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Abstract

We explore the changes in the phase diagram of spin-1 Bose gas due to incorporation of corre-
lations and the finite size of the system. We find that the correlations lead to a significant shift in
the phase-boundaries referring to second order phase transitions and this effects becomes further
amplified when the number of particles decreases. Further, we study the response of various initial
conditions corresponding to different phases after a sudden quench in the optical trap frequency in
both within and beyond the mean field limit. We find that irrespective of the initial state there is
an induced breathing motion of a same frequency which is also equal for all spin states in either
limit. Additionally, the incorporation of correlations lead to the formation of filament like struc-
tures. Moreover, for the Broken axisymmetry phase, characterized by occupation of all spin states,
we even notice spin flip dynamics. To further quantify the effect of correlations we also study the
corresponding one-body and two-body correlation function. Finally, we also find that these fila-
ments like structure become more prominent when one decreases the particle number or increases
the spin-independent interaction strength of the system.

xv



xvi



Contents

Abstract xv

1 Introduction 1

2 Methodology 5

3 Results and Discussion 9

3.1 Phase Space Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Quench Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Conclusions and Outlook 25

5 Appendix 27

5.1 Natural Population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 Quench analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xvii



xviii



Chapter 1

Introduction

Since the first realisation of an optically trapped Bose-Einstein condensate with spin degree of
freedom in 23Na atoms [1], these systems have been among the most actively studied topics within
the ultracold quantum gases community [2–5]. The rich phase diagram emanating within these
systems [6–9] render them particularly important for understanding quantum phase transitions.
Another interesting consequence of the spin degree of freedom is the presence of spin dynamics in
these systems through spin-exchange collision. This involves coherent and reversible transfer of
atoms between the magnetic sublevels of the system while conserving their total spin. Such spin
dynamics have been confirmed in spin-1 87Rb [10] and 23Na [6], spin-2 87Rb [11, 12] as well as
spin-3 52Cr [13].

Considering the rich physics associated with spinor Bose gas, they have been subjected to
extensive research. Notable examples include, interferometery applications [14,15], entanglement
studies [16, 17], formation of spin domains and spin textures [18–20], realising soliton complexes
[21–25] and the study of universality in spin-dynamic [26–28], however such studies mainly rely
on the mean field approximation. Such widespread applications of these system motivates us to
study their ground state, as well as, dynamical behavior in the case that correlations are properly
accounted for.

The rich phase space structure of spinor Bose gas has been a topic of active research [29–31].
These studies include, decay to ground state of spin-1 Bose gas through quantum tunneling [32],
the study of the phase diagram for a spin-2 Bose gas using spin exchange dynamics [33], as well
as, induction of phase separation like phenomena in spin-3 Bose gas [34]. Motivated by the rich
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phase space structure of these systems, we unravel the alteration of the phase space properties and
quench dynamics due to the influence of correlation effects for spin-1 Bose gas by systematically
comparing the structures emanating within and beyond the mean field approximation. Further, we
also explore the changes in the phase space because of the finite size of the system. We observe that
even though there in no noticeable change in the first order transitions, the second order transitions
are significantly altered when the correlations are taken into account. The transition boundary
for second order transitions is considerably shifted for both ferromagnetic and anti-ferromagnetic
interactions. Moreover, we find that the finite size of the system plays a vital role as the alterations
because of correlations being more prominent for decreasing particle number.

The presence of multiple phases and the spin dynamics make such systems interesting ground
for quench studies [35–39]. Here, we quench the trapping frequency of spin-1 Bose gas system.
We study how particles in different phase space state respond to the quench, as well as, how this be-
havior changes with change in particle numbers and interaction strength, both within and beyond
the mean field approximation. In particular, we observe that the quench induces breathing mo-
tion [40–42] into the system. Interestingly, the different spin states have same period of oscillation
and even spin fluctuations [43] are present for a particular initial phase space state. Additionally,
we observe that incorporation of correlations lead to formation of filament [42, 44] like structure
in the density profile of the system which become more prominent with a decrease in the number
of particles, as well as, an increase in the interaction strength. To quantify the effect of correla-
tions, we further employ the one-body and two-body correlation function. We find that a particle
within the filaments are coherent while between neighbouring filaments we have loss of coher-
ence. Moreover, we find that two particles within the filaments are anti correlated while particles
between neighbouring filaments are correlated to each other. Further, we see how the changes in
filaments number and structure due to a change in interaction strength and particle number shows
up in two body correlation function.

Our system comprises of interacting Spin-1 Bose gas of mass M trapped in a 1D harmonic trap
and we aim to investigate the system in mean field as well as beyond the mean field regime. The
many body (MB) Hamiltonian of such a system can be written as the sum Ĥ = Ĥ0 +V̂ , where the
non interacting part of the Hamiltonian Ĥ0 is

Ĥ0 =
∫

dx
1

∑
α,β=−1

ψ̂
†
α(x)

[
− h̄2

2M

( d
dx

)2
+

1
2

Mω
2x2− p( fz)αβ +q( f 2

z )αβ

]
ψ̂β (x), (1.1)
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here ψ̂α(x) denotes the bosonic field operator with spin α = -1,0,1, ω is the trapping frequency
and fz corresponds to the z-component of the spin matrix whose elements are ( fz)mm′ = mδmm′ .
Here p =−gµβ B is the linear zeeman where g is the Landé hyperfine g-factor, µb = eh̄/2me (e > 0
is the charge, me is the electron mass) is the Bohr magneton and B is the external magnetic field
which is applied in z direction. While, q is the quadratic zeeman term which has contributions
from the external field (qB) and the microwave field (qMW ), tuned independent of each other.
Considering the system is extremely dilute we consider only the binary interactions for the inter-
acting part of the Hamiltonian which is given by

V̂ =
1
2

∫
dx
[
c0 : n̂2(x) : +c1 : F̂2(x) :

]
. (1.2)

Here : : denotes normal ordering which leads to the annihilation operators being placed to the right
of creation ones. The interaction parameters are expressed as

c0 =
4π(a0 +2a2)

3a⊥
and c1 =

4π(a0−a2)

3a⊥
(1.3)

where a0 and a2 are the three dimensional s-wave scattering lengths of the atoms in scattering
channels with the total spin F=0 and F=2 [45]. Here, c1 can be tuned by using the microwave-
induced Feshbach resonance [46]. While, the total-spin operator reads

: F̂2 :=
∫

dx
∫

dy
1

∑
α,β ,γ,δ=−1

[
∑

i∈{x,y,z}
( fi)αβ ( fi)γδ

]
ψ̂

†
α(x)ψ̂

†
γ (y)ψ̂δ (y)ψ̂β (x). (1.4)

Finally, a⊥ =
√

h̄/(Mω⊥) is the transverse confinement length and ω⊥ the corresponding trapping
frequency. As the total density operator n̂(x) reads

n̂(x) =
1

∑
α=−1

ψ
†
α(x)ψα(x), (1.5)

the normal ordered n2(x) in Eq.(1.2), expressed in terms of field operator becomes

: n̂2(x) :=
1

∑
α,β=−1

ψ
†
α(x)ψ

†
β
(x)ψβ (x)ψα(x). (1.6)
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While the spin density operator F̂i(x) posses the form

F̂i(x) =
1

∑
α,β=−1

( fi)αβ ψ
†
α(x)ψβ (x). (1.7)

where i ∈ {x.y.z}, ( fx)αβ = δα,β+1 + δα,β−1 and ( fy)αβ = −iδα,β+1 + iδα,β−1. This leads to the
normal ordered F̂2(x) in Eq.(1.2) become

: F̂2(x) :=
1

∑
α,β ,γ,δ=−1

[
∑

i∈{x,y,z}
( fi)αβ ( fi)γδ

]
ψ

†
α(x)ψ

†
γ (x)ψδ (x)ψβ (x). (1.8)

Further, we scale the many-body Hamiltonian in the units of h̄ω⊥. Following this, the corre-

sponding length, time and interaction strengths are provided in terms of
√

h̄
mω⊥

, ω
−1
⊥ and

√
h̄3

ω⊥
M

respectively.

As evident from above, spin-1 Bose gas form interesting experimentally realisable system. The
possibility to easily tune various parameters experimentally makes them particularly interesting to
study. In this work as mentioned, we study both the ground state, as well as, dynamical properties
of spin-1 Bose gas. In Chap. 2 we describe our numeric method ML-MCTDHX, this can be
used to simulate numerous quantum systems in the few particle limit. In Chap. 3 we present and
discuss our results for the phase space analysis, as well as, quench dynamics. In Chap. 4 we give
the conclusion and outlook for our work. Finally, in Chap. 5 we provide some additional data to
support our results.

4



Chapter 2

Methodology

Our approach to solve the many body Schrödinger equation
(
ih̄∂t− Ĥ

)
|Ψ(t)〉 = 0 relies on the

Multi-layer Multi-Configuration Time-Dependent Hartree method for atomic Mixtures [47, 48]
(ML-MCTDHX). ML-MCTDHX is an ab-initio variational method for solving the time-dependent
MB Schrödinger equation of atomic mixtures consisting of Bosonic or Fermionic species. The key
idea of ML-MCTDHX lies in the usage of a time-dependent and variationally optimized MB basis
set, that allows for the optimal truncation of the total Hilbert space. This enables us to capture the
important correlation effects in a computationally feasible manner. Together, the moving varia-
tionally optimised basis set coupled with the multi-layer nature of the anzat, enables the adaptation
of Ml-MCTDHX to a system specific method, with increased computational efficiency.

The ansatz for our MB wavefunction, |Ψ(t)〉, is taken as a linear combination of time-dependent
permanents |~n(t)〉, with time-dependent weight coefficients A~n(t)

|Ψ(t)〉= ∑
~n

A~n(t)|~n(t)〉. (2.1)

Each time-dependent permanent is expanded in terms of M time-dependent variationally optimized
single-particle spin-orbitals (SPSOs) Φ j(x,α; t), α = +1,0,−1, j = 1,2, . . . ,M with occupation
numbers~n = (n1, . . . ,nM). Subsequently, the SPSOs are expanded in a basis spanned by m distinct
time-dependent single-particle functions (SPFs) {φk(x; t)} possessing information only on the spa-
tial state of the particle, and are independent on the three-dimensional basis for the S = 1 degree
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of freedom {|+1〉, |0〉, |−1〉}. Therefore the SPSO read

Φ j(x,α; t) =
m

∑
k=1

B j
kα
(t)φk(x; t), (2.2)

where B j
kα
(t) refer to the corresponding time-dependent expansion coefficients. Finally, each

φk(x; t) is discretized in terms of a discrete variable representation (DVR). The time-evolution of
the N-body wavefunction under the effect of the Hamiltonian Ĥ reduces to the determination of the
A-vector coefficients, the B j

kα
(t) expansion coefficients for the SPSOs and the SPFs, which in turn

follow the variationally obtained ML-MCTDHX equations of motion [47, 48]. The latter consists
of a set of

(N+M−1
M−1

)
ordinary linear differential equations for the A-vector coefficients, coupled to

M and m non-linear integrodifferential equations for the SPSOs and SPFs respectively. In the limit-
ing case of M = 1 and m = 3, the method reduces to the time-dependent Gross-Pitaevskii equation
for a three-component system. Indeed within this limit only a single SPSO is involved as the
MB anzat is given by φ(x1,α1,x2,α2, ...,xnαn) = ∏

N
i=1 Φ1(xi,αi, t). The corresponding equation

of motion for spin +1 and spin -1 is

i∂tΦ1(x,±1; t) =
(
− 1

2
d2

dx2 +
1
2

ω
2x2− p±q

)
Φ1(x,±1; t)+ c0

1

∑
α=−1

|Φ1(x,α; t)|2Φ1(x,±1; t)

+c1(|Φ1(x,±1; t)|2 + |Φ1(x,0; t)|2−|Φ1(x,∓1; t)|2)Φ1(x,±1; t)+ c1|Φ1(x,0; t)|2Φ
∗
1(x,∓1; t),

(2.3)

and for the spin 0 reads

i∂tΦ1(x,0; t) =
(
− 1

2
d2

dx2 +
1
2

ω
2x2
)

Φ1(x,0; t)+ c0

1

∑
α=−1

|Φ1(x,α; t)|2Φ1(x,0; t)+ c1(|Φ1(x,+1; t)|2

+|Φ1(x,−1; t)|2)Φ1(x,0; t)+2c1Φ1(x,+1; t)Φ∗1(x,0; t)Φ1(x,−1; t).

(2.4)

In the case of M = 3Mp, m = Mp, where Mp is the dimension of the DVR basis, the ML-MCTDHX
method is equivalent to a full configuration interaction approach (commonly referred to as “exact
diagonalization” in the literature).

For our implementation we have used a sine DVR as a primitive basis for the spatial part
of the SPFs. Note that the sine-DVR inherently introduces hard-wall boundary conditions at its
endpoints. In particular we have employed x± = ±40 for N = 50 particles, x± = ±35 for N =
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20 particles and x± = ±25 for N = 5 particles. We have ensured while choosing these boundary
points that their location is such that it does not affect our results. To study the dynamics, we
propagate the wavefunction by utilizing the appropriate Hamiltonian within the ML-MCTDHX
equations of motion. To verify the accuracy of the numerical integration, we impose the following
overlap criteria |〈Ψ(t)|Ψ(t)〉−1| < 10−8 for the total wavefunction and

∣∣〈Φi|Φ j〉−δi j
∣∣ < 10−9,∣∣〈φi|φ j〉−δi j

∣∣ < 10−9 for the SPSOs and SPFs respectively. In addition, the accuracy of the ML-
MCTDHX approach has been verified by calculating the behaviour of the system for different
values of M and m. More specifically, in the following we employ M = 4, m = 6 for the N = 50
case, M = 6, m = 6 for the N = 20 case and M = 6, m = 6 for the N = 5 case.
Further, for our simulations we fix the value of c0 = 1, while the experimentally realisable value c1

= 0.018
√

h̄3
ω⊥/M, corresponding to the interaction between 23Na atoms, is taken for exploring

the an anti-ferromagnetic c1 < 0 condensate. Whereas within ferromagnetic case we consider a

value of c1 = -0.0047
√

h̄3
ω⊥/M which corresponds to 87Rb atoms.

We further show in Appendix that there is substantial occupation for orbitals corresponding to
the beyond mean field limit for the phase space, as well as, the quench studies. This occupation
leads to very interesting physics which we shall report below.
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Chapter 3

Results and Discussion

3.1 Phase Space Analysis

The interplay between the sign of c1 and various values of p,q results in a rich phase space diagram
in the thermodynamic limit, when the mixing between the spatial and spin degrees of freedom of
the spin-1 Bose gas are ignored, see Fig. 3.1. When considering anti-ferromagnetic interactions
c1 > 0, there are two ferromagnetic phases with particles residing either in the fz =+1 (F1) or the
fz =−1 (F2) state. Moreover, there is an anti-ferromagnetic phase (AF), in which the particles are
present in both the fz =+1 and the fz =−1 state while the fz = 0 state remains unoccupied. Also,
there is the Polar phase (P) which comprises of particles being entirely in the fz = 0 state and is
involved in the first order transitions. For ferromagnetic interactions namely c1 < 0 one additional
phases emerge, the broken-axisymmetry phase (BA) which comprises of all the three spin states
being occupied. As is evident, there are numerous quantum phase transitions possible for this
system, see Fig. 3.1. These transitions between the various phases, can be classified according to
their continuous (second order) or non-continuous (first order) character. The first order transitions
are characterized by the abrupt change of the spin-state that contributes to the ground state, as the
transition point is crossed. For instance, within the F1 state all of the particles occupy the spin-state
fz = 1 while within the P state all particles occupy the state fz = 0. Namely along the curve (see
red line in Fig. 3.1(a)) of the F1 to P phase transition the spin-state contributing to the ground state
changes from fz = 1 to fz = 0 without accessing a superposition state of the fz = 0 and the fz = 1
components. In contrast, for second order phase transitions the ground state transits from a state
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Figure 3.1: Phase diagram of the spin-1 Bose gas for (a) c1 > 0, (b) c1 = 0 and (c) c1 < 0 and
varying linear p and quadratic q Zeeman shift parameters in the thermodynamic limit where the
hybridization of spin and spatial degrees of freedom is neglected. Red-solid lines denote the first-
order phase transition boundaries, while the green-dashed lines denote the second-order phase
transition boundaries and n refers to the density of Bose gas. The phase diagram comprises of two
ferromagnetic phases (F1, F2), an anti-ferromagnetic phase (AF), a polar phase (P) and a broken
asymmetry phase (BA) explained explicitly in the text.

characterized by the occupation of a single-spin state to a superposition one where a second spin-
state acquires finite population as the phase boundary is crossed. For instance, along the transition
curve from F2 to the AF state (see the green-dashed lines in Fig. 3.1(a)), the system initially
occupies fz = −1 state and then resides in a superposition of the fz = 1 and the fz = −1 states.
Below, we compare the mean field and beyond mean field phase structure of a spin-1 Bose gas
and explore the effect of the finite size of the system on the respective phase diagram. Hereby we
focus on the continuous phase transitions, and explore their alterations due to finite particle number
and the presence of correlations. Indeed, the emergence of correlations when beyond mean field
effects are considered leads to a substantial change in the phase structure corresponding to second
order transitions as we shall show explicitly below. We remark that the impact of correlations has
also been explored across the corresponding first order transitions and it has been found that their
inclusion does not lead to a substantial change of their boundaries. See for instance Fig. 3.2 where
we shown the 〈F̂z〉 and 〈P̂〉 for the transition from F2 to P to F1 for increasing p and constant
q = 0.5 where the interaction is given by c1 = 0.

In particular for anti-ferromagnetic interactions c1 > 0, we focus on the second order phase
transitions which are known to occur in the q < 0 region and involve the phases F1, F2 and AF,
see Fig. 3.1(a). For all of these phases we expect the fz = 0 state to be unoccupied. To explicitly
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Figure 3.2: (a) corresponds to 〈F̂z〉 for the first order transitions both within and beyond the mean
field approximation and different N (see legend). The transitions is among the F2, P and F1 phases
for increasing p, constant q = 0.5 and c1 = 0. While, (b) shows 〈P̂〉 for the same transition. Note,
as the lines are overlapping they can’t be differentiated in the figure.

demonstrate that the fz = 0 state remains unoccupied throughout this transition we employ the
“polar state operator” that reads

P̂ = ∑
αβ

∫
ψ̂

†
α(x)P

o
αβ

ψ̂β (x)dx = n̂o− (n̂1 + n̂−1).

Here P0
αβ

= (1− 2|α|)δαβ , with α,β ∈ {−1,0,1} and n̂i corresponds to the number operator of
the ith spin state. The expectation value of the polar-state operator 〈P̂〉, quantifies the difference
between the number of particles in the fz = 0 state to that of the ones in the fz = ±1 state. Thus,
for the above-mentioned phases i.e, F1, F2 and AF, one expects the 〈P̂〉 = −1 which is verified
in Fig. 3.5(a) both within the mean field, as well as, in the beyond mean field case. In order to
examine the phase transitions between the above described phases, we further employ as an order
parameter the expectation value of the spin-z operator

F̂z = ∑
αβ

∫
ψ̂

†
α(x)( fz)αβ ψ̂β (x)dx = n̂1− n̂−1. (3.1)

Accordingly, 〈F̂z〉 = 1 and 〈F̂z〉 = −1 indicate the F1 and the F2 phase respectively while if
−1 < 〈F̂z〉 < 1 then the AF phase for c1 > 0 interaction. The transition comprises of the sys-
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Figure 3.3: 〈F̂z〉 for the second order transitions both within and beyond the mean field approxi-
mation and different N (see legend). (a) corresponds to the transitions among the F2, AF and F1
phases for increasing p/c1n, constant q/c1n and c1 > 0. While, 〈F̂z〉 for ferromagnetic interactions
(c1 < 0) and transitions (b) among F2, BA and P for increasing q/|c1|n and constant p/|c1|n, (c)
among F2, BA, P, BA and F1 and (d) among F2, BA and F1 for increasing p/|c1|n and constant
q/|c1|n.

tem transforming continuously from F2 to the F1 state via the AF state as p/c1n is increased for a
fixed negative q/c1n. Note that here n = ∑α〈ψ

†
α(x = 0)ψα(x = 0)〉 is the total density at the trap

centre in the mean field. Our results regarding 〈F̂z〉 are presented in Fig. 3.3(a). We find that the
range of p/c1n values where the AF state is accessed decreases when the correlations are included,
as the point of transition is shifted towards p/c1n = 0 in the latter case, compare in particular the
MF and MB results for N = 5,20 and 50 particles in Fig. 3.3(a). Note that within the AF phase

12



Figure 3.4: Second order transitions in the mean field approximation and N = 500 particles. (a)
corresponds to 〈F̂z〉 for the transition among the F1, AF and F2 phases for increasing p/c1n, con-
stant q/c1n =−0.5 and c1 > 0. While, 〈F̂z〉 for ferromagnetic interactions (c1 < 0) and transitions
among F2, BA and P for increasing q/|c1|n and constant p/|c1|n = 0.4 is shown in (b), (c) shows
〈P̂〉 for c1 < 0 and the transition P, BA and F1 occurring at fixed p/|c1|n = 0 and increasing q/c1n,
(d) among F2, BA and F1 for increasing p/|c1|n as q/|c1|n = 1.8 is constant for c1 < 0.

〈F̂z〉 increases roughly linearly with p. Furthermore, we observe that the transition threshold in
terms of p/c1n, also, decreases as the particle number decreases (compare the case of N = 5 to
the N = 20,50 particles). As depicted in Fig. 3.1, the phase space transition boundary is known to
occur at p/c1n = ±1 [4] but due to the finite size effects emanating in our system, the transition
occurs for p/c1n < 1, see for instance that for N = 5 particle in Fig. 3.3(a), here the transition
takes place at p/c1n = 0.6 in the MF limit. To confirm the presence of these finite size effects, we
have simulated the behavior of N = 500 bosons within the mean field approximation for varying
p/c1n, see Fig. 3.4(a). In this case the transition indeed, occurs for p/c1n≈ 1.
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Figure 3.5: 〈P̂〉 for the second order transitions both within and beyond the mean field approxima-
tion and different N (see legend). (a) corresponds to the transition among the F1, AF and F2 phases
for increasing q/c1n, constant q/c1n =−0.5 and c1 > 0. While, 〈P̂〉 for ferromagnetic interactions
(c1 < 0) and transitions (b) among F2, BA and P for increasing q/|c1|n and constant p/|c1|n = 0.4,
(c) among F2, BA, P, BA and F1 and (d) among F2, BA and F1 for increasing p/|c1|n as q/|c1|n
is constant.

For the ferromagnetic interactions c1 < 0 there are three distinct second order phase transitions,
see Fig. 3.1(c). The involved phases corresponds to the F1 and F2, as well as P and BA phases.
Since the Polar phase (P) comprises of particles being entirely in the fz = 0 component, here 〈P̂〉=
1. While, the broken-axisymmetry phase (BA) comprises of all the three spin states being occupied
and refers to 〈P̂〉 ∈ (−1,1). Fig. 3.3(b) shows 〈F̂z〉 for fixed p/|c1|n=−0.4 and increasing q/|c1|n.
Here, the transition from a state within F2 to a P one via a monotonous increase of 〈F̂z〉 through
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the BA phase is observed. The phase transition between the F2 and BA phases is expected at
p = −q [4]. Indeed our simulations verify this, both within the mean field and the beyond mean
field level, as well as, for different particle numbers [Fig. 3.3(b)]. The phase transition from
BA to P exhibits a similar behavior to the phase transition in the anti-ferromagnetic c1 > 0 case
[Fig. 3.3(a)], with the transition point shifting towards lower q values and the effect being more
prominent as the particle number decreases upon including correlations, compare the MF and MB
limit for N = 5,20 and 50 particles in Fig. 3.3(b). Due to the non-zero occupation of the fz = 0
state this behaviour is also imprinted in 〈P̂〉, see Fig. 3.5(b). Furthermore, we note that one expects
the transition from BA to P phase to occur at q/|c1|n = 2.07 in the thermodynamic limit [4], see
also the behavior of this transition boundary in Fig. 3.1(c). This is not observed in our system
owing to it’s finite size effects. To confirm this, we calculate the behavior of N = 500 particles
in mean field limit, see the inset of Fig. 3.4(b). Indeed one finds that for N = 500 particles, this
transition occurs for q/|c1|n≈ 2.07, thus confirming that the above-mentioned behavior is indeed
a finite size effect.

Fig. 3.3(c), illustrates 〈F̂z〉 for the phase transitions taking place for fixed q/|c1|n= 1.8, varying
p/|c1|n and a ferromagnetically interacting c1 < 0 Bose gas. In this case several phase transitions
are expected in the thermodynamic limit as the system transits from F1 to BA and finally to P
with 〈F̂z〉 monotonously decreasing for decreasing p > 0. Additionally, if p further decreases to
p < 0 the 〈F̂z〉 decreases as a result of the transition between P and BA phase, and for even lower
p the system eventually transits from the BA to the F2 phase, see q/|c1|n > 2 in Fig. 3.1(c). The
transitions between F1 and BA as well as, BA and F2 occur at p = q and p =−q respectively [4],
which is unaltered in both the MF and MB case [Fig. 3.3(c)]. Note that in the mean field case
and by ignoring the hybridization between the spatial and spin state, one expects that the P state
is only accessed for fixed q/|c1|n > 2 [4]. However, in our case the P phase can be accessed for
q/|c1|n = 1.8. Indeed, the phase transition boundaries between P and BA shift away from the
p = 0 when one considers the correlated case and thus the range where the BA phase is accessed
is reduced in the latter-case see Fig. 3.5(c). In particular for the N = 5 case these transition points
occur at p/|c1|n =±1.44 in the MB case compared to p/|c1|n =±0.96 in MF limit. In addition,
decreasing the number of bosons also favors the transition towards the P state, compare the case
of N = 5,20 and 50 particles in Fig. 3.3(c). Let us remark here, that the behaviour exhibited for
decoupled spin and spatial degrees of freedom [4] is realized in the large particle limit of our setup.
In particular, we have simulated the MF behavior of N = 500 particles for p/|c1|n = 0 and varying
q, see Fig. 3.4(c). Here, we observe the transition point to the P state which signifies the onset
of transitions as the ones depicted in Fig. 3.5(c) is at q/|c1|n ≈ 2 agreeing with the theoretical
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predictions of Ref. [4], and thus confirming the presence of finite size effects. To support our
arguments, we also show the behavior of N = 500 particles for fixed q/|c1|n = 1.8. It becomes
evident that the shape of 〈P〉 agrees with the thermodynamic limit, compare Fig. 3.4(d) and Fig.
3.5(c) with the expected thermodynamic behavior shown in Fig. 3.1(b). The later further assures
that this behavior is a finite size effect.

Turning to the second order phase transition from state F2 to F1 through BA for fixed q/|c1|n=
0.8 and c1 < 0, we present 〈F̂z〉 for varying p/|c1|n in Fig. 3.3(d). In the thermodynamic limit
phase transitions between the ferromagnetic phases (F1, F2) and BA to occur at p = q and p =−q

respectively [4], here 〈F̂z〉 decreases monotonously for decreasing p/|c1|n within the BA phase.
In accordance with the above discussed second order transitions [Fig. 3.3(b)-3.3(c)], we see that
these phase boundaries indeed occur at p = ±q and their positions are not significantly altered
when correlations are taken into account [Fig. 3.3(d)]. Interestingly, in the correlated case and for
N = 5 bosons, the transition from the BA to the P state and vice versa is observed for p/|c1|n= 0.35
and p/|c1|n = −0.35 respectively [Fig. 3.3(d) and 3.5(d)]. This effect can be understood due to
the fact that the P phase is favorable for smaller values of q/|c1|n as the particle number decreases
when correlation effects are included. For the remaining cases, there are minor changes in the
value obtained by 〈F̂z〉 within the BA phase occurring between the MB and MF cases, compare
the region of BA state between the MB and the MF limit for N = 20,50 particles in Fig. 3.3(d).
Similar conclusions can also be drawn by studying the expectation value of 〈P̂〉, Fig. 3.5(d).

Summarizing, we observe that the area occupied by AF and the BA phases within the phase
diagram of a spin-1 Bose gas shrinks for c1 > 0 and c1 < 0 interactions respectively, when one
takes correlations into account. Moreover, this effect is more pronounced as the number of particles
decreases. Therefore, one can infer that the phases involving a superposition among different spin
states are not favourable when one operates beyond the MF approximation and this effect is further
amplified by a decrease of the involved particle number.
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Figure 3.6: Spatiotemporal evolution of the spin-resolved one body densities ρ
(1)
σ (x; t) for the AF

state of N = 50 particles within (a) mean field and (b) beyond mean field approximation after an
abrupt quench of the trapping frequency from ω = 0.1 to ω = 0.07, here p/c1n= 0.11 and q/c1n=
−0.5. (a1,b1) correspond to fz = −1, (a2,b2) correspond to fz = 0 while (a3,b3) correspond to
fz = 1 state. Note that the color scaling is different for each value of fz.

3.2 Quench Dynamics

In this section we explore the quench dynamics induced by a sudden decrease of the optical trap
frequency for the spin-1 Bose gas consisting of N = 50 particles both within and beyond the MF
approximation. More specifically, the system is initialized into it’s ground state in different initial
phase space states such as the F1, F2, AF, BA and P states and then an abrupt change of the trapping
frequency from ω = 0.1 to ω = 0.07 triggers the dynamics. In Fig. 3.6 the temporal evolution
of the one body density ρ

(1)
σ (x, t) = 〈ψ(t) ˆ

ψ
†
σ (x) ˆψσ (x)ψ(t)〉 is demonstrated for a quench within

the AF phase, which emanates for antiferromagnetic c1 < 0 spin-spin interactions. This quench
results in an induced breathing mode [40, 41] manifested as a contraction and expansion of the
atomic cloud around the trap center. Interestingly as can be seen in Fig. 3.6 and Fig. 3.7, the
frequency of the oscillation is the same, namely ω = 0.12, for particles in different spin states
compare Fig. 3.6(b1),(b3), and remains the same for the MF, as well as, the MB case, compare
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Figure 3.7: Spatiotemporal evolution of the spin-resolved one body densities ρ
(1)
σ (x; t) for the BA

state of N = 50 particles within (a) mean field and (b) beyond mean field approximation after
an abrupt quench of the trapping frequency from ω = 0.1 to ω = 0.07, here p/|c1|n = 0.04 and
q/|c1|n = −0.44. (a1,b1) correspond to fz = −1, (a2,b2) correspond to fz = 0 while (a3,b3)
correspond to fz = 1 state.

Fig. 3.6(a1),(b1). This behaviour is observed irrespective of the initial phase space state subjected
to the quench. Additionally, one observes in Fig. 3.6 that the quench of an initially AF state
doesn’t induce a significant spin flip dynamics as the probability of particles in different spin states
remains almost constant with time, while also conserving the spin of the system in the course of
evolution. Similar observations can also be made for the initially ferromagnetic (F1, F2) or polar
(P) state (see Appendix). Note here that the breathing frequency observed for different initial states
referring to distinct phases is almost equal to the previously observed one. Surprisingly, this fact
also holds in the case of ferromagnteic spin-spin interactions c1 < 0, see Fig. 3.7 for a system
initialised in the BA phase. However in contrast to the above, when an initial state in BA phase
is subjected to such a quench a low frequency spin flip dynamics occurs [43], see Fig. 3.7. Here
initially the particles in the fz = 1 and the fz = −1 state get transferred coherently to the fz = 0
state while the opposite scenario is subsequently realised, see for instance the region indicated by
an ellipse in Fig. 3.7 corresponding to the dynamics of fz = 1. This behavior is also confirmed
by the evolution of 〈P̂〉 during the quench dynamics [Fig. 3.8]. Here 〈P̂〉 increases initially when
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Figure 3.8: 〈P̂〉 throughout the quench dynamics of an initially BA state shown in Fig. 3.7. Solid
line denotes the MB case while the dashed line represents the MF case.

fz = ±1 particles get transferred to fz = 0 state and eventually decreases owing to the reverse
process. Note also the considerable difference between the Mean field and Beyond Mean field
limit in Fig. 3.8. Here 〈F̂z〉 remains constant throughout the time-evolution. The most prominent
effect of the correlations is the formation of filament like structures building upon the one-body
densities of the individual spin-component as depicted in Fig. 3.6 and Fig. 3.7. These filaments
are manifested as high particle density structures appearing during the expansion dynamics of the
Bose gas, see the box in Fig. 3.6. To explicitly quantify the effect of correlations we employ the
normalized one body coherence function

g(1)σ (x,x′; t) =
ρ
(1)
σ (x,x′; t)√

ρ
(1)
σ (x; t)ρ(1)

σ (x′; t)
. (3.2)

This observable can be used to measure the proximity of the MB state to a MF (product) state for
a fixed set of coordinates x,x′. Here ρ

(1)
σ (x,x′; t) is the one-body reduced density matrix corre-

sponding to the σ component and ρ
(1)
σ (x; t) = ρ

(1)
σ (x,x′ = x; t) is the density of the σ component.

Additionally, |g(1)σ (x,x′; t)| ∈ [0,1], with |g(1)σ (x,x′; t)| = 0 (|g(1)σ (x,x′; t)| = 1) referring to a fully
incoherent (coherent) state. The absence of the imprint of correlations to the coherence function
is realised when |g(1)σ (x,x′; t)| = 1 for every x,x′ while the partial incoherence, i.e |g(1)σ (x,x′; t)|< 1
between two distinct spatial regions signifies the presence of correlations. For the case of N = 50
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Figure 3.9: (a1),(a2),(a3) are the one body coherence g(1)1 (x,x′; t) and (b1),(b2),(b3) are the two
body correlations g(2)1,−1(x1,x2; t) for, (a1),(b1) t=1 (density spread minima), (a2),(b2) t=12.5 and
(a3),(b3) t=25 (density spread maxima) after the quench shown in Fig. 3.6.

particles, c0 = 1 and initial AF sate, |g(1)1 (x,x′; t)| is shown in Fig. 3.9(a1)−3.9(a3). Interestingly,
for our system the one-body coherence remains the same for different values of σ , thus being in-
dependent of the particle’s spin state. Moreover, the features emerging in the one-body coherence
remain robust during the evolution, except for the expansion of the density cloud as one goes from
the density spread minima to maxima (compare Fig. 3.9(a1)−3.9(a3)). Comparing the positions
of these filaments and the one-body coherence we find that the particle for coordinates within the
filament region are coherent, see the bright blocks at the diagonal near the centre of the trap eg.
g(1)1 (x =−2,x′ =−2; t = 1)≈ 1 in Fig. 3.9(a1). While we find that for coordinates corresponding
to neighbouring filaments we have a substantial loss of coherence, see the off diagonal region near
the centre of trap eg. g(1)1 (x =−2,x′ = 3; t = 1)≈ 0.88 in Fig. 3.9(a1).

Having explored the one-body correlations, we now discuss the normalized two-body correla-
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Figure 3.10: (a1) and (a2) are the beyond mean field spatiotemporal evolution of the fz = 1 one
body density ρ

(1)
1 (x; t) for the AF state of N = 50 particles with c0 = 1 and c0 = 5 respectively,

after the quench. Here p/c1n = 0.04, q/c1n = −0.44 and c1 = 0.018. (b1),(b2),(b3) refer to the
two body correlations g(2)1,−1(x1,x2; t) for, (b1) t=1 (density spread minima), (b2) t=12.5 and (b3)
t=25 (density spread maxima) after the quench.

tion function

g(2)
σσ ′(x,x

′; t) =
ρ
(2)
σσ ′(x,x

′; t)√
ρ
(1)
σ (x; t)ρ(1)

σ ′ (x
′; t)

. (3.3)
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Here ρ
(2)
σσ ′(x,x

′; to) = 〈ψ(to)|ψ̂†
σ (x)ψ̂

†
σ ′(x

′)ψ̂σ ′(x′)ψ̂σ (x)|ψ(to)〉 is the diagonal two-body reduced
density matrix. We note that a perfectly condensed MB state leads to |g(2)

σσ ′(x,x
′; t)| = 1 which

is termed as an uncorrelated state. While, |g(2)
σσ ′(x,x

′; t)| smaller(larger) than unity is termed as
an anti-correlated(correlated) state. For our system σ 6= σ ′ corresponds to correlations between
particles in different spin states while σ = σ ′ refers to the two body correlations for particles
in the same spin state. In Fig. 3.9(b1)− 3.9(b3) we show the two body correlation function,
g(2)

σσ ′(x,x
′; t) for the quench of the AF state presented in Fig. 3.6 . Interestingly, for our system

the correlation function turns out to be independent of the σ and σ ′ and preserves its structure
during the evolution, while expanding and contracting (not shown here for brevity) in size, similar
to one-body correlation function following the density spreading and contraction. Comparing the
positions, we find that two particles within the filament are anti correlated, see the dark blocks at
the diagonal near the centre of trap eg. g(2)1,−1(x =−2,x′ =−2; t = 1)≈ 0.9 in Fig. 3.9(b1). While,
the particles belonging to neighbouring filaments are correlated to each other, see the bright white
patches near the off diagonal region eg. g(2)1,−1(x =−2,x′ = 3; t = 1)≈ 1.03 in Fig. 3.9(b1).

Turning our attention to stronger interactions, we observe that upon increasing c0 to 5 the
filaments become more prominent, see Fig. 3.10(a2). Furthermore, the number of filaments is also
increased from 2 for c0 = 1 Fig. 3.10(a1) to 3 for c0 = 5 Fig. 3.10(a2). Note here that for brevity,
we only show the particle density corresponding to the fz = 1 state, though the fz = −1 state is
also occupied since we have quenched an initially AF state, similar to Fig. 3.6. Furthermore for
c0 = 5, the two-body correlations exhibit three block like anti correlated structures each of which
corresponds to a filament, see the dark block structures along the diagonal eg. g(2)1,−1(x = 5,x′ =
5; t = 1)≈ 0.85 in Fig. 3.10(b1). This in contrast to the two block structure observed for c0 = 1, see
Fig. 3.9(b1)−3.9(b3). Additionally the neighbouring eg. g(2)1,−1(x =−5,x′ = 0.7; t = 1) = 1.025,

as well as, the next neighbouring filaments eg. g(2)1,−1(x = −5,x′ = 5; t = 1) = 1.02 are slightly
correlated to each other, see the off diagonal bright white region in Fig. 3.9(b1)−3.9(b3). Another
interesting observation is the increased number of filaments, 4 in N=20 particles [Fig. 3.11(a2)]
compared to 2 for N=50 particles [Fig. 3.11(a1)]. This behavior is also imprinted in the two body
correlation function [Fig. 3.11(b1)−3.11(b3)] where we observe presence of four prominent anti
correlated blocks pattern each of which correspond to a filament. This is in contrast to the two
anti correlated block structure for N = 50 particles Fig. 3.9(b1)− 3.9(b3). Also, we can identify
presence of correlations between the neighbouring filaments, see the bright off diagonal region
eg. g(2)1,−1(x = −1.7,x′ = 2.5; t = 1 ≈ 1.08) in Fig. 3.11(b1)− 3.11(b3). Moreover, we find that
the correlation decreases for next neighbouring and next to next neighbouring filaments, as the
intensity of the bright region decreases as one moves away from the diagonal in Fig. 3.11(b1)−
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Figure 3.11: (a1) and (a2) are the beyond mean field spatiotemporal evolution of the fz one body
densities ρ

(1)
1 (x; t) for the AF state of N = 50 and N = 20 particles respectively, after an abrupt

quench of the trapping frequency from ω = 0.1 to ω = 0.07, here p/c1n = 0.04, q/c1n =−0.44,
go = 1 and c1 = 0.018. (b1),(b2),(b3) are the two body correlations g(2)1,−1(x,x

′; t) for, (b1) t=1
(density spread minima), (b2) t=12.5 and (b3) t=25 (density spread maxima) after the quench.

3.11(b3) eg. compare g(2)1,−1(x =−1.7,x′ = 2.5; t = 1)≈ 1.08 to g(2)1,−1(x =−3.7,x′ = 2.5; t = 1)≈
1.04. Additionally, we have measured that the period of the breathing mode remains the same for
both N = 50 and N = 20 particles.
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Chapter 4

Conclusions and Outlook

In the present work we have explored the ground state properties as well as the dynamics induced
by an abrupt shift of the confinement frequency for a spin-1 Bose gas. Regarding the ground state
properties, we have studied how the phase diagram of these systems is altered when one takes cor-
relations into account and thus operates beyond the mean-field approximation. Furthermore, the
effect of the finite size of the system on the boundaries between the different phases was investi-
gated. For examining the quench dynamics, we have relied on the dynamical behaviour of the one
and two-body distributions for the different involved spin states and characterized the correlation
induced effects by comparing the response within and beyond the mean field approximation. Ad-
ditionally, significant changes of this behavior were revealed for different total particle numbers,
as well as, interaction strengths.

In our study of the different phases emanating in our system we have found that even though
the incorporation of correlations does not lead to a substantial change in the boundaries referring
to first order transitions, the second order ones are significantly altered. We observe that for both
ferromagnetic and anti-ferromagnetic spin-spin interactions, the transition boundaries get shifted
leading to a decreased window in terms of p, and q where the AF and BA phases are accessed.
Note here that both of the above mentioned phases are characterized by a superposition state in
terms of the involved spin-states demonstrating that correlated systems favor ground states where
the bosons get polarized in a single fz state. Additionally, by comparing the phase boundaries
corresponding to second order transitions for N = 5,20 and 50 particles, we have found that the
correlation effects on the phase diagram become more prominent as one decreases the number of
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particles. By simulating N = 500 particles in the mean field approximation we have recovered the
thermodynamic limit associated with the decoupling of the spin and spatial states, a result which
reveals the importance of the interplay of these degrees of freedom for setups with finite particle
numbers.

The quench of the trapping frequency induced a breathing motion into the system with the
frequency of this oscillation being independent of the spin state and the phase of the system. Inter-
estingly, for an initial BA state we have even observed spin flip dynamics which involves fz =±1
particles that coherently get transferred to the fz = 0 state and vice versa. Moreover, we have found
that the incorporation of correlations leads to the formation of filament-like high density regions.
The number of these filaments increased from 2 to 3 when we changed the spin-independent inter-
action parameter from c0 = 1 to c0 = 5. Similarly, an increase of the number of filaments was also
observed when the particle number was decreased from N = 50 to N = 20.

To further quantify the effect of correlations, we have inspected the time evolution of the one-
body and the two-body correlation functions. We revealed that coherence is maintained within
each filament during the dynamics, while significant losses of coherence occur between the neigh-
bouring filaments. Moreover, irrespective of the interaction strength and particle number, two par-
ticles within a filament exhibit an anti-correlated character while, particles between neighbouring
filaments are correlated to each other throughout the dynamical evolution.

Having explored the rich physics associated with spin-1 Bose gas because of the finite size
effects and incorporation of correlations. One can further explore the corresponding alterations
in phase space and the dynamical properties for spin-2 and spin-3 Bose gas systems. It can also
be interesting to study a quench of the interaction parameter so that we can study the dynamical
effects following a sudden change in the phase space region of the system. Other quench studies
can include a sudden change in the direction of magnetic field, as well as, a combination of above
proposed quenches.
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Chapter 5

Appendix

5.1 Natural Population

Figure 5.1: Population density of beyond mean field orbitals for N = 50 particles for the phase
quench discussed in Fig.3.6.

In this section we show the beyond mean orbital orbital occupation for our phase space and
quench analysis. The substantial occupation of these orbitals indicate the presence of important
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Figure 5.2: Population density of beyond mean field orbitals for (a) N = 20 and (b) N = 50 particles
for the phase space region discussed in Fig.3.3(a). The behavior shown is for fixed q/c1n = 0.5
and varying p/c1n.

unexplored physics which is not detected in the earlier did mean field analysis. In Fig.5.2 we
show the beyond mean field orbital occupation for the phase space region discussed in Fig.3.3(a).
We see that there is substantially occupation of orbitals corresponding to beyond mean field limit.
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Moreover, comparing the respective y-axis, one can infer that the orbital density is considerably
more for N = 20 particles compared to N = 50 particles. This behavior is in direct relation to the
results discussed above. As we see the phase space changes due to incorporation of correlations
are greater as the particle number decreases.
In Fig.5.1 we show the beyond mean field orbital occupation for the dynamic behavior for a quench
in the trapping frequency discussed in Fig.3.6. We find that the orbital density show a interesting
behaviour as there population density oscillates similar to the breathing mode oscillation induced
in the system because of the quench. Further, comparing N = 20 and N = 50 particles, we see
that the presence of prominent and more number of filaments in N = 20 case is also evident in the
higher beyond mean field orbital occupation for the same.

We saw the convergence of beyond mean field orbitals as the computation accuracy was in-
creased. Considering this, we choose the appropriate accuracy for our simulations so that we could
correctly capture the beyond mean field effects for our system.
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Figure 5.3: Amplitude for the Fourier transform of the breathing oscillation shown particles in
fz = 1 state for the quench shown in Fig. 3.6.

5.2 Quench analysis

Here we show the amplitude for the Fourier transform of the breathing mode oscillation. Further,
we also show the density evolution for particles initially in fz = 1 state after a quench in the trapping
frequency for an initially F2 state.

In Fig. 5.4 we show the Fourier amplitude for the frequency of the breathing oscillation shown
in Fig. 3.6 for the particles in the spin state fz = 1. We see that the Fourier amplitude is strongly
peaked at ω = 0.12 which was also reported in Section 3.2. Further, we had similar peak for par-
ticles in all the initial states which include F1,F2,AF,P and BA phase, as well as, different spin
states. A strong peak at ω = 0.12 was also shown by N = 20 particles, as well as, N = 5 parti-
cles. Moreover, a change in the interaction from c0 = 1 to c0 = 5 also did not lead to a change
in the frequency of the breathing oscillation. Thus the system shows interesting behavior with the
frequency of breathing oscillation being independent of initial phase space state, spin state, the
particle number, as well as, the system’s interactions. Further, we saw that the frequency of the
breathing oscillation did change when we tuned the amount of the change in the trapping frequency.
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Figure 5.4: Amplitude for the Fourier transform of the breathing oscillation shown particles in
fz = 1 state for the quench shown in Fig. 3.6.

In Fig. 5.3 we show the quench induced dynamics for F2 state. As expected, we have significant
occupation of only fz =−1 state throughout the dynamics (note the color-bar scale for fz = 0 and
fz = 1 spin state is insignificant). We see that here we do not see any spin flip dynamics, such
dynamics was only seen when initially all the three spin states were occupied such as in BA state.
Further, we also note that the oscillation to be same as for the AF (Fig. 3.6) and BA (Fig. 3.7) state
i.e ω = 0.12 for the breathing motion. Similar corresponding behavior was also seen for a quench
of an initially F1 and P state.
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“Vector solitons with an embedded domain wall,” Phys. Rev. E, vol. 72, p. 066604, Dec 2005.

[22] H. E. Nistazakis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, R. Carretero-
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