision

of Dr. Siddhartha Gadgil and the same has not been submitted elsewhere for any other

degree.

Harsha Nyapathi

Acknowledgments

I would firstly like to acknowledge my supervisor, Prof Siddhartha Gadgil for constantly

encouraging me to do better and providing the required guidance. I was able to push my

boundaries and learn a lot of new things during this year with his assistance. I would

like to thank Prof Amit Hogadi for assuaging my concerns and guiding me during stressful

situations. I express my gratitude to the people on Zulip chatroom, especially Alex J. Best,

who helped me with my doubts in Lean. I would also like to thank the mathematics fifth

year committee for supporting me with the project.

I am grateful for my family and friends, especially my roommates for their support during

this challenging year. Lastly, I am indebted to IISER for making the last 5 years memorable.

ix

x

Abstract

In this project, I have studied the basics of type theory, as a foundation for mathematics and

a basis for theorem provers, using which we can formalize mathematical objects and proofs,

and check their validity as well. I have taken up an example of representing graphs in type

theoretic language to understand the formalization better. I have also studied homotopy

type theory as an extension of Intuitionistic type theory, with the addition of univalence

axiom and higher inductive types.

xi

xii

Contents

Abstract xi

1 Type Theory 3

1.1 History and Variations . 3

1.2 Type theory vs Set theory . 5

1.3 Context and Structural rules . 6

1.4 Type Universes . 9

1.5 Dependent Types . 10

1.6 Inductive types . 12

2 Logic and Proof 21

2.1 Propositions as types . 21

2.2 Propositional logic . 22

2.3 Predicate Logic . 26

2.4 Classical vs Constructive logic . 29

3 Example - Formalization of graphs 33

4 Homotopy Type Theory 37

xiii

4.1 Types as higher groupoids . 38

4.2 Function extensionality and Univalence axiom 40

4.3 Sets and Logic . 43

xiv

Introduction

The original idea of type theory was given by Bertrand Russell, to resolve paradoxes in

mathematical foundations. It has developed over time with contributions from people like

Alonzo Church and Per Martin-Löf. Currently, there exist many variations of type theory,

important ones being Calculus of Constructions(CoC) and Intuitionistic type theory(ITT).

They are based on a primitive notion of type, which have rules specifying how to introduce

objects and use them. They have a vast structure to formalize mathematical objects and

proofs and be regarded as a foundation for mathematics. Type theory also has important

applications in computer science and programming languages, and more importantly in proof

assistants.

Proof assistants and theorem provers give logical and computational methods to express

claims formally, prove them, and give a verification for the proofs. Type theory is the basis

of many proof assistants because of its computational rules guiding construction of types and

behavior of their objects. It is also the result of a natural correspondence between proofs

and programs, as discovered by Haskell Curry and William Howard. Lean theorem prover is

a bridge between automated and interactive theorem proving,i.e., it provides tools to assist

in finding proofs and it focuses on verification of these proofs as well by justifying every step

against prior axioms. It is based on CoC.

Homotopy type theory is a recent idea, developed independently by the works of Awodey,

Warren and Voevodsky. It explores the intimate connections between abstract homotopy

theory, type theory, and category theory. Spaces can be thought of as groupoids with points

as objects and paths as morphisms. The non trivial structure of identity type motivates

a connection between types and spaces. The rules for identity type show that regarding

elements of a type as points and proofs of equality between them as paths is consistent with

1

the structure of weak ∞- groupoid. It gives rise to further connections between functions

and functors, dependent families and fibrations and so on. Hence homotopy type theory

gives a different interpretation of type theory and extends it by introducing univalence ax-

iom and higher inductive types. This provides powerful tools for formalizing constructive

mathematics and is still an active area of research. A number of proof assistants like Coq

are based on homotopy type theory implementation. Even Lean has a kernel supporting the

theory.

I have studied the concepts of type theory in this project, with a main focus on formal

verification. To understand it practically, I have used the Lean theorem prover and attempted

to formalize graphs and connectivity problem. The goal was to learn to represent objects

in type theoretic language, and also to understand computability in the case of finite and

infinite graphs. I have also gained a brief introduction to homotopy type theory by learning

the concepts necessary to understand the statement of univalence axiom and incorporation

of classical logic in homotopy type theory. The primary references for this project are the

tutorial on ” Theorem proving in Lean” and ” Homotopy type theory : Univalent foundations

of mathematics”.

2

Chapter 1

Type Theory

1.1 History and Variations

Type theory is a formal system which can serve as foundation of mathematics. It emerged

as an alternative to set theory because of contradictions such as Russell’s paradox. So, in

simple terms, types form a hierarchy, hence avoiding self reference. There are many versions

of type theory, well known among those are λ calculus and its generalizations, calculus of

constructions and intuitionistic type theory.

• Simple type theory consists of untyped and simply typed λ calculus. λ calculus was

created by Church to deal with recursion and computation in halting problem.

Untyped λ calculus uses λ terms (or terms) as primitives instead of sets and elements.

If x is a variable and E is an arbitrary term, then any term is of the form

E := x | λx.E | (EE) |..

The terms can be reduced using α-conversion and β-reduction operations. Strategies

like call by name and call by value can be applied during reduction. However, if a term

reaches normal form, the form is independent of the strategy.

Simply typed λ calculus is based on λ calculus and uses the same syntax but it is

a higher order logic system. There is a set of base types and new types can be built

3

using type constructor → or ×. Hence, given any arbitrary variable x, term E, types

α and β, and base type γ, any type or term is of the form

α, β := γ | α→ β | α× β

E := x | λx : α.E | (EE) | (E,E)

Typing judgements and rules are used to derive well formed and well typed terms.

• Calculus of constructions (CoC) is an impredicative type theory. When a definition

quantifies over a set containing the entity which is being defined, it is impredicative.

CoC is a generalized type system, meaning judgements over types are allowed. There

is a type T (type of large types) and P (Prop or type of all propositions, or small

types), which can be treated as terms as well. Hence, given variable x and arbitrary

term E, any term is of the form

E:= T | P | x | EE | λ x: E.E | ∀ x:E.E

CoC can be thought of as an extension of Curry Howard isomorphism, where types are

interpreted as predicates and terms as proofs. We can also build basic data types such

as bool, nat, product and union within CoC. Hence CoC is the basis of many proof

assistants.

• Intuitionistic type theory (or constructive type theory, or Martin-Löf type theory)

is, like CoC, a generalized type system, but it is predicative. Philosophically, it is a

foundation for constructive mathematics as it gives a general idea of what constructive

mathematical objects and proofs are. Homotopy type theory is a variant which employs

ideas from ITT and homotopy theory. ITT has an extensional and intensional version

which differ in the distinction between judgemental and propositional equality.

In the upcoming sections, the basic concepts of intuitionistic type theory (which is a version of

Martin Löf’s intensional type theory) will be explained. However, I have also learned formal

proving in Lean theorem prover, which is based on Calculus of Inductive constructions.

Hence the corresponding concepts of Lean will be mentioned wherever applicable.

4

1.2 Type theory vs Set theory

Type theory emerged as an alternative to set theory. Although type is in some ways similar

to set, there are some important differences.

• Any foundation based on set theory is built on top of deductive systems such as first

order logic. The axioms of a particular theory are formulated inside the system. Hence

it has two layers, sets (and interplay between them) and propositions.

However, type theory is a deductive system in its own right. It has a basic notion of

types and propositions can be interpreted as particular types.

• Judgements are statements which are derived from the rules of deductive system. In

set theory, first order logic has only one type of judgement- that any given proposition

has proof. In type theory, there are three kinds of judgements, the basic one being

”a : A”, meaning term ”a” has type ”A”. When ”A” represents a proposition, it is

analogous to saying ”a” is a proof of ”A”.

If we look at types as sets, then a : A corresponds to a ∈ A. However, the important

difference between these statements is that first is a judgement whereas second is a

proposition. We cannot disprove a : A. Another way to think is, given an element ”a”,

it may or may not belong to A in set theory. However in type theory, ”a” cannot exist

in isolation.

• In set theory, equality is a proposition. In type theory, equality is a type, since propo-

sitions are types. Hence a = b being inhabited implies ”a” and ”b” are propositionally

equal. However there also exists a judgement of definitional equality, a ≡ b : A, which

is absent in set theory. It implies that the terms are equal by definition. Definitional

equality is useful to derive judgements of the first kind, i.e, given a : A and A ≡ B, we

derive a : B.

Traditional type theories (excluding homotopy type theory) consist of rules without axioms,

hence ensure computational properties by being procedural. In set theory, there are rules of

first order logic but behavior of sets is described by axioms.

5

1.3 Context and Structural rules

The formal description of type theory includes giving syntax and a set of inference rules for

deriving well formed judgements. We can have different presentations for the system, here

we will describe one in the style of natural deduction.

Context is a list of assumptions of the form,

x1 : A1, x2 : A2, ..., xn : An

which specifies that distinct x1, x2, .., xn have types A1, A2, .., An respectively. Context can

be empty as well.

There are three kinds of judgements:

• Γ ctx - It implies that Γ is a well formed context, meaning that each Ai is a type in

x1 : A1, x2 : A2, ..., xi : Ai context.

• Γ ` a : A - It implies that ”a” has type A in the given context Γ.

• Γ ` a ≡ b : A - It implies that ”a” is judgementally equal to ”b” and they have type

A in the given context. Lean respects judgemental equality by having a definition

command which is used to define objects.

An inference rule is of the form

J1......Jk

J
NAME

It implies that given hypotheses (in the deductive system sense) J1, ..,Jk, we can derive J .

6

The following are the rules to derive judgements.

• These rules are to derive well formed contexts, with an extra condition for second rule

that xn must be distinct from other variables.

.ctx
ctx-EMP

x1 : A1, ..., xn−1 : An−1 ` An : Ui
(x1 : A1, ..., xn : An)ctx

ctx-EXT

• This rule is to derive judgements of the second kind, only now the hypothesis and

conditions are reversed compared to ctx-EXT.

(x1 : A1, ..., xn : An)ctx

x1 : A1, ..., xn : An ` xi : Ai

Vble

• The following rules are to derive judgements of second and third kind, based on prin-

ciples of substitution and weakening.

Γ ` a : A Γ, x : A,∆ ` b : B

Γ,∆[a/x] ` b[a/x] : B[a/x]
Subst1

Γ ` A : Ui Γ,∆ ` b : B

Γ, x : A,∆ ` b : B
Wkg1

Γ ` a : A Γ, x : A,∆ ` b ≡ c : B

Γ,∆[a/x] ` b[a/x] ≡ c[a/x] : B[a/x]
Subst2

7

Γ ` A : Ui Γ,∆ ` b ≡ c : B

Γ, x : A,∆ ` b ≡ c : B
Wkg2

• Following rules state that judgemental equality is an equivalence relation.

Γ ` a : A

Γ ` a ≡ a : A

Γ ` a ≡ b : A

Γ ` b ≡ a : A

Γ ` a ≡ b : A Γ ` b ≡ c : A

Γ ` a ≡ c : A

Γ ` a : A Γ ` A ≡ B : Ui
Γ ` a : B

Γ ` a ≡ b : A Γ ` A ≡ B : Ui
Γ ` a ≡ b : B

• In addition, there are rules to state that type constructors preserve definitional equality

in all of their arguments.

We will follow a general pattern while introducing a new type by specifying:

• Formation rule - This tells us how we can form new types of a given kind.

• Introduction rule - This is to introduce new elements of the type. The rules are called

type constructors as well.

8

• Elimination rules - They tell us how we can use elements of the type or construct

functions out of the type. They are also called type’s eliminators.

• Computational rule - This states how a function constructed by elimination rule acts

when applied to an element constructed by introduction rule.

• Uniqueness principle (optional) - This tells us about uniqueness of functions in and

out of the type.

1.4 Type Universes

Type universe represents the idea of having a type of all types. However, to avoid Russell’s

paradox, we have a hierarchy of universes,

U0 : U1 : U2...

Universe is a type which contains types as elements. Here, each Ui is an element of Ui+1 and

if A : Ui, then A : Ui+1 as well. Hence universes are cumulative, which means elements don’t

have unique types.

This can be expressed formally as:

Γctx

Γ ` Ui : Ui+1

U -INTRO

Γ ` A : Ui
Γ ` A : Ui+1

U -CUMUL

Type families (B : A→ U) are functions,with codomain as universe, to represent collection

of types which vary over a type A. When we write U , it refers to some Ui without mentioning

i explicitly. The subscript here doesn’t refer to natural numbers, it is not a part of the theory.

9

Lean also has a hierarchy of type universes,

Type 1 : Type 2 :...

When we declare A : Type, an implicit variable is created and Lean declares A : Type u.

The standard kernel for Lean contains a datatype Prop, which is the type representing

all propositions. It is the syntactic sugar for Type 0 at the bottom of type hierarchy. All

propositions, irregardless of the type of their arguments, are made to land in this type. Given

a type A, it is allowed to form the type of all predicates on A, A → Prop, and propositions

that quantify over A → Prop as well. This property of Prop makes CoC impredicative, on

which the standard kernel of Lean is based on. The kernel supporting homotopy type theory

doesn’t have this feature, which is based on intuitionistic type theory.

1.5 Dependent Types

Elements of Π type or dependent function type are functions whose codomain is dependent

on domain elements. If we are given a type A : U and a type family B : A→ U over A, then

the type Π(x:A)B(x) represents type of functions which take a : A as argument and return

an element of the type B(a).

In Lean, the syntax for dependent type is Π (x : A), B a. It can be expressed as a judgement

as

x : A ` B : Ui

The special case when B is a constant family gives rise to ordinary function types.

Π(x:A)B ≡ A→ B

We can give the rules for the type former formally as follows:

10

• Formation rule

Γ ` A : Ui Γ, x : A ` B : Ui
Γ ` Π(x:A)B : Ui

Π− FORM

• Introduction rule

Γ, x : A ` b : B

Γ ` λ(x : A).b : Π(x:A)B
Π− INTRO

This represents that given an expression b : B(x), we can introduce new elements of

the type using λ-abstraction, λx.b : Π(x:A) B.

• Elimination rule

Γ ` f : Π(x:A)B Γ ` a : A

Γ ` f(a) : B[a/x]
Π− ELIM

We can apply the function to a given argument of type A, to obtain an element of

B(a).

• Computation rule

Γ, x : A ` b : B Γ ` a : A

Γ ` (λ(x : A).b)(a) ≡ b[a/x] : B[a/x]
Π− COMP

To compute (λx.b)(a), we replace all occurences of x in b with a.

11

• Uniqueness principle

Γ ` f : Π(x:A)B

Γ ` f ≡ (λx.f(x)) : Π(x:A)B
Π− UNIQ

It states that a function is definitionally equal to the λ-abstraction - λx.f(x). It implies

that a function is determined by its values uniquely.

An example of dependent type is the identity function Π(A:U)A→ A, which is defined as id

≡ λ(A : U).λ(x : A).x. It is a polymorphic function, which takes type as an argument and

acts on its elements.

1.6 Inductive types

Apart from universes and dependent function types, we can form other types using inductive

definition. Intuitively, an inductive type is freely generated by a specified list of constructors.

Each constructor is a function whose codomain is the inductive type. This includes the case

of zero arguments as well.

The property that elements of inductive type are obtained by repeatedly applying construc-

tors is expressed in the elimination rule, which is also called induction principle.

In Lean, the syntax for forming an inductive type is:

i nduc t i v e f : Type

| con s t ruc to r 1 : . . . → f

| con s t ruc to r 2 : . . . → f

. . .

| con s t ruc to r n : . . . → f

12

The index of Type to which f belongs is greater than each of the indices of types of arguments

(excluding the case where f is made to land in Prop). To define functions on inductive types,

Lean provides ways to use recursive functions, pattern matching and writing inductive proofs.

Some examples of inductive types in which constructors don’t take arguments, and hence

the types are just a collection of constructors are (as defined in Lean syntax) :

• i nduc t i v e empty : Type

• i nduc t i v e un i t : Type :=

s t a r : un i t

• i nduc t i v e bool : Type :=

| f f : bool

| t t : bool

Following are some important examples of inductive type with constructors taking argu-

ments.

1.6.1 Dependent pair types (or Σ type)

This type represents generalization of cartesian product of types, where elements are in the

form of pairs, and the type of second component depends on the first. Product type is a

special case of dependent pair type.

In Lean, the inductive definition for dependent pair type and product type respectively is as

follows:

i nduc t i v e sigma (A : Type) (B : A → Type)

dpa i r : Π a : A, B a → sigma B

induc t i v e prod (A B : Type)

mk : A → B → prod A B

13

The type former rules can be given formally as:

• Formation rule

Γ ` A : Ui Γ, x : A ` B : Ui
Γ ` Σ(x:A)B : Ui

Σ− FORM

It says that given A : U and type family B : A→ U , we can form a type Σ(x:A)B(x) : U ,

also denoted as Σ(x : A), B(x). When B is a constant family, it is the special case of

the product type (A×B).

• Introduction rule

Γ, x : A ` B : Ui Γ ` a : A Γb : B[a/x]

Γ ` (a, b) : Σ(x:A)B
Σ− INTRO

It says that given a : A and b : B(a), we can introduce an element (a, b) of the type.

• Elimination rule

Γ, z : Σ(x:A)B ` C : Ui
Γ, x : A, y : B ` g : C[(x, y)/z] Γ ` p : Σ(x:A)B

Γ ` indΣ(x:A)B(z.C, x.y.g, p) : C[p/z]
Σ− ELIM

The syntax z.C and x.y.g imply that these variables are bound.

• Computational rule

14

Γ, z : Σ(x:A)B ` C : Ui Γ, x : A, y : B ` g : C[(x, y)/z]
Γ ` a : A Γ ` b : B[a/x]

Γ ` indΣ(x:A)B(z.C, x.y.g, (a, b)) ≡ g[a, b/x, y] : C[(a, b)/z]
Σ− COMP

The last two rules say that given a type family C : (Σ(x:A)B(x)) → U and a function g :

Π(a:A)Π(b:B(a))C((a, b)), we can construct a function

indΣ(x:A)B(x) : Π
(C:(Σ(x:A)B(x))→U)

(Π(a:A)Π(b:B(a))C((a, b)))→ Π
(p:Σ(x:A)B(x))

C(p)

which follows the computation rule,

indΣ(x:A)B(x)(C, g, (a, b)) :≡ g(a)(b)

When C is a constant and not a type family, the elimination rule is called the recursion

principle.

1.6.2 Natural numbers

Natural numbers are an example of inductive type where constructor uses the type being

defined as an argument. The elements are defined using and initial element zero, and a

successor function.

In Lean syntax, the definition for natural numbers is:

i nduc t i v e nat : Type

| zero : nat

| succ : nat → nat

15

The formal rules specifying the type are:

• Formation rule

Γctx

Γ ` N : Ui
N − FORM

• Introduction rule

Γctx

Γ ` 0 : N
N − INTRO1

Γ ` n : N

Γ ` succ(n) : N
N − INTRO2

• Elimination rule

Γ, x : N ` C : Ui Γ ` c0 : C[0/x]
Γ, x : N, y : C ` cs : C[succ(x)/x] Γ ` n : N

Γ ` indN(x.C, c0, x.y.cs, n) : C[n/x]
N − ELIM

• Computation rule

Γ, x : N ` C : Ui
Γ ` c0 : C[0/x] Γ, x : N, y : C ` cs : C[succ(x)/x]

Γ ` indN(x.C, c0, x.y.cs, 0) ≡ c0 : C[0/x]
N − COMP1

16

Γ, x : N ` C : Ui Γ ` c0 : C[0/x]
Γ, x : N, y : C ` cs : C[succ(x)/x] Γn : N

Γ ` indN(x.C, c0, x.y.cs, succ(n))
≡ cs[n, indN(x.C, c0, x.y.cs, n)/x, y] : C[succ(n)/x]

N − COMP2

The last two rules state that, to use the induction principle on nat onto a type family

C : N → U , we need an element c0 : C(0) and a function cs : Π(n:N)C(n) → C(succ(n)).

Then we can construct a function,

indN : Π
(C:N→U)

C(0)→ (Π(n:N)C(n)→ C(succ(n)))→ Π(n:N)C(n)

which follows the computation rules,

indN(C, c0, cs, 0) :≡ c0

indN(C, c0, cs, succ(n)) :≡ cs(n, indN(C, c0, cs, n))

In case of natural numbers also, taking a constant C gives recursion principle and the function

is said to be defined by primitive recursion.

1.6.3 Identity Type

Identity or equality types correspond to the type of equality of two elements of the same

type, a, b : A from the propositions-as-types correspondence. This type, written as a =A b,

is different from the judgement of definitional equality.

17

Identity types are an example of generalization of inductive types, called inductive type fam-

ily. They are indexed families which, instead of constructing an element of Type, construct

a function ... → Type, where ... are indices. They are represented in Lean as,

i nduc t i v e foo : . . . → Type u

| con s t ruc to r 1 : . . . → f oo . . .

| con s t ruc to r 2 : . . . → f oo . . .

. . .

| con s t ruc to r n : . . . → f oo . . .

The definition of equality type in Lean is

i nduc t i v e eq {α : Sort u} (a : α) : α → Prop

| r e f l : eq a

This definition constructs a type family eq a x which is indexed by x.

The formal type former rules are given as:

• Formation rule

Γ ` A : Ui Γ ` a : A Γ ` b : A

Γ ` a =A b : Ui
= −FORM

We can form the equality type in the same universe as A.

• Introduction rule

Γ ` A : Ui Γ ` a : A

Γ ` refla : a =A a
= −INTRO

18

It states that refla is a constructor for the type a =A a. If a and b are judgementally

equal, then refla is an element of a =A b as well. It is important to note that even

though refl is the only introduction rule, it is not the only possible element of equality

type.

• Elimination rule

Γ, x : A, y : A, p : x =A y ` C : Ui Γ, z : A ` c : C[z, z, reflz/x, y, p]
Γ ` a : A Γ ` b : A Γ ` p′ : a =A b

Γ ` ind=A
(x.y.p.C, z.c, a, b, p′) : C[a, b, p′/x, y, p]

= −ELIM

• Computation rule

Γ, x : A, y : A, p : x =A y ` C : Ui
Γ, z : A ` c : C[z, z, reflz/x, y, p] Γ ` a : A

Γ ` ind=A
(x.y.p.C, z.c, a, a, refla) ≡ c[a/z] : C[a, a, refla/x, y, p]

= −COMP

The last two rules (also called as path induction) state that, to define a function on a type

family C : Π(x,y:A)(x =A y) → U , we need a function c : Π(x:A)C(x, x, reflx). We can then

define a function,

ind=A
: Π

(C:Π(x,y:A)(x=Ay)→U)
(Π(x:A)C(x, x, reflx))→ Π

(x,y:A)
Π

(p:x=Ay)
C(x, y, p)

with the computation rule,

ind=A
(C, c, x, x, reflx)) :≡ c(x)

We consider a special case to understand this interpretation. If C doesn’t depend on p, then

C associates propositionally equal x, y to C(x, y) and c is a proof of C(x, x). We conclude

19

that C(x, y) is true. Hence to prove something about propositionally equal x, y, we need to

consider the case where x ≡ y. In general, if C depends on p, we need to consider the case

where x and y are judgementally equal and the proof is refl.

An important consequence of the induction principle is the indiscernability of identicals,

which is the recursion principle for equality type. It states that type families respect equality.

It is important to note that the induction principle cannot be used on a family C(p) where

x and y are fixed. The rule only says that when x and y vary over elements of A, then the

triple (x, y, p) can be generated using (x, x, reflx). Hence we cannot prove that all proofs

of equality (x = x) are reflexivity. This non trivial structure of equality is important in

homotopy interpretation of type theory.

There is a second way to represent induction principle, known as based path induction, where

we don’t need to vary both x and y over A and instead can consider the type family a =A x

where a is fixed. We can prove that this is equivalent to path induction.

20

Chapter 2

Logic and Proof

2.1 Propositions as types

Until now, we have seen how to construct general types and represent mathematical objects

using them (for instance natural numbers). Now we will look at the notion of logic and

proof in this theory. There exists an external notion of proof in the metatheory where we

derive judgements on the basis of some rules. Using the internal notion of proof, we can

incorporate logic into the type theory itself, unlike set theory. This comes from the Curry-

Howard isomorphism, which gives a correspondence between proofs and programs. It means

that if we interpret propositions as types, there is a natural correspondence between logical

operations and various type formers, and also between natural deduction rules and type

system for λ-calculus.

Hence, propositions and proofs are placed on the same level as types and their elements, and

the typing rules can be applied on them. To prove a proposition, we have to construct an

element of that type using introduction or elimination rules. To understand this better, we

will look at how various logical operations and rules of natural deduction system correspond

to specific type theoretic operations and how there is a natural correspondence between logic

and programming. Types can also be interpreted as propositions that they are non empty.

In that case, the proof is precisely an element of the type.

The following table gives different points of view for type theoretic operations.

21

Types Logic

A proposition

a:A proof

B(x) predicate

b(x):B(x) conditional proof

0,1 ⊥,>
A+B A∨ B

A× B A∧ B

A→B A⇒B

Σ(x:A)B(x) ∃x:AB(x)

Π(x:A)B(x) ∀x:AB(x)

IdA equality=

Lean has a specific type for propositions, Prop. This means that all types belonging to Prop

are viewed as propositions rather than just data. This notion is evident from the following

example. Given types A and B, if B : Prop, then Π x : A, B x also belongs to Prop because

it is also a proposition depending on A. Furthermore, if p : Prop and t1, t2 are proofs of p,

then they are treated to be definitionally equal.

2.2 Propositional logic

Natural deduction gives rules for proving propositional formulae which are built using propo-

sitions and logical connectives. Here, we will give the rules for various connectives and show

the correspondence between rules of introduction and elimination of types, and rules of

reasoning about propositions.

We represent the statement that C follows logically from hypotheses A and B as

A B

C

The introduction and elimination rules characterize any logical connective,i.e., rule to prove

22

a claim which involves the connective and rule to use a statement containing the connective

to derive others.

• Implication

Implication represents if...then statements,i.e., A =⇒ B means that truth of B can

be inferred if the truth of A is known.

The introduction and elimination rules are:

A····
B

A→ B
→ I

A→ B A

B
→ E

The introduction rule states that, if on assuming A, we are able to show B, then we

can show A → B.

Elimination rule (also known as modus ponens) states that if we have a proof of A

=⇒ B and A, then we get a proof of B.

These rules correspond to the introduction and elimination rules of functions because

getting a proof of B on assuming proof of A is equivalent to having a function A →B

and deriving a proof of B from A =⇒ B and A is the same as function application.

In Lean, if we have a function type A →B where B : Prop, then A →B : Prop.

• Conjunction

23

This represents the propositions of the form A and B, hence combining two assertions

into one. The introduction and elimination rules are:

A B

A ∧B
∧ I

A ∧B
A

∧ El

A ∧B
B

∧ Er

It states that given proof of A, B, we get proof of A and B. This is the same as

introduction rule for product type.

Elimination rule states that given proof of (A and B), we can extract proofs of A, B

separately. For product type A × B, we can construct projection functions and get

elements of A and B by elimination rule. Hence conjunction corresponds to product

type.

In Lean, ’and’ type is defined as

induc t i v e and (a b : Prop) : Prop

i n t r o : a → b → and a b

This definition is similar to ’prod’, except the arguments and the type belong to Prop.

• Disjunction

Disjunction represents propositions of the form A or B. The introduction and elimina-

tion rules are:

A

A ∨B
∨ Il

24

B

A ∨B
∨ Ir

A ∨B

A····
C

B····
C

C
∨ E

This states that A ∨ B can be derived separately by both A and B. This is similar

to the introduction rule of coproduct type A+B, where elements are constructed by

elements of A or B by left injection or right injection.

Elimination rule states that given a proof of A ∨ B, and case wise proofs of A =⇒ C

and B =⇒ C for some C, then we get a proof of C. This is exactly the case analysis

elimination rule for coproduct type.

In Lean, we have the type ’or’ defined as

induc t i v e or (a b : Prop) : Prop

| i n t r o l e f t : a → or a b

| i n t r o r i g h t : b → or a b

It is similar to A+B except ’or’ type belongs to Prop.

• Negation

This represents the proposition ’not A’ and logically means showing that A leads to

contradiction. We will introduce logical terms true (>) and false (⊥) here.

False refers to contradiction or impossibility in logical language. It has no introduction

rule and one elimination rule that you can derive anything from contradiction. It

corresponds to the empty type.

True has one introduction rule, that it is true in all cases, and no elimination rule. It

corresponds to the unit type.

25

Now, the introduction and elimination rules for negation, true and false are:

A····
⊥
¬A
¬I

¬A A

⊥
¬E

⊥
A
⊥E

>
>I

The introduction rule for negation states that if on assuming A, we get a contradiction,

then we get a proof of ¬A. Elimination rule states that if we have A and ¬A, then

we have a contradiction. If we think of negation ¬A as A → 0 (where 0 is the empty

type) , then the rules correspond to implication rules. Hence the corresponding type

is function type.

2.3 Predicate Logic

We have seen the types which represent propositional logic. To work with a family of

propositions or propositions formed by quantification which make a statement about a family

of propositions, we need to look at predicate logic. Predicates which take an element of A

as an input and give a proposition, correspond to the type family B : A → U. We will look

at quantifiers and equality in this section.

• Universal quantifier

26

The universal quantifier ’∀’ reads for all. ∀ x, P(x) states that every value of x follows

the property P. It has the following introduction and elimination rules.

A(x)

∀yA(y)
∀ I

∀xA(x)

A(t)
∀ E

It states that if A is true for an arbitrary x, then it is true for all x. Elimination rule

states that if A is true for all x, then it is true for some specific t. These rules are

the same as function abstraction and application. However, since the proposition is

dependent on x, universal quantifier corresponds to dependent function type.

Lean has the dependent type Π x : A, B x. If B(x) has the type Prop, then we use the

universal quantifier type ∀ x : A, B x, which also belongs to Prop.

• Existential quantifier

The quantifier ’∃’ reads there exists. It expresses assertions of the form ∃ x, A(x)

which means that there exists some x such that A(x) is true. The introduction and

elimination rules are:

A(t)

∃xA(x)
∃ I

∃xA(x)

A(y)
····
B

B
∃ E

Introduction rule states that if t is any term for which A(t) is true, then ∃ x, A(x) is

true. Hence we need to provide a witness t. Elimination rule states that if we have a

proof of ∃ x, A(x) and A(y) → B for an arbitrary y, then we have a proof of B.

27

We note that in introduction rule for dependent pair type, we need to provide an

element of A and B(a), given A : U and B : A → U , which is similar to that of ∃. In

case of elimination rule too, to construct an element of C, we need an element of ∃x :

A,B(x) and a function Πx : A,B(x)→ C. Hence existential quantifier corresponds to

dependent pair type.

Similar to other propositional types, Lean has a type Exists (or ∃) which belongs to

Prop and is defined as:

i nduc t i v e Ex i s t s {A : Type}(P : A → Prop) : Prop

i n t r o : ∀ (a : A) , P a → Ex i s t s P

• Equality

In logic, the expression s = t states that ”s and t are ’equal’ or identical’”. This could

mean that they are the same object or different descriptions of same object.

We have the following rules for equality:

t = t
refl

s = t

t = s
symm

r = s s = t

r = t
trans

s = t

r(s) = r(t)
subst

s = t P (s)

P (t)
subst

28

The introduction rule is reflexivity, which states that an object is equal to itself. The

elimination rule is substitution; we can substitute equal elements. The other rules can

be derived from these two. They show that equality is am equivalence relation.

In type theory, we have the identity type to represent equality. It has similar introduc-

tion and elimination rules, except elimination rule is more general and quantifies over

different kinds of proofs as well. Its consequence is the substitution rule. Another differ-

ence is that type theory differentiates between definitional and propositional equality.

In the standard kernel of Lean, the equality type belongs to Prop. Here, any two

proofs of the type are considered judgementally same. However, the Prop is absent in

homotopy type theory kernel.

2.4 Classical vs Constructive logic

The logic represented by proposition as types interpretation is different from the usual clas-

sical logic of mathematics; it is constructive in nature. Propositions are not just true or

false, they are viewed as a collection of their proofs. Hence a valid proof of a proposition is

one which has a valid type and can be constructed in a step by step manner, following the

computational rules of types, as proofs exist at the same level as elements of types.

For instance, to prove A, it is not possible to assume ¬A and get a contradiction, as no

obvious function exists from ¬(¬)A to A. This is an example of proof by contradiction used

in classical logic. Another principle used in classical logic is law of excluded middle. It implies

in type theoretic context that for every type A, we have a term of the type A + (A → 0).

Hence it gives a method to prove or disprove any proposition. However, the logic of type

theory doesn’t computationally derive that every proposition is either true or false. Hence,

we can’t prove LEM using logic, but adding it as an axiom is consistent with type theory.

Yet another difference between classical and type theory logic is the axiom of choice, which

is a provable theorem in type theory.

The core parts of standard library of Lean are computationally pure and don’t have the

type Prop. However, Lean also gives the option to use classical choice axiom (Hilbert oper-

ator) to support classical reasoning, whose consequence is LEM. It also provides the axioms

propositional and function extensionality.

29

We have seen the types and rules corresponding to logical operations. Now, we will see how

to give complete proofs using them. We give a simple example each from propositional logic

and predicate logic.

Consider a proposition (A and B) =⇒ (B and A). In natural deduction style, it can be

proved as follows.

A ∧B
B

A ∧B
A

B ∧ A

The Lean version is:

v a r i a b l e s A B : Prop

theorem commutative : (A ∧ B) → (B ∧ A) :=

λ h : (A ∧ B) , and . i n t r o (and . r i g h t h) (and . l e f t h)

To formalize the proof in type theory, we first need to find the valid type of the proposition.

In this case, the proposition is (A ∧ B) → (B ∧ A). ’commutative’ is the name given to the

proof and the command theorem is used to give a definition of ’commutative’ as the relevant

proof object.

Now we construct the object as follows. Since it is a function type between two propositions,

we assume an object of the domain and specify a valid object of codomain to which it is

mapped. The object of (B ∧ A) is obtained by applying introduction and elimination rules

of and type.

Now consider a proposition involving universal quantifier, ∀x, A(x) and B(x) =⇒ ∀x, A(x).

We can prove it in natural deduction style as,

30

∀x,A(x) ∧B(x)

A(y) ∧B(y)

A(y)

∀y, A(y)

The Lean version is

v a r i a b l e U : Type

v a r i a b l e s A B : U → Prop

example : ∀x , A x ∧ B x → ∀x , A x :=

assume h : ∀x , A x ∧ B x ,

assume y ,

show A y , from and . l e f t (h y)

’example’ command is used to define a proof object without giving name to it. Here, we use

the ’assume’ and ’show’ commands which are an alternate syntax for λ-abstraction. ’show’

command is used to check that the object defined in from has the correct type.

Now, to define an element of the proposition, we use λ-abstraction twice.We assume a proof

of (∀x, A x ∧ B x), take an arbitrary y, and introduce an object of (∀x, A x) using function

application and ’∧’ elimination rules.

Lean provides alternative syntax for many commands which are proof friendly and look

informal. Lean also allows us to introduce goals in long proofs. It also provides features like

tactics, which are instructions that describe how to build a proof. They make proofs shorter

and easier to write.

31

32

Chapter 3

Example - Formalization of graphs

As a part of getting familiarized with type theory, my goal in this project was to work on a

concrete problem of formalizing graphs. In particular, the aim was to 1.) write an algorithm

to check if a finite graph is connected and prove the correctness of the algorithm 2.) show

that such an algorithm is not possible in a general case.

Graphs as mathematical objects, are a collection of vertices with a relation on them which

gives edges. We can form different types of graphs based on whether the edges are directed,

whether there are multiple edges between two vertices and whether there are loops on a

single vertex. In a general case, we can define a graph to be a triplet (V,E,φ) where V and

E are sets of vertices and edges respectively, and φ is a function mapping each edge to a

pair of vertices. Path is an ordered collection of edges, where the end point of an edge is the

starting point of next edge.

Here, we define an undirected graph, allowing multiple edges and loops. I have used a

syntactic variation of inductive type, called structure to represent a graph. To define path,

I have used inductive family, which given a graph and a starting point, takes a vertex as

input and gives a path ending with the vertex. This is followed by some simple objects of

these types.

u n i v e r s e s u v

33

s t r u c t u r e graph :=

(ver tex : Type u)

(edge : Type v)

(φ1 : (edge → ver tex))

(φ2 : (edge → ver tex))

#check graph

#pr in t graph

/−graph with s i n g l e po int and loop−/

induc t i v e One : Type

| one : One

de f a (x : One) : One := One . one

de f graph0 : graph :=

{ ver tex := One , edge := One ,φ1 := a , φ2 := a}
#pr in t graph0

/−graph with 2 po in t s and an edge−/

induc t i v e Two: Type

| one :Two

| two :Two

de f b1 (x : One) : Two := Two. one

de f b2 (x : One) : Two := Two. two

de f graph1 : graph :=

{ ver tex := Two, edge := One , φ1 := b1 , φ2 := b2}
#pr in t graph1

induc t i v e path (g : graph .{u v }) (s t a r t : g . ve r tex) :

(g . ve r tex) → Type (max u v)

| f i x {} : path s t a r t

| addedge (add : g . edge) (l a s t : g . ve r tex) (p : path l a s t) (pr : l a s t = g .φ1 add) :

path (g .φ2 add)

#check path

34

#check path . addedge

/−path with s i n g l e point−/

de f path0 : path graph0 One . one One . one := path . f i x

/−path with one edge−/

de f path1a : path graph1 Two. one Two. one := path . f i x

de f path1b : path graph1 Two. one Two. two :=

path . addedge One . one Two. one path1a r f l

#check path1b

#pr in t path1b

Now, to give an algorithm to check connectedness, we need an extra condition for the graph

to be finite. In general case, such as for infinite graphs, such an algorithm is not possible.

We can only have a half algorithm, which either gives one of yes/no output or keeps going

on forever. However in the finite case, the program halts after finite number of steps, so it

is possible to have a concrete yes/no for each input. We call such problems undecidable.

To define a finite graph, I have used finite sets. I have defined vertices and edges to be

separate sets and added a proposition that edge is subset of product of vertex sets. I have

defined a neighbor of set function, which takes a set of vertices and gives a set containing

all their immediate neighbors, including the input set as well. Then, we can introduce a

function which takes a set of vertices and gives its connected component by recursively using

neighbor of set function, and based on whether the connected component is equal to the

vertex set, it decides the connectedness of graph.

import data . f i n s e t

v a r i a b l e β : Type

s t r u c t u r e f i n i t e g r a p h (β : Type):=

(f v e r t e x : f i n s e t β)

(f edge : f i n s e t (β × β))

(i s s u b : f edge ⊆ (f i n s e t . product f v e r t e x f v e r t e x))

35

de f n e i g h b o r o f s e t (g : f i n i t e g r a p h nat) (s : f i n s e t nat) (p : s ⊆ g . f v e r t e x)

: f i n s e t nat :=

f i n s e t . f i l t e r (λ v , (∃ (w : nat) (h : w ∈ s) ,

(v ,w) ∈ g . f edge ∨ (w, v) ∈ g . f edge))

g . f v e r t e x ∪ s

#check n e i g h b o r o f s e t

#pr in t n e i g h b o r o f s e t

We can further define other operations on graphs and develop the theory. We can also prove

that the connectivity problem is non-computable by comparing it to a previously known

and proved undecidable problem. This code and its updates can be viewed on the github

repository https://github.com/enharsha/Graphs-in-Lean

36

Chapter 4

Homotopy Type Theory

Homotopy type theory, as an extension of type theory, introduces an idea of regarding types

as spaces. It explores the deep connections between homotopy theory and type theory.

In classical homotopy theory, we associate to each x0 ∈ X a fundamental group Π1(X, x0).

This can be generalized to fundamental groupoid Π1(X) of the space X. A groupoid is

a category where all morphisms are isomorphisms. A category has objects, morphisms

between them, and laws of composition, associativity, and identity. The points of space

are considered as objects and homotopy classes of paths between them as morphisms. On

generalizing Π1(X) vertically, we get Π∞(X) or weak∞-groupoid where we have morphisms

between morphisms (2-morphisms, 3-morphisms and so on). We take points as objects and

actual paths as morphisms and groupoid laws on paths of nth level are satisfied upto (n+1)th

level.

Now, type theory is related to homotopy theory in the sense that the induction rule for

identity types gives an∞-groupoid structure to every type. The elements a, b : A are points

of space and p : a =A b is a path between them. The higher structure comes from the

fact that since a =A b is a type, we have equality between elements of them; p =x=Ay q,

r =p=x=Ayq s and so on. We will see in detail that they follow the laws of groupoid structure.

In the upcoming sections, we will give a very brief overview of homotopy type theory as an

extension to type theory,i.e., addition of univalence axiom, and the concepts leading upto it,

without going into details of many proofs. We will also see how we can do classical logic in

homotopy type theory.

37

In homotopy type theory, notion of spaces is synthetic,i.e., points and paths are basic notions

and logical deductions are made on them. Classical homotopy theory is based on analytic

geometry where cartesian coordinates are used to represent points and lines.

The following table compares the connections between types, spaces and groupoids which

we will see in detail.

Type Theory Homotopy Theory ∞ groupoids

A type A space A groupoid

a:A a∈ A a an onject of A

Reflexivity Constant loops Identity morphisms

Symmetry Inverse of paths Inverse morphisms

Transitivity Concatenation Composition

Functions on A Continuous functions on A Functors from A

4.1 Types as higher groupoids

We will prove symmetry and transitivity of paths and coherence laws on operations on higher

dimensions as well.

Lemma 4.1.1. For every type A and every x, y : A there is a function

(x = y) → (y = x)

denoted p 7→ p−1 such that refl−1
x ≡ reflx for each x : A. We call p−1 the inverse of p.

Proof. Formally, we need to construct an element of (y = x). To use the induction principle,

we define ,

D : Π(x,y:A)(x = y)→ U , D(x, y, p) ≡ (y = x)

d ≡ λx.reflx : Π(x:A)D(x, x, reflx)

38

Hence we obtain indA(D, d, x, y, p) : (y = x) and we get refl−1
x ≡ reflx from the computation

rule.

We can also prove this informally using the elimination rule that it is sufficient to prove the

principle when y ≡ x and p is reflx. This is an informal way of implicitly assuming the type

family and producing an object of D(x, x, reflx). We will use this way of proving henceforth.

Now, when y ≡ x, (x = y) and (y = x) become (x = x). Hence we define refl−1
x ≡ reflx.

Rest follows from computation rules.

Lemma 4.1.2. For every type A and every x, y, z : A there is a function

(x = y) → (y = z) → (x = z)

written p 7→ q 7→ p � q such that reflx � reflx ≡ reflx for any x : A. We call p � q the

concatenation or composite of p and q.

Proof. We need to construct an element of (x = z) given x, y, z : A, p : (x = y) and

q : (y = z). When y ≡ x and p is reflx, then q : (x = z). By induction on q, assume that z

≡ x and q is reflx. Then (x = z) becomes (x = x) and we get reflx : (x = x) as an element

of (x = z). Hence proved.

We now prove coherence laws on operations at higher dimensions.

Lemma 4.1.3. Suppose A : U, that x, y, z,w : A and that p : x = y and q : y = z and r :

z = w. We have the following:

1. p = p � refly and p = reflx � p

2. p−1� p = refly and p � p−1 = reflx.

3. p(−1)(−1)
= p

4. p � (q � r) = (p � q) � r

Proof. 1. Assume y is x and p is reflx. Then we have reflx � reflx ≡ reflx from transi-

tivity law. Hence we get a proof in the case of reflexive paths.

39

2. Assume p is reflx. From symmetry and transitivity, we have p−1 � p ≡ refl−1
x � reflx ≡

reflx. Hence proved.

3. Assume p is reflx. Then p−1−1 ≡ refl−1−1

x ≡ reflx. Hence proved.

4. Assume p, q, r are reflx. Then,

p � (q � r) ≡ reflx � (reflx � reflx)

≡ reflx

≡ (reflx � reflx) � reflx

≡ (p � q) � r

4.2 Function extensionality and Univalence axiom

We have seen that types behave like spaces or groupoids. The functions between spaces also

behave functorially,ie, they respect equality (or paths).

Lemma 4.2.1. Suppose that f : A → B is a function. Then for any x, y : A there is an

operation

apf : (x =A y) → (f(x) =B f(y))

Moreover for each x : A, we have apf (reflx) ≡ reflf(x).

Proof. Assume p is reflx. Then we can define apf (p) to be reflf(x) : f(x) → f(x). By

induction principle, we can generalize it to when x and y are not definitionally equal.

The function ap is consistent with the functor rules.

40

As functions behave like functors, dependent types can be interpreted with the help of

fibrations. Given a type family P : A → U , it can be thought of as a fibration with A as

base space, P (x) as fiber over x and Σ(x:A)P (x) as total space. Given p : (x = y) in A

and u : P (x), p can be lifted to a path in the total space starting at u. Using this, we can

give a corresponding formulation of Lemma 3.2.1 for dependent functions. We prove these

properties below.

Lemma 4.2.2 (Transport). Suppose P : A → U and p : (x = y). Then there is a function

p∗ : P(x) → P(y).

Proof. Assume p is reflx. We can define p∗ or refl∗ as the identity function from P (x) to

P (x). Hence proved.

Lemma 4.2.3 (Path lifting property). Let P be a type family over A and assume we have

u : P(x) for some x : A. Then for any p : (x = y),

lift (u,p) : (x,u) = (y,p∗(u))

in Σx:A P(x).

Proof. In the case y ≡ x and p is reflx, we get (y, refl∗(u)) which is definitionally equal

to (x, u) as refl∗ is the identity function. Hence we get reflexivity as a proof of (x, u) =

(x, u).

Lemma 4.2.4 (Dependent map). Suppose f : Π(x:A) P(x), then we have a map,

apdf : Π(p:x=y) (p∗(f(x)) =P (y) f(y)).

Proof. Assume p is reflx. Substituting y with x and p with reflx, we get the the type

(refl∗(f(x)) = f(x)). Since refl∗ is the identity function, reflf(x) is the proof of this

type.

We have seen the identifications between elements of a given type. To identify functions, we

need the condition that their values on equal inputs are equal.

41

Definition 4.2.1. Given f, g : Π(x:A) P(x), we define a homotopy from f to g as

(f ∼ g) :≡ Πx:A (f(x) = g(x))

This type can be viewed as the type of homotopies (continuous paths) or natural isomor-

phisms.Homotopy is an equivalence relation. However, it is not the same as (f = g).

Types can be identified by the idea of equivalence,i.e., two types are equivalent if there

are functions between them whose composites are homotopic to identity function. This

corresponds to homotopy equivalence in topology and equivalence of groupoids in category

theory.

We define a function isequiv(f).

isequiv(f) :≡ (Σg:B→A(f ◦ g ∼ idB))× (Σh:B→A(h ◦ f ∼ idA))

Definition 4.2.2. An equivalence between types A and B (A ' B) is defined as a function

f : A → B along with a proof of isequiv(f).

A ' b :≡ Σf :A→B isequiv(f)

Type equivalence is an equivalence relation on U . We can also prove that if e1, e2 : isequiv(f),

then e1 = e2. With the help of equivalence, we can characterize the equality types of many

types, based on the data used to construct them. For instance, we can show for cartesian

product that there is an equivalence between equality of ordered pairs and equality of product

of their components.

In the case of dependent function types, given a type family B : A→ U and f, g : Πx:A, B(x),

we can expect that equality type (f = g) is equivalent to homotopy type (f ∼ g). By

induction principle, we can construct a function

happly : (f = g)→ Πx:A(f(x) =B(x) g(x))

The type theory we have seen till now is insufficient to prove the equivalence. Hence we

introduce it as an axiom.

42

Axiom 4.2.1 (Function extensionality). For type A, type family B : A → U and f, g : Πx:A,

B(x), the function happly is an equivalence.

Similarly, for any two types A and B, we expect A =U B to be equivalent to A ' B. By

path induction we can construct,

idtoeqv : (A =U B)→ (A ' B)

Since the type theory is not enough to guarantee equivalence of idtoeqv, we introduce this

as an axiom as well.

Axiom 4.2.2 (Univalence). For any A, B : U , idtoeqv is an equivalence.

This axiom is an important addition to type theory by Voevodsky which is motivated by

the homotopy interpretation of types. Logically, it means that isomorphic things can be

identified. Homotopy type theory, with the addition of univalence, formalizes this idea,

which mathematicians have been using informally. Homotopy theory also motivates new

ways of representing spaces which are inductively defined, such as CW complexes, using

higher inductive types. These ideas provide strong tools for constructive mathematics.

4.3 Sets and Logic

The logic of homotopy type theory is constructive,i.e., we construct an element of the rel-

evant type to prove a proposition. This is not the case with classical logic where we have

law of double negation and law of excluded middle, which we assume as axioms in type

theory. However, with the addition of univalence axiom, we can prove that these laws do not

necessarily hold true for all types. To incorporate classical logic in homotopy type theory,

we use a modified idea of propositions as types.

We give the following definitions:

Definition 4.3.1. A type is a set if for all x, y : A and all p, q : (x = y), we have p = q.

The proposition isSet(A) can be defined as

43

isSet(A) :≡ Πx,y:A Πp,q:x=y (p = q)

Examples of types which are sets are unit type, empty type and type of natural numbers.

Definition 4.3.2. A type A is a 1-type if for all x, y : A and p, q : x = y and r, s : p = q,

we have r = s.

Definition 4.3.3. A type P is a mere proposition if for all x, y : P, we have x = y. It can

be represented as

isProp(P) :≡ Πx,y:P (x = y)

This definition of mere proposition equips the idea of propositions in conventional logic

that they don’t contain any more information than being true or false. They are true if

inhabited and false if (A → 0) is inhabited. The definition of sets encaptures the idea that

its elements are abstract points and contain no higher homotopical information.

Sets can be thought of as 0-types and propositions as (-1)-types, by extrapolating the

idea of 1-type. We can prove that every mere proposition is a set and further that isProp(A)

and isSet(A) are mere propositions.

We can now state law of excluded middle and law of double negation as:

law of excluded middle, LEM :≡ ΠA:U(isProp(A) → (A+¬ A))

law of double negation- ΠA:U (isProp(A) → (¬¬A→ A))

These laws are consistent because they are applicable on mere propositions and can be added

as axioms. Any type for which LEM holds true is called decidable.

We can also add impredicativity to homotopy type theory by adding the propositional

resizing axiom. We have natural maps PropUi → PropUi+1
because of cumulative property

44

of type universes. We can make this into an equivalence by adding an axiom. We can then

define a type Ω :≡ PropU 0 containing all mere propositions, where U0 is the smallest universe.

This is possible because any mere proposition in Ui+1 can be resized to Ui as a consequence

of LEM.

We have seen that logical operations correspond to type formers. Hence we need to

ensure that they preserve mere propositions. It is true in general for all connectives and

quantifiers, except coproduct (or) and dependent pair types (Σ). Given mere propositions A

and B, we cannot guarantee that A+B is a mere proposition (for instance, 2, which is equal

to 1 + 1 is not a mere proposition). Same follows for Σ-type. We then define a type former

propositional truncation, which takes any type and gives a mere proposition by forgetting

all the information about its inhabitance apart from its existence. We can then redefine the

logical notations, given mere propositions P and Q, to represent traditional logic.

> :≡ 1

⊥ :≡ 0

P ∧Q :≡ P ×Q
P ⇒ Q :≡ P → Q

P ⇔ Q :≡ P = Q

¬P :≡ P → 0

P ∨Q :≡‖ P +Q ‖

∀(x : A).P (x) :≡
∏
x:A

P (x)

∃(x : A).P (x) :≡‖
∑
x:A

P (x) ‖

In Lean, we have seen that there exists a pure homotopy type theory kernel which doesn’t

contain Prop or classical axioms or mere propositions. However, there is a kernel based on

impredicative CoC, which captures these notions.

45

46

Bibliography

[1] The Univalent Foundations Program, Homotopy Type Theory : Univalent Founda-
tions of Mathematics, Institute for Advanced Study(Princeton), 2013. Available online-
http://homotopytypetheory.org/book/.

[2] Jeremy Avigad, Leonardo de Moura and Soonho Kong, Theo-
rem Proving in Lean, version d0dd6d0, 2017. Available online-
https://leanprover.github.io/theorem proving in lean/theorem proving in lean.pdf

[3] Jeremy Avigad, Robert Y. Lewis and Floris van Doorn, Logic and Proof. Available
online- https://leanprover.github.io/logic and proof/.

[4] Lawrence Dunn III, An overview of Homotopy Type Theory and the Univalent Foun-
dations of Mathematics, Honors thesis, Florida State University, 2014

[5] Nino Guallart, An overview of type theories, arXiv : 1411.1029v2[math.LO], 2014

47

