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Abstract

The LIGO and VIRGO Detectors have conducted two observation runs, in which a total of ten
binary blackhole mergers and neutron star mergers have been detected. The third observation
run has already seen several potential candidates for CBCs. Search algorithms involve cross-
correlation of data from detectors with a template and searching with a template bank in parameter
space. This method works very well, if noise in the detector data is Gaussian and stationary
which is not the case. The data is extremely noisy and contains a lot of glitches which produce
false triggers. Tests that have been introduced to act as vetos to discriminate between real signals
and glitches are called the χ2 tests. The most successful among them is called the power χ2.
But these tests have also been unable to perform well against all the types of glitches. Thus,
development of better χ2 tests is a very important problem. The unified χ2 formalism is a rigorous
mathematical framework which can be used to study and construct new χ2 tests. I will use this
formalism to construct an optimal χ2 test specifically to discriminate between signals and short,
transient glitches that can be modelled using sine-gaussian functions. I will then demonstrate its
performance as compared to the power χ2 test using simulated data.
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Chapter 1

Introduction

1.1 General Relativity

The Newton’s Law of Gravitations works well for describing the motion of planets and stars far
away from each other. But in the region where gravity is strong, it fails to do so. His theory
also predicts that a local change in the mass distribution will instantaneously affect the masses in
the entire universe. This is in direct conflict with the axioms of Special Relativity that states that
there is an upper limit on the speed of information transfer in the universe. To make the law of
gravitation compatible with Special Relativity, Einstein introduced General Relativity (GR).

In the theory of GR, space and time are treated together on the same footing, as a four dimen-
sional spacetime The presence of matter/energy makes the spacetime curved and this curvature is
responsible for the motion of matter/energy in the spacetime. Over the last century several experi-
ments were performed to test GR and it was found that GR is consistent with all the experiments.
The first experiment to test GR was done by Eddington in 1919, in which he observed bending
of light by gravitational field of a star. GR also explained the precession in the orbit of mercury
to a very high accuracy. A previously unknown prediction of GR is the existence of Gravitational
Waves (GW) which are ripples in the spacetime. GW were indirectly observed in 1974 by Hulse
and Taylor. The decrease in the time period of a binary pulsar system was found to be exactly
consistent with energy lost due to GW as predicted in GR. In the more rececnt times, GW from
a binary blackhole merger were directly observed by the Laser Interferometer Gravitational-wave
Observatory (LIGO) on 14th September, 2015 [1] [2]. Since then, nine additional BBH mergers
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and one binary neutron star merger has been observed by LIGO.

1.2 Gravitational waves in weak-field approximation

The interdependence of matter/energy and curvature of spacetime is described using Einsteins
equations. Einstein’s equations are coupled, non-linear differential equations whose solutions are
difficult to find. In regions of spacetime far away any matter or energy source, the gravitational
field is weak. The metric of the spacetime gµν ), can be written as a perturbation to the Minkowski
metric (ηµν ).

gµν = ηµν +hµν (1.1)

Then, the Einstein’s equations reduce to weak field equations in vacuum, as follows.

2h̄µν = 0 (1.2)

where 2 is the D’Alembertian operator and h̄ is defined as follows.

h̄µν = hµν −
1
2

ηµνhρ

ρ (1.3)

This form is analogous to 3-dimensional wave equation without a source. Therefore, above equa-
tion has plane wave solutions which we can write as follows.

h̄µν = Aµνeikλ xλ

(1.4)

where Aµν is the tensor amplitude of the wave and kλ is the wave-vector.

The form of weak-field Einstein’s equations in Eq. (1.2) is valid only in Lorenz gauge. There-
fore, the solutions of the equation should also satisfy the Lorentz gauge condition which is as
follows.

∂µ h̄µν = 0 (1.5)
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Chapter 2

Detection of gravitational-waves and Data
analysis

When GW pass through a region, the spacetime undergoes stretching and squeezing. This leads
to fluctuations in the spacetime interval between two masses close to each other. The strain that is
created has order 10−22. In order to detect GW, we need to be able to measure spacetime interval
with such sensitivity. Resonant bar detectors were initially used to measure this strain. But it was
not sensitive enough to detect the strain of this order. Then, people suggested using ground-based
interferometric detectors to perform this measurement. And now after several years of research on
developing such intererometers, LIGO has successfully detected 11 sources of GW.

2.1 Ground-based Interferometric gravitational-wave detectors

To detect GW, the interferometers need to be built such that they are sensitive to strain (∆L/L) of
order 10−22. The schematic diagram of the LIGO detectors is given in Fig. (2.1).

As it can be seen in the figure, the interferometer has two perpendicular arms of length 4 km.
There is a beam splitter at the intersection of the two arms. A laser which emits coherent beam
of light is opposite to one of the arms and a very sensitive photo-diode is placed opposite to the
other arm of the interferometer. There are heavy mirrors at the end of both the arms. This is the
basic setup of an interferometer. The laser beam incident on the interferometer splits and enters
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Figure 2.1: A schematic diagram of LIGO detector setup.[3]

both the arms of the interferometer. The light reflects from the mirrors at the end and reflects
toward the beamsiplitter. The light passes through the beam splitter again and is incident on the
photo-diode. If the arms of the interferometer have exactly equal length, then the light undergoes
a perfect destructive interference and intensity of light on the photo diode is zero. But when a
Gravitational wave passes through the interferometer, it changes the lengths of the two arms. Then
we are able to measure strain using the interference pattern

But in order to achieve the sensitivity, the design has been modified by adding more compo-
nents. The arms of the interferometers have been converted to Fabry-Perot cavities. This increases
the amount of time spent by photons in the arms of the interferometer and thus increases sensitivity.
There several other technologies that have made the working of such a sensitive detector possible.

2.2 Sources of noise

One of the major problems in constructing the detector was to reduce the noise in the data. Since the
magnitude of the strain that we want to measure is 10−22, all the different types of noise give rise
to more strain than that. Several new technologies are being used in the interferometer to reduce
the level of noise from different sources. These sources can be classified into two categories:
environmental noise and fundamental noise
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The environmental noise sources include seismic noise, thermal noise, residual gas noise and
coating noise. The seismic noise is caused by motion of the Earths crust, vehilcles moving close
enough, etc. The vibrations due to these kinds of sources are very high compared to GW strain.
Thermal fluctuations cause damped motions in mechanical system giving rise to vibrations that
can lead to strain in the detector. The arms of the interferometer are vacuum sealed. But vacuum
is not perfect. The residual gas moelcules scatter the light and cause fluctuations in phase of the
light.

The fundamental noise sources include shot noise and radiation pressure noise. Shot noise
refers to the quantum fluctuations in the number of photons reaching the photo diode. Radiation
pressure noise refers to the noise produced due to dispacement of the mirrors by pressure of high
intensity radiation.

Figure 2.2: Different sources of noise that determine the sensitivity of advanced LIGO [3]

2.3 Data analysis for search of gravitational waves

The LIGO detectors measure the strain in the arms of the detector caused when a GW passes
through the detector. The continuous signal is converted to a discrete time series by sampling
points at a constant frequency. The sampling rate is decided based on the frequency of the GW
to be detected. According to the Nyquist theorem[4], a signal containing highest frequency f can
be represented in discrete form if data is sampled at a frequency 2 f or higher. The maximum
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frequency of GW that we want to detect is of the order of a few kHz. Therefore, a sampling
frequency fs = 16384 Hz or fs = 8192 Hz is used in LIGO.

The data in the form of discrete time-series is dominated by noise. The signal if it is there,
is expected to be weak compared to the noise and therefore, it is buried in the noise. In order to
extract the signal from this noise, knowledge of properties of noise is important. But before we do
that, convention for the Fourier transform and Inverse Fourier transform that we will follow in our
analysis is given below. Let x(t) be a time series and x̃( f ) be the Fourier transform of x(t).

x̃( f ) =
∫

∞

−∞

x(t)e−i2π f tdt (2.1)

x(t) =
∫

∞

−∞

x̃( f )ei2π f td f (2.2)

2.3.1 Modelling noise in the detector

The noise n(t) in the detector, can be modelled as a random variable. Each point in the discrete
time-series is sampled from some distribution. Thus, detection of signal in the data becomes a
statistical problem. We make an assumption that the noise has zero mean at every point if time t.
Thus, 〈n(t)〉 = 0, where 〈〉 denotes ensemble average. The autocorrelation function K(t, t ′) of the
noise is another important function that characterizes the noise.

K(t, t ′) = 〈n(t)n(t ′)〉 (2.3)

In general, the distribution of noise can change over a period of time. If it doesnt, then the noise
is said to be stationary. It also implies that all the moments of the noise will remain constant over
time. But, we assume a weaker condition that the noise is the detector is Wide Sense Stationary
(WSS). This means that only the first and the second moments of the distribution of noise do not
change over time.

〈n(t)〉= 〈n(t + τ) 〈n(t)n(t ′)〉= 〈n(t + τ)n(t ′+ τ)〉 (2.4)

Under this assumption for LIGO noise, the mean of noise remains zero at all times and the auto-
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correlation function depends only on the time-difference and not on absolute time.

K(t, t ′) = K(t− t ′) (2.5)

Due to this symmetry of time translation, the auto-correlation in frequency domain can be written
as follows.

〈ñ( f )ñ∗( f ′)〉=
∫ ∫

dtdt ′〈n(t)n(t ′)〉e−i2π f tei2π f ′t ′ (2.6)

=
∫ ∫

dtdt ′K(t− t ′)e−i2π f tei2π f ′t ′ (2.7)

=
∫ ∫

dtdτK(τ)e−i2π f tei2π f ′(t+τ) (2.8)

=
∫

dτK(τ)ei2π f ′τ ×δ ( f − f ′) (2.9)

〈ñ( f )ñ∗( f ′)〉= Sh( f )δ ( f − f ′) (2.10)

where Sh( f ) is the Fourier transform of the auto-correlation function K. It is known as the two-
sided Power Spectral Density (PSD) of the noise in the detector. Since, K(τ) is an even function by
its definition, Sh( f ) is a purely real function. Sh( f ) is also a positive definite function (Sh( f )≥ 0).
Sh( f ) is also an even function. It can be folded over itself and be defined only for f ≥ 0. Then it
is called a one-sided PSD. The amplitude of one-side PSD is twice that of a two-sided PSD. If the
PSD is a constant function of frequency f , then the noise is said to be white. Otherwise, it is said
to be coloured.

Uptil now, we have not specified a distribution for the noise random variable. If the distribution
of noise is Gaussian, then we can define a noise-weighted inner product between two time-series
in the frequency domain.

(x,y) = 4Re
∫

∞

0

x̃∗( f )ỹ( f )
Sh( f )

d f (2.11)

Here, the PSD that is used is the one-sided PSD.
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2.4 Matched Filter

Consider that a segment of data (x(t)) in the time interval [0,T ] contains a signal of the form h(t)

and noise (n(t)).

x(t) = n(t)+h(t) (2.12)

If the K(t, t ′) is the auto-correlation function of the noise in the detector, then the matched filter
(q(t)) is defined as the solution to the following integral equation [4].

∫ T

0
K(t, t ′)q(t ′)dt ′ = h(t) (2.13)

We make an assumption that the noise is WSS, then the equation can be written as follows.

∫ T

0
K(t− t ′)q(t ′)dt ′ = h(t) (2.14)

The above equation is a convolution of K(τ) with q(t). We can convert this to the Fourier domain
in which it is easier to solve. If h̃( f ) is the Fourier transform of the signal waveform, the solution
of the equation i.e. the matched filter in the Fourier domain (q̃( f )) can be written as follows.

q̃( f ) =
h̃( f )
Sh( f )

(2.15)

where Sh( f ) is the two-sided PSD of the noise. We define the statistic c which is the correlation of
the data (x(t)) with the matched filter.

c =
∫

∞

−∞

q̃∗( f )x̃( f )d f (2.16)

The statistic c is a random variable as it is a function of the data that contains noise. The signal-
to-noise ratio of data with the matched filter is defined as the ratio of mean of c to the standard
deviation of c. Since, the noise has mean zero, the mean of c can be shown to be the following.

〈c〉=
∫

q̃∗( f )h̃( f )d f (2.17)

The standard deviation of noise (σc) is derived with the use of the definition of two-sided PSD in
Eq. (2.10).
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σ
2
c =

∫
|q̃( f )|2Sh( f )d f (2.18)

Then the expression for SNR (ρ) is as follows.

ρ =

∫
q̃∗( f )h̃( f )d f∫
|q̃( f )|2Sh( f )d f

(2.19)

From Eq. (2.19), ρ is invariant under scaling of q̃. Using this property we can simplify the
expression for the SNR by imposing the condition that the denominator should be 1.∫

|q̃( f )|2Sh( f )d f = 1 (2.20)

This fixes the normalisation factor or scale factor of the matched filter. Thus the SNR can now be
defined as follows, subject to the condition in the above.

ρ =
∫

q̃∗( f )h̃( f )d f (2.21)

It can be proved that if data contains signal of form h(t), then out of all the possible filters, the
matched filter gives the highest SNR. Thus, we have the maximum probability of detecting the
signal if we use a matched filter that corresponds to that signal waveform.

Thus, in order to search for GW from different sources, we need to know the waveform of the
GW emitted by all the different possible sources. Such waveforms or templates can be generated
by solving the Einstein’s equations for that particular system. Due to the non-linear and coupled
nature of the equations, exact solutions with a source term cannot be found analytically. But
we can make approximations to the Einstein’s equations and obtain an approximate analytical
solution. For the particlar case of a compact binary coalescence, we solve the Einstein’s equations
in the Newtonian approximation and and write down the analytical expression of the waveform.
Analytical expression of the Newtonian template is as follows.

h̃( f ) = h0 f−7/6e−iψ( f ) (2.22)

The frequency dependence of phase of the waveform, ψ( f ) is as follows.

ψ( f ) = 2π f tc−φc−
π

4
+

3
128

(π f M )−5/3
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Figure 2.3: Zero phase waveform of a Newtonian template corresponding to a binary with compo-
nent masses 15M�−15M�

where tc is the time of coalescence or time of trigger of the binary, φc is the phase of the waveform
at tc and M is the chirp mass of the binary system in units of time. It is related to chirp mass in its
natural units by the equation M = GMchirp/c3. The chirp mass of a binary system is the following
function of its component masses.

Mchirp =
(m1m2)

3/5

(m1 +m2)1/5 (2.23)

h0 is the normalization factor of the of the template. We can express ψ( f ) in terms of a more
suitable parameter which is the chirp time τ0 instead of M . It is the time taken by the binary
system to coalesce, starting from a fiducial frequency fs We can consider this to be the seismic
cutoff frequency fa = 10 Hz. The expression for τ0 is as follows.

τ0 =
5

256π fs
(πM fs)

−5/3 (2.24)

We can write ψ in terms of τ0 as shown in the following equation.

ψ( f ) = 2π f tc−φc−
π

4
+

6π fsτ0

5

(
f
fs

)−5/3

Better approximations to the waveform which can be calculated using higher order terms in
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perturbation theory. Templates can also be generated by solving the Einstein’s equations using
numerical techniques. Particularly in case of the CBC templates, a very good approximation to
the waveform is obtained by considering three phases of the waveform, Inspiral, Merger and Ring-
down. In the inspiral part of the system, the components of the binary revolve around each other in
an orbit that keeps shrinking and the frequency of revolution keeps increasing. This phase of the
waveform is modelled by using Post-Newtonian theory which is basically the use of perturbation
theory to calculate higher order terms in the expansion in the powers of v/c. In merger part of the
system, the two bodies come in contact with each other and merge to form a single entity. This
part of the system is the least understood and the waveform in this region is generated by running
simulation of Numerical relativity. In the ringdown part of the waveform, the entity created in
the merger loses its asymmetry as it emits GW. This part of the waveform is modelled by using
black-hole perturbation theory.

As seen in case of the Newtonian template, these templates depend on several parameters which
can be classified as intrinsic and extrinsic parameters. Intrinsic parameters are the parameters of
source itself like component masses (m1 and m2) and spins of the bodies (S1 and S2). Extrinsic
parameters are the parameters of source with respect to the detector. It includes time of coalescence
(t0), phase at the time of coalescence (φc), Distance from binary to Earth, Sky position, etc. Thus
a search for GW signals with all possible values of parameters is required.

If h̃( f ;λ α) is a general template with parameters λ α , then we can write the expression for the
detection statistic c in Eq. (2.16) in terms of this template. We will also use the property that if
data is real in time domain, x̃(− f ) = x̃∗( f ) and redefine the integral over only the positive range
of frequencies.

c = 4Re
∫

∞

0

h̃∗( f ;λ α)x̃( f )
Sh( f )

d f (2.25)

Here, the Sh( f ) is the one-sided PSD. The normalisation condition for the matched filter in Eq.
(2.20)translates to the normalisation condition for the template as follows.

∫ |h̃( f )|2

Sh( f )
d f = 1 (2.26)

We can perform a search over parameter tc by shifting the template h(t) with tc = 0 to h(t− t0)

where tc = t0 The corresponding change in the Fourier domain is from h̃( f ) to h̃( f )ei2π f t0 . Thus,
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we get the detection statistic as a function of t0

c(t0) = 4Re
∫

∞

0

h̃∗( f ;λ α)x̃( f )
Sh( f )

ei2π f t0d f (2.27)

This calculation if done by computing the integral over both positive and negative frequencies,
using the two-sided PSD, it attains the form of an Inverse Fourier transform. Using this property,
searching over tc becomes a very simple job. It has been shown in Ref. [5], that we do not need
to define templates over the extrinsic parameters and only over the intrinsic parameters - masses
(m1 and m2) and spins (S1 and S2). The search over extrinsic parameters like tc can be done by
scanning over the time domain as shown above. For searching over phase φc, we can decompose
the template at an arbitrary phase into a linear combination of two templates with phases 0 and π/2
respectively. We can compute the detection statistic individually for the two templates and then the
net detection statistic is the square root of the sum of the squares of the two individual detection
statistics.

c(t0) =
√

c0(t0)2 + cπ/2(t0)2 (2.28)

For the intrinsic parameters, templates need to be defined at regular intervals in the parameter
space [5][6][7]. The value of c is computed for each of these templates for all values of the
extrinsic parameters. Once the values of the c are calculated covering the entire parameter space
of the template, its maximum value is computed. This value is compared with a preset threshold.
If this value is above the threshold, then we claim that there is a trigger. This threshold is set by
considering the value of the detection statistic for data containing only noise. The parameter values
that correspond to the maximum value of c are reported as the parameters of the source of the GW.
This is the mechanism of the search for GW using the matched filter test.

All the above analysis was done assuming the stationary and gaussian nature of noise in the
detector. But the actual noise in the detector is not entirely stationary. Instead, it is stationary
over small periods of time. The distribution of noise has a small non-gaussian component. These
approximations affect the performance of the matched filter test. These effects can produce false
triggers also. Therefore, it is necessary to devise a test to discriminate between real signals and
false triggers.
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Chapter 3

χ2 discriminator tests

The matched filtering procedure using a template bank provides a very good way to search for
signals in data. However, all the triggers that are generated by the procedure may not be from real
GW signals. It is possible that the noise in the detector can manifest in some way to produce false
triggers with the matched filter test. To ensure that we have a real GW signal, we can construct tests
to check consistency of the trigger with the modelled waveform. Such tests involve comparison of
the distribution of power in different frequency ranges of the power spectrum which will be very
different for a real signal and a false trigger. The χ2 test is a good example of such a consistency
check. It can effectively distinguish between a real signal and a false trigger.

The most widely used χ2 test for such a discrimination is the power χ2 test proposed by Bruce
Allen in 2005 [8] [9]. I will briefly describe the construction of this test in the following section.

3.1 The Power χ2

3.1.1 Construction of the power χ2 test

The main idea of this test is to compare the power spectrum of data to the power spectrum of the
template in different frequency bins. If flow and fup are the lower and upper frequency cutoffs
considered for the matched filter test, it is possible to divide the frequency interval into p number
of non-overlapping bins by choosing f1, f2, ..., fp−1 such that, flow < f1 < f2 < .... < fp−1 < fup.
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We can label the frequency bins in the following way.

∆ f1 = { f | flow < f < f1}
∆ f2 = { f | f1 < f < f2}
∆ f3 = { f | f2 < f < f3}

.

.

∆ fp = { f | fp−1 < f < fup} (3.1)

Using the definition of the matched filter, it is possible to define an inner product on each of these
bins in the following way.

(x,y) j = 4Re
∫

∆ f j

x̃∗( f )ỹ( f )
Sh( f )

d f (3.2)

where j = 1,2, ...., p. As the bins are non-overlapping, the sum of the inner products of two vectors
in each of the bins is equal to the matched filter.

(x,y) = ∑
j
(x,y) j (3.3)

Using these inner products, we choose the boundaries of bins such that the power of the template in
each of the bins is equal. Thus the power in each of the bins for a normalised template ((h,h) = 1)
is 1/p.

(h,h) j =
1
p

(3.4)

If x is the data segment, the we can compute the correlation of the data with the template using the
restricted inner product in Eq. (3.2) in each of the bins. We denote the correlation, or the SNR in
the jth frequency bin as c j.

c j = (x,h) j (3.5)

The total SNR of the data segment is equal to the sum of the SNR in the frequency bins. This
follows from the property of the restricted inner products in Eq. (3.3) Now, the aim of the power
χ2 is to capture the difference between the observed SNR (c j) and the expected power (c/p) in the
each bin. If we denote this difference by ∆c j = c j− c/p, then we can define the power χ2 statistic
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as follows:

χ
2 = p

p

∑
j=1

(
∆c j
)2 (3.6)

3.1.2 The statistics of power χ2

The ability of the power χ2 to act as a good discriminator comes from its statistical properties. In
order to study these properties, we first need to study the statistics of the c and c j. We assume
that the noise in the detector is zero-mean Gaussian noise. Then, the expextation value of c can be
calculated as follows.

〈c〉= 〈(x,h)〉
= 〈(n,h)〉+ 〈(h,h)〉
= (h,h)

〈c〉= 1 (3.7)

The second moment of c can be calculated as shown below.

〈c2〉= 〈(x,h)2〉
= 〈[(n,h)+(h,h)]2〉
= 〈(n,h)2〉+2〈(n,h)〉(h,h)+(h,h)2

〈c2〉= 〈(n,h)2〉+1 (3.8)

The expectation value of the quantity (n,h)2 can be calculated by writing the explicit form of the
inner product and using the property 〈ñ∗( f )ñ( f ′)〉= Sh( f )δ ( f − f ′) of stationary noise. Substitut-
ing the above equation in Eq. (3.8), we get the following.

〈c2〉= 2 (3.9)

The expectation value of c j can be calculated in a way similar to the derivation of 〈c j〉

〈c j〉= (h,h) j

〈c j〉=
1
p

(3.10)
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The second moment of c j can also be calculatd by a proecedure similar to the derivation of 〈c2〉.

〈c2
j〉= 〈(n,h)

2
j〉+(h,h)2

j

= (h,h) j +(h,h)2
j

〈c2
j〉=

1
p
+

1
p2 (3.11)

From above equations it is very clear that 〈∆c j〉 = 0. The expression for 〈
(
∆c j
)2〉 can be

derived as follows.

〈
(
∆c j
)2〉=

〈(
c j−

c
p

)2〉
= 〈c2

j〉+
〈c2〉
p2 −2

〈c jc〉
p

〈
(
∆c j
)2〉= 1

p

(
1− 1

p

)
(3.12)

Using the expressions derived above, we can compute that first and the second moment of the
power χ2. Their expressions are as follows.

〈χ2〉= p−1 〈[χ2]2〉= p2−1 (3.13)

3.1.3 Properties of power χ2

From the definition, we can see that if the data contains only signal, then we see that the χ2 = 0.
If the data contains pure Gaussian noise, then it follows a χ2 distribution with p− 1 degrees of
freedom is a more non-trivial claim. The proof of this statement is given in [8]. The first and
the second moments calculated in Eq. (3.13) are the same as that of a χ2 distribution with p− 1
d.o.f. These quantities determine the width of the χ2 distribution which is

√
2(p−1). If the

data contains signal and Gaussian noise, it also follows a χ2 distribution with p− 1 degrees of
freedom. Therefore, we can claim that if data contains signal and Gaussian noise, there is a very
high probability that the χ2 value will lie in the interval [p−1−

√
2(p−1), p−1+

√
2(p−1)].

But in case of glitches, due to the mismatch between the power in each of the frequency bins, the
χ2 will be very high. Thus, this test can act as a good discriminator.
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Figure 3.1: The above plot contain the distribution of values of χ2 for 10000 data segments along
with a plot of χ2 distribution. Each of the data segments contained a different realisation of noise.
The BBH template with component masses of 25M�− 25M� was used as a signal with perfect
match

The power χ2 test is not the only test that has been introduced to function as a discriminator
between signals and glitches. Several other χ2 tests have been suggested in [10]. The performance
of these tests varies for different values of parameters of the template and glitches. A general
formalism that encompasses all the different possible χ2 tests will explain these differences in the
performance of the χ2 tests. We will study such a formalism in the next section.

3.2 The Unified χ2

The unified χ2 formalism [11] is a mathematical formalism which provides a rigid framework to
describe any χ2 discriminator test. As mentioned in the previous section, this formalism has the
ability to explain the performance of different χ2 tests for different ranges of parameters of tem-
plates and glitches. Moreover, it also gives a general mechanism for constructing all such possible
χ2 tests. Thus, it is possible to use this mechanism to construct an optimal χ2 discriminator which
can perform better than all other χ2 tests.
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3.2.1 Mathematical Formalism

Consider a segment of data in the time interval [0, T ] which is sampled at a certain constant rate fs.
This segment belongs to the space of all the possible data trains in the time interval [0, T ] sampled
at the frequency fs. This space is a Hilbert space, denoted by D , with an inner product derived
from the definition of the matched filter. If x and y are two vectors in D , then the inner product (,)
is defined as follows.

(x,y) = 4Re
∫ fup

flow

x̃∗( f )ỹ( f )
Sh( f )

d f (3.14)

where Sh( f ) is the one-sided power spectral density (PSD) of the noise in the detector. With this
definition of inner product, we can define an L2-norm on this space as follows.

‖x‖2 = (x,x) (3.15)

A binary black-hole (BBH) template is a vector in this Hilbert space and is denoted by h(λ a) where
λ a (a = 1,2, ...,m) are the parameters of the template.

We will first define the unified χ2 for a single template vector h, with a fixed set of parameters.
Consider the subspace of D which is orthogonal to the vector h denoted by Nχ2(h).

Nχ2(h) = {x ∈D |(x,h) = 0} (3.16)

We define the χ2 using a p-dimensional subspace S of Nχ2(h). Let xS be the projection of data
vector (x) onto this subspace S . Then, the χ2 is defined as the square of the norm of the projected
data vector.

χ
2 = ‖xS ‖2 (3.17)

Let eα (α = 1,2, ..., p) be an orthonormal basis on S . Therefore,
(
eα ,eβ

)
= δαβ . We can infer

the follwing properties of the χ2.

1. The χ2 can be defined in terms of the basis vectors as given in the following equation.

χ
2(x) =

p

∑
α=1
|(x,eα) |2 (3.18)
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2. S is orthogonal to the template vector h. Therefore, if data contains only signal (x = h),
χ2(x) = 0

3. If data contains only zero-mean Gaussian noise with PSD Sh( f ) (x = n), then each term
in the sum in Eq. (3.18) is the square of a Gaussian random variable with unit variance.
Therefore, χ2(n) will follow a χ2 distribution with p degrees of freedom.

χ
2(n) =

p

∑
α=1
|(n,eα) |2 (3.19)

The properties (2) and (3), which are also true for the power χ2, are very important properties
for a χ2 test. These properties set the interval which contains 99% of the χ2 values for a data
segment containing a signal and Gaussian noise. If p is the number of degrees of freedom of the
χ2, then this interval is [p− 3

√
2p, p+ 3

√
2p]. Moreover, they are independent of the choice of

orthonormal basis on the subspace S and also the choice of the subspace S itself. This freedom in
the choice of subspace is the key feature of this formalism which can be exploited to create different
χ2 tests. Also, given a χ2 test, it is possible to find a subspace of Nχ2(h) which corresponds to
that particular χ2 test. This has been done for the power χ2 test in [11]

The above definition is in context of a template with fixed values of parameters. For a general
template h(λ a), the parameter space is m-dimensional. Each point in this parameter space maps to
a vector in D . The space that is spanned by these vectors is an m-dimensional subspace of D . For
each of the template vectors, we can define a p-dimensional subspace S orthogonal to the template
vector and define χ2 in the same fashion as described above for the case of a single template. Such
a mathematical structure, if constructed smoothly, is a vector bundle of m+ p dimensions.

3.2.2 Constructing a generic χ2 test

From the definiton of the χ2, we see the choice of subspace S defines the χ2 statistic. This choice
determines the performance of the test. In order for it to function as a good discriminator, the χ2

value for a glitch should very high compared to the mean of the χ2 distribution. Thus, S must
be chosen such that the projection of a glitch on S is as high as possible. We can use the known
glitch vectors themselves or a suitable model in order to build this subspace. Let yα be a set of
suitable chosen, linearly independent vectors. Then the χ2 will be calculated using the difference
between the observed and expected correlation of the data with each of the vectors yα
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Consider template vector h with fixed values of parameters. It can be decomposed into two
template vectors with phases 0 and π/2, denoted respectively by h0 and hπ/2. In order to compute
total SNR, we need to compute the correlation of the data vector x with both of these template
vectors. In case of a perfect match between signal and template, signal vector (s) will have the
same set of values of the parameters as the template. Then we can write the signal vector as
follows.

s = (s,h0)h0 +
(
s,hπ/2

)
hπ/2 (3.20)

The correlation of this signal vector with the yα is as follows.

(s,yα) = (s,h0)(h0,yα)+
(
s,hπ/2

)(
hπ/2,yα

)
(3.21)

The values of the correlations of data vector with the templates, denoted by c0 and cπ/2, and their
mean values are as follows.

c0 = (x,h0) cπ/2 =
(
x,hπ/2

)
(3.22)

〈c0〉= (s,h0) 〈cπ/2〉=
(
x,hπ/2

)
(3.23)

Using the equations (3.21), (3.22) and (3.23), we can write the expected correlation (ce
α ) of the

data vector along yα as follows.

ce
α = c0 (h0,yα)+ cπ/2

(
hπ/2,yα

)
(3.24)

The observed correlation (co
α ) of data vector with yα is as follows.

co
α = (x,yα) (3.25)

The difference between the observed and expected correlation ∆cα(x) for each yα can be computed
to be as follows.

∆cα(x) = (x,∆yα) (3.26)

where we define ∆yα as follows.

∆yα = yα − (yα ,h0)h0−
(
yα ,hπ/2

)
hπ/2 (3.27)
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These vectors are orthogonal to the templates h0 and hπ/2, hence the span of these vectors forms the
subspace S . We have constructed a χ2 test by using an arbitrary set of vectors yα . The square of
the norm of the data vector projected on this subspace is the value of the χ2 statistic. But we cannot
compute the χ2 by taking the sum of the squares of ∆cα because ∆cα are correlated Gaussian
random variables. This is because ∆yα are not orthogonal to each other. We can orthonormalize
this set of vectors and hence generate an orthonormal basis on S . Then, we can compute χ2 using
the formula in Eq. (3.18)

χ
2(x) =

p

∑
α=1
|(x,eα) |2 (3.28)

With an appropriate selection of vectors yα , we can thus construct a χ2 test using the unified
formalism.
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Chapter 4

Unified χ2 for Sine-gaussian glitches

Several short-duration, high-amplitude noise transients have been found in interferometer data.
Due to their high amplitude, these transients can produce a high SNR upon using the matched
filter test. If the SNR is above the threshold, then these noise artifacts can be be falsely classified
as gravitational-wave signals. Such noise transients are called glitches. Glitches can be classified
in several different types based on their structure in a time-frequency plot as shown in Fig. ( 4.1).
These glitches are either environmental or intrumental in origin and are known to occur in the data
as frequently as once every hour. Therefore, it is important to discriminate between glitches and
real signals.

The χ2 tests for consistency of the waveform can act as effective vetos against these glitches.
The effectiveness of a χ2 veto test can change based on the type of glitch. In every observation
run, new types of glitches have been discovered. Therefore, it is important to develop new and
effective veto procedures to eliminate the triggers caused by these glitches.

4.1 Sine-gaussian glitches

Short, transient noise bursts can be effectively modelled using a sinusoidal function with a gaussian
window [13]. Several types of the glitches shown in Fig. (??) can be modelled using such sine-
gaussian functions. We can use this model for the glitches and construct a χ2 test using the unified
χ2 formalism. We will use our control over the construction of this χ2 to make an optimal statistic.
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Figure 4.1: Different types of glitches found in the first observation run of LIGO [12]

The sine-gaussian function is parametrized by three quantities, central time (t0), central fre-
quency ( f0) and the quality factor (Q). t0 is the maxima of the gaussian window in time domain
and label for the the position of the sine-gaussian in time. f0 is the maxima of the gaussian window
in the frequency domain. Q is the number of oscillations of the sinusoidal function in the gaussian
window. As seen in the equation below, it is proportional to the width of the gaussian window in
the time-domain. The expression for the sine-gaussian function in the time-domain, is as follows:

s(t) = s0e−(t−t0)2/τ2
sin(2π f0(t− t0)) (4.1)

where τ is the width of the gaussian window function and is related to Q by the expression Q =

2π f0τ . The Fourier domain expression, that can be obtained by taking a Fourier transform of the
above expression, is as follows:

s̃( f ) =
1
2i

(
2
π

)1/4
√

Q
f0

e−( f− f0)2Q2/4 f 2
0 e−2πi f t0 (4.2)

In this definition, the sine-gaussian function is normalized such that, its norm under the inner
product in Eq. (3.14) with a white power spectral density is 1. This can be expressed as follows.

(s,s) = 4Re
∫ fup

flow

|s̃( f )|2

Sh( f )
d f = 1 (4.3)

where Sh( f ) = 1 is the power spectral density.

In order to effectively use this model, we will study the effect of the matched filter test on the
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Figure 4.2: Plot of a Sine-gaussian function in time-domain. The parameters of the sine-gaussian
are t0 = 0, f0 = 50 Hz and Q = 20

sine-gaussian function [14]. This can be studied analytically if the template used for the matched
filter test is the Newtonian template as given in Eq. (2.22). The most important feature of the
action of matched filter test on a sine-gaussian function is the difference between the coalescenece
time tc (time of trigger) and the central time of the sine-gaussian. This time-delay has also been
observed for real glitches in interferometer data. If this time-delay is long, it is difficult to correlate
the trigger and the glitch, which increases the probability of false alarm for that trigger. The
time-delay can be calculated analytically for the Newtonian template in Eq. (2.22), by finding
the output of matched filter (SNR) as a function of time-delay and maximizing it. This gives the
follwing analytical expression for the time-delay.

td = τ0

(
1− 16

3Q2

(
ζ +

2
3

))
(4.4)

where τ0 is the chirp time of the template as defined in Eq. (2.24) with the fiducial frequency
fs = f0. In the above equation, ζ is the derivative of logarithm of Power Spectral Density of
noise evaluated at f0. If the detector noise has a white PSD, then ζ = 0. Then, the expression for
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Figure 4.3: This is a plot of time-delay v/s Q at constant f0 of 50 Hz, 70 Hz and 90 Hz. Plot shows
excellent agreement between the computational data and the analytical formula. The computational
data was also gathered using the Newtonian template.

time-delay is as follows.

td = τ0

(
1− 32

9Q2

)
(4.5)

With this background, we are now ready to use the sine-gaussian functions to construct an
optimal χ2 test.

4.2 Parameter space of sine-gaussian functions

As we have seen, sine-gaussian function is described by three parameters, central time (t0), central
frequency ( f0) and quality factor (Q). Therefore, the parameter space of sine-gaussians is a con-
tinuous, real three-dimensional space. In order to define an optimal χ2 test, we need to construct
a subspace of the space of all possible data trains (D) which is orthogonal to the template vector
(h), such that, the glitch vector will have a high projection on this subspace. We can do this by
constructing this space using several sine-gaussian vectors with different parameter values. Thus
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the problem is essentially to sample enough number of uniformly spaced points on the parameter
space which will adequately represent the entire space.

The best way to do this is to define a metric on this parameter space [15] [7]. If s(λ α) and
s(λ α +dλ α) are two normalized sine-gaussian vectors with parameter values λ α = (t0, f0,Q) and
λ α +dλ α = (t0 +dt0, f0 +d f0,Q+dQ), then ∆s = s(λ α +dλ α)− s(λ α). The metric is defined
as follows:

ds2 = (∆s,∆s) (4.6)

= (s(λ α +dλ
α)− s(λ α),s(λ α +dλ

α)− s(λ α))

= (s(λ α +dλ
α),s(λ α +dλ

α))+(s(λ α),s(λ α))−2(s(λ α +dλ
α),s(λ α))

= 2(1− (s(λ α +dλ
α),s(λ α)))

ds2 = 2(1− p) (4.7)

where p = (s(λ α +dλ α),s(λ α)) is the component of s(λ α +dλ α) along s(λ α). If dλ α << λ α ,
then we can expand s(λ α + dλ α) in a Taylor series and ignore terms that are higher than linear
order in dλ α .

s(λ α +dλ
α)≈ s(λ α)+

(
ds

dλ β
(λ α)

)
dλ

β (4.8)

In this approximation, we can write the metric in Eq. (4.6) as follows:

ds2 =

((
ds

dλ α

)
dλ

α ,

(
ds

dλ β

)
dλ

β

)
=

(
ds

dλ α
,

ds
dλ β

)
dλ

αdλ
β

ds2 = gαβ dλ
αdλ

β (4.9)

where gαβ =
(

ds
dλ α ,

ds
dλ β

)
are the components of the metric. The distance between any two points in

this metric is the mismatch between the sine-gaussian functions with the corresponding parameter
values. The mismatch is defined as a function of p = (s(λ α +dλ α),s(λ α)) in Eq. (4.7).

Using the normalized sine-gaussian function in Eq. (4.2), we can compute all the components
of this metric. In order to write these functions in a simple form in which the metric is a diagonal
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matrix, we will perform the following coordinate transformations.

ω0 = 2π f0 ν = 2π f0/Q (4.10)

In these coordinates, the metric can be written as follows:

ds2 = (ν2 +ω
2
0 )dt2

0 +
1

4ν2 dω
2
0 +

1
2ν2 dν

2 (4.11)

The region of parameter space under consideration in both the coordinate systems is as follows.
These values have been chosen with knowledge of the parameters of real glitches that occur in the
detectors.

f0(in Hz) ∈ [40,120] Q ∈ [5,50]

ω0(in Hz) ∈ [80π,240π] ν(in Hz) ∈ [8π/5,48π]

Now before we try to sample points using this metric, we need to consider the effect of matched
filter test on a sine-gaussian function. We have seen that there is a time-difference between the
central time of the sine-gaussian function and the time of trigger. For a fixed trigger time, the
time-delay of sine-gaussians is a function of Q, f0 and the component masses of the binary (m1,
m2). Sine-gaussian functions with the appropriate time-lag defined by Eq. (4.5) are the only sine-
gaussians that will contribute to the high SNR at the fixed trigger time. Therefore, we only need
to sample points from a two-dimensional surface in the parameter space of sine-gaussian functions
which is defined by the following equation:

td = τ0

(
1− 32

9Q2

)
(4.12)

In the chosen range of parameters, the term 1/Q2 is very small compared to 1. Therefore, we can
ignore that term in order to make calculation simpler. Thus, the surface is approximately defined
by the equation:

td = τ0 =
5

256π f0
(πM f0)

−5/3 (4.13)

In order to sample points on this surface, we will find the metric on this surface. We will restrict the
metric given by Eq. (4.11) to the surface defined by Eq. (4.13). This can be done by considering
the Taylor expansion of td as a function of Q and f0 and keeping terms upto linear order in dQ and
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d f0.

td( f0 +d f0,Q+dQ)≈ td( f0,Q)+

(
dtd
d f0

)
d f0 +

(
dtd
dQ

)
dQ

td( f0 +d f0,Q+dQ)− td( f0,Q) =

(
dtd
d f0

)
d f0 +

(
dtd
dQ

)
dQ

dtd =

(
dtd
d f0

)
d f0 +

(
dtd
dQ

)
dQ (4.14)

We will substitute Eq.(4.14) instead of dt0 is the metric in Eq. (4.11) and we get the metric on the
chosen surface.

ds2 =

[
C2

ω
−16/3
0 +C2

ω
−22/3
0 ν

2 +
1

4ν2

]
dω

2
0 +

dν2

2ν2 (4.15)

where C = (5/48)25/3M−5/3. The terms C2ω
−22/3
0 ν2 and 1/4ν2 are very small compared to

C2ω
−16/3
0 in our chosen region of the parameter space. Therefore, we can ignore those terms.

We can perform another coordinate transformation to simplify the functional form of metric. The
definitions of the new suitable coordinates are as follows.

z = (M ω0)
−5/3 y = ln(ν) (4.16)

The metric with the above coordinates takes the following form.

ds2 =
9

25
C2dz2 +

1
2

dy2 (4.17)

where C2 = (5/48)2×210/3. The metric, thus takes the form a standard Euclidean metric on a flat
space with scaled coordinates. Using this metric, it is possible to place a rectangular grid on points
in the chosen region of the parameter space with a constant spacing. We can then use the sine-
gaussian vectors corresponding to the grid-points to build the subspace. The spacing between the
two grid points is the mismatch (ε) between the two points. This mismatch decides the number of
grid-points in the chosen region of parameter space and thus, how well the space represented by the
points. But instead of mismatch between two points, the projection of sine-gaussian corresponding
to one point on the sine-gaussian corresponding to the other point(p) is a more relevant parameter
to describe the spacing between two points. It is related to ε by the following relation.

ε =
√

2(1− p) (4.18)
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p provides a better intuition about how well the parameter space is represented by the points. This
is a parameter whose value can be tuned in order to construct an optimal χ2 test.

Consider one cell bound by four grid-points as shown in the figure below. In a standard Eu-

clidean metric, the point in the centre of the square is the farthest from each of the grid-points.
Any other point in the square will be closer to one of the grid-points than the rest and this closest
distance will be a less than half of the diagonal of the square. Thus we can decide on a minimum
projection p which describes the distance equal to half of the diagonal. Any other point in the
square will have a projection greater than p on one of the grid-points. Thus, we can claim that
parameter space is represented with a projection greater than or equal to p and thus, quantify the
representation by a number. If the minimum projection corresponds to a maximum mismatch ε ,
then the distance between two grid points should be ∆l =

√
2ε

After deciding the spacing between grid-points, the next step of the procedure is to calculate
the coordinates of the points. Instead of putting a perfectly rectangular grid, we will put a slightly
twisted rectangular grid on the space. This is because the boundaries of the region of the parameter
space in y− z coordinates are not straight lines. Therefore, it is more convenient to choose points
along a line with constant value of Q in the space. Equation of line with constant Q in y− z
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coordinates can be derived as follows.

y = ln(ν)

= ln
(

ω0

Q

)
= ln

(
z−3/5

QM

)
y =−3

5
lnz− lnQ− lnM (4.19)

The second axis of the grid is the line constant z-coordinate.

We will now calculate the number of points along the two axes - constant Q lines and constant
z lines. To find number of points along constant Q line, we will first calculate the distance between
the boundaries of the parameter space along the z-coordinate. Since, the boundaries along the
z-coordinate are straight lines, the end-points of the parameter space do not depend on the y-
coordinate. The distance can thus be computed using the follwing formula.

SQ =
∫ zmax

zmin

√
9

25
C2dz

SQ =

√
9
25

C2(zmax− zmin) (4.20)

The number of points along the constant Q line can then be calculated by the following formula.

NQ =

⌈
SQ

∆l

⌉
(4.21)

Similarly, in order to find the number of points along the constant z line, we need to compute
distance between the end-points of the parameter space along a constant z line. Since, the end-
points of the parameter space are different for different values of z coordinate, we will pick z= zmin.
Then the distance between the endpoints can be calculated as follows.

Sy =
∫ ymax

ymin

1√
2

dy

Sy =
ymax− ymin√

2
(4.22)
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The number of points along the constant z line can be found by the formula below.

Ny =

⌈
Sy

∆l

⌉
(4.23)

Thus, the total number of the points sampled in the parameter space is N = Ny×NQ

Now, in order to calculate the coordinates of the points, we will first find the values of constant
Q along which the points are to be placed. Consider the line of constant z coordinate at z = zmin.
The values of y-coordinate of the points on the required constant Q line can be found by using the
following formula.

yi = ymin +
(0.5+ i)

Ny
(ymax− ymin) (4.24)

where i = 1, ...,Ny. The required values of Q corresponding to the values yi are as follows.

Qi =
z−3/5

M
e−yi (4.25)

We get the z-coordinates of the points similarly by dividing the distance between the end-points by
NQ.

z j = zmin +
(0.5+ j)

NQ
(zmax− zmin) (4.26)

where j = 1, ...,NQ. For each of the above values of z-coordinate, we find the corresponding values
of y-coordinate for each of the Ny values of Q using the following formula.

yi j =−
3
5

lnz j− lnQi− lnM (4.27)

Thus the coordinates of the sampled points are (z j,yi j) as described in the above equations and can
be calculated in a step-by-step fashion as described above.
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Figure 4.4: The above plots show the points chosen to represent the parameter space with 80%
minimum projection. The upper plot corresponds to binary of mass 7M�−7M� with 1288 points.
The lower plot corresponds to binary of mass 25M�−25M� with 156 points
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4.3 Construction of basis on the orthogonal subspace

Each of the points sampled in the parameter space corresponds to a sine-gaussian vector (sα ) in the
D . These sine-gaussian vectors have been shifted appropriately back in time with respect to the
template vectors h0 and hπ/2. h0 and hπ/2 are the templates with plus and cross polarisations of
gravitational-wave respectively. In order to construct the orthogonal subspace using these shifted
sine-gaussian vectors, we will subtract the components of these sine-gaussian vectors that are
parallel to h0 and hπ/2 as shown below.

s⊥α = sα − (h0,sα)h0−
(
hπ/2,sα

)
hπ/2 (4.28)

The space that is spanned by these ’clipped’ sine-gaussian vectors is a subspace of D and is or-
thogonal to the templates. This is the optimal subspace S that will be used to define the optimal
χ2 statistic. The dimension of this subspace is equal to the number of sine-gaussian vectors. As
we have seen before, this number can be of the order of 100 or more. This will be very expensive
in terms of computational cost. Therefore, we will use a procedure called singular value decom-
position (SVD) to approximate the subspace using a less number of vectors.

4.3.1 Singular Value Decomposition

Consider a m× n matrix, Amn such that all the entries are complex numbers. There is a theorem
that states it is possible to find matrices Umm, Σmn and Vnn such that the following is true.

• Amn =UmmΣmnV †
nn

• Umm is a unitary matrix. The columns of U are the orthonormal eigenvectors of AA† and are
called the left-singular vectors of A.

• Vnn is a unitary matrix. The columns of V are the orthonormal eigenvectors of A†A and are
called the right-singular vectors of A.

• Σmn is a diagonal matrix whose entries are positive real numbers called the singular values
of A. They are arranged in a descending order i.e σ1 > σ2 > .... and so on.

Such a decomposition of matrix A is called a Singular Value Decomposition (SVD).
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Consider the rows of matrix A to be vectors. These are m vectors in an n-dimensional space.
The SVD has been constructed such that if we consider the first k right-singular vectors (1≤ k≤m),
then the Young-Eckart-Mirsky theorem states the space spanned by these k vectors is the best k-
dimensional subspace that approximates the m-dimensional space spanned by the rows of A [16].
In fact for k = 1, this is the same as the problem of finding the best least-squares fit line in which
we minimize the perpendicular distance between the given points and the line. This is equivalent
to maximizing the projection of the vectors or rows of A onto the line. For k > 1, the projection of
the vectors on the space spanned by the k right singular vectors is maximized. This yields a best
k-dimensional subspace that approximates the space spanned by the rows of matrix A.

4.3.2 Construction of sine-gaussian matrix

As discussed above, we can approximate the orthogonal subspace of a large dimension by a small
number of vectors using SVD. We will construct the matrix required for SVD such that its rows are
the normalized ’clipped’ sine-gaussian vectors. These vectors belong to the Hilert space D with
the inner product in Eq. (3.14). But the algorihtms to compute SVD use the standard Euclidean
inner product on a complex vector space. We will convert the sine-gaussian vectors to a form
which is suitable for use with a Euclidean inner product. Consider x and y are two vectors in D .
The inner product of these two vectors is as follows.

(x,y) = 4Re
∫ fup

flow

x̃∗( f )ỹ( f )
Sh( f )

d f (4.29)

Define new vectors x′ and y′ as follows.

x̃′( f ) =

√
2

Sh( f )
x̃( f ) ỹ′( f ) =

√
2

Sh( f )
ỹ( f ) (4.30)

Then we write the inner product as follows.

(x,y) = 2Re
∫ fup

flow

x̃′∗( f )ỹ′( f )d f (4.31)

The vectors x′ and y′ are called whitened vectors and the operation of dividing the vectors by
the the square root of the PSD is called whitening Using the identity of complex numbers that
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2Re[z] = z+ z∗, we get the following.

(x,y) =
∫ fup

flow

x̃′∗( f )ỹ′( f )d f +
∫ fup

flow

x̃′( f )ỹ′∗( f )d f

=
∫ fup

flow

x̃′∗( f )ỹ′( f )d f +
∫ fup

flow

x̃′∗(− f )ỹ′(− f )d f

=
∫ fup

flow

x̃′∗( f )ỹ′( f )d f +
∫ − flow

− fup

x̃′∗( f )ỹ′( f )d f

=
∫ fup

− fup

X̃∗( f )Ỹ ( f )d f

(x,y) = (X,Y)e (4.32)

where (,)e is the standard Euclidean inner product on a complex vector space. Here, we have use
the property of data x that states that if x(t) is purely real function, then x̃(− f ) = x̃∗( f ). The new
vectors X̃ and Ỹ under a complex Euclidean inner product give the same value as the vectors x and
y under the inner product in Eq. (3.14). These new vectors are defined as follows.

X̃( f ) = x̃′( f ) flow ≤ f ≤ fup

= 0 − flow ≤ f ≤ flow

= x̃′∗( f ) − fup ≤ f ≤− flow (4.33)

We perform the above transformation on the clipped sine-gaussian vectors and then we can con-
struct the matrix A using these transformed clipped sine-gaussian vectors as rows. The transforma-
tions in Eq. (4.33) and Eq. (4.30) are bijective and invertible. After computing the SVD of A, we
take the first k right-singular vectors of A which are orthonormal to each other under the standard
Euclidean inner product. If we now apply the inverse transformations to the singular vectors, they
will remain orthonormal to each other under the inner product in Eq. (3.14). Moreover, the sin-
gular vectors after the inverse transformation will still span the k-dimensional subspace that best
approximates the space S . Thus, by using this procedure, we get a k-dimensional space with an
orthonormal basis which is orthogonal to the template vectors.

The choice of the number k is important because it decides the degree of approximation to the
actual subspace S that we make. A good way of deciding this number is to set a cutoff on the
percentage of total singular values contained in k number of vectors. Since, singular values of
matrix A are the projections of the rows of A on the corresponding singular vector, such a cutoff
can very accurately describe the degree of approximation. This is a parameter that can be tuned to
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Figure 4.5: The above plot contain the distribution of values of unified χ2 for 10000 data segments
along with a plot of χ2 distribution. Each of the data segments contained a different realisation
of noise. The BBH template with component masses of 25M�−25M� was used as a signal with
perfect match

construct an optimal χ2 test.

Let the first k right-singular vectors of A, after applying the inverse transformations, be denoted
by eα(α = 1,2, ....,k). Then, the χ2 statistic is defined as follows.

χ
2 =

k

∑
α=1
|(x,eα) |2 (4.34)

If data contains only gaussian noise or signal and gaussian noise, then each (x,eα) is an indepen-
dent Gaussian random variable. Therefore, this statistic follows a χ2 distribution of k degrees of
freedom. But if the data contains any glitches that can be modelled by using sine-gaussian func-
tions, its projections on the basis vectors will be large. Therefore, it will give a high value of
χ2. For an optimal χ2 the difference between the χ2 values for signals and glitches will be the
maximum, even at lower SNRs.
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Chapter 5

Results and Discussion

5.1 Optimal χ2

In the previous section, we have constructed the unfied χ2 statistic for sine-gaussian glitches. In
order to make it an optimal statistic, we need to fix the values of parameters of the unified χ2,
minimum projection (p) and the percentage of singular values such that the projection of glitches
on the χ2 is maximum. The parameter values need to be high enough that the parameter space of
sine-gaussians is adequately represented. But at the same time, the computational cost should not
be very high. This choice is also affected by the different approximations that were made while
constructing this test. I will discuss the most important approximations that have the potential of
affecting the performance of the χ2 statistic in next few paragraphs.

We made a few analytical approximations in order to get the simple metric on the parameter
space of sine-gaussians. The most important among them is the use of Newtonian template for
defining the analytic expression for the time-lag and then the metric. There exist much better
approximations to the waveform of binary black-hole merger, like IMR waveforms, which are
used for searches of GW by LIGO. The IMR waveforms are modelled by using three phases of
the waveform - inspiral, merger and ringdown and hence are very high degree of accuracy. In
comparison, the Newtonian waveform is not a good approximation to the waveform of a binary
black-hole merger as seen in Fig ( 5.1). In particular, the difference between the two waveforms is
more apparent at frequencies close to the merger. There is a difference in the time-lag calculated
using Newtonian waveform and using the IMR waveform as seen in Fig (5.2). This discrepency
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Figure 5.1: A plot showing comparison of the Newtonian waveform with IMRPhenomP waveform
for a binary with component masses of 20M� each

has introduced errors which reduce performance of the χ2 statistic, especially against glitches with
a value of f0 close to the frequency of merger of the binary.

The metric has been constructed with a fixed normalization of the frequency-domain expression
of the sine-gaussian function. This normalization has been done by assuming a white PSD. But the
noise in LIGO detectors is coloured with as shown in Fig (5.3). We will use the same algorithm
as the case of white PSD to sample points in the parameter space for the above PSD which is
called the ’advanced LIGO Zero Detuned High Power’ PSD. This approximation can also reduce
the performance of the χ2 statistic.

Keepin the above conditions in mind, the only way to decide the parameter values if to compute
the value of the statistic for different values of the parameters, compare the results and choose the
values of the parameters that give the best performance. Upon doing that, we found that the
percentage of singular vectors that gives the best performance is 90%. This is a precentage that is
high enough that the chosen orthogonal vectors after performing SVD are a good approximation
to the original space. Any percentage higher than this adds more number of vectors which have
a small projection of the glitch along their direction unneccessarily increasing the computational
cost.

The choice of minimum projection (p) is more complicated. The performance of the χ2 reduces
in case of glitches with a high value of f0 with templates of high mass. In case of high mass
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Figure 5.2: This plot shows the deviation of the analytically calculated time-delay for a Newtonian
template from the computationally calculated value using the IMRPhenomP waveform. The values
are for a constant value of Q = 20

Figure 5.3: This plot shows the aLIGO Zero Detuned High Power PSD [17] [3]
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Range of the Total mass of binary Minimum projection (p)
10M�−70M� 0.80
70M�−90M� 0.85

90M�−100M� 0.90
100M�−120M� 0.95
120M�−130M� 0.975
130M�−160M� 0.99

Table 5.1: This table contains the values of minimum projection (p) that will be used to construct
the orthogonal subspace, if a template with the total mass in the corresponding range has been
triggered in the matched filter test.

templates, the frequency of merger is close to the high frequency end of the parameter space.
The mismatch between the Newtonian and the IMR waveform is high at frequencies close to the
merger. Thus, in the high f0 region of the parameter space performance goes down. In order to
counter that, consider a higher value of p for templates with high masses and thus sample points
closer to each other. This does not increase the computational cost by an uncomfortable margin.
The value of p for different ranges of the total mass of the binary is as shown in the Table ( 5.1).
We have thus set the values of the parameters to get an optimal χ2. We can now run performance
tests with Gaussian noise and also compare our optimal χ2 with the power χ2.

5.2 χ2 v/s SNR plots

In order to compare the performance of the two χ2 tests, we need to test their abilty to distinguish
between signals and glitches in simulated data. A simulated data segment can be generated by
creating a segment containing pure noise of the appropriate PSD and adding an appropriately scaled
known signal or a glitch. In our analysis, we generated simulated data segment of 32 seconds and
a sampling frequency of 2048 Hz with three kinds of injections.

1. Signal injection - BBH template as a signal and Gaussian noise having the appropriate PSD.

2. Glitch injection - Sine-gaussian function as a glitch and Gaussian noise with appropriate
PSD.

3. Pure noise injection - Gaussian noise with appropriate PSD.
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Figure 5.4: Template bank generated for data containing noise with white PSD.

On each of these data segments, we ran a matched filter search for GW signal using a template
bank. The template bank that we used in the search (Fig. (5.4) and (5.5))had the following proper-
ties.

• Non-spin templates - The waveform of the templates assume that the component black-holes
in the binary are not spinning.

• Approximant of the template - IMRPhenomP

• flow = 30 Hz.

• PN order = 2PN.

• Maximum mismatch = 1%.

• Minimum component mass = 7M�.

• Maximum component mass = 100M�.

• Maximum total mass = 160M�.
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Figure 5.5: Template bank generated for data containing noise with aLIGO Zero Detuned High
Power PSD.

If the SNR at any data point was higher than the threhsold (ρ0) equal to 5, we treated it as a trigger.
We computed the value of the power χ2 and the unified χ2 at that data point. But, the number
of degrees of freedom of the two χ2s must be equal for a valid comparison. By the nature of the
construction of unified χ2, we cannot fix the number of degrees of freedom beforehand. Therefore,
we calculated the unified χ2 first and then the power χ2 with the same d.o.f. But, in order to see
trends, we need to compare the the two values among a large number of data segments. There is no
way to make the d.o.f equal for all the data segments which we use for simulations. Therefore, we
will compare the values of χ2 per d.o.f. or reduced χ2 (χ2

r ) among all the simulated data segments.
This is done so that the mean of the χ2 distribution is scaled down to 1. Thus, we expect a trend of
the χ2

r for all the signal injections to be close to 1. With all the simulated data, we made plots of χ2
r

v/s SNR. A separation between the values of χ2
r for glitches and χ2

r for signals is an indicator of
how well the χ2 test acts as a discriminator. The test is more effective if this separation is higher.
This is a very basic way to compare the two statistics. But it can still provide important insights on
the overall trends followed by the statistics.

The performance of the unified χ2 is different in different regions of the parameter space. We
want to compare the performance of the two χ2 tests in broadly different regions. In order to do
that, we ran simulations with sets of glitch injections such that in each set, the glitches are sampled
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from only one of these regions. For each set, we will plot the χ2
r v/s SNR using the same signal

injections and pure noise injections. We have considered three such broad regions of that parameter
space. For each of the regions, we did simulations with noise having a White PSD and also with
noise having aLIGO Zero Detuned High Power PSD. Each plot is contains data from 1000 glitch
injections, 1200 signal injections and 600 pure noise injections. The ranges of parameters defining
the different regions are as follows.

• High Q and low f0: 25≤ Q≤ 50, 40Hz≤ f0 ≤ 80Hz

• High Q and high f0: 25≤ Q≤ 50, 80Hz≤ f0 ≤ 120Hz

• Low Q and low f0: 5≤ Q≤ 15, 40Hz≤ f0 ≤ 70Hz

The χ2
r v/s SNR plots are in Fiq. ( 5.6), ( 5.7) and ( 5.8).

In these plots, we can see a few clear trends follows by the values of the χ2
r . The values of

both the χ2
r for signal injections are close to 1 at all SNRs as is required. The values of both the

χ2
r for glitch injections follow an approximate power law. The separation between the χ2

r values of
signals and glitches is quite clear for SNRs greater than 9. Thus, both the χ2 tests can effectively
discriminate between glitches and signals for those SNRs. But for SNRs lower than 9 the χ2

r values
of signals and glitches start overlapping. There is also the possibility that pure gaussian noise is
also mistaken for a signal of a low SNR. Therefore, this plot is not a very effective way to test the
χ2

r statistics for low SNRs.

Comparison between the two statistics can be made based on the how high the value of χ2
r

is for a glitch injection. In the region of high Q and low f0, we can clearly see that the trend of
values of unified χ2

r is higher than the trend of the values of the power χ2
r . Thus, in that region, the

unified χ2 performs better than the power χ2. In the other two regions, the values of the two χ2
r s

are overlapping and there is no clear distinction between the trends. Therefore, we will plot ROC
curves for the statistics to compare performance.

5.3 Receiver Operator Characteristic (ROC) Curves

The plots of χ2
r v/s SNR show us a reasonable comparison between the two statistics. But this

comparison is only useful if the difference between the two is high. In most of the cases seen
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Figure 5.6: χ2
r v/s SNR plots for the region ’high Q and low f0’. The upper and lower plots contain

data from injections with a white and aLIGO Zero Detuned High Power PSD respectively
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Figure 5.7: χ2
r v/s SNR plots for the region ’high Q and high f0’. The upper and lower plots

contain data from injections with a white and aLIGO Zero Detuned High Power PSD respectively
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Figure 5.8: χ2
r v/s SNR plots for the region ’low Q and low f0’. The upper and lower plots contain

data from injections with a white and aLIGO Zero Detuned High Power PSD respectively
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above, the points corresponding to the values of the two χ2s are overlapping and therefore, it is
not possible to say which statistic is better. Moreover, we do not get any quantitative information
about their relative performance. We want to know the effectiveness of the statistic in terms of
the detection probability of the trigger. A Receiver Operator Characteristic (ROC) curve contains
precisely that information, and therefore is a more effective way to compare the two χ2 statistics.

5.3.1 Definition of ROC Curves

Consider a data segment x from the detector. The problem at hand is to check whether this segment
contains a signal or not. In order to do that, define a statistic z which is a function of x such that z

can take values from zmin to zmax. Let z0 (zmin ≤ z0 ≤ zmax) be a threshold such that,

• z(x)≤ z0 =⇒ A signal is present

• z(x)> z0 =⇒ signal is absent.

Thus, z can classify data into two categories, signal present and signal absent. The effectiveness
of the statistic can be checked by generating a large number of segments of simulated data, both
containing and not containing signals. The statistic can be used to classify the segments into the
two categories for a fixed value of threshold z0 . In this process, there are four types of data
segments as follows.

• True positive (TP): The simulated data contains a signal and it is classified by z as a signal.

• False positive (FP): The simulated data does not contain a signal but it is classified by z as a
signal.

• False negative (FN): The simulated data contains a signal but it is classified by z as not a
signal.

• True negative (TN): The simulated data does not contain a signal and it is classified by z as
not a signal.

Let the number of data segments which are True positives be NT P, which are False positives be
NFP, and so on. If Np is the total number of data segments in which a signal is present and Na is
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the total number of data segments in which a signal is absent, then Detection Probability (PD) and
False Alarm Probability (PFA) are defined as follows.

PD =
NT P

Np
PFA =

NFP

Na
(5.1)

The Detection probability and False Alarm probability for different values of threshold z0 can
be calculated. Then, the Receiver Operator Characteristic is a plot of the Detection probability
v/s the False Alarm probability. Such a plot is very useful for comparing effectiveness of two
statistics. The two probabilities mentioned above are a way of quantifying the performance of the
statistic z. The aim is to make a statistic that can classify maximum number of Np as signals and
the minimum number of Na as signals. Thus, the statistic which has a high Detection probability
for a small False Alarm probability qualifies as a good discriminator. In order to compare two
statistics, we can compare the Detection probability of the two at the same value of False Alarm
probability. Thus, the statistic with a ROC curve higher than the other is better.

5.3.2 ROC curves for unified χ2

The performance of the discriminator depends heavily on the choice of the statistic. In the case of
our problem, we have two statistics at our disposal, the SNR and the χ2. As we have seen, SNR by
itself is not a good statistic to discriminate between signals and glitches. That is why we have the
χ2 to supplement the SNR. We can use an initial SNR cutoff and later a χ2 cutoff to discriminate
between signals and glitches. But, we can achieve much better results by combining the SNR and
the χ2 and defining a new statistic. With the knowledge of the behaviour of the χ2

r of glitches for
increasing value of SNR from the χ2

r v/s SNR plots, we use the following statistic.

Let x = log10(ρ) (ρ = SNR) and y = log10(χ
2
r ). Then the new statistic is defined as follows:

ζ = x− (y+0.9)2

14
(5.2)

If ζ0 is a threshold on ζ , then ζ > ζ0 =⇒ signal is present and ζ < ζ0 =⇒ signal is absent.
Curves of constant ζ on a χ2

r v/s SNR plot look like parabolic functions in log-log scale. These
curves are chosen such that they follow the linear trend that can been seen in χ2

r of glitches at high
SNRs.
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For the ’low Q and low f0’ region of the parameter space, the linear trend on the χ2 increasing
with SNR has a different slope than the other two regions. Therefore, the statistic ζ as defined in
Eq. (5.2) cannot work as a good statistic for discriminating between signals and glitches sampled
from this region. But, we can make a different statistic using the same functional form, but chang-
ing the constants which aligns well with the linear trend of χ2 values. This new statistic that will
act as a good discriminator for glitches sampled from ’low Q and low f0’ region of the parameter
space defined as follows. Let x = log10(ρ) (ρ = SNR) and y = log10(χ

2).

ζ1 = x− (y+0.7)2

9
(5.3)

If ζ0 is a threshold on ζ1, then ζ1 > ζ0 =⇒ signal is present and ζ1 < ζ0 =⇒ signal is absent.
The ROC curves in different regions of the parameter space for the two different PSDs are in the
Fig. (5.9), (5.10) and (5.11). The simulations used to plot these are the same ones that were used
for the χ2 v/s SNR plots.

In the ’high Q and low f0’ region, we see that the unified χ2 is performing much better than the
power χ2 for both the types of noise. This observation is much clearer in the ROC curve that the
χ2

r v/s SNR plot. In the ’low Q and low f0’ region, the unified χ2 is also performing marginally
better in both the types of noise. The performance in the high Q and high f0 region of the space
is same for both the statistics. Altogether, the unified χ2 is performing better than the power χ2.
This improvement is especially significant for triggers with low SNR.

We have seen in the χ2
r v/s SNR plots that χ2 for signals and glitches overlap in the region

of SNR < 9. Due to this overlap, the False Alarm probability for triggers in this region is high.
This is the region that we are probing at False Alarm probabilities of order 10−3. The False alarm
probabilities of triggers with SNRs higher than 9 are much smaller than 10−3, since there is no
overlap between χ2 of signals and glitches. From the ROC curves we can clearly conclude that the
unified χ2 performs better than power χ2 even at low SNRs. Since the unified χ2 statistic has a
higher detection probability, it will increase our confidence in detections at lower SNRs.

The region of ’low Q and low f0’ gives optimal results with a statistic different from the other
regions of the parameter space. This is because the trend of the χ2 in these regions is very different.
We had tuned ζ to work as optimal discriminator for a certain region based on the trends that we
observed in that region. Therefore, it is no surprise that it does not work optimally in other regions.
We can construct a different statistic that works for all the regions, but that will give suboptimal
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Figure 5.9: ROC curves for the region ’high Q and low f0’. The upper and lower plots contain data
from injections with a white and aLIGO Zero Detuned High Power PSD respectively
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Figure 5.10: ROC curves for the region ’high Q and high f0’. The upper and lower plots contain
data from injections with a white and aLIGO Zero Detuned High Power PSD respectively

55



Figure 5.11: ROC curves for the region ’low Q and low f0’. The upper and lower plots contain
data from injections with a white and aLIGO Zero Detuned High Power PSD respectively
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results in all the regions of the parameter space. Instead, it is a better idea to use both the statistics
together. At least one of them will work as the optimal statistic for discrimination and based on
which one does, we will also be able to gain information about the parameters of the glitch.

5.4 Conclusion

With the increasing sensitivity of the detectors, the number of glitches is also increasing. The
transition from the first observation run to the third observation run has seen a drastic increase
in the number and types of glitches. With more advanced detectors being built, it is important to
develop better χ2 tests to discriminate between signals and glitches. The unified χ2 formalism pro-
vides a mathematical framework to discuss such χ2 tests. Such a framework can provide insights
into the performance of the χ2 tests for different parameters of glitches an signals in a consistent
mathematical way.

Using this framework, we have developed an optimal χ2 test to discriminate between signals
and transient glitches that can be modelled using sine-gaussian functions. In simulations with
Gaussian noise, this optimal χ2 is a more effective discriminator as compared to the power χ2.
Therefore, it is highly likely that it will also perform well in the real LIGO noise, which is not
Gaussian. It works better in a large region of the parameter space of sine-gaussian glitches and the
BBH templates. The improvement in the performance of the χ2 at low SNRs is important for new
detectors with improved sensitivities. The unified χ2 can discriminate between signals and glitches
more effectively at lower SNRs, further increasing our confidence in the low SNR detections.

The formalism of unified χ2 can be applied to other types of glitches and optimal χ2 tests can
be constructed for those types as well. Those χ2 can be combined with the above χ2 by simply
adding the two values. Such a combination can act as an effective χ2 discriminator against all the
different kinds of glitches.
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