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Abstract

In this study we have been trying to understand various aspects of Contact Geometry in

a contact-3 manifold setting. We began by looking at the di↵erential topology aspects of

contact manifolds and their relation to more topological objects like Knots and Braids in

contact 3-manifolds, relation between foliations and contact structures. A contact structure

is a non-integrable plane field on a 3-manifold. An “Open Book” is an important tool

that serves as a bridge between the di↵erential geometric side of contact geometry and

the cut-and-paste methods of low-dimensional topology. An “Open Book” is a topological

decomposition of a 3-manifold that also specifies an equivalence class of contact structures on

the manifold. Furthermore, when contact structures are viewed only as a homotopy classes

of plane fields, we can consider foliations in the same class and explore their relations. We

explore in details relation between contact structures and their relation to codimension 1

foliations, in particular the construction of a foliation close to any given contact structure.

We study other related foliations and conclude whether it perturbs to a tight or overtwisted

contact structure.
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Introduction

The field of contact topology started with Huygens, Hamilton and Jacobi’s work on geometric

optics. Over the course of the years it has been studied in great detail by mathematicians

such as Lie, Cartan and Darboux. Topological aspects of the subject have been more widely

studied in the last few decades. In this thesis we have broadly been trying to understand

various aspects of contact geometry in a contact-3 manifold setting. A contact structure is a

non-integrable plane field on a 3-manifold. We begin discussing di↵erential geometric aspects

of contact structures in details with an eye towards exploring their relations with more

topological objects like knots and braids in contact 3-manifolds and relation and foliations.

In Chaper 1, we outline basic definitions,theorems, examples and tools to understand and

classify contact structures. The results we discuss can be found in [8], [13].

An “Open Book” is a topological decomposition of a 3-manifold that also specifies an equiv-

alence class of contact structures on the manifold. This serves as a key tool in our study by

forming a bridge between the di↵erential geometric side of contact geometry and the cut-

and-paste methods of low-dimensional topology. In Chapter 3 we discuss di↵erent aspects

of Open Books following [10]

Furthermore, when contact structures are viewed only as a homotopy classes of plane fields,

we can consider foliations in the same class and explore their relations. We explore connec-

tions between plane fields in greater generality in Chapter 4. We discuss various relations

between contact structures, foliations and confoliations. Our discussion on confoliations is

based on [17]

In Chapter 5, we discuss relationship between codimension-1 foliations and contact structures

following Etnyre’s proof that every contact structure has a foliation close to it [11]. The proof

relies on constructing an explicit foliation using a compatible Open Book for a given contact
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structure. Adapting ideas of the proof, we consider various related foliations and prove that

under changing certain constraints we perturb to an overtwisted contact structure.
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Chapter 1

Preliminaries

In this chapter we highlight basic ideas of di↵erential geometry from the books “Calculus

on Manifolds” by Michael Spivak and “An introduction to di↵erentiable manifolds and Rie-

mannian geometry” by William Boothby, which will be useful in understanding the rest of

the thesis.

1.1 Manifolds

Definition 1.1.1. A n-manifold is a a second-countable Hausdor↵ topological space such

that every point in the space has a neighbourhood that is homeomorphic to Euclidean n-

space.

Definition 1.1.2. (Smooth Manifold) A di↵erentiable or smooth manifold of dimension n

is a topological manifold M , with a family U = {(U↵,�↵)} of charts such that

1. M = [↵U↵

2. (U↵,�↵), (U�,��) are smoothly compatible.

3. If (V, ) is smoothly compatible with (U↵,�↵) 8↵ implies (V, ) 2 U

Definition 1.1.3. (Smooth Functions) LetM be a smooth manifold and U ⇢ M . A function

f : U ! R is said to be smooth if there exists a chart (V, ) around p, V ⇢ U , such that

3



f �  :  (V ) ! R is a smooth function.

Definition 1.1.4. (Di↵eomorphism) A di↵eomorphism f : M ! N is an isomorphism in

the category of smooth manifolds, i.e., f is a smooth, and there exist a function g : N ! M

smooth such that f � g = 1N , g � f = 1M .

1.2 Tangent Space

Roughly speaking the tangent space of a manifold at a point is the collection of all tangent

vectors at that point. This forms a vector space.

Definition 1.2.1. (Tangent Space) Tp(M) = set of all point derivations of C1
p
(M).

Theorem 1.2.2. Tp(Rn) is isomorphic to R
n

Corollary 1.2.3. If U ⇢ R
n then Tp(U) ' R

n

1.2.1 Tangent Level Map / Di↵erential

Let F : M ! N be a smooth map of smooth manifolds. Take p 2 M . Then F pulls back

smooth functions on N to smooth functions on M and pushes forward tangent vectors.

The tangent level map (map between tangent spaces of M and N induced by F ) of F is

given by the Jacobian of F .

Definition 1.2.4. (Vector Field) A smooth vector field X on M is a function that assigns

to each p 2 M a tangent vector at p in a smooth manner, i.e., the components of the tangent

vector in the frame given by a local chart as p varies over the chart are smooth functions.

1.3 Exterior Algebra

Let V be a vector space over R, then the k-fold product V ⇥ · · · ⇥ V is denoted by V
k. A

function T : V k ! R is called multilinear if it is linear in each component. This is also called

a k-tensor on v. The set of all k-tensors is denoted by T k(V ).
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Definition 1.3.1. (Tensor Product)If M 2 T k(V ) and N 2 T l(V ), we can define the tensor

product, M ⌦N 2 T k+l(V ) by,

M ⌦N(v1, · · ·, vk, vk+1, · · ·, vk+l) = M(v1, · · ·, vk) ·N(vk+1, · · ·, vk+l)

.

Definition 1.3.2. (Alternating Tensor) A k-tensor ! is called alternating if

!(v1, · · ·, vi, · · ·, vj, · · ·, vk) = �!(v1, · · ·, vj, · · ·, vi, · · ·, vk)

The set of all alternating k-tensors is clearly a subspace denoted by ⇤k(v).

Constructing alternating tensors

Consider, M 2 T k(V ), we define Alt(M) as follows,

Alt(M) (v1, . . . , vk) =
1

k!

X

�2Sk

sgn � ·M
�
v�(1), . . . , v�(k)

�
.

Theorem 1.3.3. (Properties) If M 2 T k(V ), we have the following,

• Alt(M) 2 ⇤k(V )

• Alt(Alt(M)) = Alt(M)

• If M 2 ⇤k(V ) then Alt(M) = M

Definition 1.3.4. A di↵erential k-form is a function ! such that !(p) 2 ⇤k(Rn

p
).

A di↵erential form on a smooth manifold is defined similarly using local charts. The set of

all di↵erential k-forms on a manifold form vector space.

Alternatively, we can define a di↵erential form as follows,

Definition 1.3.5. A smooth di↵erential form of degree k, on a smooth manifold M is a

smooth section of the k
th exterior power of its cotangent bundle. The set of all di↵erential

k-forms on a manifold form vector space.

5



If we have local coordinates xi, . . . , xn around a point p, then dx
1(p), . . . , dxn(p) forms a dual

basis to the standard basis of Rn

p
. Then we can express any k-form ! at p as,

! =
X

i1<···<ik

!i1,...,ik
dx

i1 ^ · · · ^ dx
ik

.

Di↵erential operator

The di↵erential operator d can be generalized to forms as an operator that transforms k-forms

to k + 1-forms. If ! is expressed as above, then dw is given by,

d! =
X

i1<···<ii2

d!i1,...,ik
^ dx

i1 ^ · · · ^ dx
ik

=
X

i1<···<ik

nX

↵=1

D↵ (!i1,...,ik
) · dx↵ ^ dx

i1 ^ · · · ^ dx
ik

Theorem 1.3.6. (Properties of d)

• d(!1 + !2) = d!1 + d!2

• If !1 is a k-form and !2 is a l-form, then

d(!1 ^ !2) = d!1 ^ !2 + (�1)k!1 ^ d!2

• d(d(!)) = 0

6



Chapter 2

Contact Structures

In this chapter we introduce our main object of interest - contact structures. We begin

by looking at definitions and examples, local and global structures and types of contact

structures. We also discuss how foliations, knots and surfaces in the manifold can be used to

probe these structures. The characteristic foliation serves as an important tool in classifying

contact structures by looking at a surface in the manifold, while knots and their invariants

provide another interesting way of understanding and classifying contact structures. The

material summarized here may be found , for example, in “Introductory Lectures in Contact

Topology” and “Legendrian and transversal knots” by J.B. Etnyre.

2.1 Definitions and examples

Contact structures are plane fields on 3-dimensional manifolds satisfying certain conditions.

More generally they are (n� 1) dimensional structures on odd dimensional n-manifolds.

Definition 2.1.1. A plane field ⇠ on a manifold M is a 2-dimensional subbundle of the

tangent bundle TM .

Definition 2.1.2. A plane field ⇠ on a 3-manifold is called a contact structure if there exists

a 1-form ↵ with ⇠ = ker↵ such that

↵ ^ d↵ 6= 0
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Alternatively, a contact structure ⇠ on a 3-manifold can be defined as a nowhere integrable

plane field. The equivalence with the above definition can be established via Frobenius

integrability.

Note: ↵ can be defined locally or globally.

Definition 2.1.3. A contact structure is said to be positive if ↵ ^ d↵ > 0 and negative if

↵ ^ d↵ < 0.

For most purposes it is su�cient to just consider positive contact structures, and unless

specified, we assume that our contact structure is positive. However, in particular situations

we need to make a distinction between the two, as in Chapter 5.

Example 2.1.4. Standard contact structure on R3.

Consider R3 with standard Cartesian coordinates (x, y, z) and the 1-form ↵1 = dz � ydx. It

can be easily checked that ↵1 is a contact form and ⇠1 = ker↵1 is spanned by { @

@x
, x

@

@z
� @

@y
}

at the point (x, y, z).

Figure 2.1: Standard contact structure on R3 1

1
Public Domain, https://en.wikipedia.org/w/index.php?curid=21556952
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Example 2.1.5. Radially symmetric contact structure.

Consider R3 with cylindrical coordinates (r, ✓, z) and the 1-form ↵2 = dz + r
2
d✓.

⇠2 = ker↵2 is spanned by { @

@r
, r

2 @

@z
� @

@✓
} at the point (r, ✓, z). This structure is symmetric

about the z -axis.

Figure 2.2: Radially symmetric contact structure on R3 2

Example 2.1.6. Overtwisted contact structure

Consider R3 with cylindrical coordinates (r, ✓, z) and the 1-form ↵3 = cos rdz + r sin rd✓.

Figure 2.3: Overtwisted contact structure on R3 3

Definition 2.1.7. Two contact structures (M1, ⇠1) and (M2, ⇠2) are said to be contactomor-

phic if there is a di↵eomorphism f : M1 ! M2 such that f⇤(⇠1) = ⇠2.

2
Figure courtesy of P. Massot

3
Figure courtesy of S. Schönenberger
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Note: Alternatively in terms of the 1-form defining contact structures, contactomorphism is

given by f
⇤
↵2 = g↵1 for some positive smooth function g : M1 ! R>0.

Examples 2.3 and 2.4 are contactomorphic while 2.5 is not contactomorphic to the rest.

Definition 2.1.8. (Reeb vector field) The Reeb vector field of a contact form ↵, v↵, is

defined as the unique vector field v such that ↵(v) = 1 and d↵(v, ·) = 0

The dynamical properties of the flow v↵ are not preserved by contactomorphism.

2.2 Local Structure

Darboux’s Theorem

This theorem essentially says that all contact structures look the same locally i.e. in an open

neighbourhood of a point.

Theorem 2.2.1. [1] Let (M, ⇠) be any contact 3-manifold and p any point in (M, ⇠). Then

there exists neighbourhoods N of p in M , and U of (0, 0, 0) in (R3
, dx� ydx) and a contac-

tomorphism,

f : (N, ⇠|N) ! (U, ⇠1|U).

The comment after the examples claimed that not all contact structures are contactomorphic

but Darboux’s theorem tells us that even non-contactomorphic contact structures are same

locally; thus we cannot have local invariants. As we will see next, the Gray’s stability

theorem says that there are no non-trivial deformations of contact structures on closed

manifolds. However, this local flexibilty helps prove strong global results.

Gray’s Theorem

Theorem 2.2.2. (Theorem 2.20,[13]) Let {⇠t}t2[0,1] be a family of contact structures on

a manifold M that di↵er on a compact set C ⇢ int(M). Then there exists an isotopy

 t : M ! M such that

10



(i) ( t)⇤ ⇠1 = ⇠t (ii)  t is the identity outside of an open neighborhood of C.

Proof. The proof of this uses what is known as the Moser trick (Section 1.4, [5]). We assume

 t to be the flow of a vector field Xt. The equation for  t can then be translated into an

equation for Xt. If we can solve it, we can find  t by integrating Xt.

If ⇠t = ker ↵t, then  t satisfies

 
⇤
t
↵t = �t↵0

for some non-vanishing function �t : M ! R. Di↵erentiating both side with respect to t and

rearranging the terms we get,

 
⇤
t

✓
d↵t

dt
+ LXt↵t

◆
=

d�t

dt
↵0 =

d�t

dt

1

�t
 

⇤
↵t

Using Cartan’s formula this is equivalent to,

 
⇤
t

✓
d↵t

dt
+ d (◆Xt↵t) + ◆Xtd↵t

◆
=  

⇤
t
(ft↵t) for ft =

d

dt
(log �t) �  �1

t

If Xt is chosen in ⇠t then ◆Xt↵t = 0 and the above equation becomes,

d↵t

dt
+ ◆Xtd↵t = ft↵t

Applying this to the Reeb vector field of ↵t, v↵t (that is, the unique vector field vt such that

↵t(vt) = 1 and d↵t(vt, ·) = 0), we find ft =
d↵t
dt
(v↵t) and Xt given by

◆Xtd↵t = ft↵t �
d↵t

dt

The form d↵t gives an isomorphism

� (⇠t) ! ⌦↵t

v 7! ◆vd↵t

where �(⇠t) = {v|v 2 ⇠t} and ⌦↵t = { 1-forms �|�(vt) = 0}, and thus Xt is uniquely

determined by the above equation. By construction, the flow of Xt gives us the required  t.

11



For the subset of M where the ⇠t’s agree we choose the ↵t’s to agree. This implies d↵t
dt

= 0,

ft = 0 and Xt = 0 and all equalities hold.

2.3 Characteristic Foliations

To understand the geometry of plane fields better, it’s useful to look at the traces it leaves

when intersected with a surface.

Let ⌃ be an embedded oriented surface in a contact manifold (M, ⇠). At each point x of ⌃

consider

lx = ⇠x \ Tx⌃

For most x, the subspace lx will be a line in Tx⌃, but at some points, which we call singular

points, lx = Tx⌃ .

We can find a singular foliation F of ⌃ tangent to lx at each x, i.e. the complement of the

singularities is the disjoint union of 1-manifolds, called leaves of F , and the leaf through x

is tangent to lx. This singular foliation is called the characteristic foliation.

We talk about foliations in greater detail in Chapter 4.

Example 2.3.1. Characteristic foliation on S
2

Let ⌃ be the unit sphere in R
3
, ⇠ where ⇠ is the radially symmetric contact structure. The

only singularities of this characteristic foliation are at the poles.

Figure 2.4: Characteristic foliation of S2 4

4
Etnyre, arXiv:math/0111118v2
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Any surface may be perturbed by a C
1-small isotopy so that its characteristic foliation has

only “generic” isolated singularities. A singularity is called “generic” if it looks like one of

the following (Figure 2.1). The one on the left is called an elliptic singularity and the on one

the right hand side is a hyperbolic singularity.

Figure 2.5: Generic singularities of characteristic foliation 5

Example 2.3.2. (Overtwisted Disk)

Let ⌃ be the disk of radius ⇡ in r✓-plane in (R3
, ⇠3). Then the characteristic foliation is as

shown in 2.6,

Figure 2.6: Overtwisted disk 6

Figure 2.7: Unperturbed and perturbed (only generic isolated singularities) characteristic
foliation on D

2 8

5
Etnyre, arXiv:math/0111118v2

6
Figure courtesy of P. Massot

8
Etnyre, arXiv:math/0111118v2
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Orienting the characteristic foliation: Since our surface ⌃ is oriented we can choose an

orientation for the contact structure ⇠. We can orient lx as; the vector v 2 lx orients it if for

vectors v⇠ 2 ⇠x and v⌃ 2 Tx⌃ such that (v, v⇠) orients ⇠x and (v, v⌃) orients Tx⌃, (v, v⇠, v⌃)

orients M . We assign a sign to each singular point based on whether the orientation of the

contact plane at that point agrees (positive) or disagrees (negative) with the orientation of

the tangent plane at that point.

Example 2.3.3. (Singularities of characteristic foliation of S2) In Example 2.3.1, The sin-

gularities at the poles are elliptic points, with one the one at the top a positive singularity

(source) and the one below a negative one (sink).

Theorem 2.3.4. Let (M1, ⇠1) and (M2, ⇠2) be contact manifolds and ⌃1 and ⌃2 embedded

surfaces. If there is a di↵eomorphism f : ⌃1 ! ⌃2 that preserves the characteristic foliation,

i.e., f(F⌃1) = F⌃2 then f can be extended to a contactomorphism in some neighbourhood of

⌃1.

2.4 Tight and overtwisted contact structures

A contact structure ⇠ on M is called overtwisted if there is an overtwisted disc present i.e. an

embedded disk D whose characteristic foliation is homeomorphic to either of the ones shown

in Example 2.9. A contact structure is called tight if it does not contain an overtwisted disk.

Lemma 2.4.1. The existence of overtwisted disk is a contactomorphism invariant.

This is a non-local invariant that can distinguish contactomorphism classes.

2.5 Knots in Contact manifold

There are two main types of knots in contact 3-manifolds: Legendrian and Transverse. These

are interesting on their own, such as their classification problems.

14



Legendrian and Transverse knots

Definition 2.5.1. A Legendrian Knot in a contact 3-manifold (M, ⇠) is an embedding � :

S
1 ! M , which satisfies �0(✓) 2 ⇠�(✓) for all ✓ 2 S

1

Definition 2.5.2. A Transverse Knot in a contact 3-manifold (M, ⇠) is an embedding � :

S
1 ! M , which satisfies �0(✓) /2 ⇠�(✓) for all ✓ 2 S

1

Theorem 2.5.3. ([9]) Any knot be in a contact 3-manifold can be C0 approximated by a

Legendrian Knot.

Figure 2.8: C0 approximation by a Legendrian curve 9

We can associate a Transverse knot or another Legendrian knot to a given knot, known

as the Transverse push-o↵ and Legendrian push-o↵ respectively. These, knots are defined

up to Transverse or Legendrian isotopy. These helps us translate results proven for one to

the other.

Theorem 2.5.4. Legendrian Knots up to positive stabilization and Legendrian isotopy has

a one-to-one correspondence with tranverse knots upto Transverse isotopy.

Theorem 2.5.5. Given any topological knot there is a Legendrian knot C1 close to it.

Front and Lagrangian projections

In order to visualize knots inR
3 we look at their projections onto planes. In contact geometric

setting two useful projections of a Legendrian knot are as follows,

9
Adapted from Lecture notes of Ko Honda
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Definition 2.5.6. The front projection of a parametrized knot �(t) = (x(t), y(t), z(t) in

(R3
, ⇠std) is the projection to xz-plane given by,

�F (t) = (x(t), z(t)).

its Lagrangian projection is given by projection to xy plane given by,

�L(t) = (x(t), y(t)).

Front projections determine the Legendrian knot upto isotopy as the y = dz

dx
using the

contact condition. Similarily, given a Lagrangian projection we can determine the knot upto

isotopy and z-translation by z(t0) = z(0) +
R

t0

0 y(t)x0(t)dt

Theorem 2.5.7. Any two Legendrian knots are isotopic to each other if and only if their

front projections are related by a series of Legendrian Reidemeister moves and planar isotopy

preserving cusps and avoiding vertical tangents.

Figure 2.9: Legendrian Reidemeister moves 10

2.5.1 Classical Invariants of Legendrian and Transverse Knots

In order to classify such knots in R
3, a first step would be to look for invariants. For

Legendrian knots we have the following two easily defined invariants.

10
Adapted from Lecture notes of Ko Honda
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Thurston Bennequin Number

Definition 2.5.8. The Thurston Bennequin number, denoted tb(K), is the twisting of the

contact framing (trivialization of the normal bundle) with respect to the Seifert surface of

K, with right-handed twists being counted positively.

If � is a Legendrian Knot and � the surface bounded by it, consider a vector field v transverse

to ⇠ along K, and let the Transverse push-o↵ of K along v be K
0. The signed intersection

number of K 0 with ⌃ is the Thurston-Bennequin number.

It can be computed from the front projection as follows,

tb(K) = writhe(KF )�
1

2
#(cusps(KF ))

It is also equal to the writhe of its Lagrangian projection.

Rotation Number

Definition 2.5.9. Let ⌃ be a Seifert surface for K, then the rotation number rot(K, c)

counts the number the number of rotations of the positive tangent vector to K relative to

the trivialization of ⇠� over ⌃.

If we choose a vector field v along an oriented Legendrian knot such that it induces the

orientation, then rotation number can be thought of as the obstruction to extending v to a

non-zero vector field in ⇠⌃. It does not depend on the choice of the trivialization.

It can be computed from the front projection as follows,

r(K) =
1

2
(D � U)

where D is the number of up cusps and U the number of down cusps.

Figure 2.10 depicts some examples of Knots and their Thurston-Bennequin and Rotation

numbers.
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Figure 2.10: Knots with their Thurston-Bennequin and Rotation numbers.11

2.5.2 The Bennequin Inequality

The following inequality is an important result towards the characterization of contact struc-

tures by analyzing knots in a contact 3-manifold.

Theorem 2.5.10. (Eliashberg, [6]) Let T be a Transverse knot in a tight contact 3-manifold

(M, ⇠) with Seifert surface ⌃T . Then,

sl(T )  ��(⌃T )

where sl(T ) denotes the self linking number of T and �(⌃T ) is the Euler characteristic of

⌃T .

Proof. We orient �T such that T is its oriented boundary. With this orientation the char-

acteristic foliation of �T points outwards from the boundary. We perturb �T so that the

characteristic foliation is generic. and we assume that the singularities are isolated elliptic

or hyperbolic points. Let e± be the number of ± elliptic singularities in �T⇠
and let h± be

the number of ± hyperbolic singularities. If we think of sl(T ) as a relative Euler class i.e.,

let v be a vector field along T tangent to �T and contained in ⇠ and pointing into �T , then

sl(T ) is the obstruction to extending v to a nonzero vector field on �T . Then we get,

�sl(T ) = (e+ � h+)� (e� � h�)

11
Adapted from Lecture notes of Ko Honda
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Next by thinking of building our surface out of discs and bands attached to it, where each

disc contains an elliptic point and each band a hyperbolic point, the Euler characteristic of

the surface can be expressed as,

� (⌃T ) = (e+ + e�)� (h+ + h�)

Adding both the above equations we get,

sl(T ) + � (⌃T ) = 2 (e� � h�)

Now since we have a tight contact manifold, every positive or negative elliptic point is

connected to a positive or negative hyperbolic point respectively, we can use the Elimination

Lemma (Giroux, Fuchs, [7]) to cancel them pairwise 2.11. Thus we can isotope our surface

such that the number of elliptic points are zero [6]. Then our above equation becomes,

sl(T ) + � (⌃T ) = 2 (�h�)  0

Figure 2.11: Elimination Lemma : Cancellation of singularities pairwise. 12

12
Etnyre, arXiv:math/0111118v2
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Chapter 3

Open Books

To understand contact structures on 3-manifolds we would like to understand an important

way to build or decompose a 3-manifold - Open Book Decomposition. This serves as a key

tool in our discussions and proofs in Chapter 5. We define Open Books,look at examples of

it, discuss various construction - ways to decompose 3-manifolds into Open Books, construct

new Open Books. We also explore connections of Open Books to contact structures in details

which will serve as basis for understanding the next few chapters.

3.1 Open Book Decomposition

Definition 3.1.1. An Open Book decomposition of a closed oriented 3 manifold M is a pair

(L, ⇡) where

1. L is an oriented link in M called the binding of the Open Book and

2. ⇡ : M\L ! S
1 is a fibration of the complement of B such that ⇡�1(✓) is the interior of

a compact surface ⌃✓ ⇢ M and @⌃✓ = L for all ✓ 2 S
1. The surface ⌃ = ⌃✓ for any ✓,

is called the page of the Open Book.

Given an Open Book we can describe M\L as the mapping cylinder of di↵eomorphism � :

⌃! ⌃ of a surface ⌃. We can recover M and the Open Book (L, ⇡), up to di↵eomorphism,
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from the pair (⌃,�). � is called the monodromy of the Open Book. We can formalize these

observations in the definition of an abstract Open Book.

Definition 3.1.2. An abstract Open Book is a pair (⌃,�) where,

1. ⌃ is an oriented compact surface with boundary and

2. � : ⌃! ⌃ is a di↵eomorphism such that � is the identity in a neighborhood.

Figure 3.1: An Open Book (left) and an abstract Open Book (right) 1

3.1.1 Building 3-manifolds from Abstract Open Book

A natural way to construct a 3-manifold is as a mapping torus of a di↵eomorphism of a

surface. That is, we take a surface ⌃ ⇥ [0, 1] and glue it up using a di↵eomorphism of the

surface. This way of constructing 3-manifolds enable us to find an abstract Open Book

decomposition of it.

Conversely,we can build a 3-manifold M� starting from an abstract Open Book in the

following manner. Start by considering the mapping torus ⌃� of �, ⌃ x [0,1] / ⇠, where ⇠
is the equivalence relation (�(x), 0) ⇠ (x, 1) for all x 2 ⌃. We then glue in a copy of D2⇥S

1

along each component of the boundary such that {pt} x S
1 ⇢ �⌃ ⇥ S

1 bounds a disc. We

can write this as,

1
Andy Wand, Surgery and tightness in contact 3-manifolds, Proceedings of 21st Gökova, Geometry-

Topology Conference,pp. 234 – 249
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M� = ⌃� [ 

0

@
a

|@⌃|

S
1 ⇥D

2

1

A

where |�⌃| denotes number of boundary components,
`

|@⌃| denotes that the di↵eomorphism

 is used to identify the boundaries. The cores of the solid tori are denoted by B� which

gives us the binding of an Open Book.

Two abstract Open Books (⌃1,�1) and (⌃2,�2) are called equivalent if there is a di↵eomor-

phism h : ⌃1 ! ⌃2 such that h � �2 = �1 � h.

Lemma 3.1.3. We have the following relations between Open Books and abstract Open

Books:

1. An Open Book decomposition (B, ⇡) of M gives an abstract Open Book (⌃⇡,�⇡) such

that (M�⇡ , B�⇡) is di↵eomorphic to (M,B).

2. An abstract Open Book determines M� and an Open Book (B�, ⇡�) up to di↵eomor-

phism.

3. Equivalent Open Books give di↵eomorphic 3-manifolds.

Clearly the two notions of Open Book decomposition are closely related. The basic di↵erence

is that in the case of Open Books (non-abstract) we can discuss the binding and pages

up to isotopy in M, whereas for abstract Open Books we can only describe them up to

di↵eomorphism.

3.1.2 Examples

Example 3.1.4. (Open Book decomposition of S3 [10]) Let S3 be the unit sphere in C2 and

let (z1, z2) = (r1e◆✓1 , r2e◆✓2) be coordinates on C2. Consider an unknotted S
1 sitting in S

3

denoted by U = {z1 = 0} and the fibration of the complement given by,

⇡U : S3\U ! S
1 :

�
r1e

◆✓1 , r2e
◆✓2
�
7! ✓1

This Open Book decomposition is corresponds to the decomposition of S3 into two solid tori.
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Figure 3.2: Decomposition of S3 into two solid tori [10]

Example 3.1.5. (Abstract Open Book decomposition of S3) Let ⌃ = D
2 be a disc and

� : ⌃ ! ⌃ be the identity map. Then the pair (D2
, id) gives an abstract Open Book for

S
3. This is di↵eomorphic to the above as it decomposes S3 into two tori, the one given by

D
2 ⇥ S

1 and the other given by the solid torus we glue in along the boundary.

Example 3.1.6. (Another Open Book for S3) Consider the positive and negative Hopf link

in S
3 given H

+ = {(z1, z2) 2 S
3 : z1z2 = 0} and H

� = {(z1, z2) 2 S
3 : z1z2 = 0} respectively.

Figure 3.3: Positive and negative Hoph links[10]

We have the following fibrations for the knot complements,

⇡+ : S3\H+ ! S
1 : (z1, z2) 7!

z1z2

|z1z2|
, and

⇡� : S3\H� ! S
1 : (z1, z2) 7!

z1z2

|z1z2|

In polar coordinates these maps are ⇡±
�
r1e

i✓1 , r2e
i✓2
�
= ✓1 ± ✓2.

Theorem 3.1.7. (Alexander, [3]) Every closed oriented 3-manifold admits an Open Book

decomposition.
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Proof. The proof relies on the following two results,

Lemma 3.1.8. (Alexander, [3]) Every closed oriented 3-manifold M is a branched cover of

S
3 with branched set some link LM .

Lemma 3.1.9. (Alexander, [2]) Every link L in S
3 can be braided about the unknot.

A link L is said to be braided about the unknot U if for S1 ⇥D
2 = S

3\U we can isotop

L such that L ⇢ S
1 ⇥D

2 and L is Transverse to {p}⇥D
2 for all {p} 2 S

1.

Now using the first lemma, given a closed oriented 3-manifoldM , we have a link LM ⇢ S
3.

By the second lemma we can braid LM about the unknot U . Let P : M ! S
3 be the branched

covering map. Now we set B = P
�1(U) ⇢ M . We claim that B is the binding of an Open

Book. B is an oriented link in M as P is a branched covering map and LM does not intersect

U . The fibering of the complement of B is given by ⇡ = ⇡U � P , where ⇡U is the fibering of

the complement of U in S
3. Since P

�1(U) = B and ⇡U : S3 ! S
1, ⇡ : M\B ! S

1 is well

defined. Since ⇡U is the fibering of the complement of U in S
3, ⇡�1

u
(✓) is the interior of a

compact surface in S
3 with boundary as U , ⇡�1(✓) is also a compact surface with boundary

as B.

3.1.3 Building new Open Books from existing ones

In the above examples we constructed Open Books for manifolds by finding an explicit

fibration of a link complement. But this can be di�cult to do for more complicated manifolds.

The following result helps us build new Open Books from existing ones, letting us find Open

Book decompositions of manifolds built out of other simpler manifolds.

Definition 3.1.10. Given two abstract Open Books (⌃i,�i), i = 0, 1, let ci be an arc

properly embedded in ⌃i and Ri a rectangular neighborhood of ci, Ri = ci ⇥ [�1, 1]. The

Murasugi sum of two Open Books, (⌃0,�0) and (⌃1,�1) is the Open Book (⌃0,�0) ⇤ (⌃1,�1)

with page

⌃0 ⇤ ⌃1 = ⌃0 [R1=R2 ⌃1,

where R0 and R1 are identified so that ci ⇥ {�1, 1} = (�ci+1)⇥ [�1, 1], and the monodromy

is �0 � �1.

Theorem 3.1.11. (Gabai, [12]) M(⌃0,�0)#M(⌃1,�1) is di↵eomorphic to M(⌃0,�0)⇤(⌃1,�1).
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Figure 3.4: At the top left is a piece of ⌃0 ⇥ [0, 1] with B0 cut out. The lightest shaded part
is ⌃0 ⇥ {0} the medium shaded part is ⌃0 ⇥ {1

2} and the darkest shaded part is ⌃0 ⇥ {1}.
The top right is a similar picture for ⌃1. The bottom picture is (⌃0 ⇤ ⌃1)⇥ [0, 1] [10]

Proof. Let B0 = R0⇥ [12 , 1] be a 3-ball in M(⌃0,�0) and B1 = R1⇥ [0, 12 ] be a 3-ball in M(⌃1,�1).

We can form (⌃0 ⇤ ⌃1)⇥ [0, 1] as shown in the Figure 3.4 .

For constructing the mapping cylinder of �0 we think of gluing ⌃0⇥{0} to ⌃0⇥{1} using

the identity and then cutting the resulting ⌃0 ⇥ S
1 along ⌃0 ⇥ {1

4} and regluing using �0.

Similarly for the mapping cylinder of �1 we perform a regluing of ⌃1 ⇥ S
1 along ⌃1 ⇥ {3

4}.
Note that this construction avoids B0 and B1. We construct the mapping cylinder for �0 ��1

in a similar fashion by regluing (⌃0 ⇤ ⌃1)⇥ S
1 by �0 along (⌃0 ⇤ ⌃1)⇥ {1

4} and by �1 along

(⌃0 ⇤ ⌃1) ⇥ {3
4}. Thus we see the mapping cylinders fit together nicely with the pages and

the monodromy of both sides matching up. The binding also fits properly as the number of

boundary components in ⌃0 ⇤ ⌃1 is the sum of boundary components in ⌃0 and ⌃1.

3.1.4 Stabilization of Open Books

Definition 3.1.12. A positive (negative) stabilization of an Abstract Open Book (⌃,�) is

the Open Book
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1. with page ⌃0 = ⌃ [ 1-handle and

2. monodromy �0 = � � ⌧c where ⌧c is a right-(left-)handed Dehn twist along a curve

c in ⌃0 that intersects the co-core of the 1-handle exactly one time. We denote this

stabilization by S(a,±)(⌃,�) where a = c\⌃ and ± refers to the positivity or negativity

of the stabilization.

Example 3.1.13. (Stabilization of (D2
, id) which is related to the Hopf link Open Book)

Consider the Abstract Open Book (D2
, id) for S3. Upon stabilization, attaching a 1-handle

results in the new page ⌃0 which an annulus and the monodromy �
0 = id � ⌧c is a right-

handed Dehn twist. Thus S±(D2
, id) = (A2

, ⌧c), which is the abstract Open Book for S
3

corresponding to the Open Book with binding as the positive (negative) Hopf link.

Lemma 3.1.14.

S±(⌃,�) = (⌃,�) ⇤
�
H

±
, ⇡±

�

where H
± is the positive/negative Hopf link and ⇡± is the corresponding fibration of its

complement.

Proof. From the above example we know that the abstract Open Book corresponding to

positve (negative) Hopf link has annular pages and the monodromy is given by positve

(negative) Dehn twist. By the definition of Murasugi sum, pages of (⌃,�) ⇤ (H±
, ⇡±) are

given by ⌃0 = ⌃ [ 1-handle, since the only properly embedded curves of A2 are as in the

figure below and identifying a rectangle about it with a rectangle about a properly embedded

curve in ⌃ is the same as attaching a 1-handle . The monodromy of the resultant abstract

Open Book is �0 = � � ⌧c. This is exactly the same as doing a stabilization.

Figure 3.5: From left, Open Book (⌃,�), Open Book (A2
, ⌧), Identifying pages along a

rectangle
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Corollary 3.1.15. M(S±(⌃,�)) = M(⌃,�)

Proof. This follows from Theorem 3.1.11 and the above lemma along with the fact that

M(H± , ⇡±) = S
3.

Theorem 3.1.16. Every 3-manifold admits an Open Book decomposition with connected

binding.

Proof. Consider an abstract Open Book, then the binding corresponds to the core of the

solid tori attached to the boundary for each boundary component. Suppose the binding is

not connected. Then we consider the boundary components corresponding to two di↵erent

components and take an embedded curve connecting both and perform a stabilization about

it. This results in connecting the two components. We can do this for all disjoint components.

3.2 Open Books And Contact Structures

A contact structure ⇠ on M is said to be supported by an Open Book (B, ⇡) if ⇠ can be

isotoped through contact structures so that there is a contact 1-form ↵ for ⇠ such that

1. d↵ is a positive area form on each page ⌃✓ of the Open Book and

2. ↵ > 0 on the tangent to the oriented binding B.

Theorem 3.2.1. (Thurston, Winkelnkemper [16]) Every Open Book decomposition (⌃,�)

supports a contact structure ⇠�

Proof. Let

M� = ⌃� [ 

0

@
a

|@⌃|

S
1 ⇥D

2

1

A

be as before where ⌃phi is the mapping torus of �. We first construct a contact structure on

⌃⇥ [0, 1]/ ⇠ and then extend it in a neighbourhood of the binding.
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Consider coordinates ( , r, ✓) in the neighbourhood of the binding of each component,

such that ( , r) are coordinates along the page with  along the binding and d✓ and ⇡⇤
d✓

agree, where ⇡ : M\L ! S
1 and ✓ is the coordinate along S

1. Let � be a 1-form on the page

which is an element of the set,

S = {1 -forms � : (1)� = (1 + r)d✓ near @⌃ and

(2)d� is a volume form on ⌃}

To check that this set is non-empty let �1 be a 1-form that has the right form near the

boundary. Now, Z

⌃

d�1 =

Z

@⌃

�1 = 2⇡|@⌃|

Let ! be a volume form on ⌃ such that it is dx^ d✓ near the boundary and its integral over

⌃ is 2⇡|@�|. Then, Z

⌃

(! � d�1) = 0

and !� d�1 = 0 near the boundary. By de Rham theorem we can now find a 1-form � that

vanishes near the boundary and d� = ! � d�1. Then, � = �1 + � is an element of S.

Now for a 1-form � is S, �⇤
� also belongs to S. Consider the 1-form �̃ = (1�✓)�+✓(�⇤

�)

on ⌃ ⇥ [0, 1] and let ↵K = �̃ + Kd✓. For su�ciently large K, ↵K is a contact form and it

descends to a contact form on Sigma⇥ [0, 1]/ ⇠. Next we extend this form to the solid tori

neighbourhood of the binding by pulling back ↵ through the gluing map f to get,

↵f = Kd✓ � (r + ✏)d 

. To extend this form on the entire S
1 ⇥D

2 to a contact form of the form h(r)d + g(x)d✓.

For this we need functions h(r), g(r) : [0, 1] ! R
3 satisfying:

1. h(r)g0(r)� h
0(r)g(r) > 0 (contact condition)

2. h(r) = 1 near r = 0 and h(r) = �(r + ✏) near r = 1.

3. g(r) = r
2 near r = 0 and g(r) = K near r = 1.

If we define the functions as in the Figure 3.6 below it satisfies all our conditions assuming

�h and �g are such that �h < �g and h(r) < 0 on [�h, 1] and g(r) = K on [�g, 1].

29



Figure 3.6: h and g functions

Furthermore it was observed by Giroux that this contact structure is unique up to isotopy.

Theorem 3.2.2. (Giroux, [14]) Two contact structures supported by the same Open Book

are isotopic.

Proof. Let ⇠0 and ⇠1 be two contact structures supported by the same Open Book (B, ⇡)

and ↵0 and ↵1 the corresponding 1-forms. We now construct contact forms ↵0R and ↵1R as

follows.

Let d✓ be the coordinate along S
1, where M\B fibers over S1. Let f : [0, ✏] ! R be an

increasing non-negative function that equals r2 near 0 and 1 near ✏ and beyond it, where ✏

such that r < ✏ in the solid tori neighbourhood of the binding. Now consider the 1-form

↵0R = ↵0 +R0f(r)d✓

where R0 is some large constant. It can be easily checked that this is a contact form since

↵0 is a contact form and positive on the binding, d↵0 a volume form on the pages. We can

similarly construct ↵1R. Now consider the form,

↵t = t↵1R + (1� t)↵0R

We can verify that ↵t is a contact form for large R for all 0  t  1.
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The following is a central result in contact geometry that relates contact structures to

Open Book decompositions.

Theorem 3.2.3. (Giroux, [14]) Let M be a closed oriented 3-manifold. Then there is a one

to one correspondence between

{oriented contact structures on M up to isotopy}

and

{Open Book decompositions of M up to positive stabilization}.

The results just outlined show that the topological definition of an Open Book succesfully

captures the apriori geometric data of a contact structure. We will see various applications

of this theorem in the following chapters.
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Chapter 4

Plane Fields

Our discussion of contact structures in the previous chapter tells us that a 2-dimensional

plane field on a 3-manifold is not necessarily integrable, even locally. Infact,non-integrable

plane fields give us contact structures. This leads to the question of what other plane field

structures are possible on a 3-manifold. In this chapter we explore foliations, confoliations,

contact structures and their relations.

4.1 Foliations, Contact Structures and Confoliations

A foliation of a manifold is a particular type of decomposition into submanifolds. Charac-

teristic foliations, which were discussed in Chapter 1, o↵er an example of a singular foliation

of a surface. In the rest of the chapter we look at foliations by surfaces of a 3-manifold.

Definition 4.1.1. A co-dimension 1 foliation of the 3-manifold is an integrable plane field ⇠.

Equivalently, it is a decomposition into surfaces such that each point has a neighbourhood

D
2 ⇥ I on which integrating ⇠ yields a fibration by horizontal discs D2 ⇥ t , t 2 I.

The surfaces formed by integrating ⇠ are known as leaves of the foliation.

For the rest of our discussion we assume ⇠ is co-orientable or transversely oriented i.e., the

normal bundle to the plane field is orientable.
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Note: In general we do not distinguish between the plane field tangent to a foliation and the

foliation itself and refer to an integrable plane field as foliation too.

If a plane field ⇠ is defined (locally, for ⇠ coorientable) as the kernel of a 1-form ↵, then by

the Frobenius Theorem the equation

↵ ^ d↵ = 0

is a su�cient and necessary condition for integrability.

Definition 4.1.2. A plane field ⇠ = ker ↵ on an oriented manifold is called a positive

(negative) confoliation if ↵ ^ d↵ � 0 (↵ ^ d↵  0).

Foliations and contact structures thus lie at the di↵erent extremes on the scale of confolia-

tions.

The following is an example of a foliation of the torus. We use this in the proof of Theorem

5.2.2.

Example 4.1.3. A Reeb component is a fo-

liation of a solid torus (D2 x S
1) by planar

leaves. The unique compact leaf is D2 ⇥ S
1.

Each non-compact leaf can be thought of as

a D
2 folded like a hemisphere with bound-

ary asymptotically tending to the boundary of the torus (like a sock) which is swallowed by

the next disk shaped similarly.

4.2 Taut vs Tight

A contact structure on a 3-manifold is said to be tight if it is not overtwisted i.e., there is

no overtwisted disc present in the contact manifold.

Definition 4.2.1. On the other hand a foliation is said to be taut if it is not the foliation of

S
2⇥S

1 by spheres S2⇥p, p 2 S
1 and satisfies any one of the following equivalent conditions
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(the equivalence is due to Novikov, Sullivan [17]):

1. each leaf of the foliation is intersected by a tranversal closed curve

2. there exists a vector field which is transversal to the foliation and preserves a volume

form on a manifold.

3. the manifold admits a Riemannian metric for which all leaves are minimal surfaces.

A taut foliation cannot have Reeb components. This is a necessary and su�cient condition.

The presence of a Reeb component violates the existense of a transversal closed curve inter-

secting each leaf as it acts as a dead end, a transversal curve encountering it cannot escape

from it.

4.2.1 Tight and Taut confoliations

The notion of tightness and tautness can be generalised to confoliations.

Definition 4.2.2. A confoliation (M, ⇠) is tight if for every embedded 2-disk D ⇢ M

satisfying

• @D is tangent to ⇠

• D is transversal to ⇠ in a neighbourhood of the boundary.

there is another disk D
0 such that

• The boundary of D and D
0 agree

• D
0 is tangent to ⇠

• e(⇠)[D [D
0] = 0

Let us see that definition coincides with the definition of tight for ⇠ a contact structures,

and Reebless in case of ⇠ a foliation.
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In the contact case this coincidence is straightforward. In case of a contact structure, we

cannot have such a D
0 that is tangent everywhere as it violates the contact condition, hence,

we cannot have such a D (overtwisted). The absence of overtwisted disc implies the contact

structure is tight.

The foliation case is more involved. For a foliation, the above definition of tight is equiva-

lent to the absence of vanishing cycles, which in turn is equivalent to the absence of Reeb

components for a closed 3-manifold.

Definition 4.2.3. (Vanishing Cycle) A closed path (loop) � : [0, 1] ! Lz (a leaf containing

z) is called a vanishing cycle if,

• � is not homotopic to zero in Lz.

• There exists, a sequence of points zn ! z and a sequence of loops �n : [0, 1] ! Lzn

such that �n converges uniformly to � and �n is homotopic to zero in Lzn .

Proof. We begin by observing that presence of a Reeb component implies existence of van-

ishing. Let � be a meridional loop on the outer torus leaf through a point z on it, this is

clearly not homotopic to zero on the torus leaf. Consider the disc with � as boundary and

let its intersection with the inner leaves be �n with n increasing as we move away towards

the boundary, where zn lie on the radial line joining the centre of the disc to z. This forms

our vanishing cycle.

Since a Reeb component implies the presence of a vanishing cycle, the absence of a vanishing

cycle implies no Reeb component. This proves one direction of the above claim.

To show that Definition 4.3.1 implies absence of vanishing cycle, suppose � is a vanishing

cycle in Lz. Then let D be the disc with � as boundary. Since � is not homotopic to zero in

Lz, D 6⇢ Lz. Now by definition there exists a disc D0 such that TD0 2 ⇠. Therefore D0 ⇢ Lz.

Therefore � is homotopic to zero in Lz. This gives us a contradiction.
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4.3 Perturbing confoliations to Contact Structures

In this section we explore the possibilities of perturbing a foliation or a confoliation to a

contact structure. There are three di↵erent ways in which we can achieve this pertubation.

A deformation is a transformation of a confoliation to a contact structure via a path through

plane fields that are contact at all points on the path except at the confoliation end.

A confoliation ⇠ = ker↵ is said to be linearly deformed to a contact structure if there is a

deformation ⇠t = ker↵t, t 2 R
+, such that ↵0 = ↵ and

d(d↵t ^ ↵t)

dt
|t=0 > 0

A confoliation ⇠ = ker↵ is said to be C
k deformed in to a contact structure if there is a C

k

deformation starting at ⇠.

In case the perturbation is not a deformation we call it an C
k approximation.

Holonomy

Let (M,F) be a foliation and L be a leaf. For a path � : [0, 1] ! L contained in the

intersection of the leaf with a foliation chart, and two transversals ⌧0, ⌧1 to � at the endpoints,

the product structure of the foliation chart determines a homeomorphism

h : ⌧0|u ! ⌧1|u

.

Lemma 4.3.1. Let (M,F) be a foliation and L be a leaf, x 2 L and ⌧ a transversal to x.

Holonomy transport defines a homeomorphism

H : ⇡1 (L, x) ! Homeo (⌧)

to the group of germs of homeomorphism of ⌧ .
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A foliation with no holonomy refers to a foliation all of whose leaves have trivial holonomy.

A closed 1-form without singularity is on a manifold is integrable, hence defines a codimension-

1 foliation on it. In particular any foliation defined by a closed 1-form is without holonomy.

Lemma 4.3.2. Two homotopic paths with same endpoints induce same holonomy.

However, the converse doesn’t hold.

Computing the Holonomy group

Let F be a codimension-q foliation on M and p 2 M . We choose an embedding  : Dq ! M

such that  (0) = p and it is transverse to the foliation. To compute the holonomy group

we associate a germ of a di↵eomorphism h� of a neighbourhood of 0 in D
q to another

neighbourhood of 0 to every oriented loop � based at p and contained in the leaf containing

p. We do this as follows,

We choose a transverse map  : Dq ⇥ S
1 ! M satisfying the following,

•  (o, ✓) = �(✓)

•  |Dq⇥{0}= 

Now for a point x 2 D
q, we follow the curve of the foliation induces on D

q ⇥ S
1 as ✓ varies

over S1. This gives us our holonomy map h� along �.

For x su�ciently close to 0 it is possible to return to a new point after passing completely

around S
1.

Holonomy of Reeb component

We compute the holonomy group for the unique closed leaf of a Reeb component. By Lemma

4.3.1 it is su�cient to consider the generators of the fundamental group of the torus. Let ↵

and � be the meridional and transverse curves along the torus respectively. To compute the

holonomy group we pick a an embedding of D1 in M , transverse to the foliation (a curve
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Figure 4.1: Caption

intersecting the boundary torus leaf) transversely. If we now pick a point x slightly away

from p and consider the holonomy transport along ↵ it does not return to p. Thus hol(↵)

generates an infinite group. While if we translate along � we always return to the same

point. So hol(�) is trivial.

Theorem 4.3.3. ([17]) If a foliation

• has a closed leaf with trivial holonomy or

• Can be defined by a closed 1-form or

• has no holonomy

then, it can be perturbed into a contact structure.

Theorem 4.3.4. (Eliashberg and Thurston) A perturbation of a tight foliation is a tight

contact structure.

Theorem 4.3.5. Every contact structure on a 3-manifold is a deformation of a foliation

In the next chapter we discuss in detail how to construct such a foliation. In fact, the

foliation we construct has a Reeb component.

Corollary 4.3.6. If ⇠ is a tight foliation then we can isotop it through tight confoliation to

a foliation with Reeb components. In particular a taut foliation is isotopic to a foliation with

Reeb components.

Proof. If we have a tight foliation we can find a contact structure that is a perturbation of it

by Theorem 4.3.4. By using the above theorem we can find a foliation with Reeb component

that perturbs to this contact structure. Thus composing the two paths we have a path

between a tight foliation and one with Reeb component.
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Chapter 5

Contact Structures and Foliations

5.1 Introduction

To elucidate the role of Open Books in the study of plane fields, especially contact structures,

we look at the relation between contact structures and codimension one foliations on 3-

manifolds. Viewing contact structures as plane fields we can consider foliations in the same

homotopy class. Eliashberg and Thurston proved that every foliation can be approximated

by contact structures so the question arises as to whether every contact structure is close to

a foliation [17]. We can make the notion of closeness precise by defining contact structure ⇠

to be a deformation of a foliation ⇣ if there is a one parameter family of plane fields ⇠t such

that ⇠0 = ⇣ and ⇠1 = ⇠, and ⇠t is a contact structure for t > 0. We can the ask, is every

contact structure a deformation of a foliation?

Theorem 5.1.1. (Etnyre [11]) Every positive and negative contact structure on a closed

oriented 3-manifold is a C
1-deformation of a C

1-foliation.

Let us give a careful explanation of Etnyre’s proof in the following pages.

The proof draws upon the connections between Open Books and contact structures. The

theorem gives rise to various observations and questions regarding the connections between

confoliations, foliations and contact structures.
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5.2 Open Books and Contact Structures

Before proving the theorem we recall briefly the tools required for the proof, definition of

Open Books (Definition 3.1.1) and the Giroux correspondence (Theorem 3.2.3).

A contact structure ⇠ is said to be supported by an Open Book (L, ⇡) if there is a contact

1-form ↵ such that:

• ↵(L) > 0

• d↵ is a volume form when restricted to each page.

The Thurston-Winkelnkemper construction allows us to construct a contact structure sup-

ported by a given Open Book.

The facts that we use in the proof from this discussion are:

• All contact structures are supported by Open Books.

• The supported contact structure is unique up to isotopy.

5.3 Proof

To prove the Theorem 5.1.1 we follow the following outline,

• We start with a contact structure ⇠

• Then we choose some Open Book (L, ⇡) that supports ⇠

• We construct a foliation on M associated with the choosen Open Book

• Next we show that we can perturb the foliation into a contact structure supported by

our Open Book
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• Finally by Giroux correspondence we can conclude that the perturbed contact structure

is isotopic to ⇠ since they are supported by the same Open Book. Thus proving our

theorem.

Having chosen a contact structure ⇠ and our Open Book supporting it (This can always be

done), we proceed to constructing our foliation.

5.3.1 Constructing the foliation

The basic idea behind constructing the foliation is to replace the neighbourhoods of the

binding by Reeb components (Example 4.1.3) and spinning the pages of the Open Book so

that they limit to the Reeb components.

We begin by constructing a foliation on the neighbourhood of the binding and then extending

it to the rest. Let N be a neighbourhood of one component of the binding. We choose coor-

dinates (r, ✓,�), so that the pages of the Open Book intersecting N correspond to constant

✓ annuli and the binding corresponds to r = 0.

Assume N = (r, ✓,�)|r  1 + 2✏ for some small fixed ✏.

We choose two functions �(r) and �(r) satisfying the following properties,

�(r) is

• zero on [0, 13 ]

• one for r � 1

• strictly increasing on [13 , 1],

and �(r) is,

• zero on [0, 1]

• one for r � 1 + ✏
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• strictly increasing on [1, 1 + ✏]

Next we set,

↵ =

(
�(r)dr + (1� �(r))d� for r  1

�(r)d✓ + (1� �(r))dr for r > 1

Then,

d↵ =

(
d� ^ dr � d� ^ d� for r  1

d� ^ d✓ � d� ^ dr for r > 1

Since, � and � are functions of r, ↵ ^ d↵ = 0. So, ⇣ = ker↵ gives a foliation on N .

Let Na denotes the set {(r, ✓,�)|r  a} Then subset N1 = {(r, ✓,�)|r  1} of N is a Reeb

component. We can choose �(r) and �(r) such that ↵ defines a C
1-foliation on N . Now, on

the region [1+ ✏, 1+2✏]⇥T
2, the foliation is given by constant ✓ annuli. But constant ✓ also

corresponds to the intersection of the pages with the neighbourhood N , thus this foliation

can be extended to the pages, giving us a foliation of M. In particular if dz corresponds to

the pull-back of the coordinate on S
1 by the fibration ⇡, then we can extend ↵ by adding dz

to get a 1-form defining our foliation on all of M .

5.3.2 Perturbing the foliation

Having constructed a foliation, we may now perturb it into a contact structure supported

by the chosen Open Book. We start by looking at the neighbourhood N of L and set,

↵t = ↵ + t
�
r
2
d✓ + (1 + f(r))d�

�

where f : N ! R is a strictly decreasing function, f(0) = 0, f(r) > �1 for all r and

f(r) < �1 + ◆ for all r > 1 and ◆ some small number.

This is similar to the spherical contact form r
2
d✓+ dz for r > 1 as 1 + f(r) is small with an

additional dr term.

d↵t =

(
(tf 0(r)� �

0(r)) dr ^ d�+ t2rdr ^ d✓ for r  1

(t2r + �
0(r)) dr ^ d✓ + tf

0(r)dr ^ d� for r > 1
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Thus we have,

↵ ^ d↵ =

(
tr (2[(1� �(r)) + t(1 + f(r))]� r (tf 0(r)� �

0(r))) dr ^ d✓ ^ d� for r  1

t (�f
0(r) (�(r) + tr

2) + (1 + f(r)) (t2r + �
0(r))) dr ^ d✓ ^ d� for r > 1

Since, �(r) < 1 so (1� �(r)) > 0; similarily f(r) > �1 implies (1 + f(r)) > 0; f 0(r) < 0 and

�
0(r) > 0 for r  1; the first term is positive. Similarly the above constraints, along with

�
0(r) > 0 for r > 1, imply that the second term is positive. Therefore, ↵t is a contact form

on N for all t > 0

Our next step is to construct a family of contact forms on the pages of the Open Book and

then patch it with the family of 1-forms on N . To do this recall the Thurston-Winkelnkemper

construction (Theorem 3.2.1).

We consider M\N1+✏ as the mapping cylinder of  (monodromy of our Open Book)

M\N1+✏ = ⌃⇥ [0, 1]/( (x), 0) ⇠ (x, 1)

Let the coordinate on the [0, 1] factor be z. We then find a 1-parameter family of 1-forms �z

on ⌃ so that d�z is a volume form on ⌃ for all z and each �z = (1+✏+s) near each boundary

component of ⌃, where (s, ✓) are polar coordinates near the boundary component and the

boundary corresponds to s = 0 and s is increasing into ⌃. Moreover, the �z are chosen so

that they descend to give a form on M\N1+✏. (the 1-form dz, from before, corresponds to

dz in these coordinates. The 1-form �t = dz + t�z will be a contact 1-form on M\N1+✏ for

small t > 0.

Now to patch the two 1-forms ↵t and �t together we consider the region A = N\N1+✏. We

use the above coordinates on N as coordinates on A. Near the boundary of M\N in A the

contact 1-form is �t = dz + t(1 + ✏ + s)d✓. We use the map  (r, ✓,�) = (r � 1 � ✏,��, ✓)
to map A ⇢ N to a neighborhood of the boundary of M\N1+✏. This map is orientation

preserving and when N is glued to M\N1+✏ using this map we recover M. Pulling �t back

to A using this map we get  ⇤
�t = �trd�+ d✓. We think of this form as defined only near

T1+2✏ = @N1+2✏ in A. Similarly ↵t = (1 + tr
2) d✓ + t(1 + f(r))d� is a form defined near

T1+✏ = @N1+✏ in A.
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In order to interpolate between these two forms we consider forms on A of the type � =

g(r)d� + h(r)d✓. This will be a contact form if and only if g(r)h0(r)-h(r)g0(r) 6= 0. If we

take g(r) and h(r) to be defined by  ⇤
�t and ↵t near the boundary of A, then we can clearly

extend g(r) and h(r) to all of A so that we have a contact form on A. Moreover, it is easy

to check that we can choose g(r) so that g0(r) < 0 in A.

Let ↵t be the 1-from on M that equals ↵t on N1+✏, �t on M\N and the form g(r)d�+h(r)d✓

on A. This gives a well defined form for all t � 0. Moreover, ↵0 is the form ↵ above that

defines the foliation ⇣ and for small t > 0, ↵t defines a contact structure ⇠t = ker↵t. Thus

the contact structure ⇠t is clearly a deformation of the foliation ⇣.

We are left to show that ⇠t is supported by the Open Book (L, ⇡). For this we need to check

that,

• ↵t(L) > 0 and (ii) d↵t|page is a volume form on ⌃.

• A component of L corresponds to r = 0 in N and its positively oriented tangent vector

is given by @

@�
. So ↵t

⇣
@

@�

⌘
= d�

⇣
@

@�

⌘
= 1 > 0

To check the second condition we consider the four regions N1, N1+✏\N1, A and M\N . On

N1 the pages of the Open Book correspond to constant ✓ annuli. The form d↵t restricted

to this annulus is (tf 0(r)� �
0(r)) dr ^ d� which is never zero and the coe�cient is always

negative in N1, but the orientation on the annulus that allows for L to be properly oriented

corresponds to the form d�^ dr. So d↵t is a properly oriented non-zero 2-form on the pages

in N1. Now on N1+✏\N1 the pages are still constant ✓ annuli and the 1-form restricts to

tf 0(r)dr^d� on these. Thus ↵t is compatible withe the pages in this region. On A the pages

are again constant ✓ annuli, so the form restricted to this is g0(r)dr ^ d�. By the choice of

g this is a properly oriented non-zero 2-form on the pages in A. Finally in M\N d�t is a

properly oriented non-zero 2-form on the pages by construction. This completes the proof

of our theorem.

46



5.4 Changing the foliation

Now we examine some related constructions. We can choose other foliations naturally related

to the Open Book, and we can study what kinds of contact structures these deform to.

Looking at the construction above closely, we realize that there are certain choices we can

make while constructing the foliation, which leads to the following questions, What happens

when we spin the pages the other way or change the direction of the Reeb components?

We fix a direction for the Reeb component and consider the various cases. Suppose the

outward normal (coming out of the page) gives us a positive Reeb component, i.e., the

positive normal to the foliation plane at a point on the binding matches with the positive

orientation of the binding. The cases to consider then are,

1. Positive Reeb with pages spiralling clockwise.

2. Positive Reeb with pages spiralling anti-clockwise.

3. Negative Reeb with pages spiralling clockwise.

4. Negative Reeb with pages spiralling anti-clockwise.

The construction used in the proof corresponds to the Case 1. Based on the discussion in

[11], if we spiral the other way or change the direction of the Reeb component we expect to

get an over-twisted contact structure when we perturb our foliation, regardless of the contact

structure we start with. This means if we start with a tight contact structure, we perturb

to a contact structure not supported by the Open Book.

5.4.1 Constructing the foliations

To understand the above we begin by looking at the foliation in case 1 and try constructing

the foliations in the other cases.

Recall from the proof of Theorem 5.1.1. The 1-form defining the foliation is given by
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↵ =

(
�(r)dr + (1� �(r))d� for r  1

�(r)d✓ + (1� �(r))dr for r > 1

where �(r) equals zero on [0, 13 ], equals one for r � 1 and is strictly increasing on [13 , 1],

and �(r) equals zero on [0, 1], equals one for r � 1 + ✏ and is strictly increasing on [1, 1 + ✏].

The coordinates on the Open Book are (r, ✓,�) where r = 0 on the binding and increases

as we move out, ✓ increases clockwise and the pages correspond to fixed ✓ and � is the

coordinate along the binding.

The positive area form on the pages is given by d� ^ dr.

For r 2 [0, 13 ] the form is given by,

↵t = d�

So the foliation for 0  r  1
3 are given by the constant � plane.

↵ =

(
dr for r = 1

d✓ for r > 1 + ✏

So if we look at the foliation plane near the boundary of the Reeb component the positive

normal to the pages point outwards.

Since everything is rotationally symmetric, we can roughly sketch how the plane fields look

along a non-compact leaf when viewed along the binding. For this we observe that the

normal to the planes points in the � direction at the centre and slowly shifts to the radially

outward direction as we move out towards the boundary.
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Figure 5.1: Positive Reeb component

Figure 5.2: Positive Reeb foliation with clockwise spiralling pages (top view: dot denotes
arrow pointing out of the page)

Negative Reeb

Next we look at the case of inverting the Reeb component. This looks like we have inverted

the direction the inner leaves of the foliation. The foliation plane along the binding point

in the opposite direction compared to case 1. The pages are left unchanged. This can be

written in terms of a form as follows,
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↵�r,s =

(
�(r)dr � (1� �(r))d� for r  1

�(r)d✓ + (1� �(r))dr for r > 1

We can check that this gives us a foliation.

Note that this formula di↵ers from the previous one with respect to the sign of the d�

component. This seems to be the natural candidate as we have reversed the direction of our

foliation plane whose normal point along the � direction.

Note the direction of the normal to plane at r = 1 is still the same, so it matches up smoothly

with the direction of normal on the foliation planes along pages.

Figure 5.3: Negative Reeb foliation with clockwise spiralling pages (top view: cross denotes
arrow pointing away from page)

Spiralling anticlockwise

Now we consider the case where we leave the Reeb component unchanged but spiral the

pages the other way. The form defining the foliation is given by,

↵r,�s =

(
�(r)dr + (1� �(r))d� for r  1

��(r)d✓ + (1� �(r))dr for r > 1

Note : In this case the direction of the normal on the planes along the pages is reversed

which makes sure that the planes match up with those along the boundary torus.
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Figure 5.4: Positive Reeb foliation with anticlockwise spiralling pages (top view: dot denotes
arrow pointing out of the page)

Negative Reeb with anticlockwise spiralling

↵�r,�s =

(
�(r)dr � (1� �(r))d� for r  1

��(r)d✓ + (1� �(r))dr for r > 1

Figure 5.5: Negative Reeb foliation with anticlockwise spiralling pages (top view: cross
denotes arrow pointing away from page)

5.4.2 Perturbing the foliations to contact structures

We consider the Negative Reeb case (Case 3) in detail to understand the perturbation in to

a contact structure.

We begin by considering the same perturbation as in the case of positive Reeb (Case 1).

↵�r,st
= ↵�r,s + t(r2d✓ + (1 + f(r))d�)
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↵�r,st
=

(
�(r)dr � (1� �(r))d�+ tr

2
d✓ + t(1 + f(r))d� for r  1

�(r)d✓ + (1� �(r))dr + tr
2
d✓ + t(1 + f(r))d� for r > 1

d↵�r,st
=

(
�
0(r)dr ^ d�+ 2trdr ^ d✓ + tf

0(r)dr ^ d� for r  1

�
0(r)dr ^ d✓ + 2trdr ^ d✓ + tf

0(r)dr ^ d� for r > 1

Thus we have,

↵�r,st
^ d↵�r,st

=

(
(�2tr(1� �(r))� �

0(r)tr2 � t
2
r
2
f
0(r) + 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r  1

(��(r)tf 0(r)� t
2
r
2
f
0(r) + t�

0(r)(1 + f(r)) + 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r > 1

Clearly for r > 1 this is a positive contact structure for all t since each of the four terms are

positive. But for r  1 we have two negative and two positive terms therefore it may not

be a contact structure for all values of t. But we are interested in finding a perturbation of

our foliation to a contact structure through contact structures, so we can then ask if we are

contact in a neighbourhood of t = 0.

For the above to be a positive contact structure on the interior of the Reeb component it

must satisfy,

2tr(1� �(r)) + �
0(r)tr2 < �t

2
r
2
f
0(r) + 2t2r(1 + f(r))

i.e.,
2(1� �(r)) + �

0(r)r

�rf 0(r) + 2(1 + f(r))
< t

The term on the left hand side is always positive. Thus the perturbation does not result in

a positive contact structure in a neighbourhood of 0, in fact it gives us a negative contact

structure.

We have a positive contact structure on the outside but we see that we start out as a negative

contact structure on the inside. So depending on the choices of our functions there is some

place we will have to transition from negative and positive contact structures which cannot

be done continuously. Hence, the same perturbation does not give us a contact structure
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for the negative Reeb case. This leads us to look for other possible perturbations of our

foliation.

We consider the following natural choices of perturbations,

↵�r,st
= ↵�r,s � t(r2d✓ + (1 + f(r))d�)

↵�r,st
= ↵�r,s + t(r2d✓ � (1 + f(r))d�)

↵�r,st
= ↵�r,s � t(r2d✓ � (1 + f(r))d�)

We will show that in the case of ↵�r,st
= ↵�r,s � t(r2d✓ + (1 + f(r))d�), we do not perturb

to a contact structure.

↵�r,st
=

(
�(r)dr � (1� �(r))d�� tr

2
d✓ � t(1 + f(r))d� for r  1

�(r)d✓ + (1� �(r))dr � tr
2
d✓ � t(1 + f(r))d� for r > 1

d↵�r,st
=

(
�
0(r)dr ^ d�� 2trdr ^ d✓ � tf

0(r)dr ^ d� for r  1

�
0(r)dr ^ d✓ � 2trdr ^ d✓ � tf

0(r)dr ^ d� for r > 1

Thus we have,

↵�r,st
^ d↵�r,st

=

(
(2tr(1� �(r)) + �

0(r)tr2 � t
2
r
2
f
0(r) + 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r  1

(�(r)tf 0(r)� t
2
r
2
f
0(r)� t�

0(r)(1 + f(r)) + 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r > 1

The contact structure is positive on the Reeb component for all values of t,as all the terms

are positive (Recall the term wise analysis from the original proof). For the contact structure

to be positive outside the Reeb component,

t >
�(�f 0(r)� �

0(r)(1 + f(r)))

r(2(1 + f(r))� rf 0(r))

This implies it is not a positive contact structure in an open neighbourhood of t = 0, but
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for the same t value it is positive on the interior of the Reeb component. Thus we cannot

deform continuously deform in to a contact structure under this perturbation.

Next we show that in the case of ↵�r,st
= ↵�r,s + t(r2d✓ � (1 + f(r))d�) we perturb to a

negative contact structure,

↵�r,st
=

(
�(r)dr � (1� �(r))d�+ tr

2
d✓ � t(1 + f(r))d� for r  1

�(r)d✓ + (1� �(r))dr + tr
2
d✓ � t(1 + f(r))d� for r > 1

d↵�r,st
=

(
�
0(r)dr ^ d�+ 2trdr ^ d✓ � tf

0(r)dr ^ d� for r  1

�
0(r)dr ^ d✓ + 2trdr ^ d✓ � tf

0(r)dr ^ d� for r > 1

Thus we have,

↵�r,st
^ d↵�r,st

=

(
(�2tr(1� �(r))� �

0(r)tr2 + t
2
r
2
f
0(r)� 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r  1

(�(r)tf 0(r) + t
2
r
2
f
0(r)� t�

0(r)(1 + f(r))� 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r > 1

By considering the constraints on the function in each term we see that the above is negative

for all values of r and t.

Thus the foliation perturbs to a negative contact structure for all values of t and r.

Finally in the case of ↵�r,st
= ↵�r,s � t(r2d✓ � (1 + f(r))d�) we show that we perturb to a

positive contact structure in a neighbourhood of 0,

↵�r,st
=

(
�(r)dr � (1� �(r))d�� tr

2
d✓ + t(1 + f(r))d� for r  1

�(r)d✓ + (1� �(r))dr � tr
2
d✓ + t(1 + f(r))d� for r > 1

d↵�r,st
=

(
�
0(r)dr ^ d�� 2trdr ^ d✓ + tf

0(r)dr ^ d� for r  1

�
0(r)dr ^ d✓ � 2trdr ^ d✓ + tf

0(r)dr ^ d� for r > 1

Thus we have,
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↵�r,st
^ d↵�r,st

=

(
(2tr(1� �(r)) + �

0(r)tr2 + t
2
r
2
f
0(r)� 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r  1

(��(r)tf 0(r) + t
2
r
2
f
0(r) + t�

0(r)(1 + f(r))� 2t2r(1 + f(r)))d� ^ d✓ ^ dr for r > 1

For ↵�r,st
^ d↵�r,st

> 0 we require,

2tr(1� �(r)) + �
0
tr

2
> 2t2r(1 + f(r))� t

2
r
2
f
0(r)

and

�t�(r)f 0(r) + t�
0(r)(1 + f(r)) > 2t2r(1 + f(r))� t

2
r
2
f
0(r)

t <
2(1��(r))+�0(r)r2
2r(1+f(r))�r2f(r) for r  1

t <
��(r)f 0(r)+�0(r)(1+f(r))

2r(1+f(r))�r2f(r) for r > 1

Thus for t values less than the minimum of the above two right hand terms we perturb to a

positive contact structure, i.e., we have a positive contact structure in a neighbourhood of

t = 0.

So now we consider the contact structure at a t value in this range.

We want to show the perturbed contact structure is overtwisted in case of negative Reeb (or

anticlockwise spiralling).

5.4.3 Overtwisted or Tight?

We will show that the case ↵�r,st
= ↵�r,s� t(r2d✓� (1+f(r))d�) is overtwisted by explicitly

finding an overtwisted disk. By rotational symmetry along ✓ and � we can reduce this to a

1-dimensional problem.

We consider a meridional disc of radius r. A vector field along the boundary of of such a

disc is given by @

@✓
.

Since
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↵�r,st
=

(
�(r)dr � (1� �(r))d�� tr

2
d✓ + t(1 + f(r))d� for r  1

�(r)d✓ + (1� �(r))dr � tr
2
d✓ + t(1 + f(r))d� for r > 1

↵�r,st
(
@

@✓
) =

(
�tr

2 for r  1

�(r)� tr
2 for r > 1

This tells us that for discs with radius less than 1 the boundary is a Transverse curve as

�tr
2 is non-zero.

For a disc with radius r0 greater than 1, the condition for the boundary to be a transverse

curve is �(r0)� tr
2
0 < 0 since ↵�r,st

( @
@✓
) is continuous i.e.,

t >
�(r0)

r
2
0

So if we choose t < min{ �(r0)
r
2
0
,
��(r0)f 0(r0)+�0(r0)(1+f(r0))

2r0(1+f(r0))�r
2
0f(r0)

} we have a positively Transverse curve.

This means we have passed through a Legendrian curve.

We choose the minimum such r value. The disc with this radius gives us a disc with Leg-

endrian boundary. Now we look at the characteristic foliation of this disc. We observe an

elliptic singularity at the centre. Next we look for other singularities. By rotational symme-

try, any other singularity would result in a Legendrian curve, which is a contracdiction to

our choice of minimum r value. Therefore this is an overtwisted disc.

This tells us the contact structure is overtwisted. This implies that if to begin with we choose

a tight contact structure we perturb to a contact structure not supported by the Open Book.

Thus the choice of direction made in the proof is crucial for the proof.

Also since tight foliations perturb to tight contact structures[10], for an overtwisted

contact structure any foliation which perturbs to it must have a Reeb component, since

Reebless foliations are tight.
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Chapter 6

Conclusions and Future Scope

6.1 Conclusions

In this study we looked at various aspects of contact structures in a 3-manifold setting, specif-

ically their relations to codimension-1 foliations. We began by discussing contact structures

in detail; definitions, existence, classifications, etc. In particular, we studied di↵erent topo-

logical objects, namely knots, braids and foliations related to contact manifolds. Next we

explored Open Book decomposition of manifolds, their constructions, and relations pertain-

ing to contact manifolds. Open Books serve as a bridge between topological and di↵erential

aspects of contact topology, by specifying equivalence classes of contact manifolds. Following

this, as an example to elucidate the role of Open Books in the study of contact manifolds,

we investigated plane field structures in greater generality and looked at relations of contact

manifolds to foliations in the same homotopy class. Following the result of Eliashberg and

Thurston that every foliation can be perturbed to a contact structure [17], we looked at

Etnyre’s proof of the converse, i.e., every contact structure is close to a foliation [11]. The

proof relies on Open Books, in particular Giroux correspondence [14].

In Etnyre’s proof, for a given contact structure a foliation was constructed which is com-

patible with an Open Book supporting the contact structure. Construction of foliation

involves replacing the binding with a Reeb component and spiralling the pages towards it in

a clockwise manner. The proof leads us to the explore various related foliations and contact

structures associated to them. We obtained the following results from our study of these
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foliations,

• We constructed foliations by changing the direction of the Reeb component and direc-

tion of spiralling.

• When we change the direction of one of the above, we found a perturbation under

which the foliation perturbs to a positive contact structure. We also showed that for

other related perturbations we can perturb to a negative contact structure.

• In case of the positive contact structure we proved that the perturbed contact structure

is overtwisted.

• Given an initial choice of tight contact structure and its associated foliation, we were

able to perturb the foliation to a constact structure not supported by the Open Book.

• We also looked at generalizations to confoliations.

6.2 Future scope

A natural next step would be to explore further relations between contact structures and

foliations, in particular relations between tight contact structures and taut/reebless foliation.

The foliation we construct has a Reeb component. So the question that arises then is that

can be find a tight foliation close to a tight contact structure. Or more specifically is every

tight contact structure a deformation of a tight (Reebless) foliation?
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Appendix A

Braid and knots in a contact

3-manifold

We look at another example of an application of Open Books in the study of contact topology.

Alexander’s theorem tells us that any knot in R3 can be braided about the z-axis. This

naturally leads us to defining a more general notion of braids in a contact 3-manifold using

an Open Book decomposition of the manifold that supports the contact structure.

Let (L, ⇡) be an Open Book decomposition for M . A link K ⇢ M is said to be braided

about L if K is disjoint from L and there exists a parametrization of K,f :
`

S
1 ! M. ,

such that if ✓ is the coordinate on each S
1 then d

d✓
(⇡ � f) > 0, 8✓. We call bad arcs of K

those arcs where this condition is not satisfied.

We observe that such braids are naturally transverse to the contact structure, which leads to

the question: Are all tranverse links braidable. This paper shows that in fact any tranverse

link in a contact manifold can be tranversely braided with respect to an Open Book that

supports the contact structure.

Theorem A.0.1. (Bennequin [4]) Any transverse link in (R3
, ⇠std) is transversely isotopic

to a link braided about the z-axis.

The following theorem is a generalization of this theorem:

Theorem A.0.2. (Pavlescu[15]) Suppose (L, ⇡) is an Open Book decomposition for a 3-
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manifold M and ⇠ is supported by (L, ⇡). Let K be a transverse link in M . Then K can be

transversely isotoped to a braid.

The idea of the proof is to find a family of di↵eomorphisms of M that fixes each page of

the Open Book setwise and sends the parts of the link where the link is not braided into a

neighbourhood of the binding. The neighbourhood of the binding is contactomorphic to a

neighbourhood of the z-axis in (R3
, ⇠std) this claim is an extension of Darboux’s Theorem

which states that all contact structures look the same locally around a point. Then the link

can be braided using Theorem 3.2.

We can construct such a family di↵eomorphism as a flow of a vector field tangent to the

pages. The singularities thus occur at the places where the tangent to the page coincides

with the contact plane. Thus, to be able to move the bad arcs into the neighbourhood of the

binding we need to isolate them from the singular points. This is achieved via the process of

“wrinkling” (introducing wrinkles in along K), the process is demonstrated in the following

figure.

Figure A.1: Wrinkling K to avoid intersection with singularities[15]

The wrinkles may sometimes increase the number of arcs but these new arcs avoid the

singular points.
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