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Abstract

The Laplacian on Euclidean space is the unique second order differential operator that
commutes with the isometries of the Euclidean space. As such, it features in many laws
of physics and is of tremendous significance in mathematics, with connections to other
important objects. Of particular interest are eigenvalues and eigenfunctions of the
Laplacian on domains in Euclidean space or on manifolds. Connections between these
spectral objects (we stick to domains and do not consider the situation of manifolds)
and the underlying geometry are the main object of study in this report.

In the first chapter we study the Laplacian on finite graphs. This is just a symmet-
ric, positive semi-definite matrix and is technically much simpler to study than its
continuous counterpart. On the other hand, many of the features of the continuous
Laplacian can already be seen in this discrete setting. In particular, we see how it helps
to count the number of spanning trees of the graph (Kirchhoff’s theorem 1.4) and how
the well-connectedness of the graph is seen in the second eigenvalue of the Laplacian
(Cheeger’s inequality 1.5). We also study the discrete analogue of Courant’s nodal do-
main theorem (1.6). The key ingredient in the proofs is the variational characterization
of eigenvalues.

In the second chapter, we move to the continuous Laplacian, but in one dimension.
These are the Stürm-Liouville operators. The one-dimensionality allows a more precise
study of the eigenvalues (Weyl’s asymptotics 2.18) and eigenfunctions (oscillation
theorem 2.17). Weyl’s asymptotics is a feature that is not seen in the setting of finite
graphs.

In the third chapter, we study the Laplacian on bounded domains of Euclidean
space, with Dirichlet or Neumann boundary conditions. The subject gets much more
technical, and one needs the framework of unbounded operators and the theory of
Sobolev spaces to make sense of eigenvalues and eigenfunctions. Once that is done
and the variational characterization of eigenvalues is proved (3.6 and 3.7), the proofs
become quite analogous to the situation of graphs. This is true in particular for
Cheeger’s inequality (3.17) and Courant’s nodal domain theorem (3.14). But we also
prove some new theorems such as the Faber-Krahn inequality (3.16) (which asserts



that the ball minimizes the principal Dirichlet eigenvalue among domains with a given
volume) and Weyl’s asymptotics (3.13) for the eigenvalues of the Laplacian.
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Chapter 1

Graph Laplacian

1.1 Setting

We will use the following notation in the text below.

• Let G = (V, E) be a simple graph, i.e. no loops or multiple edges, with vertex set
V = {1, 2, . . . , n} and edge set E = {ij| i ∼ j in G}, such that G has no isolated
vertices.

• The degree of a vertex i is the size of its neighborhood, i.e. |{k ∈ V | i ∼ k in G}|
and is represented by di.

• The Laplacian of G is defined as the n × n matrix L := D − A, where Dn×n and
An×n are defined as

Di,j = δij di , Ai,j =

0 if i = j

−1 if i ̸= j and i ∼ j

respectively, for i, j ∈ V.

• For a graph G, the normalized Laplacian, L, is defined as

Li,j =


1 if i = j
−1√
didj

if i ∼ j

0 Otherwise

Note that L = D−1/2LD−1/2.
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• Both L and L are symmetric matrices and hence their eigenvalues are real. They
are represented as an increasing sequence λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn−1. For
simplicity, we will use the same notation for both Laplacians and the context will
clarify any ambiguity regarding the usage of the same.

• We treat the eigenvectors of L and L as functions on V i.e. given a v ∈ Rn, we
associate to it the function f : V → R defined by f (i) = vi where vi is the ith

component of v. Note that f ∈ ℓ2(V) and that
〈
., .
〉

Rn =
〈
., .
〉
ℓ2(V)

. It’s easy to see

that Rn ∼= ℓ2(V).

Examples : We define the line graph and complete graph on n vertices and compute
L and L for both.

Complete graph : The complete graph Kn is a graph on V where i ∼ j for all
i ̸= j , i, j ∈ V. So,

Li,j =

n − 1 i = j

−1 Otherwise
Li,j =

1 i = j

− 1
n−1 Otherwise

Line graph : The line graph is a graph on V where i ∼ i ± 1, for 1 < i < n. The
corresponding Laplacians are tri-diagonal matrices given by

Li,j =


2 i = j and 1 < i < n

1 i = j = 1 or i = j = n

−1 i = j ± 1 and 1 ≤ i, j ≤ n

0 Otherwise

Li,j =



1 i = j

−1
2 i = j + 1 and 1 < i, j < n

− 1√
2

i = j ± 1 and i, j ∈ {1, 2, n − 1, n}

0 Otherwise

1.2 Properties

1.2.1 Laplacian

From the definition of the graph Laplacian, it may not be immediately clear as to why
this object is called the Laplacian. The terminology comes from the continuous version

which is the differential operator (in Rn) given by ∆ f = ∑n
i=1

∂2 f
∂x2

i
. The similarity is seen

by writing the graph Laplacian as

L f (i) = ∑
k∼i

f (i)− f (k)

2



In particular, when G is a line graph, as described in the example above, the Laplacian
acts just like a discrete second difference operator.

L f (i) = 2 f (i)− f (i + 1)− f (i − 1) =
(

f (i)− f (i − 1)
)
−
(

f (i + 1)− f (i)
)

It turns out that the Laplace differential operator is some sort of (scaled)1 limit of graph
Laplacians.

Next, we shall study the quadratic form for L.

Lemma 1.1 The quadratic form for L has the following property

⟨ f , L f ⟩ = ∑
i∼j

( f (i)− f (j))2 ; ∀ f ∈ ℓ2(V) (1.1)

Proof: Let f ∈ ℓ2(V). Then,

⟨ f , L f ⟩ =
n

∑
i=1

f (i) · ∑
i∼j

f (i)− f (j)

=
n

∑
i=1

∑
i∼j

f 2(i)− f (i) f (j)

= ∑
i∼j

f 2(i)− f (i) f (j) + f 2(j)− f (j) f (i)

= ∑
i∼j

( f (i)− f (j))2

□

Remark Note that this result is analogous to that of the Laplacian in the continuous case,
where, ⟨ f ,−∆ f ⟩ =

´
Ω |∇ f |2 for all f ∈ C∞

c (Rn).

Theorem 1.1 shows that L is a positive semi-definite matrix.

Definition (Mean Value Property) A function f ∈ ℓ2(V) is said to satisfy the mean value
property if its value at any vertex i is the average of its value at the neighbors of i.

Clearly f satisfies the mean value property if and only if it is harmonic i.e. if L f = 0,
just like its continuous counterpart.

Now that sufficient motivation has been given as to why L can be called the ‘Graph
Laplacian’, we can begin analyzing it’s properties. We must first comment on the

1We can scale the line graph by adding edge weights/lengths and then take the limit as these lengths
go to zero.
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nature of the eigenfunctions and eigenvalues of L. By eq. (1.1) we know that L is
positive semi-definite. From the spectral theory of symmetric positive semi-definite
operators, we get that linear operator L has an orthonormal basis of eigenfunctions
with non-negative eigenvalues. Below, we state a special case of the well known
min-max formulae for λk. These are standard results from the aforementioned spectral
theory.

Min-max formula (special case) : A formula for λk can obtained by minimizing the

Rayleigh quotient
〈

g,Lg
〉

∥g∥2 over the space of all functions in ℓ2(V) that are orthogonal to

the first k − 1 eigenfunctions. i.e. given k = 1, 2, . . . , n− 1, let S = span{ f0, f1, . . . , fk−1}
where fi is the ith eigenfunction of L then,

λk = min
g⊥S

〈
g, Lg

〉〈
g, g
〉 (1.2)

Also note that for λn−1, the following also holds

λn−1 = max
g∈ℓ2(V)

〈
g, Lg

〉〈
g, g
〉 (1.3)

We will now study the null space of L.

Lemma 1.2 1. The multiplicity of the 0 eigenvalue is the same for L and L and is equal to
the number of connected components of G. In particular, λ0 is always 0.

2. f0 is an eigenfunction of L corresponding to the eigenvalue 0 if and only if D1/2 f0 is an
eigenfunction of L with eigenvalue 0.

Proof: For the second part, we note that

L
(

D1/2 f
)
= D−1/2LD−1/2D1/2 f = D−1/2L f

so it is clear that L f = 0 if and only if L f = 0. This also shows that the multiplicity of
the zero eigenvalue is the same for L and L.

For the first part, if G has k connected components then it’s clear that there is a
re-ordering of the vertices such that the matrix of L has a block diagonal form with k
blocks. Since each block is itself the Laplacian for the subgraph of G containing vertices
in that connected component, the columns of each block sum up to 0. In other words,
the constant function on that component, extended to a function on V by making it

4



zero outside that component, is an eigenfunction of L with eigenvalue 0. Therefore the
multiplicity of the zero eigenvalue of L is at least k.

Further, from eq. (1.1), if L f0 = 0 then, f0(i) = f0(j) for all i ∼ j. This implies that
f0 has to be constant in each connected component of G. So f0 is a linear combination
of the k-many 0 eigenvalue eigenfunctions obtained earlier. This gives us the reverse
bound for the multiplicity of the zero eigenvalue, proving the first part. □

1.2.2 Normalised Laplacian

The normalised laplacian L is a mathematically nice object to work with as we can
use it to compare eigenvalues of different graphs and obtain meaningful information.
As we will show below, for any graph on n vertices, all eigenvalues of L are bounded
above by 2.

First, we note that the quadratic form for L satisfies the following relation. For
g ∈ ℓ2(V), g ̸≡ 0 and h := D−1/2g we have,

〈
g,Lg

〉〈
g, g
〉 =

〈
D−1/2g, LD−1/2g

〉〈
g, g
〉 =

〈
h, Lh

〉〈
D1/2h, D1/2h

〉 =

∑
i∼j

(
h(i)− h(j)

)2

n
∑

i=1
h2(i)di

(1.4)

Lemma 1.3

1. For a graph which is not a complete graph, we have λ1 ≤ 1.

2. For n ≥ 2,

• λ1 ≤ n
n−1 (with equality if and only if G is the complete graph on n vertices).

• λn−1 ≥ n
n−1 (for a graph G without isolated vertices).

3. λn−1 ≤ 2 (with equality if and only if a nontrivial connected component of G is bipartite).

Proof:

1. Since G is not complete, we have vertices i and j such that i ̸∼ j. Define the
function f ∈ ℓ2(V)

f (k) =


dj if k = i

−di if k = j

0 Otherwise

5



Note that
〈

f , D1
〉
= 0. Now, using eq. (1.2) for λ1 along with eq. (1.4), for

h ∈ ℓ2(V)

λ1 = min
h⊥D1

∑
i∼j

(
h(i)− h(j)

)2

n
∑

i=1
h2(i)di

≤
∑
i∼j

(
f (i)− f (j)

)2

n
∑

i=1
f 2(i)di

= 1

where 1 is the constant vector of 1’s and D1 is the zero eigenvalue eigenfunction
of L.

2. • Using the fact that the sum of eigenvalues of L equals tr(L) = n, we get,

n =
n−1
∑

i=0
λi ≥

n−1
∑

i=1
λ1 = (n − 1)λ1. For equality observe that a for a complete

graph on n vertices, Ln = n
n−1 I − 1

n−11 . From this it is clear that λ1 = n
n−1 .

Finally, the first part ensures the if and only if condition.

• Using tr(L) = n, we get that n =
n−1
∑

i=0
λi ≤

n−1
∑

i=1
λn−1 = (n − 1)λn−1.

3. Using eq. (1.3) for λn−1 and the fact that
(
h(i)− h(j)

)2 ≤ 2
(
h2(i) + h2(j)

)
, for all

∀ 0 ≤ i ≤ n − 1 we get,

λi ≤ λn−1 = max
h∈ℓ2(V)

∑
i∼j

(
h(i)− h(j)

)2

n
∑

i=1
h2(i)di

≤ max
h∈ℓ2(V)

∑
i∼j

2
(
h2(i) + h2(j)

)
n
∑

i=1
h2(i)di

= 2 (1.5)

Equality is achieved for non trivial h when h(i) = −h(j) , ∀ i ∼ j. Thus, there
exists a connected component G̃ of G that cannot have any odd cycle. This
implies that G̃ is bipartite. Finally, for a bipartite graph GA,B where A, B are the
two independent vertex sets, the function f ∈ ℓ2(V) s.t

f (i) =

1 if i ∈ A

−1 if i ∈ B

is well defined and satisfies f (i) = − f (j) for each i ∼ j. So λn−1 = 2.

□

6



1.3 Relationship between Graph Properties and Lapla-
cian

We have already seen some examples of how the eigenvalues of the Laplacian encode
information about G. We wish to delve deeper and exhibit more results of the same
type, this time also touching upon the properties of the eigenfunctions of L and L.
We will study the counting problem for the number of spanning tree subgraphs of G,
Cheeger’s inequality and Courant’s nodal domain theorem 2.

1.3.1 Number of Spanning Tree Sub graphs

Definition (Spanning tree subgraph) Given a graph G = (V, E), the subgraph GS =

(V, ES), ES ⊆ E is a spanning tree subgraph of G if it is a tree. i.e. if GS is connected and
|ES| = n − 1.

Theorem 1.4 (Kirchhoff’s Theorem) The number of spanning tree sub graphs of a graph
G(V,E) is given by det

(
L(n|n)

)
where L(n|n) is the matrix L without its last row and column.

Proof: [Proof Sketch] We first define the vertex-edge adjacency matrix.

Definition (Vertex-Edge Adjacency Matrix) Given an (arbitrary but fixed) ordering of the
edges of G we represent the edges by ek , k ∈ {1, 2, 3, . . . , |E|}. The Vertex-Edge Adjacency
Matrix, represented by B is a V × E matrix that satisfies

Bi,j =


1 if ej = (i, k) for some k ∈ V ;

−1 if ej = (k, i) for some k ∈ V ;

0 Otherwise ;

It can be shown that L = BBT. Observe then, that L(n|n) = B(n)B(n)T. Where B(n) is
the matrix B without its nth row. Applying the Cauchy-Binet formula to B(n)B(n)T we
get,

det
(

B(n)B(n)T) = ∑
S⊂{1,2,...,|E|}

|S|=n−1

det(BS)
2

2The analogues of these two theorems will be studied in the later chapters in both the dim(1) as well
as the dim(n).
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where BS is the submatrix of B(n|n) whose columns are the columns of B(n|n) at
indices from S. The final step is to show that

det(BS) =

±1 if GS is a tree ; where GS = G(V, ES = {ek | k ∈ S})
0 Otherwise

A nice way to think about this would be to notice that LS = BSBT
S = LGS(n|n). If

GS is not a tree then it is not connected since the only connected graph on n − 1
edges and n vertices is a tree. This means that the zero eigenvalue of the Laplacian
of GS has multiplicity at least two. Upon removing the last column and row of
LGS , we still have at least one zero eigenvalue for LGS(n|n) since it contains at least
one connected component with all vertices present. Finally, if GS is a tree, note
that det(BS) = ∑

σ∈Sn−1

sgn(σ)a1,σ(1)a2,σ(2) · · · a(n−1),σ(n−1) where ai,j =
(

BS
)

i,j. With this

expression in mind, observe that since
(

BS
)

i,j = 0 or 1, a nonzero contribution to the
summation arises when there is a perfect matching of the (n − 1) edges to the (n − 1)
vertices, where vertices can be matched only with edges that they are part of. Given an
arbitrary tree on n vertices we can see that the only possible matching for the edges
with one endpoint as vertex n is to match them to the neighboring vertices. This
process can be repeated by noting that the only possible matching for any unmatched
edges with one endpoint being a neighbor of n, is to the other endpoint and so on.
Since at each step there is only one choice for a given matching we conclude that the
matching is unique. Further, a tree has no cycles, we can be sure that this process will
not end up in a contradiction. So, det(BS) = ±1. □

Examples: We explicitly calculate the number of spanning tree subgraphs for two
specific examples.

• (Cayley) Complete graph Kn :

Let the corresponding Laplacian be L. Then, observe that

L = nIn×n − 1n×n

where I is the identity matrix and 1 is the matrix with 1’s in all entries. So, we
get

L(n|n) = nI(n−1)×(n−1) − 1(n−1)×(n−1) (1.6)

The matrix 1(n−1)×(n−1) has n − 1 eigenvalues out of which n − 2 are 0 and the
last one is n − 1. From eq. (1.6) we can see that the eigenvalues of L(n|n) are

8



of the type n − λ where λ is an eigenvalue of 1. Using the formula for the
determinant in terms of eigenvalues, we see that det(L(n|n)) = nn−2.

Spanning tree subgraphs of K5 : From Cayley’s theorem, we know that the
number of spanning tree subgraphs for K5 is 5(5−2) = 125. The figure below
shows the three types of unlabeled trees that can exist. For each tree type
(I, I I and I I I) a simple combinatorial argument gives us the number of labeled
spanning tree subgraphs of that type, represented by the variable ‘Count’. (60 +
60 + 5 = 125)

(a) Diagram of the
graph K5

Type I, Count=60

Type II, Count=60

Type III, Count=5

(b) All unlabelled spanning trees of (K5) are of
these three types

• Complete bipartite graph Kn,m : A complete bipartite graph Kn,m = (V, E) is
defined by V = Vn + Vm where |Vn| = n, Vm = m and i ∼ j only if i ∈ Vn, j ∈ Vm.
i.e. the edge set comprises only of all possible edges between two partitions of
the vertex set of size m and n respectively. Let the corresponding Laplacian be L.
Then, observe that

L(n|n) =
[

nIm×m −1m×(n−1)

−1(n−1)×m mI(n−1)×(n−1)

]

Using the block matrix formula

[
Am×m Bm×(n−1)

C(n−1)×m D(n−1)×(n−1)

] [
Im×m 0m×(n−1)(

− D−1C
)
(n−1)×m I(n−1)×(n−1)

]

=

[(
A − BD−1C

)
m×m Bm×(n−1)

0(n−1)×m D(n−1)×(n−1)

]

we get

det

[
Am×m Bm×(n−1)

C(n−1)×m D(n−1)×(n−1)

]
· 1 = det(D) · det

(
A − BD−1C

)
9



replacing A, B, C and D with their corresponding counterparts in L(n|n), we get

det(L(n|n)) = det
(

mI(n−1)×(n−1)

)
· det

(
nIm×m − 1m×(n−1)

1
m I(n−1)×(n−1)1(n−1)×m

)
= mn−1 · det

(
nIm×m − (n−1)

m 1m×m

)
= mn−1(nm−1(n − n−1

m · m)) = mn−1nm−1

Remark For Kn,m , m = n, the number of spanning tree subgraphs is n2n−2 =(1
2

)2n−22n2n−2, where we note that 2n2n−2 is the number of spanning trees of K2n.

1.3.2 Cheeger’s Inequality

Consider a connected graph G = (V, E) with normalised Laplacian L. Note that for
a connected graph, 0 is a simple eigenvalue and so λ1 > 0. Intuitively, if we could
choose a sequence of graphs Gk(Vk, Ek) , |Vk| = nk , ∀k such that {λk

1}k∈N → 0, then
we would expect them to approach a disconnected graph. A quantitative measure of
this is the Cheeger constant of the graph hG which is given by

hG = min
S,S⊆V

(
|E(S, S)|

min(vol S, vol S)

)
(1.7)

where, S = V \ S, vol S = ∑
v∈S

deg(v) and E(S, S) = ∑
(vi,vj)∈S×S

1[(vi,vj)∈E].

Cheeger’s constant hG can be thought of as a measure of the isoperimetric profile
of the graph3.

Remark If hG is small, this means that the graph can be split into two nearly disjoint
components. From theorem 1.5 we see that this means λ1 will also be small, confirming our
intuition.

Before we prove this theorem, let us consider an example of a ‘nearly’ disconnected
graph.

3Here, the ‘perimeter’ can be thought of as the number of edges between S and S and the ‘volume’
can be understood as the degree sum of vertices in S. So, we try and minimize the number of edges
between S and S while simultaneously maximizing the number of vertices in both.

10



Fig. 1.2 A graph union of two K20 graphs by adding 5 edges between them.

A quick calculation using eq. (1.7) yields that hG ≤ 5
20·19 ≈ 0.013. This makes sense

because intuitively, hG tries to find the ‘weakest’ partition of a graph and the example
above has been designed to make it obvious which partition that is.

Theorem theorem 1.5 below, shows the explicit relationship between hG and λ1.

Theorem 1.5 (Cheeger Inequality) For a connected graph G(V,E): 2hG ≥ λ1 >
h2

G
2 .

Proof: We first prove the upper bound namely 2hG ≥ λ1. Let A ⊆ V be such that

hG = |E(A,A)|
min(vol A,vol A)

. Then consider the function

f (i) =

1/vol A if i ∈ A

−1/vol A if i ∈ A

using the special case of the min-max formula, i.e. eq. (1.2), for the first eigenvalue of
the normalized Laplacian along with eq. (1.4), we get4

λ1 = min
g⊥D1

∑
i∼j

(
g(i)− g(j)

)2

n
∑

i=1
g2(i)di

≤
∑
i∼j

(
f (i)− f (j)

)2

n
∑

i=1
f 2(i)di

= |E(A, A)|
(

1
vol A

+
1

vol A

)
≤ 2E(A, A)

min(vol A, vol A)
= 2hG

where 1 is the constant vector of 1’s (eigenfunction of the 0 = λ0 eigenvalue.
For the lower bound, we need to do some work. To begin with, let g be an

eigenfunction of L corresponding to λ1. We re-order the vertices in V such that
g(1) ≥ g(2) ≥ g(3) ≥ · · · ≥ g(n). Then, we define Si = {1, 2, , 3, . . . , i}. Let r be the
largest index such that vol Sr ≤ (vol G)/2. We define g± : V → R s.t.

4Note that f as defined above is orthogonal to D1
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g+ =

g(i)− g(r) ; if g(i) ≥ g(r)

0 ; Otherwise
g− =

|g(i)− g(r)| ; if g(u) ≤ g(r)

0 ; Otherwise
Using eq. (1.2) along with eq. (1.4) for λ1 we get

λ1 =

∑
i∼j

(
g(i)− g(j)

)2

n
∑

i=1
g2(i)di

(1.8)

Let us deal with the numerator and denominator of eq. (1.8) seperately. Numerator
first,

∑
i∼j

(
g(i)− g(j)

)2
= ∑

i∼j

(
g(i)− g(r) + g(r)− g(j)

)2
= ∑

i∼j

(
g+(i)− g−(i)− g+(j) + g−(j)

)2

= ∑
i∼j

(
g+(i)− g+(j)

)2
+
(

g−(i) + g−(j)
)2

the last step is because g+(i) and g−(i) cannot be nonzero simultaneously. All that
remains therefore is to check the inequality holds for the four cases that are g±(i) =
g±(j) = 0, one for each possible sign pair. For the denominator of eq. (1.8), note

that since g ⊥ 1, we see that
n
∑

i=1
g2(i)di = min

c∈R

(
g(i)− c

)2di ≤
n
∑

i=1

(
g(i)− g(r)

)2di =

n
∑

i=1

(
g2
+(i)− g2

−(i)
)
di.

Combining the inequalities for the numerator and denominator, we get,

λ1 ≥
∑
i∼j

(
g+(i)− g+(j)

)2
+ ∑

i∼j

(
g−(i)− g−(j)

)2

n
∑

i=1
g2
+(i)di +

n
∑

i=1
g2
−(i)di

Since, for a, b, c, d > 0 we have a+b
c+d ≥ min{ a

b , c
d}, we can, without loss of generality,5

assume

λ1 ≥
∑
i∼j

(
g+(i)− g+(j)

)2

n
∑

i=1
g2
+(i)di

(1.9)

5since the identical process is followed for g− with some minor obvious sign changes
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We make some simplifying definitions at this stage.

volm A := min(vol A, vol G − vol A)

∂(Si) := E(Si, Si)

αG := min
i

hSi ; where hSi =
∂Si

volm Si

(1.10)

Next, we multiply and divide eq. (1.9) by ∑
i∼j

(
g+(i) + g+(j)

)2. Again, we deal with the

numerator and denominator separately

∑
i∼j

(
g+(i)− g+(j)

)2 · ∑
i∼j

(
g+(i) + g+(j)

)2 ≥︸︷︷︸
Cauchy-Schwarz

(
∑
i∼j

∣∣∣g2
+(i)− g2

+(j)
∣∣∣)2

note that for i < j,

∑
i∼j

g2
+(i)− g2

+(j) = ∑
i∼j

(
g2
+(i)− g2

+(i + 1) + g2
+(i + 1)− · · ·+ g2

+(j − 1)− g2
+(j)

)
(1.11)

so for a fixed i = i0, the number of terms of the type
[
g2
+(i0)− g2

+(i0 + 1)
]

appearing
in eq. (1.11) equals6 |∂Si|. By definition eq. (1.10), ∂Si ≥ αG · volmSi. Combining these
results gives us

(
∑
i∼j

∣∣∣g2
+(i)− g2

+(j)
∣∣∣)2

=

( n

∑
i=1

(
g2
+(i)− g2

+(i + 1)
)
αG · volmSi

)2

= α2
G

( n

∑
i=1

g2
+(i)

(
volmSi − volmSi+1

))2

= α2
G

( n

∑
i=1

g2
+(i)di

)2

(1.12)
where the last step is because (volmSi+1 − volmSi) = di. Combining all these results,
we get

α2
G

( n

∑
i=1

g2
+(i)di

)2

≤ ∑
i∼j

(
g+(i)− g+(j)

)2 (1.13)

Let us now switch our attention to the denominator7 of eq. (1.9). Note that

∑
i∼j

(
g+(i) + g+(j)

)2
+ ∑

i∼j

(
g+(i)− g+(j)

)2
= 2

n

∑
i=1

g2
+(i)di (1.14)

6The number of edges that contain one endpoint in Si and the other in Si, hence = ∂Si
7which, as you can recall, we had multiplied and divided by ∑

i∼j

(
g+(i) + g+(j)

)2
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Using eq. (1.14), we get

n

∑
i=1

g2
+(i)di · ∑

i∼j

(
g+(i) + g+(j)

)2
=

n

∑
i=1

g2
+(i)di ·

(
2

n

∑
i=1

g2
+(i)di −

positive︷ ︸︸ ︷
∑
i∼j

(
g+(i)− g+(j)

)2
)

≤
n

∑
i=1

g2
+(i)di · 2

n

∑
i=1

g2
+(i)di

Combining the results, we get

n

∑
i=1

g2
+(i)di · ∑

i∼j

(
g+(i) + g+(j)

)2 ≤ 2
( n

∑
i=1

g2
+(i)di

)2

(1.15)

Finally, from eqs. (1.9), (1.13) and (1.15), we can conclude that

λ1 ≥
∑
i∼j

(
g+(i)− g+(j)

)2

n
∑

i=1
g2
+(i)di

≥
α2

G
2

≥
h2

G
2

Remark (Parallels to the continuous setting) The discrete equivalent of
´
|∇ f |2 is the

first difference expression
n
∑

i=1

(
g+(i)− g+(j)

)2 where the corresponding ‘gradient’ operator

∇ : ℓ2(V) → ℓ2(E) acts on a function as ∇ f (i, j) = f (j)− f (i).

ˆ
Ω
∇ f 2 =

ˆ max f 2

0
dt
ˆ

f 2=t
dA

∑
i∼j

∣∣∣g2
+(i)− g2

+(j)
∣∣∣ = αG

n

∑
i=1

g2
+(i)

(
volmSi − volmSi+1

) (1.16)

The proof in the continuum setting uses a corollary of the co-area formula. In the proof above,
step eq. (1.12) is exactly that except in a discrete setting. They have been placed one below
another in eq. (1.16) to highlight the similarities.

□

1.3.3 Courant’s Nodal Domain Theorem

Courant’s result about nodal domains in the continuum setting can be cast into a
discrete form where we study the sign of an eigenfunction of L on V. First, we define
nodal domains on graphs as

14



Definition (Nodal Domain) For any f ∈ ℓ2(V), a nodal domain of f is a maximally
connected subset of V such that f is either strictly positive or strictly negative on it.

Now we can formulate the discrete nodal domain theorem.

Theorem 1.6 (Courant’s Nodal Domain) Let L be the Laplacian of a connected graph with
n vertices. Then any eigenfunction vk corresponding to the kth eigenvalue λk with multiplicity
r has at most k + r − 1 nodal domains.

Proof: Let f be the kth eigenfunction with eigenvalue λk. Suppose f has m nodal
domains S1, . . . , Sm. We define the functions {wj}j=1,2,...,m as.

wj(i) =

 f (i) i ∈ Sj

0 Otherwise

Then, note that f (i) =
n
∑

j=1
wj(i) for i ∈ V. Since wi’s are mutually orthogonal by

design8, after a normalization, {wi}i=1,2,...,m form an orthonormal basis for an m dimen-
sional subspace. By the usual dimension argument9, we claim span{w1, w2, . . . , wm} ∩
span{v1, . . . , vm−1}⊥ ̸= 0, where vi is the ith eigenfunction of L. Let a non-zero function

lying in the intersection be g and let it have unit norm. Then, g(i) =
n
∑

j=1
cjwj(i) where

cj ∈ R for all j = 1, . . . , n such that
n
∑

j=1
c2

j = 1. Since
〈

g, vi
〉
= 0 for i = 1, 2, . . . , m − 1,

we have, by the minimax formulae
〈

g, Lg
〉
≥ λm.

An elementary calculation shows that

〈
g, Lg

〉
− λk

〈
g, g
〉
= −1

2

n

∑
i,j=1

(ci − cj)
2wT

i Lwj (1.17)

Finally, we note that each term in the sum
n
∑

i,j=1
wT

i Lwj is zero when there is no edge in

E with endpoints in Si and Sj respectively10. If on the other hand, Si and Sj have an
edge between them then obviously f has different signs on each subset. In such a case,
wT

i Lwj will have a positive sign because only the off-diagonal terms of L will be used

8i.e. wi’s have disjoint domains.
9Since dim({vi}⊥i ) = n − m + 1 and dim({wi}i) = m if these two sets don’t intersect then taking

union, we get a n + 1 sized linearly independent set. This is a contradiction to the assumption |V| = n.
10In other words, wT

i Lwj is zero when if the subgraph graph G′ with vertex set V = Si ∪ Sj has two
connected components.
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in the calculation. Thus, wT
i Lwj is either zero or has a positive sign. This gives us〈

g, Lg
〉
− λk ≤ 0 =⇒ λm ≤

〈
g, Lg

〉
≤ λk

If λk has multiplicity r then λm ≤ λk+r−1 since the eigenvalues are arranged in an
ascending order, we get m ≤ k + r − 1, proving the theorem. □
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Chapter 2

The Stürm-Liouville Operator

2.1 Introduction

The Stürm-Liouville operator, can be thought of as the continuum analogue of Jacobi
matrices1, as mentioned in the previous section. The operator equation arose from
studying the solutions to the Stürm-Liouville differential equation, given below

−(p(x) f
′
)
′
+ (q(x)− λr(x)) f = 0, λ ∈ R, x ∈ I = (a, b), (2.1)

where,

p(x) ∈ C1([a, b], R), q(x), r(x) ∈ C0([a, b], R), p(x), r(x) > 0, x ∈ [a, b]. (2.2)

This form of the 2nd order ODE is of very common occurrence in problems of
mathematical physics, which is the origin of it’s special importance. A typical example
of the occurrence of 2.1 is the wave equation in physics.

The classic wave equation for the motion of a string in one dimension is ∂2u
∂t2 =

c2 ∂2u
∂x2 . To solve it one starts with the variable separable ansatz u(x, t) = f (x)h(t).

Plugging it into the equation, we get f ′′(x) = c2λ f (x) and h′′(t) = λh(t). Observe
that this is exactly the form for 2.1, for the case of r(x) = p(x) ≡ 1 and q(x) ≡ 0
i.e. ( f

′′
+ λ f ) = 0. This equation can be explicitly solved by applying the required

boundary conditions. Under Dirichlet boundary conditions (i.e., f (a) = f (b) = 0), and
taking [a, b] = [0, h] , (h ∈ R , h > 0) for simplicity. The solutions areun(x) = sin

(nπ
h x
)

; where un are eigenfunctions

λn = π2n2

h2 ; where λn are eigenvalues
(2.3)

1recall the Second Difference Property from the previous section pertaining to the graph Laplacian.
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Remark Note that the solution to the wave equation requires applying different boundary
conditions to f and h, solving the respective pde’s and finally taking the product of the resultant
solutions, which has the general form of the product of sums of sines and cosines. But we will
not get into that here.

2.2 The Stürm-Liouville Operator

More generally, we cannot solve eq. (2.1) precisely like we did with the toy example
above. So,we try to extract information about the solutions by treating eq. (2.1) as an
operator eigenvalue differential equation. We define the Stürm-Liouville operator as

L :=
1

r(x)

(
− d

dx
p(x)

d
dx

+ q(x)
)

We define the ambient space to be C([a, b]) where (a, b < ∞). We chose the inner
product defined by ⟨ f , g⟩r =

´ b
a f (x)g(x)r(x)dx. Note that C([a, b]) is not a Hilbert

space. Since the spectral theorem is valid only for Hilbert spaces we will implicitly
consider its completion, L2

r ([a, b]).

Remark ⟨ f , g⟩r is equivalent to ⟨ f , g⟩L2([a,b]) since

m⟨ f , g⟩L2([a,b]) ≤ ⟨ f , g⟩r ≤ M⟨ f , g⟩L2([a,b]) (2.4)

where m and M are the minimum and maximum value of r(x) on [a, b]. So we can use these
two norms interchangeably.

As an operator, L : H → C([a, b]) where H := { f ∈ C2([a, b]) | f (a) = f (b) = 0},
i.e. functions in H satisfy Dirichlet boundary conditions. We consider the Dirichlet
boundary condition only because it is technically simpler to work with but the steps
covered here work for the more general Robin boundary condition2.

Remark It can be shown that H is dense in C([a, b]). This shows us that H is dense in
L2([a, b]) (and therefore dense in L2

r ([a, b]) by eq. (2.4)). So the adjoint of L i.e. LAdj is well
defined.

2Where f satisfies 0 = cos(α) f (a)− sin(α)p(a) f ′(a) at a and 0 = cos(β) f (b)− sin(β)p(b) f ′(b) at b.
Note that in this type of condition the values of f at separate endpoints satisfy separate boundary
conditions. This is an important fact and is called the ‘separated endpoint condition’. Note that in cases
where the boundary conditions aren’t separated, we may not have simplicity of eigenvalues of L like we
do here.
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One property of L that will be useful is

Lemma 2.1 L is symmetric
〈

f , Lg
〉
=
〈

L f , g
〉

∀ f , g ∈ H.

Proof: From the remark above we see that LAdj is well defined. From the definition
of L,

〈
L f , g

〉
r =

ˆ b

a
g · L f · r

=

ˆ b

a
g(x) ·

(
−
(

p(x) f ′(x)
)′
+ q(x) f (x)

)
=
[
− g(x)p(x) f ′(x)

]b
a +

ˆ b

a
g′(x)p(x) f ′(x) +

ˆ b

a
q(x)g(x) f (x)

= 0 +
[
− g′(x)p(x) f (x)

]b
a −
ˆ b

a
f (x)

(
p(x)g′(x)

)′
+

ˆ b

a
q(x)g(x) f (x)

=

ˆ b

a
f · Lg · r =

〈
f , Lg

〉
r

□

We want to study the eigenvalues of L, which will give us solutions to the homoge-
neous problem eq. (2.1). Unfortunately for us, L is unbounded as is easily shown in
the case when L = d2

dx2 (for r ≡ 1, p ≡ −1 , q ≡ 0). For the bounded function sequence
fn(x) = sin(nx), n = 1, 2, 3, . . . we have L fn(x) = n2 sin(nx) so ∥L fn(x)∥L2([a,b]) → ∞.
Another way to get information about the eigenvalues of L is to look at L−1, if it is
defined, since the eigenvalues of L and L−1 satisfy a simple inverse relation. However,
we still don’t know if L−1 exists, so instead we consider

(L − λI)−1 ; λ ∈ R (2.5)

In order to talk about such an object, we first have to consider the equation (L− λI) f =

g. If a unique solution f to this equation exists for every g in C([a, b]), then we can talk
about the inverse eq. (2.5).

Remark It might not be clear as to why we are only considering real values for λ. We will see
that L has only (countably many) real eigenvalues and the corresponding eigenfunctions are
real valued too.

In the sections below, we will try to find solutions (i.e. f (x)) to(
L − λI

)
f = g

⇐⇒ d
dx

p(x)
d

dx
f ′(x) +

(
q(x)− λr(x)

)
f (x) = g(x)r(x) ; for g ∈ C([a, b])

(2.6)
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first as an initial value problem (IVP) with initial value at some x0 and then as a
boundary value problem (BVP) with Dirichlet boundary conditions.

2.3 ODE Theory

We will explore the rich theory of ODE and use important results from it in the context
of eq. (2.1) to guarantee existence and uniqueness of solutions. We will apply this
theory to show a unique solution f ∈ H exists for each g ∈ C([a, b]) to the equation
(L − λI) f = g for certain values of λ.

We first state a corollary of the famous Picard-Lindelöf theorem. (we state without
proof as these are standard results in ODE theory.)

Theorem 2.2 (Existence and Uniqueness) Consider the system of ordinary differential
equations (inhomogeneous)

Ẏ(x) = A(x)Y(x) + R(x) (2.7)

with initial value Y(x0) = Y0 and for x ∈ [a, b]. Here Y(x), R(x) are n× 1 matrices and A(x)
is an n × n matrix with entries as functions of x. Further, if A(x) and R(x) are continuous
on [a, b] then there exists a unique continuous solution of eq. (2.7) for the initial value problem
Y(x0) = Y0 that is defined on the whole interval [a, b].

Lemma 2.3 The solution to the homogeneous problem

Ẏ(x) = A(x)Y(x) (2.8)

for the initial condition Y(x0) = Y0 is given by Π(x, x0)Y0. Where Π(x, x0) is called the
principal matrix solution for eq. (2.1). Note that the kth column of Π is the solution to eq. (2.8)
with initial condition Y(x0) = ek where ek is the vector that is 1 in the kth position and zero
otherwise.

Remark Due to theorem 2.2 and the fact that for eq. (2.8) linear combinations of solutions are
also solutions, we can see that any solution can be constructed as a linear combination of n
solutions Yn(x) such that Yn(x0) are linearly independent vectors in Rn.

An important property satisfied by Π(x, x0) that we will be using is

Π(x, x1)Π(x1, x0) = Π(x, x0) ; x1, x0 ∈ [a, b] (2.9)

The proof of eq. (2.9) is relatively easy. Note that both the LHS and the RHS solve
eq. (2.8) and are equal at x = x1. From the uniqueness of solutions by theorem 2.2, we
are done. A corollary of theorem 2.2 is that Π(x, x0)

−1 = Π(x0, x).
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To solve the inhomogeneous system eq. (2.7) we use the ansatz Y(x) = Π(x, x0)C(x)
where Y(x0) = IC(x0) = Y0. Then, from eq. (2.7) we get

Ẏ(x) = A(x)Y(x) + Π(x, x0)Ċ(x)

=⇒ R(x) = Π(x, x0)Ċ(x)

=⇒ Ċ(x) = Π(x0, x)R(x)

=⇒ C(x) = Y0 +

ˆ x

x0

Π(x0, s)R(s)

=⇒ Y(x) = Π(x, x0)Y0 +

ˆ x

x0

Π(x, s)R(s) (2.10)

Finally, we will state Liouville’s formula for the Wronski determinant of a matrix of
functions.

For a matrix of functions U(x) = [u1(x), u2(x), . . . , un(x)], the Wronskian of U,
given by W(U) or W(u1(x), u2(x), . . . , un(x)) equals u1(x), u2(x), . . . , un(x)det(U).
There is a very nice result that allows us to talk about the Wronskian of Π(x, x0),
or any other linearly independent solution set for eq. (2.8), just as we would with
real matrices. That is, we can prove that given a linearly independent solution set for
eq. (2.8), it’s Wronski determinant is never zero for any x ∈ [a, b].

Lemma 2.4 (Liouville’s Formula) The Wronski determinant of n solutions u1(x), u2(x), . . . , un(x)
of eq. (2.7) satisfies

W(x) = W(x0) exp
(ˆ x

x0

tr(A(s))ds
)

; where W(x) = W(u1(x), u2(x), . . . , un(x))

theorem 2.4 tells us that it is enough to show that the Wronski determinant at any
one point in [a, b] is nonzero to ensure that it is non-zero for all x ∈ [a, b].

2.4 The Resolvent RL

We now turn our attention to eq. (2.1) with conditions eq. (2.2). Rewriting it in the
form eq. (2.8) we get,

˙(
y1

y2

)
=

[
0 1

p(x)

q(x)− λr(x) 0

](
y1

y2

)
(2.11)

where f (x) = y1(x) and p(x) f ′(x) = y2(x). Comparing eq. (2.11) with eq. (2.8), we
get that A(x) =

( 0 1/p
q−λr 0

)
and is continuous. Thus, from section 2.3, specifically

theorem 2.2, we can claim existence and uniqueness of a continuous solution defined
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on the entire interval [a, b] for the eq. (2.1). Further, let the corresponding principle
matrix solution for the IVP at x0 be

Π(x, x0) =

[
c(x, x0, λ) s(x, x0, λ)

p(x)c′(x, x0, λ) p(x)s′(x, x0, λ)

]
An immediate result is given two linearly independent solutions u, v of eq. (2.11)

the Wronskian Wλ(u, v) is only a function of the parameter λ, i.e. independent of x.
Indeed,

Wλ(u(x), v(x)) = Wλ(u(x0), v(x0)) exp
(ˆ x

x0

0
)
) = Wλ(u(x0), v(x0)) (2.12)

by Liouville’s formula (theorem 2.4). Note that Wλ(c, s) = Wλ(Π(x0, x0)) = 1.
Since we want to study the operator equation (L − λrI) f = gr, let us first solve the

inhomogeneous equation eq. (2.7) where R(x) = (0, g(x)r(x))T. Using eq. (2.10) we
get

y1(x) = c(x, x0, λ)y1(x0) + s(x, x0, λ)y2(x0) +

ˆ x

x0

s(x, x0, λ)g(x)r(x)

=⇒ f (x) = c(x, x0, λ) f (x0) + s(x, x0, λ)p(x0) f ′(x0) +

ˆ x

x0

s(x, t, λ)g(t)r(t)ds

(2.13)

2.4.1 Eigenfunction and Eigenvalue Properties of L (Dirichlet)

So far, we have solved the IVP eq. (2.6), We now turn our attention to the corresponding
BVP. It is not true that for every λ we can get a solution to eq. (2.6) for all g ∈ C([a, b]).
We have to prove that such a λ exists so that

(
L − λI

)
f = g is a bijective map. To do

that, we first prove some properties about the eigenvalues of L and the Wronskian Wλ.

Lemma 2.5 For any two functions u, v solving the homogeneous IVP eq. (2.1), if u and v
satisfy the same boundary conditions at a (for Dirichlet u(a) = v(a) = 0) then Wλ(u, v) = 0.

Proof: Since u(a) = v(a) = 0, we trivially see that (u(a), p(a)u′(a)) = k(v(a), p(a)v′(a))
for k = u′(a)

v′(a) . Finally, along with eq. (2.12) we get, Wλ(u, v) = det(u(a), v(a)) = 0. □

Corollary 2.5.1 For two solutions u, v of eq. (2.1), Wλ(u, v) = 0 if and only if u is a multiple
of v.

Lemma 2.6 There is at most one linearly independent eigenfunction corresponding to a single
eigenvalue λ of L.
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Proof: Suppose not. Let u, v be linearly independent solutions of
(

L− λI
)
h = 0. Then

this means that u and v satisfy the same boundary conditions at a. By theorem 2.5 we
get that Wλ(u, v) = 0 but this contradicts the linear independence of u and v. □

Lemma 2.7 The eigenvalues of L are real.

Proof: Let λ be an eigenvalue of L with corresponding eigenfunction u i.e. Lu(x) =
λu(x). Then, taking conjugates on both sides, we see Lū(x) = λ̄ū(x). This shows that
ū is also an eigenfunction of L with eigenvalue λ̄. Consider the following

(λ − λ̄)

ˆ b

a
|u|2 =

〈
ū, Lu

〉
r −

〈
u, Lū

〉
r =

[
ū′(x)p(x)u(x)− ū(x)p(x)u′(x)

]b
a = 0

´ b
a |u|2 = 0 implies u = 0 since u ∈ C2([a, b]). But since we are only considering non

trivial eigenfunctions, we conclude that λ̄ = λ which means λ ∈ R. □

Corollary 2.7.1 Up to a complex constant, for any eigenfunction u corresponding to eigenvalue
λ, u is a real valued function.

Proof: Suppose u(x) = u1(x) + iu2(x). Since Lu = λu = Lū = λū, we see that u1 :=
(u + ū)/2 is a real valued eigenfunction. By corollary 2.5.1 we see that u(x) = zu1(x)
for some z ∈ C. □

Lemma 2.8 Eigenfunctions corresponding to different eigenvalues are orthogonal.

Proof: Let u, v be eigenfunctions corresponding to eigenvalues λ, µ then,

(λ−µ)

ˆ b

a
v(x)u(x)r(x) =

〈
v, Lu

〉
r −
〈
u, Lv

〉
r =

[
v′(x)p(x)u(x)− v(x)p(x)u′(x)

]b
a = 0

since λ ̸= µ we get
〈
v(x), u(x)

〉
r = 0. □

2.4.2 Solving The BVP

We will now try to solve the BVP eq. (2.6). First, note that if λ is an eigenvalue
of L with corresponding eigenfunction u and if f solves the differential equation(

L − λI
)

f (x) = g(x). Then〈
u, g
〉

r =
〈
u, L f − λ f

〉
r =

〈
Lu − λu, f

〉
r =

〈
0, f
〉
= 0

so we see that a solution f for g s.t.
〈
u, g
〉
̸= 0 doesn’t exist. But what about when λ is

not an eigenvalue. Is L − λI invertible then? The answer is affirmative in this case as
we will see.
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Let us choose λ such that it is not an eigenvalue3. Further, let ua and ub be linearly
independent solutions to the IVP Lv = λv for some initial conditions at a. Note that
the functions c(x, a, λ), s(x, a, λ) from eq. (2.13), satisfy,

c(x, a, λ) =
ua(x)p(a)u′

b(a)− u′
a(a)p(a)ub(x)

Wλ

(
ua, ub

) , s(x, a, λ) =
ua(a)ub(x)− ua(x)ub(a)

Wλ

(
ua, ub

)
Where,

Wλ

(
ua(x), ub(x)

)
= p(x)det

([
ua(x) ub(x)
u′

a(x) u′
b(x)

])

Using eq. (2.13), we get

f (x) = c(x, a, λ) f (a) + s(x, a, λ) f ′(a) +
ˆ x

a
s(x, t, λ)g(t)r(t)dt

=⇒ f (x) = c1ua(x) + c2ub(x) +
ˆ x

a

ua(t)ub(x)− ua(x)ub(t)
Wλ

(
ua, ub

) g(t)r(t)dt

for some constants c1 and c2. Now, let ua satisfy ua = 0 and ub satisfy ub = 0.

Remark Note that this is possible since if this choice makes ua and ub linearly dependent
then corollary 2.5.1 tells us that they are eigenfunctions of L which is a contradiction to our
assumption that λ is not an eigenvalue.

Applying the boundary conditions to f , we get

f (a) = c2ub(a) = 0 =⇒ c2 = 0

f (b) = c1ua(b)−
ˆ b

a

ua(b)ub(t)
Wλ

(
ua, ub

)g(t)r(t)dt = 0 =⇒ c1 =

ˆ b

a

ub(t)
Wλ

(
ua, ub

)g(t)r(t)dt

=⇒ f (x) =
ˆ b

a

ua(x)ub(t)
Wλ

(
ua, ub

)g(t)r(t)dt +
ˆ x

a

ua(t)ub(x)− ua(x)ub(t)
Wλ

(
ua, ub

) g(t)r(t)dt

=

ˆ x

a

ua(t)ub(x)
Wλ

(
ua, ub

)g(t)r(t)dt +
ˆ b

x

ua(x)ub(t)
Wλ

(
ua, ub

)g(t)r(t)dt

3Some care needs to be taken while making this choice. We need to prove that there exists such a
λ ∈ R that is not an eigenvalue. The proof uses the separability of L2([a, b]). First, we use the fact that
eigenfunctions of L are orthogonal and eigenvalues are simple to claim that the set of eigenvalues is
in bijection with the set of eigenfunctions which is an orthogonal set in L2. Due to separability, we
conclude that any orthogonal set contains at most countably many elements.
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We define the Green’s function to be

G(x, t, λ) = 1
Wλ

(
ua,ub

)
ua(t)ub(x) ; t ≤ x

ua(x)ub(t) ; t ≥ x

So, we have solved the BVP eq. (2.6). To prove uniqueness for the solution, let u and
v both be solutions. Then u − v solves the homogeneous problem L f = λ f which
means that u − v is either a zero solution or is an eigenfunction which contradicts our
assumption that λ is not an eigenvalue.

2.4.3 The Resolvent Rλ
L

Let us define the resolvent of L − λI as the operator Rλ
L, satisfying Rλ

Lg(x) :=´ b
a G(x, t, λ)g(t)r(t)dt4. We can show that Rλ

L = (L − λI)−1 , (λ ̸∈ ρ(L)5) and ex-
tends6 as a bounded, self adjoint,compact operator over L2

r ([a, b]).
We first show that Rλ

L is actually the inverse of L − λI. Indeed
(

L − λI
)
◦ Rλ

Lg = g
is true by construction and

Rλ
L ◦
(

L − λI
)

f (x) =
ˆ b

a
G(x, t, λ)

(
L − λI

)
f (t)r(t)dt

=

´ x
a ua(t)ub(x)

(
L − λI

)
f (t)r(t)dt +

´ b
x ua(x)ub(t)

(
L − λI

)
f (t)r(t)dt

Wλ

(
ua, ub

)
=

ub(x)Wλ

(
f (x), ua(x)

)
− ua(x)Wλ

(
f (x), ub(x)

)
Wλ

(
ua, ub

) = f (x)

Lemma 2.9 Rλ
L is a compact self-adjoint operator.

Proof: Note that by definition, G(x, t, λ) is a symmetric function in x and t. Moreover,
it is continuous in x (as well as t) over a compact interval and hence uniformly
continuous. Given a bounded sequence {gn(x)}n in L2

r ([a, b]),

∣∣∣Rλ
L
(

gn(x)− gn(y)
)∣∣∣ = ∣∣∣∣∣

ˆ b

a

(
G(x, t, λ)− G(y, t, λ)

)
gn(t)r(t)dt

∣∣∣∣∣
≤ ϵ · sup

t∈[a,b]
|r(t)| ·

ˆ b

a
|gn(t)|dt

4By theorem 2.2 we see that RL is well defined over all g ∈ C([a, b])
5Where ρ(L) is the set of eigenvalues of L
6Using the bounded linear transformation theorem that states existence of a unique extension. In

this case, (L − λ)−1 extends from C([a, b]) to L2([a, b]).
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≤ ϵ · sup
t∈[a,b]

|r(t)| · |b − a| · ∥gn∥L2
r ([a,b]) ≤ Mϵ

where |G(x, t, λ)− G(y, t, λ)| ≤ ϵ, ∀|x − y| ≤ δ. Similarly we can see that Rλ
Lgn is

uniformly bounded. So we see that {Rλ
Lgn}n is an equicontinuous set of functions. By

the well known theorem due to Arzelá-Ascholi, we can find a uniformly convergent sub
sequence that is continuous on [a, b]. Finally, uniform convergence implies convergence
in L2

r ([a, b]) norm, proving that Rλ
L is compact.

For self-adjoint, consider

=
〈

Rλ
Lg(x), f (x)

〉
r =

ˆ b

a
f (x)

( ˆ b

a
G(x, t, λ)g(t)r(t)dt

)
r(x)dx

=

ˆ b

a
g(t)

( ˆ b

a
G(t, x, λ) f (x)r(x)dx

)
r(t)dt︸ ︷︷ ︸

by Fubini-Tonelli

=
〈

g(x), Rλ
L f (x)

〉
r

Note that it suffices that g, f ∈ L2
r ([a, b]). So we see that Rλ

L is indeed self adjoint as it
is symmetric and Dom(Rλ

L) = Dom
(
Adjoint(Rλ

L)
)
. □

Remark Finally, we remark that Rλ
Lg = 0 implies g ≡ 0. This is true since for g ∈ C([a, b])

we have 0 =
(

L − λI
)

Rλ
Lg = g. For g ∈ L2([a, b]) we take a sequence {gn}n in C([a, b])

converging to g in L2
r . Then, for any f ∈ H, we have

∣∣∣〈 f , gn
〉

r

∣∣∣ = ∣∣∣∣∣
ˆ b

a

(
L − λI

)
Rλ

Lgn(x) f (x)r(x)dx

∣∣∣∣∣ ≤
ˆ b

a

∣∣∣Rλ
Lgn(x)

(
L − λI

)
f (x)r(x)

∣∣∣dx

≤
∥∥∥Rλ

Lgn

∥∥∥
L∞

∥∥(L − λI
)

f (x)r(x)
∥∥

L1 → 0

since from lemma theorem 2.9, we can see
∥∥Rλ

Lgn − 0
∥∥

L∞ ≤ K∥gn − g∥L2 → 0. Further, H
is dense in L2

r ([a, b]) so g ≡ 0. This result is important because it guarantees that Rλ
L has

infinitely many non-zero eigenvalues.

2.4.4 Result

Applying the spectral theorem to Rλ
L, we get a sequence of real eigenvalues for Rλ

L
that converge to zero. Moreover, the eigenfunctions form an infinite basis for the
space L2

r ([a, b]). For an eigenvalue µ and corresponding eigenvector v of Rλ
L, we see

v =
(

L − λ)Rλ
Lv = µ

(
L − λI

)
v which gives us Lv = (λ+1)

µ v. So the eigenvalues of L
converge to ∞. More precisely, one can say this.
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L has a countable number of discrete, real and simple eigenvalues λ1 < λ2 <

λ3 < · · · which accumulate only at ∞ and are bounded below. The corresponding
eigenfunctions un (n ∈ N) can be chosen real valued and form an orthonormal basis
for L2

r ([a, b]).

Remark The existence of a lower bound on the eigenvalues of L is shown by finding a
lower bound on the quadratic form for L as follows,

〈
u, Lu

〉
r =

´ b
a −u

(
pu′)′ + qu2 =´ b

a pu′2 + qu2 ≥
´ b

a qu2 ≥ M∥u∥2
L2

r
where M = sup

x∈[a,b]
q(x), which can take negative values

too.

Another important result about the eigenvalues of L is

Lemma 2.10 (Rayleigh-Ritz Principle)

λ1 = min
f∈H:|| f ||=1

⟨ f , L f ⟩

Remark This is a Min-Max7 type result.

Proof: Let uk be the eigenfunction of L corresponding to the eigenvalue λk. For any

v ∈ H, ∥v∥L2
r
= 1, we have v =

∞
∑

i=1
αiui since {ui}i forms a basis for L2

r ([a, b]). So,〈
v, Lv

〉
r =

∞
∑

i=1
λiα

2
i ≥ λ1 with equality if and only if v = u1. □

2.5 Oscillation Properties

In this section, we will study the background material needed to understand two
important theorems i.e. Weyl’s asymptotics and Courants nodal domain theorem. The
former studies the asymptotic properties of the eigenvalues of L and the latter studies
the zero set of the eigenfunctions.

To begin with, we will perform a coordinate change which will help us study the
eigenfunctions and eigenvalues of L better. Next, we will study Stürm’s comparison
theorem which will allow us to prove Courant’s nodal domain theorem. Finally, we
will work out some initial steps that will allow us to prove Weyl’s asymptotic theorem.

7Similar to the Min-Max theorems for linear operators on finite dimensional vector spaces.
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2.5.1 Prüfer Variables

We want to study the zeros of the eigenfunctions of L. A change of coordinates to
the polar form will help in this case. Recall that a solution u of the IVP eq. (2.1) with
u(a) = 0 and p(a)u′(a) = 1, has the vector form [u(x), p(x)u′(x)]. Changing to polar
coordinates, let

u(x) = ρ(x, λ) sin(θ(x, λ))

p(x)u′(x) = ρ(x, λ) cos(θ(x, λ))
(2.14)

Rewriting the equation Lu = λu using eq. (2.14) we get

θ′(x, λ) =
cos2(θ(x, λ))

p(x)
+ (λr(x)− q(x)) sin2(θ(x, λ)) (2.15)

ρ′(x, λ) = ρ(x, λ)

(
1

p(x)
+ q(x)− λr(x)

)
cos(θ(x, λ)) sin(θ(x, λ)) (2.16)

Here, we call θ and ρ as Prüfer Variables.

Remark Under polar coordinates eq. (2.1) is reduced to two first order ODE’s. Unfortunately
we see that this simplification has resulted in the equations being non-linear. However, if we
know θ then we can solve for ρ explicitly and get ρ = c · exp

(
1
2

´ x
x0
(q − λr + 1

p ) sin(2θ)
)

. So
we can focus on studying θ since ρ is easily found once we know θ

Note that since the RHS for both equations is clearly bounded as well as Lipshitz
continuous in θ and ρ respectively, the Picard-Lindelöf theorem8guarantees us a unique
solution for eq. (2.15) and eq. (2.16). Further, note that if θ is a solution to the
IVP eq. (2.15) where θ(a, λ) = 0 then so is nπ + θ(x, λ). Finally we note that ρ =√

u2 + (pu′)2 > 0 since if ρ(x, λ) = 0 for any x ∈ [a, b], then u ≡ 0 as for that x we
have u(x) = 0 and u′(x) = 0.

2.5.2 Stürm Comparison Theorems

In this section we will write θ(x, λ) as θ(x) for brevity because we are interested in
properties of θ as a function of x for a fixed value of λ.

Before we take a look at the comparison theorems, we state the following lemma

Lemma 2.11 θ(x) = mπ has at most one solution for x ∈ [a, b]. Moreover ∀x3 < x1 < x2

where θ(x1) = mπ, we have θ(x3) < θ(x1) < θ(x2).

8The Picard-Lindelöf theorem states that for the differential equation y′(x) = F(x, y) if F is bounded,
Lipshitz in y, continuous in x and defined on a compact domain in R2, a unique solution y∗ exists for
some initial conditions.
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Proof: Note that for an eigenfunction u, u(x) = 0 whenever θ(x, λ) = mπ. Let x0

be such that u(x0) = 0. Then, θ′(x0) = p(x0)
−1 > 0 by the definition of p(x)9. Now,

suppose θ(x1) = mπ and θ(x2) ≤ mπ where x1 < x2. Observe that θ(x∗) = mπ where
x∗ = in f {x | x ∈ (x1, x2], θ(x) ≤ mπ}. Note that because θ′(x1) > 0 we have x∗ ̸= x1.
By definition, θ(x) > mπ for x ∈ (x1, x∗). This means that θ′(x∗) < 0 which is a
contradiction meaning that θ(x2) > mπ.

Finally, if ∃x′ such that θ(x′) = mπ then by the above argument, x′ < x1. Applying
the above argument using x′ gives us the contradiction θ′(x1) < 0 leading to the
conclusion that θ(x3) < mπ for x3 < x1. □

Corollary 2.11.1 The number of zeros of u equals the number of multiples of π traversed by θ.

For λ large enough, note that θ′(x) > 0 ∀x ∈ [a, b]. So we see that for large enough
eigenvalues, the eigenfunction of the larger eigenvalue oscillates much more. Meaning
that we should expect uk

10 to have more zeros as k → ∞. This is exactly what we see
from the theorems below. We also show interlacing properties of two neighboring
eigenfunctions as we had mentioned in section ?? on Jacobi matrices.

Theorem 2.12 Suppose y and z are the respective solutions to the differential equations

y′(x) = F(x, y)

z′(x) = G(x, z)
(2.17)

where x ∈ [a, b]. Further, suppose that F(x, s) ≥ G(x, s) where F(x, s) and G(x, s) are
continuous with respect to x and Lipshitz continuous with respect to s with common Lipshitz
constant M.

Then, if y(a) ≥ z(a) we have y(x) ≥ z(x), ∀x ∈ [a, b].

Proof: Let g(x) = z(a)− y(a). We want to show that g(x) ≤ 0. By contradiction, let
there exist c ∈ (a, b) such that g(c) > 0. Then, let x∗ = sup{x | x ∈ [a, c], g(x) ≤ 0}.
By continuity of g, we get g(x∗) = 0. Moreover, by definition, g(x) > 0 for x ∈ (x∗, c).
From eq. (2.17), we get

z(x)− y(x) =
ˆ x

x∗

(
G
(
s, z(s)

)
− F

(
s, y(s)

))
ds ; x ∈ (x∗, c)

=⇒ g(x) ≤
ˆ x

x∗

(
G
(
s, z(s)

)
− G

(
s, y(s)

)
+

always nonzero by assumption︷ ︸︸ ︷
G
(
s, y(s)

)
− F

(
s, y(s)

) )
ds

9See eq. (2.1).
10Where uk is that kth eigenvalue of L.
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=⇒ g(x) ≤
ˆ x

x∗

(
G
(
s, z(s)

)
− G

(
s, y(s)

))
ds

=⇒ g(x) ≤
ˆ x

x∗
L|z(s)− y(s)|ds = L

ˆ x

x∗
g(s)ds

=⇒ g′(x) ≤ Lg(x) =⇒
(

g(x)e−Lx)′ ≤ 0 =⇒ g(x) ≤ 0 , x ∈ (x∗, c)

which is a contradiction. So we get y(x) ≥ z(x) for x ∈ [a, b] □

Corollary 2.12.1 Suppose for some x∗ ∈ [a, b] we have y(x∗) = z(x∗). Then y(x) = z(x)
for all x ∈ [a, x∗].

Proof: Consider ŷ(x) = y(x∗ − x) and ẑ(x) = z(x∗ − x). Then the differential
equations for ŷ and ẑ become

ŷ′(x) = −F(x∗ − x, ŷ) ; ẑ′(x) = −G(x∗ − x, ẑ)

Note that −G(x, s) > −F(x, s) and that ẑ(0) ≥ ŷ(0). Applying theorem 2.12 in this
setting gives us ẑ(x) ≥ ŷ(x) for x ∈ [0, x∗ − a] but we already have y(x) ≥ z(x) for all
x ∈ [a, b]. Hence, z(x) = y(x) on [a, x∗]. □

Corollary 2.12.2 If the inequality F(x, s) ≥ G(x, s) in theorem 2.12 was strict, i.e. F(x, s) >
G(x, s) then applying the theorem, we get y(x) > z(x) for x ∈ (a, b]

Let u and û be the non-trivial solutions to (Pu′)′ + Qu = 0 and (Pu′)′ + Q̂u = 0, where
the corresponding solutions are θ̂ and θ are

d
dx

θ =
cos2(θ)

P
+ Q sin2(θ) (2.18)

d
dx

θ̂ =
cos2(θ̂)

P
+ Q̂ sin2(θ̂) (2.19)

We can finally state the Stürm comparison theorem.

Theorem 2.13 (Stürm Comparison Theorem) Let u and û be as given above. Further,
suppose û vanishes at two points x1 and x2 in [a, b] and Q ≥ Q̂ on [x1, x2]. Then u vanishes
at least once on this interval.

Proof: Let G(x, θ̂) = d
dx θ̂(x) and F(x, θ) = d

dx θ(x). Then note that F(x, s) ≥ G(x, s)
on [x1, x2] and both F and G are Lipshitz in the second coordinate. Also note that
û(x1) = 0 which means that θ̂ can be chosen such that θ̂(x1) = 0 (since mπ + θ̂ also
solves eq. (2.19)). Similarly, θ(x1) can be chosen to lie in [0, π]. So we get θ̂(x1) ≤ θ(x1).
Moreover note that θ̂(x2) = kπ for some k ∈ N \ {0}. Applying theorem 2.12 with
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F and G as defined above, we get θ̂(x) ≤ θ(x) for all x ∈ [x1, x2], which implies that
kπ ≤ θ(x2). Since k is at least 1, we get π ≤ θ(x2) meaning that for some x ∈ [x1, x2]

we have u(x) = 0. □

Corollary 2.13.1 If û has k zeros on [x1, x2] then u has at least k − 1 zeros there.

2.6 Courant’s Nodal Domain Theorem

Before we state and prove Courant’s theorem, we need to show certain properties of θ

as a function of λ. Note that we can make equations eq. (2.18) and eq. (2.19) the same
as eq. (2.15) by choosing

P = p ; Q = λr − q ; Q̂ = λ̂r − q ; (2.20)

Suppose u satisfies the IVP eq. (2.1) with u(a) = 0. Then from eq. (2.15) the corre-
sponding θ(x, λ) is the solution to the differential equation eq. (2.18) with Q = λr − q
and θ(a, λ) = 0. We state the properties satisfied by θ as a function of λ in these three
lemmas.

Lemma 2.14 θ(x, λ) is a continuous and strictly monotonically increasing function of λ for
each fixed x ∈ (a, b]

Proof: Note that θ′(x, λ1) < θ′(x, λ2) for λ1 < λ2. Also, θ(a, λ1) = θ(a, λ2) = 0.
By theorem 2.12 and corollary 2.12.2, we get that θ(x, λ1) < θ(x, λ2) for x ∈ (a, b].
Continuity comes from the fact that∣∣∣θ(x, λ + ϵ

2M(b−a))− θ(x, λ)
∣∣∣ ≤ ˆ x

a

ϵ

2M(b − a)
r
∣∣∣sin2 (θ(s, λ + ϵ

2M )
)
− sin2 (θ(s, λ)

)∣∣∣ds

≤ ϵ

where M = sup
x∈[a,b]

r(x). □

Let pm, qm, rm be the minimum value of p, q and r in [a, b] and let pM, qM, rM be the
corresponding maximum value in [a, b]. Consider the differential equation (pMu′)′ +

(qM − λrm)u = 0, with corresponding polar form for θ = θ0(x, λ). Rearranging the
terms, we get u′′ = (λrm−qM)

pM
u. We know the solutions to this with u(a) = 0 are

u(x) = sin(κ(x − a)) where κ =
√

λrm−qM
pM

. Let us choose λ large enough such that
θ0(b, λ) = κ(b − a) > (n + 1)π. Note that θ′0(x, λ) ≤ θ′(x, λ) for any θ(x, λ) solving
eq. (2.18) with P(x), Q(x) taken from eq. (2.20) and θ(a, λ) = 0. Applying theorem 2.13,
we see that the u(x) corresponding to θ(x, λ) has at least n zeros. So, we have proved
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Lemma 2.15 For large enough λ, there exists a solution u of the IVP eq. (2.1) with u(a) = 0
that has at least n zeros.

Two important relations about the behavior of θ with λ are

Lemma 2.16 For a fixed x ∈ (a, b],

θ(x, λ) → ∞ as λ → ∞ (2.21)

θ(x, λ) → 0 as λ → −∞ (2.22)

Proof: In the proof lemma theorem 2.15, it is clear that for any n ∈ N and x ∈ (a, b],
we can find λ large enough (call it λS) so that θ0(x, λS) > nπ. Also, by the same
lemma, θ0(x, λS) ≤ θ(x, λS). Combining these two results, we get that θ(x, λ) > nπ

for all λ > λS, λS depending on n and x. This proves eq. (2.21).
Let θ∞(x, λ) be a solution of the IVP eq. (2.18) with P = pm and Q = λrM + |q|M

where |q|M is the maximum value of |q| on [a, b]. Then note that

θ′(x, λ) ≤ θ′∞(x, λ) =
cos2(θ∞)

pm
+ (λrM + |q|M sin2(θ∞) ≤ K + λrM ; K = p−1

m + |q|M

Choosing λ (call it λs) negative such that K + λsrM < 0 gives us θ′(x, λs) < 0. This
implies θ(x, λs) ≤ π11 for x ∈ [a, b]. Given some x1 ∈ (a, b) and ϵ > 0 we define the
linear function w(x) : [a, x1] → [ϵ, π] as

w(x) = π − (x − a)
(x1 − a)

(π − ϵ); where w′(x) = − π − ϵ

x1 − a

Next we choose λ (call it λp) negative enough such that K + λrM < − π−ϵ
x1−a . Let

λ̄ = min{λs, λp}. Then, θ′(x, λ̄) < w′(x) for x ∈ (a, x1] and 0 = θ(a, λ̄) < π = w(a).
By theorem 2.12 and corollary 2.12.2 we get θ(x1, λ̄) < ϵ, proving eq. (2.22). Also note
that θ(b, λ̄) ≤ ϵ. □

We can now state and prove the following theorem.

Theorem 2.17 (Courant’s Nodal Domain theorem) Let the set eigenfunctions of L with
Dirichlet boundary conditions be {un}n where the corresponding eigenvalues satisfy λ1 <

λ2 < λ3 < · · · . Then, the zeros of the nth eigenfunction un partition the interval (a, b) into
precisely n disjoint connected sets.

Proof: The above statement is equivalent to saying that un has n − 1 distinct zeros
in (a, b). To prove this, let us start with a solution u(x) to the IVP eq. (2.1) with

11Since if not then there is some x0 ∈ (a, b) such that θ(x0, λs) > π but then θ′(x0, λs) > 0 which is a
contradiction.
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u(a) = 0 and corresponding Prüfer variable θ(x, λ) with θ(a, λ) = 0. We know that if
θ(b, λ) = nπ, n ∈ N \ {0} then u is an eigenfunction of L with eigenvalue λ.

Now, by lemma theorem 2.16, we can choose λ (call it λ′) such that θ(b, λ′) = π.
Note that the corresponding u(x, λ′) is the first eigenfunction (i.e. u1) since θ(b, λ′) > 0
and lemma theorem 2.14 tell us that the first instance of the Dirichlet boundary
condition being satisfied for u, i.e. u(b) = 0 is when θ(b, λ′) = π. So we know that for
u1, the corresponding Prüfer variable θ is θ(b, λ′). But this means that u1 doesn’t change
sign over (a, b). So, u1 satisfies Courant’s theorem. Similarly, for un, we choose λ (call
it λ′) such that θ(b, λ′) = nπ. Then the corresponding u is un. Moreover, from θ(x, λ′)

we get that un has n − 1 zeros in (a, b). Finally, from corollary 2.11.1 we conclude that
the zeros of θ(x, λ′) correspond to distinct zeros of un. The statement of the theorem
follows from this. □

Corollary 2.17.1 For neighboring eigenfunctions un and un+1, their zeros interlace. That is,
exactly one zero of un+1 is contained between any two consecutive zeros of un.

Proof: From theorems 2.13 and 2.17 we get the required result. □

2.7 Weyl’s Asymptotics

Having studied some properties of the eigenfunctions of L (Dirichlet), we turn our
attention to its eigenvalues. We know from sub-section section 2.4.4 that they are
simple, bounded below and can be arranged in an increasing sequence tending to
∞. In this section, we make and prove a precise statement, due to Weyl, about the
asymptotic properties of these eigenvalues. Namely,

Theorem 2.18 (Weyl’s Asymptotics) Consider p, q and r as defined in eq. (2.1). Further,
we also assume r(x) ∈ C1([a, b]). Then, for large n, the eigenvalues λn of L satisfy

λn = n2π2
( ˆ b

a

√
r(t)
p(t)

dt
)−2

+O(n)

Remark Recall the example problem f ′′ + λ f = 0 that was worked out in eq. (2.3). There, it
is clear that λn ∝ n2. More precisely, we have p ≡ 1, r ≡ 1. So, Weyl’s theorem tells us that
λn = π2

(b−a)2 n2 +O(n) which is what we got in eq. (2.3).

Proof: We prove Weyl’s asymptotics by considering the Prüfer variables for
(
h(x)u(x)

, h−1(x)p(x)u′(x)
)

where h(x) =
√

λr(x)p(x) and λ > 0. Let the corresponding θ be
θh(x) and let the θ corresponding to (u, pu′) be θ(x). Note that θ(x) = mπ if and only
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if θh(x) = mπ. It can be shown by calculation, that the differential equation satisfied
by θh when Lu = λu is

θ′h =
√

λ

√
r
p
− q√

λpr
sin2(θh) + sin(2θh)

(pr)′

pr

then, for large λ, q√
λpr

sin2(θh) → 0. Also note that since |sin(2θh)| ≤ 1 and

sup
x∈[a,b]

(pr)′/pr = M < ∞. Using this and integrating both sides, we have

θh(x)− θh(a) =
√

λ

ˆ x

a

√
r(t)
p(t)

dt +O(1)

Since θ(x) = θh(x) at any multiple of π, if u = un is the nth eigenfunction of L with
Dirichlet boundary conditions then θ(b) = θh(b) = nπ and,

nπ =
√

λn

ˆ x

a

√
r(t)
p(t)

dt +O(1)

=⇒
(
nπ +O(1)

)2
= λn

( ˆ x

a

√
r(t)
p(t)

dt
)2

=⇒ λn = n2π2
( ˆ x

a

√
r(t)
p(t)

dt
)−2

+O(n)

which proves Weyl’s theorem. □
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Chapter 3

Laplacian on bounded domains in Rn

The Laplacian, as defined on bounded domains in Rn, belongs to the general class
of uniformly elliptic differential operators. First, we define the general setting in
which we will work and then study some theorems about solutions to the Dirichlet
and Neumann boundary value problems involving these elliptic operators. We will
then focus entirely on the Laplacian and study its eigenvalues and eigenfunctions.
Finally, we will state and prove the four main theorems in this section, namely, Weyl’s
eigenvalue asymptotics, Courant’s nodal domain theorem, Cheeger’s inequality and
the Faber-Krahn inequality.

3.1 Setting

Let Ω be an bounded open set in Rn.
Let L be a partial differential operator, given by two equivalent forms,

• Divergence form :

Lu = −
n

∑
i,j=1

(
aij(x)uxi

)
xj
+

n

∑
i=1

bi(x)uxi + c(x)u(x) (3.1)

• Non divergence form :

Lu = −
n

∑
i,j=1

aij(x)uxixj +
n

∑
i=1

bi(x)uxi + c(x)u(x) (3.2)

where aij(x), bi(x), c(x) ∈ C∞(Ω) ∀i, j.
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Note that both forms are equivalent in the sense that using the chain rule on
the first summation in the divergence form, yields the nondivergence form where the

corresponding coefficient (b̃i) of uxi is b̃i(x) =
n
∑

j=1

(
aij(x)

)
xj
+ bi(x) .

Definition We say that L is uniformly elliptic if the n × n matrix A(x) = (a(x)ij)i,j≤n, is
uniformly positive definite. i.e. for some θ > 0, we have

〈
ζ, A(x)ζ

〉
Rn ≥ θ∥ζ∥2

Rn for all
x, ζ ∈ Rn.

Having defined the elliptic operator L, we will study the solutions to two specific
boundary value problems. They are the Dirichlet and Neumann boundary value
problems, which are given below.

(Dirichlet)

Lu = f in Ω

u = 0 on ∂Ω
(3.3)

(Neumann)


Lu = f in Ω

n
∑

i,j=1
aij(x) ∂u

∂xi
ηj = 0 on ∂Ω

(3.4)

where f ∈ L2(Ω), u ∈ C2(Ω) and ηj is the jth component of the outward normal
vector to the surface ∂Ω at that point. Note that for the Neumann boundary value
problem, for Ω to be bounded is not enough. We need to impose some additional
smoothness conditions on its boundary ∂Ω. Hence, we will consider the Neumann
problem only for those Ω that have a nice enough boundary.

Remark The Laplacian −∆u = −
n
∑

i=1

∂2u
∂x2

i
is obtained by taking aij(x) = δij, bi(x), c(x) = 0.

We want to further extend the class of solutions of the boundary value problem to
‘weak’ solutions in either of the Sobolev function spaces H1(Ω) or H1

0(Ω) as defined
in 13 and 15 respectively. Here, ‘weak’ is understood in the sense of weak derivatives
as defined in 12. One of the reasons we want to do this is that unlike in the case of
the Stürm-Liouville operator, where we were able to obtain existence, uniqueness and
regularity conditions for the solutions from the theory of ODE’s, we can’t guarantee the
smoothness of solutions in this setting. To get around this, we use the Hilbert nature of
H1(Ω) and re-define our boundary value problem in the form of a bi-linear operator
equation B[u, v] =

〈
f , v
〉

L2 . Using the nice properties satisfied by this operator, we
will study these weak solutions and the eigenfunctions of L. We will also mention
the conditions under which the eigenfunctions enjoy additional regularity such as
strong/classical derivatives up to second order.
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Definition We define the bilinear operator B[u, v] for some functions u, v ∈ H1(Ω) as

B[u, v] =
n

∑
i,j=1

ˆ

Ω

aij(x) ∂u
∂xi

∂v
∂xj

+
n

∑
i=1

ˆ

Ω

bi(x) ∂u
∂xi

v(x) +
ˆ

Ω

c(x)u(x)v(x)

We state here, the new settings in which we will analyze weak solutions to eqs. (3.3)
and (3.4).

• (Dirichlet): A function u ∈ H1
0(Ω) is called a weak solution to 3.31 if,

B[u, v] =
〈

f , v
〉

L2(Ω)
, ∀v ∈ H1

0(Ω)

• (Neumann): A function u ∈ H1(Ω) is called a weak solution to 3.4 if,

B[u, v] =
〈

f , v
〉

L2(Ω)
, ∀v ∈ H1(Ω)

We now state and prove the three existence theorems for the weak solutions to the
Dirichlet2 boundary value problem.

3.2 Existence Theorems

Theorem 3.1 (First Existence Theorem) There is a number γ ≥ 0 such that for each µ ≥ γ

and each function f ∈ L2(Ω), there exists a unique u ∈ H1
0(Ω) that satisfiesLu + µu = f in Ω

u = 0 on ∂Ω
(3.5)

Proof: From the energy estimates in theorem B.2 we get that there exists β and γ

such that
β∥u∥2

H1
0(Ω) ≤ B[u, u] + γ∥u∥2

L2(Ω) , ∀u ∈ H1
0(Ω) (3.6)

1H1
0(Ω) is the completion of C∞

c (Ω) under the norm : ∥u∥H1(Ω) =
(
∥u∥2

L2(Ω) + ∥∇u∥2
L2(Ω)

)1/2. So,
the trace sense, as understood from appendix A.3, we can think of H1

0(Ω) as the generalization of the
Dirichlet boundary condition to the space of weakly once-differentiable functions.

2The corresponding theorems for the Neumann can also be proved in a similar manner. One
important distinction is that the Hilbert space taken in this case is the closed subspace of H1(Ω) that is
perpendicular to the constant function uc(x) = c, i.e. {u|

´
Ω

u(x) = 0, u ∈ H1(Ω)} or {u|u(x) = c, u ∈

H1(Ω), c ∈ R}⊥. Otherwise, B[u, v] doesn’t satisfy eq. (3.6).
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we define Bµ[u, v] := B[u, v] + µ
´
Ω

u(x)v(x) for any µ ≥ γ. Then, Bµ[u, v] satisfies the

conditions for the Lax-Milgram theorem B.1, which means that for each f in L2(Ω),
there exists a unique u ∈ H1

0(Ω) that is a weak solution to 3.5. □

Theorem 3.2 (Second Existence Theorem)

1. Precisely one of the following statements holds:

(a) For each f in L2(Ω), there exists a weak solution u for the boundary value problemLu = f in Ω

u = 0 on ∂Ω
(3.7)

Or else

(b) There exists a weak solution u ̸≡ 0 for the homogeneous boundary value problemLu = 0 in Ω

u = 0 on ∂Ω
(3.8)

2. Let L∗ be the adjoint operator for L. Then, should assertion (b) hold, the dimension of
the subspace N ⊂ H1

0(Ω) of weak solutions of 3.8 is finite and equals the dimension of
the subspace N∗ ⊂ H1

0(Ω) of weak solutions ofL∗u = 0 in Ω

u = 0 on ∂Ω

3. Finally, the boundary value problem 3.7 has a weak solution if and only if〈
f , v
〉

L2(Ω)
= 0, ∀ v ∈ N∗.

Proof: For part one, observe that u is a weak solution to the boundary value problem
3.7 if and only if it satisfies Lu + µu = µu + f in Ω

u = 0 on ∂Ω
(3.9)

From theorem 3.1, we know that for µ ≥ γ we have a bijective linear map Lµ :
H1

0(Ω) → L2(Ω) where g := Lµu satisfies Bµ[u, v] =
〈

g, v
〉

L2(Ω)
(∀v ∈ H1

0(Ω)). Let
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the inverse map be given by L−1
µ : L2(Ω) → H1

0(Ω). Then, from 3.9 we see that
Bµ[u, v] =

〈
f + µu, v

〉
L2(Ω)

. In terms of L−1
µ ,

L−1
µ

(
f + µu

)
= u

=⇒ u − µL−1
µ u = L−1

µ f

=⇒ u − Ku = h ; K := µL−1
µ , h := L−1

µ f

We also observe that the linear operator K is bounded and compact. Indeed,

β∥u∥2
H1

0(Ω) ≤ Bµ[u, u] =
〈

g, u
〉

L2(Ω)
≤ ∥g∥L2(Ω)∥u∥L2(Ω) ≤ ∥g∥L2(Ω)∥u∥H1

0(Ω)

=⇒ β
∥∥∥L−1

µ g
∥∥∥

H1
0(Ω)

≤ ∥g∥L2(Ω)

=⇒ ∥Kg∥H1
0(Ω) ≤ C∥g∥L2(Ω) ; C = µ

β

To prove compactness, we refer to the Rellich-Kondrachov theorem A.10 which shows
that H1

0(Ω) ⊂⊂ L2(Ω). Note that theorem A.10 proves a stronger statement, i.e.
precompactness of H1(Ω) in L2(Ω). However, it is only true when ∂Ω is at least C1.
For general open bounded Ω, it can be shown that precompactess in L2(Ω) still holds,
but only for H1

0(Ω) (for further details, see Evans’ book[7], pg.289, section 5.7, remark
after thm1). So, we have that K is a linear, bounded, compact operator. We can now
use the Fredholm alternative theorem C.1 to conclude that the following holds.3

for each h ∈ L2(Ω), the equation

u − Ku = h

has a unique solution u ∈ L2(Ω)

or else 
the equation

u − Ku = 0

has non-trivial solutions u ̸≡ 0 ∈ L2(Ω)

Parts two and three follow in a similar manner from the results of theorem C.1. □

Theorem 3.3 (Third Existance Theorem)
3In order to apply Fredholm theory, implicitly consider the extension of K to L2(Ω) using the well

known Bounded Linear Transformation theorem.
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1. There exists a countable set (possibly finite) Σ ⊂ R such that the boundary value problemLu = λu + f in Ω

u = 0 on ∂Ω
(3.10)

has a unique weak solution for each f ∈ L2(Ω) if and only if λ ̸∈ Σ.

2. If Σ is infinite, then Σ = {λk}k∈N, which is a non-decreasing sequence with λk → ∞.

Proof: Let L̃u = Lu − λu. Theorem 3.2 tells us that 3.10 has a unique weak solution
for each f ∈ L2(Ω) if the only weak solution toL̃u = 0 in Ω

u = 0 on ∂Ω

is u ≡ 0. This is equivalent to requiring that the only weak solution toLu + γu = (λ + γ)u in Ω

u = 0 on ∂Ω
(3.11)

is u ≡ 0. Where γ is chosen as in theorem 3.1. Now, 3.11 implies that the only solution
to u = (λ+γ)

γ Ku in Ω

u = 0 on ∂Ω

is u ≡ 0. This means that

γ
(λ+γ)

is not an eigenvalue of the operator K (3.12)

From eq. (3.6) we see that if λ is an eigenvalue of L then λ ≥ −γ. Also, 3.10 admits
a unique weak solution if and only if 3.12 holds. Since K is a compact operator, we
know that the spectrum of K equals it’s eigenvalues (except not necessarily zero).
Moreover, the eigenvalues of K are either finite or are a sequence converging to zero
(from the theory of compact operators over Hilbert spaces) and so, 3.10 has a unique
weak solution for all λ ∈ Σ except a countable sequence of real values, i.e. Σ. Finally,
if Σ is infinite, then, because λ ≥ −γ and the eigenvalues of L − λI are the inverses
of that of K, we have that Σ = {λk}∞

k=1 where λk is a non decreasing sequence with
λk → ∞ as k → ∞. □
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Definition (Eigenvalues and Eigenfunctions of L) A complex number λ is called a Dirich-
let or Neumann eigenvalue if there is a u in H1(Ω) or H1

0(Ω) respectively such that u is a
weak solution to the problem Lu = λu in Ω, along with the respective Dirichlet or Neumann
boundary condition. In such a case, u is called an eigenfunction of L corresponding to the
eigenvalue λ

Note that each element of Σ, defined in theorem 3.3, is a Dirichlet eigenvalue of L. Also
note that theorem 3.2 shows that the nullspace (called eigenspace) of L − λI is finite
dimensional meaning that the eigenvalue λ has finite multiplicity. Finally, observe that
theorem 3.3 only tells us that the real eigenvalues of L are at most countable in number.
It can however be shown that the same fact holds for the complex eigenvalues of L.

3.3 Eigenvalues and Eigenfunctions of the Laplace Oper-
ator and Min-max Principles

So far, we have dealt with the form of the elliptic operator L as defined in eq. (3.1) and
eq. (3.2) . The purpose of this was to show that the existence theorems in section 3.2
hold for such a general class of operators. From now on however, we will only deal
with the Laplace operator given by

−∆u := −
n

∑
i=1

∂2u
∂x2

i
(3.13)

We note that the bi-linear operator in this case is B[u, v] =
´

Ω ∇u ·∇v. Also it is
clear that B[u, v] = B[v, u]. Hence, B satisfies all the properties of an inner product on
H1

0(Ω).

Remark Note that the following theorems are true for any of the elliptic operators mentioned
above which satisfy the additional property of being self-adjoint. Some additional remarks have
been made in section section 3.4 regarding self-adjoint operators.

Why study −∆? It is worthwhile, at this stage, to mention why special attention is
being paid to the operator ∆. One important reason why it is a useful object in mathe-
matics (as well as physics) is that it is rotationally and translationally invariant. We
prove this fact and also show the relationships between eigenvalues and eigenfunctions
and their transformed counterparts.
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Lemma 3.4 The Laplacian is invariant under an isometric transformation, i.e. given an
orthogonal matrix M and given some x0 ∈ Rn we have, assuming u is smooth enough,

∆
(
u(x − x0)

)
=
(
∆u
)
(x − x0) (3.14)

∆
(
u(Mx)

)
=
(
∆u
)
(Mx) (3.15)

Furthermore, under a scale change by some k ̸= 0, we have

∆
(
u(ky)

)
= k2(∆u)(ky) (3.16)

Proof: eq. (3.14) is a result of a straightforward use of the chain rule of differentiation.
For eq. (3.15), we use the chain rule in the same way as previously but we need to

be a bit careful.

D
(
u(Mx)

)
=
(

Du
)
(Mx) ◦ M

=⇒ D2(u(Mx)
)
=

((
D2u

)
(Mx) ◦ MT

)
◦ M =

(
D2u

)
(Mx)

=⇒ ∆
(
u(Mx)

)
=
(
∆u
)
(Mx)

The MT in the second step comes from the way the terms in the matrix D2u are
arranged. The last step comes from the fact that the Laplacian is the sum of the
diagonal entries of the second derivative matrix.

Finally, for eq. (3.16) we can easily see that ∇
(
u(ky)

)
= k(∇u)(ky). Applying the

∇ operator once more gives us the required result. □

As a result of theorem 3.4 and the regularity properties of the eigenfunctions of −∆
given in appendix B.2 that guarantee their smoothness in Ω, we obtain the corollary

Corollary 3.4.1 Let u be an eigenfunction of −∆ with eigenvalue λ. Let Ω be an open bounded
domain. Let Ω̃ := {Mx + x0 | x ∈ Ω, x0 ∈ Rn} be an isometric transformation of Ω for
some orthogonal matrix M and x0 ∈ R. Also define Ω̄ := {kx | x ∈ Ω} for some k > 0.
Then,

1. The function u
(

MT(y − x0)
)

where y ∈ Ω̃ is an eigenfunction of −∆ on Ω̃ with
eigenvalue λ (i.e. eigenvalues are preserved under isometric transformations of Ω).

2. The function u( y
k ) where y ∈ Ω̄ is an eigenfunction of −∆ on Ω̄ with eigenvalue λ

k2 (i.e.
doubling the domain size shrinks the eigenvalues by a factor of one quarter)

Having provided sufficient motivation for the study of −∆, we study the properties
of its eigenvalues and eigenfunctions.
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Theorem 3.5 (Eigenvalues)

1. Each eigenvalue of −∆ is real and positive.

2. Furthermore, if we enumerate the eigenvalues, counting their (finite) multiplicities
separately, then we get an increasing sequence of eigenvalues with an infinite limit i.e
λ1 ≤ λ2 ≤ · · · → ∞.

3. Finally, there exists an orthonormal basis {wk}∞
k=1 of L2(Ω), where wk ∈ H1

0(Ω) is an
eigenfunction of −∆ corresponding to λk.

Remark Since Ω is open and bounded, we automatically have that ωk are C∞(Ω), from the
regularity property given in theorem B.3. Furthermore, if ∂Ω is smooth, then ωk are C∞(Ω̄)

(refer to theorem B.4).

Proof: Note that for −∆ given in eq. (3.13), we see that the corresponding γ from the
first existence theorem 3.1 is 0. This is a result of Poincare’s inequality, mentioned in
theorem A.9, which bounds the L2 norm of u by the L2 norm of its weak gradient, for
u ∈ H1

0(Ω). So, we can find a unique weak solution u for the Dirichlet boundary value
problem −∆u = f in Ω

u = 0 on ∂Ω

for each f ∈ L2(Ω). Then, as defined in the proof of the second existence theorem 3.2,
−∆ has an inverse, given by the bounded, linear and compact operator (−∆)−1. Let
us represent it as S := (−∆)−1. We claim that S is also self-adjoint. Note that since
S : L2(Ω) → L2(Ω) it is enough to show that S is symmetric. Let f , g ∈ L2(Ω). Then,
S f , Sg ∈ H1

0(Ω). Let S f = u and Sg = v then by definition, u, v are solutions to the
PDE’s −∆u = f in Ω

u = 0 on ∂Ω

−∆v = g in Ω

v = 0 on ∂Ω

respectively. Since B[u, v] = B[v, u] as mentioned above, we get〈
g, S f

〉
=
〈

g, u
〉
= B[v, u] = B[u, v] =

〈
f , v
〉
=
〈

f , Sg
〉

hence S is self-adjoint.
Finally, note that Sg = 0 implies g = 0 trivially as S is invertible. Applying the

spectral theorem to S, we get eigenvalues {µn}n and corresponding eigenfunctions
{wn}n which form an orthonormal basis of L2. Moreover, since Swk = µkwk we see
that wk ∈ H1

0(Ω). We also see that µk ̸= 0 for any k ∈ N since µk =
〈
wk, Swk

〉
=
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B[wk, wk] >= 0, since equality is if and only if wk ≡ 0 as B is an inner product on
H1

0(Ω). Also, µk → 0 by compactness of S. Using these facts, we get

Swk = µkwk =⇒ −∆Swk = −µk∆wk =⇒ −∆wk =
1
µk

wk

where the eigenvalues of −∆ are positive and form an increasing sequence with an
infinite limit. This proves the theorem. □

Theorem 3.6 (Variational Principle for the Principal Eigenvalue) Let λk and wk be
the kth eigenvalue and eigenfunction of −∆ respectively where the eigenvalues are ordered in
an increasing divergent sequence starting with λ1. Then,

1. λ1 is simple and satisfies

λ1 = min{B[u, u] | u ∈ H1
0(Ω), ∥u∥L2(Ω) = 1}

2. The above minimum is attained by w1, which doesn’t change sign within Ω

Proof: {wk}k forming an orthonormal basis for L2(Ω). Let the corresponding eigenval-
ues be {λk}k. Then, B[wk, wk] = λk∥wk∥2

L2(Ω) = λk and B[wk, wl] = λk
〈
wk, wl

〉
L2(Ω)

= 0

for k ̸= l. Since H1
0(Ω) ⊂ L2(Ω), for any u ∈ H1

0(Ω) with ∥u∥L2(Ω) = 1, we can write

u =
∞

∑
i=1

diwi,
∞

∑
i=1

d2
i = 1.

Next, viewing B[u, v] as an inner product over H1
0(Ω), we claim that

{
yk
}

k is an
orthonormal basis for H1

0(Ω) where yk = wk√
λk

. Since B[yk, yj] = δkj, it is enough to

show that if u ∈ H1
0(Ω) and B[u, yk] = 0 for all k, then u ≡ 0. Suppose B[u, yk] =〈

u,
√

λkwk
〉
= 0 for all k. This means that u is orthogonal to wk for each k. Since {wk}k

form an ONB of L2(Ω) we get u ≡ 0. Finally, computing B[u, u] we get

∥u∥2
B = B[u, u] =

∞

∑
i=1

d2
i λi ≥ λ1

∞

∑
i=1

d2
i = λ1

where ∥·∥B is the norm induced by the inner product B[u, v] over H1
0(Ω). For equality,

let u = w1. We have proved (1).
For (2), we claim the following. Let u ∈ H1

0(Ω), ∥u∥L2(Ω) = 1 then, B[u, u] = λ1

if and only if u is a weak solution for the differential equation −∆u = λ1u for u ∈ Ω,
with Dirichlet boundary conditions. Indeed, the converse is obvious. For the forward
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implication, let u =
∞
∑

i=1
diwi. Then

0 = B[u, u]− λ1 =
∞

∑
i=1

d2
i
(
λi − λ1

)

so we get u =
p
∑

i=1
diwi where λ1 has multiplicity p and −∆wi = λ1wi for i = 1, 2, . . . , p.

So u is an eigenfunction of −∆. This proves our claim.
For (3), let u be an eigenfunction of −∆ with eigenvalue λ1. We define

u+(x) =

u(x) if u(x) > 0

0 Otherwise

and define u− := u+ − u. It can be shown that both u+ and u− lie in H1
0(Ω) and that´

Ω ∇u+ ·∇u− = 0. Using these facts and part (1), we see that

λ1 = B[u, u] = B[u+ − u−, u+ − u−] = B[u+, u+] + B[u−, u−]

≥ λ1
∥∥u+

∥∥2
L2(Ω) + λ1

∥∥u−∥∥2
L2(Ω) = λ1

Since the inequality is actually an equality, we see that B[u+, u+] = λ1u+ and the
same is satisfied by u−. By part (1), we see that u+, u− are eigenfunctions of −∆ with
eigenvalue λ1. Now, if ∂Ω is smooth then we see that u+, u− ∈ C∞(Ω̄). Using the
maximum principle given in theorem B.5 on u+ and noting that −∆u+ = λ1u+ ≥ 0,
we get u+ > 0 in Ω or u+ ≡ 0. Similarly, we get u− < 0 in Ω or u− ≡ 0. This means
that exactly one of u+ or u− is identically zero. Thus proving that u doesn’t change
sign in Ω if it is an eigenfunction with associated eigenvalue λ1. Finally, if ũ, u are
distinct eigenfunctions of −∆ with eigenvalue λ1, then noting that

´
Ω ũ = α

´
Ω u ̸= 0

for some real α, we get
´

Ω ũ − αu = 0 which implies4 ũ = αu. We have proved that λ1

is a simple eigenvalue. □

Using a similar argument and considering the restriction of −∆ to the space
orthogonal to w1, w2, . . . , wk we get

Theorem 3.7 (Rayleigh’s Theorem) We define S := span{w1, w2, . . . , wk−1}⊥, where wk

is the kth Dirichlet eigenfunction of −∆ with unit norm. Then for any g ∈ S with unit L2

norm, B[g, g] ≥ λk with equality if and only if g is an eigenfunction of −∆ with eigenvalue
λk.

4Since ũ − αu is a nonzero eigenfunction of −∆ with eigenvalue λ1 we have a contradiction because´
Ω ũ − αu cannot be zero.
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Lemma 3.8 (Courant’s Minimax Principle) Assume the operator −∆ with Dirichlet bound-
ary conditions has eigenvalues 0 < λ1 < λ2 ≤ λ3 ≤ · · · . Then,

λk = max
S∈Σk−1

min
u∈S⊥
∥u∥L2=1

B[u, u] ; (k = 1, 2, . . . ) (3.17)

where Σk−1 is the set of all subspaces S of dimension k − 1

Proof: Let B := {S | S ⊂ H1
0(Ω), dim(S) = k − 1} and Wk := span{w1, w2, . . . , wk}

where wk is the eigenfunction of −∆ with eigenvalue λk. We first prove this fact.

Lemma 3.9 For any S ∈ B, S⊥ ∩ Wk ̸= {0}.

Proof: We prove the claim by contradiction. Suppose that there exists S ∈ B such
that S⊥ ∩ Wk = {0}. Then for all u ∈ Wk, u|S ̸= 0 where u|S is the projection of u
onto the subspace S. Since dim(S) = k − 1 we see that the set {wi|S | i = 1, 2, . . . , k} is

linearly dependent. So we get βi , i = 1, 2, . . . , k not all zero such that
k
∑

i=1
βiwi|S = 0.

But this then gives us a nonzero function u =
k
∑

i=1
βiwi ∈ Wk such that u|S = 0 which is

a contradiction. □

Using lemma 3.9, let u be a nonzero function in S⊥ ∩ Wk such that ∥u∥L2(Ω) = 1.

Then, u =
k
∑

i=1
diwi and B[u, u] =

k
∑

i=1
d2

i λi ≤ λk. So, minimizing over all functions in S,

we get
min
u∈S⊥

∥u∥L2=1

B[u, u] ≤ λk =⇒ max
S∈B

min
u∈S⊥

∥u∥L2=1

B[u, u] ≤ λk

Finally, if we choose S = Wk−1 then wk ∈ S⊥ and B[wk, wk] = λk which gives us
eq. (3.17). □

Corollary 3.9.1 One can also show, using similar methods, that

λk = min
S∈Σk

max
u∈S

∥u∥L2=1

B[u, u] ; (k = 1, 2, . . . ) (3.18)

3.4 Some Important Remarks for Sections 3.1 to 3.3

Some important points to be mentioned are :

1. Generally, it is the ellipticity condition that allows us to prove the three existence
theorems for the eigenvalues and eigenfunctions.
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2. Since the compact operator K mentioned in theorem 3.2 can have finitely many
nonzero eigenvalues, we are not immediately guaranteed an increasing sequence
of eigenvalues for the general elliptic operator, like we get for the Laplace operator.
Interestingly though, one can still show that show that the principal eigenvalue λ1

that is real and simple and that the corresponding eigenfunction doesn’t change
sign in Ω.

3. For self-adjoint operators L, we see that the corresponding bi-linear function
B[u, v] becomes symmetric and thus a valid inner product over H1

0(Ω). Moreover,
the inverse of L (or L − µI) becomes self-adjoint because of this, allowing us
to apply the spectral theorem and obtain a basis for L2(Ω). The property that
eigenvalues are real also comes from the self-adjoint nature of L.

4. The proof of the three existence theorems and the analogous eigenvalue theorems
for the Laplacian with Neumann boundary conditions follows a similar structure
as that of the Dirichlet boundary case and hence will not be mentioned in this
report. Hence we shall only state that for the Neumann boundary case, the
main theorem 3.5 holds. Moreover, it should be mentioned that in theorems 3.1
to 3.3 and 3.5, we consider the subspace of H1(Ω) perpendicular to the constant
function f (x) = c, f ∈ H1(Ω) since otherwise the ellipticity property fails to
hold.

3.5 Basic Properties of the Eigenvalues of −∆

We now move on to study the interesting relationships between the eigenvalues of the
Dirichlet Laplacian and the domain Ω on which the problem is defined. Initially, we
will study gross aspects like the monotonicity principle which relates the eigenvalues
of subdomains to the parent domain. This will lead us into Weyl’s asymptotics, which
uses these results to tell us the rate at which λn → ∞ for large n.

Lemma 3.10 (Simple Domain Monotonicity) Let Ω1 and Ω be bounded open sets such
that Ω1 ⊆ Ω. Let λΩ1

k and λΩ
k be the kth Dirichlet eigenvalue for Ω1 and Ω respectively. Then,

λΩ1
k ≥ λΩ

k .

Proof: Since Ω1 ⊆ Ω, we see that each u ∈ H1
0(Ω1) can be extended to a H1

0(Ω)

function by setting it’s value outside Ω1 to zero. We can do this because u can be
approximated in H1

0(Ω1) norm by C∞
c (Ω1) functions uk that can be extended as zero

to Ω and thus lie in C∞
c (Ω). Also note that BΩ1 [u, v] = BΩ[ũ, ṽ] for all u, v ∈ H1

0(Ω1),
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where ũ and ṽ are the aforementioned extentions of u and v. Then, using the min-max
formula eq. (3.18), we get

λΩ1
k = min

S⊆H1
0(Ω1)

dim(S)=k

max
u∈S

∥u∥L2=1

BΩ1 [u, u] ; (k = 1, 2, . . . ) (3.19)

Since, S ⊆ H1
0(Ω1) can be extended to a subset of H1

0(Ω) we can see that if we further
minimize the RHS of eq. (3.19) by letting S ⊆ H1

0(Ω), which is a larger class of
functions, we then get λΩ

k . So λΩ1
k ≥ λΩ

k . □

Remark For the Neumann eigenvalue, this form of simple domain monotonicity is not true. As
a counter example, let Ω be the open square [0, 1]× [0, 1]in R2. Let Ω1 ⊂ Ω be a thin rectangle
of length l and width ϵ such that the diagonals of the square Ω are its axes of symmetry. We
can clearly see that l can be made arbitrarily close to

√
2 by choosing an appropriately small ϵ.

It can be shown5 that the 1st positive Neumann eigenvalue (µ1) for any rectangle of length l
and breadth b is π2 min{ 1

l2 , 1
b2}. Choosing ϵ such that l > 1, we see that µΩ1

1 ≤ µΩ
1 . Finally,

consider a subsquare Ω2 := {(1/2)x | x ∈ Ω} i.e. a scaling of Omega by half. We know
from corollary 3.4.1 that µΩ2

1 = 4µΩ
1 . This tells us that in general, µi’s need not exhibit simple

domain monotonicity.

Lemma 3.11 (Domain Monotonicity) Let Ω1, Ω2 . . . , Ωm be disjoint disjoint subdomains
of Ω . Let λk be the kth Dirichlet eigenvalue for the domain Ω and let µk be the kth term in
the increasing sequence obtained by combining and re-ordering the Dirichlet eigenvalues for
Ω1, Ω2, . . . Ωm. Then, λk ≤ µk.

Proof: Let {ϕk}k be the corresponding eigenfunctions for the Dirichlet Laplace
operator −∆ on Ω and let {ψk}k be the normalized eigenfunctions corresponding
to the eigenvalues µk. Therefore, ψk is an eigenfunction over the domain Ωi for
some i. We can trivially extend ψk to the boundary of Ω as an H1

0(Ω) function. Let
f ∈ span{ϕ1, ϕ2, . . . , ϕk−1}⊥ ∩ span{ψ1, ψ2, . . . , ψk}, f ̸≡ 0. We can get such an f by
applying lemma 3.9 here. We claim ψk ⊥ ψl. Indeed, we see this is the case, since if ψk

and ψl belong to the same domain Ωi then they are orthogonal by theorem 3.5. If not
then their supports are disjoint and so they are trivially orthogonal. Further, we note
that BΩ[u, u] = BΩi [u, u] for u ∈ H1

0(Ωi) and that f can be normalized and written as

5Using the standard variable separable technique to solve −∆u(x, y) = λu(x, y) and then applying
the isometric invariance for −∆.
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the sum
k
∑

i=1
diψi for some real di. Using these facts, we get,

λk ≤ BΩ[ f , f ] =
k

∑
i,j=1

didjBΩ[ψi, ψj]

=
k

∑
i=1

d2
i BΩi [ψi, ψi] =

k

∑
i=1

d2
i µi ≤ µk ;

where ψi is a normalized eigenfunction for Ωi. □

We now relate the Neumann eigenvalues of the subdomains to the Neumann
eigenvalues of the parent domain.

Lemma 3.12 Let Ω be an open bounded domain with piecewise smooth boundary such that
Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm. Where Ω1, Ω2, . . . , Ωm are disjoint subdomains with piecewise
smooth boundary. Suppose that λk is the kth Dirichlet eigenvalue of Ω and µk is the kth term
of the increasing sequence obtained by combining and re-ordering the Neumann eigenvalues for
Ω1, . . . , Ωn. Then, µk ≤ λk.

Proof: As in the proof of lemma 3.11, let {ϕk}k be the corresponding Dirichlet
eigenfunctions for −∆ on Ω and let {ψk}k be the eigenfunctions corresponding to the
Neumann eigenvalues µk. Therefore, ψk is an eigenfunction over the domain Ωi for
some i. Extending ψk as zero outside the subdomain Ωi, we see that it (we call it ψk

and context will be clear as to which meaning of ψk we use) lies in L2(Ω). Note that
{ψ1, ψ2, . . . , ψk−1} is an orthogonal set in L2(Ω). Let f ∈ span{ψ1, ψ2, . . . , ψk−1}⊥ ∩
span{ϕ1, ϕ2, . . . , ϕk} such that ∥ f ∥L2(Ω) = 1. Since f |Ωi ∈ H1(Ωi) we have BΩi [ f , f ] ≥
µk
∥∥ f |Ωi

∥∥2
L2(Ωi)

for all i = 1, 2, . . . , m. Using all these facts, we get

λk ≥ BΩ[ f , f ] =
ˆ

Ω
|∇ f |2 =

m

∑
i=1

ˆ
Ωi

|∇ f |2

m

∑
i=1

BΩi [ f , f ] ≥ µk

m

∑
i=1

∥∥ f |Ωi

∥∥2
L2(Ωi)

= µk

□

Having proved these elementary properties satisfied by the Dirichlet and Neumann
Laplace operator on different domains, we can move on to our first main result for this
section on the Laplacian in Rn.
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3.6 Weyl’s Asymptotics

Weyl’s Asymptotics tells us the rate at which the eigenvalues (λn) of the Laplacian
grow for large values of n. Alternatively, we can also use these asymptotics to count
the number of eigenvalues that are less than some given α > 0. Again, this estimate
becomes more and more precise as we choose larger and larger values of α.

Definition (∼) For two real functions a(k) and b(k), the notation a(k) ∼ b(k) means that
the ratio a(k)

b(k) goes to 1 as k → ∞.

We now state Weyl’s precise result,

Theorem 3.13 (Weyl’s Asymptotics) For an open and bounded domain Ω ⊆ Rn, let the
Dirichlet eigenvalues of the Laplace operator be given by {λk}k. Then,

λk ∼ 4π2
(

k
ωnVol(Ω)

)2/n

(3.20)

lim
α→∞

N(α)

αn/2 =
ωn

(2π)n Vol(Ω) (3.21)

where ωn is the volume of the unit ball in Rn and N(α) counts the number of eigenvalues less
than or equal to α.

Remark Note that we only consider the case of n = 2 here. The proof for higher dimensions
follows the exact same logic and proof structure but is notationally tedious. Hence, for the sake
of brevity and clarity, we will only prove the two dimensional case here.

The proof of Weyl’s theorem is done in three steps. First, we consider a bounded
rectangle in R2. We explicitly solve for the Dirichlet and Neumann eigenvalues here
and prove Weyl’s asymptotic results in this case. Next, we take a domain that is a
disjoint union of rectangles and we use the monotonicity results obtained earlier to
obtain the required asymptotic results. Finally, using the simple monotonicity property,
we bound an arbitrary domain both inside and outside by disjoint unions of rectangles
and take the limit, as the internal and external domains converge in volume to the
given one, thus proving Weyl’s theorem.
Proof:

1. Let Ω = (0, a)× (0, b). We want to solve the eigenvalue equation∆ω = λω in Ω

ω = 0 on ∂Ω
(3.22)
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The eigenvalues and eigenfunctions for both the Dirichlet and Neumann bound-
ary conditions, are

Dirichlet : w(x)m,n = sin
(nπx

a

)
sin
(mπy

b

)
; λm,n = π2

(
n2

a2 +
m2

b2

)
; m, n ≥ 1

(3.23)

Neumann : w(x)m,n = cos
(nπx

a

)
cos
(mπy

b

)
; λm,n = π2

(
n2

a2 +
m2

b2

)
; m, n ≥ 0

(3.24)

Now, notice that the formula for λm,n is actually the equation of an ellipse, if we
allow m, n ∈ R. This tells us that N(α) for α > 0 is exactly the number of lattice

points (m, n) in the first quadrant of the ellipse α = π2( x2

a2 +
y2

b2

)
. If we consider

all unit squares such that the coordinates of their top right edge is a lattice point
(m, n), then, vol(1st quadrant of ellipse)∼ N(α). Note that the discrepancy arises
when unit squares of the aforementioned type are cut by the ellipse. Since the
perimeter of the ellipse is ∝

√
α the error is O(

√
α). So, we get

N(α) =
α · ab
4π

+O(
√

α)

dividing by α and taking α → ∞, we recover Weyl’s estimate for N(α) in dimen-
sion 2.

Remark We claim that the same result holds for N̂(α), the number of Neumann eigen-
values less than α. Indeed, the only difference from N(α), as we see from eqs. (3.23)
and (3.24), is that for the Neumann case, we count the eigenvalues lying on the x and y
axes. This extra contribution to N̂(α) is, however, not significant, since the number of
such eigenvalues is ∝

√
α. It is easy to see this since the number of eigenvalues on the x

axis is given by all m ∈ N, m > 0 such that m2 ≤ α
π2 a2 which implies m ∝ (

√
α).

Finally, it is good to remark that since −∆ is invariant under isometric transformations,
as seen in lemma 3.4, the results mentioned here hold for all rectangles in Rn regardless
of position or orientation.

2. Let Ω be a domain such that Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωm, where Ωi’s are pairwise
disjoint open rectangles. Let the Dirichlet eigenvalues on Ω be {λk}k. Let λ′

k
be the kth eigenvalue in the increasing sequence obtained by combining and re-
ordering the Dirichlet eigenvalues for Ω1, Ω2, . . . , Ωm. Let µ′

k be the kth eigenvalue
in the corresponding combined Neumann eigenvalue sequence. Also, let λ

Ωi
k and

51



µ
Ωi
k be the kth Dirichlet and Neumann eigenvalues of Ωi. Furthermore, let N(α),

N′(α), N̂′(α), Ni(α) and N̂i(α) be the largest k such that λk ≤ α, λ′
k ≤ α, µ′

k ≤ α,
λ

Ωi
k ≤ α and µ

Ωi
k ≤ α respectively.

Then, by lemmas 3.11 and 3.12, we get µ′
k ≤ λk ≤ λ′

k. Therefore

N′(α) ≤ N(α) ≤ N̂′(α)

Note that µ′
k ≤ λk implies that N(α) ≤ N̂′(α). It is also easy to see that N′(α) =

m
∑

i=1
Ni(α) and similarly, N̂′(α) =

m
∑

i=1
N̂i(α). From the first part, we know that

N̂i(α) = Ni(α) =
m

∑
i=1

α · Vol(Ωi)

4π
+O(

√
α)

Since the volume of Ω is the sum of volumes of Ωi, we get

α · Vol(Ω)

4π
+O(

√
α) ≤ N(α) ≤ α · Vol(Ω)

4π
+O(

√
α)

Dividing by α and taking the limit as α → ∞ gives us the desired result.

3. Fix ϵ > 0. Then, there exist domains Ω1 and Ω2 of the type considered in step
2 (essentially finite unions of disjoint rectangles), such that Ω1 ⊆ Ω ⊆ Ω2 and
vol(Ω2)− vol(Ω1) < ϵ.

By lemma 3.10, we can conclude that λΩ1
k ≥ λΩ

k ≥ λΩ2
k where each entry is the

kth Dirichlet eigenvalue of the Laplace operator on the domain indicated in the
superscript. Then, NΩ1(α) ≤ NΩ(α) ≤ NΩ2(α). Since we have already shown the
asymptotic results for Ω1 and Ω2, it follows that

α · Vol(Ω1)

4π
+O(

√
α) ≤ NΩ(α) ≤

α · Vol(Ω2)

4π
+O(

√
α)

Finally, dividing by alpha, and taking the limit as α → ∞, we get

Vol(Ω1)

4π
≤ NΩ(α)

α
≤ Vol(Ω2)

4π
≤ Vol(Ω1) + ϵ

4π

Finally, taking the limit as ϵ → 0, we get the required asymptotics.

It is easy to see that eqs. (3.20) and (3.21) are equivalent statements, so we can
easily prove one given the other.

□
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3.7 Courant’s Nodal Domain Theorem

Courant’s nodal domain theorem is a statement about the sign of eigenfunctions of the
Laplace operator. We have seen proofs of the corresponding theorem in the context of
graphs (theorem 1.6) and the Stürm-Liouville operator (theorem 2.17). The result we
obtain here in the case of the operator −∆ is exactly the same as that on graphs, i.e an
upper bound of (k + r − 1) on the number of nodal domains for the kth eigenfunction
where the corresponding eigenvalue has multiplicity r. In fact, the proof structure and
ideas are very similar in the two cases as we will see. The case for the Stürm-Liouville
operator is more special. Here, the reason that the upper bound of k is exactly achieved
is because each eigenvalue is simple and that we can count the number of partitions of
a given domain [a, b] by simply counting the zeros of the corresponding eigenfunction.
This fact immediately fails for dimension 2 onward.

We have seen from the proof of theorem 3.6 that the sign of w1, the eigenfunction
corresponding to eigenvalue λ1 doesn’t change sign inside the domain Ω. We can
make similar statements for wk, k ≥ 2.

Remark Since w1 doesn’t change sign and
〈
w1, wk

〉
L2 = 0 for all k ≥ 2, we can easily

conclude that wk has to change sign in Ω. This is another way to prove that λ1 is simple.

Before we state the main theorem, let us define what a nodal domain is

Definition (Nodal Domain) Given an eigenfunction wk of the Laplace operator with Dirich-
let or Neumann boundary conditions, a nodal domain S is a connected component6 of one of
the two disjoint open sets Ω+ := {x | wk(x) > 0} and Ω− := {x | wk(x) < 0}

Remark Ω− := {x | wk(x) < 0} and it’s positive counterpart are open because wk is a
continuous function since, if Ω is open and bounded then the eigenvalues of the Dirichlet or
Neumann Laplace operator −∆ are smooth inside Ω by the regularity properties mentioned in
appendix B.2.

Theorem 3.14 (Courant’s Nodal Domain Theorem) Let wk be the kth eigenfunction of the
Laplace operator −∆ with Dirichlet or Neumann boundary conditions for an open, connected
and bounded domain Ω. Then, wk has at most k + r − 1 nodal domains. Where r is the
multiplicity of the corresponding eigenvalue λk

Proof: We proceed with a proof by contradiction. Suppose wk has m nodal domains,
Ω1, Ω2, . . . , Ωm where m > k. Further, suppose that the corresponding eigenvalue λk

6Where a connected component of a set is any maximally connected subset.
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satisfies λk < λk+1. Define functions fi : Ω → R, i = 1, 2, . . . , m such that

fi(x) =

wk(x) if x ∈ Ωi

0 Otherwise

Note that all fi’s lie in H1
0(Ω). This is true since wk vanishes on the boundaries of Ωi.

Further, we claim that fi is the first Dirichlet eigenfunction for the domain Ωi with
eigenvalue λk. Indeed, since fi satisfies −∆wk(x) = −∆ fi for all x in Ωi and by defini-
tion fi doesn’t change sign in Ωi we are done by theorem 3.6. Also note that fi’s are

pairwise orthogonal7 to each other and that wk(x) =
m
∑

i=1
fi(x). Now, by the argument

given in lemma 3.9, we can find g ∈ span{w1, w2, . . . , wk}⊥ ∩ span{ f1, f2, . . . , fm} such

that g ̸≡ 0. Let g(x) =
m
∑

i=1
di fi(x). We get

B[g, g] = ∥∇g∥2
L2(Ω) =

m

∑
i=1

d2
i ∥∇ fi∥2

L2(Ω)

= λk

m

∑
i=1

d2
i ∥ fi∥2

L2(Ωi)
= λk∥g∥2

L2(Ω)

(3.25)

Since g is orthogonal to w1, . . . , wk we use Rayleigh’s theorem (3.7) to conclude that
B[g, g] ≥ λk+1∥g∥2

L2(Ω). However, eq. (3.25) tells us that B[g, g] = λk∥g∥2
L2(Ω). So we

get the inequality λk ≥ λk+1 which contradicts our assumption that λk < λk+1. This
implies that m ≤ k. But note that our assumption forces us to choose the largest
possible index for sets of repeated eigenvalues. This means that given an ordering of
the eigenvalues λ1 < λ2 ≤ . . . , a choice of k gives us λk that is at most r − 1 positions
away from the last repeated eigenvalue. Hence, we say that wk has at most k + r − 1
nodal domains.

□

3.8 Cheeger’s Constant and the Faber-Krahn Inequality

We will now move on to study how the eigenvalues of the Laplace operator encode
information about the domain Ω on which the PDE is defined. Specifically, we will look
at what information the first Dirichlet eigenvalue λ1 contains about Ω. The two main
results that we will see here are Cheeger’s inequality and the Faber-Krahn inequality.

7Since their domains are disjoint.
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Before we prove them, we need to mention an important mathematical formula that
we will use to analyze them.

3.8.1 The Co-Area Formula

The co-area formula is given in the lemma below

Lemma 3.15 (Co-Area Formula) Let Ω be an open bounded domain in Rn. Let f ∈ C1(Ω)

be positive in Ω and extend to zero on ∂Ω. Denote by Ωt = { f > t} ⊂ Ω and V(t) =

Vol(Ωt). Then,

1. V is continuous everywhere and differentiable a.e on the set {t |∇ f (x) ̸= 0, ∀ f (x) = t},
and

V′(t) = −
ˆ
{ f=t}

1
|∇ f |dA (3.26)

2. For any g ∈ L1(Ω), we have

ˆ
Ω

g dV =

ˆ ∞

0
dt
ˆ
{ f=t}

g
|∇ f | dA (3.27)

Remark An interesting example to see the application of the co-area formula is on the disk.
Let f (x, y) = 1 −

√
x2 + y2, where x, y lie in the unit disk D and let g ∈ L1(D). Applying

the co-area formula and noting that |∇ f (x, y)| =
∣∣∣∣ (x,y)√

x2+y2

∣∣∣∣ = 1, we get

ˆ
Ω

g dV =

ˆ 1

0
dt
ˆ
{ f=t}

g dA =

ˆ 1

0
r dr
ˆ 2π

0
g dθ

which, as we can see, is equivalent to a polar coordinate change.

From lemma 3.15, we immediately see that the first Dirichlet eigenfunction w1

defined on a domain Ω with a smooth boundary satisfies the required conditions,
allowing us to use the co-area formula eq. (3.27) with f = w1 for any g ∈ L1(Ω).

Remark Note that the V(t), from lemma 3.15, corresponding to f = w1 is continuous for all
t ∈ [0, ∞]. To prove this we start by considering all those x′ ∈ Ω such that ∇w1(x′) = 0.
Since we can choose w1 to be positive in Ω, we know that −∆w1 > 0 in Ω. So, at any such x′,
we have ∆w1(x′) < 0. This means that ∂2w1(x′)

∂x2
i

< 0 for some i, where xi is the ith coordinate

direction of x. Since w1 ∈ C∞(Ω) we can choose an open neighborhood U around x′ such that
∂2w1(x′)

∂x2
i

< 0 , ∀x ∈ U. Finally, using the implicit function theorem on ∂w1(x′)
∂xi

, we conclude

that the set of all x ∈ U s.t. ∂w1(x)
∂xi

= 0 is measure zero since it is the graph of a C∞ function.
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So, for any t, V(t)− V(t + δ) → 0 as δ → 0 since the contribution from the set of x s.t.
∇w1(x) = 0, w1(x) = t is zero.

3.8.2 Faber-Krahn Inequality

The Faber-Krahn inequality is similar to the isoperimetric inequality in that here, we
want to find the shape of a domain that minimizes the value of the first Dirichlet
eigenvalue. Interestingly, just like in the isoperimetric case, we find that the domain
that minimizes λ1 is the ball in Rn.

Theorem 3.16 (Faber (1923), Krahn (1924)) Let Ω be an open bounded domain with smooth
boundary and B be a ball with the same volume as Ω. Then λ1(Ω) ≥ λ1(B) with equality if
and only if Ω is a ball.

Proof: Let w1 be the principal eigenfunction of −∆ on Ω, such that it is positive in Ω
and supΩ w1 = 1. We define

Definition (Schwarz rearrangement) For any measurable set A in R, let A∗ denote the ball
centered at the origin with vol(A) = vol(A∗). Then, if u is a non-negative measurable function
defined on Ω and vanishing on the boundary ∂Ω, we denote by Ωc = {x ∈ Ω | u(x) ≥ c} its
super level sets. The Schwarz rearrangement of u is the function u∗ defined on Ω∗ as,

u∗(x) = sup{c | x ∈ Ω∗
c} (3.28)

Let us introduce the notation, B := Ω∗. Let w∗
1 be the Schwarz rearrangement

of w1. Note that by definition, w∗
1(0) = 1. Also, we can see that w∗

1 is spherically
symmetric and is monotonically decreasing in |x|. We see this since by eq. (3.28),
x ∈ Bc implies that x′ ∈ Bc only if |x′| ≤ |x|. So, we see that for eq. (3.28), the RHS for
x is contained inside the RHS for x′, proving the monotonically decreasing property.
Spherical symmetry can be seen in the case |x′| = |x|, where we conclude that the sets
in the RHS are identical.

Since Vol(Ωt) = Vol(Bt), by differentiating both sides with respect to t, and using
eq. (3.26), we have that8

ˆ
{w1=t}

(∇w1)
−1dS =

ˆ
{w∗

1=t}
(∇w∗

1)
−1dS (3.29)

8Here we are assuming that w∗
1 is C1(B). To make this proof more universal, it is possible to invoke

the Pólya-Szegö theorem, which ensures that w∗
1 is at least H1

0(B), and then use a more general form of
the co-area formula that allows us to conclude 3.29 and the rest of the results. See [10], pg.85, theorem
4.1.1)
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then using 3.27, we get

ˆ
Ω

w2
1(x) dx =

ˆ 1

0
dt
ˆ
{w1=t}

w2
1(x)

|∇w1(x)|dS =

ˆ 1

0
t2dt
ˆ
{w1=t}

1
|∇w1(x)|dS

=

ˆ 1

0
t2dt
ˆ
{w∗

1=t}

1∣∣∇w∗
1(x)

∣∣dS =

ˆ
Ω∗

(w∗
1(x))2 dx

meaning that ∥w1∥2
L2(Ω) = ∥w∗

1∥
2
L2(B).

Now, we recall that the isoperimetric inequality in our context states that for Ωt

and Bt such that Vol(Ωt) = Vol(Bt), we have Area(∂Ωt) ≥ Area(∂Bt). Equivalently,

ˆ
{w1=t}

dS ≥
ˆ
{w∗

1=t}
dS

Squaring both sides and examining the LHS, we get

( ˆ
{w1=t}

√
|∇w1|
|∇w1|

dS
)2

≤︸︷︷︸
Cauchy-Schwarz

( ˆ
{w1=t}

|∇w1|dS
)( ˆ

{w1=t}
|∇w1|−1dS

)
(3.30)

For the RHS, note that w∗
1 is spherically symmetric so ∇w∗

1 is constant on the surface
{w∗

1 = t}. So, we get,

( ˆ
{w∗

1=t}
dS
)2

=

( ˆ
{w∗

1=t}
|∇w∗

1 |dS
)( ˆ

{w∗
1=t}

|∇w∗
1 |
−1dS

)
Putting the LHS and RHS together and using eq. (3.29), we get

ˆ
{w1=t}

|∇w1|dS ≥
ˆ
{w∗

1=t}
|∇w∗

1 |dS (3.31)

Next, we define the functions, ψ(t) := ∥∇w1∥2
L2(Ωt)

and ψ∗(t) := ∥∇w∗
1∥

2
L2(Bt)

. Then,
note that

ψ(t) =
ˆ 1

t
dt
ˆ
{w1=t}

|∇w1|dS =⇒ ψ′(t) = −
ˆ
{w1=t}

|∇w1|dS

similarly, we obtain the corresponding result for (ψ∗)′(t). Finally, note that eq. (3.31)
tells us that (ψ∗)′(t) ≥ ψ′(t). Also, ψ(1) = ψ∗(1) = 0. By integrating both sides for
t = 0 and using this initial condition, we end up with ∥∇w∗

1∥
2
L2(Bt)

≤ ∥∇w1∥2
L2(Ωt)

=
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λ1(Ω)∥w1∥L2(Ω). Finally, by theorem 3.6, we get that λ1(B)∥w∗
1∥L2(Bt)

≤ ∥∇w∗
1∥L2(B).

□

Remark In the case where λ1(Ω) = λ1(B) we are forced to need equality to hold both in the
isoperimetric inequality, which immediately tells us that Ω is a ball, and in eq. (3.30), which
tells us that ∇w1 is constant on level curves, implying that the first eigenfunction of −∆ on
the ball domain is spherically symmetric.

3.8.3 Cheeger’s Inequality

Definition For a open bounded domain Ω with smooth boundary, we define the Cheeger’s
constant h(M) as

h = inf
Ω′

Area(∂Ω′)

Vol(Ω′)

where, Ω′ ranges over all open subsets of Ω with smooth boundary (so that the ’area’ function
is well defined on ∂Ω′).

Theorem 3.17 (Cheeger) Let λ1 be the principal eigenvalue of −∆ for the domain Ω as
defined above. Then, we have

λ1 ≥ h2

4

Proof: The proof of this theorem is fairly straightforward once we have the co-area
formula. Let w1 be the principal eigenfunction of −∆ corresponding to the eigenvalue
λ1, then by B.4, we get w1 ∈ C∞(Ω). Moreover, we can choose w1 to be positive in all
of Ω. Next, note that ∇w2

1 = 2w1∇w1. Using Hölder’s inequality, we get

ˆ
Ω

∣∣∣∇w2
1

∣∣∣dx ≤ 2∥w1∥L2(Ω)∥∇w1∥L2(Ω)

We return to this result later. First, let us try to find bounds for
´

Ω

∣∣∇w2
1

∣∣. Note that
B[w1, w1] = λ1. Using this, we get

λ1 =
∥∇w1∥2

L2(Ω)

∥w1∥2
L2(Ω)

≥ 1
4

( ´
Ω

∣∣∇w2
1

∣∣dx
)2

∥w1∥2
L2(Ω)

(3.32)

Using the co-area eq. (3.27) for f = w2
1, we get

ˆ
Ω
|∇ f |dx =

ˆ ∞

0
dt
ˆ
{ f=t}

1 · dS
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but note that
´
{ f=t} 1 · dS = Area(∂Ωt) where Ωt = {x | f (x) > t}. Then, by the

definition of Cheeger’s constant,

ˆ
Ω
|∇ f |dx = h

ˆ ∞

0
Vol(Ωt)dt = h

ˆ ∞

0
µ{ f > t}dt

=

Fubini-Tonelli︷ ︸︸ ︷
h

ˆ ∞

0

ˆ
Ω

χ( f (x)>t)dx · dt = h

ˆ
Ω

ˆ ∞

0
χ( f (x)>t)dt · dx

= h

ˆ
Ω

ˆ f (x)

0
dt · dx = h

ˆ
Ω

f (x)dx

Finally, replacing f = w2
1 and using eq. (3.32), we get the required result. □
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Appendix A

Sobolev Spaces

This section contains all the properties related to Sobolev Spaces that were studied in
order to make sense of the Laplacian as defined on domains in Rn. We start with the
definition of weak derivatives.

Definition (Weak Derivative) Let Ω be an open subset of Rn. Suppose u, v ∈ L1
loc(Ω) and

α is a multi index. Then, v is called the αth weak partial derivative of u or Dαu = v if,

ˆ
Ω

u(x)Dαϕ(x) = (−1)|α|
ˆ

Ω
v(x)ϕ(x) , ∀ϕ ∈ C∞

c (Ω) (A.1)

Here, ϕ is called a test function.

Remark Sobolev spaces are a large class of function spaces that allow us to ’extend’ the notion
of differentiability (to weak differentiability) to include a wider, more general class of functions.
We need them primarily because the spaces are Banach so we need not worry about functional
limits ’exiting’ the space. This is useful when trying to prove existence and uniqueness theorems
about functions in such spaces.

For our purposes, we only need the Sobolev spaces H1(Ω) and H1
0(Ω). We define

them below.

Definition (H1(Ω)) For a domain Ω, the Sobolev space H1(Ω) consists of all locally
summable functions u : Ω → R such that for each i = 1, 2, . . . , n, ∂u

∂xi
exists in weak

sense and belongs to L2(Ω).

Definition (H1(Ω) norm) The Sobolev space H1(Ω) is a normed linear space under the
norm

∥u∥H1(Ω) =

(
∥u∥2

L2(Ω) + ∥∇u∥2
L2(Ω)

)1/2

(A.2)
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Definition (H1
0(Ω)) For a domain Ω, the Sobolev space H1

0(Ω) is the completion of C∞
c (Ω)

in H1(Ω) under the norm ∥·∥H1(Ω).

As stated above, the following theorem is true for all Sobolev spaces in general and
for H1 and H1

0 in particular.

Theorem A.1 (Sobolev Spaces are Banach) H1(Ω) and H1
0(Ω) are Banach spaces.

A.1 Approximations

We now move on to the approximation theorems that allow us to prove many properties
about Sobolev functions by first using C∞(Ω) functions and then generalizing to
Sobolev functions by taking the limit of an approximating sequence.

Theorem A.2 (Local Approximation) Assume u ∈ H1(Ω) for and set

uϵ = ηϵ ∗ u in Ωϵ (A.3)

Where Ωϵ = {x ∈ Ω | dist(x, ∂Ω) > ϵ}. Then,

1. uϵ ∈ C∞(Ω) f or each ϵ > 0

2. uϵ → u in H1
loc(Ω), as ϵ → 0

Theorem A.3 (Global Approximation by Smooth Functions) Assume Ω is bounded, and
suppose as well that u ∈ H1(Ω). Then, there exist functions um ∈ C∞(Ω) ∩ H1(Ω) such
that

um → u , in H1(Ω) (A.4)

Note that boundedness is not enough to guarantee an approximating sequence
that is C∞(Ω̄). For that, we need an additional constraint on the smoothness of the
boundary. More precisely,

Theorem A.4 (Global Approximation by Functions Smooth up to the Boundary) Assume
Ω is bounded and ∂Ω is C1. Suppose u ∈ H1(Ω) then there exist functions um ∈ C∞(Ω̄)

such that um → u in H1(Ω).
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A.2 Extension Theorem

The extension theorem allows us to ‘extend’ functions in H1(Ω) to the whole of Rn. It
is useful because the extension preserves the weak derivative whilst simultaneously
keeping the norm of the extended function comparable to its norm inside Ω. In fact,
the change in norm is uniform across all u ∈ H1(Ω). Moreover, the extension is given
by a linear operator. Because of the aforementioned uniformity, it is bounded.

Theorem A.5 Assume Ω is bounded and ∂Ω is C1. Select a bounded open set V such that
Ω ⊂⊂ V. Then, there exists a bounded linear operator E : H1(Ω) → H1(Rn) such that for
each u ∈ H1(Ω),

1. Eu = u a.e in Ω.

2. Eu has support within V.

3. ∥Eu∥H1(Rn) ≤ k∥u∥H1(Ω) where k depends only on Ω and V.

A.3 Trace Theorem

Since L2(Ω) functions are defined a.e, it doesn’t make sense to talk about their restric-
tion to zero measure sets and in particular, to sets such as ∂Ω (assuming it is at least
piecewise C1). So, to assign boundary values to u is meaningless. Things become more
complicated in H1(Ω) because the existence of weak derivatives is sensitive to value
changes in such sets. One way to make sense of what it means to ‘extend’ an H1(Ω)

function to the boundary is to use an approximating sequence of continuous functions
defined on Ω̄ and find the limit of their restriction to ∂Ω in the surface norm. Since
there can be many different convergent sequences of functions to a given u ∈ H1(Ω)

we get an L2(Ω) function in the restriction. Interestingly, this operation just like the
extension theorem, is carried out by a bounded linear operator. The details are given
below

Theorem A.6 Assume Ω is bounded and ∂Ω is C1. Then, there exists a bounded linear
operator T : H1(Ω) → L2(∂Ω) such that,

1. Tu = u|∂Ω if u ∈ H1(Ω) ∩ C(Ω̄).

2. ∥Tu∥L2(∂Ω) ≤ k∥u∥H1(Ω) for each u ∈ H1(Ω), where k depends only on Ω.

Theorem A.7 (Trace zero functions in H1(Ω)) Assume Ω is bounded and ∂Ω is C1. Sup-
pose u in H1(Ω). Then,

u ∈ H1
0(Ω) if and only if Tu = 0 on ∂Ω. (A.5)
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A.4 Sobolev Inequalities

Theorem A.8 Let Ω be a bounded open subset of Rn, n > 2 and suppose ∂Ω is C1. Assume
u ∈ H1(Ω). Then for p∗ = 2n

n−2 , we have u ∈ Lp∗(Ω) with the estimate

∥u∥Lp∗ (Ω) ≤ k∥u∥H1(Ω) (A.6)

where the constant k depends only on n and Ω.

Theorem A.9 Assume Ω is a bounded open subset of Rn, n > 2. Suppose u ∈ H1
0(Ω). Then,

we have the estimate
∥u∥Lq(Ω) ≤ k∥Du∥L2(Ω) (A.7)

where, q ∈ [1, 2n
n−2 ] and k depends only on q, n and Ω

A.5 Compactness

Definition Let X, Y be Banach spaces such that X ⊂ Y. We say that X is compactly embedded
in Y, written X ⊂⊂ Y, provided

1. ∥u∥Y ≤ k∥u∥X where u ∈ X and for some constant k.

2. Each bounded sequence in X is precompact in Y.

Theorem A.10 (Rellich-Kondrachov compactness theorem) Assume Ω is a bounded open
subset of Rn and ∂Ω is C1. Then, H1(Ω) ⊂⊂ Lq(Ω) for each q ∈ [1, 2n

n−2).

Remark This theorem is important in that it gives us the compactness of the inverse of elliptic
operators.

A.6 The dual of H1
0(Ω)

(
i.e. H−1(Ω)

)
Definition We denote by H−1(Ω) the dual space to H1

0(Ω). Moreover, for f ∈ H−1(Ω), we
define the norm,

∥ f ∥H−1(Ω) := sup{
〈

f , u
〉
| u ∈ H1

0(Ω), ∥u∥H1
0(Ω) ≤ 1} (A.8)

Remark It can be shown that H1
0(Ω) ⊂ L2(Ω) ⊂ H−1(Ω)
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Appendix B

Second Order Elliptic Equations

B.1 Background theorems for Existence and Uniqueness

Let H be a Hilbert space. Then,

Theorem B.1 (Lax-Milgram) Assume that B : H × H → R is a bilinear mapping for which
there exist constants α, β > 0 such that

|B[u, v]| ≤ α∥u∥∥v∥ ; u, v ∈ H (B.1)

and
β∥u∥2 ≤ B[u, u] ; u ∈ H (B.2)

Finally, let f : H → R be a bounded linear functional on H. The there exists a unique element
u ∈ H such that B[u, v] =

〈
f , v
〉

for all v ∈ H.

Remark

Theorem B.2 (Energy Estimates) There exist constants α, β > 0 and γ ≥ 0 such that

|B[u, v]| ≤ α∥u∥H1
0(Ω)∥v∥H1

0(Ω) (B.3)

and
β∥u∥2

H1
0(Ω) ≤ B[u, u] + γ∥u∥2

L2(Ω) (B.4)

for all u, v ∈ H1
0(Ω).
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B.2 Regularity Results

This section contains two important theorems that justifies our study of weak solutions.
It states the setting in which weak solutions and the classical (i.e. solutions that are
at least C2(Ω)) solutions coincide. This gives us a way to guarantee the existence of
solutions and eigenfunctions that are differentiable in the usual sense.

Theorem B.3 (Infinite differentiability in the interior) Assume aij, bi, c ∈ C∞(Ω) where
i, j = 1, 2, . . . , n and f ∈ C∞(Ω). Suppose u ∈ H1(Ω) is a weak solution of the elliptic PDE
Lu = f in Ω. Then,

u ∈ C∞(Ω) (B.5)

Theorem B.4 (Infinite differentiability up to the boundary) Assume aij, bi, c ∈ C∞(Ω̄)

where i, j = 1, 2, . . . , n and f ∈ C∞(Ω̄). Suppose u ∈ H1
0(Ω) is a weak solution of the bound-

ary value problem Lu = f Ω

u = 0 ∂Ω
(B.6)

Assume also that ∂Ω is C∞. Then,
u ∈ C∞(Ω̄) (B.7)

B.3 Maximum Principles

For the specific case of L = −∆, we use the regularity properties in B.2 to conclude that
for Ω open and bounded, with ∂Ω smooth, the solutions to the Dirichlet/Neumann
problem lie in C∞(Ω). This allows us to study the action of the Laplacian on these
solutions in the usual way. The

Theorem B.5 (Strong maximum principle) Assume u ∈ C2(Ω) ∩ C(Ω̄) where Ω is a
connected open and bounded set in Rn.

1. If −∆u ≤ 0 in Ω and u attains its maximum over Ω̄ at an interior point then u is
constant within Ω.

2. Similarly, if −∆u ≥ 0 in Ω and u attains its minimum over Ω̄ at an interior point then
u is constant within Ω.
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Appendix C

Hilbert Spaces

Let H be a Hilbert space.

C.1 Fredholm Theory

Theorem C.1 (Fredholm Alternative) Let K : H → H be a compact linear operator. Then,

1. The dimension of the null space of I − K, written as N(I − K) is finite,

2. Range(I − K) is closed,

3. Range(I − K) = N(I − K∗)⊥, where K∗ is the adjoint of K,

4. N(I − K) = {0} if and only if R(I − K) = H,

5. The dimension of N(I − K) equals the dimension of N(I − K∗)
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