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Abstract
We present a way of sharing a secret S into n shares such that the collusion of any k

shares results in the reconstruction of secret S and no k − 1 shares can do so. This

way of sharing secret was first introduced by Shamir in 1979 and is named after him

as Shamir’s secret sharing scheme. We then mention some of the useful properties of

Shamir’s secret sharing schemes. Various approaches towards constructing a perfect

secret sharing scheme are made, one of them has been constructed by Simmons using

projective varieties. The theory of projective varieties helps us to construct different

types of schemes according to their requirements. We show that these schemes are

perfect. These enable us to secure the secret S and are reliable. They are used in many

practical applications and one of them is e-voting using the internet. With the wide

availability of the internet everywhere these days, there is a need for the development

of an e-voting scheme. It is easy for a person to vote over the internet, hence e-voting

schemes help in increasing the number of electors and thus participation in democracy.

It is being used in a number of countries presently, for example Switzerland. In India,

it was first introduced in Gujarat in 2011. We introduce the construction of an e-

voting scheme using secret sharing schemes. Later we discuss the advantages and

issues of e-voting scheme.
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Chapter 1

Introduction

Liu [7] considered the following problem:

Eleven scientists are working on a secret project. They wish to lock up the doc-

uments in a cabinet so that the cabinet can be opened if and only if six or more of

the scientists are present. What is the smallest number of locks needed? What is

the smallest number of keys to the locks each scientist must carry? To answer it,

we have to first observe that for any group of scientists, there must be at least one

lock they cannot open. Moreover, for any two different groups of five scientists, there

must be two different locks they cannot open because if both groups cannot open the

same lock, there is a group of the six scientists among these two groups who will not

be able to open the cabinet. Thus atleast
(
11
5

)
= 462 locks are needed. As to the

number of keys each scientist must carry, let A be one of the scientists. Whenever A

is associated with a group of five other scientists, A should have the key to the locks

that these five scientist were not able to open. Thus A carries at least
(
10
5

)
= 252

keys. These numbers are clearly impractical and they become exponentially worse

when the number of scientists increases.

Let’s consider another example. In a bank, there is a vault which must be opened

everyday. The bank employs three seniors tellers but they do not trust any one teller

completely. To solve this problem, we would like to design a system whereby any two

of the senior tellers can gain access to the vault but one teller can not do so. The

problem can be solved by means of a secret sharing scheme described below.

Secret sharing scheme is a method by which a group of people reconstruct a secret

S, using each of their allocated shares. The secret S can be recovered only when a

sufficient number of people, each with their own share, work together. The individual

1



2 CHAPTER 1. INTRODUCTION

shares are of no use to anyone. Such schemes are highly useful in daily life purposes

such as in number bank tellers mentioned above. Other places where it is widely used

include missile launch codes [12], encryption keys, e-voting, multiparty computation,

etc.

In the latter part of the thesis, we show how secret sharing schemes are useful in

constructing an e-voting scheme. An e-voting scheme is a method by which a voter

votes in an election using the internet. Different e-voting schemes can be constructed

according to the countries’ requirements. We will discuss about constructing an e-

voting scheme using secret sharing schemes that safeguards privacy of votes.

The concept of verifying and counting votes using e-voting schemes through cryp-

tographic solutions has introduced transparency and trust in electronic voting sys-

tem. It allows voters and election workers to verify that votes have been recorded

and placed correctly.

E-voting is presently used in various countries, for example Switerland, Nether-

land, France, Finland, Estonia, Canada. In April 2011, Gujrat became the first Indian

state to experiment with e-voting.

The shares in secret sharing scheme must be confidential as their exposure can

lead to knowledge of the secret S. The secret S should be kept in one location for

maximum privacy, but doing so can be very difficult, as once if it is lost, it cannot be

recovered. So multiple copies of the secret S are needed to keep in different locations

for better reliability. This lowers confidentiality because of more opportunities for a

copy to fall into the hands of unauthorized people.

Secret sharing schemes enable us to address such problems by allowing high levels

of confidentiality and reliability. Here we present different types of secret sharing

schemes. Let us define some terms and notations used in such schemes in the next

chapter.



Chapter 2

Terms and definitions

Term 2.0.1. (Threshold scheme) Let (k, n) be positive integers and k ≤ n. A

(k, n) threshold scheme is a method of sharing a secret S among n shareholders in

such a way that any subset of k shareholders out of n shareholders can compute the

secret S. However, any subset of stricly less than k shareholders cannot construct the

secret S.

Definition 2.0.1. (Perfect scheme) A threshold scheme is perfect if any (k−1) or

fewer than (k − 1) shareholders who work together with their corresponding shares

cannot get any information about the secret.

Definition 2.0.2. (Secret sharing schemes) A secret sharing scheme is a method

of dividing a secret S in n equal parts of information as shares Pi = (xi, yi), i =

1, · · · , n such that any k (k is threshold) or more than k out of n shares can reconstruct

the secret S and no k− 1 or less than k− 1 shares can do so. In other words, this is a

threshold scheme where the secret S can be recovered if only k or more than k parts

of secret information is known. It is impossible for any other situation to reconstruct

or get any information about the secret S. Hence secret sharing threshold scheme is

perfect.

In 1979, Shamir [9] constructed a (k, n) threshold secret sharing scheme. In his

construction, a dealer D construct a random polynomial f(x) = a0+a1+· · ·+ak−1xk−1

of degree k-1 with constant term as a0 = S, where S is a secret and ai’s are random

coefficients, i = 1 to k − 1 in a finite field Zp, where p is a prime. Dealer D chooses

n random points (xi, yi), where n < p in Zp satisfying the constructed polynomial.

Then D distributes the (xi, yi) as shares to n number of shareholders Pi. The points

3



4 CHAPTER 2. TERMS AND DEFINITIONS

x′is are publicly known whereas y′is are private. By using Langrange interpolation,

any subset of k < n shareholders Pik with shares (xik , yik) can reconstruct the secret

S.

Shareholders Pij with
Shares (xij , yij)

Dealer D with a
secret S

Generates
Shares (xi, yi)

k out of n reconstructs
the secret S

Figure 2.1: A schematic way of (k, n) Shamir’s threshold secret sharing scheme

For finding the secret S using the secret sharing scheme, we must find the polyno-

mial f(x). Langrange interpolation is a basic way to find a (k−1) degree polynomial

that passes through given k points. We now recall how interpolating k points results

in a unique k − 1 degree polynomial.

Theorem 2.0.1. (Lagrange interpolation formula [11, page 404]) Suppose

p is prime, (x0, . . . , xk) are distinct elements in finite field Zp, and (y0, . . . , yk) not

necessarily distinct elements in Zp. Then there is a unique polynomial f(x) ∈ Zp[x]

having degree at most k, such that f(xi) = yi, 0 ≤ i ≤ k. The polynomial f(x) is as

follows:

f(x) =
∑k

i=0 yi
∏

0≤j≤k,i6=j
x−xj
xi−xj

Proof. 1.Existence: Denote the lagrange interpolation polynomial

f(x) =
∑k

i=0 yili(x), li(x) =
∏

0≤j≤k,i6=j
x−xj
xi−xj

The polynomial f(x) with degree ≤ k satisfies f(xi) = yi, i = 0, · · · , k since

li(xj) = 0 if i 6= j and li(xj) = 1 if i = j.

2.Uniqueness: Suppose q(x) is another polynomial of degree ≤ k, satisfying
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q(xi) = yi, i = 0, 1, · · · , k

Define r(x) = f(x)− q(x), then degree of r(x) ≤ k and

r(xi) = f(xi)− q(xi) = 0, i = 0, 1, · · · , k

Since r(x) has k + 1 zero, we must have r(x) ≡ 0. Thus f(x) = q(x). This

completes the proof of the theorem.

Example: We Wish to find a polynomial interpolating the points given in the

table below:

x 2 4 5
y 1494 1942 4414

First we find the polynomials fi(x), i = 0, 1, 2 where

fi(x) =
∏

0≤j≤k−1,i 6=j
x−xj
xi−xj

Solving fi(x), i = 0, 1, 2,

f0(x) = x−x1
x0−x1 ·

x−x2
x0−x2 = x2

6
− 3x

2
+ 10

3

f1(x) = x−x0
x1−x0 ·

x−x2
x1−x2 = −x2

2
+ 7x

2
− 5

1

f2(x) = x−x0
x2−x0 ·

x−x1
x2−x1 = x2

3
− 2x

1
+ 8

3

And thus, using the Langrange interpolation we find

f(x) =
∑2

i=0 yi · fi(x)

f(x) = 1234 + 166x+ 94x2

Now let us talk about a real situation where secret sharing threshold schemes are

applied. A person Amit keeps some amount of money in a bank with a number lock.

The lock can be opened only when the correct key is provided. Let this key be the

secret S. Since Amit doesn’t trust any one of the n persons in charge of the lock

fully, he wants to distribute an equal amount of information about the secret S to

them such that any 3 can reconstruct S and no less that 3 can do so. How would he

construct and distribute his shares to the n people? How is the (k, n) secret sharing

scheme applied here?

The shares Pi = (xi, yi) by Amit are constructed as follows. He takes a quadratic

polynomial f(x) = a0 + a1x + a2x
2 with constant term a0, where a0 = S and a1, a2

are random numbers. He chooses random xi, i = 1, 2, 3 and calculates coresponding

yi,= 1, 2, 3 by substituating xi in f(x). Thus the shares Pi = (xi, yi) are obtained.
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Knowing any 3 shares (x1, y1), (x2, y2), (x3, y3), the polynomial f(x) is determined

using Guassian elimination or Langrange interpolation and thus the secret S = a0.

Definition 2.0.3. (Multilevel secret sharing scheme) The multilevel secret shar-

ing scheme is the scheme where multiple levels are required to find the secret S. Differ-

ent levels Li, i = 1,m are first formed by forming a partition of n shareholders based

on their designation and a threshold ki, 1 ≤ ki ≤ |L1| + |L2| + · · · + |Li|, 1 ≤ i ≤ m

is fixed where |Li| represents the number of shareholders at level Li. The thresholds

ki, i = 1, · · · ,m are choosen as k1 ≤ k2 · · · ≤ km. Here L1 is the highest level and

Lm is the lowest level. Higher levels get more access to reconstruct the secret S than

lower levels. Each level Li, requires ki number of shareholders out of ni people to

reconstruct the secret S. Here ni stands for the total number of share holders from

L1 to Li, so n = nm. Thus ki shareholders at level Li can reconstruct the secret S.

We see that the number of shareholders required at a higher level is less than the

number of shareholders required at a lower level for the threshold scheme. Since the

secret S at each level Li is determined using the secret sharing threshold scheme, the

multilevel threshold scheme is also perfect.

(k1, n1)

(k2, n2)

(km, nm = n)

L1,highest level

L2

Lm,lowest level

Figure 2.2: A schematic outline of (k, n) multilevel threshold secret sharing schemes

Consider a situation in a bank where a number lock can be unlocked by two senior-

most employees. In the absence of any one senior-most employee, a certain number
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of junior employees are needed to access the secret S. Let us assume L1 comprises 2

senior employees and L2 comprises 4 junior employees. We fix k1 = 2 and k2 = 3 i.e.

when any 2 senior employees, any 3 junior employees or in the absence of anyone senior

employee, 2 junior employee and 1 senior employee collude their shares together, they

are able to reconstruct the secret S. This type of situation requires the multilevel

secret sharing scheme.

Changlu [6] considered the distribution of shares in multilevel secret sharing

scheme as follows:

• For level 1, L1-Choose any degree one polynomial g(x) = a0 + a1x. Take any 2

random points x1, x2 and generate shares (x1, y1), (x2, y2), where g(xi) = yi, i =

1, 2. Using the basic secret sharing scheme, the secret S = a0 can be determined.

• For level 2, L2-Choose a polynomial g′(x) with the same coefficient a0 passing

through the shares (x1, y1), (x2, y2) of L1. The constructed multilevel scheme

requires the lower level L2 to have more shares than those of L1 and the points

of L1 should also satisfy g′(x). The polynomial g′(x) must pass through at least

2 or more points different from the shares in L1 and also through the shares

of L1, (x1, y1), (x2, y2). So at least 5 points are needed to determine g′(x). The

minimum possible degree of g′(x) is 2 + 2 + 1 − 1 = 4. Again, using the basic

secret sharing scheme, the shares are constructed in L2 and the secret S can be

determined.

• In the absence of one person in level L1, 4 shares of L2 and 1 share of L1 are

used to determine g′(x), which results in the secret S.

Another way to construct a multilevel secret sharing scheme is to think about

lines and planes.

• For L1, a line li can be determined and intersection of li with a given public

line ld will give the point s which is the secret S.

• For L2, a plane vi which contains the line li can be determined using 3 non

collinear points and thus the intersection of vi with ld gives the secret S.

Definition 2.0.4. (Compartment Secret sharing scheme) The compartment

secret sharing scheme is a method of distributing shares of the secret S into a different

compartment such that when a certain number of shares from every compartment
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comes together, the secret S is reconstructed. In other words, for any action to be

taken, approval from each compartment is necessary.

Assume that there is some treaty controlled action that requires the approval of

two countries, say U.S.A. and Russia, for its initiation [10]. Each country has a team

of its own representatives at the site and requires that at least two of their controllers

must consent before their national input to the shared control scheme is decided. In

the present case, even if all n of the Americans and one of the Russians agree, the

controlled action is to be inhibited.

This situation can be solved by constructing a compartment threshold secret shar-

ing scheme. Two members from each country can use their shares to determine the

lines l1, l2. The intersection of these two lines will give the secret S.

Definition 2.0.5. (Information rate): Information rate of a secret sharing scheme

is the ratio between the length, in bits, of the secret and the maximal length of

shares distributed to shareholders. Let a be the number of bits of the secret and

b = max(b1, · · · , bn) be the number of bits of the maximal share. The information

rate is then defined as

I = a
b

Definition 2.0.6. (Ideal) : The secret sharing scheme is called ideal if the maximal

length of shares and the length of the secret are identical, i.e., the information rate

I=1.

Definition 2.0.7. (Skew lines) : Skew lines l1, l2 are two lines that do not intersect

and are not parallel. In other words, they are a pair of lines which neither lie in the

same plane nor intersect each other. A simple example of a pair of skew lines is the

pair of lines through opposite edges of a regular tetrahedron [12].

Theorem 2.0.2. The space spanned by 〈l1, l2〉 is a 3 dimensional subspace.

Proof. Lets define l1 = a0 + tb0 and l2 = m0 + sn0. Take l′ to be a linear combination

of l1, l2.

l′ = l(a0) + (1− l)(m0) + tb0 + sn0 l
′ = m0 + l(a0 −m0) + tb0 + sn0

We see that, to determine l′ we need four variables. Hence the dimension of l′ is

3.
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Theorem 2.0.3 (Simmons [10]). In Qn, n > 3, there is a unique line incident with

each pair of skew line and with an (n− 3)-dimensional subspace independent of each

of these lines.

Proof. In Q3, there is a unique line passing through a given point s and intersecting

each of the skew lines l1 and l2 neither of which pass through s. To see this, note that

s and l1 determine a plane α. The line l2 intersects α at a point q, where q 6= s and

by construction l2 does not pass through s. The line w = 〈s, q〉 is in α, as is the line

l1. So they intersect in a point r. Hence w is the unique line lying on s, intersecting

l1, l2 at r, q. Now consider any space Qn, n > 4. Let l1 and l2 be a pair of skew lines

in Qn. The lines l1 and l2 span a 3 dimensional subspace S of Qn. Given an arbitrary

(n − 3)- dimensional subspace T of Qn independent of S, T intersects S in a single

point s by rank theorem. Let this point s be the point in above construction. We

have therefore proven that in Qn, n > 3, there is a unique line incident with each pair

of skew lines and with an (n− 3)-dimensional subspace independent of each of these

lines.

Definition 2.0.8. A hyperplane H is a n− 1 dimensional subspace in n dimensional

space. It is given by the following equation:

a1x1 + a2x2 + · · ·+ anxn = 0

The n− 1 dimensional hyperplane is uniquely determined by n− 1 points.

When we take a translation of the above hyperplane by a constant c, it is called

as an affine hyperplane and is given by equation [12]:

a1x1 + a2x2 + · · ·+ anxn = c

In a n-dimensional space, an affine hyperplane is uniquely defined by n points.
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Chapter 3

Affine and projective space

An affine space An over a field k is a set whose elements are called points and set of

subset are called lines, satisfying following axioms [2, chapter1]:

1. Given two distinct point P and Q, there is one and only one line containing

both P and Q.

2. Given a line l and a point P , not on l there is one and only one line m which

is parallel to l and which passes through P .

3. There exist three non collinear points.

In simple terms, the affine space An over the field k is the set of n tuples,

(x1, x2, · · · , xn) ∈ k. These elements are called points and staisfies the above ax-

ioms. An Euclidean plane R2 consists of points (x1, x2) is an example of an affine

space.

Equation of a line in euclidean plane R2 over k is given by

x2 = mx1 + c

The affine space deals with the intersection of lines and other higher dimension

curves. It doesn’t provides any information about points at infinity or lines meeting

at infinity. To solve such difficulties we study the projective plane which deals with

the intersection of lines at infinity. If we add all the points at infinity to affine space,

we get projective space. For each line l in affine space, will denote by [l] the pencil of

lines parallel to l and we call [l] an ideal point or point at infinity P ∗ in the direction

of l.

11
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A projective space Pn over a field k is a set, whose elements are point and a set

of subset satisfying the following axioms [2]:

1. Two distinct points of S lie on one and only one line.

2. Any two lines meet atleast at one point.

3. There exist three non collinear points.

4. Every line conatins at least three points.

Real projective plane P2 over R is an example of a projective space. It is a

collection of triples x = (x1, x2, x3) of real numbers R. Two triples x = (x1, x2, x3)

and x′ = (x′1, x
′
2, x
′
3) represents same point in R2 if x′ = ax, a ∈ R2, a 6= 0. The point

(x1, x2, 1) determines a line in R3 that passes through (0, 0, 0) and (x1, x2, 1). Every

line through (0, 0, 0) except those lying in the plane x3 = 0 corresponds to exactly

one point (x1, x2) ∈ R2. The lines through (0, 0, 0) in the plane x3 = 0 corresponds

to point at infinity.

Equation of a line in P2 over R is given by [1]:

a1x1 + a2x2 + a3x3 = 0

In other words, projective n space over a finite field k written as PG(n, k) or

Pn(k) is defined to be set of all lines passing through (0, 0, · · · , 0) ∈ Rn+1(k). Any

point x = (x1, x2, · · · , xn+1) 6= (0, 0, · · · , 0) determines a unique such line namely

{(ax1, ax2, · · · , axn), a ∈ k}. Two such points (x) and (y) determines the same line

if there exist a non zero a ∈ q such that yi = axi for i = 1, · · · , n + 1. Then the line

(x), (y) are equivalent. The projective space Pn(k), may be identified with the set of

equivalance classes of points in Rn+1(k)(0, 0, · · · , 0). We say that (x1, x2, · · · , xn+1)

are homogeneous coordinates for point P ∈ Pn(k). We indicate P as [x1 : · · · : xn+1].

If xi coordinate is non zero then xj/xi are well defined.

We let Ui = {[x1 : · · · : xn+1] ∈ Pn|xi 6= 0}. Each P ∈ Ui can be written uniquely

in the form [4, chapter1]

P = [x1 : · · · : xi−1 : 1 : xi+1 : · · · : xn+1]

The coordinates (x1, · · · , xi−1, xi+1, · · · , xn+1) are called the non homogeneous coor-

dinates for point p with respect to Ui. We define hyperplane at infinity by:
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H∞ = {[x1 : · · · : xn+1]|xn+1 = 0}.

The hyperplane at infinity can be identified with Pn−1. Thus Pn = Un+1 ∪ H∞. For

examples [4]:

1. The projective plane P2. Here H∞ is called line at infinity.

2. Point (x, y) on a line Y = mx+ b ∈ R2 correspond to the points [x : y : z] ∈ P2

with y = mx+bz, a homogeneous equation, so that the solution will be invariant

under equivalence. The set {[x : y : z] ∈ P2|y = mx+ bz} ∩H∞ = {[1 : m : 0]}.
So all lines with the same slope, when extended in this way, pass through the

same point at infinity.

3. Consider again the curve Y 2 = X2 + 1. The corresponding set in P2 is given by

the homogeneous equation Y 2 = X2+Z2, Z 6= 0. {[x : y : z] ∈ P2 | y2 = x2+z2}
intersects H∞ in the two points [1 : 1 : 0] and [1 : −1 : 0]. These are the points

where the lines Y = X and Y = −X intersect the curve.

3.1 Algebraic and projective sets

The exposition in this section is from Fulton [4, Chapter 4]. For any ring R, let R[X]

denotes the ring of polynomials in the variable X with coefficient in R. Then the ring

of polynomials in n variables over R is written as R[X1, X2, · · · , Xn]. The monomials

in R[X1, · · · , Xn] are the polynomials X i1
1 · · ·X in

n , where ij non negative integer i, j =

1, · · · , n and the degree of monomials is i1 + · · · + in. Every F ∈ R[X1, · · · , Xn] has

a unique expression F =
∑
aiX

i, where X i is the monomials and ai ∈ R. We call

F homogeneous or a form of degree d if all the coefficients ai are zero except for the

monomials of degree d. Any polynomial F has a unique expression F = F0 + · · ·+Fd

where Fi is a form of degree i. The degree of F is the largest d such that Fd 6= 0.

The terms F0, F1, · · · are called the constant, linear,· · · terms of F . F is constant if

F = F0.

If F ∈ k[X1, · · · , Xn], a point P = (a1, · · · , an) ∈ An(k) is called a zero of F if

F (P ) = 0. If F is not constant, the set of zeros of F is called hypersurface defined by

F and is denoted by V (F ).

A hypersurface in A2(k) is called an affine plane curve. If F is a polynomial of

degree one, V (F ) is called a hyperplane in An(k) and if n=2 it is a line.

For a set S of polynomial in k[X1, · · · , Xn+1], we let
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V (S) = {P ∈ Pn | P is a zero of each F ∈ S}

Such a set is called an algebraic set in Pn or a projective algebraic set [4, chapter4].

For any set X ∈ Pn , we let

I(X) = {F ∈ k[X1, · · · , Xn+1]| every P ∈ X is a zero of F }.

The ideal I(X) is called the ideal of X.

An ideal I ⊂ k[X1, · · · , Xn+1] is called homogeneous if for every F =
∑m

i Fi ∈ I,

where Fi is a form of degree i, we have also Fi ∈ I. For any set X ⊂ Pn, I(X) is a

homogeneous ideal.

An algebraic set V ⊂ Pn is irreducible if it is not a union of two smaller algebraic

sets. The algebraic set V is irreducible if and only if I(V ) is prime. An irreducible

algebraic set in Pn is called a projective variety. Any projective algebraic set can be

written uniquely as a union of projective varieties, its irreducible components.

We will see how these varieties are used in constructing secret sharing schemes, in

the next chapter.



Chapter 4

A construction of secret schemes

using projective varieties

The (k, n) threshold secret sharing scheme can be geometrically constructed using pro-

jective varieties. Consider a projective plane P2 over q. We can construct (2, n) thresh-

old scheme by taking two lines li and ld ∈ P2(q). Any n shares (x1, y1), · · · , (xn, yn)

of shareholder are chosen as points on li. The secret S is the intersection of the line li

with a publicly known line, ld. When any 2 shareholders collude their shares together,

they are able to reconstruct the line li and thus the intersection point S of li with

ld. The secret S is a 1-dimensional uncertainty, a point S on line li, excluding the n

points which are given as shares. The projective plane PG(2, q) ensures that the two

lines meet exactly at a point. The point of intersection of li with ld is the secret S in

this example.

What if a point ri on li is already known? Is there a possibility of guessing the

point S?

For every choice of rd on ld there exists a line 〈ri, rd〉 which is equally probable to

the line li. Thus, everyone point on ld is equally likely to be the secret S irrespective

of knowing one private piece or no information about private piece. The probability

of getting the point S is 1/(q + 1).

Since the points on line li are taken to be shares, the number of shareholders could

be as great as q except the point S, i.e. any point on li is available to use as a share

except the point S.

The secret S can be point S itself or a function f on S. We assume f conserves

15
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x

y

li

ld

S

Figure 4.1: A geometrical representation of (2, n) threshold secret sharing scheme

x

y

l′i

ld

rd

Figure 4.2: A representation showing any point on ld is equally probable to be S

entropy i.e. the uncertainty about f(S) is same as uncertainty about S.

The above example can be replaced by a more general type of geometric object, a

projective variety. The (k, n) threshold secret sharing scheme using varieties was first

constructed by Simmon [10]. For constructing a (k, n) threshold scheme, we replace

li and ld in the above example by a domain variety Vd and an indicator variety Vi in

n dimensional subspace. A point S is taken in domain variety Vd. The shares are

the points in Vi, whose function is to point to index S in Vd. In other words, the

intersection of Vi and Vd is the unique point S.

Note: Here, variety Vi is referred to as indicator variety as it indicates a specific item,

in this case, pointing to the secret S. The point S is called as index.
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The (k, n) threshold secret sharing scheme looks like the following pictorially.

x

y

Vi

S

Vd

Figure 4.3: A geometrical representation of (k, n) threshold secret sharing schemes

For the scheme to be perfect, no less than k out of n number of people should be

able to reconstruct Vi and hence the index S. So similar to (2, n) threshold secret

sharing scheme, in this construction every point on Vd is equally likely to be the point

S.

A (3, k) threshold scheme can be pictorially shown as in figure 4.4.

Vd

S

Vi

Figure 4.4: A representation of (3, n) threshold secret sharing scheme with a 2 di-
mensional secret

Here the secret S is 2 dimensional uncertainity. We can make the index S in (3, n)

threshold secret sharing scheme, a 1 dimension unknown as shown in figure 4.5.
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Vi

S

Vd

Figure 4.5: A representation of (3, n) threshold secret sharing scheme with a 1 di-
mensional secret

In this case the probability of guessing secret is more compared to the constructed

scheme where secret was 2-dimensional uncertainty. It is better to construct a secret

sharing scheme where the secret S has a large dimension n, so that any outsider has

less probability to guess the correct secret S. So we try to construct a secret sharing

scheme where the dimension of the index S is large.

4.0.1 Construction of (4,n) threshold secret sharing scheme

using affine hyperplane H:

Step 1. We choose a random affine hyperplane H, given by:

H= 2X1 + 3X2 +X3 −X4 = 1

over a finite field, Z11 and a secret P = (1, 1, 1, 5) ∈ H.

Step 2. Now we take a point Q = (2, 3, 2,−1) which does not belong to H and

find the line ld passing through P and Q.

y1 = 1 + 1t

y2 = 1 + 2t

y3 = 1 + t

y4 = −5− 6t
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We put any arbitary t, t 6= 0, 1 and find a point R on ld. Let us take t = 2 and

so, the point R on ld is given by y′1 = 3, y′2 = 5, y′3 = 3, y′4 = −7. Now we rewrite the

equation of line ld using points Q and R.

y1 = 3− t′

y2 = 5− 2t′

y3 = 3− t′

y4 = −7 + 6t′

The above line ld is the domain variety Vd which is public known to everyone, in

this example.

Step 3. We then distribute n points P1, · · · , Pn ∈ H as shares to n shareholders

without disclosing any information about the equation of hyperplane H. Any four of

these points should determine the hyperplane H and thus its intersection with ld will

reveal the secret P .

For example, if H is not known and is given by H≡ aX1 + bX2 + cX3 + dX4 = e,

where a, b, c, d, e are unknown coefficients and the points satisfying the equation of

H are given by (1, 1, 3, 7), (2, 2, 1, 10), (2, 1, 5, 0), (1, 2, 2, 9) as shares, then we get the

following system of linear equations:

a+ b+ c+ 7d = e

2a+ 2b+ c+ 10d = e

2a+ b+ 5c = e

a+ 2b+ 2c+ 9d = e

By solving the above linear system of equations, we will get the values of a, b, c, d

in terms of e as.

a = 2e

b = 3e

c = e

d = −e

Substituting equation of line ld in H, we get the value of t′ and thus the secret S

i.e. point P.
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2(y1) + 3(y2) + (y3)− (y4)− 1 = 0

2(3− t′) + 3(5− 2t′) + (3− t′)− 1(−7 + 6t′)− 1 = 0

t′ = 2

Hence, y′′1 = 1, y′′2 = 1, y′′3 = 1, y′′4 = 5 which is the point P = secret S.

4.1 Construction of multilevel secret schemes

Consider the electronic funds transfer problem. Electronic funds transfer is used by

the banking industry to exchange account information over secured networks. We

consider a person who wants to transfer money from his account to another account.

To do so, he must enter his password. The password acts as a secret key here. If some

other person is able to find the password he will be able to break in. So in this process

the password is the secret S and the share of password is distributed to different

individuals depending upon their designation. We assume that the password can be

found, if any 2 presidents or 3 senior tellers collude their shares. We take domain

variety Vd to be a line. The shares of senior tellers determine a plane V2, which

intersects Vd at S. The shares of presidents determine a line V1 which intersects Vd

at S.

Vi

Vd

S

Vi

Figure 4.6: A geometrical construction of a multilevel secret sharing scheme

Knowing one point on V1 or two points on V2 leaves V1 and V2 undetermined,

hence the point of intersection S with Vd. Thus, this scheme is perfect.
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To think about the case when any 2 senior tellers and 1 president can find the

secret in the absence of other president, we construct another way of multilevel secret

sharing scheme. We take Vd as a plane. The intersection of plane V2 and Vd is point

S. We take V1 to be line lying on V2 and intersecting Vd at S. In the absence of other

point on V1, the two other points of V2 can be taken to determine V2, which results

in finding S. Thus the combination of 1 president and 2 senior tellers are able to find

the secret S.

Knowing only a point on V1 or two points on V2 leaves the point S totally unde-

termined. Hence this scheme is also perfect.

Vd

V2

S
V1

Figure 4.7: A different representation of constructing multilevel secret sharing scheme

4.2 Construction of compartment secret schemes

There are two approaches to construct the (k, n) compartment secret sharing schemes.

The first approach is to construct the indicator variety Vi as the union of sub-

varieties V ′i′ , i
′ = 1, k. The subvariety V ′j is a kj − 1 dimensional subspace and is

determined by kj out of nj people from jth team. Thus Vi is constructed when all k

teams determine their subvarieties and collude together. Domain variety Vd as usual

is a variety in a space, where every point is equally probable to be index S. The

intersection of domain variety Vd and indicator variety Vi is the secret S.

Consider a (2, n) compartment threshold secret sharing scheme. Here 2 out of n1

from first team determines the first variety V ′1 and 2 out of n2 determine the second

variety V ′2 . The Vi is determined as V ′1 ∪ V ′2 . The domain variety Vd is determined by

some polynomial constraint. The index S is the point satisfying all the polynomial

constraint of Vi and Vd. Pictorially it looks like:
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Vd

ul

V ′2

V ′1

Vi

S

Figure 4.8: Two skew lines spanning a 3 dimensional space and intersecting Vd at s

By theorem 2.2 we deduce that the subvarieties V ′1 and V ′2 span a 3 dimensional

space Vi. The intersection of Vi with Vd is the secret S. We see in this case that there

exists a unique line ul intersecting V ′1 , V ′2 and Vd at r1, r2, S respectively.

The most threatening form of cheating in this case would be when 2 out of n1 and

1 out of n2 collude their shares together. With no loss of generality, assume that the

subvariety V ′1 and a point x 6= r2 on V ′2 are all accessible to a person. To prove that

this scheme is perfect we need to show that every point on Vd is still equally like to be

the point S. We assume that the geometrical construction is known to both outsider

and insider i.e. to all cheaters.

Choose u on domain variety Vd. If u is the secret, then the person knows that it

should be collinear to a point on V ′1 and a point on V ′2 . Let w be an arbitrary point

on V ′1 . Take line w∗ which intersects V ′1 at w and Vd at u. If u is the secret, then

V ′2 ∩ 〈V ′1 , Vd〉 = r2. Therefore, for each point z on w∗, z 6= u,w a line V ′′2 = 〈x, z〉 is

determined which is independent of 〈V ′1 , Vd〉 and for which

V ′′2 ∩ 〈V ′1 , Vd〉 = z

Thus, if V ′2 = V ′′2 , then one can conclude that in the constructed scheme point u

is the secret. It is possible only if the line V ′2 is already known, so the constructed

scheme is perfect.

Another approach for constructing a compartment secret sharing scheme is to

consider the points of intersection p1, p2 of V ′1 , V
′
2 with Vd as input for a perfect (2, 2)

scheme defined on Vd. Then S is determined. This is a two part scheme.

Consider the case when V ′1 and a point from V ′2 say x 6= p2 is known to inside and

outside cheaters. Our task is to show that the scheme is perfect. Knowledge of point
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y

x

Vd

L1

L2

p1

p2

Figure 4.9: A geometrical representation of a compartment secret sharing scheme

x on V ′2 gives q many possible lines intersecting Vd, out of which one line is V ′2 . Since

V ′2 is equally probable as any other line, every point on Vd is equally probable to be

the point S.

Note: A perfect (2, 2) threshold secret sharing scheme is constructed as:

1. The dealer gives a random point, say p1, to one of the shareholders.

2. The second point p2 is calculated as a vector sum of p1 and secret datum S.

The point p2 = S − p1

3. Clearly when both points p1, p2 are added together, it results in the secret S.

It can be extended to a perfect (k, k) threshold secret sharing scheme. The k − 1

random points are chosen as shares and the kth share is calculated as the vector sum

of k − 1 shares and the secret S. Thus the addition of k shares together results in

secret S. The drawback of this scheme is that the kth share is dependent on the k−1

shares.
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Chapter 5

Shamir’s secret sharing scheme

using algebraic variety

In Shamir’s secret sharing scheme, we take domain variety Vd to be y axis and the

indictar variety Vi to be a (k− 1) degree polynomial f(x). When any k points which

are zeros of f(x) given as shares, are colluded together, the indicator variety Vi is

determined and thus the intersection of Vi with Vd, which gives us the secret S.

y

x

f(x)

S

Figure 5.1: A geometrical representation of Shamir’s secret sharing scheme

Here is a small example to illustrate.

Suppose p = 17 and there are five people. Any three of them are required to

recover the secret S, i.e., a (3, 5) secret sharing threshold scheme. Each of them

have a public x-coordinate, xi, 1 ≤ i ≤ 5. Let’s take a subset= P1, P3, P5 out of five

25
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people and let their shares be y1 = 8, y2 = 10 and y3 = 11. Now the polynomial

f(x) = a0 + a1x + a2x
2 can be determined by these three points if we solve the

following system of linear equations.

a0 + a1 + a2 = 8

a0 + 3a1 + 9a2 = 10

a0 + 5a1 + 8a2 = 11

This system has a unique solution in Z17; a0 = 13, a1 = 10 and a2 = 2. So f(x) is

determined as 13 + 10x + 2x2. The intersection of f(x) with y axis is the constant

term a0 = 13 and hence the secret S = 13 is reconstructed.

It is important that the system of k linear equations has a unique solution as in

the above example. Lagrange interpolation is one way of finding a unique solution

polynomial f(x) of degree k − 1, for given k points which are zeros of f(x).

5.1 Shamir’s secret sharing algorithm

Intialization Phase:

1. A Dealer D chooses k ≤ p distinct, non zero elements in Zp, denoted by xi,

0≤ i ≤ k− 1, p is prime. For 0 ≤ i ≤ k− 1, D gives the value xi to shareholder

Pi. The values of xi are public.

Share distribution:

1. Suppose the Dealer D wants to share a secret S in finite field Zp. The Dealer D

secretly chooses random k elements of Zp,which we denote by a0, · · · ak−1 and

constructs f(x) = a0 + a1x+ · · ·+ ak−1x
k−1 with a0 = S.

2. For 0 ≤ i ≤ k − 1, D computes yi = f(xi), where x′is are random elements in

Zp and

f(xi) = a0 + a1x
1
i + · · ·+ ak−1x

k−1
i

3. For 0 ≤ i ≤ k − 1, the dealer D gives the share yi to the share holder Pi.

4. Any k shares should be able to determine f(x) and find the secret S.
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Given k − 1 shares,what is the probability of guessing the secret S?

The number of elements in Zp is p. For x coordinate there are p choices and for y

coordinate there are p choices. So total number of choices p ∗ p = p2 . But since the

secret S belongs to Zp, it has p possibilities. So the probability of the secret S is:

P (S) = p
p2

= 1
p

5.2 Some properties of (k, n) Shamir’s threshold

scheme

1. Secure : Suppose k − 1 people out of n people try to collude together to

find the k − 1 degree polynomial and thus the constant a0 = S. They have

k− 1 points. There are p2 degree k− 1 polynomial passing through these k− 1

points and one random point in the field Zp. The probability of guessing the

polynomial used by the dealer, D is 1
p2

. If p is very large then it is difficult to

get the correct polynomial. So this method makes the secret secure.

2. Minimal : The size of shareholders Pij does not exceed the size of secret S.

3. Extensible : If we keep the threshold fixed i.e. if number people who can

reconstruct is fixed then we can dynamically add or delete the shares Pik ’s

without affecting other shares, since any k subset of Pik can reconstruct the

secret S.

4. Dyanamic : It is easy to change all shares by taking another polynomial f(x)

with the same constant term. There are p many possibilities of polynomials

with same constant term a0. Changing shares with time helps in keeping the

secret confidential.

5. Flexible : In an organization where hierarchy is important, we can supply

each participant a different number of shares according to their importance

inside organisations. In multilevel threshold secret sharing schemes and com-

partment threshold secret sharing schemes which are modifications of Shamir’s

secret sharing scheme, the shares are distributed to different levels, such that

when a specified threshold number of people from different levels come together,

the secret S is reconstructed.
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Shamir’s (k, n) threshold secret sharing scheme is ideal and perfect. These schemes

are very secure since the only possibility for k−1 people to know the secret is to guess

it. For example, if the secret is a function such as coordinate or norm of the coordinate

of a point in some n dimensional vector space over Zp, then by choosing p large

enough we can make the system more secure. However, in real world applications,

these schemes require considerably more in the way of capabilities in shared scheme

than a simple (k, n) threshold for an action to be initiated. Shamir’s schemes and

its modified schemes are used in critical applications such as e-voting, cryptographic

key distribution and sharing, secure online autions, information hiding and secure

multiparty computation [12].



Chapter 6

Introduction to e-voting

An electronic voting is the system in which election data is recorded, stored and

processed primarliy as digital information [5]. It can be done using various ways,

for examples [12] punched cards, optical scan voting system, direct recording elec-

tronic voting system (DRE). It can also involve transmission of ballots and votes via

telephones, private computer networks, i.e., internet.

There are mainly two types of electronic voting:-

• Electronic voting via machines located at polling stations: In this type

of voting system, a voter casts his vote using the electronic machines present at

polling stations in front of the authorities who participate in counting of votes.

The identity of a voter and his vote is physically supervised by these authorities.

Thus the authorities might be able to know about the identity of the voter’s

ballot.

• Electronic voting via internet using computer/mobile phones: In this

type of voting system, also called e-voting, a voter casts his votes using his

personal computer network without any need of going to the polling stations.

Voting is performed through various steps:

1. The central authority sets up the voting scheme. It publishes all the pos-

sible voters and verifies the eligibiltiy of voters.

2. Only eligible voters are able to make an online account by signing up and

are allowed to cast their votes.

3. The votes are stored in the form of a ballot and then sent for counting.

29
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In this method, the physical presence of any authority is not required during

casting of votes. Thus the identity of the ballots is not revealed.

The first type of voting system requires the presence of the voter at the polling

station. The ballots of voters are directly marked by the hands of electoral authorities,

thus increasing the chance of electoral fraud.

In the other type, a voter can easily vote online through their personal laptop

without the need to go to the polling booth. This method has lots of advantages such

as:

1. Saving paper, reducing human work and human errors.

2. Saving time of an individual; no long queues.

3. Quick results of elections.

4. Auditable setup of e-voting scheme which provides accessibility to disabled peo-

ple.

5. It provides access to vote for people living abroad, thus improving the partici-

pation in democracy.

The e-voting scheme involves a number of steps-

1. A Set up of an e-voting scheme by the central authority.

2. Distribution of votes and assigning each possible voter with a unique number,

m1, · · · ,ml, where l is the total possible number of votes;

3. Voting only by an eligible voter;

4. Collecting the votes as a secret ballot;

5. Counting of secret ballots and then publishing the final result.

It is able to offer an integrated end to end electronic voting from registration to

results.

Different countries need different designs of electronic voting system to meets

their own laws and requirements which lead to a fast and legitimate result. Below

are important factors needed to devise an efficient electronic voting system.
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6.1 Requirements

Some requirement for having a practical and usable electronic voting scheme are the

following:

• Eligibility: A person is allowed to vote only when he meets the eligibility

criteria for voting. For example, a minimum age, valid voter id, etc. Each

person can vote only once in an election. In other words, a person who has

all the documents approved by the department or the authorities in charge of

elections is eligible to vote.

• Privacy: Its easy to construct a voting scheme where no privacy is required.

But the votes must be kept private so that no one is able to threaten a voter to

vote for a particular person or party. Privacy is a key factor in voting scheme.

The vote should not be known to anyone other than the voter himself. The vote

should be stored in such a way that it is impossible for any individual to know

the original vote or any information about the voter linked to the vote. The

vote remains a secret throughout the voting process. The question which is of

concern in this case is, if no one is able to know the vote then how can a vote be

counted? Different types of schemes are used to tackle such a problem. In the

following scheme, we use a version of Shamir’s secret sharing scheme. Instead

of distributing the shares of secret s, we distribute the share of gs. The secret

s is constructed in the same way as in the secret sharing scheme by taking a

k−1 degree polynomial with constant term s. When any k persons collude their

share then they can find the secret gs and thus the vote. No k−1 authorities can

find the secret gs or have any information regarding it. Trusting k authorities

compared to 1 authority is better and thus makes the scheme more secure. We

assume that out of n authorities, at least k authorities can be trusted.

• Individual verifiability: Suppose a voter casts a vote, m ∈ {m1, · · · ,ml}. He

votes and the vote Em is encrypted in the form of secret ballot and is further

proceeded for counting. The encypted votes should be published so that a

voter can cross check their votes. How would the voter know that Em is the

encryption of m? There must be a way to convince the voter that his vote is

correctly encrypted and counted. The constructed voting scheme should be able

to allow a voter to verify whether the vote recorded is correct or not. Failure
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to verify encrypted vote as the original vote m will interrupt the election, since

a person is allowed to vote exactly once.

• Universal verifiability: The authority in charge of handling all the voting

stages should be able to verify that votes are counted properly. The final pub-

lished tally should match the number of votes. If it doesn’t match, then we can

conclude that the counting was not done fairly.

• Fairness: Knowing the number of votes before the election is risky. Any au-

thority who has power to edit the voting scheme can change the number of votes

if they already know the results before the end of the election. So no participant

should be able to gain knowledge about the number of votes before the counting

stage. For example, suppose there is a voting scheme with vote A and vote B.

While counting, suppose a person in authority knows the number of votes A

and B and suppose he wants Vote A to win and he finds the number of vote B

to be more. Then he may change the number of votes in such a way that the

total number of votes remain same but the number of vote A is more and then

pass it to the next person in authority, thus making the election unfair.

• Robustness: The machine or internet used while voting should not change

the vote. It can happen that a person votes m ∈ {m1, · · · ,ml}, but due to

some error or cheating, the stored vote is m′ ∈ {m1, · · · ,ml} instead of m.

This affects the original vote and results in an incorrect number of votes. So

the machine and the online server should be error free. In other words, any

cheating should be detected easily.

6.2 Various approaches

E-voting schemes are based upon various approches [8]. These approaches solve dif-

ferent requirements needed in the scheme. The most difficult requirement of a voting

scheme is privacy. It is easy to design a voting scheme which doesn’t have privacy.

For example, the eligible voter can directly write his vote at the bulletin board and

anyone can read. Since the voters’ votes must be kept secret, privacy is important.

There are a few approaches which have been invented to achieve privacy. It can be

accomplished in three ways:
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• Knowing the vote but not the identity of it : It is easy to vote, but hard

to trace it back to the voter. In other words, it means that when a person votes,

his vote is stored and proceeded for counting, but in the counting stage it is

impossible to know whom the counted vote belongs to. In this approach, the

identity of the voter with their own votes cannot be tracked once the vote is

proceeded for counting.

• Knowing the identity of vote but not the vote: It is hard to know or

see the vote, but easy to see the identity of the voter. When a voter votes,

his vote is stored in an encrypted form. The identity of the person with the

encrypted vote is not removed and the vote is enclosed in a ballot. The identity

of the voter is plainly available in the secret ballot, but not the vote. After the

final result of counting is published, encrypted votes can also be published. All

encrypted votes are permuted and then assigned a unique number. By providing

the permutation key and secret key to a voter, he can decrypt his encrypted

vote and can verify that his vote was counted properly. We use this approach

to construct an e-voting scheme in the presented scheme.

• Knowing the vote and identity of vote: Both seeing the actual vote and

the identity of the voter is impossible or computationally infeasible. Consider

the scheme in which a voter votes and his vote is stored with his identity. It is

obvious to see that in such a case, privacy is compromised. Thus constructing

a scheme where the voter and his vote are both publicly known is not feasible.

6.3 Stages of e-voting

Electronic voting scheme consisits of three main stages:

• Initialization: The central authority sets up the system. It announces the

date of elections, formulates the questions and possibilities for an answer and

creates a list of eligible voters. Eligible voters are assigned with some unique

numbers. The vote is stored in binary form. The binary form represents the

encrypted vote. The central authority also generates their public and secret

keys. It publishes the public values. The secret key is given to the voter as a

token of eligibility. We will not talk about the details of how a voter is verified

for eligibility and will focus only on how the vote of an eligible voter is counted.



34 CHAPTER 6. INTRODUCTION TO E-VOTING

• Voting stage: Voters cast their votes using ‘secret channels’ to communicate

with the authorities and get their secret key. Here ‘secret channels’ refers to

transferring the secrets from A to B through a channel such that no third person

C who might have access to the channel, can change the secret or know about

it. Since it is out of scope for the present discussion, we will not discuss it here

and proceed to see how the vote is counted using Shamir’s secret scheme. The

stored vote is then divided into n indistinguishable parts. Once the election

gets over it is proceeded for counting.

• Counting stage: Before the counting starts, the authorities verify their shares.

Once verified, any k authorities use their public and secret information to de-

crypt the encrypted votes and count the votes. At the end, they publish the

result of the election. Thus the voter can cross-check his vote.

It can be pictorically shown as:

Secure channel

Secure channel

Counting

Storage

Initailization

Figure 6.1: Stages of e-voting

There could be more than three stages for seting up a scheme.
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6.4 Non interactive zero-knowledge proof of knowl-

edge

Non interactive zero-knowledge proof of knowledge is a method for proving a secret

to a verifier without telling about the secret or revealing any information related to

it. It was first introduced by Blum, Feldman and Naor Micali [3]. For example, a

person Amit has a 100 rupee note and he claims to have the 100 rupee note to Sumit.

Sumit does not believe Amit. How would Amit prove that he has a 100 rupee note?

If he shows the money to Sumit, he might snatch it and run away. In this scenario,

Amit needs to prove to Sumit that he has 100 rupee note without showing the money.

Intuitively, the non interactive zero-knowledge proof of knowledge is a non interactive

zero-knowledge proof of language membership from which, given certain information,

a witness of language memebership can be recovered [3]. The information in our

case is (x, y) = (gα, hα) and the prover wants to show that there is such an α without

revealing any information about α. In other words the exponent value of g and h

determining (x, y) which is publicly known must be same. The value of α is not

known to anyone except the prover. Here non interactive zero-knowledge proof of

knowledge is applied as described below:

1. The prover finds (x, y) as gα, hα, he knows α. He wants to prove to a verifier

that he has used the same α in g, h for finding (x, y).

2. The prover first commits some value, say w and finds (a, b) = gw, hw. He then

sends (a, b) to the verifier.

3. The verifier issues the challenge first which the prover has committed by giving

a random value c

4. The prover receives c and then forms r as r = w + (α)c. He sends r to the

verifier.

5. The verifier verifies the challenge without having any understanding of α by

calculating the value of gr, hr and checking it with the value of (axc, byc).

The verifier can be replaced with the hash function (or something similar) above.

Instead of a prover, the hash function will produce a challenge. We won’t discuss
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about it since it is out of scope for the constructed non interactive zero proof of

knowledge.

The constructed non interactive zero-knowledge proof of knowledge is represented

in figure 6.2. The prover must know the value of α. If the prover doesn’t know α, he

Prover with (x = gα, y = hα) Verifier

Chooses a random w
forms(a, b = gw, hw)

sends (a, b)

Choose random c

sends c

Construct
r = w + α ∗ c

sends r

Proves gr = a ∗ xc

hr = b ∗ yc

Figure 6.2: A schematic presentation of non interactive zero-knowledge proof of
knowledge

cannot prove to anyone the existence of an exponent α that satisfies x = gα, y = hα

simultaneously.

• Suppose the prover doesn’t know α.

• He forms (a, b) = (gw, hw) by taking a random w.

• He gets challenge c from the verifier.

• He then constructs r1 = w + α1 ∗ c and sends r1 to verifier.

• Let us compute gr1 and a ∗ xc separately and compare them. First, we will find

out what the left hand side, gr1 looks like: gr1 = gw+α1∗c = gwgα1∗c Multiply by

inverse of gw and taking 1/cth root of expression, we get gα1 . Doing the same

operation to the right hand side, we get gα.
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• To prove that L.H.S.=R.H.S., we need to show that α1 = α.

• Hence, without knowing α, the prover cannot challenge the verifier.

The verifier must not give the challenge (in this case c) to the prover, before

prover choose a random w. Challenging prover before receiving (a, b) = (gw, hw) to

the verifier may result in cheating and end up in receiving incorrect shares. What the

prover can do is the following:

• He chooses a different value of exponent for (x, y) as (gα1 , hα2).

• Since he gets the value c by prover first, he chooses a random w1 and constructs

w2 = c(α1 − α2) + w1 and sends the prover (a, b) as (gw1 , hw2).

• He then calculates r as w1 + cα1 which is also equal to w2 + cα2.

• When the verifier tries to verify using this r, he finds that (gr, hr = a∗xc, b∗yc)
is correct without knowing that he has been cheated by the prover, who took

advantage of knowing the value of c beforehand and computed a and b using

two different exponents.

Prover with (x = gα1 , y = hα2) Verifier

sends c

Choose random w1, w2

sends (a, b) = (gw1 , hw2)

Construct
r = w1 + α1 ∗ c
=w2 + α2 ∗ c sends r

Proves gr = a ∗ xc

hr = b ∗ yc

Figure 6.3: How challenging by verifier before prover commits affects
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6.5 An e-voting scheme using public verifiable se-

cret sharing schemes

A secret sharing scheme is a (k, n) threshold scheme, where a dealer D divides a secret

S into n parts and distributes it to n people as shares such that when any k shares

come together, the secret S can be reconstructed. No less than k − 1 shares can do

so. The scheme presented below describes how an eligible voter V can vote for his

vote m ∈ {m1, · · · ,ml}, (where mi = 1, l are all the possible votes) without anyone

else knowing any information about the vote. The central authority A is trusted and

deals with the lower level authorities Ai, i = 1, n and voter V .

• Initialization: The central authority assigns all the possible number of votes

with a unique number as (m1,m2, · · · ,ml), where l is the total number of votes

available for election. It publishes a group Zp, where p is a prime, and a gener-

ator g of the group and G. It generates s1 by taking a k− 1 degree polynomial,

f(x) = a0 + a1x
1 + · · · + ak−1x

k−1 where a0 = s1 and keeps it secret. The

secret s1 is given to the voter V1 as proof of eligibility for voting by the central

authority. When the voter V1 votes, his vote is stored in an encrypted form as

E1 = mgs1 . The encrypted vote of the voter and the voter are then connected

together by assigning a number without disclosing any identity of the voter.

Here we assume that the central authority doesn’t know how the encrypted

vote looks. For example, a person votes and forms a ballot inscribed with his

vote. Then he submits the ballot. When he sumbits, some of the authorities

assign a number to the ballot and the same number is assigned to the voter.

Later the ballot is removed without knowing the identity of it and it proceeds

for counting purposes.

• Distribution of the shares: The central authority distributes the secret gs1

to n lower authorities. The secret gs1 recovers the encrypted vote E1 which

belongs to the voter V1.

The point s1 is randomly chosen by the central authority by constructing the

k− 1 degree polynomial f1(x) = a0 + a1x
1 + · · ·+ ak−1x

k−1, where a0 = s1. The

lower authorities Aj choose their secret keys zj and publish their public keys

hj = gzj . With the help of the public key hj, the central authority constructs

shares as Hj = h
f(j)
j , j = 1, 2, · · · , n and gives them to the n authorities. The
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central authority also publishes C0 = Ga0 , C1 = Ga1 , · · · , Ck−1 = Gak−1 . The

purpose of publishing the values Ci, i = 1, · · · , k − 1 by the central authority

is for the n lower authorities to verify that the shares they have received are

consistent. He defines Xj = πk−1i′=1C
ji
′

i′ , whose exponent f1(j) is the same as

the exponent in Hj = h
f(j)
j , j = 1, 2, · · · , n which are given as shares to n

authorities. If he is able to show that both the exponent are same, then he

would be able to prove that his shares are correctly distributed.

He verifies that logGXj = loghjHj i.e. both the exponent to be same, using non

interactive zero-knowledge proof of knowledge, where Xj = πt−1i′=1C
ji
′

i′ .

• Reconstruction of the secret gs: The lower authorities Aj then decrypt

their shares Sj = gf(j) by computing Sj = H
1/zj
j .

Before sharing their shares, the lower authorities need to verify to the central

authority that they had not changed their own secret key and are truthworthy.

To do so, they show that the exponent term in hj is same as the negative of the

exponent term of SJ . By the non interactive zero-knowledge proof of knowledge,

the jth lower authority shows that logghj = −logHj
Sj. If any k of them are

able to prove the above, they are allowed to share their shares and reconstruct

the secret gs using Langrange interpolation as:

∏
j∈A S

lj,A
j =

∏
gf(j)lj,A = g

∑
p(j)lj,A = gf(0) = gs1

where lj,A is a langrange coefficient.

• Counting votes Once the lower authorities Aj find gs1 using Lagrange inter-

polation, they decrypt the encrypted vote E1 of voter V1 using the inverse of

gs1 . Then the vote is counted and stored till all the votes are counted. After

counting is over, the central authority declares the results.

6.5.1 Properties of the above scheme

• Privacy: The vote m is kept private throughout the scheme. Thus it keeps the

vote confidential. Encrypted vote is of the form m ∗ gs1 and then gs1 is divided

into n parts. It is distributed as shares to n shareholders. The authorities using

their own secret key zi have access to the shares for reconstructing the secret
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Central
authority

Voter casting
votes

Votes stored
Votes counting

by lower
authorities

Set up
votes

Distributes
shares

Figure 6.4: Schematic presentation of e-voting

gs1 . The vote m is determined and counted after the election is over. In the

whole process, the identity of the vote m is not known to anyone, thus keeping

the vote m a secret.

• Correctness: The scheme uses the secret sharing scheme i.e. when any k out

of n people come together, the secret gs1 is reconstructed. Any k − 1 out of n

people can not get any information about the secret. If any k′ shareholders try

to cheat then the remaining k out of n− k′ can use their shares to cross-check

the secret gs1 and find out the defects.

• Verifiability: The final result of votes is published as encyrpted votes. Thus,

one can easily verify their own shares using the secret key they receive from the

central authority. Now if the voter V1 knows s1, he can easily verify whether

the outcome vote matches with his vote or not.

6.6 Issue and drawbacks in this scheme

1. In the presented scheme, the central authority handles the scheme from the first

step to the final step. It constructs shares, distributes and publishes the results.
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So we must trust the central authority. We don’t trust the lower authorities

individually.

2. Any fault in the system will lead to failure of the election.

3. Since when any k authorities out of n authorities can find gs1 and no k− 1 can

do so, we must have k trustworthy authorities to operate this scheme.

4. Another problem with this scheme is the process of assigning numbers to the

voter and his vote and passing to n lower authorities. Since the central authority

knows gs1, he is not allowed to see the encrypted vote, but he has to link up

Voter V1’s encrypted vote E1 with the shares of the secret gs1 . How would he

verify that for decrypting E1, he has sent shares of secret gs1? Using the shares

of secret gs1 with some other encrypted vote Ei, i 6= 1 would result in an error.

5. In this case rearranging of votes is a difficult task. But it could be solved if

the rearranging is done by the lower authorities without giving any information

about rearranging to central authority.
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