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Abstract

Circuit electromechanics and Josephson junction based superconducting qubits are two experi-
mental fields that have generated vast attention in the past decade. This thesis aims at solving
some experimental challanges in dealing with these systems. The phase noise of microwave
sources is an issue that plagues these experiments and custom built filter cavities are used to
reduce the phase noise by tuning it to a particular frequency. In this work, a system of a filter
cavity and two motors was assembled, and a program based on the Nelder-Mead minimisation
algorithm was written to tune the filter cavity to any arbitrary frequency by looking at its response
on a network analyser. Tuning with the frequency space accuracy of 50 kHz, and extinction of
around 20-30 dB is demonstrated. The second challange that was addressed was the readout of
weak signals from the superconducting devices at cryogenic temperatures. As the conventionally
used HEMT amplifiers and coaxial cables contribute to a significant heat load, we instead
implement LiNbO3 electro-optic phase modulator, connected to room temperature heterodyne
detection setup by optical fibers of lower thermal conductivity. The characterisation of the phase
modulator was done by measuring its half-wave voltage at cryogenic temperatures. Observation
of optomechanically induced transparency and parametric instability was demonstrated using
both the conventional HEMT readout as well as EOM-based optical readout.

Key words: cavity optomehcanics, circuit electromechanics, quantum engineering
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1 Introduction

The theory of quantum mechanics has been extensively studied and verified on electronic, atomic
and even ionic scale by many experiments during the 20th century. Cavity optomechanics [1]
has emerged as a novel experimental scheme that attempts to probe the quantum nature of
a macroscopic objects. In this scheme, an optical (or a microwave) cavity is coupled to a
mechanical harmonic harmonic oscillator, in such a way that mechanical position changes the
cavity length and thus the resonant frequency and the light in optical cavity exerts a radiation
pressure force on the mechanical oscillator. This scheme can be realised in many different
experiments of vastly different length-scales, examples range from microtoroids with whispering
gallery modes, photonic crystals, soft clamped membrane in the middle system, to the optical
cavities with kg-scale test masses in the LIGO experiment.

1.1 Circuit electromechanics
In this thesis, our optomechanical system of interest is a superconducting elctromechanical
device. In its quantum optical treatment, an optical cavity can simply be thought of as an
harmonic oscillator. Therefore, any electromagnetic system that can be described as a harmonic
oscillator can be treated as an optical cavity. In our case, this role of an optical cavity is played by
an LC resonator. The role of a mechanical harmonic oscillator is played by one of the capacitor
plates that has a mechanical mode. Figure 1.1 shows this schematic.

1.1.1 Classical description of Electromechanics

Let us first consider a simple LC circuit. We consider the voltage across the capacitor (VC =Q/C)
and the inductor (VL = LdI

dt ), and apply the Kirchoff’s law- VC+VI = 0. This allows us to describe
the circuit as a simple harmonic oscillator of resonant frequency of ωc =

1√
LC

. If we consider

1



Chapter 1 Introduction

Figure 1.1 – Schematic of a circuit electromechanical system. Image taken from Ref. [1]

the charge on the capacitor as the variable of interest, the equation of motion is

d2Q
dt2 =−ω

2
c Q

We can go to the complex space and reduce the above second order differential equation,
to two first order differential equations by defining a± = 1√

2C
(Q∓ i

√
LCI), where the choice

of normalisation constant 1√
2C

is chosen such that |a|2 gives us the total intracavity energy

(= Q2

2C + 1
2LI2). The resulting equations are-

da+
dt

= iωca+ and
da−
dt

=−iωa−

Since the two equations are complex conjugats of each other, it suffices to describe the system
only with one of them, so we redefine a+ = a. This formalism is highly useful, as apart from
reducing the order of differntial equation, when we go to the quantum picture, the variables a+
and a− will become the ladder operators a and a†, already familiar to us in the treatment of a
quantum harmonic oscillator.

Now if we introduce losses and consider a source that is driving the harmonic oscillator, we
can get the equation-

da
dt

= iωca− κ

2
a+
√

κexs̄eiωLt (1.1)

Where we assumed that there are two channels for dissipation, one internal (κ0) and one that
via the input-output coupling to the waveguide (κex). The total dissipation rate is κ = κ0 +κex,
and it can be shown from time-reversibility arguments that the input coupling coefficient should
be equal to

√
κex [2].

2



Introduction Chapter 1

Input-Output theory
We can solve this equation using the integration factor method to obtain an expression for the
intracavity field-

a =

√
κexs̄eiωLt

i(ωL−ωc)+κ/2
(1.2)

We will denote ∆ = ωL−ωc from here onward, as optical detuning of the drive field. Since
only the amplitude of the field is of interest, we can go to the rotating frame and rewrite above
equations as-

da
dt

=−i∆a− κ

2
a+
√

κexs̄ and a =

√
κexs̄

i∆+κ/2
(1.3)

From the same time reversibility conditions, we can also obtain the input-output relation between
the incoming wave incident on the cavity with amplitude s and the transmitted wave going out
of the cavity with amplitude t-

t = s−
√

κexa (1.4)

The transmission coefficient | ts |
2 can be obtained from the equations 1.4 and 1.2. The

transmission depends greatly on the coupling conditions of the cavity to the waveguide. The
transmission is shown in the following figure 1.2

15 10 5 0 5 10 15
Detuning (a.u.)

0.0

0.2

0.4

0.6

0.8
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Figure 1.2 – Transmission of the cavity for different conditions of the input-output coupling

This plot can be explained heuristically as follows- If the system is ‘Over-coupled’,v, then
the photons that flow into the cavity does not have sufficient time to dissipate, and are sent back
to the waveguide. If the system is ‘under-coupled’, i.e. κex� κ0, then the photons do not flow
into the cavity efficiently. If however, the system is critically coupled, i.e. κex = κ0, then we
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Chapter 1 Introduction

get that the transmission→ 0 as detuning→ 0. This condition will become important when we
discuss tuning the filter cavities in the chapter 2.

Electromechanical coupling

Now, we divert our attention to the optomechanical coupling. Let us consider that the capacitor
has a capacitance C = ε0A/d. We consider that one of the capacitor plates can execute its own
mechanical simple harmonic motion, around the relaxed position of gap distance ’d’, This in turn
changes the capacitance (C = ε0A/d + x). Thus, the resonant frequency of the circuit depends
on the position of the mechanical oscillator as

ω =
1√
LC

=

√
d + x
Lε0A

=
1√
LC

(
1+

x
d

) 1
2

= ωc

(
1+

x
2d

)
= ωc +Gx

Where we define G = ωc/2d to be the electromechanical coupling. This describes the action of
the mechanical motion on the microwave mode of the LC circuit. To describe the action of the
microwave mode on the mechanics, we consider the force on the capacitor plate, which depends
on the charge. To write it in terms of a, we use Q =

√
2C(a++a−)) to get-

Fc =−
Q2

2Cd
=−2C(a++a−)2

2Cd
=−

(a2
++a2

−+2a+a−)
d

≈−2|a|2

d
=−4

G
ωc
|a|2 (1.5)

Where the terms a2
+ and a2

− are ignored under the Rotating wave approximation, because
they are rotating with twice the microwave frequency, which is much higher than the frequency
of mechanics hence they are seen as their cycle averaged value, which is zero. The negative sign
of the force denotes that the force is attractive, i.e. it acts in the direction opposite to the positive
x axis.

We substitute this back into the (1.1) and together with an equation for the harmonic
motion of the mechanical oscillator, we obtain the set of two equations that describe our
electromechanical system-

da
dt

=−i(∆−Gx)a− κ

2
a+
√

κexs (1.6)

m
d2x
dt2 =−mΩ2

mx−mΓm
dx
dt
−4

G
ωc
|a|2 +FL(t) (1.7)

Where, ωL denotes the frequency of microwave or optical signal with which drives the cavity,
m is the mass of harmonic oscillator, Ωm is the frequency of the mechanical mode that interacts

4



Introduction Chapter 1

with the optical mode, Γm is the mechanical damping rate, FL(t) is the thermal langevin force
that satisfies the time uncorrelation condition- 〈FL(t)FL(t ′)〉= mΓmkBT δ (t− t ′).

1.1.2 Quantum model of electromechanics
The Hamiltonian of an isolated quantum optomechanical system can be written as-

H = h̄ωca†a+ h̄Ωmb†b+ h̄g0a†a(b† +b). (1.8)

where, a denotes the lowering operator for the optical resonant mode of the cavity, b denotes the
lowering operator for the mechanical resonant mode of the harmonic oscillator, and g0 represents
the bare optomechanical coupling rate.

1.1.3 Experimental setup
An ideal LC circuit has no resistance. To achieve this, we need to cool down our sample to
the temperatures where they are superconducting. To be able to do experiments that show the
quantum nature of our harmonic oscillators, we need to be able to isolate the system well enough
from the environment. For this purpose we use a cryogenic dilution refrigerator that can cool
our samples to the temperatures of about 15 mK. The figure 1.3 shows the schematic of a typical
circuit electromechanics experimental setup.

Microwave signal generators are used to send microwave tones via coaxial copper cables to
the circuit electromechanical device under test. The reflected signal is amplified by a HEMT
amplifier to detect the weak signal coming from the device. The VNA is used to measure the
response of the circuit electromechanical system and find resonances in the circuit. The ESA is
used to measure the signals scattered by the device.

1.2 Noise in circuit electormechanical experiments
In this section, the basic theory of optomechanics, notably the resolved sideband cooling of the
mechanical motion will be reviewed and the effect of the phase noise of the input optical source
will be investigated theoretically.

1.2.1 Resolved sideband cooling
When we drive our cavity with a red detuned microwave pump, the intracavity light field can
act as an additional damping reservoir and can extract energy from the mechanical motion.
To see this we need to solve the equations of motion 1.6 and 1.7. To solve these equation,
we make an assumption Ωm κ , i.e. the mechanical frequency is much greater than cavity

5



Chapter 1 Introduction

20 dB DUT

6d
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20
dB
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0.8K
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50K

300K
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+ +

Figure 1.3 – Schematic of the experimental setup for measurement of a circuit electromechanical
system. The red dashed box shows the parts of the experiment that this thesis focuses on.

linewidth. This condition is known as the “Resolved sideband” condition, due to the fact that if
a microwave tone is sent to the cavity at resonance, the mechanics modulates the phase of the
incoming light and sidebands are generated at one mechanical frequency away from the tone,
and these sidebands lie outside the cavity linewidth. Considering different timescales of the
system, the physical implication of this asssumption is that since the cavity dissipation rate is
much lower, the intracavity field does not change significantly over one period of mechanical
motion, which allows for the perturbative treatment followed. This assumption holds true for
the circuit electromechanical samples that we work with, in which the mechanical frequency is
Ωm ∼ 2π×5−10 MHz and the cavity linewidth is κ ∼ 2π×0.3−0.8 MHz.

We assume steady state condition for the mechaincal oscillator, ignore the langevin force
and assume the solution of the equation 1.7 to be x(t) = x0 cos(Ωmt). To solve the equation
1.6, we assume there to be a steady state, and a perturbation around this steady state caused by
the mechanical motion, i.e. a = a0 +a1(t). Substituting this in the equation 1.6, cancelling out
terms of a0 and ignoring the term proportional to xa1 since it is of second order in perturbation,

6



Introduction Chapter 1

we get-
da1

dt
=−iGx0 cos(Ωmt)a0− (i∆+

κ

2
)a1

Writing the cosine in terms of exponentials and solving the above eqaution by the integrating
factor method, we get-

a1 = iGx0a0

[
eiΩmt

i(∆+Ωm)+
κ

2
+

e−iΩmt

i(∆−Ωm)+
κ

2

]

where the value of a0 has been established in the section 1.1.1 to be a0 =
√

κexs̄
i∆+κ/2

.

Now we write the total intracavity field, assuming drive tone to be red detuned by one
mechanical frequency, i.e. ∆=−Ωm, resulting in

a = a0

(
1+ iGx0

eiΩmt

κ/2

)
(1.9)

The force on the capacitor plate can be given by-

Fc =−4
G
ωc
|a|2 =−4

G
ωc
|a0|2

(
1+ iGx0

eiΩmt

κ/2

)(
1− iGx0

e−iΩmt

κ/2

)
≈ 16

G
ωc

2
|a0|2x0 sin(Ωmt)

Ignoring the constant term.

Hence, we get a force acting on the mechanical oscillator, which is proportional to sin(Ωmt).
By substituting this back to the right hand side of the equation of motion for the harmonic
oscillator, equation 1.7, we can see that this force modifies the damping rate of the harmonic
oscillator -

Ftot =−mΩ2
mx0 cos(Ωmt)+mΓmx0 sin(Ωmt)+16

G2

ωc
|a0|2x0 sin(Ωmt)

In the above equation, we can see that the radiation pressure force, Fc is merely modifying
the mechanical damping factor. Hence, we can rewrite the total damping factor as-

Γtot = Γm +Γopt (1.10)

Alternatively, we can consider the power imparted by this force on the mechanical motion,
which can be expressed as 〈Pm〉= 〈Fc(t)ẋ〉. Since the Fc is positive and the derivative of x carries
a negative sign, we get the average value of the power over one cycle to be negative.

This clearly shows that the radiation pressure force due to the electromechanical coupling,

7



Chapter 1 Introduction

extract the energy from the mechanical oscillator and thus effectively “cools” it. This is known
in the literature as “Optomechanical cooling due to dynamical backaction”, since the effect can
be described as the modification of mechanical dynamics caused by a response of the optical
field to changes in the cavity size. It is also called “Resolved sideband cooling”, due to the
condition that we imposed in the derivation above.

The notion of “cooling” will be more clear if we consider the quantum picture of a harmonic
oscillator. An oscillator thermalised to its environmental temperature T will have a phonon
occupancy given by the Bose occupation factor nth = (eh̄ω/kBT −1)−1. When we drive the cavity
on the red detuned side, the anti-stokes process, in which the incoming photon absorbs a phonon
and is scattered into a photon of higher frequency, is enhanced whereas the stokes process is
suppressed. Since this causes the extinction of phonons, the phonon occupancy is lowered. In
this case, the light field can be thought of as the environment of lower temperature to which
the harmonic oscillator now thermalises. Using this technique, it has been demonstrated in
the circuit electromechanical systems [3], that harmonic oscillator can be brought to phonon
occupancies of nth ∼ 0.34 or in other words, cooled to its ground state

1.2.2 Phase noise
In the above section, we have assumed the input tone to be an ideal delta peaked wave at only
one frequency, i.e. s = eiωLt . However, this is rarely the case in any realistic experimental setting.
The microwave signal generator in our experiment, or even lasers used in optomechanical
experiments have signficant phase noise. The phase noise at one mechanical frequency away
from the tone can beat with the tone and cause the heating of our mechanical oscillator and put a
lower limit on how much we can cool the system. To see how the phase noise can cause heating,
we follow the treatment given in ref. [4].

Considering that our signal, instead of being an ideal siganl, has a phase modulation of depth
β at the frequency of one mechanical linewidth away from the tone, i.e.

s(t) = seiωLt
(

1+βeiΩmt−βe−iΩmt
)

(1.11)

Next, we again need to solve the equation 1.1 in the rotating frame to obtain the intracavity field.
Excluding the electromechanical contribution, for red detuned tone, ∆=−Ωm it can be written
as-

a = a0 +
√

κexs
βeiΩmt

κ/2
(1.12)

Assuming deeply sideband resolved regime, Ωm� κ , the expression for steady state intracavity

8
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field simplifies to a0 =
√

κexs
−iΩm

. We can now write the expression for force on the mechanical
oscillator to be -

Fc =−4
G
ωc
|a|2 =−4G

(√
κexs
−iΩm

+
√

κexsβ
eiΩmt

κ/2

)(√
κexs

iΩm
+
√

κexsβ
e−iΩmt

κ/2

)
(1.13)

=−4
G
ωc
|s|2 β

Ωm
sin(Ωmt) (1.14)

Where we have ignored the time independent (constant) terms. We can see that we get a negative
term for the force. Since it is negative, it implies that the this force reduces the value of the
damping factor Γm or alternatively, it implies that the average power imparted on the mechanical
oscillator over one cycle is positive and hence, the oscillator will be driven by this force.

Due to this reason, laser phase noise is a significant hurdle when it comes to optomechanical
cooling of the mechanical oscillators to its ground state. So much so that the calculated value
of lowest achievable phonon occupancy was n = 5000 for the experiment of [4]. This problem
needs to be addressed for effective sideband cooling of the oscillator.

As a solution to this problem of phase noise, Copper filter cavities are commonly used in
many optomechanical experiments [3, 5, 6]. These cavities are tuned specifically so that one of
their resonant modes lies exactly one mechanical mode frequency away from the microwave
tone. This results in the phase noise at the frequency ωL +Ωm being reduced to the shot noise
level of the source, depending on how well the filter cavity is tuned. In the above papers, these
filter cavities are often custom-designed and built. They also need to be manually tuned a
certain frequency each time a measurement is to be taken with the microwave tone at a particular
frequency. The aim of this project was to standardise a design for these filter cavities and
assemble a system that can make the filter cavity automatically tunable. So that every time a
measurement needs to be taken, a simple command can be given to the computer and the filter
cavity will be tuned to the desired frequency

1.3 Optical Readout of superconducting electromechanical
systems

In our experiment, the input lines to the superconducting device under test (DUT) have in total
46 dB of attenuation. After the signal interacts and reflects from the DUT, we want to detect it.
However, at the room temperature (T ∼ 293K), the thermal noise in the number of quanta for a
5 GHz signal is given by kBT/h̄ω ≈ 1200 quanta. This sets a lower bound on the strength of the
signal in number of photons that can be detected directly. In an ideal case, our goal would be to
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be able to measure signals that are quantum limited, i.e. the noise floor would correspond to
n̄th +1/2 quanta. For this reason, we need to use amplifiers, that can amplify the signal so that
thermal noise is not a limitation. An amplifier at cryogenic temperature can amplify the signal
coming from the device so much that addition of thermal noise to this signal does not matter.

Suppose we have a signal coming from the device at 15 mK stage, with the spectral density
Sââ(ω). A linear amplifier is usually characterised by two parameters, its gain G and the noise
it adds to the signal, Nadd . Quantitatively, any amplifier can be modelled in terms of spectral
densities as-

Sout [ω] = G(Sin[ω]+Nadd)

If two amplifiers of (G1,N1) and (G2,N2) are added sequentially, then the total gain and added
noise can be calculated as follows-

Sout
1 [ω] = G1(Sin

0 [ω]+N1)

Sout
2 [ω] = G2(Sin

1 [ω]+N2) = G1G2Sin
0 [ω]+G2(G1N1 +N2)

Since the value of gain is usually very high, G1N1� N2, and hence the noise in the second
amplifier does not matter.

In all experiments with cryogenic superconducting circuits, most commonly used ampli-
fiers are the HEMT (High Electron Mobility Transistors) based amplifiers. Typically, HEMT
amplifiers have around 10−15 quanta of added noise at the temperature of 3K.

1.3.1 Superconducting qubits scalability
Recent advances in superconducting quantum circuits [7–9] have highlighted the potential
associated with scaling superconducting qubit technology [10]. Currently, significant efforts are
underway to scale the number of qubits. As a result, one of the challenges that future progress in
superconducting circuits will face is to massively increase the number of microwave control and
readout lines while preserving the base temperature and protecting qubits from thermal noise.

Typically copper coaxial cables are used to connect the HEMT at 3 K to room temperature
amplifier and measurement instuments such as VNA and ESA. This leads to significant heat
load exacerbated by the high thermal conductivity of the cables. This proves to be a challange
for the developement of scalable superconducting qubit systems and the heat load per qubit
needs to be reduced.

In contrast to copper coaxial cables (> 1 dB/km), optical fibers exhibit ultralow-loss optical
propagation (∼0.2 dB/km). In addition, the thermal conductivity of silica, ∼ 0.1 W/(m K),
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makes optical fibers excellent thermal insulators compared to copper cables, which have the
thermal conductivity of the order of 100 W/(m K). Optical fibers could therefore provide a
solution to scaling the number drive lines without the adding significant heat load.

1.3.2 Optical interconnects
For this approach involving optical fibers, a critical component are modulators which convert
input microwave signals to the optical domain, that are compatible with low temperature
operation and are sufficiently efficient to ensure low noise (quantum-limited) transduction of
microwave to optical signals.

Indeed, substantial efforts are underway to create quantum coherent interfaces between the
microwave and optical domains. To date, quantum coherent conversion schemes based on piezo-
electromechanical [11, 12], magneto-optical [13], and optomechanical [14–16] coupling have
been developed. In addition, schemes based on cavity electro-optics [17] have been demonstrated
using bulk [18, 19], and integrated [20] microwave cavities coupled via the Pockel’s effect ot
an optical cavity mode. Yet, all these schemes have in common that they transduce narrow-
band microwave signals to the optical domain. While this ability is critical for future quantum
networks, an optical replacement for the currently employed HEMT amplifiers may be required
for scaling control lines. One route is therefore to use broadband optical modulators as already
used today in telecommunication networks.

In this project, we explore this potential to replace the HEMT amplifier with a LiNbO3-
based optical phase modulator (PM), in order to directly transduce the DUT microwave output
signal onto sidebands around the optical carrier field, detectable using standard homodyne or
heterodyne detection schemes at ambient temperatures. In contrast to electrical amplifiers,
electro-optical modulators require no electrical power and can operate with low optical loss. The
dependence electro-optic effect and optical loss on temperature, down to 600 mK is investigated.
The electro-optic transduction is also demonstrated at low temperatures to show the effective
transduction of microwave signals into optical signals, to observe the electromechanical effects
via optical detection.
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2 Filtering the phase noise

As has been elaborated in the previous chapter, the phase noise of the microwave sources is of
great concern in the circuit electromechanical experiments. In this chapter, I will investigate this
phase noise, describe the design and characterisation of the copper filter cavities that we use
to filter out the phase noise at desired frequencies. I will describe the automation of the task
of tuning the filter cavities and various algorithms used to achieve it, as well as the mechanical
modifications of the system.

2.1 Phase noise of the microwave sources
In this section, the phase noise of the microwave sources used for the circuit electromechanics
experiments will be investigated. For this purpose, I use an a Rhode & Shwarz Signal and
Spectrum Analyser (FSW-26), that provides the phase noise measurement. The microwave
source used here is Keysight MXG X-Series Signal Generator N5183B, and we generate a
microwave tone at ω = 2π×5 GHz and 10 dBm in power.

When a microwave tone of frequency ω is sent to the FSW via a coaxial cable, the FSW
locks onto the tone and follows long-timescale deviations in the frequency and the amplitude of
the tone so as to accurately measure the spectrum of noise around the range of a few MHz in
the frequency domain. The FSW can independently measure the total noise and phase noise by
rejecting the amplitude noise. The figure 2.1 shows the noise characteristics of our source.

2.2 Tunable filter cavity
For the purpose of removing the phase noise of the source at a given frequency, cylindrical
copper cavities are commonly used in experiments [5, 6]. The microwave tone from the source
is sent through a circulator to the filter cavity. If the frequency of the incoming signal is off-
resonant, the signal is simply reflected. If however, the signal is of resonant frequency, there is
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ESA

Figure 2.1 – Total noise and the phase noise of the microwave source around the tone of
frequency 5GHz

constructive interference inside the cavity and the energy of the signal is stored in the cavity.
Now, there are two channels of disspiation for this energy, one is through the internal losses of
the cavity κ0 and one is via the input-output coupling of the cavity to the microwave waveguide
κex. If κ0 < κex, then it means that the energy is not dissipated sufficiently fast from the cavity
via the internal channel and it is just sent back to the waveguide. If on the other hand, κ0 > κex,
it means that most of the signal is not entering the cavity at all and it is only getting reflected.
Hence, for the maximum absorption of our signal, the critical coupling condition κ0 = κex has
to be achieved. Hence, for the accurate tuning of the filter cavities, two parameters have to be
optimized- resonance frequency ωk (of an arbitrary ‘k’th mode) and external coupling rate κex.

We designed a system of a cylindrical copper cavity with a movable piston and two motors.
The first motor is connected to a linear stage which can move in a single direction up to a
distance of 50mm. (Zaber motorised linear stage X-LSM050A). This motor is connected to the
piston that fits inside the cylindrical cavity with a few Thorlabs optomechanical components.
This setup allows us to change the length of the cavity and thus change the frequency of the
resonant modes of the cavity. The rendering and a picture of the filter cavity setup is shown in
the Figure 2.2.

The microwave signal is fed into the cavity by means of a small copper cable that acts as an
antenna. The antenna is designed so that it makes a small angle with respect to the axis of the
cylinder and its base is away from the center of the circular cross section of the cylinder. The
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(a) (b)

Figure 2.2 – Rendering and picture of the setup: (a) shows the SolidWorks rendering of the
cross section of the filter cavity. (b) shows the actual image of the setup

second motor (Trinamic stepper motor PD42-1-1140) is used to rotate the antenna, such that its
tip follows a circular path inside the cavity. Turning the motor to rotate the antenna allows us to
control the external coupling rate κex of the cavity to the microwave waveguide.

The schematic of our experimental setup is shown in the 2.3. For measuring and tuning the
filter cavity, the microwave source is kept off and only look at the response of the filter cavity
using the Rhode & Shwarz Vector Network Analyser (ZNB20). The amplitude of the scattering
parameter (S21) shows a dip at resonant frequencies and it’s phase shows a sigmoidal curve
described by the input-output theory. The VNA trace is read by the computer running a python
script, and according to the algoritm described in the next section, moves the two motors to tune
the filter cavity to desired frequency.

2.3 Need for automation

In many optomechanical experiments, such as ponderomotive squeezing [21], the frequency of
optical source is varied around the cavity frequency by the order of few MHz. Optomechanical
squeezing below the shot noise level is observed as a dip at the frequencies when the detuning
is equal to the frequency of the mechanical mode. Now if we want to do these detuning
sweeps, everytime we change the frequency by a small amount (order of ∼ 1 MHz), we need
to tune the filter cavity at one mechanical mode frequecy away from the microwave tone. In
the previous manual design of the filter cavity, tuning it by hand, places a lower limit on how
fine a detuning sweep we can do and how many data points we can obtain. To get rid of this
constraint, an automisation algorithm is required so that for every data point, the algorithm takes
the corresponding frequency at which the phase noise should be knocked out as the input and
then tunes the filter cavity to this frequency without need of any manual setting.
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ESAVNA

DUT
+

+ +

Figure 2.3 – Schematic of experimental setup for charachterisation of the filter cavity. Dotted
lines indicate the configuration to be used for filtering noise in the circuit electromechanical
experiments performed on the ‘DUT’ at cryogenic temperatures

2.4 Cavity design
By solving the Maxwell’s equations for the cylindrical cavity, the dependence of frequencies of
various resonant modes on the length and radius of the cavity can be found to be-

ωnlm = c

√(
αnl

R

)2

+

(
mπ

L

)2

(2.1)

Where,c is the speed of light, αnl is the l-th zero of (the derivative of) the order n Bessel function
of first kind (J′n)Jn for the (TE) TM mode, R is the radius of the cylindrical cavity and L is the
length of the filter cavity. Just as TE and TM modes have different frequencies, they also have
a field distribution that signify constructive and destructive interference of incoming waves.
These distributions are often axially symmetric, and this is exactly the property exploited while
designing the antenna to be off-center.

2.5 Characterisation
We wanted to know within the frequency domain of our interest, i.e. 4 GHz - 9 GHz, where the
resonant modes of the cavity are situated, and how do they move upon changing the length of the
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cavity. We can see from the figure 2.4 (a) that the frequency of a resonant mode increases with
decreasing the length of the cavity, and the functional dependence matches the theoretical values
obtained by Equation 2.1. Next, we use the algorithm for detecting resonances, as described in
the previous paragraph, and apply it to this data and the results are shown in the figure 2.4(b).
We can also compare this result with the length dependence of resonant frequencies given by
equation 2.1 and we can see in figure 2.4(b) that our results match quite well with the theory,
and most of the resonances detected sharply are always TE modes.

Figure 2.4 – Characterisation and performance of the filter cavity (a) Shows the Reflection,
i.e. S11(ω) response of the filter cavity as the length of the cavity is changed. The resonances
detected by our algorithm are shown as red dots() in (b) and we compare these with the theoretical
dependence of the mode frequencies on the length where dark blue lines indicate TM mode and
light blue lines indicate TE mode.

Next, we use the algorithm for detecting resonances, as described in the previous paragraph,
and apply it to this data and the results are shown in the figure 2.4(b). We can also compare this
result with the length dependence of resonant frequencies given by equation 2.1 and we can see
in figure 2.4(b) that our results match quite well with the theory, and most of the resonances
detected sharply are always TE modes. This can be attributed to the fact that our antenna, being
an open circuit, creates a large voltage and couples strongly into the TE mode. Whereas since
the circuit is not closed, we do not have a strong flow of current and therefore weak coupling
into the TM modes.
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The first step for automatising this task is to find a way to detect the resonances within any
trace obtained from a VNA. From the input-output theory for a coupling between a wave-guide
and a resonator, we know that the phase response of the cavity around one of its resonant modes
shows a sigmoidal curve in the frequency space. If we take a derivative of this sigmoid, we will
see a sharp peak in the slope of the curve at the resonance frequency. We use this fact to detect
if there are any resonant modes in a certain range of frequencies.

2.6 Brute force algorithm for Tuning
It can be noticed from the nature of the Figure 2.4(a) that there are many possible positions
at which a resonant mode crosses a particular frequency. At some frequencies there are mode
crossings and some resonant modes are too undercoupled that a desired level of noise filtering
cannot be achieved. Due to these reasons, we manually select which resonant mode is ideal for
fitting for different frequency ranges and make a "Lookup table", so that given a frequency, the
table outputs a value of length of the filter cavity corresponding to the resonant mode that should
be fit to this frequency. The Zaber motor then sets the length and we obtain a resonant mode
in the vicinity of our desired frequency, in the frequency domain. Then we use a fine tuning
algorithm to set the modes with a greater accuracy to the frequency we desire.

The fine tuning algorithm involves both motors of the system and turns them in an iterative
fashion. We run the Zaber linear motor in a simple proportional feedback in order to minimize
the error between the desired frequency and the point corresponding to the minimum depth
within the span of the VNA, which is usually set to 100 MHz. The algorithm for changing the
external coupling of the filter cavity works in similar fashion. We first scan the angular position
of antenna by 2π radians so that it covers all the possible positions and note the maximum depth
attained at each position. Next, we set the motor roughly back to the position which gave us
the maximum depth. This does not work perfectly as there is some non-rigidity in the antenna
so that it may not perfectly come back to the position that resulted in the maximum extinction
previously. Due to this we need to run a further feedback loop that measures the depth, turns the
motor in one direction by a predefined step, keeps going in the same direction if the depth has
increased and turns in the other direction, while reducing the step size if the depth has decreased.

2.6.1 Tunability with the brute force algorithm
For the application mentioned in the section 2.3, we need to be able to tune the resonances
of the filter cavity to multiple desired frequencies in a relatively small range of 1-10 MHz.
The algorithm described in the previous section 2.6 was tested to check if it is suffices for this
purpose at example frequencies around 6.4 GHz.
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Another test of the system + algorithm would be how accurately it can tune to a frequency.
To obtain statistical data on the tunability, the algorithm was run over 1000 iterations to tune the
filter cavity between two frequencies 5.125 GHz and 5.130 GHz. After the algorithm terminates,
we take the complex scattering data from the VNA and use the circlefit algorithm [22] to estimate
the resonance frequency and the external coupling rate of the fitted resonances. We then plot a
histogram in frequency to see how well our algorithm performed. Figure 2.6 shows the resulting
histograms.

We estimate the mean and standard deviation of all the fitted resonances, which is also shown
in the plot. The mean is less than 2 kHz away from the desired frequency, which represents
the maximum possible accuracy of the system and twice the value of the standard deviation
represents the precision with which the system can be tuned. The accuracy and precision of
the system are dependent on the minimum step size of the Zaber Linear stage motor as well as
the mechanism that connects the motor to the piston of the filter cavity. It was observed that
the motor,when it is moved by a very small amount, cannot exert sufficient force on the piston
to overcome the static friction between the piston and the walls of the cavity. To overcome
this issue, we sprayed the walls of the piston with a Teflon spray, to reduce this friction. The
results in the figure 2.6 are after the addition of the Teflon spray. It should also be noted that the
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Figure 2.5 – Fine tunability of the system: By using the brute force algorithm, the filter cavity
system was tuned to multiple frequencies in the range of 10 MHz, in the steps of 0.5 MHz.
Shades of blue are used to distinguish between each individual traces of the VNA response of
the system S21
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Figure 2.6 – Accuracy and Precision of the tuning: The filter cavity was repeatedly tuned to
two frequencies by running the algorithm, and after each instance of the program running, the
resonance frequency was estimated. This figure shows the histogram of the estimated frequencies
at (a) 5.125 GHz and (b) 5.130 GHz. The black line indicates the mean of the histogram and the
grey area represents the standard deviation.

histogram in Figure 2.6 (a) appears to be somewhat bimodal as compared to Figure 2.6 (b). This
reflects the fact that the motor can only move in finite steps and not continuously.

2.7 Filtering the phase noise
Next we use an Spectrum analyser to measure the phases noise of our system. Instead of simply
measuring in the system in reflection (S11), we now add a circulator to the filter cavity and
measure transmission, so that we can send in a microwave signal and then estimate how the
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filter cavity modifies it. We use the microwave source Keysight N5183B, we can quantify the
phase noie of this source using the spectrum analyser (R&S FSW26).

We send a microwave signal at ωL = 2π×6.4 GHz and Figure 2.7 shows phase noise upto 10
MHz away from this signal. We run the algorithm to tune the filter cavity at different detunings
starting from 1 MHz in the steps of 0.5 MHz. The resulting spectrum of noise power is shown
in the 2.7 and we can see that as much as 10 dB of extinction can be achieved in the phase noise
spectrum at the desired frequency.
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Figure 2.7 – Phase noise filtering A microwave tone was sent to the filter cavity at ωL = 6.4
GHz and while running the same scan as 2.5, the phase noise around the tone was also measured.

2.8 Failure of the brute force algorithm
There are several cases when the algorithm fails to give us an accurate result -

Whenever there are two resonances in the VNA trace around the desired frequency where the
filter cavity is to be tuned, our algorithm fails. This is because it cannot distinguish between the
two resonances and at every iteration chooses to fit one which is deeper at the moment. Which
results in the two resonances being chosen randomly and hence the algorithm does not converge.

The second reason is that even in the cases that the algorithm converges, it does not neces-
sarily converge to the minimum that we want. The reason behind this can be considered from a
graphical representation. If we consider tha parameter space of the two independent parameters-
the length of the cavity and angular position of the antenna, and plot a function that returns the
depth at the frequency of interest, we get the following plot-
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Figure 2.8 – Parameter space: Figure shows the extinction of the microwave signal sent at the
frequency of interest.

We can see that in this parameter space, our algorithm always moves along one of the
two parameter axes as we always tune the two parameters one after the other, for 3 iterations.
However, this is not at all an efficient or mathematically rigorous way of finding a minimum of a
function and it does not guarantee that the minimum will be reached. Not only that but even the
function that we want to minimize is not a smooth funuction but has very sharp localised peaks.

To solve these two issues, we define a new “Cost function” that we are interested in
minimizing-

C(ωk,D) =

(
ωk−ω

Eω

)2

+

(
D
ED

)2

(2.2)

where, ω is the frequency of interest to which we want to tune the filter cavity, ωk is the
frequency of the resonant mode detected by the peak detection algorithm in the vicinity of ω ,
and D is the depth of this resonance in the amplitude of the scattering parameter, in linear scale
and not our usual dB units. Eω is the minimum value of the error in the frequency that we want
to achieve, and ED is the minimum value of the depth that we want to achieve. The values taken
in implementation are Eω = 2π×10 kHz and ED = 10−3 or 30 dB in the logarithmic scale.

Defining the cost function in such a way ensures that it is smooth and has a non zero value of
gradient over a large range in parameter space so that our minimisation algorithm can smoothly
descend down this hill, as opposed to looking for a small pit in a large field, which was the case
in the previous implementation.

(Note: I had intended to make a plot of the newly defined cost function similar to the figure
2.8, but I could not take this measurement as the lab was closed due to the coronavirus epidemic)
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2.9 Nelder-Mead algorithm
There are many optimisation algorithms avaliable in the literature for minimizing a function.
We need to focus our attention on ‘gradient free’ algorithms as it is not possible to change the
parameters by extremely small amount and estimate the derivative of the function, so we have to
rely only on evaluating the cost function.

One such algorithm is the Nelder-Mead algorithm, named after its creaters. This algorithm
proceeds by starting out with a ‘simplex’, i.e. a set of points, of size N + 1, where N is the
number of dimensions of the parameter space (2 in our case). It evaluates the function at all
N + 1 points and calculates the centroid of all these points. Then, it changes the point for
which the function is maximum to a new point, depending on calculated according to a series
of conditional reflection, expansion, contraction and shrinking of the polygon formed by the
simplex. More details on this algorithm can be found in [23, 24].

The Nelder-Mead algorithm is implemented in the SciPy library’s Optimize.minimize
function. We use this implementation to minimize the cost function defined in Equation 2.2. For
every iteration of the algorithm, the cost function is evaluated several times, by taking the trace
of the VNA, and using the peak finding algorithm to get the resonance frequecies of the modes
ωk in the vicinity of ω0. The depth is taken simply as a difference of the deepest point from the
average of the response in the region of frequencies where there is no resonance. For the intial
simplex, the three points in parameter space are chosen in the following way- we first use the
lookup table to set the resonnace in the vicinity(∼200 MHz) in the ω0, This gives us one value
of position of the linear motor. Then we start scanning the angular position of the antenna, and
stop when we get a depth of a resonance to be equal to −25 dB. We thus obtain a point (x1,φ1),
and then we can obtain other two points by moving along to parameters once independently, i.e.
(x2,φ2) = (x1 +1mm,φ1) and (x3,φ3) = (x1,φ1 +30◦).

2.9.1 Tunability with the nelder mead algorithm
Figure 2.9 illustrates the performance of our algorithm over coarse tuning. The filter cavity
system was tuned to the frequencies in the range of 4.5-8.5 GHz in steps of 250 MHz. It can be
seen that the algorithm can successfully tune to the depth of >20 dB.

In contrast, we are also interested in investigating the performance of the algorithm over fine
tuning. The filter cavity system was tuned to multiple frequencies in the range of 20 MHz, in the
steps of 0.5 MHz. It can be seen that the algorithm can successfully tune to the depth of >20 dB.

To check if the algorithm is successful, we repeat the measurement in the figure 2.9, over 20
itereations to see how robust our algorithm is.
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Figure 2.9 – Coarse tunability of the system with Nelder-Mead algorithm Shades of blue
are used to distinguish between each individual traces of the VNA response of the system S21.
Red dots indicate the depth at the desired frequency

4.700 4.704 4.708 4.712 4.716 4.720
Frequency (GHz)

50

40

30

20

10

0

Am
pl

itu
de

 (d
B)

Figure 2.10 – Fine tunability of the system with Nelder-Mead algorithm Shades of blue are
used to distinguish between each individual traces of the VNA response of the system S21. Red
dots indicate the depth at the desired frequency.

2.9.2 Benchmarking the Coarse tunability
In contrast to the extinction, which is of practical importance but has no physical meaning, we
consider estimating the Q factor of the resonances in the figure 2.11. To find the Q factors, we
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Figure 2.11 – Coarse tunability of the system over 20 iterations This plot shows the extinction
achieved at the frequency of interest.

use the circlefit algorithm [22] to fit the cavity with the function given by the equation 1.2. This
fitting procedure gives us the values of resonant frequencies (ωc) and the cavity linewidth (κ).
Q factor can then be determined simply as the ratio-

Q =
ωc

κ
(2.3)
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Figure 2.12 – Q factors of the fitted resonances Q factors of the various resonances tuned to
the frequencies in the range of 4.5-8.5 GHz in steps of 250 MHz.

The values of the quality factor measured in our experiment can be compared to the filter
cavities of [25]. We have acheived quality factors of the order of 2000-6000. It should be noted
that the higher quality factors of [25] must be attributed to the fact that their filter cavities are
kept at cryogenic temperatures that improve the loss.

25



Chapter 2 Filtering the phase noise

2.10 Conclusion
To conclude, I was successfully able to write a program that can tune the frequency of the filter
cavity with the precision and accuracy of 50 kHz in wide range of frequencies from 4.5 GHz
to 8.5 GHz. This instrument will be useful in the future experiments such as optomechanical
ponderomotive squeezing of microwaves, as well as experiments with superconducting qubits.
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3 Optical readout of cryogenic supercon-
ducting systems I

In this chapter, I will outline the experiment carried out in the lab to measure signals from a
superconducting electromechanical device, by converting the microwave signal to the optical
domain using a LiNbO3 electro-optic phase modulator kept at the temperature of 3 K inside a
cryogenic dilution refrigerator. My contributions to the experiment in terms of charachterisation
of the phase modulator as well as an amplitude modulator at low temperature are highlighted.

3.1 Lithium-Niobate modulators
The second order nonlinear optical susceptibiliity χ(2) of the LiNbO3 crystal gives rise to the
liner electro-optic effect, where the refractive index of the crystal is modified depending to the
applied electric field. [26]

The refractive index for the light wave travelling in a certain direction is given by taking a
cross section of the index ellipsoid defined by the displacement vector. The different points on
the ellipse thus obtained correspond to the refractive index for a particular polarization. On the
application of an electric field, this index ellipsoid is modified depending on the electro-optic
coefficient tensor ri j. As LiNbO3 is anisotropic, it has well defined crystal axes. The largest
component of this tensor is r33, and thus, an arrangement in which the light will propagate along
y-axis of the crystal and the applied electric field is along the z-axis is desirable for the most
effecient modulation of the signal. The modulators can be x-cut or z-cut, where cut defines the
crystal direction perpendicular to the surface on which electrodes are placed.

The half wave voltage, or Vπ is defined as the voltage that induces a phase shift of π . It is

INote: Contents of this chapter have been submitted for publication titled, “Cryogenic electro-optic interconnect
for superconducting devices”, Youssefi A., Shomroni I., Joshi Y.J., Bernier N.R., Uhrich P., Lukaschuk A., Qiu L.,
and Kippenberg T.J.

27



Chapter 3 Optical readout of cryogenic superconducting systems

given by the following relation-

Vπ =
d
L

λ

2r33n3Γ

where d is the electrode gap, L is the total length of the electrodes along the waveguide, λ is the
wavelength of the optical carrier, r33 is the electro-optic coefficient of Lithium Niobate along
the direction, n is the ordinary refractive index of the Ti doped waveguide, and Γ is the overlap
integral for the electrical and optical fields. The formula makes intuitive sense in following ways-
shorter the eletcrode gap, higher will be the electric field and it will modulate the refractive
index strongly; Longer the distance over which the phase shift is induced, shorter the potential
required to obtain the same phase shift and so on.

The lithium niobate electro-optic modulators can be of two types- a phase modulator or an
amplitude modulator. Consider an optical signal Aeiωt . A phase modulator has a single optical
waveguide and a phase of eiφ is imparted to the optical signal to give Aeiωt+iφ , where the phase
depends on the applied electric voltage as- φ = π

V
Vπ

. An amplitude modulator is essentially a
combination of two phase modulators, where the incoming optical signal is split into two paths
and one is imparted a phase change of eiφ and the other a phase change of e−iφ . When the two
paths are recombined, we get the resulting optical signal to be =Aeiωt(eiφ +e−iφ )= A

2 cos(φ)eiωt .
As the amplitude modulation results from interfering the two signals, this design is also termed
as ‘Mach-Zehnder modulator’ after the famous experiment.

Previous experiments have investigated the temperature dependence of the electro-optic
coefficient and the refractive index of LiNbO3 [27], and show that the value of r33 decreases
on cooling. Commercial LN modulators were also tested in the cryogenic environment in Ref
[28] and [29]. The Vπ of x-cut modulators was measured down to temperatures of 10K and
it was shown to increase by 12% from its value at room temperature. Authors of Ref [30]
discuss behaviour of LN modulators with superconducting electrodes down to 4K and report
a slight increase in Vπ on cooling. However, no such devices have been tested in a cryogenic
environment to readout a superconducting system. This was the main focus of the project being
carried out in the lab. However, it was also necessary to repeat the measurement of the Vπ and
make sure that we obtain the similar results as obtained previously.

3.2 Experimental setup
Figure 3.1 shows the complete schematic of our experimental setup. Signals generated by a
Keysight N5183B signal generator are sent to the device under test via microwave coaxial lines
embedded with cold attenuator. The reflected signal from the electromechanical device is split
into two. One signal is detected via the conventional measurement chain with the HEMT and
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room teperature amplifiers. The second signal is sent to the EO phase modulator kept at the 3 K
flange of the dilution refrigerator. The optical fibers from the fridge are connected to the optical
fibers outside the fridge via vacuum compatible optical feedthroughs.
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Figure 3.1 – Electro-optic readout of a superconducting electromechanical system Experi-
mental scheme to measure the superconducting scheme

3.2.1 Heterodyne detection
Next we need to detect this signal which has peaks at frequencies of ωL,ωL +Ω, and ωL +Ω in
its power spectral density. However, photodiodes can measure signals fluctuating at such high
optical frequencies. Therefore we need to mix down our signal to low frequencies. For this
purpose, we interfere our signal with a local oscillator of frequency ωL +

Ω
2 +δ . This gives us

two beat signals- between the laser tone and the local oscillator of frequency Ω
2 +δ and between

the phase modulated sideband and the local oscillator of frequency Ω
2 −δ . These beat signals

are detected by a single photodetector for the case of Vπ measurement and a pair of balanced
photodetectors for the case of optical readout experiments where an improved SNR is desirable.

3.2.2 Pound-Drevor-Hall frequency locking
In order to generate the local oscillator at a frequency of ωL +

Ω
2 + δ , which in our case is

about ∼ 2.5 GHz away from the laser frequency, we need to modulate the laser light so that
it generates sidebands. For this purpose we again use a electro-optic phase modulator, Ixblue
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MPZ-LN-10, and drive it with a microwave tone of the frequency Ω
2 +δ . The phase modulator

generates the sidebands of the laser and we consider the power spectral density of this signal
after passing through the modulator, we will see peaks at the frequencies ωL, ωL +

Ω
2 + δ ,

and ωL− Ω
2 − δ . However, in the local oscillator we only want a signal at the frquency of

ωL +
Ω
2 +δ , so for this reason we need to eliminate other two peaks from the signal. Hence we

use an optical piezo-electric filter cavity (Micron Optics FFP-TF2 Tunable Filter), which we
measure in transmission so that when the length of the filter cavity matches the optical sideband
of interest, we get maximum transmission of power and other signals destructively interfere
inside the cavity. However, this signal is not stable. Due to thermal and mechanical fluctuations,
the length of the filter cavity is never constant and can easily change by small amounts of the
order of few linewidths. To stabilize this system so that we get a constant amplitude local
oscillator, we use following scheme termed the “Pound-Drevor-Hall” frequency locking [31].

The optical filter cavity has a BNC input so that the piezo inside can change the length of the
filter cavity according to the voltage that is applied. If we now have a way to detect exactly the
natural fluctuations of the cavity then we can appropriately apply the right voltage so as to cancel
these fluctuations precisely. For this purpose, we detect the reflected signal with a photodiode
and we feed it to a lockbox (New Focus LB1005 Servo controller) to generate an error signal.
As has been established previously, the amplitude dip of an optical cavity is symmetric around
resonance. Hence to know whether the frequency fluctuation of the laser is above or below the
cavity frequency, we need to measure the phase of the reflected signal. This is done effectively
by generating upper and lower sidebands of the laser beam using a phase modulator, as has been
described before and the error signal can be generated by the interference of the sidebands with
the carrier. In standard PDH scheme, we lock our laser signal to maintain the error signal at the
carrier frequency to zero, but in this case, since we want our local oscillator to be at the upper
sideband, we lock to this upper sideband. This gives us a stable local oscillator at the frequency
ωL +

Ω
2 +δ .

3.3 Measurement of half-wave voltage
Consider an optical signal, coming from a laser of the frequency ωL. In our case, we use a NKT
Kohreas laser, of the wavelength 1550 nm. The signal of the laser can be described as a classical
wave of a constant amplitude-

E(t) = AeiωLt

This signal is sent through an electro-optical phase modulator (EOM), in our case a commercial
Thorlabs LN65-10-S-A-A-BNL, of 10 GHz microwave bandwidth. We send a microwave tone
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of the frequency Ω to the microwave port of the EOM, in our case using a microwave source
Keysight N5183B and at ω = 5GHz. This can be described by the The refractive index of the
material and therefore the phase of the signal is modulated according to this microwave signal
in the following manner-

E(t) = AeiωLt+ iπ
Vπ

V (t) = E0(t)e
iπ
Vπ

V (t)

Where V (t) is the applied microwave voltage on the electrodes of the EOM and π

Vπ
denotes

the modulation depth. Let us consider that we are driving the EOM with a microwave tone of
frequency Ω. We consider V (t) =V0 cos(Ωt)

E(t) = E0(t)e
i π

Vπ
V (t) ≈ E0(t)

(
1+

iπV0

2Vπ

(eiΩt + e−iΩt)

)
Where we have assumed the drive voltage amplitude (V0) to be much smaller than the

half-wave voltage. This is justified as the power in the signal coming from the superconducting
devices is usually several orders of magnitude lower than the Vπ of the EOMs. The simplified
equation shows that the EOM creates two phase modulated sidebands, which are equal to one
microwave drive tone frequency away from the laser carrier frequency, and the ratio of their
amplitude to the amplitude of the carrier, the so called ‘modulation depth’ can be given by-

β =

(
πV0

2Vπ

)2

(3.1)

We can measure the modulation depth β , and from that we can infer the Vπ of the system
using the following formula-

Vπ =
π

2

√
2ZPΩ

β
(3.2)

where, Z denotes the charachteristic impedence of the microwave circuit, which in our case
is equal to 50 Ohms. It should be mentioned that this is due to the fact that the manufacturer of
the EOM has added a 50 Ohm termination at the end of the microwave circuit of the EOM. PΩ
denotes the power of the microwave signal at the EOM.

3.3.1 Caliberation of Microwave power reaching the EOM
To measure the Vπ of our system accurately, we also need to estimate the power of the microwave
tone reaching the phase modulator inside the dilution refrigerator. It is slightly less than the
power at the microwave source because the coaxial cables that go into the fridge have some
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losses. To maintain generality, we assume that these losses are temperature and frequency
dependent.

As a first step, the Insertion losses at the room temperature can be explicitly measured when
the refrigerator is opened. Instead of connecting to the microwave source, we connect the input
coaxial cable to the port-1 of the VNA. A sufficiently long coaxial "calibration" line is connected
from port-2 of the VNA to the input coaxial cable at the EOM. Now we measure the S21 response
of the input line + calibration line. Let us denote this frequency dependent attenuation by α1(ω),
in the units of dB. Next the calibration line is connected between the two ports of the VNA and
it gives us the attenuation α2(ω). Now, we can infer the attenuation of the input line to the EOM
simply as-

αinput(ω) = α1(ω)−α2(ω)

where all values are in dB scale. Figure 3.2 (a) shows the attenuation of the input line thus
infered at the room temperatutre.

(a) (b)

Figure 3.2 – (a) shows the insertion loss in the input line to the EOM as a function of frequency
at room temperature. (b) shows the attenuation in the temperature calibration chain as a function
of temperature at 5 GHz

Next we need to know how the attenuation in the coaxial cables depends on the temperature.
For this purpose, we take two a additional lines at the same 3 K stage of the dilution refrigerator
that are identical to the input line that goes to the EOM. We connect these lines to each other at
the 3 K stage and we connect the other two ends at the VNA so that we will effectively measure
the attenuation of this ‘Temperature calibration chain’. We keep taking the VNA traces as we
cool down the the refrigerator, so that we can know the temperature dependence of the the
insertion losses in this line and from that we can infer how the attenuation of the input to the
EOM changes with the temperature. Figure 3.2 (b) shows the attenuation of the temperature
calibration chain as the temperature of the 3 K stage goes from room temperature down to 3 K.
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Figure 3.3 – The insertion loss in the input line to the EOM at 3 K stage as a function of
temperature

We can measure the percentage change in the insertion loss of two lines and we assume that the
change in the insertion loss of the input line of the EOM changes exactly by this percentage.
Quantitatively,

αinput(T ) = αinput(Troom)

1+
αtc(T )−αtc(Troom)

αtc(Troom)

 (3.3)

Where αinput(T ) denotes the insertion loss of the input line to the EOM at any arbitrary
temperature ‘T’, Troom indicates the room temperature, and αtc indicates the insertion loss of the
temperature calibration chain. Thus, the inferred attenuation in the input line is plotted in Figure
3.3-

And hence, we can accurately estimate the microwave power received by the EOM while
doing the experiment to infer the Vπ by measuring the modulation depth.

3.3.2 Temperature dependence of the half-wave voltage
We use the calibration data obtained in the figure to estimate the power reaching the phase
modulator at 3 K stage. We measure the modulation depth β using the heterodyne detection
scheme explained previously and also depicted schematically in the Figure 3.5 (a). Thus we now
have all the variables needed to measure the Vπ of the EOM. For each measurement, we measure
the modulation depth at several powers and then perform linear regression to fit the modulation
depth and power. The Vπ is extracted from the slope of this line. We repeat this measurement
over and over again, starting from room temperature and we cool down our dilution refrigerator
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Temperature (K)

Figure 3.4 – Continouse measurement of Vπ as the temperature is lowered. The inset shows the
data around 1 K. The minimum temperature at which the Vπ is arund 600 mK

to its base temperature. Since for this measurement, we mount the EOM at the so called 800 mK
stage of the dilution refrigerator, whose temperature can indeed be lowered further til 600 mK
by turning off the still heater responsible for keeping the temperature and the flow of Helium
stable. Figure 3.4 shows the result of this measurement.

We can see that the Vπ of the EOM decrases slightly with the temperature, i.e. we get
improved performance. This result agrees with the previous reports [28–30] that the EOM
survives and functions at the cryogenic temperatures and that the Vπ does not change drastically,
i.e. it is not affected by any phase transitions at the temperatures til 600 mK. However, a
significant difference between the previous results and our result is that they show that the
Vπ increases as we decrease the temperature and in our case, it increases as we decrease the
temperature. The increase is justified by the fact that the r33 decreases on decreasing the
temperature. This apparent discrepancy remains unresolved.

3.3.3 Frequency dependence at cryogenic temperatures
Once we cool down our system to the minimum temperature of 600 mK, we change the
frequency of the drive tone over the range of 3-8 GHz, which is usually the frquency range for
electromechanical systems as well as superconducting qubits. Figure 3.5 (b) shows the low
temperature dependence of the Vπ on the frequency of drive tone.
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Figure 3.5 – (a) shows the scheme for measuring the Vπ (b) shows the dependence of the Vπ on
frequency of the drive tone at cryogenic temperatures of 600 mK

3.4 Investigating heating due to Optical power dissipation
To assess the viability of using an electro-optic phase modulator at the 800mK stage of a dilution
refrigerator, we need to make sure that the Optical power dissipated by the EOM due to the
tranmission loss does not cause significant heating of the system and thermalise at a unusually
higher temperature. The optical input power sent to the EOM was increased over time and
the resulting change in the temperature was observerd, allowing a thermalisation period of 20
minutes.

(a) (b)

Figure 3.6 – (a) shows the time trace of temperature as power is changed in steps after every 20
minutes. (b) shows the thermalised temperature of the 3 K, 800 mK and 15 mK stages of the
dilution refrigerator as the optical input power to the phase modulator kept at 800 mK stage is
varied.
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Figure 3.6 shows this effect due to optical heating. It can be seen that at the 800 mK stage,
the dissipated optical power causes heating in the order of 10s of milikelvin and it increases
linearly with the power. It is noteworthy that this does not cause any heating at the base of the
refrigerator where the superconducting samples are kept. This is an important result that shows
that, from an engineering point of view, the dilution refrigerator is compatible with the operation
of phase modulators at the 800 mK stage. This implies, assuming that they each operate at 1mW
input power, at least upto 40 phase modulators can be kept inside the fridge at the 800 mK stage
and consequently 40 superconducting devices (for eg. qubits) can be optically read out.

3.5 Performance of an Amplitude moduator at cryogenic tem-
peratures

As mentioned before, a Lithium niobate electro-optic modulators can either be a phase modulator
or an amplitude modulator. We have already investigated the behaviour of the phase modulator.
So now we would like to see what would be the effect of cooling down to cryogenic temperatures
on an amplitude modulator.

An amplitude modulator also has an additional input called bias voltage. Because in a
Mach-Zehnder geometry, the two optical path lengths cannot always be matched to the accuracy
of the wavelength of the light, we might get constructive or destructive interference of the two
waves depending on the phase difference in two paths. If we want ideal amplitude modulation,
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Figure 3.7 – The insertion loss of the amplitude modulator as it is cooled down to cryogenic
temperatures.
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this phase difference due to mismatch in path lengths should be made zero. For this purpose, an
additional electrode is placed on one of the interferometer arms in order to change the phase of
one path so that we can get rid of the phase mismatch. While conducting the experiment we
need to change the bias voltage so that we get the maximum transmission of the optical signal.

We mount the amplitude modulator at the 3 K stage of the dilution refrigerator. After setting
the correct bias voltage, we start cooling the dilution refrigerator and measure the transmission
of the modulator as the temperature changes. Figure 3.7 shows the insertion loss, i.e. the ratio of
output optical power to the input optical power, as a function of temperture.

The periodicity in the transmission is noteworthy. As explained before, the transmission is
sensitive to the changes in optical path length. This periodicity can be explained by the fact that
as we cool down the modulator, there must be some change in the optical path length due to
thermal contraction.

3.5.1 Data transmission
Next, we also need to demonstrate that the amplitude modulator performs as expected. One
standard way to demonstrate the operation of modulators, is a data transmission experiment. In
such an experiment, data bits are sent to the modulator electronically. In case of the amplitude
modulator, the amplitude of the optical wave is changed based on the incoming data bits. This
experiment is easier with the amplitude modulator as compared to the phase modulator due to
the simple fact that our photodetectors can dierctly detect the change in the optical amplitude
but in order to detect the phase we need to do a homodyne measurement.
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Figure 3.8 – The eye diagram resulting from the data transmission experiment at (a) Room
temperature and (b) Cryogenic temperature.
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To do this experiment, we use a Keysight M8195 arbitrary waveform generator, NRZ (non-
return to zero) encoded bit stream at 1 GHz and 10 GHz to the amplitude modulator kept at 3
K stage in the dilution refrigerator. The optical signal from the amplitude modulator is simply
detected by a Newport 1544-B photoreceiver. The signal from the photoreceiver is sampled with
an oscilloscope Teledyne LeCroy MDA800, rated 40 GSa/s. Figure 3.8 shows the eye diagram
thus observed for (a) 1 GHz signal at room temperature and (b) 10 GHz signal at cryogenic
temperature. The fact that the “eye” is “open”, shows that the amplitude modulator is functional
at the cryogenic temperatures and can be used to encode data in an optical signal which can be
sent to long distances by means of an optical fiber.

3.6 Optical readout of optomechanically induced transparency
To demonstrate the electro-optical readout technique, we perform two tone spectroscopy and
measure optomechanically induced transparency (OMIT) [32–34] on the electromechanical
sample, by applying a tone on the lower motional sideband (red-detuned by Ωm from the cavity
resonance) and sweep a second tone accross resonance. The strong microwave pump cools
the mechanical motion, resulting in a wider effective mechanical linewidth, Γeff = Γm +4g2/κ ,
while we observe this modified reponse by probing the cavity with an additional weak microwave
probe. Because of the electromechanical coupling, the MW pump modifies the cavity response,
resulting in a transparency window that appears on resonance of width Γeff. To compare the
optical and HEMT readouts, the reflected signal is split and measured simultaneously using
both techniques. In order to measure the coherent response via the electro-optical readout,
we perform a heterodyne measurement with a frequency shifted local oscillator. The beatnote
between optically trancduced probe tone and the local ocsillator generates a RF signal detectable
with the photodetector.

The strong MW pump damps the mechanical motion, resulting in a wider effective mechani-
cal linewidth, Γeff = Γm +4g2/κ . Because of the electromechanical coupling, the MW pump
modifies the cavity response, resulting in a transparency window that appears on resonance of
width Γeff. We observe this modified reponse by probing the cavity with an additional weak MW
probe (Fig. 3.9). We performed the OMIT experiment for different pump powers and character-
ized the mechanical resonance frequency using the transparency feature. At high pump powers,
when g∼ κ , we observe mode splitting as a result of strong coupling and mode-hybridization
between the mechanical and microwave modes [35].

Figure 3.9f shows the OMIT results, with excellent agreement between the optical and
HEMT readouts.
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Figure 3.9 – Measurement of the electromechanical resonance for increasing MW pump powers
of (−20,0,5,10,15,20)dBm at the source, from bottom to top respectively. The probe power is
-20 dBm at the source. By increasing the pump power, optomechanical induced transparency
window emerges and by pumping stronger modes get strongly couple leads to evaded crossing
effect. Blue lines correspond to HEMT readout and orange dots to optical readout.

3.7 Observation of the parametric instability
We investigate incoherent signal detection using the optical readout and measure the power
spectral density of a signal reflected by the electromechanical system. For this, we drive the
mechanical oscillator into self-sustained oscillatory regime by pumping the system on its upper
motional sideband, ωpump = ωc +Ωm, inducing a parametric instability [1, 36, 37]. Because
the mechanical motion is amplified, correspondingly the optomechanical modulation of the
input microwave tone is also amplified. The output microwave spectrum thus features strong
sidebands around the microwave pump, at integer multiples of the mechanical frequency. Using
our optical readout, we can detect these mechanical signals, and compare the results with the
simultaneously-measured HEMT output (Fig. 3.10).

We first use the independently characterized added noise of the HEMT amplifier (referred to
the input), nHEMT

add ' 8quanta/(s ·Hz), to calibrate the power spectral density measured in the
HEMT branch. Applying the same calculation to the optical readout, with the noise floor now
consisting of optical shot noise, calibrates the optical output after the transduction.

We note that the frequency widening of the optically detected sidebands, observed in
Fig. 3.10, is due to fluctuations in the LO frequency, caused by the limited bandwidth of the
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Figure 3.10 – Measured power spectral densities of the microwave pump (central peak) and
mechanical sidebands detected by the HEMT (blue) and optical (orange) readouts. The right
panel shows the power spectral densities of the on-resonance mechanical sideband highlighted
with gray in the left panel.

locking setup in conjunction with using minimum possible resolution bandwidth, RBW = 1Hz
in the spectrum measurement. The total sideband power, however, is conserved. Improving the
LO locking setup or increasing the RBW in the optical measurement can reduce this effect.

3.8 Conclusion
Through this experiment, our team has been successfully able to demonstrate that the LiNbO3

phase modulators function at cryogenic temperatures, and that they can be used as interconnects
to read out superconducting systems usually operating at the sub-Kelvin temperatures.

From the Figure 3.10, we can compare the signal to noise ratios of the HEMT and the EOM,
and we find that the SNR for the EOM is 65 dB smaller than the SNR for the HEMT. The noise
floor of the HEMT, as described before is at 8quanta/(s ·Hz), which is equal to −195 dBm/Hz.
The tells us that the added noise for the phase modulator is therefore at around −130 dBm/Hz.
This implies that the lowest power of the signal that can be measured corresponds to around
−130 dBm/Hz. The next step would be to measure a superconducting qubits system using our
optical readout scheme. Typical signal strengths in the superconducting qubit experiments are
about −125 dBm/Hz. This suggests that we could potentially mesaure a superconducting qubit
using our setup and this would be a first such demonstration of optical readout.

To reduce this gap of 65 dB, we need to use phase modulators with half wave voltages
lower by 3 orders of magnitude, i.e. Vπ = 10 mV. Indeed there are efforts underway to make
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the modulators of significantly low Vπ . On-chip integrated modulators with compact and longer
electrodes [38, 39] have been fabricated. Alternative materials such as BaTiO3 [40, 41] and
resonant devices [19] have been used to make modulators of lower Vπ modulators. With more
such advances, optical readout of superconducting devices could thus become a promising
attempt to solve a major challange in scalability of superconducting qubit experiments.
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4 Conclusion and Outlook

In this master’s project, I have read and understood basics of cavity electromechanics and
the experimental details of its implementation. I also carried out several experiments such as
optomechanically induced transparancy. I carried forward the work done by previous members
on design and assembly of the automatised copper filter cavities used for reducing the phase
noise of the system. I wrote programs that configured how the motors on the filter cavity
communicated to the measurement interface used in the lab. I investigated several algorithms
to find a best way to tune the filter cavity to any desired frequency between 5-8 GHz, which is
the frequency range for circuit electromechanical cavities fabricated in the lab. I was able to
implement the Nelder-Mead algorithm for finding a local minimum of a function to minimize the
cost function composed of errors in frequency and depth of the resonances. The implementation
of this algorithm, along with the fine tuning algorithm allowed us to fit the resonances at any
desired frequency with the accuracy and precision of less than 50 kHz and achieve an extinction
of the input signal of around 20-30 dB. Thus the filter cavity was able to give us the reduction of
the phase noise of the sources close to the shot noise level of the measurement setup. This filter
cavity setup can be used in future experiments that are being planned such as observation of
pondermotive squeezing in the microwave domain, pulsed optomechanical experiments, and
experiments involving the coupling of superconducting qubits to mechanical resonators.

I contributed to the ongoing experiment on the electro-optic readout of circuit electromechan-
ical systems using a LiNbO3 electro-optic phase modulator. I took calibration measurements to
estimate the amount of power reaching the EOM kept at the 3 K stage of the cryogenic dilution
refrigerator. I investigated the effect of dissipation of optical power on the temperature of the
phase modulator and the stage on which it was mounted. I did the calculations for measuring
the Vπ of the EOM as the temperature decreases and I measured the Vπ of the EOM at cryogenic
temperatures. I also performed a cooldown of a low Vπ phase modulator but I observed no optical
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transmission through it, implying that it did not sustain its function at low temperature. Similarly,
I performed an experiment of cooling down an amplitude modulator to 3 K temperature. I
also performed data transmission experiment at room temperature and cryogenic temperature.
Through this experiment, our team has demonstrated the potential of the LiNbO3 EOMs for
applications in the optical readout of the superconducting systems such as electromechanics or
qubits.
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