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Abstract

In this thesis we study some aspects of causal set theory. In Chapter 1 we briefly motivate

this theory, outline some important results and describe some of the work that has been in

done this field so far. In Chapter 2 we outline the various definitions and terminologies that

will be used throughout the thesis. In Chapter 3 we study the Poisson sprinkling method

to generate causal sets and study various properties of such causets, primarily the volume-

diameter scaling to estimate the causal set dimension. In Chapter 4 we try to generate

causets in the form of a layered, directed graph and try to find their causal set dimension. In

Chapter 5 we will use the tilted square lattice as the basic framework of our causal set, and

study how rewirings and percolation affect its various properties. In Chapter 6 we summarise

our results and outline how we can build upon this work.
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Chapter 1

Introduction

1.1 A brief account of earlier work on on Causal Set

Theory

Achieving a theory of quantum gravity has been one of the most important goals of physics

for the last few decades, and a significant amount of work has been done to this end[1].

One of the theories that attempts to tackle this problem is the causal set theory [2]. This

theory posits that spacetime is fundamentally discrete. The most fundamental objects in

the spacetime, according to this theory, are events and causal links. What we perceive as

coordinates are emergent. What we are essentially doing is transforming the kinematics

of our system from a manifold and a metric (M, gab), to a partially ordered set, with an

ordering relation (C,≺).

It has been shown by Hawking et al.[3, 4] that, in 4 dimensions, the metric is almost

completely determined by the causal structure of the spacetime, sans a local volume ele-

ment (which is a single scalar). In the words of Finkelstein[4], the causal structure (in 4

dimensions) determines 9/10th of the metric. This is because a (3+1)d spacetime metric has

10 independent degrees of freedom, and the causal structure of spacetime determines all of

them, sans a conformal factor. The fundamental nature of the causal structure of spacetime

was strengthened by Zeeman in his paper[5] entitled ‘Causality implies the Lorentz Group’,

where he goes on to define a chronological automorphism, and proves that the group of these
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automorphisms is isomorphic to the Lorentz group.

However, we must still determine what is to become of the remaining ‘1/10th’ of the

metric. One way to do this is to demand that spacetime be locally finite[6], wherein we

demand that there be only a finite number of spacetime elements (or events) in a finite

spacetime volume. We can thus obtain discreteness in the poset which represents spacetime.

We also demand that, on an average, these points are separated by a distance of order Planck

length. Now we can replace the notion of a continuous volume of any interval in spacetime

with the notion of a discrete volume, which is simply by the number of events in the interval.

We now have a theory of spacetime wherein we have a partially ordered set (C,≺) as the

dynamical variables, as opposed to a manifold and a metric (M, gµν). This partially ordered

set is called a causal set, or more simply, a causet.

One way to construct these causets directly from continuous spacetime by ‘sprinkling’

points in continuous space such that the number of points in a given volume of spacetime

follows a Poisson distribution (keeping in mind that the average distance between points is of

order Planck length), and assigning causal links between these sprinkled points in accordance

with the causal structure of the underlying spacetime. However, we would like to develop

a method to generate such causets by using methods other than this because this uses a

manifold like spacetime as a crutch, and we want to eventually show that what we need is a

causal set and “manifold-ness” is emergent. There has been some work done in this regard,

like transitive percolation[7, 8], and there have also been attempts to see whether the causets

generated this way have other properties of spacetime like Lorentz invariance[9] on a large

scale, and so on.

1.2 Scope of this thesis

In this thesis we aim to introduce a few concepts of causal set theory (or CST) and study

some aspects of it. Here we do not even attempt to answer many of the problem in CST,

and will stick to only a few. For a more detailed account of the work that has been done in

this field please refer to this review article[10] by Surya. The following are the broad topics

covered in the thesis:

• Definition of a causal set, and few other important concepts like faithful embedding,
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causal set dimension, diameter etc.

• Enumeration of causal sets that are constructed using some toy models

• Determination of the probabilities of occurrences of various topologies in causets gen-

erated using a method called Poisson sprinkling, and coming up with an analytical

explanation for the same

• Generating causets using Poisson sprinkling and studying the volume vs. diameter

relationships of such causets and their subcausets

• Examination of the abundances of subcausets of various diameters and volumes within

a causet

• Development of a different method for generation of causets (much like the transitive

percolation method) where we have layered graphs

• Performing rewirings and percolation on these graphs and see how these influence

various properties of the causet

• A study of different properties of the graphs generated this way and see if we can

somehow reproduce at least some of the properties of the causets that we obtained by

Poisson sprinkling.

The quantity of interest in this thesis is the dimension of causets, which we will define

by studying volume vs. diameter relationships. An important disclaimer is that we do not

aim for the layered-graph causal set to completely mimic spacetime, but to mimic some

properties in some limits.

All simulations in this project were run on FORTRAN using the gfortran compiler.

Graphs were plotted using Grace and Python 3. Numerical calculations were done using

Wolfram Mathematica.
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Chapter 2

Preliminaries

2.1 General definitions

Here we shall define certain terms and clarify certain concepts that will be used throughout

the thesis, and also make note of conventions used.

2.1.1 Causal sets

Let us first define what a causal set is. A causal set is a partially ordered set where the partial

ordering relationship between two elements is determined by whether they are causally linked

by the causal structure of spacetime. In a causal set, a ≺ b if and only if a exists in the past

light-cone of b in spacetime.

A partially ordered set is a set with S with any partial ordering ≺ where any two elements

a, b ∈ S can either be related (a ≺ b or b ≺ a) or unrelated (a ⊀ b and b ⊀ a). The partial

ordering relation ≺ must satisfy the following criteria:

• Antisymmetry: a ≺ b⇒ b ⊀ a

• Transitivity: a ≺ b and b ≺ c together imply a ≺ c

• Non-circularity: a ≺ b and b ≺ a ⇒ a = b
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2.1.2 Faithful embedding

Consider a Hausdorff, paracompact manifold M with a globally hyperbolic, Lorentzian,

smooth metric gab (or simply, a manifold and metric which resembles the real spacetime that

we see). Consider a map φ : S −→M from a causal set C = (S,≺) to a spacetime manifold

(M, gab). It is called a conformal embedding if x ≺ y ⇐⇒ φ(x) ≺ J−(φ(y));∀x, y ∈ S (J+

and J− denote to the future of and to the past of respectively). The map is called a faithful

embedding if it satisfies two other criteria:

1. The probability of having n points mapped into an Alexandrov interval of spacetime

volume V is

P (n) =
(ρV )ne−ρV

n!

2. The mean spacing between points (ρ
1
d in d dimensions) has to be greater than than

the lengthscale over which continuum geometry varies.

2.1.3 Hasse Diagrams

These are diagrams used to represent partially ordered sets (or posets). As causal sets are

essentially partially ordered sets, Hasse diagrams give us a good way to represent them as

well. We can draw these diagrams with the following rules:

• Each element in the causal set is denoted by a point

• Two points x and y are connected by a line if and only if x ≺ y in the causal set and

there is no z such that x ≺ z ≺ y

Each causal set has a unique Hasse diagram corresponding to it and vice versa.

Given that this is a partial ordering, this is a representation of the poset which resembles

a directed, transitive graph. As a convention, we shall adopt the downward direction to

represent all causets henceforth. Also, x ≺ y in any causet means that event x can causally

influence event y.
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2.2 Definitions pertaining to causal set dimension

Given that we are going to investigate causal set dimension in some detail in this thesis it

becomes pertinent to discuss few of the ideas that we will be using to do so. As the causal

sets that we construct in the form of a poset, and therefore, in the form of a directed graph,

will in genera have a fractal dimension, we can have various measures of dimension which

can be used.

2.2.1 Volume of a causet

As it has been indicated before, the volume of a causet is simply its cardinality. In this thesis

we will be examining intervals in causal sets so we shall define it in detail here.

Consider a causal set C = (S,≺). Consider two points x, y ∈ S such that x ≺ y. The

volume of the interval between x and y is the cardinality of the set I[x, y] where I[x, y] is

J+(x) ∩ J−(y). As we have alluded to before, J+(x) = {z : z ∈ S, x ≺ z} and J−(x) = {z :

z ∈ S, z ≺ x}.

2.2.2 Diameter of a causet

Firstly, we shall define what a path is, and move ahead from there. A path P between any

two points x, y ∈ S (and x ≺ y), is a set of causally linked elements with x as its past

endpoint and y as its future endpoint and there exists no element z that is comparable to

all elements in P such that x ≺ z ≺ y. The length of any path P is the cardinality of P .

The diameter of a causet is is defined to be the length of the longest possible path that

can be traced out in the causet. Suppose our causet has a past endpoint x and a future

endpoint y, the diameter of the causet is the length of the longest path that joins x to y.

This longest path, in fact, is a timelike geodesic between these two events. This directly

corresponds to the notion of timelike geodesic in continuous spacetime, where we find said

geodesics by extremising proper time.

It has been shown[11, 12] that for any interval I[x, y] of a causal set (constructed by
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sprinkling) of discrete volume ρV , the length L of the longest chain satisfies L(ρV )1/d → md

in probability, where md is some constant that depends on the dimension of the Minkowski

space. For d ≥ 3, we have the following bounds:

1.77 ≤ md ≤ 2.62 (2.1)

We also know that m2 = 2.

2.2.3 Dimension of a causet

The dimension of a causet can be defined in a variety of ways, given that the causet itself will

in general have a fractal dimension. In this thesis, we will use the volume-diameter scaling

to define our dimension (we will define this rigorously in this section). However, there exist

other possible definitions of causal set dimensions (like the mid-point scaling dimension, the

Myrheim-Meyer dimension etc, and one can find these definitions in the thesis by Rideout[8].

In d−dimensional Minkowski space, the spacetime volume between two events which are

separated by proper time T has spacetime volume

Vd(T ) =
2Vd−1
d

(T
2

)d
=

2π(d−1)/2

((d− 1)/2)!d

(T
2

)d
(2.2)

Though this definition is for continuous spacetime, it can be extended to causal sets

as well because we have precisely defined what volumes and diameters of causal sets are.

However, there is the caveat of how we do not know how to translate the casual set length L

to the proper time T , as we do not know md, in general. However, for d = 2, which is what

we will be examining in this thesis, m2 is well defined and we can go ahead.

It must be noted that we do not insist on the prefactor being the same as what we see

here for the causal sets that we will generate using various rules. All we want to see is how

the volume of a causal set grows as a function of its diameter. Essentially, we will have an

expression for the volume of a causet as a function of its diameter and we will find log(V ).

The coefficient of log(d) in this expression is what we define to be the dimension of the

causet.
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2.3 A few simple examples

In CST, different posets occur with different probabilities, and all allowed posets will get

assigned non-zero weight by the theory being considered. We will try to enumerate causets

which are subject to some constraints. Here are few simple examples:

Case 1

1

2

3

4

n

x1

x2

xk

We enumerate the non-trivial causets formed by linking two

chains, one of length n and the other of length k when the tips

of the “side-chain” is connected to the main chain with one in-

coming and one outgoing edge.

The number of such causets is
n!k!

2
(n− 1)(n− 2)

Case 2

1

2

3

4

n

x1

x2

We enumerate the non-trivial causets formed by linking a of

length n and another of length 2 where the topmost tip of the

“side-chain” is connected to the main chain by two edges (one in-

coming and one outgoing) and the bottom-most tip by one edge

(one outgoing).

The number of such causets is
n!

2
(n− 1)(n− 2)

(
n− 3

2

)

9



It is important to note that while we can construct many such partial orderings, it is

very hard to obtain partial orderings that look like spacetime-like. In fact, Kleitman and

Rothschild[13] showed that most random partial orderings of n elements have a three layered

structure similar to that of a tripartite graph, and the number of such posets are bounded

by:
n2

4
log(2) ≤ log(N(n)) ≤ n2

4
log(2) + An3/2 log(n)

where N(n) is the total number of posets that can be formed with n elements. These

tripartite graphs do not represent spacetime whatsoever, hence we need to device some

other method to generate/enumerate posets that look like spacetime.

N/4

N/2

N/4

Figure 2.1: A typical Kleitman-Rothschild poset of N elements. They organise themselves
into three layered posets where the outer layers have ∼ N/4 elements each and the middle
layer has ∼ N/2 elements (the actual number of nodes in this figure are for illustrative
purposes only).
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Chapter 3

Poisson sprinkling to generate causets

As previously mentioned, one way of generating causets is to sprinkle points into spacetime

such that

1. Given a density of sprinkling ρ, the probability of finding n points in a volume V of

spacetime is given by

P (n) =
(ρV )n

n!
e−ρV (3.1)

2. The density of points is fixed to a good extent by insisting that the average distance

between two events in this causal set is lesser that some length-scale λ where the scale

at which spacetime geometry varies is� λ. We can consider λ ∼ lP , the Planck length.

In Minkowski spacetime this is simply uniform sprinkling of points. What one can do is

to call two random numbers to be our x and y coordinates. We will, however, do all our

sprinkling in a causal diamond, which is simply the spacetime interval between two events

(in (1 + 1)d) Minkowski spacetime.

11



Figure 3.1: 104 points uniformly sprinkled in a (1 + 1)d Minkowski causal diamond

3.1 Probability of finding different topologies

One interesting question that we can study here is this: if we sprinkle n points in a Minkowski

diamond, they can fall into different topological configurations. The aim is to determine

what is the probability of getting a particular kind of configuration given that n points were

sprinkled. Simulations for n = 2, 3, 4 were run. In the following tables, the left-hand column

shows the structure of the causal set, and the right-hand column contains rational fraction

approximations of the data that we obtained from simulations.

Table 3.1: n = 2, simulation. We can see 2 distinct topological configurations.

1

2!

1

2!

12



Table 3.2: n = 3, simulation. We can see five distinct topological configurations

1

3!

2

3!
1

3!
1

3!
1

3!

Table 3.3: n = 4, simulations. We can see sixteen distinct topological configurations.

3

4!

2

4!

2

4!

2

4!

2

4!

2

4!

2

4!

1

4!

1

4!

1

4!

1

4!

1

4!

1

4!

1

4!

1

4!

1

4!
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In principle, it is possible to write down the various topological configurations for any

n number of points. However, the number of such configurations grow very fast for us to

do it. For example, if we want to consider the 5 points being sprinkled, we trivially have

3 · 16 − 3 = 45 configurations: one where you have the new element unrelated to none of

the other four elements, one where the new element is to the past, and another where it is

to the future of all the remaining 4 elements (the 3 is subtracted because there are a few

repetitions when we follow these scheme). There will be more topologies than this, and it

becomes tedious to list them all out for larger and larger n.

It is possible to obtain these exact probabilities we saw in the preceding tables analyti-

cally. We can show that sprinkling in 2-d Minkowski spacetime are isomorphic to a random

permutation in the following way:

1. Consider a permutation πi of n numbers, with 1 ≤ i ≤ n!, where πi = (πi(1), πi(2), . . . , πi(n)).

2. Let us label n points as the first n natural numbers

3. We say that two points x, y are connected with x ≺ y ⇐⇒

• x < y, and

• πi(x) < πi(y)

We can hence generate causets from permutations using this scheme. Coming back to the

probability of finding different kinds of topologies in causets, we can think of random sprin-

kling of n points as generating a random permutation of n numbers. Here, each permutation

occurs with a probability of 1/n!. However, different permutations can give rise to the same

topologies. For example, consider the poset

Figure 3.2: A causet with 4 elements

Now the permutations 3421, 4312 and 4231 correspond to this causet. As three of the 4!

permutations correspond to this topology and each of them occur with probability 1/n!, the

probability of occurrence of this topology when 4 points are sprinkled is 3/n!.

14



We can generalise this as:

Probability of finding a given

topological configuration
=

Number of permutations which give

the configuration

Total number of permutations
(3.2)

3.2 Volume vs Diameter characteristics

We generated causets using various rules to estimate how their volumes vary with change in

their diameters, and vice versa. Simulations where we generated causets by sprinkling points

into a ‘causal diamond’ (which is the spacetime interval between two timelike separated

events) were performed and volume vs diameter behaviour was studied.

3.2.1 Varying V

A fixed number of points were sprinkled into a causal diamond, thereby fixing the volume.

Then, the longest chain in the graph obtained by sprinkling was found and its length was

defined to be the diameter of the causet. This procedure was repeated multiple times for the

same volume to obtain the variance in diameter for a given volume, and then the volume

was also varied to express the average diameter as a function of volume.

Figure 3.3: d (diameter of the causal set) vs V (Volume): fixed V

15



We can see that volume goes as mean diameter to the power 2, with some small error.

3.2.2 Calculating subcauset volumes

Another way to study the volume vs diameter relationships are to generate a single causet

and look at all its subcausets and study their volume vs diameter relationship. We can also

study other properties of the causet, like what is the distribution of the causet volume given

a diameter, what are the number of causets of a given diameter, and so on. This scheme

is similar to the previous one, except the top and bottom points of the causal diamond are

occupied as we use these points to define the subcauset.

Figure 3.4: A scatter plot of d (diameter of the causal set) vs V (Volume): all the volumes

for different values of d have been plotted

As we can see, there is a distribution of volumes about the mean volume for a given

diameter. The distribution appears to become thinner towards the high diameter end of the

causet simply because the number of high diameter subcausets of a given causet becomes

smaller and smaller, with increase in diameter, and becomes something to the order of 1 as

the diameter approaches the diameter of the causet itself.
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Another quantity that can be studied is the distribution of of the causet volumes about

the mean, for a given diameter.

Figure 3.5: d vs V : heat plot, zoomed in. We have some idea about the density of data

points around the fit-curve

As we can see from the heat plot, the low diameter end of the figure has a high density

of points and it becomes sparser as we move to higher diameters. The reason for this is

twofold: the number of very small diameter subcausets is large compared to those of vary

large diameters, and the number of possible volumes that a small diameter causet can have

is also quite constrained while compared to those of the subcausets with larger diameters.

The following page has a plot of how the number of subcausets of a given diameter d vary

with increase in d. Given that we have a finite system, we will have finite size effects, which

we can take into account. The number of length d subcausets would increase somewhat

linearly initially, and then the linear growth will become slower and slower, and it will start

decreasing after the causet can no longer accommodate subcausets of such large diameters.

17



Figure 3.6: Number of subcausets of a given diameter d vs d

We can also study the volume distribution of causets of a given diameter.

Figure 3.7: The distribution of volumes of causets of a given diameter

18



All these properties of causets generated from Poisson sprinkling will aid us while we try

to produce causets that look like Poisson sprinkled causets from different schemes.

3.3 Number of subcausets of a given diameter

Given a uniform random sprinkling of points in an Alexandrov interval, we would like to

know the number of subcausets of a given diameter in the interval. This is an interesting

quantity to study because, as we have mentioned earlier, we would want to develop a method

of generating causets without assuming an a priori known continuum measure. As we know

that most random partial orderings are Kleitman-Rothschild like 3 layered partial orderings,

we would like to have a scheme where we attach an energy cost to causets that look like

n-partite graphs. There has been some work done[14] which points at the fact the this energy

cost might depend on the abundance (i.e. the number of subcausets of a given diameter in

a causet) of subcausets of various diameters.

We will study what is the behaviour of the number of subcausets of a given length as we

increase the number of points sprinkled.

3.3.1 Simulations

Figure 3.8: Number of subcausets of given diameter d vs number of sprinkled points n
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As expected, we can see that the number of subcausets with a given diameter grows as the

number of points sprinkled increases. Also we see that thought the subcausets of larger

diameters are initially outnumbered by the number of the subcausets of smaller diameters,

we see that the former overshoots the latter eventually.

3.3.2 Analytical calculation

It is possible to formulate an analytical solution for this problem, and actually arrive at a

closed-form solution for the d = 1 case.

Consider a causal diamond of side L. We will sprinkle points in this diamond with density

ρ. Now for a subcauset of diameter d to exist within this causal diamond a spacetime volume

interval between two events (say x,y to have points in them sprinkled such that the longest

chain joining x and y is of length d. This means that the longest increasing subsequence1

in the permutation that represents the causet must be of length d. Say we have m points

sprinkled in the spacetime interval between (x,y), and the probability of it having a longest

increasing subsequence of length d is Pm(d). We know that the volume of spacetime is

invariant under Lorentz transformations and that the volume is simply that of the rectangle

traced out by null lines from the two events. The expression for the expected number of

subcausets of diameter d is given by

Sd(ρ, L) =
∞∑
m=0

L∫
x1=0

L∫
x2=0

x1∫
y1=0

x2∫
y1=0

ρPm(d)
(ρ(x2 − y2)(x1 − y1))m

m!
e−ρ(x2−y2)(x1−y1) (3.3)

where x = (x1, x2) and y = (y1, y2) are the coordinates of the events in the light cone

coordinate system.

The expression for Pm(d) is, in essence, the famed longest increasing subsequence prob-

lem[15]. Also known as Ulam-Hammersely problem[16, 17], it is hard problem which has

not been solved. There are few results known here, which we can discuss in the context of

Poisson sprinkling. say we are considering the set of all permutations Sn, and σi’s are its

elements. Let Ln(σ) be the length of longest increasing subsequence in the permutation of

n elements, σ. Now we can define the average length of a sequence given the sprinkling of n

1The longest increasing subsequence of any permutation σ = (σ1, σ2, . . . , σn) is the longest possible
sequence (σi1 < σi2 < · · · < σik) that can be constructed such that 1 ≤ i1 < i2 < · · · < ik ≤ n. k is the
length of this sequence.

20



points as ln = 1
n!

∑
σ∈Sn

Ln(σ).There has been work[18] which has determined that for large n

we have the expression

lim
n→∞

ln = 2
√
n+ cn1/6 + o(n1/6) (3.4)

where c = −1.77108...

We can already see that, for large n and on an average, the volume of the causet n goes

as l2n/4, where ln by definition is is the average diameter of a causet of volume n. We could

ascertain this using simulations (see Figures 3.3 and 3.4), and also could obtain the factor

1/4 with d2, where d was the diameter of the causet.

Asymptotic probability distributions of Ln (that is, Pn(d) as n→∞) have been found[18]

as well. However, for our problem, we are considering small diameter causets, and the large

n limit will not work here. The maximum diameter of subcausets that we are considering

in our simulations is 5, so they are by no means high volume subcausets. So we cannot use

these distributions to help us with our analytical solutions.

However, we can proceed for the d = 1 case, because here we just need the probability

of finding no point within the spacetime interval demarcated by the events x,y. This

significantly un-clutters the above expression to:

Sd(ρ, L) =

L∫
x1=0

L∫
x2=0

x1∫
y1=0

x2∫
y1=0

ρe−ρ(x2−y2)(x1−y1) (3.5)

This can be solved to yield:

S1(n) =
2(1− e−n + Γe + (Γe − 2)n+ (1 + n)[Γ(0, n) + log(n)])

n
(3.6)

where Sn(d) is the number of d = 1 subcausets, Γ(a, b) is the incomplete gamma function,

and Γe is the Euler gamma constant. ρ and L appear in this expression only as ρL2, so we

can replace it by the expected number of points sprinkled in the causal diamond, n.

For very large n, this expression quite simply reduces to

S1(n) ∼ 2 log(n)− 2.845 +O(
1

n
) (3.7)
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We can verify that this expression agrees very well with our simulation for d = 1 causets:

Figure 3.9: Number of subcausets of d = 1 (data and analytical solution) vs number of

sprinkled points n. The fit is of the form A0 log(n) + A1.

A five parameter fit was also done where the parameters of fit agreed with those from

theoretical calculations to a minimum of three decimal places.
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Chapter 4

Layered posets 1

So far we have studied causets that are generated by Poisson sprinkling into Minkowski

spacetime. However, we would prefer to not rely on spacetime itself to provide the geometry

for our causal sets, and we would want to generate causal sets that look like spacetime. This

becomes a rather difficult task, given that the vast majority of partially ordered sets resemble

the Kleitman-Rothschild like n-partite graphs. In this chapter, we will discuss some schemes

to generate causal sets, and study whether they are similar to the ‘manifold-like’ causal sets

generated by Poisson sprinkling.

4.1 Layered posets using random derangements

Here we start off with the elements of our poset arranged in layers. In the simulation, there

were 100 layers, and each layer had 100 points. Henceforth, we will denote the number of

layers as l and the number of points in each layer as n. Now, we decided to adopt a scheme

where each point is attached to exactly two distinct points below and two distinct points

above it. These points themselves are chosen at random. Without loss of generality, one

can insist that each point is connected to the point exactly below it and one other point at

random. This structure of the graph is essentially isomorphic to l − 1 derangements1.

These derangements were generated by using an algorithm developed by Martinez et

1A derangement is a permutation with no 1-cycles, i.e. no element maps to itself.
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al [19], to and the volume vs diameter characteristics of these posets were studied.

Figure 4.1: V vs d for a layered causet with random attachments. This graph is for n = 500

and l = 100.

What we can see here is an initial slow linear growth and a faster linear growth later.

This is mainly because when we are considering random derangements, the graphs that are

generated for large n is roughly tree-like. And volume growth as we have defined it in a tree

like graph will be roughly linear in the regions d � log(n) (with slope 1) and d � log(n)

(with slope n).

Consider a poset generated by the scheme described above. All subcausets here of diam-

eter 1 will always have a volume 2. We can either have a volume 3 or a volume 4 subcauset

of diameter 2. The only way we can have a subcauset of volume 4 when the diameter is 2 is

if there is a“looping back” in the graph.
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These have volume 3 These have volume 4

Figure 4.2: Subcausets of diameter 2. Each node represents an element of the causet and

each edge, a causal link.

The probability of the “looping back” to happen is of order 1/n if n points are sprinkled.

As the number of points in each layer increase this probability tends to 0. However as

the we go down the layers, the number of points are included in each layer increases almost

exponentially till all the points in each layer are the descendants of the chosen original point.

This roughly divides the volume vs diameter graph into three regions:

1. The initial region (for small d) where the graph looks roughly treelike and we can see

linear growth with slope 1 as going to new layer simply adds one point to the subcauset

2. The large d region where ‘full percolation’ has been achieved and going to the next

layer simply adds another entire layer to the subcauset, and not just a single point.

This region is also linear and has slope n.

3. The intermediate region which is very short lived which will have a roughly exponential

growth such that it joins the two lines of slope 1 and slope n in a smooth way.

This is hardly how we’d expect a spacetime like causet to behave; we would want to see

a power-law like growth which indicates some fractal dimension. If we considered a scenario

where the n→∞, then the graph that represents the causal set will always be tree like and

all its sub-lattices will exhibit linear growth in volume.

This motivates us to consider graphs that are locally not tree-like (they have loops).

25



4.2 Layered posets with preferential attachments

Given that the random derangement scheme did not yield power-law volume-diameter rela-

tionships, we realise that perfectly random derangements are not going to help us represent

spacetime. We also saw that for us to see a greater than linear growth in causets we need

to have non-tree-like structure locally. We can do this by insisting on looping connections

while generating derangements. To do this, let us define a few terms2 first:

• Each layer is referred to as a generation.

• Two points in layer i are called brothers if their first common ancestor is in the (i−1)th

layer, and first-cousins if their first common ancestor is in the (i − 2)th layer and so

on. In general, two points in layer i are called cousins of order j if their first common

ancestor is from layer i− (j + 1)3.

• If two points in layer i are connected downwards to a single point in layer i + 1, the

point they are connected to is called their common child.

• Two points in the same layer are said to be attached if they have a common child in

the next layer.

Instead of generating a random derangement, we can have a scheme wherein we have a

few layers of random derangements and then on we can have derangements where brothers

and cousins of various orders are preferentially attached. This will ensure the looping which

was mentioned earlier, and we can hope to see more complex growth.

However, this scheme runs into a series of problems which makes it quite hard to achieve

computationally:

1. The fail rate of the algorithm by which we can generate derangements like the one we

described is quite high. For each point we make a list of cousins of various orders and

choose one of them for attaching to the said point. This choice4 is made such that the

probability of being attached to a cousin of order i is pi with pi > pj∀i < j. We do this

2These aren’t technical terms, and are just provided for ease of of understanding
3Brothers are considered to be cousins of zeroth order
4In my simulations I used a scheme where pi = pi for some 0 < p < 1
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to ensure that points that are not-so distantly related have a common offspring. This

was done for heuristic reasons: if a two points have a common ancestor in the recent

past, it is likely that they will have an offspring in the near future as well.

2. Choosing the offspring of each point one point at a time and layer by layer can result in

many failures as we reach the end of the layer. The last few points in each layer usually

do not have options which are near-cousins. This will result in requiring to restart the

assignment of offspring to each point in the layer again. A backtrace algorithm was

found to be quite ineffective in alleviating this problem.

3. Though this algorithm has moderate success when the pi’s are very small, and if they

have an exit strategy instructing the program to assign any free point in the next layer

as an offspring if there is no viability of connection to some first n orders of cousins, it

again reflects the linear growth as shown in Figure 4.1. This occurs because (assuming

n is very small) is the limited number of choices that exist while scanning through he

cousin-list.

4. If the number of orders of cousins considered is higher we again have long range at-

tachments whic will resemble random derangements. This again gives us a behaviour

like that of Figure 4.1.

We see that this linear growth of volume is a rather obdurate pattern if we use any

scheme similar to the random derangement scheme. Hence, we will have to come up with a

new scheme to generate these derangements.
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Chapter 5

Layered posets 2: tilted square

lattices

5.1 The two offspring method

As described in the previous chapter, we will need to formulate a new way of generating

layered posets that can exhibit the power scaling of volumes with respect to diameters. One

option that we do have is the tilted square lattice. A tilted square lattice will show a power

law behaviour in growth of volume. We derive this analytically in the following way:

Figure 5.1: d = 10 subcausets of tilted square lattice. The bottom boundaries of subcausets

of the same volume are shown in the same colour, and the top boundaries are black for all

subcausets. The topmost point of each subcauset is the grey node and the bottom-most

points are colour-coded.
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Consider a causet represented by a tilted square lattice, and let us try and determine the

average volume of all its causets of a given diameter d. A causet of diameter d will span

through d+ 1 layers of points. Consider some origin point of the subcauset, and consider a

‘thin’ subcauset (like the one shown in black in Figure 5.1; this subcauset is simply a line of

elements). This causet has ‘width’ 1 and ‘length’ d + 1, which will yield a volume of d + 1.

Now, to obtain the volumes of the other causets we increment the width by 1 and decrement

the length by 1. Hence the average volume of causets is given by

V̄d =
1

d+ 1

d+1∑
i=1

i(d+ 2− i) =
(d+ 2)(d+ 3)

6
(5.1)

For large d, V̄d ∼ d2/6 so this does have an asymptotic power law dependence on the

diameter of the causet, and dimension of the causet ∼ 2. However, this is not a very nice

candidate for a causet for the following reasons:

1. This is a purely deterministic grid, and we can see no randomness in this system. We

cannot hope to have rotational and Lorentz invariance in a single causet and they are

usually satisfied in an ensemble. Randomness is required to generate such an ensemble

here.

2. The volume distribution of various posets of a given diameter consists of many peaks

as opposed to a gaussian-like distribution as we had seen in the Poisson sprinkling case

in Figure 3.7.

Figure 5.2: Histogram depicting the volume volume distribution of causets with various

diameters
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We can solve both these problems by introducing rewirings into the system.

5.1.1 Algorithm used for simulation

Just as we saw that random derangements represent random connection between the two

layers, a tilted square lattice is represented by a cyclic permutation. In fact we can generate

some cyclic permutation π (for which I used Sattolo’s algorithm[20]). Also, consider the

permutation π∗, which is just the reverse cycle as that of π1. We can use these permutations

at random for each layer and we will have a generated a tilted square lattice. Now we can

go site by site and call a random number to decide whether we will rewire the bonds to first

cousins. We can choose different rules for rewiring, and it not be necessarily to a first cousin.

Simulations where we have an energy function which gives us the ‘energy cost’ of rewiring

to cousins of higher orders. We saw that this did not affect the properties of the graphs in a

qualitative way, and the rewiring scheme is quite robust in terms of reproducibility of results

in different schemes.

An important point to note is that we wanted to preserve coordination number of the

points in the graph. So, when there was rewiring there is a swap of bonds, as opposed to

a single bond reassignment. However, the coordination number is not preserved, because

if one bond is rewired to its first cousin, the other bond that is rewired will either be a

bond that already exists as a part of the identity permutation (in this case the coordination

number is reduced), or be a rewiring to a fourth order cousin (here the coordination number

is preserved).

5.1.2 Volume vs diameter for rewired posets

We can see that curves that correspond to graphs with larger probability of rewiring exhibit

more growth than the ones with a smaller probability. This is intuitive, as we will see more

‘spreading out’ of subcausets within these graphs and they can have greater volumes their

same diameter counterparts in the causets with smaller probability of rewiring.

However, after some critical value, the increase in volumes due to rewiring will saturate,

1This is defined as π∗(i) = j ⇐⇒ π(j) = i or if we consider the permutations to be a group, π ◦π∗ = 1
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as further rewiring does not add any additional randomness to the graph. This is because

elements start running out of cousins to get attached to and rewiring attempts start failing.

All this is of any use only if we start seeing some randomness in the graphs which we have

constructed in this way.

Figure 5.3: Volume vs diameter for a rewired tilted square lattice. The three parameter fit

was of the form y = +a0 + a1x
a2 . a2 ∼ 2 for all the given curves.
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5.1.3 Volume distribution for various diameters

Figure 5.4: Volume distribution of rewired posets of different diameters. We can see the

‘spreading out’ of the individual volume peaks from prew = 0.00 to prew = 0.20

We can infer from these histograms that the deterministic, ordered structure of the causet

with prew = 0.00 quickly disintegrates to give a peak more similar to what we saw in Figure

3.7 (there is another sharp peak in the beginning which we shall address later). These

happen because there are additions and deletions to the subcausets that generate the peaks
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in the prew = 0.00 graph. There are a few things that can be said about the rewiring

procedure: because these are short range rewirings, the rewirings that affect the volumes

of the subcausets will occur near the boundary of the subcauset only. Those in the bulk

of the subcauset will not contribute to the additions or deletions of volumes. If we recall

the rewiring procedure which had been described previously (and the tilted square lattice

and the random connection algorithm before that), we represent the initial tilted square

lattice bu an identity permutation and by a cyclic permutation. We will rewire only the

cyclic permutations here and keep the identity permutations as is. This was done for ease

of simulation; doing the other will not give rise to any new observations per se, as these two

permutations are not distinguishable if not for the point labels.

In the following diagrams, the thick red lines represent the ‘top’ edges of the causet and

the thick blue lines represent the ‘bottom’ edges of the causet. We will consider additions

and deletions only up to one order in prew (that is, additions and deletions of volumes that

occur with one rewiring only). Additions and deletions due to rewirings can occur only if

they happen at the thick red edges because

• Each node on the blue line has two incoming nodes, one of them being a member of

the identity permutation. Hence these nodes can never be removed, and nodes cannot

be removed from the bulk anyway

• Suppose there is a rewiring to outside the subcauset from inside it across the thick blue

edge, the volume that external branch has no way to reconnect with the causet. This

branch cannot link back into the causet as, in some sense, the causet is moving ‘away’

from it as fast as it is approaching the causet (this isn’t true if we consider rewiring of

order 2 in prew).

The thin red dotted lines represent the identity permutation, and they will not be rewired.

The thin black lines are those that represent the cyclic permutations. Rewirings are indicated

by grey lines.
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1. Examples of rewirings that result in additions to the volume.

Figure 5.5: A diagram showing the addition of volumes to a square causet. The dotted gray

lines are the additions to the causet and the thick dotted red lines are removed from the

causet.

The addition of volume here will be of order d/4 for one rewiring at the edge. The

number of points viable for this rewiring, which can result in additions is also of order

d/2. So the additions themselves are of the order p(d2/8).

2. Examples of rewirings that result in deletions to the volume.

Figure 5.6: A diagram showing the deletion of volumes from a square causet. The thick
dotted red lines are the deletions from the causet and the thick solid red line is a new
boundary of the causet.
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The deletion of volume here is of the order d/2. However, the number of points which

can be rewired to obtain such a deletion is of order 1. So the expected number of

deletions to first order in p will be of order p(d/2).

3. Examples of rewirings that result in no change in volume

Figure 5.7: A diagram showing rewirings within the bulk of a causet. As expected they do

not change the volume of the causet whatsoever.

We can think of rewiring to brothers in the following way: each node lies on an identity

permutation line (a red dotted line). This node is attached to a brother by means of a black

line which joins an adjacent identity line. A rewiring to a cousin occurs when this black line

joins an identity line that is not one, but two places away. As we can see in the causet this

rewiring will give another auxiliary rewiring2. These rewirings are of two kinds:

1. Sometimes, an element gets attached to its 5th cousin (that is, the element is joined to

an identity line 5 places away). This is shown in the colour green in Figure 5.7.

2. At other times, this auxiliary rewiring will be a bond which already exists as an identity

link. We can see this as well in two of the rewirings in Figure 5.7, shown in magenta.

These bonds are superfluous, and hence can be ignored. Hence, we cannot preserve

coordination number if we rewire to first cousins.

2We have chosen to perform this rewiring in an attempt to preserve coordination number of the element
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5.1.4 Volume vs probability of rewiring

In the previous section we have seen how rewiring changes the volume distribution of causets

of a given diameter. Now we will try and understand how the volume of a causet changes as

we change increase the probability of rewiring to first cousins. We must recall that beyond

a certain probability we cannot afford to rewire to cousins, as we run out of options. In

fact, the probability of successful rewirings plateaus at around prew ∼ 0.8. We can study

the volume of high diameter causets and see how they change with increase in probability

of rewiring.

Figure 5.8: Volume vs probability of rewiring for different diameters. The simulation was

done in a 200 layered causet.

Here we can see the initial region of the graph where the slope goes approximately as

d2. At higher values of p, second order additions become more important as well, hence we

see the shoot in volumes. Listing out all the additions and deletions due to two or more

rewirings and calculating their probabilities is a hard problem which we shall not attempt.
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5.1.5 Percolation on rewired graphs

Though we tried to get a volume distribution of causets similar to that of Figure 3.7, we

have found that there is a peak at V ∼ k2d
2, we can also see a peak at V = d + 1. This

happens because rewirings cannot influence the number of V = d+ 1 subcausets: we cannot

add add or delete elements from a single line, we can only redirect it. The total number of

these subcausets remains the same.

Figure 5.9: V = d + 1 subcausets. We can see that the rewiring does not affect the volume

of this subcauset, but merely redirects it.

This peak, however, can be diminished by percolating on the graph that has been gener-

ated by rewiring. This works because if we remove even a single bond from a ‘thin’ subcauset

(a subcauset whose volume is d+ 1), the subcauset immediately breaks into two. At higher

diameters, we will not find such thin subcausets because it is very improbable for a long chain

to exist. While removing bonds, we leave the bonds generated by the identity permutation

as they are, as we do not want to have an element with no predecessors. The bonds due to

the identity permutation will ensure that this does not happen.

Figure 5.10: Volume frequencies with percolation. prew = 0.16, 0.20 and pperc = 0.2
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Figure 5.11: Volume frequencies with percolation. prew = 0.16, 0.20 and pperc = 0.5

This does reduce the prominence of the initial peak, but it isn’t enough. Hence we can

start over with a different scheme and see if it works.

5.2 The three offspring method

When we were describing the method we used to simulate a tilted square lattice, we men-

tioned that we took two cyclic permutations π,π∗ such that π ◦ π∗ = 1, and choose one

of them at random to represent the bonds in any layer. Though this does represent a tilted

square lattice, we the choice here seems to be unnecessary. Irrespective of the choices that

we make at each layer we do get the same graph in the end. Hence, we can eliminate this

step of the procedure where we make a choice and construct a graph where each element has

three offspring:

1. One which it gets because of the permutation π.

2. One which it gets because of the permutation π∗.

3. One which it gets because of the identity permutation.

By the same logic, each element has three parent elements as well. The properties that

we studied in the previous section can be studied for these graphs as well. Most of the
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qualitative arguments presented in the previous section will follow through to this section as

well.

Two offspring method Three offspring method

Figure 5.12: Graphs generated by the two methods. The identity permutations are repre-

sented by the red bonds.

5.2.1 Volume vs diameter for rewired causets

Figure 5.13: Volume vs diameter for after rewiring a lattice generated using the three off-

spring scheme. The three parameter fit was of the form y = +a0 + a1x
a2 . a2 ∼ 2 for all the

given curves.
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Though the trends observed in this scheme are similar to that in the previous one, we can see

that the actual volumes are greater. This is because the scheme has three children assigned

to each element and we can have a greater ‘spread’ of the causets considered, due to this.

5.2.2 Volume distribution for various diameters

Figure 5.14: Volume distribution of rewired posets of different diameters. We can see the

‘spreading out’ of the individual volume peaks from prew = 0.00 to prew = 0.20
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We can see the ‘spreading’ of peaks as in the two offspring case, but there are a few differences.

Though the number of peaks in the prew = 0 histogram is the same as that of the two-offspring

case, the heights of these peaks are different. We see a much higher V = k2d
2 peak. With

rewiring, the peak at V = d + 1 also gets diminished significantly. This is perhaps because

of the high coordination number makes sure that two given elements very often have more

than one path connecting them, making the V = d+ 1 subcausets reasonably rare. Despite

removing the initial V = d + 1 peak, we still have a graph which does not look quite like

Figure 3.7.

Figure 5.15: Here we have an illustration to show how the three-offspring scheme affects

the volumes of subcausets. The black square subcauset is contains the volume of the two-

offspring case (whose bonds are represented by the red and black dashed lines). The green

lines show us the volume which is added due to the other set of bonds which are added due

the other permutation π∗ (denoted by the blue dashed lines).
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5.2.3 Volume vs probability of rewiring

Figure 5.16: Volume vs probability of rewiring for different diameters. The simulation was

done in a 200 layered causet, with three-offspring scheme.

Here again, we see the near linear increase in volume initially, before it shoots up. The

shooting up is more apparent as the coordination number of these graphs are higher, and

each productive rewiring will result in the addition of a greater volume than in the two-

offspring case

5.2.4 Percolation on rewired graphs

If we study the causets that are formed by removing a finite fraction pperc of the bonds in

graphs generated by the three-offspring method, we do not see any new properties which we

did not see in the two-offspring scheme.
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Figure 5.17: Volume frequencies with percolation. prew = 0.16, 0.20 and pperc = 0.2

Figure 5.18: Volume frequencies with percolation. prew = 0.16, 0.20 and pperc = 0.5
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Chapter 6

Summary and directions for future

work

We can attempt to find a scheme where we generate layered causets which have a Gaussian-

like distribution in volumes as we saw in Figure 3.7. Though we did achieve a partial success

with rewirings and percolation on a tilted square lattice, it is far from sufficient. We can

also try to find a different scheme apart from this layered graph method, as properties such

as Lorentz invariance, which we would like our causets to have, have been studied and one

of the factors that are used to determine how good the causet is (with respect to Lorentz

invariance) is how the longest path between two elements varies with respect to the shortest

path between them. As a layered causet has no difference between the shortest and longest

paths between two elements, Lorentz invariance is not something we have been able to verify

in our causet. Rotational invariance is another property of spacetime which is obeyed by

an ensemble average of Poisson sprinkled points. If we are able to match the properties of

the causets generated by any scheme to those of causets generated by Poisson sprinkling, it

would be reliable way to generate causets without using the crutch of a pre-existent spacetime

manifold. We could possibly define a ‘causal set action’ for the scheme we choose, similar to

the Benincasa-Dowker action, and we could attach an energy cost to “bad” causets so that

“good” causets are selected. We could possibly construct a Metropolis algorithm to generate

such causal sets using this action.
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