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Abstract

In this thesis we study three interesting ideas in Particle Physics and Cos-

mology: de-Sitter conjectures, some aspects of Inflation and Axions as Dark

matter. The de-Sitter conjectures are statements about consistency of E↵ec-

tive Field theories with Gravity. E↵ective Field Theories play a crucial role

in describing physics at low energies. Thus, constraining the space of possi-

bles EFTs by various Ultra Violets (UV) consistency requirements have been

a very active field of research for many years. The “Swampland program”

is one such example which tries to find the EFTs which can be completed

into quantum gravity in the UV. This program has recently gained impetus

because of a quantitative proposal ( “The de Sitter Conjecture”) on what

the scalar potential of a theory coupled to gravity must satisfy. This original

proposal was subsequently revised to a “Refined de Sitter Conjecture” based

on the entropy of de Sitter space and the distance conjecture. In Master’s

thesis, we study these consequences in Particle Physics and Cosmology, in

particular in the context of Inflation, In the final part of the thesis, we also

study the role of Axions in Cosmology in particular as Dark matter using

the Misalignment mechanism.
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Chapter 1

Introduction

1.1 E↵ective Field Theory

When the full theory is not known(such as physics at shorter length scales or

high energies) or because we need to simplify calculations, we use e↵ective

field theories. EFT’s ignore the structure and number of degrees of freedom

at shorter length scales but retain the degrees of freedom required at lower

energies or higher length scales. Physics at shorter length scales become less

relevant as we go to higher length scales, thus allowing us to do physics at

a particular energy scale without knowing the details about shorter length

scales.

As an example, let us assume we have some unknown physics which we

are trying to probe, above a length scale �. Let us assume, purely for the

sake of simplicity, that the only degree of freedom is a scalar �, which has
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Z2 symmetry. We can write down a general Lagrangian for this picture as

L =
1

2
(@�)2 � �2�

2
� �4�

4
� �6�

6...�4,2�
2(@�)2 + �6,2�

4(@�)2...�4,4(@�)
4...

(1.1)

Now since � is the fundamental scale in our system, all these coe�cients

must be expressible by suitable powers of �

�n =
gn
�n�4

(1.2)

where gn are numerical coe�cients. With this Lagrangian in hand, we can

calculate the amplitudes of di↵erent scattering processes. Take the example

of 2-2 scattering. It contains contributions from �4, �4,2 and �4,4. We can

write its amplitude as

A2�2 = �4 + �4,2E
2 + �4,4E

4... (1.3)

where powers of external momenta appear to keep it dimensionless. One can

observe that at high energies all terms are important, but it is not so at low

energies, where mostly �4 is dominant. Hence when one is doing physics at

low energies one does not need to consider the higher order terms.

1.2 What is Swampland?

Swampland refers to those e↵ective field theories which are semi-classically

consistent but are incompatible with quantum gravity [1].Figure 1.1 gives a

pictorial representation of this.
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Figure 1.1: space of consistent EFT’s surrounded by a Swampland of incon-
sistent ones.
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Chapter 2

Preliminaries

2.1 Swampland Conjectures

The authors of [2] have recently conjectured a quantitative criterion that the

scalar potential of any low energy e↵ective theory should satisfy in order to be

consistent with quantum theory of gravity. The statement of the conjecture

(which we call [dSc] below) is as follows.

[dSc]: Consider a theory of quantum gravity coupled to a scalar field

L =
p

|g|


1

2
MplR�

1

2
@µ@µ�� V (�)

�
(2.1)

The conjecture puts a lower bound on |r�V (�)|
V (�)

|r�V (�)|

V (�)
�

c

Mpl

(2.2)
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where c is positive and of order 1. If the potential is a function of many

fields, then

|rV (�, h, g, ...)| =
q

(@�V )2 + (@hV )2 + (@gV )2 + ... (2.3)
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Chapter 3

Consequences of [dSc]

Swampland Conjectures have consequences in cosmology especially in areas

of accelerated expansion of the universe such as dark energy dominated era

and Inflation.

3.1 Cosmological constant

The Dark energy is speculated to have its origins in either a cosmological

constant, a de-Sitter vacuum or quintessence. A cosmological constant is a

potential which is constant with �. Its energy density does not change with

expansion.

⇢ / a0 (3.1)

We will see later that this implies w=-1, which gives rise to accelerated ex-

pansion.
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Applying [dSc] on the cosmological constant case we get

0 �
c

Mpl

⇤ (3.2)

where ⇤ is the value of cosmological constant. We see that the cosmological

constant case is ruled out as the inequality is not satisfied.

3.2 de-Sitter vacuum

Accelerated expansion can also be achieved by a general potential with � at

its minima. This is called de-Sitter vacuum(when minima is above 0).

It turns that a de-Sitter vacuum is also ruled out. At the minima, � = �min,

we have according to [dSc]

0 �
c

Mpl

V (�min) (3.3)

which is not true. However, one cannot rule out the possibility of an anti

de-Sitter vacuum as the inequality resulting from [dSc],

0 � �
c

Mpl

|V (�min)| (3.4)

is satisfied.
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3.3 Slow-roll inflation

As we shall see later, in case of slow-roll Inflation, we can define a dimen-

sionless parameter ✏

✏ =
1

2
M2

pl

✓
r�V (�)

V (�)

◆2

(3.5)

whose magnitude is less than unity for inflation to take place. [dSc] is clearly

in violation with slow-roll inflation, as the former demands that Mpl

r�V (�)
V (�) �

c.

3.4 Di�culty for [dSc]

Here we discuss a bound on |r�V (�)|
V (�) based on observational constraints. Con-

sider a potential of the form [3]

V = Vhiggs + Vquintessece (3.6)

where Vhiggs is the standard Higgs potential

Vhiggs(h) = �h(h
2
� v2)2 (3.7)

mass of the Higgs field is given by

m2
H
= �hv

2 = (125Gev)2

Today the value of h is equal to v, hence its contribution to the dark energy

density is none. But at h=0, we have

Vhiggs(h = 0) = �hv
4 = m2

H
v2 = (125Gev)2(250Gev)2 = 10�65M4

pl
(3.8)

9



Vquintessece is modelled by an exponential form

Vquintessece(�) = V0e
��� (3.9)

at present value of �, � = �today, we have

Vquintessece(�today) = V0e
���today = 10�120M4

pl
(3.10)

which is the present day value of dark energy density. We also have

rVquintessece(�today) = �V0e
���today ⇡ 10�120M3

pl
(3.11)

which is due to the fact that � is of order c

Mpl
, where c is of order 1. Vhiggs

is much larger than Vquintessece at h=0 and � = �today. We choose this point

and calculate rV (�,h)
V (�,h) . We get

rV (�today, 0)

V (�today, 0)
=
rVquintessece(�today)

Vhiggs(0)
=

10�120M3
pl

10�65M4
pl

=
10�55

Mpl

(3.12)

which is o↵ by 55 orders of magnitude from 1, implying a serious tension

with [dSc].

3.5 Refined de-Sitter conjecture

There have been alternate formulations of Swampland conjectures, called

Refined De-sitter Conjecture. One of these state [4] that either

[RdSc]:

|rV (�)| �
c

Mpl

V (�) (3.13)

10



or

min(rirjV (�)) � �
c0

M2
pl

V (�) (3.14)

must be true, c and c’ both positive. min(rirjV (�)) refer to the minimum

eigenvalue of (rirjV (�)). We can see that now de-sitter vacuum and cos-

mological constant are now not ruled out as they don’t violate the second

bound.

11
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Chapter 4

Inflation

4.1 Brief review of FRW cosmology

On large enough scales(⇠ 100Mpc), beyond clusters and super clusters of

galaxies, our universe looks isotropic and homogeneous. General form of the

metric satisfying these symmetries is given by

ds2 = �dt2 + a(t)2


dr2

1� r2
+ r2(d✓2 + sin2✓d�2)

�
(4.1)

 is a parameter which describes whether the space is flat( = 0), sphere( =

1) or hyperbolic( = �1). The coordinates used here are called comoving

coordinates. These are coordinates in which galaxies and other objects are

stationary, i.e, they are defined with respect to expansion.

The unknown quantities in the above metric are a(t) and . a(t) can be

obtained by solving the Einstein’s equations with an energy-momentum ten-

sor. The energy in the universe on large scales are described by a constant

13



density and isotropic pressure in comoving coordinates. Hence we can model

this by a perfect fluid. The energy momentum tensor of a perfect fluid is

given by

T µ

⌫
=

2

6664

⇢ 0 0 0

0 �p 0 0

0 0 �p 0

0 0 0 �p

3

7775
(4.2)

Here ⇢ is the energy density and p is the pressure. Upon solving the Einstein’s

equation, we gets two equations involving a(t).

✓
ȧ

a

◆2

=
8⇡G

3
⇢�



a2
(4.3)

and
ä

a
= �

4⇡G

3
(⇢+ 3p) (4.4)

These are known as Freidmann Equations. The quantity ȧ

a
is also called

Hubble parameter, H.

There is one more equation we can use to solve the Freidmann equations

for a(t). It is the conservation equation for T µ

⌫
(rµT µ

⌫
= 0). This gives us

⇢̇+ 3H(⇢+ p) = 0 (4.5)

we can simplify this equation by defining an equation of state

p = w⇢ (4.6)

Thus we can now relate ⇢ with a(t) using the conservation equation.

⇢ / a�3(1+w) (4.7)

14



For matter, w=0, for radiation, w = 1
3 , and for cosmological constant we

have w=-1.

Cosmological parameters

A study of cosmological parameters is necessary in the field of cosmology.

Defining

⌦ =
⇢

⇢c
, where ⇢c =

3H2

8⇡G
(4.8)

we can write Friedmann equation (4.3) as

⌦� 1 =


a2H2
(4.9)

⌦ is known as the density parameter. Energy density, ⇢, can have contribu-

tion from matter(⇢m), radiation(⇢r) and vacuum(⇢v).

⇢ = ⇢m + ⇢r + ⇢v (4.10)

The ⌦ can be written as

⌦ =
⇢m + ⇢r + ⇢v

⇢c
= ⌦m + ⌦r + ⌦v (4.11)

These di↵erent density parameters do not evolve in the same way because

⇢m =
⇢m0

a3
, ⇢r =

⇢r0
a4

, ⇢v = ⇢v0 (4.12)

15



The subscript 0 denotes the present value of the parameter. The Freidmann

equation (4.3) now just becomes a di↵erential equation in a(t).

✓
ȧ

a

◆2

= H2 =
8⇡G

3


⌦r0⇢c0
a4

+
⌦m0⇢c0

a3
+ ⌦v0⇢c0

�
�

k

a2
(4.13)

A Particle Horizon refers to the maximum distance light can travel since

the beginning of the universe. We can also treat this as maximum distance

of causal contact. Consider the null radial curves in the FRW metric, which

give
dt

a(t)
=

dr2

1� kr2
(4.14)

we can integrate L.H.S from t=0 to t=t‘ and get the comoving distance(R.H.S)

travelled by light in that interval.

Z
t
0

0

dt

a(t)
=

Z
R

0

dr2

1� kr2

If t=0 correspond to Big Bang, then this integral gives us the maximum

distance light can travel till t=t‘, i.e, the particle horizon. If t‘ corresponds

to today, we take a(t‘)=1 as reference.

dH =

Z
t
0

0

dt

a(t)
=

Z 1

0

da

a(t)2H
(4.15)

we can use (4.13) to write H in terms of a(t) and solve this integral.

16



T Hubble( km

s⇤Mpc
) Description

0.1� 10Mev 1039 � 1041 Neutrons and protons combine to form nuclei(BBN).
1Mev 1040 Neutrino decouple. Forms a separate background(CNB).
0.5Mev 1040 e� e+ annihilation increases the temp of photons than CNB.
10ev 1035 Neutral atoms form. CMB photons decouple.

Table 4.1: Brief Thermal history of the universe.

4.2 Thermal history

4.2.1 Big Bang Nucleosynthesis

A brief discussion of thermal history is helpful in our study of cosmology.

The universe, as it expanded, cooled down and we expect di↵erent physics

dominating at di↵erent times. But we only have observations till Big Bang

Nucleosynthesis(BBN). As is evident from the name, BBN is the time when

free nucleons started to combine to form nucleus. Temperature at this point

is of the order of binding energy of the nucleons(1-10Mev). After this stage,

the photons did not have enough energy to rip apart nucleus to form free

nucleons.

4.2.2 Neutrino Decoupling

At around the same temperature(T ⇠ 1Mev), neutrino decoupled from bary-

onic matter. Neutrinos interact with baryons through weak interaction. After

T ⇠ 1Mev, the interaction time scale for weak interactions become greater

than the age of universe at that time and neutrinos moved practically freely

without interactions forming a separate Cosmic Neutrino Background.

17



4.2.3 Electron-Positron Annihilation

Electron-positron annihilation happened at Temperature around 0.5Mev.

This is the mass of electron or positron.

e+ + e�  ! � + � (4.16)

When T � 0.5Mev, the electrons and positrons are in thermal equilibrium.

But as the temperature fall below, 0.5Mev, the forward reaction is strongly

favoured. The photons do not have enough energy for e+e� pair production

after this. The annihilation also causes temperature of photons to increase

slightly relative to neutrinos. The energy of annihilation is transferred to

photons, but not to neutrinos as they have decoupled.

4.2.4 Photon Decoupling

At Temperature around ⇠ 10ev, the binding energy of electrons and nucleus,

neutral atoms start to form. After this, the photons do not have enough en-

ergy to ionise the atoms. Thus density of free ions fell sharply and mean free

path of photons became larger than horizon distance. This resulted in de-

coupling of photons and matter, they were no longer in thermal equilibrium.

These photons today are called CMB.

4.3 Flatness and Horizon Problem

Defining

⌦ =
⇢

⇢c
, where ⇢c =

3H2

8⇡G
(4.17)

18



we can write Friedmann equation (4.3) as

⌦� 1 =


a2H2
(4.18)

Today |1� ⌦| = 10�3, which is very small and suggests that our universe is

very close to being a flat one. Let us work with matter dominated case and try

to obtain a rough idea of the order of |1�⌦| at Big Bang Nucleosynthesis. For

matter dominated case, 1
a2H2 and hence |1� ⌦|, goes as t2/3. In units where

t=1 represents today’s time and t=0 refers to Big Bang, BBN happened at

t ⇡ 10�17(t ⇡ 1s in usual units).

Thus we get

|1� ⌦BBN| = 10�3(10�17)
2
3 ⇡ 10�15 (4.19)

Implying that the initial condition is ⌦ being extremely close to 1, which is

unlikely. This is called flatness problem.

Using (4.15), Horizon size at CMB, which is at z=1100, turns out to be

dbigbang-CMB = 0.062H�1
0

H0 is the present value of Hubble parameter. Distance travelled by a photon

originated at CMB to us turn out to be

dCMB-today = 3.18H�1
0

The angular separation in the sky by these distances is

dbigbang-CMB

dCMB-today
= 0.019 ⇡ 1°

Thus regions in sky separated by more than 1° couldn’t possibly have been

in causal contact at CMB. This is in tension with the fact that temperature

of CMB is homogeneous, with very little fluctuation(�T

T
⇠ 10�5). This is

19



known as horizon problem.

4.4 Solving the Flatness and the Horizon prob-

lem: Inflation

Both flatness and horizon problem can be explained by introducing an early

phase of accelerated expansion.

For flatness problem. we want |1 � ⌦| to start from a generic initial condi-

tion, not necessarily close to zero, but reduce to a value close to zero during

the Inflationary phase. This way we can explain Equation 2.10. Therefore

during inflation, we need
d|1� ⌦|

dt
< 0 (4.20)

This implies that

d

dt

⇣ 

a2H2

⌘
=
�2

ȧ3
ä < 0 ! ä > 0 (4.21)

Thus flatness problem is solved with an early era of accelerated expansion.

Comoving Horizon size in case of matter and radiation dominated case are

2(aH)�1 and (aH)�1, respectively. We want the universe to begin as in-

homogeneous but become homogeneous due to thermal equilibrium, during

inflationary phase. For this we require them to be initially in causal contact

but which breaks down during inflation and we are left with a universe which

is causally disconnected yet homogeneous. Thus during inflation

d

dt

✓
1

aH

◆
< 0 (4.22)
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this implies that ä > 0. Hence the early accelerated expansion can also solve

the horizon problem.

4.5 Single-field slow-roll inflation

We will try to derive the slow roll and other cosmological parameters with

minimum number of assumptions to look for possible conditions in which

expansion occurs but swampland criterion is not violated.

As we have seen in the previous section, an era of accelerated expansion

solves both flatness and horizon problem.

ä

a
> 0 (4.23)

we can relate it to the Hubble parameter H and its derivatives,

Ḣ =
ä

a
�H2 (4.24)

the two equations give us

�
Ḣ

H2
< 1

We define the quantity �
Ḣ

H2
as ✏. ✏ must be less than 1 during accelerated

expansion.

✏ = �
Ḣ

H2
< 1 (4.25)

We can now use the Friedmann equation to put a bound on some parameters

using this equation. We can write

✏ =
H2
�

ä

a

H2
(4.26)
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Using the Friedmann equations (4.3) and (4.4) we have

✏ =
3

2

✓
⇢+ p

⇢

◆
=

3

2
(1 + w) < 1 (4.27)

where w comes from the equation of state p = w⇢. The above equation also

implies that for expanding universe w < �
1

3
.

In Inflaton model, we have

⇢ =
1

2
�̇2 + V (�) & p =

1

2
�̇2
� V (�) (4.28)

this gives

✏ =
3

2

0

B@
�̇2

1

2
�̇2 + V (�)

1

CA < 1 (4.29)

The condition ✏ < 1 or w < �
1

3
imply that

�̇2 < V (�) (4.30)

We can try to express (4.29) only in terms of the potential V (�) and its

derivatives. We know the equation of motion of the Inflaton field

�̈+ 3H�̇+
@V (�)

@�
= 0 (4.31)

Di↵erentiating the First Friedmann equation (4.3), we get

2HḢ =
�̇�̈+ V 0(�)�̇

3M2
p

(4.32)

22



The ✏, (4.25), is then given by

✏ = �
�̇�̈+ V 0(�)�̇

6M2
p
H3

(4.33)

using (4.31), it can be simplified to give

✏ =
H2�̇2

2M2
p
H4

=
1

2
M2

p

0

B@
�̈+ V 0(�)
1

2
�̇2 + V (�)

1

CA

2

(4.34)

This tells us that ✏ is always greater than 0. Thus

0  ✏ < 1

We can take V (�) and V 0(�) out and express it in terms of the definition of

✏ which exists in literature and which is derived using some approximation

which will be explained shortly

✏ =
1

2
M2

p

✓
V 0(�)

V (�)

◆2

0

BBB@

�̈

V 0(�)
+ 1

�̇2

2V (�)
+ 1

1

CCCA

2

= ✏old

0

BBB@

�̈

V 0(�)
+ 1

�̇2

2V (�)
+ 1

1

CCCA

2

(4.35)

where ✏old is
1

2
M2

p

✓
V 0(�)

V (�)

◆2

. We also need to know how small ✏ needs

in order to be consistent with observations. Thus we should relate ✏ with

number of e-folds required.

N = ln

✓
af
ai

◆
=

Z
f

i

Hdt =

Z
f

i

H

�̇
d� (4.36)
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From the expression of epsilon in (4.34), we get

N =

Z
�f

�i

1

Mp

p
2✏
d� ⇡

��

Mp

p
2✏

(4.37)

Now assuming �� ⇡Mp, thus we have ✏ ⇡
1

N2
. Given the number of e-folds

required for consistency with observations(⇠ 60), we get ✏ ⇠ 10�3.

Not only do we want epsilon to be small, but also that it remains small

for su�ciently long time for inflation to be maintained. The quantity we are

interested in is
✏̇

✏
.

✏̇ =
1

M2
p

�̇�̈H � Ḣ�̇2

H3
= 2✏

�̈

�̇
+ 2✏2H (4.38)

The fractional change in ✏ over the inflationary period is given by

Z
tf

ti

✏̇

✏
dt =

Z
tf

ti

✏̇

✏�̇
d� =

Z
tf

ti

✏̇

✏H
dN (4.39)

The last expression has a dimensionless integrand, thus is of interest.

✏̇

✏H
=

2�̈

�̇H
+ 2✏ (4.40)

In literature, people usually take the approximation

|�̈| << |H�̇|, |V 0(�)| (4.41)

Thus the equation of motion reduces to

3H�̇+ V 0(�) = 0 (4.42)
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We can now use this equation to obtain expression for ⌘v =
2�̈

�̇H
and ✏. From

(4.34) we can see that this approximation along with equation (4.3) leads to

✏old =
M2

p

2

✓
V 0(�)

V (�)

◆2

(4.43)

In order to obtain ⌘v, we need to di↵erentiate (4.42),

3(H�̈+ Ḣ�̇) + V 00(�)�̇ = 0 (4.44)

rearranging gives us

⌘v =
�̈

�̇H
= �M2

p

V 00(�)

V (�)
+ 2✏ (4.45)

since |⌘v| < 1(because of our approximation) and ✏ < 1(accelerated expan-

sion), |⌘| = |M2
p

V 00(�)

V (�)
| < 1 must be true.

4.5.1 Example 1: V (�) = 1

2
m2�2

For quadratic potential we can calculate the ✏ using (4.43)

✏ =
2M2

p

�2
< 1 (4.46)

this implies that � > Mp for accelerated expansion to take place to take

place. We have to start from a value of � larger than Mp and as inflation

ends, we have �end ⇡Mp.

From (4.42), we can calculate �̇ for this potential under slow-roll conditions

�̇ = �
V 0(�)

3H
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Now H can be written as

H =

s
V (�)

3M2
p

(4.47)

which we get from friedmann equation (4.3) by ignoring curvature and as-

suming that V (�) mostly contributes to ⇢, from (4.37). By substituting the

values, we get

�̇ =

r
2

3
mMp (4.48)

Hence under slow-roll approximation, �̇ is a constant in quadratic potential.

We can also express � in terms of e-folds. It is convenient because latter is

constrained observationally. From (4.46) and (4.37), we have

N(�) =

Z
�

�end

�‘

2M2
p

d�‘ =
1

4M2
p

[�2
� �2

end
] (4.49)

Now, we know that N�in must be ⇠ 60 and since �end ⇡Mp, contribution of

�end to N is negligible. Hence,

N(�) =
1

4M2
p

�2 (4.50)

We can define some quantities known as ”Scalar tilt(ns)”, ”Tensor tilt(nt)”

and ”Tensor-to-scalar ratio(r)” etc., which are associated with quantum fluc-

tuations of the fields. We will discuss about them in detail in later sections.

For now

ns = 1� 6✏� 2⌘ = 1�
8M2

p

�2
= 1�

2

N(�)
(4.51)

nt = 1� 2✏ = 1� 1�
4M2

p

�2
= 1�

1

N(�)
(4.52)

r = 16✏ =
32M2

p

�2
=

8

N(�)
(4.53)
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As =
H4

4⇡2�̇2
=

H2

8⇡2M2
p
✏
=

m2N2

6⇡2M2
p

(4.54)

At =
2H2

⇡2M2
p

(4.55)

After looking at the above expressions one can find out a relation between r

and ns,

ns +
r

4
= 1 (4.56)
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(a) ✏ = 1 curve in initial � vs N plane
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Figure 4.1: (a)Number of e-folds at ✏ = 1 for di↵erent initial values of �.
(b)Variation of ✏ with � for �in = 15.
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Figure 4.2: Variation of � with
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Figure 4.3: (a)Variation of log ✏ without any approximation with N.
(b)Variation of log ✏ with the approximation with N.
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Figure 4.4: (a)Variation of H with units km

s⇤Mpc
with N. (b)Variation of H with

units Gev with N.
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4.5.2 Example 2:V (�) = V0

⇣
1� �2

m2

⌘

The quadratic potential discussed above represents what is called large field

inflation. This is because from (4.46), we see that � > Mp for inflation to

occur. Let us now consider inflation with a scalar field in Higgs potential.

V (�) = V0

✓
1�

�2

m2

◆2

(4.57)

The ✏ is given by

✏ =
1

2
M2

p

✓
4�

m2 � �2

◆2

(4.58)

Near � = Mp, the potential behaves like a quadratic potential(it is the min-

ima), hence in that regime we have large field inflation. But near � = 0, i.e,

the maxima, we have

✏ =
1

2
M2

p

✓
4�

m2

◆2

< 1 (4.59)

therefore we need small field excursions in order for inflation to take place,

hence the name small field inflation.

4.5.3 Example 3: Axionic inflation(V (�) = ⇤4(1�cos(�f )))

It is also known as natural inflation. For this potential we have

✏ =
M2

p

2f 2
(cot2(

�

2f
)) (4.60)

and

⌘ =
M2

p

2f 2
(1� cot2(

�

2f
)) (4.61)
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With these slow roll parameters one can find that

ns = 1�
M2

p

f 2
(2cosec2(

�

2f
)� 1) (4.62)

r =
8M2

p

f 2
(cot2(

�

2f
)) (4.63)

The r and ns satisfy

ns +
r

4
= 1�

M2
p

f 2
(4.64)

The other parameters are

nt =
M2

p

f 2
(1� cot2(

�

2f
)) (4.65)
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Chapter 5

Quantum fluctuation during

inflation

Our analysis of inflation so far has been classical. We assumed spatial homo-

geneity of the inflaton field and were unable to discuss any quantum fluctua-

tions of the field due to the classical treatment. Such fluctuations are believed

to play an important role in the formation of large scale structure and CMB

temperature fluctuations. Studying and observing these fluctuations can give

us some insight and provide evidence of early universe inflationary phase.

But first we need to see how inflation gives rise to these primordial fluc-

tuations. Consider a simple case of a massless scalar field whose action is

given by

S =

Z
d4x
p
�g[�

1

2
gµ⌫@µ�@⌫�] (5.1)
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where the metric, gµ⌫ , is given by (4.1). One can also transform the time

coordinate to conformal time, which is given by

d⌘ =
dt

a(t)
(5.2)

in this coordinate system we have
p
�g = det(gµ⌫) = a4 and gµ⌫ = ⌘

µ⌫

a2
,

where ⌘ is Minkowskian metric. The action thus becomes

S =

Z
d4xa(t)2[

1

2
(@⌘�)

2
�

1

2
(@i�)

2] (5.3)

Here we digress a little bit and try to see what we would have got by doing

the above analysis on a QED Lagrangian. The QED action is given by

S =

Z
d4x
p
�g[g↵�gµ⌫F↵µF�⌫ ] (5.4)

Now by going to the conformal coordinates as before and substituting
p
�g

and gµ⌫ , we get

S =

Z
d4x[⌘↵�⌘µ⌫F↵µF�⌫ ] (5.5)

The action turns out to be the same as in Minkowski. It is invariant under

this transformation and hence the dynamics are the same in de-Sitter and in

Minkowski. Thus it is not a good choice to study inflation.

Coming back to scalar field, we now define

y = a� (5.6)

The action now looks like

S =

Z
d4x


1

2
[y0 �

a0

a
y]2 �

1

2
(@iy)

2

�
(5.7)
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where 0 denotes @⌘. Doing a fourier transformation of y,

y(x) =

Z
d3k

(2⇡)3
eik.~xyk(⌘) (5.8)

where ~x is the spatial vector. The action becomes

S =

Z
d⌘

Z
d3x

d3k1
(2⇡)3

d3k2
(2⇡)3


1

2
[y0(k1)�

a0

a
y(k1)][y

0(k2)�
a0

a
y(k2)] +

k1k2
2

y(k1)y(k2)

�
ei(k1+k2).~x

(5.9)

using Z
d3xei(k1+k2).~x = (2⇡)3�3(k1 + k2)

and Z
d3k1F (k, k1)�

3(k + k1) = F (k,�k)

we get the action as

S =

Z
d⌘

Z
d3k

(2⇡)3


1

2
[y0(k)�

a0

a
y(k)][y0(�k)�

a0

a
y(�k)]�

k2

2
y(k)y(�k)

�

(5.10)

The conjugate momentum, p(k), is given by

p(k) =
@L

@y0(k)
= y0(k)† �

a0

a
y(k)† (5.11)

where L is the Lagrangian density. For a real field y(k)† = y(�k). Now we

can write the Hamiltonian in terms of p(k) and y(k).

H =

Z
d3k

(2⇡)3
[y0(k)p(k)�L] =

Z
d3k

(2⇡)3


1

2
p(k)p(k)† +

1

2
k2y(k)y(k)† +

a0

2a
[y(k)p(k)† + y(k)†p(k)]

�

(5.12)

We can define new variables b(k), such that

b̂(k) =
1
p
2
(
p

ky(k) +
i
p
k
p(k))
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These are like creation and annihilation operators. In terms of these vari-

ables, we can write

y(k) =
b̂(k) + b̂†(�k)
p
2k

and p(k) = �i

r
k

2
[b̂(k)� b̂†(�k)] (5.13)

The Hamiltonian now becomes

H =

Z
d3k

(2⇡)3


k

2
[b̂(k)b̂†(k) + b̂†(k)b̂(k)]� i

a0

2a
[b̂†(k)b̂†(�k)� b̂(k)b̂(�k)]

�

(5.14)

we can now try to work out how these variables evolve with time. From

(5.11) and (5.13), we can see that

y0(k) =
b̂0(k) + b̂0†(�k)

p
2k

= �i

r
k

2
[b̂†(�k)� b̂(k)] +

a0

a

b̂(k) + b̂†(�k)
p
2k

(5.15)

and

p0(k) = �i

r
k

2
[b̂0(k)� b̂0†(�k)] = k2 b̂(k) + b̂(�k)

p
2k

� i

r
k

2

a0

a
[b̂†(�k)� b̂(k)]

(5.16)

Here we obtained p0(k) using � @H

@y(k) . Using these two equation, we obtain

b̂0(k) = �ikb̂(k) +
a0

a
b̂†(�k)

and

b̂0†(�k) =
a0

a
b̂(k) + ikb̂†(�k)

In matrix form it looks like

"
b̂0(k)

b̂0†(�k)

#
=

"
�ik a

0

a

a
0

a
ik

#"
b̂(k)

b̂†(�k)

#
(5.17)
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We can see that in absence of expansion(a
0

a
= 0), creation and annihilation

operators do not mix. But they do so in an expanding universe(b̂(k) mixes

with b̂†(�k)). This is called squeezing of states. (5.17) also allows us to

decide when are allowed to neglect squeezing(k >< a
0

a
).

a0

a
=

1

a

da

d⌘
=

da

dt
= aH

therefore we only need to check whether

k

a
>< H (5.18)

When a mode is inside the Hubble radius(k�1 < (aH)�1), we can neglect the

expansion of the universe and the evolution is same as in Minkowski. In this

case we have no squeezing.

In the limit when mode is outside the Hubble radius(k�1 > (aH)�1), we

can neglect k in (5.17). We get

y0(k) =
b̂0(k) + b̂0†(�k)

p
2k

=
a0

a
y(k) (5.19)

This implies y / a. With this condition, from (5.6), we can conclude that �

is a constant. We can also work out how p(k) evolves

p0(k) = �i

r
k

2
[b̂0(k)� b̂0†(�k)] = �

a0

a
p(k) (5.20)

Thus p(k) / 1
a
. Thus one of the variables become large(y(k)) and one be-

comes small(p(k)), when the mode is outside Hubble radius.
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5.1 2-point function in de-Sitter space

2-point functions tell us about spatial fluctuations. We assume that space-

time is de-Sitter(H is constant) in calculating the 2-point function. This a

good approximation because from (4.25), we can conclude that

�����
Ḣ

H

����� <
����
ȧ

a

���� (5.21)

Hence H changes slowly during inflation. In de-Sitter space

H =
ȧ

a
= H0 (5.22)

implies that a(t) = a0eH0t. With this we can calculate ⌘

d⌘ =
dt

a(t)
(5.23)

Thus ⌘ = � 1
a(t)H . The action (5.9) now looks like

S =

Z
d4x

✓
1

⌘(t)H

◆2

[
1

2
(@⌘�)

2
�

1

2
(@i�)

2] (5.24)

We expand �(⌘, x) in fourier space

�(⌘, x) =

Z
d3k

(2⇡)3
�k(⌘)e

i~k.~x (5.25)

and write

�k(⌘) = �cl(⌘)â†(k) + �cl(⌘)⇤â(�k) (5.26)

where the superscript denotes that it is not an operator, just a function. In

Minkowski space-time, �cl(⌘) is just ei!t. Using a similar calculation as that
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in (5.9), we get the action

S =

Z
d⌘

Z
d3k

(2⇡)3

✓
1

⌘(t)H

◆2

[
1

2
@⌘�k@⌘��k �

k2

2
�k��k] (5.27)

We must calculate the equation of motion of �. Using Lagrange’s equation

of motion
@L

@(@⌘�k)
=

@L

@�k

we get

@⌘[⌘
�2@⌘�k] + ⌘�2k2�k = 0 (5.28)

⌘ dependence is there in �cl so the equations are just as good after replacing

�k with it. Let us propose the ansatz

�cl(⌘) = eA⌘ (5.29)

substituting this in (5.28), we get

@⌘[⌘
�2@⌘�

cl] + ⌘�2k2�cl = ⌘A2
� 2A+ ⌘k2 (5.30)

If we choose A=ik, we can make first and last term cancel each other. We

are just left with -2ik in R.H.S. Let us propose one more possible solution

�cl(⌘) = ⌘eik⌘ (5.31)

we get

@⌘[⌘
�2@⌘�

cl] + ⌘�2k2�cl = ⌘[2ik � k2]� 2[1 + ik⌘] + ⌘k2 = �2 (5.32)

Thus we are left with -2 in R.H.S. So if we choose

�cl(⌘) = eik⌘ � ik⌘eik⌘ (5.33)
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R.H.S becomes zero. Hence this is a solution of (5.28) upto a normalization.

The exact solution is given by

�cl(⌘) =
H
p

2k3
(1� ik⌘)eik⌘ (5.34)

When a mode is well inside Hubble radius, we have k >> aH. Since ⌘ =

�
1

a(t)H , we have |k⌘| >> 1. Thus in this limit

�cl(⌘) =
H
p

2k3
ik⌘eik⌘ (5.35)

or after making some substitutions we get

�cl(⌘) = i
a�1

p
2k

eik⌘ (5.36)

As we discussed before, in this limit we can neglect the expansion of the

universe as it is very slow as compared to the oscillation of the field. Thus

the expression we obtained here must be similar to a field in Minkowski

space-time. We have
p
k in the denominator, which corresponds to

p
Ep of

a field in Minkowski. But we have expressed � in comoving coordinates. So

k is comoving momentum. In order to make it physical we divide by a(t).

�cl(⌘) = i
a�

3
2

q
2k

a

eik⌘0ei
k
a�t (5.37)

Here we also expanded eik⌘ as some phase eik⌘0 and ei
k
a�t. We can write

it this way because a(t) is almost constant during time period of oscilla-

tion(expansion is approximately negligible). The factor of a�
3
2 comes from

di↵erent normalization of â and â† in comoving coordinates. In other words

âp = a
3
2 âk (5.38)
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Now we can move on to calculate the two point function h0|�k(⌘)�k0(⌘)|0i.

For this we assume the equal time commutation relation

[âk, â
†
k0 ] = (2⇡)3�(k + k0) (5.39)

We now have from (5.26)

h0|�k(⌘)�k0(⌘)|0i = h0|[�
cl(⌘)â†(k) + �cl(⌘)⇤â(�k)][�cl(⌘)â†(k0) + �cl(⌘)⇤â(�k0)]|0i

(5.40)

The only term which survives is of the form h0|â(�k)â†(k0)|0i. Thus we get

h0|�k(⌘)�k0(⌘)|0i = |�cl
|
2
h0|â(�k)(⌘)â†(k0)|0i

using the commutation relation, we get

h0|�k(⌘)�k0(⌘)|0i = |�cl
|
2
h0|0i (2⇡)3�(k + k0)

h0|�k(⌘)�k0(⌘)|0i = |�cl
|
2(2⇡)3�(k + k0) (5.41)

h0|�k(⌘)�k0(⌘)|0i =
H2

2k3
[1 + k2⌘2](2⇡)3�(k + k0) (5.42)

On large scales or k⌘ << 1, we have

h0|�k(⌘)�k0(⌘)|0i =
H2

2k3
(2⇡)3�(k + k0) (5.43)

on small scales or k⌘ >> 1, we have the Minkowski limit

a6 h0|�k(⌘)�k0(⌘)|0i = a6
H2⌘2

2k
(2⇡)3�(k+k0) =

a3

2k

a

(2⇡)3�(k+k0) =
1

2p
(2⇡)3�(p+p0)

(5.44)

where the a6 is added because

Z
d3k

(2⇡)3

Z
d3k0

(2⇡)3
= a6

Z
d3p

(2⇡)3

Z
d3p0

(2⇡)3
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we have also used �(ax) = 1
a
�(x). Thus

h0|�p(⌘)�p0(⌘)|0i =
1

2p
(2⇡)3�(p+ p0) (5.45)

which is the two point function of massless scalar in Minkowski. We can

calculate the two point function in real space by fourier transforming (5.43)

Z
d3k

(2⇡)3

Z
d3k0

(2⇡)3
h0|�k(⌘)�k0(⌘)|0i e

i(k.x+k
0
.x

0) =

Z
d3k

(2⇡)3

Z
d3k0

(2⇡)3
H2

2k3
(2⇡)3�(k+k0)ei(k.x+k

0
.x

0)

This gives us

Z
d3k

(2⇡)3

Z
d3k0

(2⇡)3
h0|�k(⌘)�k0(⌘)|0i e

i(k.x+k
0
.x

0) =

Z
d3k

(2⇡)3
H2

2k3
eik.(x�x

0)

(5.46)

d3k can be written as k2sin✓dkd✓d�. Let x-x0 be along z axis. This lets us

have
~k.(x� x0) = k|x� x0

|cos✓

so we can reduce the integral and get

Z
d3k

(2⇡)3
H2

2k3
eik.(x�x

0) =

Z
dk

(2⇡)2
H2

2k

Z
sin✓d✓eik|x�x

0|cos✓ (5.47)

Here we have used integral over d� to be 2⇡. The inner integral can be

simplified to give

Z
sin✓d✓eik|x�x

0|cos✓ =

Z 1

�1

dµeik|x�x
0|µ =

2sin(k|x� x0
|)

k|x� x0|

Thus the expression finally looks like

Z
d3k

(2⇡)3
H2

2k3
eik.(x�x

0) =

Z
dk

(2⇡)2
H2

k

2sin(k|x� x0
|)

k|x� x0|
(5.48)
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In de-Sitter space, the metric looks like

ds2 =
1

H2⌘2
[�d⌘2 + d�2] (5.49)

where d� is the metric on spatial indices. We can get this by a coordinate

transformation of (4.1) to coordinates with conformal time, ⌘. This metric

possesses a dilation symmetry which is when

⌘ ! �⌘ and ~x! �~x

the metric remains invariant. This symmetry must be reflected in the two

point function also. When ~x! �~x, the k transforms as ~k !
~k

�
. From (5.25),

we can see that �k(⌘)! �3� k
�
(⌘)(in the inverse fourier, there is a d3x which

gives �3). Thus when our two point function is of the form

h0|�k(⌘)�k0(⌘)|0i = (2⇡)3�(k + k0)
F (k⌘)

k3
(5.50)

It transforms as h0|�k(⌘)�k0(⌘)|0i ! �6 h0|� k
�
(⌘)� k0

�
(⌘)|0i(one �3 comes from

delta function and the other comes from 1
k3
). The function F (k⌘) is invariant

under this transformation. The �6 is cancelled by the
R R

d3kd3k0. Thus our

spectrum is scale invariant.

5.2 Helicity Decomposition and Gauges

So far we have discussed about inflaton in a de-Sitter background. We cannot

just treat background as non-dynamical, we must also discuss the perturba-
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tion in the metric. The most general perturbed metric one can write is

ds2 = a(⌘)2
⇥
�(1 + 2�)d⌘2 + 2(@iB � Si)d⌘dx

i + [(1� 2 )�ij + 2@i@jE + 2@iFj + �ij]dx
idxj

⇤

(5.51)

The object with indices are vectors and tensors, while those with no index

are scalars. Because of rotational symmetry, we can describe the modes by

how they transform under rotation, i.e, scalars, vectors or tensors.

When working with gravity one must choose an appropriate gauge for cal-

culations. Choosing a gauge means doing a coordinate transformation to

eliminate some degrees of freedom. Here, as an example, we choose what is

called a spatially flat gauge. In this gauge, scalars in the spatial part of the

metric are zero, i.e,

 = E = 0 (5.52)

If we ignore the vectors and tensors, the metric is spatially flat in this gauge.

In this gauge, the inflaton field can be seen as

�(t, ~x) = �0(t) + ✏'(t, ~x) (5.53)

�0(t) is the classical unperturbed field and ✏'(t, ~x) is the perturbation. Our

calculations involving squeezing and two point function involve '. We can

instead choose a gauge in which the inflaton is not perturbed('(t, ~x) = 0)

but space-time is curved. In other words surfaces of constant inflaton are not

flat. We can choose whichever gauge is convenient for our calculations.
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5.3 Equations of motion and limiting solu-

tions

Scalar field with action given by

S =

Z
d4x
p
�g[�

1

2
gµ⌫@µ�@⌫�� V (�)] (5.54)

has a classical equation of motion which in de-Sitter space is

@2
t
�+ 3H@t��

1

a2
r

2�+
@V

@�
= 0 (5.55)

For a spatially homogeneous field it reduces to (4.31), which was used to

analyse single field slow-roll inflation. In general, however it is not spa-

tially homogeneous but we will see it is a good approximation. Consider the

fourier transformation second and the third term( which gives k

a
3H� and

k
2

a2
�). When k >> aH, i.e, inside Hubble’s radius, we can neglect the second

term. For V=0, we get

@2
t
�k +

k2

a2
�k = 0 (5.56)

which has solutions which are approximately oscillatory. This is the Minkowski

limit. In this limit curvature can be neglected and solutions can be approxi-

mated to those in Minkowski.

In the other limit, k << aH, we have

@2
t
�k + 3H@t�k = 0 (5.57)

which is exactly like (4.31) with V=0. Thus on scales larger than Hubble’s

radius we see that neglecting the gradient term in the general equation of

motion is a good approximation. At these scales the e↵ect of curvature is

significant. In this limit, the equation has two solutions. One is constant and
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the other is a decaying solution which goes as 1
a3
. The decaying solution is

generally neglected because during inflation a(t) grows fast and it quickly be-

comes insignificant. Thus at scales larger than Hubble radius � is a constant.

Just for clarity, we introduce a new variable

� = a� (5.58)

and after an analysis similar to that after (5.6), we obtain the equation of

motion in terms of this new variable as

�00
k
+ (k2

�
a00

a
)�k = 0 (5.59)

where the primes denote derivative with respect to conformal time. a
00

a
in

de-Sitter space just gives us 2
⌘2
. The equation thus becomes

�00
k
+ (k2

�
2

⌘2
)�k = 0 (5.60)

This equation is convenient because we just need to compare k⌘ with 1 and

neglect accordingly. The corresponding equation in � is

�00
k
�

2

⌘
�0
k
+ k2�k = 0 (5.61)

This di↵erential equation, as we have seen before, has the exact solution

given by

�k = A(1� ik⌘)eik⌘ (5.62)

where A is independent of ⌘. But �k⇤ can also be a solution. In the minkowski

limit, the equation in �k looks like

�00
k
+ k2�k = 0 (5.63)
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It has solutions

�k = Reik⌘, R0e�ik⌘ (5.64)

�k would be a linear combination of both of the solutions( here we also

demand �k to be real).

�k = Âke
ik⌘ + Â†

k
e�ik⌘ (5.65)

where we have promoted the coe�cients to operators. ��k can similarly be

written as

��k = Â�ke
�ik⌘ + Â†

�k
eik⌘ (5.66)

In order to find an expression for energy, we need @⌘�k as well. It is given by

@⌘�k = ik[Âke
ik⌘
� Â†

k
e�ik⌘] (5.67)

and

@⌘��k = �ik[Â�ke
�ik⌘
� Â†

�k
eik⌘] (5.68)

Energy is given by

Ek =
1

2
[@⌘�k@⌘��k + k2�k��k] (5.69)

Substituting the previous expressions in the expression for energy we get

Ek = k2[ÂkÂ�k + Â†
k
Â†

�k
] (5.70)

Now since we want to find the k dependence of the operators, if we assume

|Âk| = |Â�k| = |Â†
k
| = |Â†

�k
| = A (5.71)

we get for nth energy level

(n+
1

2
)k = 2k2A2 (5.72)

47



or

A =

s
n+ 1

2

2k
(5.73)

therefore �k can be written as

�k =
1

a

s
n+ 1

2

2k
e±ik⌘ (5.74)

If we consider the minkowski limit of (5.62) and also demand it to be real,

we have

�k = ik⌘[Ceik⌘ � C⇤e�ik⌘] (5.75)

By comparing we get

|C| = H

s
n+ 1

2

2k3
(5.76)

In the other limit(super-horizon) we have �k which is constant in leading

order if C is purely real and decays as 1
a3

if C is purely imaginary. The

decaying solution will quickly become insignificant so we choose the constant

solution. Thus C is real and its magnitude is given by the above equation.

In general �k is given by

�k(⌘) = H

s
n+ 1

2

2k3
[(1� ik⌘)eik⌘ + (1 + ik⌘)e�ik⌘]

or

�k(⌘) = H

r
4n+ 2

2k3
[cos(k⌘) + k⌘sin(k⌘)] (5.77)

From (5.41), we see that the amplitude of two point function is given by

|�cl|
2. In the subhorizon limit, it gives

|�cl|
2 = H24n+ 2

2k3
(k⌘)2sin2(k⌘) =

2n+ 1

2k

1

a2
(5.78)
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where we replaced sin2(k⌘) by its average over full cycle. In the superhorizon

limit, the amplitude looks like

|�cl|
2 = H24n+ 2

2k3
=

2

(k⌘)2
2n+ 1

2k

1

a2
(5.79)

Which di↵ers from the subhorizon case by a factor of 2
(k⌘)2 . Thus amplitude

of fluctuation outside the Hubble’s radius is very high as compared to the

subhorizon case.

Now, with the solution for classical field in hand, we must probe the

perturbations of the field around it. we write

�(x, t) = �(t) + ✏'(x, t) (5.80)

putting this in (5.55), we get

@2
t
�(t)+3H@t�(t)+

@V

@�
�(t)

+✏[@2
t
'(x, t)+3H@t'(x, t)�

1

a2
r

2'(x, t)+
@2V

@�2
�(t)

'(x, t)] = 0

(5.81)

from which we get two equation by comparing the ✏ and non-✏ terms. These

are

@2
t
�(t) + 3H@t�(t) +

@V

@�
�(t)

= 0 (5.82)

and

@2
t
'(x, t) + 3H@t'(x, t)�

1

a2
r

2'(x, t) +
@2V

@�2
�(t)

'(x, t) = 0 (5.83)

If we are interested in only super-horizon scales, then we can neglect the
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gradient term. Taking a time derivative of the first equation gives us

@2
t

˙�(t) + 3H@t ˙�(t) +
@2V

@�2
�(t)

˙�(t) = 0 (5.84)

which looks exactly like the second equation with gradient removed and ˙�(t)

instead of '(x, t). Thus we can say that

'(x, t) = �̇(t)F (x) (5.85)

Thus (5.80) can be written as

�(x, t) = �(t) + ✏�̇(t)F (x)

or

�(x, t) = �(t+ ✏F (x)) = �(t+ �t(x)) (5.86)

Thus inflation can be thought of as a clock, it gets delayed in some places and

advanced in other depending on the spatial position. We will be exploring

this in the next section.

5.4 Scalar Perturbations

For the time being let us ignore the vectors and tensors in the general per-

turbed metric and try to obtain a formula for scalar perturbations in the

metric. We choose a gauge in which the inflaton is not perturbed, but per-

turbations appear in the spatial part of the metric. This can be done by

defining a new space dependent time variation t + �t such that the pertur-

bation in (5.53) can be absorbed into �0(t).

�(t+ �t, ~x) = �0(t) (5.87)
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After doing taylor expansion and comparing we get

'(t, ~x) = �̇0(t)�t

therefore

�t =
'(t, ~x)

�̇0(t)
(5.88)

In this new coordinates the spatial part of the metric will look like

a(t+ �t)2�ij = [a(t)2 + 2a(t)ȧ(t)�t]�ij

a(t+ �t)2�ij = a(t)2[1 + 2H�t]�ij

a(t+ �t)2�ij = a(t)2[1 + 2
H'(t, ~x)

�̇0(t)
]�ij

We basically obtained the first term in the gij part in (5.51). We refer to the

extra piece in the above equation by ⇣(t, ~x)

⇣(t, ~x) =
H'(t, ~x)

�̇0(t)
(5.89)

Its two point function is given by

h0|⇣k(⌘)⇣k0(⌘)|0i = h0|'k(⌘)'k0(⌘)|0i
H2

�̇o

2 = (2⇡)3�(k + k0)
H2

2k3

H2

�̇0
2 (5.90)

We can see from the normalisation of the spectrum that fluctuations in ⇣ are

of the order H
2

�̇0
. It is a dimensionless quantity and it can be re-written as

H

�̇0/H
. �̇0/H is field distance or the classical fluctuations during one Hubble

time(H�1). H represents the scale of spatial perturbation in de-Sitter space(H

is the only scale in de-Sitter). So the quantity H

�̇0/H
represents the ratio of

quantum fluctuations of inflaton and classical motion of the inflaton. From
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(4.34), we can write this quantity in terms of the slow-roll parameter ✏.

H2

�̇0

=
H

Mp

p
2✏

(5.91)

⇣ represents the fluctuations in the metric. We can also try to find an expres-

sion for fluctuation in the density. Since during slow-roll, density is given by

potential, we have

�⇢

⇢
=
r�V (�)��

V (�)
=
r�V (�)H

V (�)
=
p

2✏
H

Mp

(5.92)

where we used ' in (5.53) as �� whose amplitude(from (5.43)) is H. Next we

used the expression of ✏ from (4.43). We observe that density fluctuations

are ✏ suppressed.

5.5 Normalization and Scale dependence

Defining the normalization of the ⇣ spectrum as

PJ =
H4

2k3�̇0
2 (5.93)

If we integrate this object over momentum space, it becomes

Z
d3k

(2⇡)3
PJ =

Z
dkd✓d�k2sin✓

PJ

(2⇡)3
=

Z
dk

k

PJk3

2⇡2
=

Z
d log(k)

PJk3

2⇡2

(5.94)

Thus the integrand is the contribution per change in logarithm of mode. This

is a quantity which can be observationally constrained.

PJk3

2⇡2
= (2.4± 0.1)⇥ 10�9 (5.95)
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We can calculate this quantity for di↵erent models of inflation. Let us work

with quadratic potential, V (�) = 1
2m

2�2. We can use the results derived in

the quadratic potential under single-field slow-roll inflation. It is convenient

to calculate square root of PJ , as it appears in quantities which are squared.

From (4.48) and (4.47) we have

r
PJk3

2⇡2
=

H2

2⇡�̇0

=
1

4⇡
p
6

m

M2
p

�2 (5.96)

From (4.46), we have r
PJk3

2⇡2
=

1

⇡
p
6

m

Mp

N (5.97)

where N is the number of e-folds and is of order 60. Using this along with

(5.95), we can estimate that the mass of the scalar field is of order ⇠ 1013Gev.

We would also like to calculate how much our given spectrum deviates from

scale invariance( 1
k3
). If H and �̇0 were constant in (5.93), then our spectrum

would have been scale invariant. But as we saw in (5.97), there is dependence

on N, which changes during inflation. Hence there is a deviation from scale

invariance in our spectrum. It is parametrized by a quantity nS, which is

called ‘Tilt’ and is defined as

PJ / k�3+(nS�1) = k�3+(nS�1)F (t) (5.98)

where (nS � 1) is the deviation from scale invariance. F(t) doesn’t depend

on k. We can calculate the tilt by

k�3+(nS�1)F (t) =
H4

2k3�̇0
2

taking log

(nS � 1) log k + logF (t) = log
H4

2�̇0
2
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and then di↵erentiating with respect to log k

(nS � 1) =
d

d log k

 
log

H4

�̇0
2

!
(5.99)

Let us choose a particular fourier mode k(say on which we get CMB max-

ima), and evaluate the above equation at the time when this mode crosses

the Hubble horizon(k ⇠ aH). This way we can see the k dependence of

the quantity to be di↵erentiated but we only need to do a time derivative.

Assuming H to be constant during inflation and a ⇠ eHt, we have

d log k = Hdt

therefore the expression for tilt becomes

(nS � 1) = H�1 d

dt

 
log

H4

�̇0
2

!
(5.100)

Using (4.42), we can write the above in terms of the potential

(nS � 1) = H�1 d

dt

✓
log

H6

(r�V )2

◆
= �6(�

Ḣ

H2
) + 2

r
2
�
V �̇

r�V H
= �6✏� 2⌘

(5.101)

For quadratic potential, we have

✏ = �⌘ = 2
Mp2

�2
=

1

2N(�)
(5.102)

where we used (4.46) in last part. Thus the tilt for quadratic potential

becomes

nS = 1�
2

N(�)
= 0.97 (5.103)
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Data from Planck measurements [5] gives the value of tilt to be

nS = 0.9649± 0.0042 (5.104)

5.6 Gravitational waves

Tensor fluctuations can be studied by considering the quadratic action similar

to (5.9)

S = c

Z
d⌘d3xa(⌘)2[(@⌘�ij)

2
� (r�ij)

2] (5.105)

One can get this action by calculating the Einstein-Hilbert action of the

perturbed metric(with the tensor perturbation) and get the constant c to be
M

2
p

8 . In order to simplify , we go to the fourier space and write

�ij =

Z
d3k

(2⇡)3

X

s=±
✏s
ij
(k)�s~k(⌘)e

i~k.~x (5.106)

where s represents the two states of polarisation of gravitational waves. The

polarisation tensors ✏s
ij
are transverse, traceless(✏s

ii
= kj✏s

ij
= 0) and obey the

normalisation ✏s
ij
✏s

0
,ij = 2�ss0 . With these rules one can calculate the action

in fourier space and get

S =
X

s=±

Z
d⌘d3k

a(⌘)2

4
M2

p
[(@⌘�

s

~k
)2 � k2(�s~k)

2] (5.107)

Apart from the summation over polarisations, the above equation is similar to

that of scalar field(to be precise, rewriting the action in terms of vs
~k
= Mpp

2
�s
~k

gives us the exact form). Thus without much e↵ort we write the power

spectrum for tensor fluctuations

h0|vs~kv
s
0

~k0
|0i =

H2

2k3
(2⇡)3�(k + k0)2�ss0 (5.108)
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or equivalently, we can write

h0|�s~k�
s
0

~k0
|0i =

1

2k3

2H2

Mp2
(2⇡)3�(k + k0)2�ss0 (5.109)

The 2�ss0 comes from the normalisation of ✏s
ij
. The normalisation of the

spectrum is

PI = 2
1

2k3

2H2

Mp2
2 (5.110)

where we multiplied by two because there are two polarisations. We observe

that there is no ✏ dependence unlike that in scalar perturbations. Ratio of

tensor to scalar amplitudes is

r =
PI

PJ

=
8�̇2

Mp2H2
= 16✏ (5.111)

where we used (4.34) in the last part.

5.7 Choice of Vacuum

Commutation relation in X and P in quantum mechanics is

[X,P ] = i~ (5.112)

Let  be the wavefunction. We know that the action of momentum operator,

P, on  in x basis is

hx|P | i = �i~@ (x)
@x

(5.113)

Where  (x) is the wavefunction in position space, hx| i. Now let the wave-

function be in the momentum basis, |pi, such that

P |pi = p |pi (5.114)

56



Projecting this onto x basis we get

hx|P |pi = p hx|pi (5.115)

From (5.113), the R.H.S can be written as

�i~@ hx|pi
@x

= p hx|pi (5.116)

This is a linear di↵erential in hx|pi, whose solution is

hx|pi = eipx/~ (5.117)

We know that momentum is the Generator of infinitesimal translations. In

other words the infinitesimal translation operator T(✏)

T (✏) |xi = |x+ ✏i (5.118)

can be written as

T (✏) = I �
i✏

~ P (5.119)

where P is the generator. Under this transformation, the wavefunction trans-

forms as

T (✏) | i = T (✏)

Z 1

�1
|xi hx| i =

Z 1

�1
|x+ ✏i hx| i =

Z 1

�1
|x0
i hx0
� ✏| i

(5.120)

Therefore

hx|T (✏)| i =  (x� ✏) (5.121)

Taylor expanding R.H.S and using the expression of T(✏) on L.H.S we get

hx| i �
i✏

~ hx|P | i =  (x)�
@ 

@x
✏ (5.122)
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comparing we get (5.113). In quantum field theory we have

|xi = �(x) |0i (5.123)

and

|pi =
p

2!pa
†
p
|0i (5.124)

Mode expansion of � is

�(x) =

Z
d3p

(2⇡)3
1p
2!p0

[ape
± i

~p.x + a†
p
e⌥

i
~p.x] (5.125)

Then we have

hx|pi = h0|

Z
d3p0

(2⇡)3
[ap0a

†
p
e±

i
~p

0
.x + a†

p0a
†
p
e⌥

i
~p

0
.x]|0i (5.126)

The second term is zero and on first term we use the commutation relation

of annihilation and creation operators.

[ap, a
†
p0 ] = �3(p� p0) (5.127)

we get

hx|pi = e±
i
~p

0
.x (5.128)

in order to be consistent with quantum mechanics we see that annihilation

operator must be associated with e
i
~p

0
.x term.
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Chapter 6

Misalignment mechanism for

Axion dark Matter

The equation

�̈+ 3H�̇+r�V = 0 (6.1)

describes the evolution of a spatially homogeneous scalar field in the FRW

universe. Assuming that the field is close to the minima of the potential,

we can approximate the potential to be quadratic i.e., V (�) = 1
2m

2�2. The

energy density is then given by

⇢ =
1

2
�̇2 +

1

2
m2�2 (6.2)

and equation of motion is

�̈+ 3H�̇+m2� = 0 (6.3)

59



From these two equations we can write

⇢̇+3H⇢ = �̇(�̈+m2�)+3H(
1

2
�̇2+

1

2
m2�2)+mṁ�2 =

3

2
H(m2�2

��̇2)+m2�2 ṁ

m
(6.4)

In the oscillatory regime (see below for more details), time period of oscil-

lation (/ m�1) is much smaller than H�1. Hence H does not appreciably

change during one oscillation. Thus the quantity, (m2�2
� �̇2) averages to

zero over one cycle. Therefore

˙⇢av + 3H⇢av = m2�2 ṁ

m
= ⇢av

ṁ

m
(6.5)

which gives
⇢a3

m
= constant (6.6)

This implies that ⇢

m
dilutes as a�3 in the oscillatory phase.

6.1 Dark Matter Abundance

The density parameter for axions today is given by

⌦0
�
=
⇢0
�

⇢0
c

=
m0n0

�

⇢0
c

=
⇤2

QCD

f�

s0

⇢0
c

n0
�

s0
=

⇤2
QCD

f�

s0

⇢0
c

Y 0
�

(6.7)

where we have defined

Y� =
n�

s
(6.8)

Note that, Y� stays constant once oscillation has started (see Eq. (6.6)). So

one can calculate Y 0
�
by calculating it at the start of oscillation (defines as

Y osc
�

below). For later convenience, we now rewrite Eq. (6.7) as

⌦0
�
= 0.23

✓
⇤

100MeV

◆2✓5.1 ⇤ 1012 GeV

f�

◆✓
Y osc
�

5.05 ⇤ 105

◆
. (6.9)
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Note that, the axion density ⇢� above should be thought as an average density

(over at least one time period of oscillation).

We would now like to calculate the temperature at which the oscillation

starts, i.e., the highest temperature, T osc, such that

Y osc
�
⌘ Y�(T

osc) = Y 0
�

(6.10)

We can get a rough estimate of this temperature by assuming H and m to

be time-independent (or slowly varying) in (6.3) so that we get the following

exact solution

� = Ae�1.5Ht+
p

(1.5H)2�(m)2t +Be�1.5Ht�
p

(1.5H)2�(m)2t (6.11)

We remind the readers again that we have assumed the potential to be ap-

proximately harmonic near the minima which implies that we have to restrict

our initial angular misalignment, ✓ ⌘ �/f�, to be  1 for this analysis to be

valid. We will come back to this point later.

From Eq. (6.11), one can see that the oscillation can only begin below a

critical temperature, T ⇤, which satisfies

m(T ⇤) = 1.5H(T ⇤) (6.12)

Note that, T osc defined in Eq. 6.10 can be slightly di↵erent than T ⇤, we will

investigate this in more detail later.
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6.2 Critical Temperature

For the axionic potential, the mass m varies with temperature as

m =
⇤2

f

✓
⇤

T

◆↵
2

(6.13)

where ↵ ....... To find the critical temperature we use

m(T ⇤) = 1.5H(T ⇤)

=)
⇤2

f

✓
⇤

T ⇤

◆↵
2

= 1.5

r
g(T ⇤)

90

⇡T ⇤2

Mp

=) T ⇤ = ⇤

"
Mp

f

2
p
10

⇡
p

g⇤(T ⇤)

# 1
2+↵

2

(6.14)

For ⇤ = 100MeV, f� = 5.1 ⇤ 1012 GeV and ↵ = 8 we get T ⇤ = 906MeV

where we have used g⇤ = 75.75.

6.3 Calculation of Y�(T osc)

Y�(T
osc) =

Dn�

s

E

Tosc
(6.15)

Axionic dark matter density today depends on the quantity n�

s
whose

average is constant once oscillation begins, as we have shown previously.

Thus Dn�

s

E

today
=
Dn�

s

E

Tosc
(6.16)

As we commented on earlier, while hn�/siTosc may be approximately taken

to be hn�/siT⇤ , they may not be exactly equal to each other. This is taken
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care of by writing Dn�

s

E

Tosc
= k1

Dn�

s

E

T ⇤
(6.17)

In order to calculate hn�/siT ⇤ , one needs to calculate n� = ⇢� at T ⇤.

Since the field would not have rolled much between the initial temperature

and T ⇤ because of large Hubble friction, one can approximately write

n� ⇡
1

2
m(T ⇤)�2

0

where �0 is the initial value of the field. In order to correct this approxima-

tion, we intrduce a parameter k2 such that

n� = k2
1

2
m(T ⇤)�2

0 (6.18)

Thus, we now have

Dn�

s

E

Tosc
= k1k2

1
2m(T ⇤)�2

0

s(T ⇤)
(6.19)

In order to calculate k1 and k2, one has to solve Eq. (6.3) (with temper-

ature dependent H and m) exactly either numerically or analytically. We

found k1 ⇡ 3.4 and k2 ⇡ 0.98

Analytic solutions vary with the choice of ↵ one takes. For example if

↵ = 0, i.e, mass is independent of temperature, the solution is of the form

�(t) =
[C1J0.25(mt) + C2J�0.25(mt)]

t1/4
(6.20)

where C1 and C2 are determined by initial conditions.
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For ↵ = 8 the di↵erential equation takes the form

�̈+ 3H�̇+
t4

k4
� = 0 (6.21)

which has the following solution:

�(t) =
C1J1/12(t4/3k2) + C2J�1/12(t4/3k2)

t1/4
(6.22)

23456
0

1

2

3

4

5

6

1.01.52.02.53.03.54.0
0

1

2

3

4

5

6

0.51.01.52.0
0

1

2

3

4

5

6

0.20.40.60.81.01.2
0

1

2

3

4

5

6

Figure 6.1: Variation of ratio of ⇢

m
a3 relative to its value at T ⇤.

Using the above analytic solution, in Fig. 6.1 we plot n� a3 as a function

of temperature normalised to n� a3 at T ⇤ for four di↵erent values of f�. For

the initial conditions, we use �(10GeV) = f� and �̇(10GeV) = 0. From the

figures, we get k1k2 ⇡ 3.3.

64



Note that, until now we have been working with a quadratic potential

assuming that �/f� . 1.

We wish to now determine how much di↵erence quadratic approximation

makes while calculating energy densities. In Fig. 6.2 we plot the ratio of

energy densities resulting from Axionic and quadratic potentials. The ratio

initially is determined by the ratio of the potentials at �0. For example for

�0 = f�, the ratio is

⇢axionic
⇢quadratic

���
T 0

=
⇤4(1� Cos(1))

1
2m

2f 2
= 0.92 (6.23)
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Figure 6.2: Ratio of energy densities calculated from Axionic and Quadratic
potential.

But later when oscillations begin we start to observe di↵erences in the
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energy densities resulting from the two potentials. It can be seen that the

di↵erence about 5% for �0 = f�.

Thus, we finally get

Y�(T
osc) =

Dn�

s

E

Tosc
= 3.3

1
2m(T ⇤)�2

0

s(T ⇤)
= 3.3

1.5
2 H(T ⇤)�2

0

s(T ⇤)
(6.24)

=
3.3 ⇤ 1.5

2

q
g(T ⇤)
90

⇡T
⇤2

Mp
�2
0

2⇡2

45 g
⇤(T )T 3

= 1.86
✓20p
g(T ⇤)

f 2

MpT ⇤ (6.25)

Using the expression for T ⇤ (Eq. (6.14)), we can write

Y�(T
osc) = 1.86

✓20p
g(T ⇤)

f 2+ 2
4+↵

Mp⇤


Mp

2
p
10

⇡

p
g⇤(T ⇤)

� 2
4+↵

(6.26)
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Figure 6.3: Variation of n�

s
with temperature.

For ↵ = 8 this can be written as

Y�(T
osc) = 5.03⇤105 ✓20

✓
75.75

g(T ⇤)

◆ 5
12
✓
100MeV

⇤

◆✓
f

5.1 ⇤ 1012 GeV

◆ 13
6

(6.27)
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In Fig. 6.3 we calculate Y�(Tosc) completely numerically.

Putting back the above expression for Y�(Tosc) into Eq. (6.9), we get

⌦0
�
= 0.23

✓
⇤

100MeV

◆✓
✓0
1

◆2✓ 75.75

g(T ⇤)

◆ 5
12
✓

f

5.1 ⇤ 1012 GeV

◆ 7
6

(6.28)

Note than this equation is valid only for ✓0 . 1.

6.4 Anharmonic e↵ect
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Figure 6.4: Anharmonic e↵ect

In Fig. 6.4, we show how the Axion energy density changes with increasing

initial misalignment angle as the blue curve. The red dotted curve represent

the quadratic fit to the curve. From this we can see that quadratic approx-

imation is valid for misalignment angle less than or equal to 1.5. After this

there is a significant deviation from quadratic approximation.
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6.5 Kinetic Misalignment

If the initial conditions to the field are given at T >> T ⇤, we need kinetic

energies which are way larger than potential barrier at T ⇤ to see significant

deviation from normal misalignment. This is because initially Hubble in-

duced friction is very large, and kinetic energy decays to value close to zero.

We can try to solve and see exactly how it decays. The equation of motion

of the field in quadratic approximation is

�̈+ 3H�̇+m2� = 0 (6.29)

we can rewrite the last term as

m2� = m
p
2V (�)

Now we know that for T > T ⇤, we have H > m. Hence the ratio in this

regime is

H

m

s
�̇2

2V (�)
>> 1

One can see that this inequality is also satisfied by axionic potential because

for a given value of mass quadratic potential is greater than axionic potential.

We can now neglect the last term in the equation of motion. The resulting

equation

�̈+ 3H�̇ = 0 (6.30)

tells us that in this regime

�̇ /
1

a3
(6.31)

Now we know that in a radiation dominated universe, the scale factor goes

as inverse of temperature.

a /
1

T
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Equation 6.31 can be written as

�̇(T ) =

✓
a(Ti)

a(T )

◆3

�̇(Ti) (6.32)

In a radiation dominated universe, the scale factor goes as

a /
p

t (6.33)

Therefore we have

�̇(t) =

✓
t(Ti)

t(T )

◆3/2

�̇(Ti)

Integrating with time we get

�(t) = 2t(Ti)�̇(Ti)

 
1�

✓
t(Ti)

t

◆0.5
!

+ �(t(Ti))

�(T ) =
�̇

H
(Ti)

✓
1�

✓
T

Ti

◆◆
+ �(Ti) (6.34)

or

✓(T ) = ✓(Ti) +
✓̇

H
(Ti)�

✓̇

H
(Ti)

✓
T

Ti

◆
(6.35)

By looking at this equation we can explain some characteristics of the figures

shown below. The equation is valid for T > T ⇤, because the assumption that

kinetic energy is larger than potential energy breaks down at oscillation. If

Ti is su�ciently large, we see that the third term vanishes near as field ap-

proaches oscillatory regime. Thus the first two terms constitute the e↵ective

misalignment angle with which the oscillation starts.

✓eff = ✓(Ti) +
✓̇

H
(Ti) (6.36)
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Now we can estimate the energy density at the beginning of oscillation to be

⇢(T ⇤) =
1

2
m�(T

⇤)2✓2
eff

f 2
�

(6.37)

Now if we want to find the initial conditions for which we have minimum

energy density at the start of oscillation, we need

✓eff = ✓(Ti) +
✓̇

H
(Ti) ⇡ 0

since we are choosing ✓(Ti) = 1 in our numerical results, our ✓̇

H
(Ti) must be

-1. Looking at Fig 6.5, we see that it is indeed the case. Similarly if one

wants to find out initial condition for which energy density is maximum, we

must have

✓eff = ✓(Ti) +
✓̇

H
(Ti) ⇡ ⇡

Thus our ✓̇

H
(Ti) must be ⇡ � 1 or approximately 2.14. One can see this in

Fig6.5
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Figure 6.5: Energy density as a function of initial velocity starting from ✓ = 1
relative to present day dark matter density
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Chapter 7

Conclusion

We have studied three contemporary ideas in Particle Physics and Cosmol-

ogy: The de-Sitter conjectures, Inflation and Axions. de-Sitter conjectures

are supposed to consistency conditions of E↵ective field theories when the

are coupled to gravity. We studied how the conjecture rules out cosmological

constant and de-Sitter vacuum as dark matter candidates along with slow-

roll inflation while anti de-Sitter vacuum isn’t ruled out. We also saw some

suitable modifications of these conjectures which do not rule out de-Sitter

vacuum and cosmological constant.

Then we also studied in detail the cosmological Inflation which was a pro-

posal to solve fine tuning problems in cosmology such as flatness problem and

horizon problem. We considered a few models of Inflation and the parameters

of those models consistent with slow roll Inflation. We saw that Inflation not

only explains the spatial homogeneity of CMB temperature spectrum, but

also its tiny fluctuations said to have risen as quantum fluctuations during

Inflation.

We studied Axions and their role on Cosmology in particular Dark matter.

Axions were originally proposed as solutions of strong CP problem but it was
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soon realised that axions can also be good candidates of Dark matter. In this

thesis, we assume that the Peccei-Quinn symmetry( which gives rise to Axion

as goldstone boson) is broken before Inflation and the Dark matter density

is produced by the so called Misalignment mechanism. We investigate the

Misalignment mechanism both analytically and numerically and found the

allowed value for Axion decay constant consistent with Dark matter density.

In traditional Misalignment mechanism the Axion field is assumed to have

negligible velocity after PQ symmetry breaking. However, recently it has

been proposed that having a non-zero velocity leads to a wider range for the

axion decay constant. We are now exploring this idea in more detail.
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