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Abstract

In the light of the recent gravitational wave detections made by the LIGO and Virgo

collaboration [1, 2], we study the Non-Relativistic formulation of General Relativity (NRGR)

given in [3] with its extension to spinning compact objects given in [4]. Then we extend the

NRGR formalism to incorporate the effects of electromagnetic charge on the constituents

of the binary. We incorporate the photon field in NRGR by giving the field decomposition

and power counting rules. Using these, we develop the Feynman rules to describe photon

and graviton interactions with point particle worldline. We then find the corrections to

the Einstein-Infeld-Hoffmann Lagrangian [5] due to the presence of the photon field and

electromagnetic charge on the constituents of the binary.
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Introduction

‘If bliss was it in that dawn to be alive in the last twenty-five years, then, to be young
in the coming decade would be the very heaven!’ -Bala Iyer [6]

Gravitational waves (GW) were first predicted by Einstein in 1916 [7], where he de-
scribed the propagation of gravitational waves and later in 1918 [8], he computed the energy
emitted by a source i.e., the famous quadrupole formula. In 1938, Einstein with Infeld and
Hoffmann calculated the first correction in orders of v2/c2 to the Newtonian potential due
to the effects of General Relativity (GR). This allowed for determining the conservative dy-
namics of the objects in a given system to a certain precision. The first indirect detection of
GWs was in 1974 by R. A. Hulse and J. H. Taylor [9]. They observed the period of a binary
system of pulsars, which decreased due to the emission of GWs precisely as predicted by
General Relativity. After around hundred years of first predicting gravitational waves, the
LIGO and Virgo collaboration in 2016 [1] detected gravitational waves emitted by a black
hole binary.

The waveform of the detected signal is a chirp - amplitude and frequency increases with
time as shown in figure 1b, and can be separated into three categories:

1. Inspiral phase - where the velocities of the constituents is non-relativistic and the
distance between the constituents is large as compared to the radius of the constituents.
In this case, the waveform has an approximately constant frequency and not much
power is emitted.

2. Merger phase - where the velocities of the constituents are relativistic and the distance
between the constituents is less than the ISCO of the constituents. In this case, the
waveform has rapidly increasing frequency and high amplitude because of large power
emission. Here the constituents collide with each other and form single object.

3. Ringdown phase - where the final object settles down to the stable compact object like
a Kerr Black Hole (BH).

Each of the above categories could be studied using different techniques as shown in figure
1a. The inspiral phase, due to its non-relativistic nature, could be analytically studied in
detail using the techniques of Post-Newtonian approximation [10, 11]. Such approximations
break down in the merger phase and we need to solve the full GR for two compact objects.
Yet known analytical techniques cannot be used in this phase, so we used the numerical
techniques [12]. The final phase of ringdown can also be studied analytically using the
methods of BH perturbation theory [13, 14].
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(a) Techniques used to model different
phases of the waveform, where, M = m1+m2

and r is the size of the system. Source: [15]

(b) The three phases of the coalescence of
binary. Source: [16]

Figure 1

In this report, we focus on the inspiral phase. The binary system in this phase gas
three different length scales namely, Rs associated with the compact constituent of the
binary,the radius of the orbit r and the wavelength of the emitted gravitational wave λ. The
availability of multiple length scales allow us to use the techniques of Effective field theory
(EFT) which exactly does the job of explaining the simplest framework that captures the
essential physics at different scales. A tower of EFTs associated with inspiral phase was given
by Walter Goldberger and Ira Rothstein in [3]. At first glance one should expect the EFT
computations to used a lot of unnecessary tools of Quantum field theories and thus be much
complicated than the classical calculations. But the usefulness of the EFTs become visible
in the manifest power counting techniques that allow us to determine the relevance of the
operators at the level of action i.e., we can determine ahead of any calculation the number
of terms in the point particle Lagrangian that will appear at any order in the expansion
parameter. Also all the divergences in the computation could be dealt with the textbook
regularization and renormalization schemes.

In this tower given in figure 2, we develop an EFT around a point particle action to
describe the compact object like BH and Neutron star (NS) at scales larger than the RS.
We match this EFT to the full overarching theory of BH or neutron stars to determine the
unknown parameters in the EFT. The beauty of EFT approach is that, even if we aim to
study the effects of the internal structure of compact objects in a bound state of binary,
we can match the unknown coefficients with the overarching theory of isolated compact
objects using simple computation of any relevant observable like scattering processes, rather
than solving the complete problem of motion explicitly. The EFT approach manages to
disentangle the highly non-linear effects general relativity when dealing with the internal
structure of the compact objects in a bound state of a binary. Because we work at the
level of action when using the EFT approach, we can just use two such point particle EFTs
to describe a bound state like binary. In the regime of non-relativistic velocities of the
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constituents, this EFT is called as Non-Relativistic General Relativity (NRGR). But this
also contains some irrelevant degrees of freedom in the context of the observed waveform in
the detectors. So we develop an EFT describing the multipole moments of the binary and
match this to the theory of NRGR.

RSBH,NS + GR

Point Particle with EFT + GR

r

y
Bound state of point particles

with EFT + GR

Multipole Expansion + GRy λ

Figure 2: The tower of EFT

A general compact object like BH, NS, etc. has at least three parameters - mass, angular
momentum and electromagnetic charge. The additional degrees of freedom that describe the
spin of the compact objects in binary was first used in the context of NRGR in [4]. In this
analysis, we aim to extend NRGR formalism to include the effects of the electromagnetic
charge on the constituents of the binary on its dynamics. A similar analysis was done
previously by adding a scalar field to the NRGR formalism in [17]. Here we add a photon
field to the NRGR formalism and study its interactions with the other fields. Our analysis
leads to a correction to the Einstein-Infeld-Hoffmann (EIH) Lagrangian at 1PN which agrees
with previously done analysis in [18] in the corresponding limit of charge larger than the mass
of the constituents of the binary.

The outline of this thesis is as follows. Chapter 1 has a brief introduction of the Effective
Field Theories and General Relativity. In chapter 2, we develop the EFT about the point to
describe the compact objects. In chapter 3, we develop the EFT that describes the dynamics
of the binary in the Inspiral phase. Then we develop the multipole EFT to describe the binary
at the scale of the wavelength of the emitted wave. After matching this EFT to the NRGR,
we calculate the power radiated and the waveform of the emitted wave. In chapter 4, we
study the effects of the spin of the binary constituents on the dynamics of the binary, power
radiated and the waveform of the emitted wave. In chapter 5, we study the effects of the
electromagnetic charge of the binary constituents on the dynamics of the binary.
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Chapter 1

Preliminaries

In this chapter, we give a brief review of the essential techniques of Effective Field
Theory (EFT) and General Relativity (GR). Readers familiar with these topics can skip to
the next chapter.

1.1 Notations and Conventions

• We work in natural units where ~ = c = 1 in this thesis.

• The Newton’s constant GN is written in term of the Plank’s mass MPl as GN =
1/(32πM2

Pl).

• The signature used for the metric in this thesis is mostly minus, i.e. (1,−1,−1,−1).

• Partial derivatives ∂/∂xµ is denoted by ∂µ and the covariant derivative is denoted by
∇µ.

• We use the Einstein’s summation notation to simplify the calculation. Greek in-
dices run over 0, 1, 2, 3 and the Latin indices are used for the spacial components
ie a, b, c, · · · = 1, 2, 3.

• The three vectors are denoted by bold letters, e.g. x,y, . . . and the unit vectors are
denoted by bold letters with a hat, e.g. x̂, ŷ, . . .

• The path integrals are denoted by the integral over the corresponding field given by

Z[J ] =

∫
Dφ eiS[φ,J ]

where the S[φ, J ] is the action of the field φ and J is the source. If the field φ has a
corresponding gauge transformation, the gauge fixed path integral is denoted by D[φ].

• The time averaged quantities are denoted by 〈X(t)〉 = 1
T

∫ T
0
dtX(t).
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1.2 Effective Field Theories

There is exciting physics at different scales in a given system. To study these different
scales, either one needs to know the full overarching theory, or one needs to know the
different theories corresponding to each scale. Also, one intuitively expects that the high
energy theories should be irrelevant in describing the low energy phenomenon up to a certain
degree of accuracy. For example, one does not need to know the details of Standard Model to
determine the energy spectrum of Hydrogen atom. EFTs exactly do the job of explaining the
simplest framework that captures the essential physics at different scales. These also have
a mechanism to decouple the high energy physics from the effective low energy theories, i.e.
we can calculate low energy observables without knowing the full overarching theory with a
few unknown parameters which have to be fixed by experiments. EFTs are well suited to
the problems with multiple scales, where only a few relevant degrees of freedom interact at
the corresponding scales. In this section, we give a brief overview of the essential techniques
of EFT needed this thesis. A detailed overview of effective field theories could be found in
[19, 20]

The two approaches to use the techniques of EFT are called the top-down approach
and the bottom-up approach respectively. In the top-down approach, a high energy theory
is known and one needs a low energy limit for simplicity of calculation. Whereas in the
bottom-up approach, low energy theory is known and one wants to construct the effective
high energy theory. One of the essential theorems used in both the approaches was given by
T.Appelquist and J.Carazzone [21] which states

Theorem 1 (Decoupling theorem). Given a renormalizable theory in which some fields have
masses much larger than the others, a renormalization prescription can be found such that
the heavy particles decouple from the low energy physics, except for producing renormalization
effects and corrections that are suppressed by a power of the experimental momentum over a
heavy mass.

This theorem explains the concept of decoupling of high energy physics from low energy
observables which is essential for the top-down approach. Consider two quantized scalar
fields φ and Φ, whose dynamics is given by the Lagrangian

S =

∫
d4x[(∂µφ)2 +m2φ2 + (∂µΦ)2 +M2Φ2 + λφ2Φ] (1.1)

where M � m. For calculating any physical observable at the energy scale much less than
M, the field Φ decouples and could be integrated out. This procedure of integrating out a
field leads to an effective action SEFT given by

eiSEFT [φ] =

∫
DΦeS[φ,Φ] (1.2)

and the effects of the integrated field are seen in the couplings of the SEFT .1 One can easily
show that integrating a field to decouple it is equivalent to writing an effective Lagrangian

1The integration of a field Φ produces non-local terms in Lagrangian, which could be converted to an
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using the theorem 2 valid upto energy scales M and then matching the coefficients of the
effective theory to the full theory such that all the physical observables are equal in both the
theories.2 Another important theorem was given by Steven Weinberg [22] which states

Theorem 2 (Weinberg theorem). To any given order in perturbation theory, and for a
given set of asymptotic states, the most general Lagrangian containing all terms allowed
by the assumed symmetries will yield the most general S-matrix elements consistent with
analyticity, perturbative unitarity, cluster decomposition and assumed symmetries.

This theorem explains the construction of an effective theory if the high energy theory
is unknown to us. This cosntruction requires the relevent degrees of freedom and the sym-
metries of the system and leads us to the effective Lagrangian with infinite set of unknown
coefficients called as Wilson coefficients. These have to be determined by experiments or by
matching to an overarching theory. But identifying such infinite number Wilson coefficients
is unphysical and one needs an expansion parameter to evaluate the importance of different
terms in the effective Lagrangian. Using such a Lagrangian, we can compute the low energy
observables to desired precision in orders of the expansion parameter.

1.3 General Relativity

General Relativity is the theory of gravity where a four-dimensional manifold describes
the spacetime. The dynamics of the spacetime is governed by the matter distribution on
it and the dynamics of the matter by the underlying spacetime. This is given by the field
equation for gravity, also known as Einstein’s equation. We here describe the techniques of
quantum field theory used for describing the gravity namely, the propagators and vertices for
graviton - the particle that carries the force of gravity. A detail overview about the general
theory of relativity could found in [23, 24, 25].

1.3.1 Action for gravity

In the General theory of relativity, the effects of gravity are encoded in the structure of
the underlying manifold and its dynamics. The dynamical degrees of freedom for this are the
metric components gµν(x). For these metric components to be dynamical, we construct the
action for its dynamics using the field strength tensor Rµναβ(x) known as the Riemann tensor.
We also demand this theory to be invariant under general coordinate transformation so that
physics in different frame of references remain the same. Using the theorem by Weinberg

infinite number of local terms using the techniques of operator product expansion followed by Taylor expan-
sion.

2The procedure of matching is similar to the renormalization group equations. Matching is the flow of
coefficients across the energy scale M, where the theories have different particle content above and below the
scale M. Whereas, the renormalization group equation is the result of the matching of two theories with the
same particle content across energy µ and µ+ dµ.
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and the assumed symmetries of the theory, we can write the most general Lagrangian as

Sgrav =

∫
d4x
√
−g(c0 + c1R + c2R

2 + c3RµνR
µν + · · · ) (1.3)

where the first term represents the cosmological constant c0 = Λ, the second term is known
as Einstein-Hilbert action with c1 = M2

Pl and so on. In this thesis, we only focus on the
Einstein-Hilbert action and neglect the effects of the cosmological constant and all the higher
order terms.

The dynamics of the matter present in the gravitational system is given by the action
SM , which includes the corresponding matter fields. Together with the gravity part, the
total action is given by

S = M2
Pl

∫
d4x
√
−gR + SM (1.4)

where the M2
Pl is the coupling between the matter part and the gravity part of the action.

The equation of motion derived from the above action are known as Einstein’s field equations
and are given by

Rµν −
1

2
Rgµν = 8πGNTµν (1.5)

where the Tµν is known as the energy-momentum tensor given by

T µν =
−2√
−g

δSM
δgµν

. (1.6)

Some solutions to the above equation in the absence of the matter fields are Minkowski
metric (ηµν), which describes the flat spacetime, Schwarzschild metric, which describes any
spherically symmetric object and Kerr spacetime, which describes any axially symmetric
object.

1.3.2 Semi-classical gravity

In this subsection, we study the perturbation of the metric around a particular classical
solution. In foresight, we choose this classical solution to be the flat spacetime ηµν . Then
the metric could be decomposed as,

gµν = ηµν +
hµν
Mpl

(1.7)

where, |hµν/Mpl| � 1 and factors of Mpl are used appropriately to normalize the kinetic term.
We will then quantize the perturbation hµν to get a spin 2 field representing a graviton. The
dynamics of the quantized perturbations are calculated using the path integral

Z[Φ] =

∫
Dhµνe

iSEH [ηµν+hµν/Mpl]+iSM [Φ,ηµν+hµν/MPl] (1.8)

where the field Φ constitutes of all the matter fields present in the system. The above given
action is invariant under general coordinate transformation given by xµ → xµ + ξµ. This
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generates the gauge transformation of hµν → hµν − ∂µξν − ∂νξµ which is also a symmetry of
the action. The gauge invariance is not physical but redundancy in our formalism. Thus,
while calculating any physical observables, this redundancy should be removed and a gauge
should be fixed. For this, we add a gauge fixing term to the Lagrangian,

SGF =
1

ξ

∫
∂ρh̄

ρµ ∂σh̄σµd
4x (1.9)

where, h̄µν = hµν − 1
2
ηµνh

α
α and ξ parameterize different gauge orbits. We then choose to

work with harmonic gauge (∂µh̄
µν = 0) given by ξ = 1 in the rest of the thesis.

The Einstein-Hilbert action can now be expanded in orders of the perturbation hµν . The
first order term is a total derivative and thus zero. At second order in hµν the Einstein-Hilbert
action can be written as,

SEH =

∫
1

2
hµν2

(
Iµναβ − 1

2
ηµνηαβ

)
hαβd

4x (1.10)

where Iµναβ = 1
2

(
ηµαηνβ+ηµβηνα

)
. This corresponds to the kinetic term for the graviton field.

The propagator for the graviton can then be obtained by inverting the operator sandwiched
between the two fields hµν in the above equation. The propagator is then given by,

∆µναβ
G (x− y) =

∫
d4p

(2π)4

i

p2 + iε
e−ip(x−y)P µναβ = P µναβ ∆F (x− y) (1.11)

where P µναβ = 1
2

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
and ∆F (x − y) is the Feynman propagator of

a massless scalar field. The momentum space Feynman rule for the graviton propagator is
given by

k ≡ −iPµναβ
k2

. (1.12)

Similarly, the Einstein-Hilbert action could be expanded in all orders of perturbation, which
generates all n-point self-interaction vertices. The momentum space Feynman rules for the
three-point point graviton self-interaction vertices could be found in [25] and due to their
complexity, we do not display them here.

As we have expanded the gravity sector, the matter sector of the Lagrangian also has
to be expanded about the flat metric ηµν in the orders of perturbation as

SM [gµν ] = SM [gµν ]
∣∣∣
η
−
∫

1

2
T µν [gµν ]

∣∣∣
η
(hµν) d

4x+ · · · (1.13)

where Tµν is the energy-momentum tensor given in equation (1.6). The zeroth order term
in the above expansion generates the kinetic terms and the interactions of the matter field
with itself and/or each other, whereas the higher order terms generate their interaction with
the gravitons.

The equation of motions for the gravitons is found by varying the total action given
in equation (1.4) with respect to the metric perturbation hµν . These could be written in
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Fourier space in a simplified way as

hµν
Mpl

(k) = − i

2M2
pl

P µναβ i

k2 + iε
T αβ(k) (1.14)

where T αβ is called the pseudo stress-energy tensor. This could also be taken to be the
definition of T αβ in Fourier space to all orders of hµν . The pseudo stress-energy tensor T αβ,
gets the contribution from all the terms in the Lagrangian except the kinetic term which
produces the left-hand side in the above equation. The T αβ acts like a source of a single
graviton and could be computed using the Feynman diagrams corresponding to one point
functions of the graviton.

10



Chapter 2

Compact Objects

A lot of objects like black holes, neutron stars, etc. could be approximated as point
particles at low energies, when seen from far away. In this chapter, we describe the relativistic
point particle action and its interaction with gravitons. Then using the principles of Effective
field theories (EFT), we discuss the procedure to add the description of the internal structure
of such a compact object to the action for point particles. We use the bottom-up approach
to describe the effective dynamics of the compact object when analyzed from far away. Then
we perform an explicit matching to determine the Wilson coefficients. The EFT constructed
in this chapter is then used in the next to describe a binary made up of two such compact
objects.

2.1 Point Particle Action

The motion of a point particle on an arbitrary spacetime is described by the geodesics
of the underlying manifold in the theory of general relativity. This description ignores the
back reaction of the point particle on the underlying manifold.1 The action for a relativistic
point particle in arbitrary background gµν is given by,

Spp = −m
∫
ds

= −m
∫
dλ

√
gµν

dxµ

dλ

dxν

dλ
d4x δ4

(
xµ − xµpp(λ)

)
(2.1)

where xµpp(s) is the trajectory of the particle. The worldline of the point particle is de-
noted by a solid line in the Feynman diagrams in this thesis. The energy-momentum tensor
corresponding to the above action is given by

T µνpp = m

∫
dλ
uµuν√
u2

δ4
(
xµ − xµpp(λ)

)
√
−g

(2.2)

where, the uµ = dxµ/dλ is the four-velocity of the point particles and for stationary par-
ticles, it could be taken as vµ = (1,0) and

√
u2 in the denominator is to make the T µνpp

re-parametrization invariant.

1More details about the backreaction of a point particle on the underlying manifold could be found in
[26].
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2.2 Internal Structure

Now we have successfully described the theory of point particle in the arbitrary back-
ground and the field produced by them. We are now interested in the description of the
internal degrees of the freedom associated with an object approximated as a point particle.
We are interested in studying the object with an associated length scale RS like a black hole,
a neutron star, etc. because this scale allows us to make the following separation. As we
are only interested in the effects of the object at long-distance, we break the metric corre-
sponding to these compact objects in short-distance modes gSµν with the associated length
scale less than or of the order of RS, and long-distance modes gLµν whose associated length
is larger than RS. The separation is denoted as

gµν = gSµν + gLµν (2.3)

Now to get an effective theory at long-distance, we integrated out the short-distance modes
and the internal degrees of freedom of the object. We then get

eiSEH [gLµν ]+iSEFT [x(cm)(σ),gLµν ] =

∫
D
[
gSµν
]
Dδxn(λn) eiSEH [gµν ]+iSint[xn(λn),gSµν ] (2.4)

where xn(λn) are the internal degrees of freedom of the object, Sint describes their interaction
with the short-range field and the SEFT is the effective theory at large distance that describes
the effective degrees of freedom x(cm)(σ) the compact object. This SEFT will be valid in the
regime of ωRS � 1, where ω is the energy corresponding to the experiment and RS is the
length scale corresponding to the compact object. In the example of a neutron star, xn(λn)
represents the position of 1040m−3 constituent particles and x(cm)(σ) represents the center
of mass of the star. Now the details about the structure of the object are encoded in the
coefficients of the effective Lagrangian.

The computation of the integral over the short-distance modes and the internal degrees
of freedom of the object is very difficult. For example, in the case of a neutron star, Sint is the
interaction of each particle in the star with the short-distance modes and is usually unknown
to us. So rather than computing the integral, we construct an EFT for the SEFT . For the
construction, we use the symmetries of diffeomorphism invariance (gauge invariance) and
re-parametrization invariance of the worldline of the effective point particle at long-distance.
The simplest term that we can write in the Lagrangian following all the assumed symmetries
is the Lagrangian given in equation (2.1) that dictates the dynamics of a point particle i.e.,
the center of mass of the compact object. The only other way to make a gauge invariant
term is using the Riemann tensor, its contractions with the metric or the four-velocity uα(λ)
corresponding to the effective degrees of freedom of the object. The Riemann tensor then can
be written in terms of Ricci tensor and Weyl tensor. The contractions of Ricci tensor (and
Ricci scalar) with the four-velocities could be removed using field redefinition gµν → gµν+δgµν
[3], which leads to the following change in the SEH ,

δSEH = M2
pl

∫
d4x
√
−g
(
Rµν −

1

2
ηµνR

)
δgµν . (2.5)
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The contraction of Weyl tensor with uα(σ) could be written in the term of Eµν = Cµανβu
αuβ

and Bµν = 1
2
εµαβσC

αβ
νρ u

σuρ. Due to the antisymmetry property of Eµν and Bµν we could have
only terms of the form (Eµν)

n, (Bµν)
n and contractions of their derivatives like uα∇αEµν

and uα∇αBµν .

The internal structure of the compact object are encoded in the multipole moments
of the compact object given by Qabc···k. The total multipole moments of the object can be
separated as

Qabc···k = 〈Qabc···k〉S + 〈Qabc···k〉R (2.6)

where 〈Qabc···k〉S is the inherent internal structure of the isolated compact object obtained
after integrating over the short-distance modes gSµν . The 〈Qabc···k〉R is then the response of
the internal structure of the compact object to the long-distance modes gLµν . This response
is considered to be a small perturbation in the region where the EFT is valid (ωRS � 1) and
thus are studied as quantize excitations about the classical background of inherent internal
multipole moments. Because the excitations are small, we also assume the dependence of
the multipole moments on the source is linear with correctly imposed causality.

For example, let’s consider the leading order contribution of multipole moments given by
the quadrupole moment to the point particle. The simplest term that could be added to the
effective action using the quadrupole moment and the allowed functions of the long-distance
metric is given by

SQ(E) =
1

2

∫
dτd4xδ4

(
x− x(τ)

)
Qij

(E)(τ)Eij(x). (2.7)

Now we assume that the compact object we are interested in is spherically symmetric and
thus the 〈Qab〉S and all higher-order internal multipole moments are zero. To simplify the
calculations further, we assume the response of the multipole moments depends linearly on
the incident gravitational waves. Thus the response quadrupole moments are given by

〈Qab〉R (τ) =
1

2

∫
dτ ′d4xδ4

(
x− x(τ ′)

)
Gret
abij(τ, τ

′)Eij(x) (2.8)

where the retarded Green’s function is given by

Gret
abij(τ, τ

′) =
〈[
Qab
R (τ), Qij

R(τ ′)
]〉
θ(τ − τ ′). (2.9)

To ensure the causality of the response, we choose the retarded propagator. In the frequency
domain, the quadrupole propagator can be written using the spherical symmetry of the
object as

iGret
abij(ω) = QabijF (ω) (2.10)

where, Qabij = δaiδbj + δajδbi − (2/3)δabδij. Using the techniques of linear response theory
one can easily see that the real part of Gret

abij(ω) is even function of ω and thus describes
the conservative contributions from the internal structure whereas, the imaginary part of
Gret
abij(ω) is odd function of ω and thus describes the dissipative contributions from the internal

structure. This could be easily generalized to the magnetic type and higher-order multipole
moments.
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To obtain the conservative sector of the effective Lagrangian, the real part of the function
F (ω) can then be expanded in powers of ω as

Re
[
F (ω)

]
= CE + CËω

2 + · · · . (2.11)

The conservative effective action could be then written using the symmetries of the long-
distance scale and the conservative contribution from the internal structure of the compact
objects as

Seff [x(cm)(σ), gLµν ] =

∫
d4xdσδ4

(
x− xxm(σ)

)[
−m

√
gLµν(x)uµ(cm)(σ)uν(cm)(σ)

+ cEEµν(x)Eµν(x) + cËu
α(σ)∇αEµν(x)uβ(σ)∇βE

µν(x) + ...

+ cBBµν(x)Bµν(x) + cB̈u
α(σ)∇αBµν(x)uβ(σ)∇βB

µν(x) + ...
]

(2.12)

where the first term is the Lagrangian for a point particle and the other terms make up
the conservative effective action due to the internal structure of the compact object. Terms
with higher power of Eµν and Bµν could be obtained by implementing the above given
method on higher-order multipole moments. The unknown coefficients called the Wilson
coefficients have to be fixed by either matching this EFT to an overarching theory or by
doing experiments.

2.3 Matching

In this section, we match the effective theory to the full general theory of relativity and
find the scaling of the unknown Wilson coefficients of the conservative effective theory and
the unknown function Im[F (ω)]. For this, We match the graviton scattering cross-section
computed by both the theories.

First, we consider the conservative sector and compute the following diagram using the
effective theory given in equation (2.12). The result corresponds to

CE

hij(t,k)hab(t,k)

≈ ω4CE
M2

pl

.

(2.13)

One can easily show that this is the only diagram in the conservative sector, proportional to
the fourth power of ω. Thus the total graviton scattering cross-section calculated using the
EFT of point particles with internal structure is given by

σ
(sca)
EFT (ω) = · · ·+

C2
E(B)ω

8

M4
pl

+ · · · . (2.14)

In the case of classical General Relativity (GR), a spherically symmetric object (Schwarzschild
spacetime) has only one length scale - Schwarzschild radius associated with it. In the region
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where the EFT is valid, namely ωRS � 1, we can expand the gravitational wave scattering
cross-section as [27]

σ
(sca)
GR (ω) = R2

s f(Rsω) ≈ R2
s

(
· · ·+(Rsω)8 + · · ·

)
(2.15)

where the function f is analytic and is expanded in the power series of Rsω, which only
shows us the scaling behavior of the cross-section. Matching the above given two results we
obtain

CE ≈M2
plR

5
S (2.16)

upto some numerical factors. This result is universal for any spherically symmetric object,
but to find the exact result of a particular object, one has to perform the exact matching.
For Schwarzschild black hole, the Wilson coefficients CE(B) vanish [28], whereas, for neutron
stars they are finite and related to ’Love numbers’ [29]. Now following a similar procedure, it
is very easy to calculate the Wilson coefficients corresponding to the higher-order multipole
moments. Using the tools of power counting developed in the next chapter, we can find the
importance of all effective operators in the conservative sector.

In the case of the dissipative sector, we have to calculate the absorption cross-section
of gravitons in the Fock space of response multipole moments. For this, we consider the
following diagrams,

Qij(R) Qab(R)

hij(t,k)hab(t,k)

=
i

8M2
pl

∫
dτe−iωτ

(
ω2ε?ijεab

〈
Q

(E)
ab (0)Q

(E)
ij (τ)

〉
+ (k × ε?)ij(k × ε)ab

〈
Q

(B)
ab (0)Q

(B)
ij (τ)

〉)
(2.17)

The imaginary part of the above diagram represents the absorption cross-section of gravitons
and is obtained by using the cutting rules given in in chapter 8 of [43]. The cutting rules
make the propagator of the response quadrupole moment on-shell and leads to

σ
(abs)
EFT (ω) =

ω3

2M2
pl

Im
[
F (ω)

]
(2.18)

In the case of GR, the absorption cross-section for a spherically symmetric Schwarzschild
spacetime [30] in the regime ωRS � 1 is given by

σ
(abs)
GR (ω) =

4π

45
R6
Sω

4 (2.19)

Matching the above given two results we obtain

Im
[
F (ω)

]
=

16

45
G5
Nm

6ω (2.20)

The above result is exact for a Schawrzschild black hole and one has to perform the matching
independently for a different object like neutron star using the graviton absorption cross-
section in the corresponding metric. The calculation of absorption cross-section from EFT
and classical GR could be extended to the higher power of ω and thus, the matching result
could also be extended to have higher odd powers of ω. The Im[F (ω)] could be substituted
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back in the propagator of the multipole moments to obtain an effective action for the dis-
sipative sector like the one for conservative sector given in equation (2.12). But it is easier
to interpret the Feynman diagrams in terms of multipole moments for the dissipative sector
so that the role of cutting rules become easier to understand. The effects of the dissipative
sector are further analyzed in the section 3.11 of the next chapter.
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Chapter 3

Non-Relativistic General Relativity

Once we know how to incorporate the internal structure of the object, we move on
towards the description of a binary system in General Relativity (GR). In this chapter, we
describe the Effective Field Theory (EFT) way of classical Post-Newtonian (PN) expansion
called the Non-Relativistic General Relativity (NRGR) developed by Walter Goldberger and
Ira Rothstein in [3]. We first decompose the field hµν in short-distance and long-distance
modes. Then we describe the essential power counting and Feynman rules necessary to
integrate over short-distance modes. Then we calculate the binding potential at 1PN that
describes the conservative dynamics of the binary. To describe the radiation emitted to
infinity by the binary, we propose an EFT of multipole moments. Then we match this
EFT to the theory with the internal structure of the binary and calculate the moments.
Using the multipole, moments we then calculate the power radiated by the binary. One
expects that the radius of the binary will shrink due to the back-reaction of the radiated
power. To incorporate this effect in our description, we introduce the In-In formalism and
then calculate the leading order back reaction. We conclude the section by depicting the
higher-order non-linear corrections.

3.1 Length Scales

With only one object in the picture, we only have one length scale Rs associated with
it. But in the bound state of two point particles, we have new length scales, namely the
radius of the orbit r and the wavelength of the emitted gravitational wave λ. If we assume
the velocities of the particles to be slow, then we have a hierarchy of length scales

λ� r � Rs (3.1)

where Rs in the length scale of the internal structure of the object in the binary. The leading
order behavior of the system is governed by a 1/r Newtonian interaction. Then the velocity
relates the size of the objects to the radius of the binary and is also the ratio of the emitted
wavelength and the radius of the binary given by

v2 ≈ GNm

r
≈ Rs

r
and v ≈ r

λ
(3.2)

respectively. So it makes v/c a good candidate as for the expansion parameter. Another
small parameter at hand is ~/L, where L is the angular momentum of the binary. We use
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v/c as the primary expansion parameter where the nth order in v2/c2 is called as the nth

in the Post-Newtonian expansion (nPN) in the language of classical gravity and use ~/L to
suppress the quantum effects (loop diagrams).

3.2 Field Decomposition

Here we assume that the particles move on a flat background ηµν and thus the effects
of binary are seen as perturbation hµν to it. So we can decompose the metric as

gµν = ηµν +
hµν
Mpl

. (3.3)

The description of the dynamics of binary is obtained after integrating over the perturbation
that encodes the internal structure of the binary. The effective action SEFT is then given by

eiSEFT [x
(a)
pp (σa)] =

∫
D
[
hµν
]
eiSEH [gµν ]+iSint[x

(a)
pp (σa),gµν ] . (3.4)

where, x
(a)
pp (σa) is the position of the ath point particle in the binary. As we are only interested

in the long-distance physics at the scales of λ, we first break the field in short-distance modes
- potential gravitons Hµν and long-distance modes - radiation gravitons h̄µν as

hµν = Hµν + h̄µν (3.5)

and then integrate out the short-distance modes to get an effective long-distance theory.
This decomposition is done by identifying the modes by their scaling with respect to v and
r. The long-distance modes represent the emitted on-shell gravitons and scale as(

k0,k
)
≈
(v
r
,
v

r

)
(3.6)

because k0 is like the frequency of the graviton and should scale like the inverse of period
of the binary given by r/v and so does k. On the other hand, the short-distance modes are
off-shell and scale as (

k0,k
)
≈
(v
r
,
1

r

)
(3.7)

because the wave vector k has the dimensions of the inverse length and the only parameter
at this scale is the distance between the particles in the binary 1/r. This decomposition was
first proposed by Walter Goldberger and Ira Rothstein in [3].1

Due to the decomposition given in the equation (3.5), we can break the integration
over the perturbation shown in equation (3.4) in two steps. First to describe the effective
dynamics of the point particles, we construct an EFT with a systematic non-relativistic
expansion in v/c obtained after integrating out the short-distance modes. The effective

1Such decomposition is motivated by the techniques of ‘Method of Regions’ developed for loop integrals
in [31, 32].
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action is given by

eiSNRGR[x
(a)
pp (σa),h̄µν ] =

∫
D
[
Hµν

]
eiSEH [gµν ]+iSint[x

(a)
pp (σa),gµν ] (3.8)

where the SNRGR contains the effective binding potential for point particles and the interac-
tion of point particles with the radiation gravitons, which is responsible for the gravitational
wave emission and power loss. The internal structure of the point particles Rs is described by
the coefficients in Sint given by equation (2.12) and the internal structure of the binary r is
governed by the potential gravitons. In the next section, we compute the path integral over
the potential modes and the second integral over the radiation graviton will be considered
in later sections.

3.3 Conservative Dynamics

For calculating the binding potential of the binary, we only consider the dynamics of
the potential modes and its interactions with point particles. For h̄µν = 0 in the NRGR
action, the dynamics of the binary becomes conservative and the effective action WEFT [xp]
describing it is given by

eiWEFT [x
(a)
pp ] =

∫
D
[
Hµν

]
eiSEH [Hµν ]+iSint[x

(a)
pp (σa),Hµν ] (3.9)

where SEH [Hµν ] describes the dynamics and self-interaction of the potential graviton and
the Sint given by equation (2.12) describes the dynamics of a point particle with internal
structure and its interaction with potential gravitons.2

In this section, we describe the technique of power counting and give all the essential
Feynman rules for propagators and vertices. Using these Feynman rules, we aim to calculate
the first correction to the binding potential at 1PN called the Einstein-Infeld-Hoffmann
Lagrangian in the next section. The effects of the radiation gravitons make the dynamics
non-conservative and are studied in the section 3.6.

3.3.1 Propagators

We first look at the SEH [Hµν ], where the quadratic term in the field given in equation
(1.10) gives us the propagator given in equation (1.11) and the higher-order terms give us
the nonlinear graviton self-interaction vertices. Due to small velocities of the point particles,
the propagator could be expanded in series as

1

k2
≈ −1

k2

[
1 +

k2
0

k2 +
k4

0

k4 + · · ·
]
. (3.10)

2Note that the back-reaction on the point particles due to its interaction with a single potential graviton
is of the order of |k|/|p| ≈ 1/L� 1, so, the point particles are treated as background non-dynamical sources
for computing the dynamics in the conservative sector.
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So the momentum space Feynman rule for the propagator of the potential graviton is

p
Hαβ(t2,p)Hµν(t1,p) ≡ −iPµναβ

k2 δ(t1 − t2)

(3.11)

and higher-orders of k2
0/k

2 are taken into account by propagator correction given by equation
(3.16).

3.3.2 Power counting

To arrange the terms in the Lagrangian in increasing order of expansion parameter, we
need to have a manifest power counting in v. For this, we need to know the scaling behavior
of the field and its derivatives. At the leading order, the propagator for potential modes
scale as

〈Hµν(x)Hαβ(y)〉 ≈
∫
dk0d

3k̄
1

k2 e
ik(x−y) ≈ v

r2
(3.12)

and so the potential gravitons scales as

Hµν(x) ≈
√
v

r
. (3.13)

The scaling of its derivatives could be identified by using the Fourier transform of the graviton
and is given by

∂0Hµν(x) ≈ v

r
Hµν(x) and ∂iHµν(x) ≈ 1

r
Hµν(x). (3.14)

The velocity of the particles in the orbit depends on the strength of the gravitational coupling
constant Mpl. So Mpl also scales as 1/

√
Lv. It will be convenient to have the scaling behavior

of Hµν/Mpl and is given by
Hµν(x)

Mpl

≈ v2

√
L
. (3.15)

Using the above given scaling of the graviton field, its derivatives, the scaling of k0 and k and
the scaling of Mpl, we can figure out the scaling of all possible terms added in the effective
action. For a Feynman diagram, the propagators do not scale but the vertices do, and their
scaling is decided by the corresponding term in the Lagrangian.

3.3.3 Vertices

The vertices in the Lagrangian given in equation (3.9) have three kind of interaction
vertices: ones which are generated by the correction to the propagator due to the expansion,
ones which are generated by the cubic and higher-order terms in SEH [Hµν ] and the ones due
to the EFT constructed for Sint.
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For the first kind of vertices, the scaling of the corrections to the propagator given in
equation (3.10) is given by k2

0/k
2 ≈ v2. We define momentum space Feynman rule for a

two-point interaction vertex as,

p1 p2

v2

Hαβ(t2,p2)Hµν(t1,p1)
≡

∫
dt δ3

( 2∑
k=1

pk
) (

∂t1∂t2

)
(3.16)

to reproduce the propagator at higher-orders in v2. higher-orders of correction could be ob-
tained by attaching multiple vertices, each producing a factor of k2

0/k
2 in the propagator.

For the second kind, the scaling of the cubic term in the SEH [Hµν ] is of the form

1

Mpl

∫
dtd3xH2∂2H ≈ v2

√
L
. (3.17)

This term could be represented by the three-point graviton vertex given by the Feynman rule

v2/
√
L

given in equation (A.33) of [33]

(3.18)

So adding a loop of potential gravitons to any diagram adds a factor of v4/L. All the higher-
order terms in Hµν will have an extra factor of Mpl in the denominator and thus scale with
the higher power of v. We here aim to calculate the binding potential up to order v2 and all
the diagrams having higher point self-interaction graviton vertices contribute to higher-order
in v2. So, all such terms are SEH ignored for now.

For the third kind, the leading term in the Lagrangian given in (2.12) could be expanded
as

−
∑
a=1,2

ma

∫
ds

√
gµν

dxµ

ds

dxν

ds
d4x δ4

(
xµ − xµa(s)

)
=

−
∑
a=1,2

ma

∫
dt

[
1− 1

2
v2 +

1

2

H00

Mpl

+
H0i

Mpl

vi +
1

2

Hij

Mpl

vivj

− 1

8
v4 +

1

4

H00

Mpl

v2 +
1

8

(
H00

Mpl

)2

+ · · ·

]
. (3.19)

The scaling of terms independent of the graviton field representing the kinetic energy and
corrections to it is given by∫

dt mv2 ≈ L ;

∫
dt mv4 ≈ Lv2 and so on. (3.20)

These terms do not contain Hµν and thus do not contribute to Feynman diagrams and are
carried over to the Weff [xp]. The scaling of the linear term in field coupling it with the point
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particle is given by∫
dt
H00

Mpl

≈
√
L ;

∫
dt ui

Hi0

Mpl

≈
√
Lv ;

∫
dt u2H00

Mpl

≈
√
Lv2 and

∫
dt uiuj

Hij

Mpl

≈
√
Lv2 .

(3.21)
The corresponding Feynman rules are given by

H00(t,p)

p
xa(t)

√
L

≡ −
∑
a=1,2

ima

2Mpl

∫
dteip·xa(t) ; (3.22)

H0i(t,p)

p
xa(t)

√
Lv

≡ −
∑
a=1,2

ima

Mpl

∫
dtviae

ip·xa(t) and

(3.23)

Hij(t,p)

p
xa(t)

√
Lv2

+

H00(t,p)

p
xa(t)

√
Lv2

≡ −
∑
a=1,2

[
ima

2Mpl

∫
dtviav

j
ae
ip·xa(t) +

ima

4Mpl

∫
dtv2

ae
ip·xa(t)

]
.

(3.24)

The scaling of the leading quadratic term in field coupling it with the point particle is given
by ∫

dt
H00

Mpl

H00

Mpl

≈ v2 (3.25)

which corresponds to the following Feynman rule

pq
xa(t)

H00(t,p)H00(t,q)

v2

≡ −
∑
a=1,2

ima

8Mpl

∫
dteip·xa(t)eiq·xa(t) .

(3.26)

Similarly, terms which contribute to a higher-order of v are ignored. In all the above vertices,
if the vertex contains free index, then it has to be contracted with the same free index in the
corresponding propagator for example, vertex with vi or vivj has to be contracted with Pi0
or Pij respectively. And if a vertex does not have a free index, then it should be contracted
with P00 .
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3.4 Calculating Potential

In this section, we explicitly calculate the first few terms of the Lagrangian for the action
given in equation (3.9). We have obtained this action by integrating out potential gravitons
and ignoring the radiation ones. This corresponds to the contributing diagrams having the
property that they are connected after removing the worldlines of the particles, internal lines
correspond to potential gravitons and we do not have external on-shell potential gravitons.
We ignore all the diagrams that contain graviton loops because adding a loop adds a factor
of v4/L to the diagrams and makes it suppressed by a huge factor of 1/L. We also ignore all
the diagrams with graviton self-energy terms which could be made zero by the techniques of
dimensional regularization.

√
Lv0

√
Lv0

Figure 3.1: This diagram contributes at order Lv0 to the effective action in equation (3.9).

Then at order Lv0 we have the diagram given in figure 3.1. This could be computed
using the result in equation (B.3) of [33]. The corresponding Lagrangian is given by

LN =
∑
a=1,2

1

2
mav

2
a +

GNm1m2

|r|
(3.27)

where the first term represents the kinetic energy of the particle, the second is the Newtonian
gravitational potential with GN = 1/(32πM2

pl) being the Newton’s constant.

At order Lv1, we have only one diagram made from the vertex in equation (3.23) and
(3.22). The contribution of such diagram go to zero due to the identity Pi000 = 0.

√
Lv1

√
Lv1

(a)

√
Lv2

√
Lv0

(b)

v2

√
Lv0

√
Lv0

(c)

√
Lv0

√
Lv0

v2

(d)

√
Lv0

√
Lv0

√
Lv0

v2/
√
L

(e)

Figure 3.2: These diagrams contribute at order Lv2 to the effective action in equation (3.9).
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At order Lv2 we have the diagrams given in figure 3.2. The diagrams in figure 3.2a, 3.2b
and 3.2 are straight forward to compute using the result in equation (B.3) of [33]. For the
diagram in figure 3.2d, we use the equation (B.4) of [33] and for the diagram in figure 3.2e,
we use the equations (B.3) and (A.34) in [33]. The results then correspond to the following
Lagrangian

LEIH =
∑
a=1,2

1

8
mav

4
a+

GNm1m2

2|r|

[
3
(
v2

1+v2
2

)
−7
(
v1·v2

)
−
(
v1 · r

)(
v2 · r

)
r2

]
−
G2
Nm1m2

(
m1 +m2

)
2r2

(3.28)
called as the Einstein-Infeld-Hoffmann Lagrangian. The original derivation of this result
can be found in [3] in the context of NRGR, and agrees with the previously derived results
by A. Einstein, L. Infeld and B. Hoffmann in 1938 [5]. The equation of motion of the
binary constituents could be found by applying the Euler-Lagrange equations to the above
Lagrangian.

The higher-order terms could be found by using the techniques of temporal Kaluza-
Klein parametrization of the metric suggested by Kol and Smolkin in [34]. This simplifies
the three and higher point interaction vertices by replacing them with simple vertices but
more in number. The 2PN and higher order calculations could be found in [35, 36, 37].
The public package EFTofPNG [38], which was created for highprecision computation in the
EFT of PN Gravity, could also be used to carry the higher PN calcualtions.

3.5 Effacement Theorem

In this section, we analyze the effects of the internal structure of the compact object on
their dynamics in the binary system. Using the result of matching done in section 2.3, the
Wilson coefficient corresponding to response quadrupole moment of the conservative sector
scales as

CE(B) ≈M2
plR

5
s . (3.29)

Once we have the relationship between the CE(B) and the Rs, we now compute the scaling
of the term with CE(B) as its coefficient as

CE
M2

pl

∫ (
∂i∂jH00

)2
dt ≈ v10 (3.30)

where we have used the virial theorem to get H00/Mpl ≈ GN/r. Following the matching
procedure given in the section 2.3, one can easily find that this is the leading order contribu-
tion of the conservative sector of the internal structure of the compact object to the effective
point particle Lagrangian in the PN expansion.
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v10

√
L

√
L

Figure 3.3: This diagram corresponds to the leading contribution of the conservative internal
structure of the compact objects that contributes to the conservative dynamics at order Lv10.

The vertex given in equation (3.30) contributes first to the effective action by the dia-
gram given in figure 3.3 at order Lv10. Thus the internal structure of the compact objects
corresponding to the conservative sector response, first contributes to the dynamics of the
binary at 5PN. This also supports the assumption of taking objects like black holes and
neutron stars to be point particles at first few orders.

3.6 Dissipative Dynamics

Once we have calculated the conservative dynamics by computing the integration over
the potential gravitons given in equation (3.4), we move on to the second integral over the
radiation graviton in this section. After integrating out the potential graviton, we are left
with the action

SNRGR[xa, h̄µν ] = WEFT [xa] + S1[xa, h̄µν ] + S2[xa, h̄µν ] + SNL[xa, h̄µν ] (3.31)

where, WEFT describes the conservative dynamics, S1 has the linear terms in h̄µν , S2 has
the quadratic terms in h̄µν which give us the propagator and its corrections, and SNL has
the nonlinear interactions between the sources and the h̄µν . In this section, we describe the
propagator and power counting for the radiation graviton. We also give the Feynman rules
corresponding to the terms S1, S2 and SNL appearing in the above action.

3.6.1 Propagators

We first look at the S2, which leads us to the propagator given in equation (1.12) and the
higher-order terms give us the nonlinear graviton self-interaction vertices. The momentum
space Feynman rule for the propagator of the radiation graviton is

h̄αβ(t2,p)h̄µν(t1,p)
p ≡ −iPµναβ

k2
. (3.32)

Now any correction to the propagators of radiation graviton due to integration over the po-
tential ones like loops, etc. will be down by at least a factor of

√
L and thus will be ignored

in this thesis.
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3.6.2 Power counting

To arrange the terms in the Lagrangian in increasing order of expansion parameter, we
need to have a manifest power counting in v. For this, we need to know the scaling behavior
of the field and its derivatives. At the leading order, the propagator for radiation modes
scale as 〈

h̄µν(x)h̄αβ(y)
〉
≈
∫
dk0d

3k
1

k2
eik(x−y) ≈ v2

r2
(3.33)

and so the radiation gravitons and its derivatives scales as

h̄µν(x) ≈ v

r
and ∂ih̄µν(x) ≈ v

r
h̄µν(x). (3.34)

It will be convenient to have
h̄µν
Mpl

≈ v2
√
v√
L
. (3.35)

Using the above given scaling of the radiation graviton, its derivatives, the scaling of k0 and
k and the scaling of Mpl, we can figure out the scaling of all possible terms in the effective
action. For a Feynman diagram, the propagators do not scale, but the vertices do, and their
scaling is decided by the corresponding term in the Lagrangian.

3.6.3 Vertices

The Lagrangian given in equation (3.31) has two kinds of interaction vertices: ones
which are generated by the cubic and higher-order terms in SEH [Hµν ] and the ones due to
the EFT constructed for Sint.

For the first kind, the scaling of the leading cubic term of SEH [hµν ] is given by

1

Mpl

∫
dtd3xh̄H∂2

iH ≈
v2
√
v√
L

(3.36)

which could be represented by the three-point graviton vertex given by the Feynman rule

v2/
√
L given in equation (A.29) of [33].

(3.37)

Each diagram with time derivative acting on Hµν instead of the spatial derivative, will be
higher by an order of v. Every h̄µν instead of Hµν in the above diagram will have an ex-
tra factor of

√
v. One can easily calculate the vertices that contribute to higher-orders of

v but we here aim to calculate the power radiated up to the leading orders and thus, all
higher-order terms are ignored.

For the second kind, the term for the point particles contributing to the action could
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be expanded as

−
∑
a=1,2

ma

∫
dτ = −

∑
a=1,2

ma

∫
dt
[
1− 1

2
v2 − 1

8
v4 +

1

2

H00

Mpl

+
H0i

Mpl

vi +
1

2

Hij

Mpl

vivj

+
1

4

H00

Mpl

v2 +
1

8

(
H00

Mpl

)2

+ · · ·

+
1

2

h̄00

Mpl

+
h̄0i

Mpl

vi +
1

2

h̄ij
Mpl

vivj +
1

4

h̄00

Mpl

v2

+
1

8

(
h̄00

Mpl

)2

+ 2h̄00H00 + · · ·
]

(3.38)

where the first and second line of the above equation is already taken care of in section 5.4.
Now we analyze at the third and fourth line, where we have the interaction of the radiation
gravitons with the potential gravitons and the binary. The scaling of linear terms in the
above action is given as∫

dt
h̄00

Mpl

≈
√
Lv ;

∫
dt ui

h̄i0
Mpl

≈
√
Lvv ;

∫
dt u2 h̄00

Mpl

≈
√
Lvv2 and

∫
dt uiuj

h̄ij
Mpl

≈
√
Lvv2 .

(3.39)
This will produce the corresponding vertices with the given Feynman rules

H00(t,p)

p
xa(t)

√
L

≡ −
∑
a=1,2

ima

2Mpl

∫
dteip·xa(t) ; (3.40)

H0i(t,p)

p
xa(t)

√
Lv

≡ −
∑
a=1,2

ima

Mpl

∫
dtviae

ip·xa(t) and

(3.41)

Hij(t,p)

p
xa(t)

√
Lv2

+

H00(t,p)

p
xa(t)

√
Lv2

≡ −
∑
a=1,2

[
ima

2Mpl

∫
dtviav

j
ae
ip·xa(t) +

ima

4Mpl

∫
dtv2

ae
ip·xa(t)

]
.

(3.42)

Similarly, the scaling of the leading quadratic term in the above action is given as∫
dt
h̄00H00

Mpl

≈ v2
√
v. (3.43)

which corresponds to the following Feynman rule
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pq

h̄00(t,p)H00(t,q)

xa(t)v2

≡ −
∑
a=1,2

ima

8Mpl

∫
dteip·xa(t)eiq·xa(t) .

(3.44)

The diagrams similar to above contributing at higher-order of v can be calculated easily but
are ignored in this section. Diagrams with two or more radiation gravitons in the final state
contribute at higher PN order and thus, vertices leading to such diagrams are ignored in this
section.

In all the above vertices, if the vertex contains a free index, then it has to be contracted
with the same free index in the corresponding propagator for example, vertex with vi or
vivj has to be contracted with Pi0 or Pij respectively. And if a vertex does not have a
free index, then it should be contracted with P00 .

3.7 Multipole EFT

In this section, we study the effects of the source term S1 for the radiation gravitons.
This term could also be written using the pseudo stress-energy tensor defined in equation
(1.6) as

S1 = − 1

2MPl

∫
d4x Tµν(x)h̄µν(x) (3.45)

where the Tµν may be either the standard stress-energy tensor of matter or it may be the
pseudo stress-energy tensor, which includes some gravitational effects from the potential
gravitons that correspond to the gravitational binding energy of the bound state.

The only observables we have is the waveform of the gravitational wave emitted to
infinity and the corresponding power carried away from the binary in the form of gravitational
waves. We study an EFT composed of the multipole moments of an object coupling to the
radiation graviton given in [39] that encapsulates the essential degrees of freedom from S1

in the above equation, needed to calculate the waveform and the radiated power far away
from the sources. The action for the EFT is given as

SMP =− 1

2Mpl

∫
dt
[
Mh̄00 + 2Pih̄0i +MXi∂ih̄00 + Liεijk∂jh̄0k

]
+
∞∑
l=2

1

l!

∫
dtIa1a2...al(t)∂a1 · · · ∂al−2

Eal−1al(x)

−
∞∑
l=2

1

(l + 1)!

∫
dtJa1a2...al(t)∂a1 · · · ∂al−2

Bal−1al(x) (3.46)

where, the electric component isEij = R0i0j and magnetic component isBij = (1/2)εimnR0jmn.3

3Note that the expression of Eij and Bij are given for the rest from of the binary where uα = (1, 0, 0, 0).
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This action will only encapsulate the effects of the propagator from S2[xa, h̄µν ] and the terms
linear in the radiation graviton S1[xa, h̄µν ] from the equation (3.31). One has to write a sim-
ilar action at each order of h̄µν to consider all the terms from the equation (3.4). But one
can show that these higher-order terms will be suppressed by at least a order of

√
L, thus

are ignored until section 3.12.

M

(a)

Iij

(b)

Jij

(c)

Figure 3.4: Examples of leading vertices produced by the Lagrangian given in equation
(3.46).

Here the multipole moments of the object are classical and thus do not have a propa-
gator. The worldline of the binary system is denoted by double solid lines in the Feynman
diagrams of this theory. The interactions of the radiation graviton with the multipole mo-
ments are given in the vertices shown in figure 3.4, where, the distance between the double
lines represents that the internal length scale of the binary is smaller than the wavelength
of the emitted radiation graviton.

With the above developed techniques, we can now compute the integral over the radia-
tion gravitons in the path integral given by

eiSEFT [x
(a)
pp (σa)] =

∫
D
[
h̄µν
]
eiSNRGR[x

(a)
pp (σa),h̄µν ] . (3.47)

The diagrams that contribute to the effective action SEFT are shown in the figure 3.5. We
analyze the imaginary part of these diagrams in subsection 3.9 which leads to the radiated
power, and the real part in subsection 3.10 which results in the back reaction of the radiated
power on the dynamics of the binary.

Iij Iij

(a)

Jij Jij

(b)

Iijk Iijk

(c)

Figure 3.5: Examples of diagrams that contribute to effective action given in equation (3.47).

This will be the case in the rest of the report as we always work in the frame where X = P = 0.
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3.7.1 Matching

The multipole moments are unknown in the action given in equation (3.46) and one has
to match this to the action which describes the internal structure of the binary. For this, we
expand the h̄(t,x) around the center of the mass of the binary to get

h̄µν(x) =
∞∑
n=0

1

n!
xi1 · · ·xin∂i1 · · · ∂inh̄µν(x0,xcm). (3.48)

Plugging the above in term S1 of the point particle action (3.31), we get the expression for
the total mass of the binary as

M =

∫
d3xT 00. (3.49)

The center of mass of the binary could be written as

Xi =

∫
d3xT 00xi, (3.50)

which could be made zero by choosing the center of the reference frame on the center of
mass. The linear momentum of the binary could be identified as

Pi =

∫
d3xT 0i(x0,x) =

∫
d3xṪ 00(x0,x)xi ≡ mẊ

i
, (3.51)

which could also be made zero by going to the proper frame of the center of mass. The
angular momentum is then given by

Li = −
∫
d3xεijkT 0jxk. (3.52)

For the higher-order multipole moments, we need to write the equation 3.45 in the irreducible
representation of S0(3). This can be then compared with the EFT at long-distance and the
multipole moments can be identified as [40]

Ia1...an =

p=∞∑
p=0

{ (2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1 +

8p(`+ p+ 1)

(`+ 1)(`+ 2)

)[∫
d3x∂2p

0 T 00(t,x)x2pxa1...al
]

STF

+
(2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1 +

4p

(`+ 1)(`+ 2)

)[∫
d3x∂2p

0 T kk(t,x)x2pxa1...an
]

STF

− (2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
4

`+ 1

)(
1 +

2p

(`+ 2)

)[∫
d3x∂2p+1

0 T 0m(t,x)x2pxma1...an
]

STF

+
(2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
2

(`+ 1)(`+ 2)

)[∫
d3x∂2p+2

0 T mn(t,x)x2pxmna1...an
]

STF

}
(3.53)
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Ja1...an =

p=∞∑
p=0

{ (2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1 +

2p

(`+ 2)

)[∫
d3xεalmn∂2p

0 T 0m(t,x)x2pxna1...al−1

]
STF

− (2`+ 1)!!

(2p)!!(2`+ 2p+ 1)!!

(
1

(`+ 2)

)[∫
d3xεalmr∂2p+1

0 T mn(t,x)x2pxnra1...al−1

]
STF

}
(3.54)

where STF means to only consider the symmetric-tracefree part of the corresponding tensor
[41]. Every time derivative of the stress-energy tensor scales like the inverse of the wavelength
of the emitted radiation graviton and every x scales like the radius of the binary r, where
r/λ ≈ v. Hence, the multipole moments scale as a series in v2 given by mal

(
1 + (a/λ) +

(a/λ)2 + · · ·
)
. Also, each higher multipole moment has a factor of xai∂ai and thus scales

with a higher power of v than the previous one.

3.7.2 Calculating Multipole Moments

In this subsection, we explicitly calculate the diagrams with one graviton in the final
state, which contributes to the total Tµν using the point particle action given in equation
(3.31). Then we use the above given relations between the multipole moments and the
stress-energy tensor to obtain the exact expression for the moments for the first few orders
in v.

h̄00(t,k)

√
Lv

Figure 3.6: This diagram yields the T µν at order
√
Lv.

At order
√
Lv, the diagram given in figure 3.6 leads to

T 00(x0,k) =
∑
a

mae
−ik·xa (3.55)

Using the results from the section 3.7.1, we have

M =
∑
a

ma ; (3.56)

Xi =
1

M

∑
max

i
a ; (3.57)

I ij =
∑
a

ma

[
xiax

j
a

]TF
; and so on. (3.58)
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h̄0i(t,k)

√
Lv(v)

Figure 3.7: This diagram yields the T µν at order
√
Lv(v).

At order
√
Lv(v), the diagram given in figure 3.7 leads to

T 0i(x0,k) =
∑
a

mav
i
ae
−ik·xa , (3.59)

Using the results from the section 3.7.1, we have

Pi =
∑
a

mav
i
a +O(v3) ; (3.60)

Li = εijkL
jk =

∑
a

ma(xa × va)
i +O(v3) ; (3.61)

J ij = −1

2

∑
a

ma

(
(va × xa)

ixja + (va × xa)
jxia
)

+O(v3) ; and so on. (3.62)

√
v(v2)

h̄00(t,k)

(a)

√
Lv(v)

h̄00(t,k)

√
L

(b)

√
L

h̄00(t,k)

√
L

√
v(v2)

(c)

Figure 3.8: These diagrams yields the T µν at order
√
Lv(v2).
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At order
√
Lv(v2), the diagram given in figure 3.8 leads to

M =
∑
a

ma

[
1 +

1

2
v2
a −

1

2

∑
b

GNmb

|xa − xb|

]
; (3.63)

Xi =
1

M

∑
a

ma

[
1 +

1

2
v2
a −

1

2

∑
b

GNmb

|xa − xb|

]
xia ; (3.64)

I ij =
∑
a

ma

(
1 +

3

2
v2
a −

∑
b

GNmb

|xa − xb|

)[
xiax

j
a

]TF
+

11

42

∑
a

ma
d2

dt2

(
x2
a

[
xiax

j
a

]TF)
− 4

3

∑
a

ma
d

dt

(
xa · va

[
xiax

j
a

]TF)
; and so on. (3.65)

All the higher-order corrections to the multipole moments are ignored in this thesis and
could be found in [39]. At order

√
Lv(v)n, the first multipole moment M scales like

√
Lv(v)n

and each lth order moment scales like
√
Lv(v)n+l. Using the above developed results, we

calculate th emitted waveform and the power radiated in the following sections.

3.8 Calculating Waveform

In this section, we compute the waveform of the gravitational wave emitted by the binary.
This waveform is computed by assuming that the detector is far away from the source and
thus, we here only compute the leading order term in 1/R, where R is the distance between
the detector and the sources. We start with the retarded graviton propagator, given by

〈hµν(x)hαβ(y)〉ret =
−iPµναβθ(tx − ty)

4π|x− y|
δ(tx − ty − |x− y|) (3.66)

Using the above given propagator to invert the equation given in equation (1.14), we get

hµν(x) =
1

2Mpl

∫
d4yδ(y)

∞∑
l=2

1

n!
Ia1...al(t)∂a1 · · · ∂al−2

∂ty∂ty

[−iPµνal−1alθ(tx − ty)
4π|x− y|

δ(tx − ty − |x− y|)
]

− 1

2Mpl

∫
d4yδ(y)

∞∑
l=2

2l

(l + 1)!
Ja1...al(t)∂a1 · · · ∂al−2

εalmn∂ty∂n

[−iPµνal−1mθ(tx − ty)
4π|x− y|

δ(tx − ty − |x− y|)
]

(3.67)

where, the spatial partial derivative acting on the 1/|x−y| leads to higher-order term in 1/R
and thus are ignored and the spatial partial derivative acting on the delta function leads to

∂kδ(tx − ty − |x− y|) =∂k(tx − |x− y|)∂δ(tx − ty − |x− y|)
∂(tx − |x− y|)

(3.68)

=
(x− y)k

|x− y|
∂

∂ty
δ(tx − ty − |x− y|) (3.69)
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where (x−y)k/|x−y| = n̂k is the unit vector pointing towards the direction of the detector.
The operator

Λijkl−1kl = (δik − n̂in̂k)(δjl − n̂jn̂l)−
1

2
(δij − n̂in̂j)(δkl − n̂kn̂l) (3.70)

which projects the tensor components to surface orthogonal to the unit vector ni and then
makes it transverse and trace-less. Using the identities in equation (3.68) and (3.70), we get
an expression [40]

hTTij (x) =
4G

|x|
Λijkl−1kl

[ ∞∑
l=2

1

l!

∂l

∂tl
IL(tret)n̂

L−2 −
∞∑
l=2

2l

(l + 1)!
εabkl

∂l

∂tl
Jkl−1)bL−2(tret)n̂

aL−2
]

(3.71)
that describes the waveform of the wave emitted by the binary described by the EFT of
multipole expansion, where tret = t − |x|. This result matches to the known result, e.g.
presented in [10].

Using the above given result and the multipole moments computed using the matching
techniques given in section 3.7.1, we can compute the waveform of gravitational wave emitted
by the binary.

3.9 Calculating Power

In this section, we calculated the power radiated by the binary using the effective theory
of multipole moments developed in the previous section. For calculating power, we use the
optical theorem derived in chapter 24 of [42].The power radiated could be written as

P =

∫
dEdΩ E

dτtot
dE dΩ

=
1

T

∫
dEdΩ E

d

dE dω

[
Im
[
SEFT

(
xpp(σ)

)]]
(3.72)

where E is the energy of the final state particles and the dτtot/dEdΩ is the number of
particles in that final state per unit time, energy and solid angle and this relates the total
power radiated to the imaginary part of the diagram(s) contributing to the effective action.
We then calculate the imaginary part of the diagrams contributing to Seff [x

a
pp(λa)] given in

equation (3.47) using the cutting rules given in chapter 8 of [43].

As one can easily see, having two or more gravitons in the final state reduces the order
of the diagram by at least

√
L and thus are ignored. The real part of the diagram produced

by the action in equation (3.46) will give us the correction to the conservative dynamics of
the binary and is discussed in section 3.10. The imaginary part of these diagrams yields the
power radiated to infinity by the binary. To identify the imaginary part, we define

iAh(k) =

(3.73)
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where, Ah(k) denotes the portability amplitude to emit a graviton of momentum k (and
definite helicity h = ±2). So the emission rate could be written as

dΓh(k) =
1

T

d3k

(2π)3

1

2|k|
∣∣Ah(k)

∣∣2 (3.74)

Now, considering all the possible diagrams contributing to Ah(k) from the multipole action
given in equation (3.46), yields

iAh(k)=

Iij

+

Jij

+

Iijk

+ · · ·

(3.75)

iAh(k) =
i

4mPl

ε∗ij(k, h)

[
k2I ij(k) +

4

3
|k|klεiklJ jk(k)− i

3
k2klI ijl(k) + · · ·

]
. (3.76)

Then we can sum over the helicities using the identity given in equation (107) in [40] and
the power radiated could be written as4

P =

∫
2|k|

∑
h

dΓh(k)

=
GN

πT

∫
d|k|

[ |k|6
5

∣∣I ij(|k|)∣∣2 +
16|k|6

45

∣∣J ij(|k|)∣∣2 + · · ·
]
. (3.77)

Converting the above equation into time domain, we get

P =
GN

5

〈(
d3

dt3
I ij(t)

)2
〉

+
16GN

45

〈(
d3

dt3
J ij(t)

)2
〉

+ · · · . (3.78)

The original derivation of this result can be found in [40] in the context of NRGR, and agrees
with the results derived by Kip Thorne in 1980 [41].

3.10 Radiation Reaction

In this section, we compute the real part of the diagrams contributing to the SEFT in
equation (3.47). This real part is expected result in the back reaction of the power radiated
on the dynamics of the binary. One expects the parameters of the binary like its radius,
total mass, etc. to change due to the emission of the gravitational waves converting the
conservative dynamics of the binary into a dissipative one. If one naively starts to calculate
the real part of the leading diagram given in figure 3.5a,

4The radiated power is proportional to the first time derivative of the monopole or the second time
derivative of the dipole. But, the monopoles and the dipoles are conserved due to ∂µT µν = 0 and hence do
not contribute to the radiated power.
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SEFT (fig-3.5a) = −GN

20

∫
dt
d

dt

( d2

dt2
Iij

)2

, (3.79)

the contribution would be a total derivative and thus zero. This happened because of the
In-Out formalism used to compute the correction. The review of the In-Out formalism, the
problems with it, and the introduction to the correct formalism called the In-In formalism
is developed in [44, 45]. We present the In-In formalism for NRGR and compute a non-zero
correction responsible for the decaying of the orbits of the binary as given in [44] in the
following subsections.

3.10.1 In-In Formalism - For NRGR

To obtain the generating function for NRGR, we need to double the radiation graviton
field and the sources fields as well. For this, we need to introduce two types of auxiliary
sources - j(1,2) that couples to the trajectory of the binary x(1,2) and Jµν(1,2) that couples to the

radiation graviton h̄µν(1,2). The generating function for the NRGR in In-In formalism is then
given by

eiW [jk(1),jk(2),J
µν
(1)
,Jµν

(2)
] =

∫
Dxk(1)Dxk(2)Dh̄

µν
(1)Dh̄

µν
(2) exp

{
iSNRGR[xk(1), h̄

µν
(1)]− iSNRGR[xk(2), h̄

µν
(2)]

+ i

∫
dt(jk(1) · xk(1) − jk(2) · xk(2)) + i

∫
d4x(Jµν(1)h̄

µν
(1) − Jµν(2)h̄

µν
(2))
}

(3.80)

where the subscript 1 denotes fields propagating forward in time and 2 denotes propagating
backward in time. The generating function for the radiation gravitons in the basis, J+ =
(J(1) + J(2)) and J− = (J(1) − J(2)) can be written as

Z0[Jµν± ] = exp
{−1

2

∫
d4x

∫
d4yJµνa (x)Dab

µναβ(x− y)Jαβb (y)
}
. (3.81)

The matrix of the propagator is given by

Dab
µναβ(x− x′) =

(
0 −iDadv

µναβ

−iDret
µναβ

1
2
DH
µναβ

)
. (3.82)

where, DH
αβγδ(x, x

′) =
〈
{h̄αβ(x), h̄γδ(x

′)}
〉
. The equation of motion for the point particles

and radiation gravitons could be found using

0 =
δΓ

δ〈x̂k−〉

∣∣∣∣∣
xk−=0,xk+=xk, jk±=Jµν± =0

(3.83)

〈h̄µν(t,x)〉 =
δeiW

δJµν− (t,x)

∣∣∣∣∣
xk−=0,xk+=xk, jk±=Jµν± =0

(3.84)
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respectively, where xk+ = (xk(1) + xk(2)), xk− = (xk(1) − xk(2)) and similarly for j±. One
should be using the above given equations to get a correct result while calculating quantities
that have a causal dependence like power radiated or back reaction.

3.10.2 Calculating Radiation Reaction

We now try to compute the back reaction of the radiated power on the dynamics of
the binary. For this, we use the above developed formalism to calculate the real part of the
leading diagram contributing to back reaction at order Lv5,

iSEFT (fig-3.5a)[xK±] =

(
1

2

)(
i

2mpl

)2 ∫
dt

∫
dt′Qij

a (t)
〈
Ea
ij(t
′)Eb

kl(t
′)
〉
Qkl
b (t′)

= − 1

80m2
pl

∫
dt

∫
dt′
[
− 2iQij

−(t)
d2

dt2
d2

dt′2
Dret(t− t′,0)Qij

+(t′)

+
1

2
Qij
−(t)

d2

dt2
d2

dt′2
DH(t− t′,0)Qij

−(t′)
]

(3.85)

where, the following expression for the propagator is used〈
Ea
ij(t)E

b
kl(t
′)
〉

=
1

20

[
δikδjl + δikδjl −

2

3
δijδkl

]
d2

dt2
d2

dt′2
Dab(t− t′,0) . (3.86)

Now using the leading order expression for the quadrupole moment given in the equation
(3.58) and ignoring all the terms of O(x2

−) 5 we get,

Qij
−(t) =

∑
K

mK

{
xiK−x

j
K+ + xiK+x

j
K− −

2

3
δijxK− · xK+

}
(3.87)

Qij
+(t) =

∑
K

mK

{
xiK+x

j
K+ −

1

3
δijx2

K+

}
(3.88)

where, Qij
−(t) = Qij

1 (t) − Qij
2 (t) and Qij

+(t) = 1
2
(Qij

1 (t) + Qij
2 (t)). Substituting the above in

equation (??) we get

iSEFT (fig-3.5a)[{xK±}] = − i

80πm2
pl

∫
dt

2∑
K=1

mKx
i
K−(t)xjK+(t)

d5Qij
+(t)

dt5
(3.89)

which could not be transformed into a total derivative. This result was first derived in [44]
using the formalism of NRGR, which agrees to the previously derived result by Kip Thorne
in 1969 [46] and by William Burke in 1971 [47]. This gives us an acceleration after using
equation (3.83) corresponding to the above given radiation reaction as

airr(t) = −2Gn

5
xj(t)I ij(5)(t). (3.90)

5One can drop such terms because these drop out while finding the dynamics of the binary using the
equation (3.83).
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Form this, using the results given in section 4 of [45], we get the energy balance equation as〈
dM(t)

dt

〉
=
∑
a

ma

〈
airr(t)v

i(t)
〉

= −Gn

5

〈
I ij(3)(t)I ij(3)(t)

〉
(3.91)

which exactly matches the amount of power radiated to infinity given in equation (3.78).
Using the above defined techniques, one can now calculate the power radiated to infinity and
its back-reaction on the dynamics of the binary up to desired PN order.

3.11 Dissipative Effects

In this section, we compute the effects of the dissipative sector of the internal structure
of the compact object on their dynamics in the binary system as computed in [48]. Using the
result of matching done in section 2.3, the Im

[
F (ω)

]
corresponding to response quadrupole

moment of the dissipative sector is given by

Im
[
F (ω)

]
=

16

45
G5
Nm

6ω (3.92)

Now once we have the relation between the Im
[
F (ω)

]
and the Mpl, we now compute the

scaling of the leading order dissipative term as

1

Mpl

∫
dτQijE

ij[H] ≈ v13/2 (3.93)

Following the matching procedure, one can easily find that this is the leading order con-
tribution of the dissipative sector of the internal structure of the compact object to the
effective point particle Lagrangian in the PN expansion. The vertex given in equation (3.93)
contributes first to the effective action by the diagram given in figure 3.9 which scales as
Lv13.

Qij(R)Qij(R)

√
L

√
L

Figure 3.9: This diagram represents the leading order contribution of the dissipative internal
structure of the compact objects to the effective action given in equation (3.9).

Thus the internal structure of the compact objects (response conservative sector) first
contributes to the dynamics of the binary at 6.5PN. The power absorbed by the Fock space
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of the response quadrupole moment is given by the imaginary part of the above diagram as

Pabs =
16

45
m2

2m
6
1G

7
N

〈(
d

dt
qij(1)

)2〉
+ 1↔ 2 (3.94)

where, qij(t) = (δij − 3ninj)/|r(t)|3. This result was first derived in [48] using the formalism
of NRGR, and agrees to the previously derived result in [49, 50] in the limit m1 � m2.
This is the power absorbed from the binding potential to the Fock space of the response
quadrupole moment.

3.12 Higher-order Corrections

In this section, we briefly describe the effects of term SNL in the equation (3.31) on the
radiated power by the binary. This term leads us to the three-point and four-point vertices
for radiation gravitons, where its scaling could be seen from the schematic form given by

1

Mpl

∫
d4xh̄2∂2h̄ ≈ v2

√
r

and
1

M2
pl

∫
d4xh̄3∂2h̄ ≈ v4

r
. (3.95)

We also have nonlinear vertices where n gravitons are emitted by the binary. We just
mention such diagrams in this section, ignoring calculation of the exact corrections since
these diagrams contribute to higher PN order than the usual diagram considered till now.
The detail calculation corresponding to the these diagrams is given in [39]. Also, in this
section, we only show the diagrams contributing to the power radiated, but one can combine
these diagrams to get the contribution to the back reaction using the cutting rules given
chapter 8 of [43].

3.12.1 Tail Effects

First, we look at the correction which is linear in the multipole moments. These corre-
spond to the diagrams given in figure 3.10, where, adding a three-point vertex also needs a
term of the form equation (3.40) and thus the total scales as v3. Similarly, adding a four-point
vertex needs two terms of the form equation (3.40) and thus the total scales as v6. So we
expand the power radiated in orders of η = Rs/λ ≈ v3 which is called as Post-Minkowskian
expansion.
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MIij

(a)

MIij M

(b)

MIij M

(c)

Figure 3.10: Examples of diagrams that contribute the power radiated and corresponds to
the tails effects.

3.12.2 Non-linear Corrections

One way to obtain non-linear corrections to the power radiated is to replace a M by the
lth moment in a diagram contributing at order

√
Lv(v)n given in section 3.12.1. This will

make new diagrams like the ones given in figure 3.11a, where, the lth moment contribute at
order

√
Lv(v)n+l.

Iij Iij

(a)

Iij Iij

(b)

Figure 3.11: Examples of diagrams that contribute the power radiated and corresponds to
the non-linear effects.

One can also have a vertex nonlinear in the radiation gravitons in a diagram that
contributes to the power radiated. One can easily show that such non-linear vertices scale as
ηn. For example, the nonlinear vertex in diagram given in figure 3.11b, where we have two
gravitons coming out scales like η at the leading order. Whereas, the vertex with 3 gravitons
coming out scale as v5

√
v/
√
L, but it also needs an extra vertex at least of the form (3.40)

which scales like
√
Lv. So the net scaling of the diagram increases by an order η2.
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Chapter 4

Spinning Compact Objects

In this chapter, we try to model the spin of the constituents of the binary using the
techniques developed by Rafael Porto in [4] in the context of Non-Relativistic General Rela-
tivity (NRGR). For this, we first describe the action that governs the dynamics of a spinning
point particle on an arbitrary background. Then we describe the procedure to construct
an Effective Field Theory (EFT) to describe the internal structure of the compact objects.
Using two such spinning objects, we then study the effects of spin on the dynamics of the
binary and extend the NRGR formalism developed in chapter 3 to include the additional
degrees of freedom of spin. For this, we mention the power counting rules and Feynman
rules for the action. We derive the effective potential for spinning particle up top 2PN and
the contribution of spin to the EFT describing the internal structure of the point particle.
To describe the effects of spin on emitted radiation to infinity by the binary, we find the
contribution to spin on the EFT of multipole moments.

4.1 Action for a Spinning Point Particle

The equations governing the dynamics of the spinning particle on an arbitrary fixed
curved background was given by Myron Mathisson and Achille Papapetrou equations [51, 52].
We first mention all the assumptions and derive the equation of motion for a spinning point
particle called as Mathisson-Papapetrou equation. We then describe the extension of this
formalism to include the dynamics of the background in linearized limit as given in [4].

4.1.1 Fixed Background

In this subsection, we follow the description of a spinning point particle given by A.J
Hanson and T Regge in [53]. To model the spin, we add rotational degrees of freedom to
the worldline of the point particle. These rotational degrees are encoded in the tetrads that
connects the general Lorentz frame and the body-fixed frame of the rotating object.1 The
angular velocity of the rotating frame is given by

σµν = eµA
deνB
dτ

ηAB. (4.1)

1We use the capital Latin indices to denote the body-fixed frame, small Latin indices to denote local
Lorentz frames and Greek indices to denote general coordinate frame.
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Now one can act Lorentz transformation on the general coordinate frame (Right action of
the Lorentz group) as well as on the body fixed frame (Left action of the Lorentz group).
We construct the Lagrangian for the spinning particles using the invariant under the action
of the Lorentz transformation on the general coordinate frame (Right Invariant) because left
transformation parameterizes the internal degree of the particle, but the right transformation
are the symmetry of GR. These right invariants are given as

UµU
µ ; σµνσ

µν ; Uµσ
µνσνλU

λ and
1

16
σµνεµνλρσ

λ . (4.2)

In addition to this, we also have the re-parametrization invariance of the action for a point
particle, which constraints the Lagrangian to be a homogeneous degree one function of the
generalized velocities. One can easily show that the Hamiltonian for such system will be
zero and thus the Lagrangian could be written as

Lpp = −PµUµ − 1

2
Sµνσ

µν (4.3)

where the conjugate momentum of the worldline coordinate xµ and the tetrad eµA is given by

Pµ =
∂Lpp
∂Uµ

and Sµν = 2
∂Lpp
∂σµν

(4.4)

respectively. One then observes that the spin tensor has more independent degrees of freedom
than required to encode the spin vector. For this one has to add a gauge constraint2 given
by

SµνP
ν = 0. (4.5)

The above equation physically constraints the center of mass of the object such that the axis
of rotation has to pass through center of mass defined in the rest frame of the point particle.

Using the Lagrangian given in the equation (4.3) we can get the equation of motion for
each coordinate for a fixed background. For this, we use the scheme used in [55]. We vary
the worldline δxµ by a small parameter ε such that the tetrads are parallelly transported
to the new worldline. Similarly, the variation of the tetrad δeµA is obtained by keeping the
worldline fixed.

For the variation δeµA,

δLpp
δε

= −1

2
Sµν

δσµν

δε

= −1

2
Sµν

δ

δε

[
eµA
deνB
dτ

ηAB
]

= −1

2

[
− Sµν

deµA
dτ

ηAB − d

dτ
(Sµν)e

µ
Aη

AB − Sµν
deµA
dτ

ηAB
] δeνB
δε

dSµν
dτ

=
[
Sνβσ

β
µ − Sµβσ β

ν

]
(4.6)

2More details about different spin gauges and their physical interpretation is given in [54].
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For the variation δxµ,

δLpp
δε

= −Pµ
δUµ

δε
− 1

2
Sµν

δσµν

δε

= −Pµ
d

dτ

δxµ

δε
− 1

2
Sµν

δ

δε
[eµA

deνB
dτ

ηAB]

= −dPµ
dτ

δxµ

δε
− 1

2
Sµν

δeµA
δε

deνB
dτ

ηAB − 1

2
Sµνe

µ
A

δ

δε

[deνB
dτ

]
ηAB

= −dPµ
dτ

δxµ

δε
− 1

2
Sµνe

µ
AR

ν
λασU

σeλB
δxα

δε
ηAB

=
[
− dPα

dτ
− 1

2
Sµνe

µ
AR

ν
λασU

σeλBη
AB
]δxα
δε

dPα
dτ

=
1

2
SµνR

µν
ασU

σ (4.7)

The above-given equation in (4.6) and (4.7) are called as Mathisson-Papapetrou equations
[51, 52]. These equations govern the dynamics of the spinning point particle, i.e. the position
of the particle (3 components) and its spin vector (3 components).

4.1.2 Semi-classical Background

Now, we consider the spinning point particle on a semi-classical background. Their
gravitational interaction is encoded in the gravitons (hµν) given by

gµν = ηµν +
hµν
Mpl

. (4.8)

Using the above-given decomposition and the relation given in equation (4.1), we can write
the tetrad in a series expansion of hµν as

eµA = δµA +
1

2

hµA
Mpl

− 1

8

hµα
Mpl

hαA
Mpl

+ · · · . (4.9)

One can also use the local Lorentz frame to simplify the calculation as it decomposes the
σµν as

σµνeaµe
b
ν = σab + ωabµ U

µ (4.10)

where, the Ricci rotation coefficients are given by ωabµ = ebν∇µe
aν . The first term of RHS

in the above equation gives us the kinetic term of the spinand the second term encodes the
interaction of the spin with the graviton. Using the above equation, we can also decompose
the action as

Spp =

∫
ds
[
− PµUµ − 1

2
Sab σ

ab − 1

2
Sab ω

ab
µ U

µ
]

(4.11)

Using the equation (4.9), one can expand the last term in the above action as

LSpin = −1

2
Sµν∂

µhναU
α − 1

4
Sµνh

µ
λ

[
∂αh

νλ + ∂µh λ
α − ∂λhµα

]
Uα + · · · (4.12)
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which derscribes the interaction of the gravitons with the spin of the compact objects. This
action given in equation (4.11) describes the complete action for the spinning point particle.

4.1.3 Contribution to the Internal structure

In this subsection, we repeat the procedure of constructing the EFT that encodes the
internal structure of the compact object given in section 2.2. We again start with introducing
the multipole moments and decomposing them into 〈Qabc···k〉S - inherent multipole moments
and 〈Qabc···k〉R - the response multipole moments. But now, we do not have a spherically
symmetric compact object, and thus, the inherent multipole moments are not zero. For
example, the leading order the inherent quadrupole moment could be wriiten using the
allowed symmetries as

〈Qab〉S =
CES2

2m
SikS j

k . (4.13)

The term contributing to the Lagrangian due to the above-given inherent quadrupole moment
is given as

SES2 = i
CES2

2m

∫
dτd4xδ4(xα − xαa )

EijS
iaS j

a√
U2

. (4.14)

Terms such as 〈Qab〉S, acts as a classical background for the quantized perturbations 〈Qab〉R.
The inherent higher-order multipole moments could be added to the effective action, but we
ignore all such corrections in this thesis. To simplify the calculations further, we assume
the response of the multipole moments depends linearly on the incident gravitational waves.
Thus the response quadrupole moments are given by

〈Qab〉R (τ) =
1

2

∫
dτ ′d4xδ4(x− x(τ ′))Gret

abij(τ, τ
′)Eij(x) (4.15)

where the causality is imposed using the retarded Green’s function in the above equation,
which is given as

Gret
abij(τ, τ

′) =
〈[
Qab
R (τ), Qij

R(τ ′)
]〉
θ(τ − τ ′). (4.16)

In the frequency domain, the quadrupole propagator can be written as

iGret
abij(ω) = QabijF (ω) + Sabij(ω)FS(ω) (4.17)

where, the first term is already analyzed in section 2.2. Using the symmetries of the system,
Sabij could be written as

Sabij = (δaiSbj + δajSbi + δbjSai + δbiSaj)(1 + αSS
2) +O(S3) (4.18)

where, αS is also an unknown coefficients and has to be determined using matching. Now,
The tensor Sabij could be a function of ω as the spin tensor Sij depends on ω. Similar
to section 2.2, the real part of Gret

abij(ω) is an even function of ω and thus describes the
conservative sector whereas, the imaginary part of Gret

abij(ω) is an odd function of ω and thus
describes the dissipative sector. This could be easily generalized to the magnetic type and
higher-order multipole moments.
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Now we match the EFT to the full classical General Relativity (GR) to obtain the
unknown Wilson coefficients. In the case of the conservative sector corresponding to the
spin dependent part of the propagator, the combination of Sijab(ω)FS(ω) should be even
function of ω, which could also be thought of as even time derivatives acting on the Emn in
the effective action. The symmetries of the tensor Sabij make each term of the propagator
anti-symmetric in two indices, which are contracted with the combination of Emn symmetric
in the corresponding two indices. Thus the spin does not contribute to the conservative sec-
tor of the effective action. For the dissipative sector, in the case of EFT, consider the diagram

Qij(R) Qab(R) =
i

8M2
pl

∫
dτe−iωτ

(
ω2ε?ijεab

〈
Q

(E)
ab (0)Q

(E)
ij (τ)

〉
+ (k × ε?)ij(k × ε)ab

〈
Q

(B)
ab (0)Q

(B)
ij (τ)

〉)
(4.19)

The imaginary part of the above diagram obtained by making the propagator of the response
quadrupole moment on-shell. We use the plane wave with helicity p = −2 moving in the
ẑ direction and decompose it in terms of spherical modes Ylm(θφ). Using the dominant
harmonic mode l = 2 and in the regime RSω � 1 i.e. low frequency regime, we get the
absorption cross-section

σ
(abs)
EFT (ω) =

ω3

M2
pl

Im
[
F (ω)(1 + αSG

2
Nm

4a2
?)GNm

2a?

]
(4.20)

where k = ωẑ and S · ẑ = a?GNm
2. In the case of classical general relativity, the absorption

cross-section for an axially symmetric object (Kerr spacetime) in the limit ω � ml(a?/4m),
is given by [30]

σ
(abs)
GR (ω) =

4π

45
R5
Sω

3(1 + 3a2
?)a? (4.21)

Matching the above-given two results [56] we obtain

FS(ω) =
4

45
G3
Nm

3 ; αS =
3

m4G2
N

(4.22)

and the imaginary part of the quadrupole moment propagator comes from the contraction
between polarization and spin tensors. This means that the time dependence in the RHS of
equation (4.16) is entirely encoded in the spin of the point particle. The above result is exact
for a Kerr black hole, and one has to perform the matching independently for a different
object like neutron star using the graviton absorption cross-section in the corresponding
metric.

4.2 Conservative Dynamics

In this section, we aim to calculate the contribution to the conservative binding potential
of a binary due to the spin of the compact objects computed in [4]. For this, we consider
the similar expansion parameters and field decomposition as given in section 3.1 and 3.2
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respectively. The conservative sector the corresponds to h̄µν = 0. The effective action
WEFT [xp, S

µν
pp(a)(σa)] describing the conservative sector it is given by

eiWEFT [x
(a)
pp ,S

µν
pp(a)

(σa)] =

∫
D
[
Hµν

]
eiSEH [Hµν ]+iSint[x

(a)
pp (σa),Sµν

pp(a)
(σa),Hµν ] (4.23)

where SEH [Hµν ] describes the dynamics and self-interaction of the potential graviton and
the Sint given by equation (2.12) and equation (4.50) that describes the dynamics of a point
particle with internal structure and its interaction with potential gravitons. In the following
subsections, we give a power counting for the spin degrees of freedom and the Feynman rules
for the spin graviton interaction vertices.

4.2.1 Power counting

The gauge constraint given in equation (4.5) could be used to determine the relative
scaling between Sµ0 and Sµi. Going to the rest frame of the particle the gauge constraint
becomes

Sµ0 + Sµiv
i = 0. (4.24)

We can use the above relation to conclude that Sµ0 scales one order of velocity higher than
Sµi. This constraint fixes the S0i degrees of freedom and the spin angular momentum in
given by Si = εijkSjk. This spin vector describes the angular momentum of the compact
object and hence scales like

S ≈ Iω ≈ mR2
s

vrot
Rs

≈ mRsvrot (4.25)

For maximally rotating compact objects (vrot ≈ 1), using the power counting developed in
section 3.3.2, S ≈ Lv. For co-rotating compact objects (vrot/RS = v/r), the S ≈ Lv4. As
the rotation slows down, the scaling of the spin vector reduces, and the additional term with
spin tensor becomes irrelevant. For the rest of the thesis, we assume the compact objects to
rotate maximally.

4.2.2 Vertices

The scaling of the different terms emerging out of the linear term in gravitons given in
the equation (4.11) are given as∫

ds Sij ∂
iH

j
0

Mpl

≈
√
Lv2 ;

∫
ds Sij ∂

iH
j
l

Mpl

vl ≈
√
Lv3 ;

∫
ds Si0 ∂

iH
0
0

Mpl

≈
√
Lv3 ;∫

ds Si0 ∂
i
H0

j

Mpl

vj ≈
√
Lv4 and

∫
ds Si0 ∂

0H
i
0

Mpl

≈
√
Lv4 . (4.26)

The corresponding Feynman rules is given by
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p
xa(t)

H0
0(t,p)

√
Lv2

≡ −
∑
a=1,2

i

2Mpl

∫
dtSij∂

ieip·xa(t) ; (4.27)

p
xa(t)

Hj
l(t,p)

√
Lv3

+
p

xa(t)

H0
0(t,p)

√
Lv3

≡ −
∑
a=1,2

i

2Mpl

∫
dt
[
Sij∂

ivl + Si0∂
i
]
eip·xa(t) and

(4.28)

p
xa(t)

H0
j(t,p)

√
Lv4

+
p

xa(t)

H i
0(t,p)

√
Lv4

≡ −
∑
a=1,2

i

2Mpl

∫
dt
[
Si0∂

ivl + S0j∂
0
]
eip·xa(t) (4.29)

respectively. The higher-order terms could be similarly found by expanding the equation
(4.11). The scaling of the leading term in the EFT due to internal structure of the particle
given in equation (4.50) is given by

CES2

m

∫
dτ∂i∂j

H00

Mpl

SiaS j
a ≈ CES2

√
Lv4 (4.30)

where we will see in section 4.4 that the CES2 does not scale and is a constant depending on
the compact object. The above vertex corresponds to the following Feynman diagram

p
xa(t)

√
Lv4

H00(t,p)

≡ −
∑
a=1,2

iCES2

2m Mpl

∫
dτ∂i∂jS

iaS j
a e

ip·xa(t) (4.31)

In addition to the above-given vertices, we have vertices coming from the action of a point
particle and Einstein-Hilbert action provided in section 3.3.3. All the higher-order terms in
Hµν and Smuν will scale with the higher power of v. In the next section, we aim to calculate
the binding potential up to 2PN, and so, all such higher-order terms are ignored.

4.3 Calculating Potential

In this section, we compute the contribution of spin of the compact objects to the
conservative effective action given in equation (4.23). We have obtained this action by inte-
grating out potential gravitons and ignoring the radiation ones. Here also we only consider
the connected diagrams and ignore all the diagrams that contain graviton loops. We also
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ignore all the diagrams with graviton self-energy terms which could be made zero by the
techniques of dimensional regularization.

The effect of spin on the conservative dynamics of the binary could be separated into
three categories according to their origin from the Lagrangian given in equation (4.11) as,

1. Spin-Orbit terms - where the spin vertex from one particle couples to the worldline
vertex of the other.

2. Spin-Spin terms - where the spin vertex from one particle couples to the spin vertex of
the other.

3. Spin-squared and higher-order spin vertices - where the vertex due to internal structure
of the point particle couples to either to the orbit of the spin vertex of the other particle.

We here only calculate the leading order potential due to each type of diagram. At order Lv3

we have the leading order Spin-Orbit diagrams given in figure 4.1 and could be computed
using the result in equation (B.3) of [33]. The corresponding Lagrangian is given by

LSO(1.5PN) = −2GNm2

[(
r̂× v1

)
· S1 −

(
r̂× v2

)
· S1

]
+ 1↔ 2 (4.32)

At order Lv4, we have two different kinds of diagram given in figure 4.2, which could be
computed using equation (B.4) of [33]. The figure 4.2a corresponds to the leading order
Spin-Spin interaction given by the Lagrangian

LSS(2PN) =
GN

r3

[
S1 · S2 − 3

(
S1 · r̂

)(
S2 · r̂

)]
. (4.33)

The figure 4.2b corresponds to the leading order contribution of the internal structure of the
spinning compact objects, and the corresponding Lagrangian is given by

LS2(2PN) =
CES2GN

r3

[m2

m1

(
S2

1 − 3(S1 · r̂)2
)

+
m1

m2

(
S2

2 − 3(S2 · r̂)2
)]
. (4.34)

These Lagrangians are a correction to the previously computed Lagrangians in section 3.4.
The original derivation of these results can be found in [4] in the context of NRGR, and
agrees with the previously derived results in [57, 58].

√
Lv2

√
Lv

(a)

√
Lv3

√
L

(b)

Figure 4.1: These diagrams contribute to order Lv3 to the effective action in equation (4.23).
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√
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√
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Figure 4.2: These diagrams contribute to order Lv4 to the effective action in equation (4.23).

Now to find the equation of motion, we cannot directly use the Euler-Lagrange equations
because of the Lagrangian in written in terms of xµ, Uµ and Sµν . We have to first make a
partial Legendre transformation to obtain a Routhian given by

−R = −1

2
Sabσ

ab − Lpp = PµU
µ +

1

2
Sabω

ab
µ U

µ (4.35)

from this we can calculate the equation of motion for spin using Hamiltonian equations and
that for the worldline using Euler-Lagrange given by

dSab
dτ

= {Sab, R} = 4Scaηbd
∂R

∂Scd
and

δ

δxµ

∫
dτR = 0 (4.36)

respectively. The higher-order terms could be found by using the techniques of temporal
Kaluza-Klein parametrization of the metric suggested by Kol and Smolkin in [34]. This
simplifies the three and higher point interaction vertices by replacing them with simple
vertices but more in number. The 3PN and higher order calculations could be found in
[59, 60, 61, 62, 63]. The public package EFTofPNG [38], which was created for highpre-
cision computation in the EFT of PN Gravity, could also be used to carry the higher PN
calcualtions.

4.4 Contribution to the Internal structure

In this section, we analyze the effects of the internal structure of the spinning compact
object on their dynamics in the binary system. The Spin-squared term starts contributing
to the effective action at 2PN for maximally rotating compact objects in compact binaries.
This is very interesting to us because now one can comment about the internal structure of
the compact object in the inspiral phase at 2PN as oppose to 5PN in a non-rotating case
seen in section 3.5.

In the equation (4.13), the quadrupole moment of the compact object could be identified
as

Qµν =
CES2

2m
SµαS ν

α (4.37)
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With this identification, one can find the relation between the quadrupole moment and the
angular momentum for different objects and fix the unknown coefficient CES2 . For Kerr
spacetime the required relation is Q = S2/m as given in [41], which sets CES2 = 1. For
neutron stars, the relation is Q = aS2/m, where a is constant that depends on the mass
of the neutron star and the equation of state. The value of a is determined in [64] using
numerical techniques to be around 2 to 8 and thus CES2 ≈ 2− 8.

4.5 Dissipative Dynamics

Following the section 3.6, we here derive the effects of spin on the waveform of the
radiated wave and power carried by it. The point particle Lagrangian that encodes the
interaction of radiation gravitons, potential gravitons and the spin of the constituents is

Lpp =− 1

2
Sµν∂

µHν
αU

α − 1

4
SµνH

µ
λ

[
∂αH

νλ + ∂µH λ
α − ∂λHµ

α

]
Uα + · · ·

− 1

2
Sµν∂

µh̄ναU
α − 1

4
Sµν h̄

µ
λ

[
∂αH

νλ + ∂µH λ
α − ∂λHµ

α

]
Uα + · · · (4.38)

where, the effects of first line give us the conservative dynamics computed in section 4.3, and
the effects of second line are considered in this section. In the following subsection, we give
the vertices corresponding to the interaction terms of spin, potential gravitons and radiation
gravitons. Then we calculate the multipole moments for the binary defined in section 3.7.
Using the computed multipole moments, we compute the effects of the spin on the emitted
waveform and the radiated power.

4.5.1 Vertices

The scaling of the different terms emerging out of the linear term in gravitons given in
the equation (4.11) are given as∫

dsSij∂
i h̄

j
0

Mpl

≈
√
Lvv2 ;

∫
dsSij∂

i h̄
j
l

Mpl

vl ≈
√
Lvv3 and

∫
dsSi0∂

i h̄
0
0

Mpl

≈
√
Lvv3 .

(4.39)

The corresponding Feynman rules are given by

p

h̄j0(t,p)

xa(t)

√
Lvv2

≡ −
∑
a=1,2

i

2Mpl

∫
dtSij∂

ieip·xa(t) and (4.40)
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p
xa(t)

h̄jl(t,p)

√
Lvv3

+
p

xa(t)

h̄0
0(t,p)

√
Lvv3

≡ −
∑
a=1,2

i

2Mpl

∫
dt
[
Sij∂

ivl + Si0∂
i
]
eip·xa(t) (4.41)

respectively. The higher-order terms could be similarly found by expanding the equation
(4.38).

4.5.2 Calculating Multipole Moments

Now we calculate the diagrams with one graviton in the final state, which contributes
to the total Tµν using the point particle action given in equation (3.31). Then we use the
above-given relations between the multipole moments and the stress-energy tensor to obtain
the exact expression for the moments for first few orders in v.

√
Lvv2

(a)

√
Lvv3

(b)

Figure 4.3: These diagrams yield the T µν .

The diagram that contributes to order
√
Lvv2 is given in figure 4.3a. This corresponds

to the stress-energy tensor,

T 0i(t,k) =
∑
a=1,2

Sijkje−ip·xa(t) (4.42)

which leads to,

Li =
∑
a

Si ; (4.43)

J ij =
∑
a

[
Sixj + δijS · x

]
STF

; and so on. (4.44)

where, the angular momentum of the binary gets a contribution from the angular momentum
of the constituents. The diagram that contributes to order

√
Lvv3 is given in figure 4.3b.

This corresponds to the stress-energy tensor,
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T 00(t,k) =
∑
a=1,2

S0ikie−ip·xa(t) (4.45)

T ij(t,k) =
∑
a=1,2

Silvjkle−ip·xa(t) (4.46)

which leads to,

Xi =
∑

maS
0i
a ; (4.47)

I ij =
∑
a

2
[
S0ixj + (S× v)ixj

]
STF

; and so on. (4.48)

where, the center of mass of the binary gets a contribution from the energy due to the angular
momentum of constituents encoded in S0i

a .

All the higher-order corrections to the multipole moments are ignored in this thesis and
could be found in [65].At order

√
Lv(v)n, the first multipole moment M scales like

√
Lv(v)n

and each lth order moment scales like
√
Lv(v)n+l. An important thing to notice is, the

knowledge about the orbits of the binary is required to obtain any physical quantity using
the multipole moments.

Now one can easily calculate the emitted waveform and the power radiated using the-
above given multipole moments in the equation (3.71) and equation (3.78) respectively. To
calculate the radiation-reaction, we can use the above derived multipole moments instead of
equation (3.87) and (3.88) in the section 3.10 to get a result similar to equation (3.89).

4.6 Dissipative Effects

In this section, we compute the effects of the dissipative sector of the internal structure
of the compact object on their dynamics in the binary system as computed in [56]. Using the
result of matching done in section 4.1.3, the Im[F (ω)] corresponding to response quadrupole
moment of the dissipative sector is given by

Im[FS(ω)] =
4

45
G3
Nm

3 and αS =
3

m4G2
N

. (4.49)

Once we have the relation between the Im[F (ω)] and the Mpl, we compute the scaling of the
leading order dissipative term as

1

Mpl

∫
dτQijE

ij[H] ≈ v5
√

(1 + 3a2
?)a? (4.50)

The vertex given in the above equation contributes first to the effective action by the diagram
given in figure 4.4.

The power absorbed by the Fock space of the response quadrupole moment is given by

52



the imaginary part of the above diagram as

Pabs = −8

5
m2

2m
5
1G

6
N

〈
(r × ṙ) · S

r8
(1 + 3a2

?)a?

〉
(4.51)

This is the power absorbed from the binding potential to the Fock space of the response
quadrupole moment. The original derivation of this result can be found in [56] in the context
of NRGR, and agrees with the previously derived results in [50, 66].

Qij(R)Qij(R)

√
L

√
L

Figure 4.4: This diagram represents the leading order contribution to order Lv10(1 + 3a2
?)a?

of the dissipative internal structure of the spinning compact objects to the effective action
given in equation (4.23).
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Chapter 5

Charged Compact Objects

In this chapter, we extend the NRGR described in chapter 3 to incorporate the effects
of electromagnetic charge on the constituents of the binary. We incorporate the photon
field in Non-Relativistic General Relativity (NRGR) by giving the field decomposition and
power counting rules. Using these, we develop the Feynman rules to describe photon and
graviton interactions with point particle worldline. We then find the corrections to the
Einstein-Infeld-Hoffmann (EIH) Lagrangian due to the presence of the photon field and
electromagnetic charge on the constituents of the binary.

5.1 Action for the Photon

The total action governing the dynamics of the binary is given by

STotal = M2
pl

∫
d4x
√
−gR +

∫
d4x
√
−g
[ 1

4µ0

gµαgνβFµνFαβ

]
+ S(a)

pp (5.1)

where the first term is the Einstein-Hilbert action that governs the dynamics of the underly-
ing spacetime denoted by SEH with Mpl being the Planck’s length. The second term governs
the dynamics of the electromagnetic field and is denoted by SEM where, Fµν = ∇µAν−∇νAµ
is the electromagnetic stress energy tensor minimally coupled to the background, Aµ is the

corresponding photon field, and µ0 is the magnetic permeability of vacuum. The term S
(a)
pp is

the action for each constituent of the binary (approximated as point particles) and contains
their interaction with the electromagnetic field as well as the underlying spacetime. It is
given by

S(a)
pp =

∫
ds
[
−m(a)

√
gµνU

µ
(a)U

ν
(a) + q(a)U

µ
(a)Aµ

]
+ S

(a)
EFT (5.2)

where m(a), q(a) and Uµ
(a) are the mass, electromagnetic charge and the four velocity of the

ath point particle respectively. The effective Lagrangian S
(a)
EFT contains the effective oper-

ators and Wilson coefficients that encode the internal structure of the constituents of the
binary. We will ignore this term in this analysis as its leading contribution to conservative
sector for a spherically symmetric object starts at 2.5PN for accelaration induced multipole
moments [67], 3PN for multipole moments describing the tidal effects due to external elec-
tromagnetic waves [48] and 5PN for multipole moments describing the tidal effects due to
external gravitational waves [3].

55



5.2 Expansion Parameter

In addition to a expansion parameter (v/c and ~/L) given in section 3.1, we have another
parameter when electromagnetic interactions are added to the theory,

µoq1q2

GNm1m2

= ε. (5.3)

In this thesis we consider three cases: first, ε � 1 which describes the gravitational force
being dominant with corrections from electromagnetic force. Here we have ε as another
exapnsion parameter with v/c. Second is ε = 1 which describes the system with both forces
of equal magnitude and thus we dont have any other expansion parameter. Third is 1/ε� 1
which describes the electromagnetic force being dominant with corrections from gravitational
force. Here we have 1/ε as another exapnsion parameter with v/c.

5.3 Field Decomposition

The effective action Seff that describes the dynamics of binary is obtained after inte-
grating over the gravitons and photons given by

eiSeff [x
(a)
pp (σa)] =

∫
D[hµν ] D[Aα] eiSEH [gµν ]+iSEM [Aα,gµν ]+iSint[x

(a)
pp (σa),gµν ,Aα] (5.4)

where x
(a)
pp (σa) is the position of the ath point particle in the binary, and the integration is

over the gauge fixed fields. As we are only interested in the long-distance physics at the
scales of λ, we similar decomposition is done for the photon field to obtain long distance
modes - radiation photons (Āµ) and short distance modes - potential photons (Aµ) as

Aµ = Aµ + Āµ . (5.5)

This decomposition is done according to [3] by identifying the modes by their scaling with
respect to v and r. The long distance modes represent the emitted on-shell fields and its
momentum scales as (

k0,k
)
≈
(v
r
,
v

r

)
(5.6)

because k0 is the frequency of the excitation and should scale like the inverse of period of the
binary given by r/v and so does k beacause these are on-shell. Whereas, the short distance
modes are off-shell and its momentum scales as(

k0,k
)
≈
(v
r
,
1

r

)
(5.7)

because the wave vector k has the dimensions of the inverse length and the only parameter
at this scale is the distance between the particles in the binary given by 1/r and k0 is the
frequency of the excitation and should scale like the inverse of period of the binary given by
r/v.

56



5.4 Conservative Dynamics

For calculating the binding potential of the binary, we only consider the dynamics of the
potential modes, its interactions with point particles and ignore the radiation modes form
now on in this thesis. This describes the conservative dynamics of the binary given by the
effective action Weff [xp],

eiWeff [x
(a)
pp ] =

∫
D[Hµν ]D[Aα]eiSEH [Hµν ]+iSEM [Hµν ,Aα]+iSint[x

(a)
pp (σa),Hµν ,Aα] . (5.8)

In this section, we describe the technique of power counting and give all the essential Feynman
rules for propagators and vertices. Using these Feynman rules, we calculate the leading order
correction to the binding potential at 1PN in the next section.

5.4.1 Propagators

We consider the equation (5.1), where the quadratic term gives us the propagator and
the higher order terms give us the nonlinear interaction vertices. All the calculations from
now on are carried out in the Lorenz gauge for both gravitons and photons. Due to small
velocities of the point particles, the momentum space propagators for gravitons and photons
can be expanded in series as

1

k2
≈ −1

k2

[
1 +

k2
0

k2 +
k4

0

k4 + · · ·
]
. (5.9)

Using the above leading order term, at leading order, the Feynman rule for the propagator
of the potential photons in momentum space is given by

p
Aν(t2,p)Aµ(t1,p) ≡ −iηµν

p2
δ(t1 − t2)

(5.10)

and higher orders of k2
0/k

2 are taken into account by the propagator correction given by
equation (5.12).

5.4.2 Power counting

To arrange the terms in the Lagrangian in increasing order of expansion parameter, we
need to have a manifest power counting in v. For this, we need to know the scaling behavior
of the field and its derivatives. At the leading order, the propagator for potential modes
scales as v/r2 and so the potential photons scale as

Aα(x) ≈
√
v

r
. (5.11)
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The scaling of its derivatives can be identified by using the Fourier transform of the potential
modes. The temporal derivative scales as v/r, whereas the spacial derivative scales as 1/r.
The velocity of the particles in orbit depends on the strength of the bluedominant force.
In the case of ε � 1, the gravitational coupling constant Mpl scales as 1/

√
Lv and the

electromagnetic coupling constant µ0 scales like εLv. Whereas In the case of 1/ε � 1,
the gravitational coupling constant Mpl scales as 1/

√
εLv and the electromagnetic coupling

constant µ0 scales like Lv. Using the above scaling, we can figure out the scaling of all
possible terms added in the effective action. For a Feynman diagram, the propagators do
not scale, but the vertices do, and their scaling is decided by the corresponding term in the
Lagrangian.

5.4.3 Vertices

The action given in equation (5.8) has three kinds of interaction vertices: first, which
are generated by the correction to the propagator due to the expansion given in equation
(5.9), second, which are generated by the cubic and higher order terms in SEH and SEM and
third, due to the Spp.

For the first kind of vertex, the scaling of the corrections to the propagator given in
equation (5.9) is given by k2

0/k
2 ≈ v2. We define the momentum space Feynman rule for a

two-point photon propagator is given by

Aµ(t2,p2)Aµ(t1,p1)
p1 p2

v2
≡

∫
dt δ3

(
2∑

k=1

pk

) (
∂t1∂t2

)
.

(5.12)

Higher orders of correction can be obtained by attaching multiple vertices, each producing
a factor of k2

0/k
2 in the propagator.

For the second kind, a vertex coming from the kinetic term of the photon field which
scales as v2/

√
L. This corresponds to a vertex given by the Feynman rule

v2/
√
L

given in the appendix A of [68]. (5.13)

We here aim to calculate the binding potential up to order Lv2 and all the diagrams having
vertices contributing to higher order in v are ignored.

58



For the third kind of vertex, S
(a)
pp action given in (5.2) can expanded as∑

a=1,2

∫
ds

[
qa
dxµ

ds
Aµ

]
d4x δ4

(
xµ − xµa(s)

)
=

−
∑
a=1,2

qa

∫
dt
[
A0
√
µ0 − viAi

√
µ0

]
. (5.14)

The Feynman rules and the scaling of the linear term in photon field coupling to the point
particle worldline has the following Feynman rules and scaling,

A0(t,p)

p
xa(t)

√
L

≡ − iqa
√
µ0

∫
dteip·xa(t) and (5.15)

Ai(t,p)

p
xa(t)

√
Lv2

≡ − iqa
√
µ0

∫
dtviae

ip·xa(t) . (5.16)

The terms that contribute to a higher order of v are ignored here. In addition to
the above-given vertices, we have vertices coming from the action of a point particle and
Einstein-Hilbert action provided in section 3.3.3.

In all the above diagrams, the vertices have to be contracted with the propagator having
the corresponding free indices. For example, vertex with vi or vivj has to be contracted with
Pi0 or Pij respectively. If a vertex does not have a free index then it should be contracted
with P00 . The order of ε that each vertex contributes to is not shown in the above given
Feynman rules. This is different for the case of ε � 1 and 1/ε � 1, which could be easily
seen by the scaling of Mpl and µ0 with ε in each vertex for each case.

5.5 Calculating Binding Potential

In this section, we explicitly calculate the first few terms of the effective Lagrangian for
the action given in equation (5.8). We have obtained this action by integrating out potential
gravitons and photons and ignoring the radiation ones. Simillar to the diagrams correspond-
ing to gravitons, we only consider connected photon diagrams, internal lines correspond to
potential photons, and we do not have external on-shell potential photons. We ignore all the
diagrams that contain photon loops and self-energy terms.
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Figure 5.1: The digrams that contribute to order Lv0.

The diagrams contributing at order Lv0 (for arbitrary order of ε) are given in figure 5.1.
The equation (B.3) of [33] is used to compute the integrals in corresponding to the diagrams.
The corresponding Lagrangian is given by

L(Lv0) =
∑
a=1,2

1

2
mav

2
a +

GNm1m2

|r|
− µ0

4π

q1q2

|r|
(5.17)

where the first term represents the kinetic energy of the particle, the second is the Newtonian
gravitational potential with GN = 1/(32πM2

pl) being the Newton’s constant and the third is
the Coulomb potential.
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√
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√
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√
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√
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√
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√
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√
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v2/
√
L

(i)

Figure 5.2: The digrams that contribute to order Lv2.

The diagrams contributing at order Lv2 (for arbitrary order of ε) are given in figure 5.2.
The diagrams 5.2a, 5.2b, 5.2c and 5.2f are straightforward to compute using equation (B.3)
of [33]. For the diagram 5.2d and 5.2e we use equation (B.4) of [33] and for the diagram 5.2g,
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5.2h and 5.2i, we use equations (B.4) of [33] and (A.34) in [33]. The results then correspond
to the following Lagrangian

L(Lv2) =
∑
a=1,2

1

8
mav

4
a +

GNm1m2

2|r|

[
3
(
v2

1 + v2
2

)
− 7
(
v1 · v2

)
−
(
v1 · r

)(
v2 · r

)
r2

]
−
G2
Nm1m2

(
m1 +m2

)
2r2

+
µ0

4π

q1q2

2|r|

[(
v1 · v2

)
+

(
v1 · r

)(
v2 · r

)
r2

]
+
GNµ0

4π

[m1q2(q1 + q2) +m2q1(q1 + q2)

2r2

]
. (5.18)

The first three terms of the above equation is the Einstein-Infeld-Hoffmann Lagrangian [5].
The next term is the correction to the EIH Lagrangian due to the charge on the constituents,
which has also been derived using techniques of classical GR in [18]. The final term corre-
sponds to the non-linear interaction between the gravitational and electromagnetic forces.
This term has been newly calculated by the techniques detailed in this thesis.

The above results can now be analysed in the order of ε. For the case of ε � 1 the
hierarchy of diagrams is given in table 5.1. The corresponding terms in the Lagrangian could
be easily recognized according to the power of µ0 as it scales like ε. Similarly, for the case of
1/ε � 1 the hierarchy of diagrams is given in table 5.2 and the corresponding terms in the
Lagrangian could be easily recognized according to the power of GN because it scales like
1/ε. For the case of ε ≈ 1, the Lagrangian at order Lv0 is given in equation (5.17) and at
order Lv2 is given in equation (5.18).

ε0 ε1 · · ·
v0 Figure 5.1a Figure 5.1b

Figure 5.2a Figure 5.2c

Figure 5.2b Figure 5.2e

v2 Figure 5.2d Figure 5.2h

Figure 5.2f Figure 5.2i

Figure 5.2g
...

Table 5.1: The hierarchy of diagrams at different orders of v and ε for ε� 1.
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1/ε0 1/ε1 1/ε2 · · ·
v0 Figure 5.1b Figure 5.1a

Figure 5.2a

Figure 5.2c Figure 5.2b Figure 5.2f

v2 Figure 5.2d

Figure 5.2e Figure 5.2h Figure 5.2g

Figure 5.2i
...

Table 5.2: The hierarchy of diagrams at different orders of v and ε for 1/ε� 1.
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Chapter 6

Discussion and Conclusion

This thesis is based on the study of the Effective Field Theory (EFT) approach developed
by Walter Goldberger and Ira Rothstein in [3], as presented in chapters 2 and 3. This
approach was primarily developed to tackle the two-body problem in General Relativity
(GR) in the non-relativistic limit and hence called the Non-Relativistic General Relativity
(NRGR). But several extension of this formalism, for example, to include the effects of the
spin of the components [4] presented in chapter 4, were developed later. NRGR has an
advantage over others because it decouples the highly non-linear nature of GR and its power
counting rules allow us to determine the relevance of an operator at the level of action. In this
approach, the perturbative calculations of a physical observable are conveniently performed
by means of Feynman diagrams. The use of these diagrammatic techniques is quite natural
when discussing an extension of this formalism to include different exotic effects. One such
example is presented in [17], where the authors extend the NRGR formalism to include the
effects of a light scalar degree of freedom, like the one possibly responsible for the accelerated
expansion of the Universe.

In this thesis, we extend the NRGR formalism to include the effects of the electromag-
netic charge on the constituents of the binary. A similar analysis was previously done in
[18], but in a limit of charge of the binary constituents much more than their mass. In such
a limit, one can only derive terms that are zeroth order in GN . The techniques of NRGR
allow us to follow through the analysis without assuming any such limit and thus gives a
general result. The analysis is presented in chapter 5 and the result corresponds to equation
(5.18), where we find an additional term over the previous results of [18] and [5]. We then
prescribe the method to systematically study the correction due to the sub-dominant force
in orders of ε� 1 and 1/ε� 1 as given in table 5.1 and 5.2 respectively.

Several aspects of the formalism remain to be worked out. This analysis of studying
the electromagnetic charge on the binary constituents can be extended further to higher PN
orders using the techniques developed in [69] and to include the spin of the constituents
of the binary using the analysis given in [4]. Here we have not discussed the effects of the
radiation photons on the dynamics of the binary. Using the radiation photons, the leading
order waveform and the radiated power by the binary in terms of its multipole expansion
could be found in [40], but the higher-order effects due to the interaction of photon and
graviton are yet to be analyzed. Such corrections have to be computed analogously to the
analysis done for the radiation gravitons in [39]. Also, in our analysis of charged compact
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objects so far, we have neglected the role of spins or higher rank tensors carried by the
point particles. The photons do not interact with the spin directly in the point particle
action except in the EFT describing the internal structure of the point particle. The EFT
describing the internal structure of a charged compact objects contains highly non-trivial
interaction terms of the gravitons, photons and the spin and thus deserves a careful analysis.
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