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Abstract

Black holes are solutions of classical Einstein gravity. They also have information
about the quantum nature of the theory of gravity. Thus black holes provide a good
laboratory to study some aspects of quantum gravity. In particular, the entropy of
black hole is an important property to study. Entropy carries information about the
degeneracy of the micro-states associated with a black hole. When the theory gets
quantum corrections, the corresponding micro-state degeneracy changes and hence
the black hole entropy also changes.

String theory is a promising candidate of quantum gravity. Hence, we study black hole
solutions that appear as solutions in string theory. In particular we study supersym-
metric and non-supersymmetric black hole solutions in supergravity theory (which is
the low energy/classical limit of string theory). We only concentrate on N = 2 su-
pergravity theory. A new class of higher derivative terms has been recently found in
this theory. Since these terms appear at higher order in derivatives, they are able to
produce quantum effects in the corresponding black hole solutions.

In this thesis, we try to see if a special case of this higher derivative term, known as the
Gauss-Bonnet term, affects the entropy of supersymmetric and non-supersymmetric
black hole solutions or not. Our results signify that while the term does not change
the entropy of supersymmetric black holes, it can potentially change the entropy of
non-supersymmetric ones. We further aim to find the exact correction to its entropy.
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Chapter 1

Introduction

1.1 The Big Picture

The ultimate goal of physics is to find a unified theory that could explain all the phys-
ical aspects of the universe. Such a hypothetical theory is called the theory of every-
thing. There are four fundamental forces in nature – the electromagnetic force, the
weak nuclear force, the strong nuclear force and the gravitational force. The first three
forces – electromagnetism, weak and strong forces have been unified under the frame-
work of the Standard Model. But there is yet to be found the theory that could unify
these three forces with Einstein’s gravity as well. String theory is a candidate for the
theory of everything.

The first three forces describe the microscopic world of elementary particles, based
on quantum mechanics, while the fourth force, i.e. the gravitational force, describes
the dynamics of very massive objects over very large distances. In order to develop
a theory of quantum gravity, it would be extremely helpful if we could study objects
that need both quantum mechanics and general relativity for their description. Black
holes are such objects. They need general relativity since they are extremely big and
massive, exerting high gravitational force, and they need quantum mechanics since
they emit radiation (known as Hawking radiation), which can be fully explained only
by quantum mechanics. Hence, we study the entropy of black holes.

Our calculations have been carried out in the framework of supergravity, which is the
low energy/large distance limit of string theory. Supergravity is a macroscopic and
effective description of the microscopic description of strings in string theory. In the
classical limit, when quantum effects are neglected, supergravity reduces to general
relativity, thus providing a bridge between the non-experimentally verifiable string
theory and the experimentally verifiable general relativity. Quantum corrections in
string theory are effectively encoded in supergravity through new types of interactions
between elementary particles (low energy/large distance approximation of strings),
known as higher derivative couplings.

Since last several years many studies have been carried out to find the entropy of ex-
tremal black holes. The entropy of extremal supersymmetric black holes have been
found to consistently take the same value through all the various methods used to
compute them. Some of the methods used to compute the entropy of these black holes
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have been Wald’s formalism, one particle irreducible (1PI) action formalism, Wilso-
nian effective action formalism, dimensional reduction of 5D theory to 4D, Sen’s en-
tropy function formalism, etc. This success has led us to ask if such a consistency of
results can exist for the entropy of non-supersymmetric black holes as well.

Not much work has been done on the study of the entropy of non-supersymmetric
black holes. Kraus and Larsen have given a general expression [4, 5] for the entropy
of a class of extremal non-supersymmetric black holes obtained from the reduction
of 5 dimensional theory to 4 dimensions, and having the near horizon geometry as
AdS3 ⇥ S2 in 5D. Sen calculated the entropy for non-supersymmetric black holes us-
ing his entropy function formalism [6] and found that his results disagree with those
obtained from the expression given by Kraus and Larsen. He gave four possibili-
ties to explain this discrepancy out of which he ruled out three. The only possibility
that remains to explain the discrepancy is that there are some supersymmetric higher
derivative terms missing in the 4D Lagrangian, which would otherwise come from the
dimensional reduction of higher derivative invariants from 5 to 4 dimensions.

There are two classes of supersymmetric higher derivative invariants constructed in
[7] and [8]. In this thesis we study the higher derivative invariant given in [8]. In
chapters 3 and 4, which are largely based on [8, 9], we see the framework in which the
new higher derivative term is derived and how it has been arrived at. In chapter 5 we
see if the Gauss-Bonnet term (which is a curvature-squared term) obtained from the
higher derivative term, contributes to the entropy function of extremal black holes or
not.

1.2 Supersymmetry
Supersymmetry is a symmetry that acts on the fields of a theory and not on spacetime.
It is like an internal symmetry but still different in nature as will be highlighted later.
Supersymmetry transformation converts bosons and fermions into one another. This
is analogous to how in the standard model, colour SU(3) group mixes the colour states
of a given quark flavour among themselves and the weak SU(2) group mixes fields
of weak doublets. Supersymmetry transformations happen via the algebras called su-
peralgebras, which generalize the concept of Lie algebra to include algebraic systems
that are defined by both commutators and anticommutators. The schematic form of
the algebras is as follows:

{Q, Q0}+ = X [X, X0]� = X” [Q, X]� = Q” (1.1)

Here X, X’ and X" denote the commuting (bosonic) part of the algebra while Q, Q’ and
Q" denote the anticommuting (fermionic) part of the algebra. Since the supersymme-
try generators, known as supercharges, convert particles with half integer spin to those
with integer spin and vice versa, they have a spin half of their own, and thus form
spinor representations of the Lorentz group in contrast to to the usual Lorentz scalars
that generate symmetry transformations.

One feature of supersymmetry that markedly distinguishes it from the standard model
is its intimate link to spacetime transformations, unlike the internal symmetries of the
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standard model. Transforming a field under supersymmetry twice successively gives
back the same field at another spacetime position than the initial one (can be seen more
precisely from the first equation of 3.12).

In supersymmetry, boson-fermion pairs of equal masses cancel each other’s loop cor-
rections exactly, thus making most of the UV divergences of conventional quantum
field theory disappear and solving the hierarchy problem of the standard model.

1.3 Supergravity
The supersymmetric extension of general relativity is supergravity. On imposing in-
variance of a theory under local or gauged supersymmetric transformations, new
fields enter into the theory which make it invariant under general coordinate trans-
formations. Such a theory is called supergravity. Supergravity contains gauge fields
for both spacetime translations Pa and supersymmetric transformations generated by
Q

a

. It contains the graviton described by Einstein gravity, along with its superpartner
called the gravitino, predicted by supersymmetry.

1.4 Importance of Supersymmetry in Black Hole Entropy
Black holes, being classical solutions of Einstein gravity, appear in supergravity as
well. The black holes that appear in supergravity have some special properties. A par-
ticular class of black holes, known as Bogolmonyi-Prasad-Sommerfield (BPS) black
holes, satisfy an equality leading to unbroken supersymmetry in the spacetime near
the black hole. Why this class of black holes has been studied most extensively for cal-
culating black hole entropy so far, is because they can be used to calculate the entropy
when the black hole constituents, viz. branes and strings are not interacting with each
other. The advantage of studying BPS states is that the interaction free scenario that
they describe, gives the value of the entropy which holds even when the couplings get
turned on.
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Chapter 2

Computation of Black Hole Entropy

2.1 Bekenstein-Hawking Entropy

The concept of the entropy of a black hole first arose when Bekenstein proposed it, on
finding parallels between the area of the event horizon of a black hole and thermody-
namic entropy. It was known that the horizon area of a black hole can only increase
with time and the total horizon area of a black hole formed after the merging of two
individual black holes, cannot be smaller than the sum of the horizon areas of the con-
stituent black holes. This characteristic of the horizon area of a black hole showed
similarities with the nature of entropy. The existence of black hole entropy could also
explain why black holes do not violate the 2nd law of thermodynamics, according to
which the entropy of the universe can only increase (and not decrease by the loss of
matter and entropy fallen into a black hole).

Hawking, in an attempt to disprove Bekenstein’s proposal of black hole entropy, ended
up proving that black holes do indeed have entropy, and derived the following rela-
tionship between black hole entropy and the area of the event horizon of a black hole:

S =
kbc3

Gh̄
A
4

(2.1)

where kb is Boltzmann constant, c is the speed of light, A is the area of black hole
horizon, G is Newton’s gravity constant, and h̄ is the Planck-Dirac constant h/2p.

2.2 Quantum Corrections to Black Hole Entropy

In the limit of large horizon size, i.e. small curvature, the value of black hole en-
tropy comes out to be fairly accurate. However, in the case of large curvature and
strong field strengths at the horizon, quantum corrections need to be added by adding
higher derivative corrections to the effective action of string theory, i.e. supergravity.
This thesis is about the computation of these quantum corrections and their effect on
the entropy function of extremal black holes.

There exists a general formula for black hole entropy in the presence of higher deriva-
tive terms, known as Wald’s formula. In the extremal limit, Wald’s formula for spher-
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ically symmetric black holes is given by:

SBH = �8p

Z

H
dq df

dS
dRrtrt

p

�grr gtt , (2.2)

where H denotes the horizon of the black hole and S denotes the action.

2.3 What kind of black holes are we going to study?
In this thesis, we would be looking at a special class of black holes in string theory,
known as extremal black holes. The reason for studying them is that theirs is the only
class of black holes for which the computation of statistical entropy has been possible
so far, which allows its comparison with the Bekenstein Hawking entropy. An ex-
tremal black hole is a black hole having the minimal possible mass compatible with
given charges and angular momentum. Also, it has zero temperature, and hence it
cannot Hawking radiate. However, it has a finite horizon area, due to which it has a
finite entropy.

The operational definition of a spherically symmetric extremal black hole in four di-
mensions, which is required in a general higher derivative theory of gravity, is quoted
as the following postulate from [6]:

"In any generally covariant theory of gravity coupled to matter fields, the near horizon geom-
etry of a spherically symmetric extremal black hole in four dimensions has SO(2, 1)⇥ SO(3)
isometry."

An extremal black hole can be of two kinds:

i) Supersymmetric/BPS Black Hole: Such a black hole is invariant under a certain
number of supersymmetry transformations. It obeys the attractor mechanism,
which tells that the near horizon configuration of a black hole depends only on
its electric and magnetic charges.

ii) Non-supersymmetric/Non-BPS Black Hole: Such a black hole is non-invariant
under any supersymmetry transformation.

2.4 Sen’s Entropy Function Formalism
Out of the various possible methods for calculating the entropy of black holes, as
mentioned in section 1.1, one is Sen’s entropy function formalism [6], which is the
method we use. This formalism is applicable only for extremal black holes. Extremal
black holes can be both supersymmetric and non-supersymmetric, but supersymmet-
ric black holes are always extremal. Using Sen’s entropy function, we get to find the
entropy of both – supersymmetric as well as non-supersymmetric black holes, pro-
vided they are extremal.

A generic four dimensional spherically symmetric extremal black hole has AdS2 ⇥ S2
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near-horizon metric configuration with constant scalars and constant field strengths.
The radii of AdS2 and S2 metrics and the values of the scalars and the field strengths
are known as near horizon parameters, that depend on the particulars of the theory.
Using the entropy function formalism, we find the values of these parameters in terms
of the physical charges of the black hole.

This formalism assumes the existence of the full black hole solution. Then using the
Lagrangian of the theory (that has the extremal black hole as a solution), it allows to
construct a certain function, known as the entropy function, which on extremization
with respect to the near-horizon parameters, gives fixed values to those parameters.
The value of the entropy function at those extremized values of the parameters gives
the entropy of the black hole. Below, we give an example of a four dimensional ex-
tremal Reissner-Nordstrom black hole.

2.4.1 Using Sen’s Entropy Function Formalism for Reissner -
Nordstrom Black Hole

The action of a four dimensional Reissner Nordstrom black hole in Maxwell-Einstein
theory is given as

S =
Z

d4x
p

�det gL where L =
1

16
pGNR� 1

4
F

µn

Fµn . (2.3)

The notations for Christoffel symbols and Riemann tensor that we use are as following:

Gµ

nr

=
1
2

gµs

�

∂

n

g
sr

+ ∂

r

g
sn

� ∂

s

g
nr

�

Rµ

nrs

= ∂

r

Gµ

ns

� ∂

s

Gµ

nr

+ Gµ

tr

Gt

ns

� Gµ

ts

Gt

nr

R
ns

= Rµ

nµs

, R = gnsR
ns

. (2.4)

The most general AdS2⇥ S2 near-horizon background for an extremal Reissner Nord-
strom black hole, which is SO(2, 1)⇥ SO(3) symmetric, is given as following:

ds2 = v1

✓

�r2dt2 +
dr2

r2

◆

+ v2

⇣

dq

2 + sin2
qdf

2
⌘

Frt = e, F
qf

=
p sin q

4p

. (2.5)

Sen’s entropy function is given by

E(v1, v2,~e,~q,~p) = 2p

✓

� 1
2 ~q.~e�

Z

dqdf

p

�det gL
◆

(2.6)
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In this case
Z

dqdf

p

�det gL = 4p v1v2



1
16p

GN

✓

� 2
v1

+
2
v2

◆

+
1
2

v�2
1 e2 � 1

2
v�2

2

⇣ p
4p

⌘2
�

(2.7)

Therefore

E(v1, v2,~e,~q,~p) = 2p

✓

� 1
2 ~q.~e�

Z

dqdf

p

�det gL
◆

= 2p



� 1
2 q e� 1

4GN
(2v1 � 2v2)� 2p

v2
v1

e2 + 2p

v1
v2

⇣ p
4p

⌘2
�

(2.8)

On extremezing the above function with respect to e, v1 and v2, we get

e = � q
8p

v1 = v2 = GN
q2 + 4p2

16p

(2.9)

Substituting these extremized values of the near-horizon parameters into the entropy
function E , we get

SBH ⌘ E =
q2 + 4p2

16
(2.10)

Hence, we have seen a working example of Sen’s entropy function formalism. We shall
apply this formalism to calculate the entropy of extremal black holes that appear in
N = 2 supergravity, even in the presence of higher derivative corrections. Since N =
2 supergravity is much more involved than the simple Einstein-Maxwell theory, the
corresponding computations would be complicated. But the basic idea would be the
same, that is, the near horizon ansatz for all fields will be dictated by SO(2, 1)⇥ SO(3)
isometry and their evaluations will be solutions of some alegbraic equations.
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Chapter 3

Conformal Supergravity1

3.1 Why go to conformal supergravity?

Our space is described in the framework of local Poincaré supergravity, but we are
going to describe our theory in conformal supergravity or the superconformal formal-
ism. Local Poincaré supergravity and its matter couplings are expressed in terms of
large irreducible multiplet representations that transform non-linearly under local su-
persymmetry. On the other hand, superconformal formalism gets expressed in terms
of minimal representations that transform linearly. Moreover, representations of the
off-shell superconformal algebra are easier to find than their Poincaré counterparts.
Therefore, we go to conformal supergravity. First let us see what is conformal gravity.

3.2 Conformal Gravity

Conformal gravity relies on the conformal group, the largest group of spacetime sym-
metries of a field theory. Poincaré group is a subroup of the conformal group. Increas-
ing the size of the group from Poincaré to conformal, brings in more fields along with
more constraints and hence symmetries. One of the symmetries present in the con-
formal group i.e. scale invariance, gives the same physics for all energy/mass scales.
But we are trying to study quantum corrections to supergravity (which we will come
to shortly, after bringing in supersymmetry) through higher derivative terms. Super-
gravity is an effective theory, i.e. it is a low energy limit of string theory, implying it
need not give correct results in the high energy limit (where quantum corrections start
playing a role). Therefore, we need to fix the scale gauge of our theory, thus breaking
scale invariance. This is done using compensating multiplets.

The conformal group is the group of transformations SO(4,2). It is generated by trans-
lations Pa, Lorentz transformations Mab, dilatationsD and conformal boosts Ka or spe-
cial conformal transformations. Note that the translations and Lorentz transforma-
tions of the conformal group, form the Poincaré group, due to which it is a subgroup
of the conformal group. The transformation parameters and the gauge fields associ-
ated with the four transformation generators of the conformal group are listed in the
table below.

1This chapter and the next one are substantially based on [8, 9]
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generator Pa Mab D Ka

gauge fields e
µ

a
w

µ

ab b
µ

f
µ

a

parameters x

a
#

ab LD La
K

In the context of conformal gravity, the above mentioned generators are treated to be
internal symmetry generators2, acting on the corresponding (gauge) fields. Internal
symmetry transformations act on the gauge fields corresponding to the symmetries of
the group, which are the fields required to preserve the symmetry structure of the the-
ory (through certain constraints), but these transformations do not act on spacetime co-
ordinates. Spacetime transformations act on spacetime coordinates, and consequently
on all fields too. Internal symmetry transformations mix the fields of the symmetry
group and keep the results of the transformations within the domain of the fields, and
not that of spacetime coordinates. In conformal gravity, we want to construct an action
(which is a functional of fields) invariant under the action of the group. Therefore we
allow the conformal generators to act only on the gauge fields of our theory to gener-
ate an internal symmetry group, as opposed to space-time transformations.

The infinitesimal transformations of the gauge fields associated with the four symme-
try generators mentioned above can be obtained from the algebra of the SO(4,2) group
as following:

de
µ

a = D
µ

x

a �LD e
µ

a + #

abe
µb dw

µ

ab = D
µ

#

ab + 2 LK
[a e

µ

b] + 2x

[a f
µ

b]

db
µ

= ∂

µ

LD + LK
a e

µa � x

a f
µa d f

µ

a = D
µ

LK
a + LD f

µ

a + #

ab f
µb (3.1)

where D
µ

are the derivatives covariantized with respect to linearly transforming bosonic
symmetries which, in this symmetry group, are dilatations and Lorentz transforma-
tions. An example of D

µ

acting on a parameter is

D
µ

x

a = (∂
µ

+ b
µ

)xa �w

µ

ab
xb. (3.2)

The full covariant derivative D
µ

contains D
µ

along with the conformal boost connec-
tion f

µ

a which transforms non-linearly.

In a theory of gravity (constructed using general relativity), transformations are ex-
pected to be spacetime transformations or general coordinate transformations, allow-
ing the theory to be local. Therefore, we need to be able to connect the internal symme-
try transformations with the spacetime transformations. This is done using covariant
curvatures, which are generated by the commutator of covariant derivatives D

µ

as
following:

[D
µ

, D
n

](·) =
�

� 1
2 R

µn

ab(M)Mab + R
µn

a(P)Pa + R
µn

(D)D + R
µn

a(K)Ka
�

(·) (3.3)

where · denotes a general covariant field.

The covariant curvatures corresponding to the four symmetry transformations of the

2We can do this in the corresponding tangent frame
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conformal group are as following:

R(P)
µn

a = 2D[µe
n]

a

R(M)
µn

ab = 2 ∂[µw

n]
ab � 2 w[µ

ac
w

n]c
b � 4 f[µ

[a e
n]

b]

R(D)
µn

= 2 ∂[µb
n] � 2 f[µ

a e
n]a

R(K)
µn

a = 2D[µ f
n]

a (3.4)

Equating the general coordinate transformations to the covariant transformations of
the conformal group, gives the following constraints on covariant curvatures, which
are known as conventional constraints:

R(P)
µn

a = 0 , R(M)
µn

ab eb
n = 0 . (3.5)

The transformation rules 3.1 remain unaffected on imposing the conventional con-
straints 3.5 as these constraints are invariant under Lorentz transformations, dilata-
tions and conformal boosts.

We now intend to construct two conformally invariant Lagrangians. We take a scalar
field f, which transforms under dilatations as

dDf = wLDf (3.6)

where w is the Weyl weight of f. Now we write down the various possible conformally
covariant derivatives of f that can appear in the Lagrangian, up till the fourth order.

D
µ

f =D
µ

f = ∂

µ

f� wb
µ

f ,
D

µ

Daf =D
µ

Daf + w f
µa f ,

D
µ

⇤c f =D
µ

⇤cf + 2(w� 1) f
µ

aDaf ,
⇤c⇤c f =DaDa⇤cf + (w + 2) f ⇤cf + 2(w� 1) f

µa DµDa
f , (3.7)

where ⇤c = D
µ

Dµ, the fully covariant d’Alembertian. The K-transformations of the
derivatives above are as following:

dKDaf = � w LKa f ,

dKD
µ

Daf = � (w + 1)
⇥

LKµ

Da + LKa D
µ

⇤

f + e
µaLK

b Dbf ,
dK⇤cf = � 2(w� 1)LK

a Daf ,
dKD

µ

⇤cf = � (w + 2)LKµ

⇤cf� 2(w� 1)LK
a D

µ

Daf ,
dK⇤c⇤cf = � 2(w� 1)LK

a ⇤c Daf� 2(w + 1)LK
aDa⇤cf . (3.8)

Since we want conformally invariant transformations, we look for those transforma-
tions above which can somehow be set to 0. We find that the following two transfor-
mations can be set to 0 by giving particular values to the Weyl weights:

dK⇤cf = 0 (for w = 1) (3.9a)
dK⇤c⇤cf = 2 LK

a�⇤c Da � Da⇤c
�

f (for w = 0)

= 2 LK
a(Db⇥Db, Da

⇤

f +
⇥

Db, Da
⇤

Db
f) (using Ricci identity and

= 0 curvature constraints) (3.9b)
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Now we multiply the above two derivatives with a similar scalar field f

0 having the
same Weyl weight as of f, in order to bring kinetic terms into the Lagrangian, thus
bringing in dynamical degrees of freedom. We get the following two conformally
invariant Lagrangians upto total derivatives:

e�1L µ f

0⇤cf = �Dµ

f

0D
µ

f + f f

0
f , (for w = 1)

(3.10a)

e�1L µ f

0⇤c⇤cf = D2
f

0D2
f + 2Dµ

f

0⇥2 f(µ
ae

n)a � f g
µn

⇤

Dn

f , (for w = 0)
(3.10b)

Both the Lagrangians are symmetric in f and f

0.

Out of the four gauge fields that have been used so far, viz. e
µ

a, w

µ

ab, b
µ

and f
µ

a,
only e

µ

a and b
µ

are independent, since w

µ

ab and f
µ

a depend on e
µ

a and b
µ

as can be
seen from their definitions in A.5. e

µ

a is invariant under K-transformation while b
µ

transforms as
dKb

µ

= LKµ

(3.11)

In order to keep the Lagrangians 3.10 conformally invariant, all the b
µ

dependence in
them (which is conformally non-invariant) cancels out.

3.2.1 Analysis of Lagrangian 3.10a
In Lagrangian 3.10a, since the dependence on b

µ

, which is the gauge field of dilata-
tions, cancels out, the Lagrangian is invariant under dilatations. This dilatational in-
variance gives us the freedom to give certain convenient values to its terms, through
dilatations. The product f

0
f can be made to transform under dilatations with a LD

such that it gets transformed to a constant. In such a case, the 2nd term would be
proportional to f = f

µ

µ = 1
6R(e, b). Thus it would become proportional to the Ricci

scalar, giving us the Einstein Hilbert term.

When f

0 and f are the same, setting their product constant tells us that that f would
be constant, making the kinetic term 0. When f

0 and f are not the same, their con-
stant product allows to express f

0 in terms of f, thus enabling to write the kinetic
term exclusively in terms of f, proportional to (∂

µ

f)2/f

2. In this case the Lagrangian
describes a scalar field coupled to Einstein gravity.

3.2.2 Analysis of Lagrangian 3.10b
The scalar fields in Lagrangian 3.10b, having weyl weight 0, cannot be given arbitrary
values as in the case of 3.10a as they cannot dilate. Even though this Lagrangian
is a four-derivative one, it does not have any curvature squared term in it, which is
possible only by the presence of f

µ

a terms in ⇤c⇤c f as given in 3.7. Having set w=0
cancels the f

µ

a terms, due to which there are no curvature squared terms. Yet, this
Lagrangian lays out the basic structure of a four derivative conformal Lagrangian,
which will be used ahead to develop more involved higher derivatives, which would
also end up yielding curvature squared terms.
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3.3 N= 2 conformal supergravity
One particular advantage of working in N=2 supergravity is the liberty to close the
superymmetry algebra off-shell, which is often not possible in higher extended super-
symmetry. In the on-shell formulation, the algebra and transformation rules of the
theory depend on the dynamical equations of the fields which vary from theory to
theory. Using dynamical equations of motion is particularly more complicated in the
case of higher derivative interactions, due to which it becomes even more necessary to
close our algebra off-shell.

3.3.1 Weyl Multiplet - the gauge multiplet

Conformal supergravity allows to describe gravity as a gauge theory of the supercon-
formal group. In order to build this theory, its gauge and matter structure are required.
Weyl multiplet is the supermultiplet containing all the gauge fields of N=2 supercon-
formal algebra. The matter multiplet of conformal supergravity is the chiral multiplet,
which would be presented shortly.

The superconformal group has four more generators added to the pre-existing four
generators of the conformal group. All the generators of the superconformal group
along with their corresponding gauge fields and parameters are listed in the table be-
low:

generator Pa Mab D Ka Qi Si Vi
j A

gauge fields e
µ

a
w

µ

ab b
µ

f
µ

a
y

µ

i
f

µ

i V
µ

i
j A

µ

parameters x

a
#

ab LD La
K e

i
h

i L i
SU(2) j LU(1)

i) Qi(Qi) are the Q supersymmetry generators of super Poincaré algebra and are
hence physical. They satisfy the following algebra:

{Qi, Q̄j} = �2d

i
j(g

a)Pa, {Qi, Qj} = 2#ijg(L),

[Mab, Q̄i] = �1
2

Q̄i(gab) [Pa, Q̄i] = �1
2

Q̄i(ga) (3.12)

This algebra is invariant under the R-symmetry group U(2) ' SU(2)xU(1), which
commutes with the Lorentz group, rotating the supercharges, while leaving the
supersymmetry algebra invariant.

ii) Si(Si) are the new supercharges on which the commutator between Qi(Qi) and
Ka closes. They generate an auxiliary fermionic symmetry, S-supersymmetry,
which is unphysical.

[Ka, Qi] = �gaSi {Si, Sj} = g

aKad

i
j (3.13)

The anti-commutator between Qi and Sj closes only on the inclusion of R-symmetry
algebra U(2) [ref 70].
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iii) Vi
j are the generators of SU(2) symmetry. They are anti-hermitian and traceless,

i.e. V
µ

i
j = �Vµj

i and V
µ

i
i.

iv) A is the generator of U(1) symmetry.

Due to the addition of Q and S supersymmetry, the transformation rules of gauge
fields 3.1 and their associated curvatures 3.4 get modified by the addition of extra
terms (see A.3 and A.6 for details). The off-shell degrees of freedom are reduced due
to the gauge invariances brought in by superconformal gravity. In order to preserve
the degrees of freedom of the theory, three auxiliary fields need to be added, which
complete the Weyl supermultiplet.

The three fields are:

i) Tab
ij - an (anti-) selfdual tensor, anti-symmetric in both ab and ij indices, hence

being a singlet under SU(2) transformations

ii) D - a real scalar field

iii) c

i - a chiral spinor.

The addition of these fields balances fermionic and bosonic degrees of freedom, which
is necessary in a supersymmetric theory.

w

µ

ab and f
µ

a depend on e
µ

a and b
µ

while f

i
µ

depends on other gauge fields, as can be
seen from their definitions in A.5. All the other gauge fields of the Weyl supermulti-
plet except these three are independent.

3.3.2 Chiral Multiplet - the matter multiplet

We now introduce the matter multiplets of our theory, that would act as compensators
required for fixing the gauge of conformal supergravity in order to get physical results
from it. First let us look at the compact form of a chiral multiplet, which is given
by a chiral superfield. A superfield F(xµ, q

i, q̄

i) is a Taylor expansion in terms of the
Grassman coordinates or the q coordinates. The coefficients of the q coordinates are
functions of both bosonic coordinates xµ and fermionic coordinates q

i, where i = 1, 2...
N . The general form a chiral superfield (with fermionic indices suppressed) is given
as following:

F(xµ, q

i, q̄

i) = A + q̄

iYi +
1
2

q̄

i
q

jBij +
1
2

#ijq̄
i
g

ab
q

jF�ab

+
1
3
[#ijq̄

i
g

ab
q

j]q̄kd(gab)e

d

L
k#

+
1

12
[eijq̄

i
g

ab
q

j]2C (3.14)

From this compact expression of a superfield, one can read off the components of the
chiral multiplet, which are the coefficients of the q coordinates in 3.14. Note that this
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expansion is always finite due to the anti-commuting properties of Grassman vari-
ables. Thus, the chiral supermultiplet in N = 2 supergravity has the following com-
ponents:

(1) A: a complex scalar field with the
lowest Weyl weight

(2) yi: an SU(2) doublet fermion, one
of the two components of Majorana
spinor

(3) Bij: a complex SU(2) triplet of scalars

(4) F�ab: a complex anti-selfdual Lorentz
tensor

(5) Li: another SU(2) doublet fermion,
the other component of Majorana
spinor

(6) C: a complex scalar field with the
highest Weyl weight

The weyl and chiral weights of the multiplet components give the numerical coeffi-
cients of the components while undergoing dilatations and U(1) transformations re-
spectively. For a chiral multiplet, weyl and chiral weights are related by c=�w. They
are listed in the table below:

A Yi Bij F�ab Li C

w w w + 1
2 w + 1 w + 1 w + 3

2 w + 2
c �w �w + 1

2 �w + 1 �w + 1 �w + 3
2 �w + 2

Table 3.1: The weyl and chiral weights of N = 2 chiral supermultiplet components with
reference to the arbitrary weyl weight w of the lowest weyl weight component A

The transformations of the chiral supermultiplet components under Q- and S-supersymmetry
in curved superspace, are given as following:

dA = ē

iYi ,

dYi = 2 /DAei + Bij e

j + 1
2 g

abF�ab #ije
j + 2 wA hi ,

dBij = 2 ē(i /DYj) � 2 ē

kL(i # j)k + 2(1� w) h̄(iYj) ,

dF�ab =
1
2 #

ij
ēi /DgabYj +

1
2 ē

i
gabLi � 1

2(1 + w) #

ij
h̄igabYj ,

dLi = � 1
2 g

ab /DF�abei � /DBij#
jk

ek + C#ij e

j + 1
4
�

/DA g

abTabij + w A /Dg

abTabij
�

#

jk
ek

� 3 ga#

jk
ek c̄[ig

aYj] � (1 + w) Bij#
jk

hk +
1
2(1� w) g

ab F�abhi ,

dC = � 2 #

ij
ēi /DLj � 6 ēicj #

ik
#

jlBkl

� 1
4 #

ij
#

kl�(w� 1) ēig
ab /DTabjkYl + ēig

abTabjk /DYl
�

+ 2 w#

ij
h̄iLj . (3.15)

The derivatives D in the equations above are the fully covariantized derivatives for
each component. They include the derivatives D, which are covariant with respect
to all the linearly transforming bosonic symmetries, viz, dilatations, U(1) and SU(2)
transformations, and Lorentz transformations. The special conformal transformations
Ka, which are also bosonic, are not included in D as they transform non-linearly, but
are included in D. D also includes the covariantizations with respect to fermionic
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symmetries. A noteworthy feature of the supersymmetry transformations in 3.15 is
their linearity.

3.3.3 Vector Multiplet - a reduced chiral multiplet

As has already been mentioned in section 3.2, we need compensating multiplets to
fix the gauge of the theory in order to break scale invariance. Chiral multiplets have
the potential to act as compensators on being reduced to certain special kinds of mul-
tiplets, such as the vector multiplet. A vector multiplet is a special case of the chiral
multiplet which is obtained when the chiral mutliplet has weyl weight 1 and obeys
the following constraint:

rijX = #ik# jl r̄klX̄ , (3.16)

where X represents any component of the vector multiplet andrij is a 2nd order anti-
symmetric tangent space derivative in curved superspace (see appendix A.2). Written
explicitly, the constraints are as following:

Bij = #ik# jlBkl  � reality constraint on Bij

Li = �#ij/∂y

j

C = �2∂

2Ā

∂aF�ab = ∂aF+ab  � Bianchi identity for Fab which
is now a physical field strength (3.17)

The last constraint shows most explicitly how the introduction of the vector multiplet
makes the theory physical. The independent fields of the vector multiplet are denoted
by (X, Wi, Yij,F�ab). They are connected to the components of the chiral supermultiplet
as following:

A|vec = X ,
yi|vec = Wi ,

Bij|vec = Yij = #ik# jl Ykl ,

F�ab|vec = F�ab = F�ab +
1
4 (ȳr

i
gabg

r Wj + X̄ ȳ

r

i
g

rs

gaby

s

j � X̄ Tab
ij)eij ,

Li|vec = �#ij /DWj ,

C|vec = �2⇤cX̄� 1
4F

+
ab Tab

ije
ij � 3c̄iWi , (3.18)

where Fab is the supercovariantization of the abelian field strength W
µ

, i.e. Fab =

2ea
[µeb

n]
∂

µ

W
n

.

The weyl and chiral weights of the vector multiplet components are shown in the fol-
lowing table:
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X Wi W
µ

Yij

w 1 3
2 0 2

c �1 � 1
2 0 0

Table 3.2: The weyl and chiral weights of N = 2 vector supermultiplet with reference to the
arbitrary weyl weight w of the lowest weyl weight component X

The Q- and S-supersymmetry transformation rules for the vector multiplet compo-
nents in superconformal background are as following:

dX = ē

iWi ,

dWi = 2 /DXei +
1
2 #ij F̂µn

g

µn

e

j + Yije
j + 2 X hi ,

dW
µ

= #

ij
ēi
�

g

µ

Wj + 2 y

µj X
�

+ #ijē
i�

g

µ

Wj + 2 y

µ

j X̄
�

,

dYij = 2 ē(i /DWj) + 2 #ik# jl ē

(k /DWl) . (3.19)

Now that all the multiplets required for superspace and component calculus have been
presented, along with their transformation rules under supersymmetry, we can go on
to see the construction of the Lagrangians in superconformal formalism.
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Chapter 4

A New Higher Derivative Term

In order to calculate quantum corrections to the entropy of a black hole, we need to
add higher derivative terms to the Lagrangian of the black hole solution. These terms
encode finer interactions between the strings and D-branes composing the black hole.

4.1 Previously found higher derivative terms

There have been quite many higher derivative terms found and studied previously,
such as those containing the field strengths for supersymmetric gauge theories [10,
11, 12, 13, 14], those involving a chiral invariant having square of the Weyl tensor,
by Bergshoeff, et al. [15], and those formed from tensor multiplets by de Wit, et al
[16]. In the context of minimal Poincaré supergravity, an R4 term has been generated
using full superspace integral [17]. Butter and Kuzenko found higher derivative La-
grangians in projective superspace in [18]. Bernard de Wit, et al found another class
of higher derivatives [7] in conformal superspace using superconformal multiplet cal-
culus. Their higher derivative vanishes identically and trivially in a supersymmetric
background, along with its first derivative (with respect to the fields or the coupling
constants) owing to the linear nature of the supersymmetry transformation of the mul-
tiplet used. Thus, their higher derivative invariant does not contribute to the entropy
of supersymmetric black holes at all.

The higher derivative invariant that we are going to study, the one found by Butter, et
al in [8] is constructed along similar lines as the one in [7], but this one does not vanish
trivially for supersymmetric black holes.

4.2 Superconformal Lagrangian in Flat Superspace

4.2.1 General Form

We have already seen the construction of conformally invariant Lagranigans 3.10 with
a scalar field f. Now, we work in chiral superspace with a chiral supermultiplet in-
stead of the field f. Hence, we define the general form of a Lagrangian in chiral su-
perspace, which is:

L =
Z

d4
q F2 . (4.1)
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Integrals of this kind are known as chiral superspace integrals. Due to the nature of
Grassmanian coordinates, i.e. q, an integration with respect to d4

q, allows only the
highest q-component of the chiral superfield , i.e. C, to survive.

4.2.2 Two-derivative Lagrangian in Flat Superspace

Once the Lagrangian has been expressed in terms of the chiral multiplet components,
in this case, as ⇠ C, we need to gauge fix the chiral mutliplet, reducing it to a vector
multiplet as shown in section 3.3.3, in order to reduce the anti-selfdual tensor F�ab to
the field strength of the physical gauge field W

µ

, and hence bring dynamical degrees of
freedom into the theory. Following this multiplet reduction and other manipulations
to conserve the weyl and chiral weight of the terms in the Lagrangian, leads to the
following two-derivative Lagrangian [9]:

L = � 1
2 C|X 2 = 2 X⇤X̄� 1

2 W̄i
$
/∂ Wi � 1

4 F
µn

Fµn + 1
4 Yij Yij . (4.2)

Having shown above the general way for constructing Lagrangians in chiral super-
space (for Lagrangian 4.2 quadratic in space-time derivatives, like 3.10a), we can
now proceed to the construction of the higher derivative Lagrangian (like 3.10b). To
do so, we need to introduce a new kind of multiplet, called the kinetic multiplet.

4.2.3 Four-derivative Lagrangian in Flat Superspace

The kinetic multiplet brings 2nd derivative terms into the Lagrangian, along with dy-
namical degrees of freedom, thus making it physical. The kinetic multiplet first ap-
peared in [19], in the context of N=1 tensor calculus, to construct the Lagrangian for
kinetic terms. In N=2 flat supergravity, the full superspace Lagrangian, which is the
full superspace integral (i.e. involving both chiral and anti-chiral Grassman coordi-
nates), is given up to total derivative terms as:

Z

d4
q d4

q̄ F0 F̄ =
Z

d4
q F0

�

D̄4F̄
�

= A0⇤⇤Ā + · · · (4.3)

where D̄4 = 1
48 #ik# jl D̄ij D̄kl (see appendix A.2) and A and A0 are the lowest-q compo-

nents of the chiral superfields F and F0, respectively (see A.7 for the product of two
chiral multiplets).

4.3 Kinetic Multiplet

In N=1 case where the kinetic multiplet was used for the first time, it was given by
T(F̄) ⇠ D̄2F̄, i.e. the 2nd derivative of the chiral multiplet, due to which it was called
the kinetic multiplet. On generalising it to N=2 supergravity, the kinetic multiplet
becomes T(F̄) := �2 D̄4F̄ (being normalised conventionally). The flat-space compo-
nents of the T(F̄) are given in terms of the components of the anti-chiral multiplet (F̄)
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as following [8]:

A|T(F̄) = C̄ , Yi|T(F̄) = �2 #ij /∂Lj ,

Bij|T(F̄) = �2 #ik# jl ⇤Bkl , F�ab|T(F̄) = �4
�

da
[c

db
d] � 1

2 #ab
cd�

∂c∂

eF+
ed ,

Li|T(F̄) = 2⇤/∂Yj
#ij , C|T(F̄) = 4⇤⇤Ā . (4.4)

We want the kinetic multiplet T(F̄ ) to be that of a conformal primary superfield, for
which it is required that its primary field, which is the lowest q-component, i.e. C̄,
is conformally invariant and hence S-supersymmetric (see the 2nd relation of 3.13).
For C̄ to be invariant under S-supersymmetry, the weyl weight of the chiral multiplet
F̄ should be 0 (as can be seen from the supersymmetry transformation rules 3.15).
Therefore, the weyl weight of the chiral multiplet F (same as that of the antichiral
multiplet F̄) in the T(F̄) multiplet is 0. This implies that the weyl weight of the high-
est q-component of F, i.e. C, is 0+2=2, which is the same as the weyl weight of C̄.
Therefore the weyl weight of T(F̄) = weyl weight of its lowest q-component, i.e. C̄, is
2.

4.4 Superconformal Lagrangian in Curved Superspace
In order to generalize the flat superspace Lagrangian to curved superspace, it is re-
quired to substitute the flat superspace derivatves (∂a, Di, Di) with the covariant deriva-
tives (ra,ri,ri) in curved superspace. These substitutions mainly take place firstly
during the imposition of chirality constraint on the superfield of full superspace to
make it a chiral superfield, and while imposing constraint 3.16 on the chiral multi-
plet for reducing it to a vector multiplet. The general form of full curved superspace
integral, involving integrations over four chiral and four anti-chiral Grassman coordi-
nates, is given as

Z

d4
q d4

q̄ E L . (4.5)

for some superspace Lagrangian density L . E = Ber(EM
A), the measure factor, is the

Berzinian (or superdeterminant) of the superspace vielbein.

The general form of a curved superspace Lagrangian in chiral superspace is

Lch =
Z

d4
q E Lch , (4.6)

where E is the measure of chiral superspace. Lch should be covariantly chiral, i.e.
r̄iLch = 0. The chiral superspace Lagrangian written in terms of the general full
superspace Lagrangian L in expression 4.5 is

Z

d4
q d4

q̄ E L =
Z

d4
q E r̄4L (4.7)

where the chiral projection operator r̄4 = 1
48 #ik# jlr̄klr̄ij (see appendix A.2).

This is similar to obtaining chiral flat superspace Lagrangian from full flat superspace
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Lagrangian as shown in equation 4.3. Comparing equation 4.6 with equation 4.7,
we can see that Lch = r̄4L . It should always be ensured that this Lagrangian is su-
perconformally invariant, by checking that it is covariantly chiral and invariant under
S-supersymmetry.

The form of Lch in equation 4.6 was derived by in [21] by demanding superconformal
invariance and the conservation of weyl and chiral weights of the terms used in the
the equation. It is given as:

e�1Lch =C� #

ij
ȳ

µig
µLj � 1

8 ȳ

µiTab jkg

ab
g

µYl #

ij
#

kl � 1
16 A(Tab ij#

ij)2

� 1
2 ȳ

µig
µn

y

nj Bkl #

ik
#

jl + #

ij
ȳ

µiynj(F�µn � 1
2 A Tµn

kl #

kl)

� 1
2 #

ij
#

kle�1
#

µnrs

ȳ

µiynj(ȳ
rkg

s

Yl + ȳ

rky

sj A) + h.c. . (4.8)

C has weyl weight w = 2, as mentioned at the end of section 4.3. The chiral super-
space Lagrangian 4.8 is a general and important one, describing the couplings of a
w = 2 chiral multiplet with the background superconformal fields. It would be used
as the template for constructing all the other Lagrangians ahead in this thesis, by sub-
stituting different kinds of w = 2 chiral multiplets as per our requirements.

One requirement for the kind of chiral mutliplet to be considered in Lagrangian 4.8,
stems from the fact that there are no kinetic terms for fields in it, making it unphysical.
For this purpose, we need to introduce a kinetic multiplet, as was done in the case of
flat superspace in equation 4.3.

4.4.1 Two-derivative Lagrangian in Curved Superspace
Now that we have the general form of a superconformal Lagrangian in curved su-
perspace in terms of a chiral multiplet, we would try to arrive at the two-derivative
Lagrangian in terms of the vector multiplet, which is the physical Lagrangian. The
curved superspace generalisation of Lagrangian 4.1, is:

Z

d4
q E F2 . (4.9)

This Lagrangian has been expressed in terms of multiplet components in [21]. Fol-
lowing the method of [22], in order to write Lagrangian 4.9 in terms of multiplet
components, the lowest component of a composite chiral multiplet, i.e. A|comp should
be of the form

A|comp = F(XI) .

where F(XI) is a function of the scalar fields XI belonging to the vector multiplet. F is
required to be holomorphic, i.e. dependent only on XI , in order to transform chirally.
Also, supersymmetry invariance of Lagrangian 4.8 demands that its weyl weight be
2, which is possible only if F is homogeneous with degree 2 (as the weyl weight of
the lowest q-component of the vector multiplet, XI is 1). F should have the following
general form:

F(l XI) = l

2 F(XI) ,
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for any complex l 6= 0. F is called the prepotential. Its first and second derivatives with
respect to XI are written as FI and FI J . Once the lowest q-component of a composite
chiral multiplet is known, all the remaining components can be obtained using the
results of multiplet calculus (see A.8). Substituting these components into Lagrangian
4.8, while setting the fermionic terms to 0, gives the following Lagrangian:

e�1 L = iDµFI Dµ

X̄I + iFI X̄I(1
6R+ D)� 1

8 iFI J YI
ijY

Jij

+ 1
4 iFI J(F�I

ab �
1
4 X̄ITij

ab#ij)(F�Jab � 1
4 X̄JTijab

#ij)

� 1
8 iFI(F+I

ab �
1
4 XITabij#

ij)Tab
ij #

ij � 1
32 iF(Tabij#

ij)2 + h.c. (4.10)

This two-derivative Lagrangian is the same as the one used by Sahoo and Sen in [23]
in which they calculated the entropy of extremal black holes by adding a particular
higher derivative term to this Lagrangian, which, for non-supersymmetric black holes,
did not give the value predicted by Kraus and Larsen in [4, 5]. The new Gauss-Bonnet
Lagrangian that we would see in the next chapter will need to be added to this two-
derivative Lagrangian, to give the complete Lagrangian for a black hole solution.

4.5 A New Kinetic Multiplet

Butter, et al constructed a new kinetic multiplet in [8], in terms of the ln f supermulti-
plet, which does not transform linearly under supersymmetry transformations as can
be seen from their covariant derivatives below.

D
µ

ln f =D
µ

ln f = ∂

µ

ln f� w b
µ

,
D

µ

Da ln f =D
µ

Da ln f + w f
µa ,

D
µ

⇤c ln f =D
µ

⇤c ln f� 2 f
µ

aDa ln f ,
⇤c⇤c ln f =DaDa⇤c ln f + 2 f ⇤c ln f� 2 f

µa DµDa ln f . (4.11)

For the conformally invariant Lagrangian that one demands, we need terms that are
invariant under K-transformation of the covariant derivatvies. Therefore, we write
down the special conformal transformations of the above derivatives below:

dKDa ln f = � w LKa ,

dKD
µ

Da ln f = �
⇥

LKµ

Da + LKa D
µ

⇤

ln f + e
µaLK

b Db ln f ,
dK⇤c ln f = 2 LK

a Da ln f ,
dKD

µ

⇤c ln f = � 2 LKµ

⇤c ln f + 2 LK
a D

µ

Da ln f ,
dK⇤c⇤c ln f = 2LK

a ⇤c Da ln f� 2 LK
aDa⇤c ln f = 0 . (4.12)

Out of all of these conformally transformed derivatives, we see that only the last four-
derivative term is conformally invariant (like Lagrangian 3.10b).

The components of the ln f multiplet in terms of the components of the elementary
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chiral multiplet 3.3.2 are given as following:

Â|ln F = ln A ,

Ŷi|ln F =
Yi
A

,

B̂ij|ln F =
Bij

A
+

1
2A2 Ȳ(iYj) ,

F̂�ab|ln F =
F�ab
A

+
1

8A2 #

ijȲigabYj ,

L̂i|ln F =
Li
A

+
1

2A2

�

Bij#
jkYk +

1
2 F�abg

abYi
�

+
1

24A3 g

abYi#
jkȲjgabYk ,

Ĉ|ln F =
C
A
+

1
4A2

�

#

ik
#

jlBijBkl � 2F�abF�ab + 4#

ijL̄iYj
�

+
1

2A3

�

#

ik
#

jlBijȲkYl � 1
2 #

kl F�abȲk g

abYl
�

� 1
32A4 #

ijȲi gabYj#
klȲkg

abYl .

(4.13)

The Q- and S- supersymmetry transformation rules of the ln F are as follows:

dÂ = ē

iŶi ,

dŶi = 2 /DÂei + B̂ij e

j + 1
2 g

abF̂�ab #ije
j + 2 w hi ,

dB̂ij = 2 ē(i /DŶj) � 2 ē

kL̂(i # j)k + 2 h̄(iŶj) ,

dF̂�ab =
1
2 #

ij
ēi /DgabŶj +

1
2 ē

i
gabL̂i � 1

2 #

ij
h̄igabŶj ,

dL̂i = � 1
2 g

ab /DF̂�abei � /DB̂ij#
jk

ek + Ĉ#ij e

j + 1
4
�

/DÂ g

abTabij + w /Dg

abTabij
�

#

jk
ek

� 3 ga#

jk
ek c̄[ig

aŶj] � B̂ij#
jk

hk +
1
2 g

ab F̂�abhi ,

dĈ = � 2 #

ij
ēi /DL̂j � 6 ēicj #

ik
#

jl B̂kl +
1
4 #

ij
#

kl�
ēig

ab /DTabjkŶl � ēig
abTabjk /DŶl

�

. (4.14)

4.6 Four-derivative Lagrangian in Curved Superspace

Taking the curved superspace generalisation of Lagrangian 4.3 in terms of the new
kinetic multiplet, the four-derivative Lagrangian in curved superspace comes out to
be1

�1
2

Z

d4
q E F0T(ln F̄) . (4.15)

where F0 has weyl weight 0 and T(ln F̄) has weyl weight 2 as explained at the end of
section 4.3.

1See [9] for more details on the derivation
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The components of T(ln F̄) multiplet in terms of those of ln F̄ are as given below:

A|T(ln F̄) =
ˆ̄C ,

Yi|T(ln F̄) = � 2 #ij /DL̂j � 6 #ik# jlc
j B̂kl � 1

4 #ij#kl g

abTab
jk
$
/D Ŷl ,

Bij|T(ln F̄) = � 2 #ik# jl
�

⇤c + 3 D
�

B̂kl � 2 F̂+
ab R(V)ab k

i # jk

� 6 #k(i c̄j)L̂
k + 3 #ik# jl

ˆ̄Y(k /Dc

l) ,
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�

da
[c

db
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2 #ab
cd�⇥4 DcDeF̂+

ed + (De ˆ̄A DcTde
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ˆ̄A DeTed
ij)#ij � wDcDeTed
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⇤

+⇤c
ˆ̄A Tab

ij
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i
k B̂jk
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$
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l

� 9
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g

c
gabDcc
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i
gab /DŶj + 3

8 Tab
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#ijc̄kŶk ,

Li|T(ln F̄) = 2⇤c /DŶj
#ij +

1
4 g

c
gab(2 DcTab

ij L̂j + Tab
ij DcL̂j)

� 1
2 #ij

�

R(V)ab
j
k + 2i R(A)abd

j
k
�

g

c
g

abDcŶk

+ 1
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�

3 DbD� 4iDaR(A)ab +
1
4 Tbc

ij $Da Tac
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�

g

bŶj

� 2 F̂+ab /DR(Q)abi + 6 #ijD /DŶj
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�
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+ 3
2
�

2 /DB̂kj
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abg
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d

j
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4 #klTab
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cj

+ 9
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gacl) #ijg

aŶj � 9
2 (c̄igac

k) #klg
aŶl

� 3
2 w # jk DaTab

jk
g

b
ci ,

C|T(ln F̄) = 4(⇤c + 3D)⇤c
ˆ̄A + 6(DaD) Da ˆ̄A� 16 Da

⇣

R(D)+abDb ˆ̄A
⌘

� Da(TabijTcbijDc
ˆ̄A)� 1

2 Da(TabijTcbij)Dc
ˆ̄A� 9 c̄jg

a
c

j Da
ˆ̄A
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2 DaDa(Tbcij F̂bc+)#ij + 4#

ijDa

⇣

DbTbcij F̂ac+ + DbF̂+
bc Tac

ij

⌘

� 9
2 #

jk
c̄jg

ab
ck F̂+

ab + 9c̄jckB̂jk + 1
16(Tab

ij
#ij)

2 ˆ̄C

+ 6DaDac̄jŶj + 3c̄j /D /DŶj + 3Da(c̄jg
a /DŶj) + 9Dc̄jŶj

� 8DaR̄(Q)abjDbŶj + 6Dbc̄jg
b /DŶj

+ 3
2 DaTabijc̄

i
g

bŶj + 3Da(Tabijc̄
i
g

bŶj) + 3
2 Da(Tabijc̄

i)gbŶj

+ 3
⇣

1
2 R(V)+ab

i
j � R(D)+abd

i
j

⌘

c̄ig
abŶj � 2R(V)+ab

i
jR̄(Q)ab

iŶj � 1
2 Tab

ijR̄(S)+ab
iŶj

+ 1
8 #

ijTabij

⇣

3c̄kg

abL̂k + 2R̄(Q)ab
k L̂k

⌘

+ w
n

9c̄j /Dc

j � R(V)+ab
i
jR(V)ab+ j

i � 8R(D)+abR(D)ab+

� DaTabijDcTcbij � Da(TabijDcTcbij)
o

. (4.16)

Substituting the composite multiplet F0T(ln F̄) into the general expression of super-
confomal Lagrangian in curved superspace i.e. 4.8, along with setting all the fermionic
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fields to 0, leaves only two terms in the Lagrangian.

e�1L =C� 1
16 A(Tab ij#

ij)2 (4.17)

where C is

C|T(ln F̄) =DaVa + 1
16(Tab ij#

ij)2 ˆ̄C

+ w
�

� 2RabRab +
2
3R

2 � 6 D2 + 2 R(A)abR(A)ab � R(V)+ab
i
jR(V)ab+ j

i

+ 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

 

, (4.18)

where Va is

Va = 4DaD2 ˆ̄A� 8RabDb
ˆ̄A + 8

3RDa ˆ̄A + 8D Da ˆ̄A� 8i R(A)abDb
ˆ̄A

� 2TacijTbcijDb ˆ̄A + 1
2 #

ijDaTbcij F̂bc+ + 4 #

ijTac
ijDbF̂+

bc

+ w
� 2

3D
aR� 4DaD�Db(TacijTbcij)

 

. (4.19)

Substituting C|T(ln F̄) and A|T(ln F̄) from 4.16 in terms of the components of the ln F̄
multiplet, we get the following higher derivative term, which is the main result of this
chapter:

e�1L = 4D2A0D2 ˆ̄A + 8Da A0
⇥

Rab � 1
3R hab

⇤

Db ˆ̄A + C0 ˆ̄C

�DµB0ij Dµ

B̂ij + (1
6R+ 2 D) B0ij B̂

ij

�
⇥

#

ik B0ij F̂+µn R(V)
µn

j
k + #ik B̂ij F0�µnR(V)

µnj
k⇤

� 8 D Dµ A0D
µ

ˆ̄A +
�

8 i R(A)
µn

+ 2 T
µ

cij T
ncij

�

Dµ A0Dn ˆ̄A

�
⇥

#

ijDµTbcijDµ

A0 F̂+bc + #ijDµTbc
ijD

µ

ˆ̄A F0�bc⇤

� 4
⇥

#

ijTµb
ij Dµ

A0Dc F̂+
cb + #ijTµbij D

µ

ˆ̄ADcF0�cb
⇤

+ 8DaF0�ab Dc F̂+
cb + 4 F0�ac F̂+

bc Ra
b + 1

4 Tab
ij TcdijF0�abF̂+cd

+ w
n

� 2
3D

a A0DaR+ 4Da A0DaD� TacijTbcij DbDa A0

� 2DaF0�ab DcTcbij
#ij + i F0�abR(A)�ad Tb

dij
#ij + F�abTabij

#ij(
1

12R�
1
2 D)

+ A0
⇥2

3R
2 � 2RabRab � 6 D2 + 2 R(A)abR(A)ab � R(V)+abi

j R(V)+ab
j
i

+ 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

⇤

o

. (4.20)

4.6.1 A closer look at the new four-derivative Lagrangian in Curved
Superspace

In Lagrangian 4.15, i.e. � 1
2
R

d4
q E F0T(ln F̄), the F0 multiplet has w = c = 0 and

also has no charges. The T(ln F̄) multiplet has weyl weight w = 2 and chiral weight
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c = �2, which on adding to the weyl and chiral weights of #, which are �2 and 2 re-
spectively, gives the total weyl and chiral weights of the Lagrangian� 1

2
R

d4
q T(ln F̄)

to be 0. Also, � 1
2
R

d4
q T(ln F̄) is superconformally invariant. Therefore, it qualifies

to form the four-derivative Lagrangian all by itself, without the necessity of bringing
in F0. Now we ask the question as to why F0 is brought in.

When F0 is absent, we need to substitute only the components of T(ln F̄) into the
expression 4.8. Doing so, along with setting all the fermionic terms to 0, gives a
Lagrangian that has two parts. One part is the total derivative of 4.19, which on in-
tegrating over spacetime to get the action, vanishes, and hence does not contribute.
The second part of the Lagrangian thus obtained, is only the last two lines of 4.20,
which do not contain components of the ln F̄ multiplet. These last two lines of the
Lagrangian are the supersymmetric generalization of the Gauss-Bonnet term in gen-
eral relativity. Thus we see that the F0 multiplet is brought into the four-derivative
Lagrangian in order to enable the components of ln F̄ multiplet to contribute to the
action.

Having got an overview of how the new supersymmetic higher derivative invariant
came about, we now proceed to extract from it the particular term which we wish to
analyse immediately, i.e. the new supersymmetric Gauss-Bonnet invariant, and see if
it has any effect on the entropy of extremal black holes.
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Chapter 5

Contribution of the New Gauss-Bonnet
Invariant to the Entropy of Extremal
Black Holes

The Gauss-Bonnet term which is one of the curvature squared terms in general rela-
tivity, has had the following issues associated with it:

1. In N = 2 supersymmetry, it had never been constructed until Butter, et al found
it as a part of their new higher derivative invariant in [8].

2. Sen calculated the entropy of BPS black holes in [24] using a Gauss Bonnet term
multiplied to a dilaton field as the higher derivative term, without supersym-
metrizing it. But puzzlingly his result matched that of Cardoso, et al [25, 26],
which was based on the square of the Weyl tensor, which critically depended on
its full supersymmetrization.

Now that we have the full class of Gauss-Bonnet invariant with us, we can check if it
has any contribution to black hole entropy or not.

5.1 Reduction of the New Higher Derivative to Gauss-
Bonnet Term

We want Lagrangian 4.20 to gives us the Gauss-Bonnet invariant exclusively. This can
be done in two ways. One way is to not take the multiplet F0 in the Lagrangian at
all, as explained in section 4.6.1. Another way is to set the lowest q-component of F0,
i.e. A0 to be constant along with setting all the fermions of the theory to 0 consistently,
which requires making them supersymmetric, lest they transform into something non-
zero. This in turn leads to the supersymmetry invariance of the remaining multiplet
components as well. Let us take a brief look at how this works.

Setting the fermion y

0
i to 0, makes A0 supersymmetry invariant (look at equations

3.15). Making y

0
i invariant under supersymmetry, i.e. setting dy

0
i=0, along with setting

A0 to be constant, implies the following for the terms in dy

0
i :

1. In /DA0, the partial derivative vanishes because A0 is constant, and dilatational
and chiral transformations vanish because w = �c = 0 (since F0 is a w = 0
multiplet as mentioned in 4.6).
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2. The last term in the transformation, i.e. 2wA0hi vanishes, because w=0.

3. B0ij and F
0�
ab , being symmetric and anti-symmetric respectively, vanish individu-

ally.

Following the same train of logic, it can be seen that all the components of F0 multiplet
vanish, leaving only the constant A0.

In the higher derivative term 4.20, all the terms except the last two lines involving the
Gauss-Bonnet invariant, contain either a covariant derivative of A0 or another compo-
nent of F0, both of which vanish under the mentioned conditions. Thus, we reduce the
higher derivative to the full class of Gauss Bonnet invariant which can now be studied
exclusively. The Gauss-Bonnet higher derivative invariant that we have is

e�1LGB =A0
⇥ 2

3R
2 � 2RabRab � 6 D2 + 2 R(A)abR(A)ab � R(V)+abi

j R(V)+ab
j
i

+ 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

⇤

(5.1)

The first two terms in it, viz. 2
3R2 � 2RabRab are derived in general relativity, while

the remaining terms, which were previously unknown, come from supersymmetry.

5.2 The AdS2⇥ S2 Background of Extremal Black Holes
We want to study the entropy of extremal (susy/non-susy) black holes that will ap-
pear in N = 2 theory in the presence of the above mentioned supersymmetric Gauss-
Bonnet term. We will use Sen’s entropy function formalism (as discussed in section
2.4) for this purpose.

The near horizon AdS2 ⇥ S2 background for extremal black holes given in [23] by Sen
and Sahoo is as following:

ds2 = v1(�r2dt2 + dr2/r2) + v2(dq

2 + sin2
qdf

2)

FI
rt = eI , FI

qf

= pI sin q, XI = xI , T�rt = v1 w

D� 1
3

R = 0, A
µ

= 0, V i
jµ = 0, W

µ

= 0. (5.2)

Here, eI is the charge conjugate to the electric charge qI of the black holes, and pI is
the magnetic charge of the black holes. v1 and v2 are scaling parameters of the AdS2
and S2 spacetimes respectively. FI

rt and FI
qf

are the only non-zero electromagnetic field
strength tensors for this background. XI are the scalar fields, the lowest-q components
of the vector multiplet in terms of which the entropy function is expressed. T�rt is the
non-zero anti-self dual tensor, obeying the following general relation:

T�µn = � i
2
(
p

�det g)�1
e

µnrs T�
rs

. (5.3)

The rest of the terms in the third line of 5.2 are the usual Weyl and vector multiplet
components and gauge fields introduced in chapter 3.
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5.3 The Gauss-Bonnet Invariant
We substitute the values for the various terms in expression 5.1 from the AdS2 ⇥ S2

near horizon geometry 5.2. The Gauss-Bonnet term gets simplified as following:

e�1L = A0
⇥2

3R
2 � 2RabRab � 6 D2 + 2 R(A)abR(A)ab � R(V)+abi

j R(V)+ab
j
i

+ 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

⇤

(setting the constant A0to 1, a convenient value)

= 2
3R

2 � 2RabRab � 6 D2 + 2 R(A)abR(A)ab � R(V)+abi
j R(V)+ab

j
i

+ 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

(* D = R/3)

= 2
3R

2 � 6 (R/3)2 � 2RabRab + 2 R(A)abR(A)ab � R(V)+abi
j R(V)+ab

j
i

+ 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

(* R(A)ab = 0 and R(V)+ab = 0)

= 2
3R

2 � 2
3R

2 � 2RabRab +
1

128 TabijTab
klTcd

ijTcdkl + TacijDaDbTbcij

= RabRab + 1
128 TabijTab

klTcd
ijTcdkl + TacijDaDbTbcij

= �4
✓

1
v2

1
+

1
v2

2

◆

+
1

32
w2w̄2 + 0

= �4
✓

1
v2

1
+

1
v2

2

◆

+
1
32

w2w̄2 (5.4)

On substituting this higher derivative term into Sen’s entropy function [23], i.e.

E(v1, v2, w,~x,~e,~q,~p) = 2p

✓

� 1
2 ~q.~e�

Z

dqdf

p

�det gL
◆

, (5.5)

it’s contribution to the entropy function of non-supersymmetric black holes comes out
as

EGB = 16p

✓

v2
v1

+
v1
v2

◆

� 1
128

v1v2w2w̄2
�

(5.6)

The two-derivative entropy function calculated by substituting the two derivative La-
grangian 4.10 in expression 5.5 is

E =� pqIeI � pv1v2



i
✓

1
v1
� 1

v2

◆

(xI F̄I � x̄I FI)

�
n i

4
FI J

v12

✓

eI � i
v1
v2

pI � 1
2

x̄Iv1w
◆✓

eJ � i
v1
v2

pJ � 1
2

x̄ Jv1w
◆

+ h.c.
o

�
n i

4
wF̄I
v1

✓

eI � i
v1
v2

pI � 1
2

x̄Iv1w
◆

+ h.c.
o

+

✓

i
8

w̄2F + h.c.
◆�

(5.7)
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Adding the Gauss Bonnet term 5.6 to the pre-existing two derivative entropy function
5.7, we get the full entropy function for extremal black holes to be

E =� pqIeI � pv1v2



i
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v1
� 1

v2

◆

(xI F̄I � x̄I FI)

�
n i

4
FI J

v12

✓

eI � i
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v2

pI � 1
2

x̄Iv1w
◆✓

eJ � i
v1
v2

pJ � 1
2

x̄ Jv1w
◆

+ h.c.
o

�
n i

4
wF̄I
v1

✓

eI � i
v1
v2

pI � 1
2

x̄Iv1w
◆

+ h.c.
o

+

✓

i
8

w̄2F + h.c.
◆

� 16(v2
1 + v2

2) +
1
8

w2w̄2
�

(5.8)

5.4 Contribution to the Entropy of
Supersymmetric Extremal Black Holes

Sen’s entropy function formalism requires entropy function 5.8 to be extremized with
respect to the near horizon parameters, i.e. obey the following extremization equa-
tions:

∂E
∂vi

= 0,
∂E
∂xI = 0,

∂E
∂w

= 0,
∂E
∂eI = 0 , (5.9)

For extremal supersymmetric black holes, these equations are satisfied by a set of equa-
tions known as supersymmetric attractors. The supersymmetric attractors for the two
derivative entropy function 5.7 as given in [23] are as following:

v1 = v2 =
16
w̄w

eI � i
v1
v2

pI � 1
2

x̄Iv1w = 0

F̄I
w̄
� FI

w
= � i

4
qI (5.10)

It can be checked easily that the first equation of 5.10 sets the Gauss-Bonnet term
5.6 to zero. Therefore, the Gauss Bonnet term does not contribute to the entropy of
supersymmetric black holes.

5.5 Contribution to the Entropy of Extremal Black Holes
in the STU Model

Now we will calculate the contribution of our newly found Gauss-Bonnet term to the
entropy functions of extremal black holes in the STU model, that have already been
solved for in [23] using another higher derivative term. Following is the prepotential
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(introduced in section 4.4.1) of the black holes that we are going to consider:

F(X0, X1, X2, X3, Â) = �X1X2X3

X0 � CÂ
X1

X0 (5.11)

where C is a constant and Â = T�µnT�
µn

. For this class of extremal STU black holes,
Sen has redefined the electric and magnetic charges as following:

Q1 = q2, Q2 = �p1, Q3 = q3, Q4 = q0

P1 = p3, P2 = p0, P3 = p2, P4 = q1 (5.12)

The entropy of a special class of these black holes, for which P.Q=0, has already been
calculated by Sen and Sahoo in [23] for both supersymmetric and non-supersymmetric
cases. Let us see whether or not the Gauss-Bonnet term 5.6 contributes to the entropies
of these black holes.

5.5.1 Entropy of Supersymmetric STU Black Holes

For supersymmetric black holes, the definiteness condition for the electric and mag-
netic charges dictates that Q2P2 > (Q.P)2. For the special class of black holes that we
are considering, it is required that Q2 > 0 and P2 > 0. The representative element
taken in [23] is

P1 = P3 = P0, Q2 = Q4 = �Q0, P2 = P4 = Q1 = Q3 = 0, Q0, P0 > 0 (5.13)

where, by the assignations 5.12, the non-zero qI and pI take the values:

p1 = Q0, p2 = P0, p3 = P0, q0 = �Q0 (5.14)

Due to the scale invariance of this theory, the parameter w is gauge fixed by setting
w = 1. The extremized values of the near-horizon parameters of this black hole are
given in [23], which have been verified by us. They are:

x0 =
1
8

q

P2
0 + 256C, x1 =

i
8

Q0, x2 =
i
8

P0, x3 =
i
8

P0,

e0 =
q

P2
0 + 256C, e1 = e2 = e3 = 0 , w = 1 ,

v1 = 16, v2 = 16 (5.15)

The leading order solution for black hole entropy is calculated by setting the higher
derivative term in the entropy function to 0. The solution 5.15 for entropy holds for
the two-derivative entropy function 5.7, thus giving the leading order solution for 5.8.

Now we need to check whether the Gauss-Bonnet term 5.6 takes any contributing
value on the leading order solution or not. For this, we substitute the values of the
near-horizon parameters 5.15, into our Gauss Bonnet term 5.6. It can be seen explicitly
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what value it takes in the following steps:

EGB|BPS = 16p

✓

v2
v1

+
v1
v2

◆

� 1
128

v1v2w2w̄2
�

= 16p

✓

16
16

+
16
16

◆

� 1
128

(16)(16)(1)2(1)2
�

= 0 (5.16)

Therefore, now we see for the specific case of a class of extremal STU BPS black holes
that the Gauss-Bonnet term 5.6 does not contribute to their entropy.

5.5.2 Entropy of Non-supersymmetric STU Black Holes
For non-supersymmetric black holes, the definiteness condition for the electric and
magnetic charges dictates that Q2P2 < (Q.P)2. For the special class of black holes that
we are considering, it is required that Q2 < 0 and P2 > 0. The representative element
taken by Sahoo and Sen in [23] is

P1 = P3 = P0, Q2 = �Q4 = Q0, P2 = P4 = Q1 = Q3 = 0, Q0, P0 > 0 (5.17)

where, by the assignations 5.12, the non-zero qI and pI take the values:

p1 = Q0, p2 = P0, p3 = P0, q0 = Q0 (5.18)

w is gauge fixed by setting w = 1
2 . It has been found convenient to rescale the en-

tropy function by expressing it in terms of real variables, using the following change
of variables:

x0 = P0y0, x1 = iQ0y1, x2 = iP0y2, x3 = iP0y3, e0 = P0ẽ0 (5.19)

All of the newly introduced variables y0, y1, y2, y3 and ẽ0 are real. After this change of
variables, the leading order entropy function 5.7 comes out to be as

E = pQ0P0

"

� ẽ0 � v1
v2

y1 + y2 + y3

y0 +

⇢

v1
y0 �

ẽ0

(y0)2

�

(y1y2 + y2y3 + y1y3)

+

⇢

� (ẽ0)2v2
v1(y0)3 +

ẽ0v2
(y0)2 + 8

(v2 � v1)
y0 � v1v2

2y0

�

y1y2y3

#

(5.20)

After extremizing this entropy function with respect to the near-horizon parameters,
the values taken by the parameters, as found in [23] and verified by us, are

v1 = 16, v2 = 16, ẽ0 = �1, y0 =
1
8

, y1 =
1
8

, y2 =
1
8

, y3 =
1
8

(5.21)

Now again we check whether the Gauss-Bonnet term 5.6 takes any contributing value
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on this leading order solution or not. Substituting the values of the near-horizon pa-
rameters 5.21 into the Gauss-Bonnet term 5.6, we find

EGB|non�BPS = 16p

✓

v2
v1

+
v1
v2

◆

� 1
128

v1v2w2w̄2
�

= 16p

✓

16
16

+
16
16

◆

� 1
128

(16)(16)
✓

1
2

◆2✓1
2

◆2�

= 16p

✓

2� 1
8

◆

= 16p

✓

15
8

◆

= 30p 6= 0 (5.22)

This shows us that the supersymmetric Guass-Bonnet invariant found by de Wit, et al
in [8] does contribute to the entropy of extremal non-supersymmetric black holes.

This result tells us that the Gauss-Bonnet term could end up being quite interesting
on behalf of supersymmetric invariance, for telling us more about the entropy of non-
supersymmetric black holes.
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Chapter 6

Conclusions and Discussions

We had begun with the question of whether the new Gauss-Bonnet term found by
Butter, et al [8] has any contribution in the entropy of extremal black holes. Now we
have seen that the new supersymmetric Gauss-Bonnet term does not contribute to the
entropy of extremal supersymmetric black holes, just like all the other higher deriva-
tive terms found so far. But the term is non-zero for extremal non-supersymmetric
black-holes and hence can potentially contribute to their entropy.

Next, we have to find out the correction to the entropy of non-supersymmetric black
holes in the presence of this Gauss-Bonnet term. For this purpose, we need to find
the corrected near horizon geometry. Since we treat the term perturbatively, the form
of the near horizon geometry will remain unchanged, but all the parameters will get
corrections due to the new term. We aim to find the higher order corrections to the
leading order solution, using entropy function formalism. After that, we should apply
the same procedure all over again for the complete higher derivative Lagrangian, to
find the net contribution to the entropy of non-supersymmetric black holes. It would
be interesting to see if the entropy matches the value predicted by Kraus and Larsen
for non-supersymmetric black holes, which is so far a mystery.

We know that fully BPS black holes do not receive any quantum corrections from the
supersymmetric higher derivative invariants, while non-BPS black holes do. These
two case are at the two extreme ends of BPS black holes. Once the effect of higher
derivative corrections on these two cases has been seen, one could also try to explore
the possible answers to the same questions for intermediate cases, i.e. for quarter-BPS
and half-BPS black holes. This means whether breaking quarter or half of supersym-
metry would be enough to get quantum corrections or not, and why. Several other
such questions regarding the impact of the higher derivative corrections on black hole
entropy and how to play around with the higher derivative terms, remain open.
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Appendix A

A.1 Superconformal Covariant Derivative

The derivative covariant under linearly transforming bosonic symmteries, is given as

D
µ

e

i =
�

∂

µ

� 1
4 w

µ

cd
gcd +

1
2 b

µ

+ 1
2 i A

µ

�

e

i + 1
2 Vµ

i
j e

j . (A.1)

The full superconformally covariant derivative is given by D
µ

which, in addition to
D

µ

, also contains derivatives with respect to fermionic symmetries and superconfor-
mal boost (which transforms non-linearly).

A.2 Tangent Space Derivatives in Superspace

The tangent space derivatives in flat superspace are as following:

∂a =
∂

∂xa , D
ai =

∂

∂q

ai + i(sa)
aȧ

q̄

ȧ

i
∂

∂xa , D̄ȧi =
∂

∂q̄

ȧi
+ i(s̄a)ȧa

q

a

i ∂

∂xa . (A.2)

The curved superspace extensions of these derivatives are notated byra,r
ai and r̄

ȧi
respectively.

The 2nd order anti-symmetric tangent space derivatives in flat superspace are given
as:

Dij := �D
a(iD

a

j) , D
ab

:= �#

ijD(aiDb)j (A.3)

The 2nd order anti-symmetric tangent space derivatives in curved superspace are given
as:

rij := �r
a(ira

j) , r
ab

:= �#

ijr(airb)j (A.4)
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A.3 Transformation of the independent Weyl gauge fields
in superconformal group

The transformation rules of the Weyl multiplet under Q-supersymmetry, S-supersymmetry
and conformal boosts are as following:

de
µ

a = ē

i
g

a
y

µi + ēi g

a
y

µ

i ,

dy

µ

i = 2D
µ

e

i � 1
8 Tab

ij
g

ab
g

µ

ej � g

µ

h

i

db
µ

= 1
2 ē

i
f

µi � 3
4 ē

i
g

µ

ci � 1
2 h̄

i
y

µi + h.c. + La
Ke

µa ,

dA
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= 1
2 iēi

f
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3
4 iēi

g

µ
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1
2 ih̄i

y

µi + h.c. ,
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i
j = 2 ējfµ

i � 3ējgµ

c

i + 2h̄j y

µ

i � (h.c. ; traceless) ,

dTab
ij = 8 ē

[iR(Q)ab
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dc
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12 g

ab /DTab
ij
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i
jg
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e
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3 iR
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(A)gµn

e

i + De

i + 1
12 gabTabij

hj ,

dD = ē

i /Dci + ēi /Dc

i . (A.5)

A.4 Covariant Curvatures

The covariant curvatures of all possible transformations in the superconformal group
are as following:

R(P)
µn

a = 2 ∂[µ e
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a + 2 b[µ e
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(A.6)
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A.5 Definition of the non-independent Weyl gauge fields
in superconformal group

On imposing the conventional constraints

R(P)
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the gauge fields w

µ

ab, f
µ

a and f

µ

i get modified by the addition of some extra terms in
their definitions and are given as following:
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ai
g

µ

y

b
i + h.c.)

f
µ

a = 1
2 R(w, e)

µ

a � 1
4
�

D + 1
3 R(w, e)

�

e
µ

a � 1
2 iR̃(A)

µ

a + 1
16 T

µb
ijTab

ij

f

µ

i = 1
2

⇣

g

rs

g

µ

� 1
3 g

µ

g

rs

⌘ ⇣

D
r

y

s

i � 1
16 Tabij

gabg

r

y

sj +
1
4 g

rs

c

i
⌘

(A.8)

A.6 Transformation of the non-independent Weyl gauge
fields in superconformal group

The transformation of the superconformal gauge fields w

µ

ab, f
µ

a and f

µ

i under the
superconformal group are as following:
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A.7 Product of two Chiral Multiplets

The product of two chiral multiplets is given as:
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A.8 Composite Chiral Multiplet
A composite chiral multiplet G(F) written in terms of the components of another chi-
ral multiplet F is given as follwing:
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