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Abstract

The work done in this thesis attempts to model the grid cell network, pivotal in

spatial navigation and awareness, using biologically realistic descriptions of neurons.

While previous work on this system used rate-based models to simulate the activity of

neurons, these models are not able to realistically represent the dynamics of neuronal

behaviour. In this thesis, we use conductance-based models of stellate cells and fast-

spiking interneurons to construct two types of networks built using a primitive MEC

motif. These networks are able to show the formation and movement of an idealized

bump of activity along a single dimension. The networks and the translation of the

bump are able to show direction- as well as speed-tuning. Theta oscillations are

shown to play a role in tunability and control of the system and may play a part in

stabilzation of the temporal activity profile. The neuronal networks presented here

provide the initial steps in making a full, biologically realistic, model of the grid cell

network.
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Chapter 1

Introduction

Spatial navigation in animals is a complex problem. It entails the study of many

different types of systems that take in many different kinds of sensory informa-

tion. Various regions of the brain, like the hippocampus, are involved in different

aspects of navigation and spatial perception. Many different neuronal cell types are

involved in this activity. There are the place cells [O’Keefe, 1976] that fire when

mice are at particular locations (or places), speed cells [Sargolini et al., 2006] that

show varying firing rates as the mouse changes its speed of motion, head-direction

cells [McNaughton et al., 2006, Hafting et al., 2005], the activity of which maintains

an internal estimate of the direction the head of the mouse is facing, and grid cells

[Hafting et al., 2005] whose activity maintains an internal estimate of the position

of the mouse with respect to its surroundings. The navigation system uses external

landmarks as well as idiothetic cues to help the mouse be cognizant of its position in

the local environment. These cues help the animal to keep track of its environment

even in darkness [McNaughton et al., 1996].

Grid cells in particular are a fascinating group. Each of these has several firing

fields that are arranged as the vertices of a hexagonal lattice [Hafting et al., 2005].

Although the firing response of grid cells seems to be anchored to external landmarks,

experiments have also showed that the grids exist and even persist in darkness. Thus,

the mouse uses idiothetic as well as external cues to compute these grids and to

traverse through them. The firing fields of different grid cells are skewed from each

1
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other such that they tesselate local space. As the mouse moves in two dimensions,

one can imagine that the neuronal activity moves across the population of grid cells

correspondingly. This specific activity has lead to grid cells being implicated in dead-

reckoning, the process of determining one’s current position using knowledge of a

previous position and idiothetic information such as velocity.

Figure 1.1: Activity of a single grid cell: as the mouse moved in a circular enclosure,
its trajectory and locations where the grid cell fired were recorded. Left: trajectory
is shown in black and grid cell firing locations in red. Center: rate map of the grid
cell. Right: spatial autocorrelogram of the grid cell activity. From Figure 2c of
[Hafting et al., 2005]

There have been several attempts to model the activity of the grid cell network

[Giocomo et al., 2011, Burak and Fiete, 2009] and these models can broadly be clas-

sified into two types: the interference models and the attractor models [Zilli, 2012].

Only attractor models will be discussed here. The idea behind attractor models is

that the activity of a population of neurons is constrained to one of many stable states.

It is helpful to think of it as a manifold to which the motion of the state vector of the

system is restricted. If the system finds itself in an unstable state, it quickly moves

towards a stable one. Thus, in state space, there exists a manifold or an attractor

that attracts the state of the system and it is free to move between stable states as

each state is equally stable. Since this manifold is continuous rather than discrete,

it can also be refered to as a continuous attractor network. Such attractor networks

maintain that the special patterns of neuronal activity are emergent phenomena of

the system, which come about as a result of asymmetrical connections between neu-

rons. This asymmetry can be in the form of local or global inhibition, specificity of
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neuronal response to different input types, and synaptic connections between neurons

as well.

In an effort to understand the grid cell network in the mouse entorhinal cortex,

[Burak and Fiete, 2009] modelled a sheet of neurons as a continuous attractor net-

work. Neuronal activity was described in their model by the following equations:

τ
dsi
dt

+ si = f

[∑
j

Wijsj +Bi

]

Wij = W0(xi − xj − lêθj)

W0(x) = ae−γ|x|
2 − e−β|x|

2

where si is the synaptic activation of neuron i, Wij is the synaptic weight from

neuron j to neuron i, and Bi is the feedforward input to neuron i. Neuron j has a

directional tuning specified by êθj which is the unit vector in the direction θj. Wij

thus takes the form of a center-surround shape whose center is located not at neuron

j itself but a distance l away from it along its tuned direction. This means that each

neuron excites other neurons in a direction specified by its tuning.

While the model was able to exhibit characteristics similar to those shown by grid

cells, the full range of behaviours that are exhibited by neurons cannot be modelled

by a single equation. For instance, it does not take into account the ions that cross

the cell membrane that are responsible for the changing membrane potential. The

Hodgkin-Huxley model in contrast, uses 4 dynamical equations to specify a single

neuron. Adding additional neurons involves the modelling of synapses which require

additional equations and parameters as well. In order to address this gap between

simple models and complex systems, we worked to come up with a model of the grid

cell network activity using biologically realistic descriptions of neurons.

Various different cell types can be found in the MEC of which, the principal cell

type is the stellate cell. These are cells that show some special characteristics. When

they are slightly depolarized, they show small fluctuations in their membrane poten-

tial, called subthreshold oscillations [Alonso and Llinas, 1989, Alonso and Klink, 1993],

and when released from hyperpolarization, they show rebound-spiking behaviour.
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Aside from stellate cells, one can also find inhibitory interneurons in the MEC. These

are present in close proximity to stellate cells; evidence suggests that the basic neu-

ronal motif in the MEC consists of these two cell types. In accordance with this, we

used conductance-based models of stellate cells ([Acker et al., 2003]) and fast-spiking

interneurons ([Wang and Buzsaki, 1996]) to construct a network model of the grid

cell network.

Due to the similarities of each grid cell’s activity, as a mouse moves around in an

enclosure, we can be content with a model in which the grid cells are topographically

arranged. Such a model would disagree with the actual system as far as the positions

of particular neurons are considered, but we hope that connecting topographically-

arranged stellate cells, in a manner such that the network is able to show behaviours

that the real system exhibits, will point towards similar connections between corre-

sponding stellate cells in a non-topographic map. To that end, we do not discuss how

such particular connectivities could come about over the course of development of the

mouse brain. A similar approach is undertaken in other seminal works on the topic

[Burak and Fiete, 2009].

The many bumps that appear across the sheet of neurons have a clear direc-

tionality to them. Three main axes are apparent as the arrangement is hexagonal.

Traversing across any of the axes (or indeed, any straight line across the sheet) gives

one an idea of the response of the system when constrained to a single dimension.

In effect, a one-dimensional version of the model would consist of a line of neurons

whose activity profile would manifest in the form of a bump of activity that was able

to traverse across the cells. We attempted to construct a model that was capable of

simulating this single-dimension behaviour in the hope that principles similar to ones

that were employed in the one-dimensional model would be at play in the full model.



Chapter 2

Results

2.1 MEC motif

SC SC

IN IN

Figure 2.1: Prototype circuit used in [Neru and Assisi, 2019]. SC - Stellate cell, IN -
Interneuron. Excitatory synapses are shown by light circles and inhibitory synapses
by dark ones.

The primitive motif that we used was explored by [Neru and Assisi, 2019] (Figure

2.1). It is constituted of two stellate cells and two interneurons. The interneurons

inhibit each other and a stellate cell each. Each stellate cell excites the interneuron

that does not innervate it. Due to rebound-spiking in stellate cells, this simple circuit

can exhibit a wide range of behaviour. In their paper, they discuss two modes that

5
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Figure 2.2: Firing in the primitive MEC motif. The top panels show the firing of
stellate cells while the bottom panels show the same for interneurons. Values of
current used: (a) SC input = -3 mA, IN input = 0.5 mA; (b) SC input = -3 mA, IN
input = 1 mA

the network can operate in, which is determined by the current input given to the

interneurons. These are:

1. Autonomous oscillator: When the interneurons are given a sufficiently weak

input, the network activity oscillates between the two. At any point in time,

one of the interneurons is active and its spikes inhibit a stellate cell. Due to the

low current, the firing rate of the interneuron is low and so, the stellate cell is

able to show rebound-spiking in between spikes of the interneuron. This excites

the other interneuron, whose spiking then both inhibits the active interneuron

and excites the other stellate cell. This change in activity occurs periodically

and without external intervention, hence is autonomous.

2. Bistable switch: When the interneurons are given sufficiently strong input, one

of them (winning the competition) shows spiking activity until a pulse of current

is provided to the other interneuron. The previously inhibited interneuron then

starts spiking and prevents the other interneuron from doing so. Each such

shift in activity is marked by a spike in a stellate cell due to rebound-spiking:

since it is released from inhibition, it is able to spike. The stellate cells do not

show continuous spiking because of the high firing rate of the interneurons. The

interneuron spikes occur faster than the membrane potential of the stellate cells
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rises to its spiking threshold. The locus of activity in this mode does not shift

until subsequent pulses are provided to interneurons. This mode is an example

of a driven circuit as the network’s activity changes only when external input

is provided.

Due to the fact that stellate cell activity is the readout of our target system, we

expanded upon the above motif and operated it in the oscillator regime to construct

our first network.

2.2 Network 1

IN IN

SC SC SC SC SC

IN IN IN

IN IN IN IN IN

Figure 2.3: Network 1. SC - Stellate cell, IN - Interneuron. The number of interneu-
rons is doubled to allow the activity bump to show translations in both directions.

Chaining multiple units of the MEC motif and connecting the ends together to

make a circular connection gave us our first foray into modelling the system (Figure
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2.3). With this network, we were able to obtain an idealized bump which moved across

the network. Each such spike provided the impetus for the next stellate cell in the

sequence to fire; this mechanism of switching is the same as that in the autonomous

oscilllator regime of the primitive circuit motif. This iteration of the model served

as a proof of concept and showed that we were able to obtain and move an idealized

bump across the network of cells. The size of this network could be increased simply

by adding more neurons to the network. By manipulating the current input to the

various cells, we were able to control whether the bump moved or stayed put. Two

different activity profiles were seen:

1. Translatory phase : The bump of activity moves across the network. This is

the situation where the mouse is moving along an axis. The bump is moved by

exciting and inhibiting groups of interneurons, similar to in the primitive motif.

2. Stationary phase : The activity bump remains stationary, which is analogous to

the mouse making no movement. This is done by inhibiting all the interneurons

and exciting the currently firing stellate cell.

2.2.1 Direction tuning in Network 1

An additional ring of interneurons was added to Network 1 whose connections from

stellate cells was in the opposite direction as before (Figure 2.3). This set of in-

terneurons allowed the neurons in Network 1 to show translations of the bump in

both directions. By making one group of interneurons more receptive to stellate cell

spiking (and the other group less), we were able to control the direction of translation

of the activity bump. This is done by providing a constant inhibitory current to one

group to depress it, while the other remained excited. The group that is not inhibited

is allowed to spike in response to the stellate cells and so, moves the bump along the

direction specified by its connections. Figure 2.4 shows direction tuning in Network

1.
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Figure 2.4: Direction tuning in Network 1. Top panel: Voltage traces of stellate
cells (SCs) plotted against time. Bottom panel: Voltage traces of interneurons (INs)
plotted against time. Current values used: SC input = -3 mA, IN input = 0.5 mA
(for excited INs) and -10 mA (for inhibited INs)

2.3 Network 2

While Network 1 was able to show that a network of stellate cells and interneurons

could move a single idealized bump, it had some drawbacks. First and foremost, the

bump was idealized. The real system’s activity bumps are measures of the grid cells’

firing rates. At any point in the neuronal sheet, neurons being more active means they

spike more often than those elsewhere. Thus, an activity bump should have neurons

spiking faster than others. In Network 1, the bump consisted only of a singular neuron

spike. A more realistic bump would have many spikes per neuron as well as more
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Figure 2.5: Connections in Network 2. Top panels: Connections to interneurons.
Bottom panels: Connections to stellate cells. In each figure, the presynaptic neurons
are indexed along the X axis and the postsynaptic neurons are indexed along the Y
axis. The internal values represent the strength of synaptic connection, if any.

neurons participating in each one with different firing rates. In an effort to account for

the former, the mechanism of formation of the bump and its translation was changed.

Since we wanted stellate cells to spike multiple times, current was provided to stellate

cells. However, exciting all the stellate cells in this manner would have made for
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multiple stellate cells firing very close to each other temporally. To curb this, each

interneuron was allowed to inhibit most stellate cells. Specifically, interneurons were

not allowed to inhibit the stellate cell innervating them, but inhibited all others. This

made sure that at any given point in time, only one stellate cell fired, along with the

single interneuron that was excited by it.

Just like in the case of Network 1, this connectivity relies on the rebound-firing

property of stellate cells to translate the bump. The difference is that the stellate

cell next in the sequence of firing does not escape from inhibition immediately due

to the inhibitory spikes arriving from the active interneuron. With each inhibitory

spike, the membrane potential in the stellate cell rises a little, but is prevented from

reaching the spiking threshold due to the arrival of an inhibitory spike. This process

occurs multiple times, with the stellate cell’s voltage reaching ever higher levels before

it is inhibited. Eventually, the membrane potential does cross the spiking threshold,

at which point it is able to fire. This firing activates a different interneuron and

due to the global inhibition, silences the previously active one. The spiking of this

new interneuron-stellate cell pair then starts to inhibit the next stellate cell in the

sequence and the pattern proceeds thusly.

To be certain that the correct stellate cell escaped from inhibition, the synaptic

weights from interneurons to stellate cells were tweaked. In Network 1, the connec-

tivity matrix had values of 1 for inhibitory connections from interneurons to stellate

cells. Both higher and lower values were tested to observe the behaviour of stellate

cell rebound-spiking. Populating the synaptic weight matrix with appropriate values

gave us bumps that were constituted of multiple spikes (connections shown in Figure

2.5).

2.4 Speed tuning

Because the grid cell network activity is correlated with the motion of the mouse, it

was necessary that the speed of translation of the bump in our networks be tunable.

In the two networks, speed tuning was achieved in different ways.
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Figure 2.6: Speed tuning in Network 1, measured as average time elapsed between
successive stellate cell spikes. The input current to SCs and the excited INs were
varied while that to the inhibited INs was unchanged (-10 mA).

2.4.1 Speed tuning in Network 1

The activity bump in Network 1 was constituted of a single rebound-spike of a stellate

cell which was able to spike between consecutive spikes of the interneuron inhibiting it.

The timing of firing of the stellate cells depended both on the current input to stellate

cells, as well as the frequency of firing of the interneurons (which was determined by

the amplitude of current input to it). Thus, by varying the two current inputs, we

reasoned that we would be able to change the speed of translation of the network.

The effects of varying the two currents is shown in Figure 2.6.

2.4.2 Speed tuning in Network 2 – Theta oscillations

Using a ring of stellate cells and a corresponding ring of interneurons, we were able

to produce a bump of activity that was also able to move. However, since stellate

cells show strong rebound spiking, exciting them to drive the circuit (as is the case in

Network 2) made the switching of the readout extrememly fast. This is unlike the case
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Figure 2.7: Tunability of Network 2 using theta oscillations. Top panel: Voltage
traces of SCs in the absence of theta oscillations. Bottom panel: Voltage traces of
SCs in the presence of theta oscillations, oscillation frequency = 6 Hz. Current values
used: SC input = 1 mA, IN input = 0 mA.

of Network 1, and the speed of bump-translation cannot be controlled appreciably by

simply varying the current input to cells. Such fast spiking can also lead to out-of-turn

firing by stellate cells, a sufficient amount of which can lead to errors in translation

of the bump. This is remedied to an extent by having differential synaptic strengths

from interneurons to stellate cells. While each interneuron inhibits most stellate cells

equally, if it inhibits a particular stellate cell more than the others, the stellate cell

in question always is next in the sequence to show a burst of spikes. This behaviour

is further made more robust by the addition of a theta oscillation (Figure 2.7). The

theta rhythm or oscillation is an oscillation in the Mean Field Potential (MFP) of the
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local environment of interneurons. It has a frequency between 6 and 12 Hz and has

been observed to increase its frequency in accordance to the speed of motion of the

mouse. Upon coupling the interneurons to theta oscillations, the robustness of the

changing network activity increased and a large portion of the background spiking

disappeared.
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Figure 2.8: Speed tuning in Network 2. Both panels show voltage traces of SCs. Top
panel: theta oscillation frequency = 11 Hz. Bottom panel: theta oscillation frequency
= 7.5 Hz. Current values used are: SC input = 1 mA, IN input = 0 mA.

During the positive phase of the oscillation, the firing frequency of interneurons

was lower than in the negative phase. This provided an opportunity for the stellate

cells to show rebound-spiking, as any decrease in inhibition could cause stellate cells

to do this. This is in fact the mechanism by which the network’s activity locus
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changes. Since the bump moved only when the theta drive was in a specific phase of

its cycle, changing the frequency of the theta oscillation might have been sufficient

to change the speed of translation of the bump. Indeed, we found that the switching

followed the phase of theta at different frequencies of oscillation. Two cases are shown

in Figure 2.8 where with a higher frequency of oscillation (11 Hz), the switching of

stellate cell firing occured faster than in the case with a lower frequency (8 Hz).
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Chapter 3

Discussion

3.1 Formation and movement of activity bump

Grid cells exhibit a wide variety of responses, of which the most basic is the existence

of activity bumps and the ability to move them around. Our networks of stellate cells

and interneurons have been able to showcase these behaviours by virtue of specific

asymmetries in synaptic connections between neurons. This is a core idea behind

continuous attractor networks which treat the activity of networks as the result of

the interactions between its constituent members, as opposed to each cell being able

to show these behaviours individually. Essentially, the population-level activity is an

emergent phenomenon due only to asymmetries in connections. We have observed

that varying not only the connections but also their synaptic strengths results in great

variations in the activity of the network, which fits into the view that the connections

between neurons are of paramount importance.

The fact that the grid cell activity persists, while being robust, in the absence

of sensory cues leads one to conclude that the network is able to operate at least

reasonably well with a reduced set of possible inputs. Of particular interest is the

possibility that in such a scenario, place cells should not directly be involved in the

formation of the grid-like patterns. Other types of inputs that would be active in

such a scenario are idiothetic ones like speed and head-direction input. Some of these

inputs have been simulated in our model using constant DC inputs.

17



18 CHAPTER 3. DISCUSSION

3.1.1 Differential synaptic strengths in Network 2

In the case of Network 2, it was observed that stellate cells that are weakly inhibited

escape from inhibition faster than ones that are more strongly inhibited (during the

respective phase of the theta oscillation). Even so, we decided to strongly inhibit

the next-in-sequence stellate cell (as compared to the others) so that it is the only

one not firing immediately. A key observation that helped us in making this decision

was that when a stellate cell fired, its status was essentially reset [Acker et al., 2003,

Dickson et al., 2000]. This meant that the rebound-spiking behaviour of these cells

was only fully reset once the cell has fired. In our model, after the other stellate cells

fired and reset their state (as can be seen in Figures 2.7 and 2.8), the next-in-sequence

cell was closer to its firing threshold than the others and so, went on to fire and show

a burst of spikes.

3.2 Tuning the speed of the network

The mechanisms behind the formation and movement of the bumps in our two models,

different as they are, are both primarily based on the rebound-spiking characteristics

of stellate cells. Both models had interneurons that mediated which stellate cells

showed rebound-spiking and when. In Network 1, the timing of firing of stellate

cells was dependent on that of interneurons and so, by varying the current inputs

to both, we were able to tune the speed of translation of the bump. Lower input

to interneurons made them fire with greater delay, giving time to the stellate cells

to escape from inhibition faster. Increasing the current input to the stellate cells

made their membrane potential rise faster to their spiking threshold and subsequently

escape from inhibition sooner. Both of these effects were seen in Figure 2.6, where the

speed tuning of the network was measured by looking at the average time difference

between successive spikes. The neurons were found to be extremely sensitive to

the current input given to them. the range of current input for which grid cell-like

activity was seen was 0.2 to 0.5 mA. Any higher and the stellate cells were unable

to escape from their inhibition, and any lower made the interneurons unable to reach

their firing threshold. In the case of current higher than 0.5 mA, the activity of

the network is equivalent to the bistable switch regime of the primitive motif where



3.3. EXTENSION OF THE MODEL 19

the active interneuron continually spikes until perturbed. Because the ratio of the

number of stellate cell spikes to those of interneurons underwent a change at particular

values of current, discontinuities can be seen in the speed tuning. However, except

in these cases, the speed tuning in Network 1 followed the variation in input current

as expected: higher stellate cell input and lower interneuron input resulted in faster

translation of the activity bump.

3.2.1 The role of theta oscillations in Network 2

With the specific connections in Network 2, combined with the presence of theta

oscillations, we saw that the translation of the bump across neurons could indeed

be restricted to certain phases of the theta drive. This allowed for stellate cells to

escape from inhibition only during those periods. Speed tuning was then achieved by

varying the periodicity of these windows by changing the frequency of the theta drive.

Unlike in the case of varying current input, this method provided a more continuous

tunability of the system.

This fits well with the observation that the frequency of the theta oscillation

follows the speed of motion of the mouse and by extension, is correlated to the activity

of the grid cell network. While our results are not entirely indicative of theta being

the agent responsible for making the temporal profile of firing more stable, it certainly

added to the tunability of the model. Previous work in the lab has also shown that

the theta drive could be responsible, at least in part, to gating information temporally

across different regions of the brain. In this light, we did not consider the possible

effects of theta on the inputs to our model. It is quite possible and even likely that

by coupling the theta drive to the various inputs of our system, our model of the

network will be able to show its behaviour in a more robust fashion.

3.3 Extension of the model

The networks that are presented in this study, while showing some characteristics of

the grid cell network, do not capture the full picture. The biggest shortcomings are:
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3.3.1 Unrealistic activity bumps

The activity bumps exhibited by grid cells comprise multiple neurons showing differ-

ent firing rates. The bumps present in our models are idealizations of these bumps.

The presented networks are able to demonstrate the movement of bumps, an integral

characteristic of the grid cell network, however, neither of them represents the full

picture even as far as the structure of the bump goes.

The activity bump of the grid cell network consists of multiple stellate cells firing at

different rates. The cells at the center of each bump fire the fastest while cells towards

its periphery fire slower. In contrast, our networks look more like delta functions:

Network 1 showed only one spike per bump, and Network 2 showed multiple spikes

but only from one cell.

3.3.2 Multiple bumps

The presence of multiple bumps is essential to a full model of the grid cell network.

One way to incorporate these, even in the 1 dimension case, is by considering the use

of local inhibition. Essentially, instead of inhibiting all stellate cells and interneurons,

each interneuron can inhibit cells in a more local environment around it. Neurons,

particularly interneurons, that are outside the zone of inhibition would be free to fire.

This would result in multiple interneurons firing simultaneously in different regions,

leading to the formation and movement of multiple bumps along the line of neurons.

3.3.3 Network activity in 2 dimensions

The presented networks model the system’s behaviour in a single spatial dimension.

Extension of the model to the second dimension is not trivial as activity bumps need

to be able to traverse the sheet of neurons across any direction. Previous work on

the system has employed the use of direction input to grid cells which themselves

show direction preference. Using our model as a motif, something similar might be

possible by introducing direction preference to interneurons in a manner similar to

how direction is selected for in the current Network 1.
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Conclusions

To simulate the activity of the grid cell network along a single dimension, we have em-

ployed the use of stellate cells and inhibitory interneurons to construct two networks

that satisfactorily demonstrate the ability to form and translate an activity bump.

These networks were based on the primitive circuit motif thought to be present in

the MEC. We have also demonstrated the activity profiles of the motif. Our Net-

work 1 was able to show direction-tuning by exciting and inhibiting entire sets of

interneurons, and speed-tuning by varying the current inputs to the stellate cells and

interneurons. With Network 2, we were able to make the activity bump more realistic

while also incorporating the action of theta oscillations into the network. Network 2

was able to show speed-tuning as a function of the frequency of the theta drive.

The bumps that were obtained can be made even more realistic. Instead of a

bump being comprised of a single cell’s activity (like it is in our networks), bumps in

the grid cell network are constituted of the activity of multiple cells firing at different

frequencies. The number of bumps in our model is only one while the system has

multiple bumps arranged in at regular intervals (in a single dimension). We think the

latter can be achieved by implementing the use of local inhibitory fields of interneurons

instead of the global inhibitory fields. Finally, our model needs to be extended to be

able to represent motion in two spatial dimensions as opposed to the one that it can do

at present. In two spatial dimensions, the arrangement of bumps will need to be along

a hexagonal grid. These bumps would possibly remain stable and robust using local

21
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inhibition by interneurons, and will be able to move by introducing direction-based

inputs and specifities.

The activity of the cells was dictated by and large by the connections existing

between them. Even small variations in these connections lead to qualitatively dif-

ferent types of activity shown by the population. Since there are many regimes of

the parameters that have not been visited by us, more work is required to be able to

characterize all of the behaviours of this system.

We hope that the networks presented in this thesis, though far from complete

models of grid cells, will be instrumental in the creation of fuller and better models

of this neuronal population.



Chapter 5

Materials and Methods

Our model uses two types of cells, stellate cells and interneurons.

5.1 Neuron Models

All neurons were modelled as conductance-based, single-compartment spiking neuron

models. The ionic conductance for ion x was modelled as:

Ix = gx(V, t)(V − Ex)

where gx(V, t) is the conductance of channels and Ex is the reversal potential for that

ion. gx(V, t) is specified in terms of the maximal conductance gx and the state of the

gating variables. Each gating variable followed first-order kinetics and were modelled

as follows (for gating variable m):

dm

dt
= −(m−m∞)

τm

where m∞ and τm are functions of voltage. An equivalent form of the above equation

is:
dm

dt
= αm(1−m)− βmm

where m∞ = αm/(αm + βm) and τm = 1/(αm + βm)

23
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5.1.1 Stellate cells

The equation describing stellate cell behaviour [Acker et al., 2003] is:

C
dV

dt
= Iext − INa − IK − IL − Ih − INaP − Isyn

This model of stellate cells involves the standard INa, IK , and IL conductances

in addition to a hyperpolarization-activated depolarizing current (Ih), and a per-

sistent sodium current (INaP ). The presence of both conductances is necessary to

see both sub-threshold oscillations and rebound-spiking dynamics [Acker et al., 2003,

Dickson et al., 2000]. The equations describing ionic conductances and parameters

for stellate cells are given in Table 5.1.

5.1.2 Interneurons

The dynamics of interneurons [Wang and Buzsaki, 1996] was modelled using the

equation:

C
dV

dt
= Iext − INa − IK − IL − Isyn − Iθ

Since these interneurons are able to show rapid spiking, the state of the gating variable

m was taken to be that at t = ∞, i.e., m(t) = m∞. The equations describing ionic

conductances and parameters for interneurons are given in Table 5.2.

5.2 Synapse Models

Synaptic currents were modelled as follows:

Isyn = gsyns(Vpost − Esyn)

ds

dt
= F (Vpre)αs(1− s)− βs

where gsyn is the maximal synaptic conductance, s is a gating variable, F (Vpre) =
1
2
(1 + tanh(Vpre/4)) models the opening of a synaptic ion channel in response to an
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action potential in the presynaptic neuron, and Esyn is the reversal potential, the

value of which, determined whether the synapse was excitatory or inhibitory. The

values of the various parameters used are given below.

5.2.1 Synaptic parameters - Network 1

The synaptic parameters used in Network 1 were: Eexc = 0.0, Einh = −80.0, gei = 0.3,

ges = 0.0, gii = 1.0, gis = 0.6, αi = 3.33, βi = 0.11, αe = 100.0, βe = 0.33

where gei is used for excitatory connections to interneurons, ges is used for excitatory

connections to stellate cells, gii is used for inhibitory connections to interneurons, and

gis is used for inhibitory connections to stellate cells.

5.2.2 Synaptic parameters - Network 2

The synaptic parameters used in Network 2 were: Eexc = 0.0, Einh = −80.0, gei = 0.5,

ges = 0.0, gii = 1.0, gis = 0.6, αi = 3.33, βi = 0.11, αe = 100.0, βe = 0.33

where gei is used for excitatory connections to interneurons, ges is used for excitatory

connections to stellate cells, gii is used for inhibitory connections to interneurons, and

gis is used for inhibitory connections to stellate cells.

5.3 Input to the system

Two types of input were given to the system. These are the contant DC input, and

the theta oscillation. The former was provided to all cells while the latter was only

given to the interneurons.

5.3.1 Constant DC

DC input was given to neurons which were meant to simulate inputs from neurons

upstream to the system. This ranged from currents of different strengths applied to
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neurons at different times, to currents of equal strengths given to multiple neurons of

the same type at the same time. Broadly, the profile of this kind of input specified

the ’state’ of the system.

5.3.2 Theta oscillation

The other kind of input was the theta rhythm. Theta current was modelled as a

sinusoid in the following way:

Iθ = A sin(2πωt+ φ)(V − Vth)

where A = 0.2 is the amplitude of the theta oscillation, ω is its frequency in Hz, and

Vth = −80 mV is the threshold voltage.

5.4 Connectivity

A number of different connectivty profiles were used throughout the duration of the

project. The initial motif [Neru and Assisi, 2019] consisted of two stellate cells and

two interneurons. Another motif used was the stellate cell driven motif in Network

2. Multiple simulations were run to arrive at the synaptic strengths that provided

the most robust activity profiles in terms of reliability and sequential firing. The

connection matrices for Network 1 and Network 2 are given in Figure 5.1 and Figure

5.2 respectively.

5.5 Tensorflow

All simulations were run using Tensorflow, Version 1.13.1 using the methods described

in [Mohanta and Assisi, 2019]. The Euler method was used to perform integrations

and the time interval of integration was set to dt = 0.01 ms.
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Conductance
type

Equations Parameters

Na INa = gNam
3h(V − ENa)

αm = −0.1(V + 23)/(e−0.1(V+23) − 1) gNa= 52.0

βm = 4e−(V+48)/18 ENa = 55.0

αh = 0.07e−(V+37)/20

βh = 1/(e−0.1(V+7) + 1)

K IK = gKn
4(V − EK) gK = 11.0

αn = −0.01(V + 27)/(e−0.1(V+27) − 1) EK = -90.0

βn = 0.125e−(V+37)/80

NaP INaP = gNaPms(V − ENa)

ms∞ = 1/(1 + e−(V+38)/6.5) gNaP = 0.5

tms = 0.15

HCN Ih = gh(0.65mhf + 0.35mhs)(V − Eh)

mhf∞ = 1/(1 + e(V+79.2)/9.78) gh = 1.5

tmhf = 1 + 0.51/(e(V−1.7)/10 + e−(V+340)/52) Eh = -20.0

mhs∞ = 1/(1 + e(V+2.83)/15.9)58

tmhs = 1 + 5.6/(e(V−1.7)/14 + e−(V+260)/43)

Leak gL(V − EL)
gL = 0.5
EL = -65.0

Table 5.1: Equations and parameters for stellate cell conductances
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Conductance
type

Equations Parameters

Na INa = gNam
3h(V − ENa)

αm = −0.1(V + 35)/(e−0.1(V+35) − 1) gNa = 35.0

βm = 4e−(V+60)/18 ENa = 55.0

αh = 0.07e−(V+58)/20

βh = 1/(e−0.1(V+28) + 1)

K IK = gKn
4(V − EK) gK = 9.0

αn = −0.01(V + 34)/(e−0.1(V+34) − 1) EK = -90.0

βn = 0.125e−(V+44)/80

Leak gL(V − EL)
gL = 0.1
EL = -65.0

Table 5.2: Equations and parameters for interneuron conductances
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Excitatory connections to SCs

Figure 5.1: Connections in Network 1. Top panels: Connections to interneurons.
Bottom panels: Connections to stellate cells. In each figure, the presynaptic neurons
are indexed along the X axis and the postsynaptic neurons are indexed along the Y
axis. The internal values represent the strength of synaptic connection, if any.
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Figure 5.2: Connections in Network 2. Top panels: Connections to interneurons.
Bottom panels: Connections to stellate cells. In each figure, the presynaptic neurons
are indexed along the X axis and the postsynaptic neurons are indexed along the Y
axis. The internal values represent the strength of synaptic connection, if any.
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