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Abstract
Rational Conformal Field Theories (RCFTs) are used to describe many physical systems including,
but not limited to, the Fractional Quantum Hall effect. In that effect, classifying RCFTs is an
interesting and tractable problem. In this thesis we first understand and develop the formalism
of CFTs and specialise to WZW models to study examples of RCFTs. Using the techniques
of Modular Invariance, we use the Modular Linear Differential Equations (MLDE) approach in
our attempt of classification of RCFT. We note that the contour integral representation of certain
characters lends itself very well to understand the monodromy properties of characters. This leads
us to developing an algorithm to compute the modular S-matrix for arbitrary number of characters,
without specifying any chiral algebra. Subsequently we explore the space of solutions of the order
3 MLDE, and discover infinite families of solutions known as quasi-characters. Quasi-characters
are solutions of the MLDE with integer but not necessarily positive q-expansion. The novel coset
construction is used extensively to construct the families of solution. Using these quasi-characters
we can construct new admissible characters. Following these original developments, we explore
the application of RCFT in the Fractional Quantum Hall effect, after covering the basics of the Hall
effect.
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Chapter 1

Two Dimensional Conformal Field Theories

Conformal field theories are quantum field theories with additional conformal symmetry. These
theories explain a large number of physical phenomena and are used in a variety of places in physics.
Physics at second order phase transitions, field theories on string theory world sheets, and probing
the yet unknown theory of quantum gravity through the AdS/CFT correspondence.

Rational CFTs are an interesting subset of CFT, where the Hilbert space breaks up into a
finite number of modules. These are useful once again, in many aspects of physics, for example,
calculating critical exponents of statistical systems, realizing “stringy” examples of AdS/CFT. An
interesting application is in the explanation of the Fractional Quantum Hall effect, and using these
quantum Hall systems to achieve topological quantum computing.

This thesis contains a subset of the topics explored during my Master’s project, which include:
(i) the study of WZWmodels, (ii) the study of fields on AdS and their relation to CFT, (iii) Modular
invariance, and modular differential equations for classification, (iv) computation of the modular
S-matrix for large subclasses of RCFTs, (v) the study of the quantum Hall effect and (vi) brief
study of Chern-Simons theory and their relation to the Quantum Hall system.

We start by discussing properties of Quantum Field Theories in 2 dimensions which have
Conformal invariance. Conformal transformations are spacetime transformations which preserve
angles between vectors. Conformal transformations include scaling, rotations, translations, in-
versions about the unit sphere,“special” conformal transformations and their linear combinations.
More precisely, the metric changes only up to a coordinate dependent factor. Quantum field theo-
ries invariant under such transformations are known as Conformal Field Theories (CFTs). In two
dimensions, it has been proven that QFTs which are scale invariant are also conformally invariant.
The following sections review the paper [1], and can be found in the textbook [2].

1.1 Conformal Invariance in two dimensions
Let us parametrize the 2D Euclidean plane in complex coordinates z = x + iy, z̄ = x − iy.
Infinitesimal conformal transformations xµ → xµ + vµ are transformations which satisfy the
conformal killing equation:

∂µvν + ∂νvµ = ∂ρv
ρδµν (1.1)
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which imply that the transformation must satisfy the Cauchy-Riemann conditions:

∂1v1 = ∂2v2 ∂1v2 = −∂2v1 (1.2)

In other words, the transformations must be holomorphic. Similarly, the coordinate z̄ transforms
by an anti-holomorphic transformation. This shows that the local symmetry group is infinite
dimensional, since there are infinitely many (anti-)holomorphic functions.

If we parametrize the local infinitesimal transformations z → z+v(z) via a Laurent expansion:

v(z) =
∑
n∈Z

cnz
n+1 (1.3)

The associated vector fields are the generators of the local conformal transformation:

ln = −zn+1∂z (1.4)

and its anti-holomorphic (l̄n) counterpart. We can calculate the algebra of these generators to
obtain

[ln, lm] = (n−m)ln+m [l̄n, l̄m] = (n−m)l̄n+m [ln, l̄m] = 0 (1.5)

which is the direct sum of 2 independent Witt algebras, one for the holomorphic sector and one for
the anti-holomorphic sector.

It is easy to verify that out of the infinite local generators, only three fromeach of the holomorphic
and anti-holomorphic generators are well defined globally. By demanding well definedness at z = 0
and z =∞, we see that the surviving generators are

l−1, l0, l1, l̄−1, l̄0, l̄1 (1.6)

These generators are the generators of the Mobius group SL2(C)/Z2 given by

z → az + b

cz + d
, where a, b, c, d ∈ C, ab− cd 6= 0 (1.7)

These 6 generators can be mapped to the 6 generators of the conformal group: 2 for translations,
2 for special conformal transformations, 1 rotation and 1 scaling. Using these generators, we can
construct the dilations and rotation operators explicitly:

l0 + l̄0; l0 − l̄0 (1.8)

We shall see that the Witt algebra admits a central extension, which is called the Virasoro algebra
and that the Virasoro algebra is the symmetry algebra of a CFT.

We can now define a primary field as a field which transforms under conformal transformations
as

φ(z, z̄)→ φ(w, w̄) =

(
dw

dz

)−h(
dw̄

dz̄

)−h̄
φ(z, z̄) (1.9)
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and the infinitesimal version is

∂εφ = ε(z)∂zφ+ h∂zε(z)φ (1.10)

Fields which obey the above transformations for only global transformations are called quasi-
primary fields. The eigenvalue of operator l0 is h, and is called the conformal dimension of the
field. Eigenvalues of the dilation operator D = l0 + l̄0 and the rotation operatorM = l0 − l̄0 are
called scaling dimension ∆ and spin s respectively.

∆ = h+ h̄; s = h− h̄ (1.11)

1.1.1 The Stress Energy Tensor
In a quantum field theory, the conserved current due to Lorentz invariance is given by the stress
energy tensor Tµν . In a CFT, one can show that the stress energy tensor is traceless, i.e. Tzz̄ = 0.
Since it is a conserved current,

∂µT
µν = 0 (1.12)

one can show that the diagonal components Tzz and T̄z̄z̄ are holomorphic and anti-holomorphic
respectively. It is convenient to introduce the notation

T (z) ≡ Tzz T̄ (z̄) ≡ Tz̄z̄ (1.13)

Note that the stress tensor always has scaling dimensionD = number of dimensions. So for us,
the stress tensor T (z) has D = 2 = h, h̄ = 0. Thus the stress tensor is a spin 2 object.

The stress energy tensor changes under the following way , under a local infinitesimal conformal
transformation ε(z):

δεT (z) = ε(z)T ′(z) + 2ε′(z)T (z) (1.14)

Once we quantize the theory, we shall see that a new term will appear in the variation.

1.1.2 Radial Quantization
To quantize a theory, we need a proper notion of time, so that we can time order operators. Consider
the theory defined on a cylinder, which is conformal to the plane. Let the coordinates on the cylinder
be σ0 and σ1. Let the “space” direction σ1 be the compact direction, taking values in [1, 2π), and
the time direction σ0 ∈ R. The map between the cylinder and plane reads

z = eσ0+iσ1 z̄ = eσ0−iσ1 (1.15)

The radial coordinate in the plane is identified with time in the cylinder. Thus, the far past on the
cylinder is mapped to the origin, and the far future is mapped to the point∞. The plane with the
point ∞ is called the Riemann Sphere S2. This allows us to use the powerful tools of complex
analysis in the quantum theory.
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Since the generator which generates radial scaling is the Dilatation operator, it is now identified
with the Hamiltonian of the CFT on a cylinder. This is known as Radial Quantization. Thus, the
equivalent operation of time ordering is called radial ordering

R{φ1(z)φ2(w)} =

φ1(z)φ2(w) |z| > |w|

φ2(w)φ1(z) |z| < |w|
(1.16)

1.1.3 Correlation Functions of two and three fields

Correlation functions are an important quantities to calculate in aQFT, since they are the observables
in any QFT. Correlators of primary fields are severely constrained by conformal invariance. One
point functions, or expectation values of single fields vanish, except for the Identity field. Two point
functions can be determined exactly. Translation invariance implies the correlators is a function
of the separation, rotation invariance implies that it depends only on the magnitude of separation.
Using the rest of the conformal symmetries, we fix the full non-perturbative two point function to
be

〈φ1(z1, z̄1)φ2(z2, z̄2)〉 ∝ δh1,h2

z2h1
12 z̄2h̄1

12

(1.17)

where z12 = z1 − z2 and the conformal dimensions of φ1 and φ2 are h1 and h2 respectively.
Symmetry arguments can not fix the constant of proportionality.

Similar arguments can made for the three point function. The full three point function turns out
to be

〈φ1(z1, z̄1)φ2(z2, z̄2)φ3(z3, z̄3)〉

∝ 1

zh1+h2−h3
12 zh1+h3−h2

13 zh3+h2−h1
23

1

z̄h̄1+h̄2−h̄3
12 z̄h̄1+h̄3−h̄2

13 z̄h̄3+h̄2−h̄1
23

(1.18)

We shall see later that four point functions can not be fixed just by using symmetry arguments,
and many techniques have been developed to solve them. We will explore some of those techniques
later in this thesis.

1.1.4 Operator Product Expansion

Since T (z) is the generator of infinitesimal transformations, the operator product T (z)φ(w) =
δεφ(w). In a QFT, one can replace a product of two local operators with an infinite sum of local
operators, known as the Operator Product Expansion (OPE):

Oi(z)Oj(w) =
∑
k

Cijk(z − w)Ok(w) (1.19)

in the limit where z → w. Using the fact that a conserved current is given by T (z)ε(z), where
ε(z) is a conformal killing vector, and symmetry transformations are generated by the associated
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charge, Qε =
∮
dzT (z)ε(z) with an equal time commutator:

δεΦ(w) = [Qε,Φ(w)] (1.20)

we can calculate the Tφ OPE to be

T (z)φ(w) =
h

(z − w)2
φ(w) +

1

z − w
∂φ(w) + · · · (1.21)

where φ(z) is a primary field and · · · represent non-singular terms in the limit z → w.
One can compute the stress energy tensor for a number of QFTs, and then write a general OPE

for the stress energy tensor with itself:

T (z)T (w) =
1

z − w
T ′(w) +

2

(z − w)2
T (w) +

c

2(z − w)4
+ · · · (1.22)

where the last term is an anomalous term, which shows that the stress tensor is not a primary field.
We see that the anomalous term has a coefficient c/2. The parameter c is called the central charge,
and captures information of the degrees of freedom of the system. Using the TT OPE we can
calculate the infinitesimal variation of the quantum stress tensor to be:

δεT (z) = ε(z)T ′(z) + 2ε′(z)T (z) +
c

12
ε′′′(z) (1.23)

1.1.5 Virasoro Algebra
Since the stress energy tensor T (z) is the generator of conformal transformations, let us study its
modes. Consider the Laurent expansion of T (z)

T (z) =
∑
n∈Z

Lnz
n−2 (1.24)

or equivalently, the modes Ln can be written as

Ln =

∮
dzzn+1T (z) (1.25)

The modes Ln are called the Virasoro generators. Computing their commutator using the TT OPE,
we obtain the Virasoro algebra:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (1.26)

which is the central extension to theWitt algebra, as alluded to earlier. Notice that the modesL0, L1

and L−1 recover the Witt algebra as the central term vanishes.
A similar analysis with T̄ will give us the anti-holomorphic Virasoro algebra. Thus the full

symmetry algebra is the direct sum of the holomorphic and anti-holomorphic Virasoro algebras.
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1.2 Representations of the Virasoro Algebra and Null vectors
If we demand that the spectrum of a CFT must be bounded from below, we must define the notion
of a ground state. Demanding that the stress energy tensor T (z) |0〉 is well defined globally, we get
the conditions

Lm |0〉 = 0 ∀m ≥ −1; 〈0|Lm = 0 ∀m ≤ 1 (1.27)

So the global symmetry generators L0, L1, L−1 annihilate the vacuum.
An asymptotic “in” state is created by a primary at the origin:

|φ〉 = lim
z,z̄→0

φ(z, z̄) |0〉 (1.28)

and similarly the out state is created by a primary at infinity:

〈φ| = lim
z,z̄→∞

z2hz̄2h̄ 〈0|φ(z, z̄) (1.29)

where the extra z and z̄ factors arise from hermitian conjugation acting on a field φ†(z, z̄) =
z̄−2hz−2h̄φ

(
1
z̄
, 1
z

)
.

From the OPE of T (z) with a primary field φ, we obtain:

L0 |φ〉 = h |φ〉 ; Lm |φ〉 = 0 ∀m > 0 (1.30)

which satisfies our condition for a “ground state.” Note that the algebra of the Virasoro generators
with L0 is

[L0, Ln] = −nLn (1.31)

and thus Ln’s are lowering (n > 0) and raising (n < 0) operators.
Defining the primary state as the highest weight state, we can generate the rest of the spectrum by

acting the raising operators on the primary state. This construction is known as the Verma module.
The full spectrum of the CFT is the direct sum of all the holomorphic and anti-holomorphic Verma
modules, generated from each primary in the theory.

The states created by the action of a raising operator on a primary state is called a descendant
state. A kth level descendant state, which can be created by acting the operator L−k on a primary
of dimension h, or (L−1)k, or any other combination of raising operators whose indices add up to
k, will have conformal dimension h+ k. Clearly, the degeneracy at level k is given by the Partition
of k, or the number of ways to sum positive integers to get k. This degeneracy grows exponentially
with k.

1.2.1 Null Vectors in the Verma Modules
Do we know if these Verma modules are irreducible? If they are, then they will not contain any
sub-modules or sub-representations. In a sub-representation, the L0 operator will again bounded
from below by some state |χ〉, but will not be the primary which generated the module |φ〉. Thus
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|χ〉 is a descendant of |φ〉. If such a state |χ〉 exists, then it must have zero norm. To show this,
consider any descendant of |φ〉

|ψ〉 = L−k1 · · ·L−kl |φ〉 (1.32)

where ki’s are positive integers. Consider its inner product with |χ〉,

〈ψ|χ〉 = 〈h|Lkl · · ·Lk1 |χ〉 = 0 (1.33)

The first equality is true because L†k = L−k. The second equality is true because |χ〉 is a primary
state, so it will be annihilated by any lowering operator. Thus,

〈χ|χ〉 = 0 (1.34)

since |χ〉 is a special case of |ψ〉. Thus, this state is called a null vector, and since it is orthogonal
with all other states in the Verma module, it is decoupled from the theory. After decoupling all
such null vectors, the Verma module is now irreducible.

Existence of these null vectors allows us to write down differential equations for correlators.
Also, it allows us to constrain the possible values of the parameters like the central charge and
conformal dimensions of primaries. An example of this at work is the construction of the minimal
models.

Victor Kac [3] determined that if a primary has a null vector at level N = rs, where r, s are
positive integers, then

hr,s(c) =
c− 1

24
+

1

4
(rα+ + sα−)2 (1.35)

where
α± =

√
1− c±

√
25− c√

24
(1.36)

Unitarity constraints tell us that unitary CFTs must have c, h > 0. For the values of c ∈ [0, 1], one
can show that two co-prime integers p, q, we have theories with finite number of primaries with
central charge and conformal dimensions given by:

c = 1− 6
(p− q)2

pq

hn,m =
(mp− nq)2 − (p− q)2

4pq

n ∈ 2, · · · p− 1, m ∈ 2, · · · , q − 1; n,m are co-prime

(1.37)

There are an infinite set of CFTs with c < 1 for each co-prime pair of integers p, q, with a finite
number of primary fields under the Virasoro algebra. These CFTs are known as minimal models.
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1.3 Wess-Zumino-Witten Models

In the previous discussions we only considered theories with the Virasoro algebra as the local
symmetry algebra. However, one can consider theories with extended symmetry algebras rather
than just the Virasoro algebra. Just as we had defined primaries of the Virasoro algebra, we shall
see that we can define primaries and Verma modules of these extended chiral algebras. If we define
a character χi as the trace over all the states in a Verma module over a primary φi, and the partition
as the full sum over states, then we see that the partition function can be expressed as

Z =
∑
i

χiχ̄i

A Rational CFT (RCFT) is a CFT which has a finite number of primary fields under any local
symmetry algebra. Thus, the sum over characters will be over a finite integer p, which are the
number of distinct characters.

In this section we explore RCFTs which have more than just conformal symmetry, but also Lie
group symmetry. Wess-Zumino-Witten Models, WZW Models for short are such CFTs. We shall
see that unlike minimal models, which are RCFTs with only conformal symmetry and hence must
have central charge less than 1, WZW models can only have central charge greater than 1. This is
due to the fact, as we shall see, that the Lie group symmetry, manifest as the Kac-Moody algebra
rearranges the infinite representations of the Virasoro algebra into finite Verma modules. [4, 5, 6, 2]

1.3.1 Nonlinear Sigma Model

Consider a field theory living on a two dimensional Euclidean (or Minkowski) plane. We would
like the theory to be conformally invariant, and also invariant under other Lie algebras.

S0 =
1

4λ2

∫
d2z tr

(
∂µg

−1∂µg
)

(1.38)

The fields here are the map g : S2 → G, where G is a (semi-simple) Lie Group, and S2 is the
Riemann Sphere. Therefore, the field g is a unitary scalar matrix valued field on the Riemann
Sphere. Due to the action being free, and the fields having length dimension zero, the action is
scale invariant. We can parametrize the fields by exponentiating the generators ta.

g = eiφ
ata (1.39)

The Lagrangian thus turns out to be

L0 =
1

4λ2
tr
(
∂µg

−1∂µg
)

=
1

2
∂µφ

a∂µφbgab(φ) (1.40)
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where

gab =
1

4λ2
(2 tr(tatb) + φc tr(tatbtc) + φcφd tr(tatbtctd) + . . . ) (1.41)

is the metric of the group manifold, parametrized by the fields φa. The lagrangian (1.40) is the
lagrangian of multiple scalar fields (n2 − 1 for SU(N)) coupled to each other by the curvature of
the manifold, captured in gab.

Symmetries of the Nonlinear Sigma Model

From the form of the lagrangian in terms of the multiplet φa and metric gab (1.40), it seems natural
that isometries of the field space manifold are global symmetries of the theory.

To prove the claim, consider the general transformation δφa = ξa(φ). An isometry of a space
is a vector such that the Lie derivative of the metric along that vector should be zero. That is,

Lξgab = gac∂bξ
c + gcb∂aξ

c + ξc∂cgab = 0 (1.42)

Covariantizing the derivatives gives us Killing’s equation ∇(aξb) = 0. Therefore the variation of
the Lagrangian under the above variation of φ is

δL0 =
1

2
∂µξ

a∂µφbgab(φ) +
1

2
∂µφ

a∂µξbgab(φ) +
1

2
∂µφ

a∂µφbξc∂cgab(φ) (1.43)

∂µξ
a(φ) = ∂µφ

c∂cξ
a (1.44)

=⇒ δL0 =
1

2
∂µφ

a∂µφb(gac∂bξ
c + gcb∂aξ

c + ξc∂cgab) = 0 (1.45)

Thus, isometries of the manifold will make δL0 = 0, thus proving the claim.
Thus, we can see the explicit symmetry enforced by allowing the fields to be valued on a

manifold. However, we can see some more enhanced symmetry in the initial form (1.38). It is
straightforward to see that the transformation of the form g → hLgh

−1
R , where hL, hR ∈ G leaves

(1.38) invariant, by cyclicity of trace. Therefore the global symmetry group of the Nonlinear Sigma
Model is G×G.

Equations of Motion and Conserved Currents

Computing the equations of motion of the Nonlinear sigma model, we have

(δac∂µ + Γabc∂µφ
b)∂µφc = 0 (1.46)

where Γabc is the connection on the group manifold. Defining a covariant derivativeD on the group
manifold, we can rewrite this as

Da
µb∂

µφb = 0 (1.47)
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The equations of motion are a nonlinear generalisation of the Klein Gordon equation, except one
of the derivatives carries the connection in the target space group manifold.

A more useful form of the equations of motion are in terms of the fields g. This will expose
a symmetry of the Lagrangian and help find its currents. This computation extensively uses
∂(g−1g) = 0 =⇒ ∂g−1 = −g−1∂gg−1, cyclicity of trace, and integration by parts to remove total
derivative terms from the Lagrangian.

δL0 =
1

4λ2
tr
(
∂µδg

−1∂µg + ∂µg
−1∂µδg

)
(1.48)

=
1

2λ2
tr
(
g−1δg(∂µ(g−1∂µg))

)
= 0 (1.49)

Therefore the equations of motion are

∂µ(g−1∂µg) = 0 (1.50)

This immediately tells us a conserved current of the theory is jµ = g−1∂µg. This corresponds to
the left action symmetry of the field g → hLg. We can obtain the other current from the equations
of motion as well by

g∂µ(g−1∂µg)g−1 = ∂µ(∂µgg
−1) = 0 (1.51)

Therefore the current for right action symmetry is j̃µ = ∂µgg
−1. These currents are conserved

separately by the equations of motion, and thus, in (z, z̄) coordinates,

∂zjz̄ + ∂z̄jz = 0 (1.52)

∂z j̃z̄ + ∂z̄ j̃z = 0 (1.53)

Notice that the currents do not break into separately conserved holomorphic and antiholomorphic
parts, which suggest that this is not a conformally invariant quantum field theory.

1.3.2 The Wess-Zumino Term
Tomake these models conformally invariant when quantized, Witten suggested to add the following
term to the action, known as the Wess-Zumino term:

Γ(g) =
1

24π

∫
B

d3yεαβγ tr
(
g−1∂αgg

−1∂βgg
−1∂γg

)
(1.54)

At first glance, it seems strange to add a three dimensional integral to a two dimensional action. The
theory lives on S2, the boundary of the ball B. The integrand can be written as a total derivative,
so the integral is over S2. We know that the second homotopy group of any Lie group π2(G) = 1,
that is, any map from S2 → G can be continuously deformed to (homotopic to) identity. Therefore
we can continue g inside the ball and thus g : B → G. However, this extension of S2 to B is not
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unique topologically.

By subtracting the Wess Zumino terms extended in topologically different balls, the integral is
over only the interior of both balls, topologically S3, since the boundary contribution cancels out.
That is, ΓB − ΓB′ = ΓS3 . Since we are subtracting the second ball, the normal is reversed and
becomes an outward normal for the entire S3.

It turns out, for compact simple Lie groups the third homotopy group π3(G) = Z. In simple
words, this means that compact simple Lie groups have an integer winding number for how many
times one can wrap the three-sphere around it. Hence we can say that the topological sectors in
which Γ is valued is labelled by the winding number. The infinitesimal variation of g in S3 does
not change value of ΓS3 .

δΓS3(g) =
1

8π

∫
S3

d3yεαβγ∂α tr
(
(g−1δg)jβjγ

)
= 0 (1.55)

This is zero because ∂S3 = ∅. For brevity, we have denoted g−1∂αg ≡ jα, as the left current derived
earlier is jµ, which is jα restricted to S2. Since the infinitesimal variation of g in S3 doesn’t change
Γ, it is a topological invariant, and the homotopy class remains unchanged. In this calculation we
have used:

εαβγ∂αjβ = εαβγ(∂αg
−1∂βg + g−1∂α∂βg)

= −εαβγjαjβ (1.56)

The Wess-Zumino term is in fact the second Chern number, which takes values 2πn. Chern
numbers are integrals of Chern classes, which are constructed from topologically invariant poly-
nomials. Now we can add the Nonlinear sigma model with the Wess Zumino term Γ.

S[g] = S0[g] + ikΓ[g] (1.57)

This action, (1.57), is called the Wess-Zumino-Witten model. Consider the (Euclidean) path
integral for the WZW model:

Z =

∫
[Dg]e−S0[g]−ikΓB(g) (1.58)

On changing the extension of the fields to the ball to B′, it is effectively adding an ikΓS3 term to
the exponential. To ensure the equations of motion of the theory do not change, we require this
term to vanish. However, since ΓS3 = 2πn, the extra piece in the path integral is now e2πink. This
vanishes for k ∈ Z. Therefore, for well definedness of the quantum WZW model, k must take
integer values. This integer k is known as the level of the WZW model. Thus we see that with
integer k, the addition of the WZ term gives a well-defined QFT which we now go on to analyse.
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1.3.3 Equations of Motion and Conserved Currents of the WZWModel

In this section we shall see that adding the Wess-Zumino term indeed makes this a conformally
invariant CFT. Let us begin by studying its equations of motion. We have already computed the
variation of the nonlinear sigma term in (1.49), and computed the variation of the Wess Zumino
term in (1.55):

δS = δS0 + ikδΓ (1.59)

=
1

2λ2

∫
d2z tr

(
g−1δg(∂µ(g−1∂µg))

)
− ik

8π

∫
d2z εµν tr

(
g−1δg∂µ(g−1∂νg)

)
= 0 (1.60)

Setting the integrand to zero, we get:(
1

2λ2
+

k

8π

)
∂z(g

−1∂z̄g) +

(
1

2λ2
− k

8π

)
∂z̄(g

−1∂zg) = 0 (1.61)

What has happened is that the current has now broken up into its holomorphic and antiholomorphic
parts, by the addition of the Wess-Zumino term. By setting

λ2 =
4π

k
(1.62)

the equations of motion become

∂z(g
−1∂z̄g) = 0 (1.63)

Thus, the left current only has a antiholomorphic part. Similarly the right current only has a
holomorphic part. On computing the β function of the WZWModel, it turns out that this value of
λ corresponds to the fixed point of the theory.

It is also important to note that this is true for k > 0. For k < 0, to ensure λ2 is still positive, the
RG fixed point is λ2 = −4π

k
, and the left current becomes holomorphic and right current becomes

antiholomorphic.
We still have to show that the left current actually generates left action and the right current

generates right action, as defined in 1.3.1. For this, let’s consider the infinitesimal transformation

g → hLgh
−1
R = (1 + ω)g(1− ω̄)

=⇒ δLg = ωg; δRg = −gω̄ (1.64)

We know the general variation of the action as

δS =
k

16π

∫
d2z (ηµν − iεµν) tr

(
g−1δg∂µ(g−1∂νg)

)
(1.65)

=
k

2π

∫
d2z tr

(
g−1δg∂z(g

−1∂z̄g)
)

(1.66)
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so the right variation will be

δRS =
−k
2π

∫
d2z tr

(
ω̄∂z(g

−1∂z̄g)
)

(1.67)

and the left variation will be

δLS =
k

2π

∫
d2z tr

(
ω∂z̄(∂zgg

−1)
)

(1.68)

where we have used (1.51). Comparing with the general variation of an action

δS = −
∫
ddxω∂µj

µ (1.69)

shows us that jz̄ = g−1∂z̄g generates right action, and jz = ∂zgg
−1 generates left action.

For the Nonlinear Sigma model we saw that the symmetry group was global G × G. On
addition of the Wess Zumino term to the action, we find the symmetry group is enhanced to local
G(z) ×G(z̄). To see that we can use the Polyakov Weigmann decomposition:

S(gh) = S(g) + S(h)− k

2π

∫
d2z tr

(
g−1∂zg∂z̄hh

−1
)

(1.70)

S(gh−1) = S(g) + S(h) +
k

2π

∫
d2z tr

(
h−1∂zhg

−1∂z̄g
)

(1.71)

Using these relations we can see that the following transformation is a symmetry of the WZW
action.

g(z, z̄)→ Ω(z)g(z, z̄)Ω̄−1(z̄) (1.72)

and the action changes as

S(g)→ S(ΩgΩ̄−1)

= S(Ωg) + S(Ω̄) +
k

2π

∫
d2z tr

(
Ω̄−1∂zΩ̄g

−1∂z̄g
)

= S(Ω) + S(g) + S(Ω̄)− k

2π

∫
d2z tr

(
g−1∂zg∂z̄ΩΩ−1

)
= S(Ω) + S(g) + S(Ω̄) = S(g) (1.73)

The integrals vanish since Ω(z) and Ω̄(z̄) are holomorphic and antiholomorphic respectively.
Similarly S(Ω) and S(Ω̄) vanish if the holomorphic (antiholomorphic) property is preserved during
the continuation into the ball B. Thus the global symmetry group has been extended into a local
one!
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1.3.4 Current Algebras and the Kac-Moody Algebra
To study the quantized WZW model, we need to look at correlation functions. To do this, we will
see what possible constraints we can impose on them with whatever symmetries we have in the
theory. In the previous section, we derived two conserved currents, the left and right holomorphic
currents for left and right action invariance of the WZW action respectively. Let’s normalize the
right current as

J = −k∂gg−1 = Jata (1.74)

Here ∂ ≡ ∂z and ∂̄ ≡ ∂z̄. We have written the currents in terms of the generator representation of
the group G such that

[ta, tb] = ifabc t
c (1.75)

Let us now look at the Operator Product Expansion (OPE) of the currents. These currents are
of conformal dimension 1, so by dimensional analysis all the terms must be of dimension 2. In the
OPE we only need to worry about the singular terms in the limit of the two operators coinciding,
so we can write

Ja(z)J b(w) ∼
∑
p>0

Xp

(z − w)p
(1.76)

To preserve dimensions on both sides, dim(Xp) = 2−p. In a unitary CFT, the minimum dimension
of any operator in the theory is 0, and that too only the identity operator. Therefore, 0 < p ≤ 2.

For p = 2, dim(X2) = 0 =⇒ X2 ∝ 1, and for p = 1, dim(X1) = 1 =⇒ X1 ∝ Ja, since
currents are the only dimension 1 holomorphic objects in a CFT. If there were other dimension 1
holomorphic objects, say A(z), then ∂µAµ = ∂̄A(z) = 0, implying that A(z) is also a conserved
current. However, we’ve not imposed any other symmetries in the theory, so these shouldn’t exist.

Therefore,

Ja(z)J b(w) ∼ kab1

(z − w)2
+
ifabcJ c(w)

(z − w)
(1.77)

where kab and fabc are (suggestively named) constants to be fixed. Tofix these constants, we shall use
commutativity of OPEs (inside correlation functions) and associativity of OPEs. Commutativity,
i.e. Ja(z)J b(w) = J b(w)Ja(z) implies for the first term

kab = kba (1.78)

since the denominator is symmetric under exchange of z and w, while the second term is antisym-
metric, so

fabc = −f bac (1.79)
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Associativity of OPEs implies

kcbfabd = kbdf cad = kadf bcd (1.80)

fabdfdce + f bcdfdae + f cadfdbe = 0 (1.81)

These relations directly imply that fabc are structure constants for a Lie algebra (must be antisym-
metric in their first 2 indices and must satisfy the Jacobi Identity (1.81). Also equation (1.80) tells
us that kab that is an invariant 2 form of the algebra, which turns out to be the Killing form. The
Killing form in the orthonormal basis of generators is ∝ δab. It turns out that if you compute the
OPE properly using canonical quantization, kab = kδab, where k is the level of the WZW model.
So, the OPE turns out to be

Ja(z)J b(w) ∼ kδab

(z − w)2
+
ifabcJ c(w)

(z − w)
(1.82)

Similarly, the right moving currents satisfy

J̄a(z̄)J̄ b(w̄) ∼ kδab

(z̄ − w̄)2
+
ifabcJ̄ c(w̄)

(z̄ − w̄)
(1.83)

These OPEs are called the current algebra of the theory.

From these OPEs we can calculate the algebra obeyed by the modes of the currents. To obtain
the modes, we Laurent expand the currents

Ja(z) =
∑
n∈Z

Janz
−n−1 ↔ Jam =

∮
dz

2πi
Ja(z)zm (1.84)

To calculate the algebra, we find the commutator of the modes

[Jam, J
b
n] =

1

(2πi)2

[∮
|z|>|w|

dzdw −
∮
|z|<|w|

dzdw

]
zmwnJa(z)J b(w)

=
1

(2πi)2

∮
0

dwwn
∮
w

dz zm
(

kδab

(z − w)2
+
ifabcJ c(w)

(z − w)

)
=

1

2πi

∮
0

dw(mwm+n−1kδab + wm+nifabcJ c(w))

=⇒ [Jam, J
b
n] = ifabcJ cm+n +mkδabδm+n,0 (1.85)

We have obtained the Kac-Moody algebra (1.85), denoted as ĝk. It is just the central extension
of the Lie algebra of the group G, just as the Virasoro algebra is the central extension of the de
Witt algebra. It is interesting to note that the zero modes realize just the algebra of G, just as the
m = 0,±1 generators of Lm of the Virasoro algebra realize the global conformal symmetry in a
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CFT.

[Ja0 , J
b
0 ] = ifabcJ c0 (1.86)

1.3.5 The Sugawara Construction
Until this point, we have assumed that the theory is a CFT, since we argued that this theory has
separately conserved holomorphic and antiholomorphic currents. However, a (2-d) CFT must
realize the Virasoro algebra in some way. The Sugawara construction helps us in obtaining the
Virasoro algebra from the Kac-Moody algebra derived in the previous section.

To begin, we start with an ansatz for the energy momentum tensor, motivated by the same of
the nonlinear sigma model.

T (z) = γ :JaJa: (z) (1.87)

This is the normal ordered product of holomorphic currents. We have yet to fix the value of γ,
which we shall accomplish by using the OPE derived in the previous section. To work with normal
ordering, we will define the normal ordered product to be the regular part of the OPE, i.e

:JaJa: (w) =
1

2πi

∮
w

dz

z − w
Ja(z)Ja(w) (1.88)

As one can see, this integral precisely pulls out the nonzero regular part of the OPE. Similarly, we
shall define the notation

AB (1.89)

as the only the singular terms in the OPE, known as a contraction.
We find that the JT contraction is

Ja(z)T (w) =
2γkJa(w)

(z − w)2
− γ f

abcf cbd

(z − w)2
Jd(w)

=
2γ(k + h∨)Ja(w)

(z − w)2
(1.90)

Here we have used the definition of the dual Coxeter number h∨: fabcf bcd = 2h∨δad. It is the
quadratic Casimir in the adjoint representation. Now, using commutativity of the OPE

T (z)Ja(w) = Ja(w)T (z)

=
2γ(k + h∨)Ja(z)

(z − w)2

= 2γ(k + h∨)

(
Ja(w)

(z − w)2
+
∂Ja(w)

z − w

)
(1.91)
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This is exactly the OPE of the energy momentum operator with a Virasoro primary field, if γ takes
the value

γ =
1

2(k + h∨)
(1.92)

Now having fixed γ, we can write the energy momentum tensor in terms of Kac-Moody currents as

T (z) =
1

2(k + h∨)
: JaJa : (z) (1.93)

Using this, we can also find a relation between the modes of the energy momentum tensor and the
Kac-Moody modes:

T (z) =
∑
p

Lpz
−p−2 = γ

∑
n,m

: JanJ
a
m : z−n−m−2 (1.94)

=⇒ Lm = γ
∑
n

: JanJ
a
m−n := γ

(∑
n<0

JanJ
a
m−n +

∑
n≥0

Jam−nJ
a
n

)
(1.95)

Since we know the commutation relations of Ja with J b, we can use this relation to construct the
commutation relations with themodes of the energymomentum tensor. Computing the commutator
with Lm and Jan , we obtain:

[Lm, J
a
n] = −nJam+n (1.96)

Now we can compute the algebra of Lm’s easily. This will also tell us if the theory is actually a
CFT, since up to this point we have not explicitly shown that the WZWmodel is a CFT. We obtain:

[Lm, Ln] = (m− n)Lm+n + γk dim gm

(
m2 − 1

6

)
δm+n,0

Substituting the value of γ, we obtain

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (1.97)

where the central charge c is given by

c =
k dim g

k + h∨
(1.98)

We have recovered the Virasoro algebra from the Kac-Moody algebra. Hence, we have shown that
the WZW model is a CFT, with the energy momentum tensor having the Virasoro generators as
its modes. This also confirms our ansatz of the energy momentum tensor as the normal ordered
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product of the Kac-Moody currents. Now we also know the TT OPE is

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(1.99)

since this is the OPE of the energy momentum tensor of a CFT.
Compiling results, the full holomorphic algebra of the WZW model is thus

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0 (1.100)

[Jam, J
b
n] = ifabcJ cm+n +mkδabδm+n,0 (1.101)

[Lm, J
a
n] = −nJam+n (1.102)

which we label as G. The complete algebra is thus G× Ḡ. The corresponding OPEs are

T (z)T (w) ∼ c

2(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
(1.103)

Ja(z)J b(w) ∼ kδab

(z − w)2
+
ifabcJ c(w)

(z − w)
(1.104)

T (z)Ja(w) ∼ Ja

(z − w)2
+
∂Ja(w)

z − w
(1.105)

Let us now focus on the central charge. We obtained the result

c =
k dim g

k + h∨
(1.106)

As we can see, the group plays an important role in defining the central charge. It can be shown

rank g ≤ c < dim g (1.107)

The lower bound is saturated for k = 1 in simply laced Lie algebras. Simply laced Lie algebras are
algebras which have equal norm positive root vectors. These turn out to be the su(n), so(2n), and
Ei Lie algebras. Therefore, the central charge takes integer values for these groups, which suggests
that these are free theories of c bosons. This is known as the Frenkel-Kac-Segal construction.
Similarly, free fermionic fields add half integer to the central charge. So, c(so(n))k=1 = n/2
suggests that the theory is of n/2 free bosons, or equivalently, n free fermions. This is Witten’s
famous non-abelian bosonization [4].

1.3.6 Representations of the Kac-Moody Algebra
The fields of the WZW model should be representations of the symmetry algebra of the theory,
being the semi direct product of the Kac-Moody algebra and the Virasoro algebraG× Ḡ : (1.100),
(1.101), (1.102). Using the State-Operator correspondence in radial quantization, we have the
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asymptotic in-state φ(0, 0) |0〉 = |φ〉. A Primary state is a highest weight state of the algebra.
Therefore, a Kac-Moody primary |φ〉 and a Virasoro primary |ψ〉 are defined by

Jan |φ〉 = 0; Ln |ψ〉 = 0 for n > 0 (1.108)

A primary of the WZW model is a primary under both the Kac-Moody and the Virasoro algebras.
From primaries, we can construct the rest of the fields in the theory, as descendants of the primary,
using the raising operators of the algebra. In this case, the raising operators areL−n, Ja−n, for n > 0.
Hence, the complete set of fields, as highest weight representations of G× Ḡ, are of the form(

N∏
i=1

L−ni

N̄∏
j=1

L̄−n̄j

M∏
k=1

Jak−mk

M̄∏
l=1

J̄ bl−m̄l

)
φ (1.109)

where ni, n̄j,mk, m̄l are arbitrary positive integers, and φ is a WZW primary. This is known as
the Verma module of the primary φ, and is denoted as [φ]G. It is an infinite tower of states, with
the highest weight being the primary φ, and all the descendants raised from it using the raising
operators. All the fields are therefore in the set {A} = ⊕l[φl]G, where l labels the primary. In
general, the action of the modes on a general field can be calculated by

LnA(z, z̄) =

∮
z

dw

2πi
T (w)(w − z)n+1A(z, z̄) (1.110)

JanA(z, z̄) =

∮
z

dw

2πi
Ja(w)(w − z)nA(z, z̄) (1.111)

Using this, we see some notable descendant fields are T (z) = L−21 and Ja(z) = Ja−11.

The dimensions of the fields given by (1.109), calculated by using the commutation relations
of L0 with all the raising operators are

h{n,m} = h+
N∑
i=1

ni +
M∑
k=1

mk h̄{n̄,m̄} = h̄+
N̄∑
j=1

nj +
M̄∑
l=1

ml (1.112)

Using the Sugawara construction, we can see if Kac-Moody primaries have any special proper-
ties under the Virasoro algebra.

Lm |φ〉 = γ

(∑
n<0

JanJ
a
m−n |φ〉+

∑
n≥0

Jam−nJ
a
n |φ〉

)
(1.113)

Form > 0, n < 0;m− n > 0, so

Lm |φ〉 = γJamJ
a
0 |φ〉 = γ([Jam, J

a
0 ] + Ja0J

a
m) |φ〉 = γifaacJ cm |φ〉 = 0 ∀m > 0 (1.114)

Therefore a Kac-Moody primary is also a Virasoro primary. We know that the eigenvalue of the
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L0 is the dimension of the operator, so

L0 |φ〉 = h |φ〉 (1.115)

Since the zero modes of the Kac-Moody currents satisfy the Lie algebra of the group G, primaries
of the Kac-Moody algebra should be representations of the Lie algebra g.

Ja0 |φ〉 = −ta |φ〉 (1.116)

where ta will be the matrix corresponding to which representation |φ〉 is. The minus sign is to
ensure the operator algebra closes.

[Ja0 , J
b
0 ] |φ〉 = (−Jatb + J bta) |φ〉 = (tbta − tatb) |φ〉 = −ifabctc |φ〉 = ifabcJ c0 |φ〉 (1.117)

We have used the property Oavi = Ma
ijvj =⇒ OaObvi = M b

ijM
a
jkvk.

Similar to the expansion of the OPE of the energy momentum tensor with a Virasoro primary
field, we can also expand the OPE of the current with a primary with its descendants, utilizing the
Laurent expansion of the current in terms of its modes.

Ja(w)φ(z) =
∑
n

(z − w)−n−1 : Janφ : (z) (1.118)

This fixes the OPE of Ja with a primary field

Ja0 |φ〉 = : Ja0φ : (0, 0) |0〉 = −taφ |0〉

=⇒ Ja0φ(z, z̄) =

∮
dw

2πi
Ja(w)φ(z, z̄) = −taφ(z, z̄) (1.119)

To satisfy this relation, we find that the Jaφ OPE must be

Ja(w)φ(z, z̄) ∼ −t
aφ(z, z̄)

w − z
(1.120)

The first non-singular term, the next term in the expression using (1.118) is

:Jaφ: (z) = Ja−1φ (1.121)

Notice, that using the Sugawara construction, Ja−1 is proportional to L−1, when acting on a primary.

L−1φ = γ

(∑
n<0

JanJ
a
−n−1 +

∑
n≥0

Ja−n−1J
a
n

)
φ = 2γJa−1J

a
0φ = −2γtaJa−1φ (1.122)

Consider now the primary spinless field g(z, z̄) of dimension h, and its normal ordered product
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with J . The field g is the fundamental representation of G, as it is an element of G.

:Ja(z)tag(z, z̄):=
1

2γ
∂zg(z, z̄) (1.123)

Computing the dimension of g using the Sugawara construction, we get

L0g = γ

(
2
∑
n>0

Ja−nJ
a
n + Ja0J

a
0

)
g

= γtatag = γcgg = hg

where cg is the quadratic casimir of the representation of g. Thus, after substituting for γ, we obtain

h =
cg

2(k + h∨)
(1.124)

Let us compute the dimension of g ∈ SU(2), for the SU(2) WZW model at k = 1. The
quadratic casimir of su(2) for the j = 1

2
representation is 2j(j+ 1) = 3/2. 1 Hence, the dimension

of g will be

h =
3/2

2(1 + 2)
=

1

4
(1.125)

We are in a position to make some comments on the properties of primaries in WZWmodels. Any
primary φ which is a scalar with respect to the left and right symmetry groups G has cφ = c̄φ = 0,
which means h = h̄ = 0. Thus the primary φ is proportional to Identity. We also didn’t make
any use of any special property g might have as compared to any other primary φ in the theory.
Hence, all the previous results holding true with cg replaced by cφ, the quadratic casimir of the
representation of φ.

In general, the Verma module of a primary field would be given as the Virasoro and Kac-Moody
descendants of the primary field. But, since we can express the Virasoro generators in terms of the
Kac-Moody generators, the basis of the Verma module [φ] over a primary field φ is(

n∏
i=1

Jai−li

n′∏
j=1

J̄
bj
−mj

)
φ li,mj > 0 (1.126)

In otherwords, forWZWmodels, the representations [φ], which are representations of the semidirect
product of Virasoro and Kac-Moody algebras, are the highest weight representations of the current
algebra only.

1The factor of 2 comes because we have been working in the orthonormal basis of generators: tr
(
tatb

)
= δab. For

SU(2), this means that ta = 1√
2
σa, where σa are the Pauli matrices, satisfying [σa, σb] = 2iεabcσc and tr

(
σaσb

)
=

2δab.
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1.3.7 The Knizhnik-Zamolodchikov Equation and Correlation Functions
Using the OPE of the current and primary field,

Ja(w)g(z, z̄) =
ta

w − z
g(z, z̄) + · · ·

we can obtain the Ward Identity:

=⇒ 〈Ja(w)g(z1, z̄1) · · · g(zn, z̄n)〉 =
n∑
i=1

tai
w − zi

〈g(z1, z̄1) · · · g(zn, z̄n)〉 (1.127)

where tai is the generator acting on the field g(zi, z̄i) inside the correlator. To use the results from
the previous section, we multiply tal on both sides of the equation, where l ∈ {1 . . . n}

tal 〈Ja(w)g(z1, z̄1) · · · g(zn, z̄n)〉 =

(
cg

w − zl
+

n∑
i=1;i 6=l

tal t
a
i

w − zi

)
〈g(z1, z̄1) · · · g(zn, z̄n)〉 (1.128)

Now, using relation (1.123), we can write this equivalently as

tal 〈Ja(w)g(z1, z̄1) · · · g(zn, z̄n)〉 =

(
cg

w − zl
+ κ∂zl

)
〈g(z1, z̄1) · · · g(zn, z̄n)〉 (1.129)

where κ = 1/2γ = k + h∨. Combining these two, in the limit w → zl, we get the Knizhnik-
Zamolodchikov equation:(

κ∂zl −
n∑

i=1;i 6=l

tal t
a
i

zl − zi

)
〈g(z1, z̄1) · · · g(zn, z̄n)〉 = 0 (1.130)

This is a very powerful result, since now we can calculate correlation functions of the WZWmodel
by finding the solutions to this differential equation, by imposing the required analytical properties.

1.4 Modular Invariance
Conformal Field theories defined on a torus have an additional symmetry, modular invariance.
Modular Invariance further restricts objects, like the partition function and characters of the CFT,
and hence is a useful tool in classifying RCFTs.

Tori are defined by defining a lattice Λ on C by the lattice vectors ω1 and ω2, and taking the
quotient C/Λ. The modular parameter is defined as τ = ω1/ω2. Modular transformations are
generated by

T : τ → τ + 1; S : τ → −1

τ
(1.131)
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which form the group PSL2(Z). The group PSL2(Z) acts on the modulus τ via a matrix:

τ →

(
a b

c d

)
τ =

aτ + b

cτ + d
(1.132)

such that ad− bc = 1.
The partition function of a CFT is defined as

Z(τ, τ̄) = tr
(
qL0−c/24q̄L̄0−c/24

)
(1.133)

where q = e2πiτ . The trace over each Verma module [φi] is called the character of the Verma
module The partition function of a CFT must be modular invariant, i.e. independent of choice of
modular parameter τ used to define the torus. This is because the properties of a CFT should not
change by changing the torus, i.e. by choice of lattice vectors ω1, ω2, or their overall scaling, τ .
This will put constraints on the operator content of the CFT.

Similarly, the trace over a single Verma module is called the character of the corresponding
primary field.

χi(τ) = tr[φi]

(
qL0−c/24

)
= q−c/24+hi

∑
n

ainq
n (1.134)

where hi is the conformal dimension of the primary and ain is the degeneracy at the “energy” level
n [2]. This means that d(n) ∈ Z≥0, and the characters can be expressed as an non-negative integer
q-series. In terms of characters, one can thus write the partition function as

Z(τ, τ̄) =

p−1∑
i=0

Miχ̄i(τ̄)χi(τ) (1.135)

where there are p characters andMi are the respectivemultiplicities of each of the characters. Clearly
if the partition function is to remain invariant under modular transformations, then the characters
must transform into specific linear combinations of themselves under the modular transformation,
so as to keep the partition function invariant. Characters as defined in (1.134) are eigenfunctions
of the T transformation

T χi(τ) = χi(τ + 1) = e2πi(hi− c
24

)χ(τ) (1.136)

Under the S transformation, things are more non-trivial, and will have to be explicitly computed.

1.4.1 Characters for the SU(2) WZWmodel
To discuss the characters for the SU(2)k WZWmodel, we will generalize the definition of characters
to keep track of the SU(2) charge.

χi(z, τ) = tr[φi]

(
qL0− c

24yJ
3
0

)
(1.137)
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where y = e2πiz, and z is the coordinate on the torus, and is known as the “chemical potential”.
Modular transformations act on them in the following way:

T χi(z, τ) = χi(z, τ + 1)

Sχi(z, τ) = e
−kz2
2τ χi

(
z

τ
,−1

τ

) (1.138)

Using what is known as the Kac-Weyl formula [7], which computes characters of Kac-Moody
algebras, we obtain the following form of the characters

χl(z, τ) =
Θ

(k+2)
2l+1 (z, τ)−Θ

(k+2)
−2l−1(z, τ)

Θ
(2)
1 (z, τ)−Θ

(2)
−1(z, τ)

(1.139)

where the theta functions are defined as

Θ(k)
m (z, τ) ≡

∑
n∈Z+m

2k

qkn
2

ykn (1.140)

Clearly, the characters are still an eigenfunction of the modular T transformation, picking up a
phase e2πi(hi− c

24
). For the SU(2)k WZW model, we have

T χl = e2πi( l(l+1)
k+2

− k
8(2+k))χl (1.141)

We shall use the Poisson ressumation formula:∑
n∈Z

f(n) =
∑
m∈Z

g(m); g(m) =

∫ ∞
−∞

dy f(y)e2πimy (1.142)

where g(m) is the Fourier transform of f(n), to the Theta function, obtaining:

Θ(k)
m

(
z

τ
,−1

τ

)
=

√
−iτ
2k

e
2πikz2

4τ

k∑
m′=1−k

e−
2πimm′

2k Θ
(k)
m′ (z, τ) (1.143)

using which we can obtain the S matrix for SU(2)k characters:

Sll′ =

√
2

k + 2
sin

(
π(2l + 1)(2l′ + 1)

k + 2

)
(1.144)

Characters for other WZWmodels have also been calculated using the Kac-Weyl character formula
as well. From here on, we shall only consider characters with z = 0, thus setting the y coordinate
to 1 and removing it from the discussion. With no chemical potential, the characters no longer
depend on the Cartan eigenvalues.
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1.4.2 Modular Linear Differential Equations

Classifying RCFTs with a small number of characters is an incomplete but tractable problem.
Many approaches have been taken for such a classification scheme, including fusion algebras [8, 9],
representation theory of SL(2,Z) [10, 11, 12], and Hecke operators [13]. Here we shall focus on
classification using the Modular Linear Differential Equation (MLDE) [14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. To classify using MLDE, one does not need to provide
the chiral algebra of the CFT, which is required in other approaches. Instead, one specifies some
parameters in a pth order differential equation, for a theory with p characters. The p independent
solutions of the differential equation are the characters of the theory. These will have the chemical
potential z set to 0 since that gives weight to the eigenvalues of the Cartan generators, which
requires specification of a chiral symmetry algebra.

To understand the MLDE, we require what are known as modular forms. Weight 2r-modular
forms are defined as functions which transform under modular transformations (1.132) as

f ′(τ ′) = (cτ + d)2rf(τ) (1.145)

One can define a covariant derivative in the moduli (τ ) space,

Dτ = ∂τ −
iπ

6
rE2(τ) (1.146)

on weight r-modular forms. Here E2(τ) is the second Eisenstein series, and acts as the connection
on the moduli space. This covariant derivative increases the weight of any modular form it acts on
by 2.

Characters are holomorphic functions of the coordinate z, but are not modular invariant. As we
saw before, they transform into linear combinations of themselves throughmodular transformations.
Hence, we call them vector-valuedmodular forms, of weight 0. Thus characters will be the solutions
of a pth order differential equation, which itself is modular invariant.

To construct the MLDE, let us consider the Wronskian: the determinant of all the characters
and its modular derivatives. It is holomorphic since it is created from holomorphic objects, i.e.
characters, and it is a modular form The “master” Wronskian is:

det


χ0 χ1 · · · χp−1 χ

Dχ0 Dχ1 · · · Dχp−1 Dχ
... ... ... ...

Dp−1χ0 Dp−1χ1 · · · Dp−1χp−1 Dp−1χ

Dpχ0 Dpχ1 · · · Dpχp Dpχ

 = 0 (1.147)

Here the last columnχ is a linear combination of the charactersχ0, · · ·χp−1. Hence this determinant
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is zero. If we expand the determinant about the last column, we get

p∑
k=0

(−1)p−kWkDkχ = 0 (1.148)

where

Wk = det



χ0 χ1 · · · χp−1

Dχ0 Dχ1 · · · Dχp−1

... ... ...
Dk−1χ0 Dk−1χ1 · · · Dk−1χp−1

Dk+1χ0 Dk+1χ1 · · · Dk+1χp−1

... ... ...
Dp−1χ0 Dp−1χ1 · · · Dp−1χp−1

Dpχ0 Dpχ1 · · · Dpχp−1


(1.149)

is the determinant with the row for the kth derivative removed. EachWk is a holomorphic modular
form of weight p(p+ 1)− 2k. If we write the differential equation in monic form,(

Dp +

p−1∑
k=0

φkDk
)
χ = 0 (1.150)

where φk = (−1)p−k Wk

Wp
are weight 2(p−k) modular forms. They are meromorphic functions, with

poles at the location of the zeroes ofWn. The resulting differential equation is modular invariant.
Even though the characters and thus the Wronskians are undetermined till now, we can determine
φk’s up to constants just by their modular properties, i.e. their modular weight and number of poles.
Thus, by fixing the constants, we can solve this differential equation for the characters of an RCFT,
without having to specify anything about a chiral algebra.

Zeroes of the Wronskian

The parameter τ is in the upper half plane, known as the moduli space. There are three special
points in the moduli space, the ramification points e 1

3
iπ and e 1

2
iπ. Here, modular forms can have

zeroes of order 1
3
and 1

2
respectively. Otherwise, modular forms can have zeroes of integer order

in the bulk of the moduli space. The Wronskian Wn can thus have total zeroes of order `
6
, for all

non-negative integers except ` = 1. The integer ` is called the Wronskian index.
At the point τ = i∞, since the wronskian behaves as

Wn ∼ e2πi(
∑
i hi−

pc
24) (1.151)

the wronskian has an order pc
24
−
∑

i hi pole. Using the Riemann-Roch theorem which relates poles
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and zeroes of a function, we have the following relation∑
i

hi −
pc

24
=
`

6
− p(p− 1)

12
(1.152)

Solving the MLDE using the Frobenius method

First, we must specify the Wronskian index ` of the theory, and the number of characters p. The
coefficients φk(τ) will thus be meromorphic functions with maximum number of poles equal to
`. One can construct a modular form of weight k = 4m + 6n with linear combinations of Em

4 E
n
6

including all possible values of m,n. Poles can be introduced by dividing by modular forms
appropriately, whose zeroes are known. Therefore, one can specify the functions φk up to a finite
number of constants µj from the linear combination.

To solve for the characters, we substitute the series expansion of the character:

χi = qαi(a
(i)
0 + a

(i)
1 q + a

(i)
2 q

2 + · · · ) = qαi
∞∑
n=0

a(i)
n q

n (1.153)

where the exponents αi = − c
24

+ hi. The modular covariant derivative Dn act on χi as follows:(
∂τ − iπ

n(n− 1)

3

)(
∂τ − iπ

n(n− 2)

3

)
· · ·
(
∂τ − iπ

1

3

)
∂τχi (1.154)

Once the entire differential equation is written in terms of partial derivatives ∂τ , one can construct a
recurrence relation for the coefficients an. Using the indicial equation, one gets a relation between
the constants µj and all the αi, through the Riemann-Roch relation. Thus, the differential equation
and thus the recurrence relation is completely specified by the exponents αi.

In order to search for solutions which correspond to admissible characters for RCFT, the
coefficients an must be integers. To do this, we set the first coefficient a(i)

0 to be 1. For the identity
character, this is the correct value, since the vacuum of a QFT is non-degenerate. If any of the a(0)

n

are not integer, then the corresponding αi do not correspond to an RCFT. For the other characters,
it is not so straightforward, since the ground-state degeneracy for these need not be 1. Instead,
we normalize a(i)

0 to be 1, and then check for the stability of the denominator for large values
of the expansion. Since the character is solved up to a multiplicative constant, one can multiply
the LCM of the denominators and this should be (a factor of) the ground-state degeneracy of the
character. If the denominator does not stabilize for large n, then the values of αi once again do not
correspond to any RCFT. In fact, in these cases the LCM of the denominator grows exponentially.
One can use the recurrence relation to also construct diophantine equations, and use their solutions
as a classification of admissible characters of possible RCFT with the specified values of ` and p
[14, 30, 24, 25] These techniques were used extensively in our paper [32], which is briefly reviewed
in chapter 4.
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Chapter 2

Correlation Functions of CFT

2.1 Computing the 4-point function for the SU(N)WZWModel

In this chapter, we concern ourselves in calculating four point functions of CFTs. We start with
the SU(N)k WZW model [6]. Because of the symmetry in the theory, we need to ensure that the
correlation function is SU(N) invariant, since the theory is SU(N)× SU(N) invariant. We know
that the SU(N) action on the field goes as tag, and therefore g−1 transforms as g−1ta, given ta is
hermitian. We know that g is in the “bifundamental” representation of SU(N)× SU(N), so can be
written as the tensor product of fundamental states in both SU(N)’s.

g(z, z̄) =

ω1(z)
...

ωN(z)

⊗ (ω1(z̄) · · · ωN(z̄)
)

(2.1)

where ωi is one of the states in the fundamental representation.
For a SU(N) invariant correlation function of g’s, we require equal number of g’s and g−1’s in

the correlation function, since each g will “fuse” with a g−1. Until now we haven’t been putting the
group indices on the field g(z, z̄), i.e, g β

α (z, z̄), where α is the index which is transformed by the
left holomorphic SU(N), and β is transformed by the right antiholomorphic SU(N). An example of
an SU(N)× SU(N) invariant correlation function is

Gα2α3β1β4
α1α1β2β3

(zi, z̄i) =
〈
g β1
α1

(z1z̄1)g−1α2
β2

(z2z̄2)g−1α3
β3

(z3z̄3)g β4
α4

(z4z̄4)
〉

(2.2)

since the fields in the correlator must fuse to form a singlet, and g is the N of SU(N), and hence
g−1 is the N̄ of SU(N) due to it being a unitary theory. Hence, the representations that will flow in
the fusion are

N ⊗ N̄ = 1⊕ (N2 − 1) (2.3)

That is, if a g and g−1 fuse, they form the identity and adjoint fields. If g1 and g−1
2 fuse, then g−1

3
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and g4 must fuse, both giving identity and adjoint fields. This is the s channel diagram. Similarly
the t channel diagram is formed by fusing g1 and g−1

3 , and fusing g−1
2 and g4. To capture this, we

decompose the full correlation function into its SU(N) invariant matrices

I1 = δα2
α1
δα3
α4

I2 = δα3
α1
δα2
α4

(2.4)

Ī1 = δβ1β2δ
β3
β4

Ī2 = δβ1β3δ
β4
β2

(2.5)

The decomposition is thus

Gα2α3β1β4
α1α1β2β3

(z, z̄) =
∑

A,B=1,2

IAGAB(z, z̄)ĪB (2.6)

where the indices have been suppressed on the I’s. Clearly, I1’s correspond to the s channel
diagram, and I2’s correspond to the t channel diagram.

We know that up to three point functions are completely fixed by conformal invariance. Four
point functions can be expressed in terms of the cross ratios

x =
z12z34

z14z23

, x̄ =
z̄12z̄34

z̄14z̄23

,where zij = zi − zj (2.7)

as a single valued function of x and x̄

G(zi, z̄i) =
〈
g(z1, z̄1)g−1(z2, z̄2)g−1(z3, z̄3)g(z4, z̄4)

〉
= (z14z23z̄14z̄23)−2∆G(x, x̄) (2.8)

In a CFT, we can decompose a correlation function of four fields into holomorphic (antiholo-
morphic) conformal blocks F (F̄).

Gα2α3β1β4
α1α1β2β3

(zi, z̄i) =
∑
p

C2
1pC

3
4pFα2α3

α1α4
(p|zi)F̄β1β4β2β3

(p|z̄i) (2.9)

where Cj
ip’s are the OPE coefficients. This is the s channel decomposition of the correlation

function. And from (2.8), we can define the conformal blocks in terms of x

F(zi) = (z14z23)−2∆F(x) (2.10)

From (2.6), using the fact that the only SU(N) invariant way of fusing the fields is in terms of the
invariant matrices,∑

A,B=1,2

IAGAB(z, z̄)ĪB =
∑
p

C2
1pC

3
4pFα2α3

α1α4
(p|zi)F̄β1β4β2β3

(p|z̄i) (2.11)

=
∑
p

C2
1pC

3
4p

(∑
A

IAFA(p|zi)

)(∑
B

F̄B(p|z̄i)ĪB

)
(2.12)
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again, suppressing the indices on I’s. The left SU(N) invariant matrices are pulled out of the
holomorphic block, and the right SU(N) invariant matrices are pulled out of the antiholomorphic
block. Hence, we see that the conformal blocks also decompose by the SU(N) invariant matrices,

Fα2α3
α1α4

(x) = I1F1(x) + I2F2(x) (2.13)

And we can express the decomposed correlator in terms of the decomposed conformal blocks as

=⇒ GAB =
∑
p

C2
1pC

3
4pFA(p|z)F̄B(p|z̄) (2.14)

Now applying the Knizhnik-Zamolodchikov equation to the the correlation function, and con-
sidering only the holomorphic part(

κ∂zi +
∑
i 6=j

tai t
a
j

zi − zj

)
F(z) = 0 (2.15)

=⇒

(
κ∂zi +

∑
i 6=j

tai t
a
j

zi − zj

)
(z14z23)−2∆(I1F1(x) + I2F2(x)) = 0 (2.16)

Considering the i = 1 case, and converting the z derivative to an x derivative we have(
−2h

z14

+

(
x

z12

− x

z14

)
κ∂x +

4∑
j=2

ta1t
a
j

z1 − zj

)
(I1F1(x) + I2F2(x)) = 0 (2.17)

Due to conformal invariance, we are allowed to fix 3 out of 4 points on the plane as:

z1 = x z2 = 0 z3 = 1 z4 =∞ (2.18)

Then, the differential equation reduces to(
κ∂x +

ta1t
a
2

x
+

ta1t
a
3

x− 1

)
(I1F1(x) + I2F2(x)) = 0 (2.19)

Using the form of I1 and I2 and properties of ta’s, it can be shown that the differential equation
simplifies to

−κ∂xF1 =
N2 − 1

N

F1

x
− F1

N(x− 1)
+
F2

x
(2.20)

−κ∂xF2 =
N2 − 1

N

F2

x− 1
− F2

Nx
+
F1

x− 1
(2.21)

Eliminating F2 in terms of F1, and combining the two equations, we get a second order
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differential equation: [
xκ2∂2

x +

(
κ2 + κ

N2 − 2

N

(
1 +

x

x− 1

))
∂x

+

(
κ

N(x− 1)2
− 1

x− 1
−
(

N2 − 1

N(x− 1)
− 1

Nx

)(
x

N(x− 1)
− N2 − 1

N

))]
F1 = 0 (2.22)

solutions to which can be shown to be:

F (−)
1 = x−2∆(1− x)h−2∆ F2 1

(
1

κ
,−1

κ
, 1− N

κ
;x

)
(2.23)

F (+)
1 = xh−2∆(1− x)h−2∆ F2 1

(
N − 1

κ
,
N + 1

κ
, 1 +

N

κ
;x

)
(2.24)

By using the relation between F1 and F2, we also obtain

F (−)
2 =

1

k
x1−2∆(1− x)h−2∆ F2 1

(
1 +

1

κ
, 1− 1

κ
, 2− N

κ
;x

)
(2.25)

F (+)
2 = −Nxh−2∆(1− x)h−2∆ F2 1

(
N − 1

κ
,
N + 1

κ
,
N

κ
;x

)
(2.26)

where 2F1 is the hypergeometric function. These are known as the “current blocks”. Therefore,
the conformal blocks of this 4 point function are

F− =

(
F−1
F−2

)
= F1 F+ =

(
F+

1

F+
2

)
= FΦ (2.27)

as the identity and adjoint conformal blocks respectively.
Crossing symmetry will help us fix the full correlator, not just the conformal blocks:

G(x, x̄) = G(1− x, 1− x̄) (2.28)

which switches the s channel and t channel partial waves. We know that I1’s are the s channel
blocks and I2’s are the t channel, so crossing symmetry implies 1 ↔ 2 in GAB, which can be
written as A→ 3− A.

If we write the correlation function as

GAB =
∑

p,q=+,−

UpqFpF̄ q (2.29)

then, by demanding that for small x, the correlation function must be single valued, we can say that
the off diagonal terms U+− = U−+ = 0. This is because of the fractional powers of x in the current
blocks will be multi-valued around the origin unless they’re powers of |x|, which is only possible
by multiplying Fp with its conjugate F̄p.
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Using the identity

F2 1 (a, b, c;x) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

F2 1 (a, b, a+ b− c+ 1, 1− x)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− x)c−a−b F2 1 (c− a, c− b, c− a− b+ 1; 1− x)

we can show that the blocks transform as

F (p)
A =

∑
Cp
qF

(q)
3−A (2.30)

By applying crossing symmetry twice, we obtain the following relations as a consistency check

C−− = C+
+ (2.31)

C+
−C

−
++C−−C

+
+ = 1 (2.32)

Evaluating the necessary coefficients, one gets

C−− = N
Γ
(
N
κ

)
Γ
(
−N

κ

)
Γ
(

1
κ

)
Γ
(
− 1
κ

) (2.33)

C+
− = −N

Γ2
(
N
κ

)
Γ
(
N+1
κ

)
Γ
(
N−1
κ

) (2.34)

Combining everything, we get

U++ =
C−2
− − 1

C+2
−

U−− (2.35)

with U−− set to 1. Hence we finally obtain the correlation function

GAB(x, x̄) = F (−)
A (x)F̄ (−)

B (x̄) + U++F (+)
A (x)F̄ (+)

B (x̄) (2.36)

For k = 1, C−− is 1, so the second term goes to zero, which suggests there is no adjoint field for
k = 1.

2.2 Using the Wronskian to Calculate the 4-Point Function
We can also use Wronskians to calculate correlation functions of four fields, by using the behaviour
of the conformal blocks near poles using physical arguments [33]. Correlation functions are
crossing symmetric, but are not holomorphic, while conformal blocks are holomorphic, but are
not crossing symmetric. In fact they transform into each other. It is easily seen that Wronskians
made out of conformal blocks will therefore be both crossing symmetric and holomorphic. We will
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defineWk as the Wronskian with the kth derivative removed.

Wk ≡ det



f1 · · · fn

∂f1 · · · fn
... ...

∂k−1f1 · · · ∂k−1fn

∂k+1f1 · · · ∂k+1fn
... ...

∂nf1 · · · ∂nfn


(2.37)

where fi are the conformal blocks, where there are n conformal families participating in the fusion
rules, and the derivative ∂ is with respect to one of the points in the correlation function, say z1. We
can construct another determinant, by adding a column of some linear combination f =

∑
i aifi to

the full Wronskian with no removed derivatives. This is zero because f is not independent of fi.
We can use this to create an equation of the blocks, by expanding about this last column.

det


f1 · · · fn f

∂f1 · · · ∂fn ∂f
... ... ...

∂nf1 · · · ∂nfn ∂nf

 =
n∑
k=0

(−1)n−kWk∂
kf = 0 (2.38)

We can write this in monic form, and choose f = fα,

∂nfα +
n−1∑
k=0

ψk∂
kfα = 0 (2.39)

where the ψk’s will need to be determined by the behaviour of the blocks, and in turn Wronskians,
since

ψk = (−1)n−k
Wk

Wn

(2.40)

The ψk’s have following pole structure as z1 → za (where a labels 2, 3, 4),

ψk ∼
1

zn−k1a

(2.41)

Due to inversion symmetry, number of poles and number of zeroes must be equal on the plane.
Hence, as z1 →∞

ψk ∼
1

z
3(n−k)
1

(2.42)
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for a 4 point function. We can determine the ψk’s exactly when there are only a few conformal
blocks. In particular, we will be dealing with the fusion rules of the type φA ⊗ φA = φB ⊕ φC .
Hence, we will have two blocks, one for φB and φC each. The leading singularity for these blocks
in the coincidence limits are

f1 ∼
1

z2hA
1a

f2 ∼
1

z2hA−hB
1a

(2.43)

and the behaviour of fields, and therefore blocks at infinity is fixed by conformal invariance to be

f1 ∼
1

z2hA
1

f2 ∼
1

z2hA
1

(2.44)

However, in WZW models we have multicomponent fields, such as the fundamental primary
field g(z, z̄), which has N components in SU(N) WZW models. In such theories, a primary may
not flow in the fusion, as we saw while calculating the 4 point function in the previous section,
due to group theoretic or other (for CFTs like the Baby monster CFT, which is not a WZW model
but still is a theory with multicomponent primaries) reasons. Since we will be computing the
correlation function (2.2), we will be interested only in the fusion g ⊗ g−1 = 1 + Φ. Since there
will be two blocks, the relevant differential equation is

∂2fi + ψ1∂fi + ψ0fi = 0 (2.45)

The blocks will behave as such, in the coincidence limit z1 → z2

f1 ∼
g1(z2, z3, z4)

z2∆−n1
12

f2 ∼
g2(z2, z3, z4)

z2∆−h−n2
12

(2.46)

where ∆ = L0g, h = L0Φ, and n1, n2 are the level of the descendants flowing in the fusion. The
other coincident limits will therefore be simply z1 → za, a = 3, 4:

f1 ∼
g̃1(z2, z3, z4)

z2∆
1a

f2 ∼
g̃2(z2, z3, z4)

z2∆−h
1a

(2.47)

since definite representations have been chosen to flow in the s channel (12→34).

From this, we can calculate the behavior of the relevant Wronskians

W2 = f1∂f2 − f2∂f1 ∼


g1g2(h+ n2 − n1)z−4∆+h+m−1

12 z1 → z2

g̃1g̃2 h z
−4∆+h−1
1a z1 → za

z−4∆−2
1 z1 →∞

(2.48)

where m = n1 + n2. Since number of poles is equal to number of zeroes, using the infinity and
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pole behavior ofW2, we get the following relation

h =
8∆ + 1−m

3
(2.49)

which we can use to eliminate h from the equations.

We can now calculate the other relevant Wronskians,

W1 = ∂W2 (2.50)

W0 = ∂f1∂
2f2 − ∂f2∂

2f1

∼

g1g2(n1 − 2∆)(h+ n2 − 2∆)(h+ n2 − n1)z−4∆+h+m−3
12 z1 → z2

2g̃1g̃2∆h(2∆− h)z−4∆+h−3
1a z1 → za

(2.51)

Here (2.50) is called Abel’s relation. Keeping track of the arbitrary z2, za dependences and all the
coefficients, we can calculate the ψk’s by using the limits calculated forWk’s

ψ1 = −W1

W2

=
2

3
(2∆ + 1−m)

1

z12

+
2

3

(
2∆ + 1 +

m

2

)( 1

z13

+
1

z14

)
(2.52)

ψ0 = −1

3
(2∆−m+ n2)(2∆ + 1−m+ 3n2)

1

z2
12

− 2

3
∆(2∆ + 1−m)

(
1

z2
13

+
1

z2
14

)
+

Q

z12z13

+
Q

z12z14

+
R

z13z14

(2.53)

Here, for ψ0, in the last three terms, we’ve used the symmetry in switching z3 and z4, and the fact
that ψ0 dimensionally goes as powers of z−2

1 . To fix the values ofQ andR in ψ0, we have to impose
that in the limit z1 → z3, z2 → z4, the solution is f = z−2∆

13 z−2∆
24 . Doing so, we obtain:

Q =
4∆

3

(
2∆ + 1− 3m

2
+ 2n2

)
− 1

3
(m− n2)(1 + 3n2 −m)

R =
4∆

3
(2∆ + 1 +m− 2n2) +

1

3
(m− n2)(1 + 3n2 −m)

(2.54)

This completely determines the differential equation we are to solve, to precisely obtain the confor-
mal blocks. We have obtainedm+ 1 differential equations, where n2 ∈ {0, · · · ,m}. Now, we can
set the points z1 = x, z2 =∞, z3 = 1, z4 = 0, and we finally obtain

∂2f +
2

3

(
2∆ + 1 +

m

2

)( 1

x− 1
+

1

x

)
∂f +

[
−2

3
∆ (2∆ + 1−m)

(
1

(x− 1)2
+

1

x2

)
+

(
4∆

3
(2∆ + 1 +m− 2n2) +

1

3
(m− n2)(1 + 3n2 −m)

)
1

x(x− 1)

]
f = 0 (2.55)
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whose solutions are

f
(n)
1 (x) = x−2∆(1− x)−2∆ F2 1

(
1

3
(1− 4∆−m+ 3n),m− 4∆− n, 2

3
(1− 4∆) +

m

3
, x

)
(2.56)

f
(n)
2 (x) = Nx−2∆+h(1− x)−2∆ F2 1

(
1

3
(1 + 2∆−m) + n,

1− 4∆ + 2m

3
− n, 4

3
(1− 4∆)− m

3
, x

)
(2.57)

where the normalization N is determined by crossing symmetry as we saw before.

Now let’s match our result with what we obtained using the KZ equation. Specializing to the
SU(2)1 case, where N = 2, k = 1. Here, ∆ = 1

4
, h = 2

3
, κ = 3 and m = 1. We see that from the

KZ equation, the Identity conformal block is the only surviving block, and is

F1 =

(√
1−x
x√
x

1−x

)
(2.58)

and hence the correlation function is

G(x, x̄) =
∑

A,B=1,2

IAGAB ĪB

= I1Ī1

√
1− x
x

√
1− x̄
x̄

+ I1Ī2

√
1− x
x

√
x̄

1− x̄

+ I2Ī1

√
x

1− x

√
1− x̄
x̄

+ I2Ī2

√
x

1− x

√
x̄

1− x̄

(2.59)

Using the Wronskian method detailed in this section, we obtain the only surviving block is the
Identity block as the solution (2.56)

F ′1 =

√1−x
x

+
√

x
1−x√

1−x
x
−
√

x
1−x

 (2.60)

so, the correlation function is

G(x, x̄) =
∑

A,B=+,−

IAGAB ĪB

= I+Ī+(a+ b)(ā+ b̄) + I+Ī−(a+ b)(ā− b̄) + I−Ī+(a− b)(ā+ b̄) + I−Ī−(a− b)(ā− b̄)
(2.61)
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where

I± = I1 ± I2; a =

√
1− x
x

; b =
1

a
(2.62)

This matches with the result obtained using the KZ method, by employing the change of basis
(2.62).

In the KZ method, we found the two solutions of a 2nd order differential equation, with the
two solutions being the identity and adjoint current blocks. The other current block was found by
using the relation between the two, derived from the KZ equation. But, in the Wronskian method,
by using the behaviour of the expected identity and adjoint blocks in coincident limits, we found
two different differential equations, one for each n2 (level of the secondary flowing in the fusion).
The two solutions obtained per differential equation are the two components(current blocks) of the
same conformal block.

2.3 Dotsenko-Fateev Construction andCorrelation functions of
Minimal Models

Here we briefly go through the method used by Dotsenko and Fateev [34] to construct 4 point
correlators of Minimal models, since we focused on WZW models in the previous sections of this
chapter. As will come in handy later, we study the expectation value of vertex operators of the free
boson CFT, but it will be modified with a “background charge”. The free boson theory has central
charge c = 1. The vertex operator we are interested in is

Vα(z) =:ei
√

2αφ(z): (2.63)

with conformal dimensionh = α2 and h̄ = 0. Since the propagator for a free boson is 〈φ(z)φ(w)〉 =
− log(z − w), and using the easy to show result,〈

:eA1 : · · · :eAn :
〉

= e
∑
i<j〈0|AiAj |0〉 (2.64)

the correlator of vertex operators is

〈Vα1(z1) · · ·Vαn(zn)〉 =
∏
i<j

(zi − zj)2αiαj (2.65)

But, the free boson action has a shift symmetry φ→ φ+ a, for any constant a, which the correlator
also must obey. This leads to the neutrality condition:

∑
i αi = 0, otherwise the above correlator

is 0. However, by suitable changing the free boson action, one can introduce a “background charge
density” −2α0, which potentially makes the theory non-unitary because the action is no longer
real. However, it modifies the central charge, conformal dimension of the vertex operator and the
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neutrality condition:

c = 1− 24α0

hα = α2 − 2α0α∑
i

αi = 2α0

(2.66)

For certain values of α0 which correspond to making the central charge that of a minimal model,
the theory becomes unitary. Notice that the vertex operators Vα = V2α0−α have the same conformal
dimension. Screening operators are operators with conformal dimension 0 but with charge. These
vertex operators have conformal dimension 1:

Vα± , where α± = α0 ±
√
α2

0 + 1 (2.67)

such that their integral has conformal dimension 0. Thus the screening operators are

Q± =

∮
dz V± (2.68)

with charge α±. Note that α+−α− = 2α0 and α+α− = −1. On inserting these screening operators
in correlators, we can enforce the neutrality to condition to be satisfied, but will not change its
conformal properties. With these screening operators inserted in correlators, it is possible to show
that admissible charges α are

αr,s =
1

2
(1− r)α+ +

1

2
(1− s)α− (2.69)

and thus the conjugation α → 2α0 − α symmetry becomes r, s → −r,−s, and the conformal
dimensions of these operators are

hr,s(c) =
1

4
(rα+ + sα0)2 − α2

0 (2.70)

which is Kac’s formula for primary conformal dimensions of minimal models.

Using Wick’s theorem, we can show that the correlation functions with the appropriate number
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of screening operators to neutralize the charge will be the integrals:

〈φα1(0)φα2(z)φα3(1)φα4(∞)〉 =
〈
Vα1(0)Vα2(z)Vα3(1)Vα4(∞)Qn1

− Q
n2
+

〉
∼z2α1α2(1− z)2α3α2

∫
CA

n1∏
i=1

dti

∫
CA′

n2∏
j=1

dτj

×
n1∏
i=1

tai (1− ti)b(ti − z)c
n2∏
j=1

τa
′

j (1− τj)b
′
(z − τj)c

′

×
∏

1≤k<i≤n1

(ti − tk)g
∏

1≤l<j≤n2

(τj − τl)g
′∏
i,j

(ti − τj)−2

(2.71)

where

a = 2α+α0 b = 2α+α3 c = 2α+α2

a′ = 2α−α0 b′ = 2α−α3 c′ = 2α−α2

g = 2α2
+ g′ = 2α2

−

where different contours represent different conformal blocks. We will see that these integrals will
be used to represent characters of various RCFT, increasing their scope from representations of
minimal model correlators.
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Chapter 3

Contour Integral Representation of
Characters and the Modular S-matrix

This chapter is a review of the content of the original work presented in the paper [35] with my
guide Prof. Sunil Mukhi and collaborator Palash Singh.

The modular S transformation is the transformation τ → − 1
τ
. Since characters transform into

linear combinations of themselves under modular transformations, the modular S transformation
can be expressed as a p×pmatrix. Using Verlinde’s formula [36], we can calculate the fusion rules
using the S-matrix, which dictate which fusion channels will appear in correlation functions, which
are the observables one computes for a QFT. The properties of the S-matrix also provides powerful
constraints on possible allowed values of the critical exponents αi = − c

24
+ hi of the theory. Thus

it can also be used in classifying RCFT. Hence determining the S-matrix is an important task.
The modular S-matrix has been computed for minimal models and WZW models using prop-

erties of the Theta functions using Poisson resummation, as we saw in section 1.4.1. However, this
requires knowledge of the symmetry algebra of the CFT. In the MLDE approach, one only provides
the number of characters p and Wronskian index ` in an attempt to classify all possible RCFT
with these values, and will include more than just minimal models and WZW models, like coset
theories. But the series solution of the characters does not lend itself to computing the S-matrix
for these characters.

However, in the p = 2 case, it was possible to convert the differential equation into the hyper-
geometric differential equation and thus the S-matrix was computed using monodromy properties
of the hypergeometric function [16, 30, 15]. The p = 3 case was considered in [15] where the
contour integral representation was used to compute the S-matrix, taking the results from [34].
The integrals are the same as the ones appearing in [34] (section 2.3), except with the cross ratio z
replaced by λ, a function of τ . This work is based on the proposal of [37] that all Wronskian index
` = 0 characters can be represented by these Feigin-Fuchs type integrals. In [37], the conjecture
is proved to be true for number of characters p ≤ 5 theories. Here we provide some evidence for
the conjecture for arbitrary p, by providing an algorithm to compute the S-matrix for an arbitrary
number of characters.
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3.1 The Contour Integral Representation of l = 0 Characters
Here we express characters in terms of the modular λ function, which maps six copies of the
fundamental domain to the complex plane. It is defined using Jacobi theta functions in terms of τ :

λ(τ) =

(
θ2(τ)

θ3(τ)

)4

= 16 q1/2(1− 8q1/2 + 44q + . . . ) (3.1)

The modular transformations in terms of λ are

T : λ→ λ

λ− 1

S : λ→ 1− λ
(3.2)

Let us introduce the contours for the integrals. For every pair of integers A,A′ where 0 ≤ A ≤
n1, 0 ≤ A′ ≤ n2, we define the multi-variable integration contours CA and CA′ as follows:∫

CA

n1∏
i=1

dti =

∫ ∞
1

dtn1 · · ·
∫ ∞

1

dtA+2

∫ ∞
1

dtA+1

∫ λ

0

dtA · · ·
∫ λ

0

dt2

∫ λ

0

dt1∫
CA′

n2∏
j=1

dτj =

∫ ∞
1

dτn2 · · ·
∫ ∞

1

dτA′+2

∫ ∞
1

dτA′+1

∫ λ

0

dτA′ · · ·
∫ λ

0

dτ2

∫ λ

0

dτ1

(3.3)

and we order the contours as

Im(ti) > Im(tk) for i > k, Im(τj) < Im(τl) for j > l (3.4)

to avoid contours from overlapping.
The integral proposed by [37] is thus:

JAA′(a, b, λ) ≡ NAA′ (λ(1− λ))α
∫
CA

n1∏
i=1

dti

∫
CA′

n2∏
j=1

dτj

×
A∏
i=1

[
ti(1− ti)(λ− ti)

]a n1∏
i=A+1

[
ti(ti − 1)(ti − λ)

]a

×
A′∏
j=1

[
τj(1− τj)(λ− τj)

]b n2∏
j=A′+1

[
τj(τj − 1)(τj − λ)

]b
×

∏
1≤k<i≤n1

(ti − tk)−2a/b
∏

1≤l<j≤n2

(τj − τl)−2b/a
∏
i,j

(ti − τj)−2

(3.5)

where α is a function of the parameters of the theory: a, b, n1, n2, as we shall see shortly.
The index AA′ on J is a “composite” index, where 0 ≤ A ≤ n1, 0 ≤ A′ ≤ n2. The number of
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characters of the theory is given by p = (n1 + 1)(n2 + 1). The index AA′ each labels a different
character, for example for 4 characters, a theory with (n1, n2) = (1, 1), the different characters will
be labelled as J00, J01, and J10. Importantly, we have ordered the terms in the integrand such that
they remain positive in their respective region of integration, except for the cross terms (ti − tj)
and (τi − τj), where the contour ordering orders them such that the imaginary part is positive and
negative for ti and τj respectively.

Let us also define the unnormalized integrals ĴAA′:

JAA′(a, b, λ) = NAA′(λ(1− λ))α ĴAA′(a, b, λ) (3.6)

Both the normalized and unnormalized integrals transform under the modular-S transformation,

ĴAA′(λ) =
∑
BB′

ŜAA′ BB′ ĴBB′(1− λ)

JAA′(λ) =
∑
BB′

SAA′ BB′JBB′(1− λ)
(3.7)

since the factor (λ(1 − λ))α is invariant under the S transformation. Notice that the two matrices
S and Ŝ are related by

SAA′BB′ =
NAA′

NBB′
ŜAA′ BB′

=⇒ S = N ŜN−1, where N = diag(NAA′)

(3.8)

Note that under the Ŝ transformation twice, λ returns to λ, hence Ŝ2 = 1, and hence S2 = 1.

Characters are eigenfunctions of the T transformation, which is clear from the q expansion
definition of the character:

T χi(τ) = χi(τ + 1) = e2πi(−c/24+hi)χi(τ) (3.9)

and we see that these integrals also are eigenfunctions of the T transformation, with the phases
giving the desired critical exponents. An easier way to see this is to look at the leading λ behaviour,
which is twice the power of the leading q behaviour, as done in [37].

JAA′ = q
1
2

(α+∆AA′ ) (3.10)
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We get the identifications:

α =
1

3

(
−n1(1 + 3a)− n2(1 + 3b) +

a

b
n1(n1 − 1) +

b

a
n2(n2 − 1) + 2n1n2

)
∆AA′ = A(1 + 2a) + A′(1 + 2b)− a

b
A(A− 1)− b

a
A′(A′ − 1)− 2AA′

1

2
(α + ∆AA′) = − c

24
+ hi

(3.11)

For the identity character, which we identify with the index (A,A′) = (0, 0) and thus ∆00 = 0,
which allows us to realize

c = −12α, hi =
1

2
∆AA′ (3.12)

Using the Riemann-Roch relation (1.152), we see that these allowed values of c and hi are only
valid for ` = 0.

For the rest of this chapter, we will specialize to n2 = 0, for which we are able to obtain results.
Thus, we will drop the second index from the integrals and parameter ∆AA′ , and denote them as
JA and ∆A respectively. For brevity of notation, we shall also use the notation: s(x) = sin(πx)
and c(x) = cos(πx).

3.2 Computation of the modular S-matrix

3.2.1 Monodromy of the integrals

In this section we shall compute the modular S-matrix using the monodromy properties of the
integrals, employing contour deformations. Here we systematise this computation and arrive at a
description as a sum over paths, which renders the computation very explicit and allows us to go
beyond the results of [15, 37] which were taken in turn from [38, 34]. Since we will be looking at
the n2 = 0 case, we rename n1 as n, and hence corresponding integrals have the form:

ĴA(λ) =

∫ ∞
1

dtn

∫ ∞
1

dtn−1 · · ·
∫ λ

0

dtA · · ·
∫ λ

0

dt1

×
A∏
i=1

[
ti(1− ti)(λ− ti)

]a n∏
i=A+1

[
ti(ti − 1)(ti − λ)

]a ∏
0≤k<i≤n

(ti − tk)2ρ

Due to the absence of the τi integration variables, the parameter −a/b is replaced by ρ. Notice
that ĴA has A contours running from 0 to λ and the remaining n− A from 1 to∞. Thus there are
altogether p = n + 1 contour integrals, which are going to be candidates to describe a p-character
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CFT. The integral in this set can be represented by the contour diagram:

ĴA(λ) = 0 λ 1

A n− A

(3.13)

To deform a contour, consider the semicircular contour which encloses the upper or lower half
plane, and does not cross any other contours or branch cuts. Since we consider the values of the
parameters such that the integrand falls of at infinity (and analytically continue our results for other
values of the parameters), the contribution will come from the contour running along the real line.
The integral along the entire real line is equal to zero, so we break up the integration regions into
(−∞, 0), (0, λ), (λ, 1), and (1,∞). The contour integral in one region is equal to the negative of
the sum in the rest of the regions. However, since we keep the integrand real in each region, this
pulls out a phase from the integrand, which differs in the upper and lower half planes. We then take
a linear combination of the upper and lower half plane deformed contours (both of which are equal
to the original integral) such that the (0, λ) region is cancelled out.

The result of the above procedure is that the original contour has disappeared and is replaced by
two contours, one in each of the segments (1, λ) and (0,−∞). Now if we carry out the procedure
s times, sequentially on the A contours in the (0, λ) region, we will be left with only A− s of these
contours. The remaining s will be distributed in the regions (0,−∞) and (1, λ). We introduce an
integerm such that s−m

2
contours are in (0,−∞) and s+m

2
are in (1, λ). Clearlym takes the values

−s,−s + 2, · · · , s − 2, s. The contour configuration for a fixed (s,m) will be labelled Vs,m and,
as long as s < A, it looks like the following:

Vs,m =
0 λ 1

A− s n− As−m
2

s+m
2

(3.14)

Once a particular Vs,m has been reached (with s < A), a further unfolding of a single contour in
the (λ, 0) region leads to either Vs+1,m−1 or Vs+1,m+1 depending on whether the unfolded contour
is replaced by another contour in the (0,−∞) region or the (λ, 1) region respectively. However,
after A steps there will be no 0→ λ contours left. Thereafter we must unfold the remaining n−A
contours in the (1,∞) region by deforming each contour in twoways and removing the contributions
from the region (λ, 0). We now seek a recursive relation between Vs,m and its successor diagrams
Vs+1,m−1 and Vs+1,m+1.
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Thus we are led to define the following coefficients:

s < A : L−s,m =
eiπ(A−

3s−m
2
−1)ρ s(3a+ (n+ A−

(
s−m

2

)
− 2)ρ)

s(2a+ (n+m− 1)ρ)

L+
s,m =

eiπ(A−
3s+m

2
−1)ρ s(a+ (n− A+

(
s+m

2

)
)ρ)

s(2a+ (n+m− 1)ρ)

s ≥ A : L−s,m = −
eiπ(n−

3s−m
2
−1)ρ s(a+

(
s−m

2

)
ρ)

s(2a+ (n+m− 1)ρ)

L+
s,m =

eiπ(n−
3s+m

2
−1)ρ s(a+

(
s+m

2

)
ρ)

s(2a+ (n+m− 1)ρ)

(3.15)

In terms of these, we have the recursion relation:

Vs,m = L−s,mVs+1,m−1 + L+
s,mVs+1,m+1 (3.16)

Therefore one unfolding can be represented as the following diagram

Vs,m

Vs+1,m−1 Vs+1,m+1

L−s,m L+
s,m

(3.17)

where both the links are directed downwards. Starting from ĴA(λ) which can be identified as V0,0,
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n-unfoldings can be represented as the following graph:

V0,0

V1,−1 V1,1

V2,−2 V2,0
V2,2

Vn−1,1−n Vn−1,3−n Vn−1,n−3 Vn−1,n−1

Vn,−n Vn,2−n Vn,n−2 Vn,n

L−0,0 L+
0,0

L−1,−1 L+
1,−1 L−1,1 L+

1,1

L−n−1,1−n

L+
n−1,1−n L−n−1,3−n

L+
n−1,3−n L

−
n−1,n−3

L+
n−1,n−3 L−n−1,n−1

L+
n−1,n−1

(3.18)

Notice that the vertices in the final row are the integrals ĴA(1− λ) such that

Vn,2A−n = (−1)nĴA(1− λ) (3.19)

where the sign on the RHS comes from the change of variables ti → 1 − ti. The algorithm to
compute the Ŝ matrix is as follows:

1. For the row in the Ŝ-matrix corresponding to ĴA, identify V0,0 with ĴA(λ).

2. To compute the element ŜAB, trace a path in the graph (3.18) starting from V0,0 to Vn,2B−n
while multiplying the contribution from each link on the path.

3. Sum over the contributions from all such paths to obtain ŜAB.
Now that we have shown how to compute Ŝ in a simple algorithmic fashion, we go on to

calculate the normalisations of the integrals ĴA.

3.2.2 Normalisation of the integrals
The normalisations NA were originally introduced in (3.5). These are important to calculate as
they contain important information about the degeneracy of the ground state of the characters, as
we shall see, and are determined in terms of the parameters a and ρ. Recall that the second index
ofNAA′ has been dropped because we are working with the class of integrals having n2 = 0. Thus,
the normalization of the S-matrix from the from the unnormalized one calculated in the previous
section is

SAB =
NA

NB

ŜAB (3.20)
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Thus, once we compute the normalisations we will have finally determined the modular S-matrix.

The normalization of the integral NA is defined by demanding that the leading coefficient of
q of the integral is the ground-state degeneracy DA of the corresponding character, which is a
non-negative integer, such that:

χA(q) = DA q
1
2

(α+∆A)(1 +O(q)) (3.21)

Note that for a genuine RCFT, we should have D0 = 1 because the identity character has a non-
degenerate ground state (this can be relaxed for theories of IVOA type [39] and for quasi-characters
[30]).

To calculate the NA, we only need the leading behaviour in q, corresponding to taking the
λ→ 0 limit. To compute this, it will be convenient to first define the ordered integral:

IA(λ) = NA (λ(1− λ))α
∫ ∞

1

dtn

∫ tn

1

dtn−1 · · ·
∫ tA+2

1

dtA+1

∫ λ

0

dtA

∫ tA

0

dtA−1 · · ·
∫ t2

0

dt1

×
A∏
i=1

[
ti(1− ti)(λ− ti)

]a n∏
i=A+1

[
ti(ti − 1)(ti − λ)

]a ∏
0≤k<i≤n

(ti − tk)2ρ

(3.22)

The integrand and pre-factors are identical to those in JA, and the only difference is that the
integration range for IA has t1 < t2 < · · · < tn. The relation between JA(λ) to IA(λ) can be shown
to be [34, 35]:

JA(λ) =

(
A−1∏
k=1

eiπkρ
s((k + 1)ρ)

s(ρ)

n−A−1∏
l=1

eiπlρ
s((l + 1)ρ)

s(ρ)

)
IA(λ)

≡ ΘA(ρ) IA(λ)

(3.23)

For A = 0, 1 the product over k is absent, and similarly for A = n − 1, n the product over l is
absent.

In view of the ordered integrals, the factor (ti − tk) is always non-negative. Thus we can place
a modulus sign around it if we like. Thereafter we are free to extend the integral to be un-ordered.
This will simply count the integration region A! and (n− A)! times. Hence we have:

IA(λ) =
NA

A!(n− A)!
(λ(1− λ))α

∫ ∞
1

dtn · · ·
∫ ∞

1

dtA+1

∫ λ

0

dtA · · ·
∫ λ

0

dt1

×
A∏
i=1

[
ti(1− ti)(λ− ti)

]a n∏
i=A+1

[
ti(ti − 1)(ti − λ)

]a∏
i<k

∣∣ti − tk∣∣2ρ (3.24)

Next, we make the substitutions ti = λui for i = 1, 2, · · ·A, and ti = 1
ui
for i = A+1, A+2, · · · , n.
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The integral then becomes:

IA(λ) =
NA

A!(n− A)!
λα+A

(
1+2a+ρ(A−1)

)
(1− λ)α

∫ 1

0

dun · · ·
∫ 1

0

du1

×
A∏
i=1

[
ui(1− ui)(1− λui)

]a n∏
i=A+1

u
−2−3a−2ρ(n−1)
i

[
(1− ui)(1− λui)

]a
×

∏
1≤i<k≤A

∣∣ui − uk∣∣2ρ ∏
A+1≤i<k≤n

∣∣ui − uk∣∣2ρ ∏
1≤i≤A,

A+1≤k≤n

∣∣1− λuiuk∣∣2ρ
(3.25)

Notice that the leading power of λ which has been factored out of the integral is ∆A.

In the above form it is easy to compute the leading behaviour as λ→ 0, and one finds:

IA(λ→ 0) =
NA

A!(n− A)!
λα+∆A

∫ 1

0

duA · · ·
∫ 1

0

du1

A∏
i=1

[
ui(1− ui)

]a ∏
1≤i<k≤A

∣∣ui − uk∣∣2ρ
×
∫ 1

0

dun · · ·
∫ 1

0

duA+1

n∏
i=A+1

u
−2−3a−2ρ(n−1)
i (1− ui)a

∏
A+1≤i<k≤n

∣∣ui − uk∣∣2ρ
=

NA

A!(n− A)!
(16
√
q )α+∆A SA

(
a+ 1, a+ 1, ρ

)
Sn−A

(
− 1− 3a− 2ρ(n− 1), a+ 1, ρ

)
(3.26)

In this limit the integral has factorised into two parts, and we have identified each of these as a
Selberg integral. This integral is defined as:

Sm(α, β, γ) =

∫ 1

0

dum · · ·
∫ 1

0

du1

m∏
i=1

uα−1
i (1− ui)β−1

∏
1≤i<j≤m

∣∣ui − uj∣∣2γ
= m!

m∏
k=1

Γ(kγ)

Γ(γ)

m−1∏
k=0

Γ(α + kγ) Γ(β + kγ)

Γ(α + β + (m+ k − 1)γ)

(3.27)

Demanding this to be equal to the ground-state degeneracy, DA of the corresponding character we
fix the normalisation to be

NA =
16−(α+∆A) A!(n− A)!DA

ΘA(ρ)SA
(
a+ 1, a+ 1, ρ

)
Sn−A

(
− 1− 3a− 2ρ(n− 1), a+ 1, ρ

) (3.28)
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3.2.3 Final result
One can now insert the results from the previous two sections, namely (3.18) and (3.28), into (3.20)
to obtain the modular S matrix for any desired case. Note that it will contain the undetermined
factor DA. This can be found in multiple ways: (i) if one knows the chiral algebra of the theory
then the DA would be known (our method can still provide a useful way to compute S), (ii) in the
spirit of [14, 16, 15] one can guess theDA by requiring an integral q-series, (iii) following [24, 25]
one can determine the DA for coset theories via the bilinear coset relation.

3.3 Applications of the modular S matrix
Here we see what uses we can make of the S matrix. From Verlinde’s formula we can obtain the
fusion rules of CFTs which have unit multiplicity. We can also modify the S-matrix suitably for
larger than 1 multiplicity theories.

Using the following property of the S matrix:

S†MS = M (3.29)

whereM = diag(Mi) is thematrix ofmultiplicities, we can provide constraints on themultiplicities,
and the ground state degeneracy of characters in terms of the parameters a, ρ and n. This could
be an interesting way to approach classification of RCFT. Indeed, we have made some progress in
the area in the paper [35]. The computation of the S matrix also gives evidence for the proposal
of the contour integral representation of characters, even for larger number of characters where the
proposal is still a conjecture. Explicit computation of the S matrix for the SU(2)7 WZW Model,
an 8 character theory matches with the known result (1.144).

We have provided an algorithm which computes the S matrix term by term. However, for the
first and last rows of the S matrix, we can give a “closed” form solution, since from our algorithm it
follows that there is a unique path from the initial vertex to either the left-most or right-most vertex
at the bottom. The corresponding solution for the two rows are thus:

SA0 = (−1)n
NA

N0

A−1∏
s=0

eiπ(A−2s−1)ρ s(3a+ (n+ A− s− 2)ρ)

s(2a+ (n− s− 1)ρ)

n∏
s=A

−eiπ(n−2s−1)ρ s(a+ sρ)

s(2a+ (n− s− 1)ρ)

SAn = (−1)n
NA

Nn

A−1∏
s=0

eiπ(A−2s−1)ρ s(a+ (n− A+ s)ρ)

s(2a+ (n+ s− 1)ρ)

n∏
s=A

eiπ(n−2s−1)ρ s(a+ sρ)

s(2a+ (n+ s− 1)ρ)

(3.30)

which extends the results from [34], who were only able to provide the last row.
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Chapter 4

Quasi-Characters for Three Character
CFTs

This chapter will briefly, for reasons of space, deal with solutions of order 3 MLDE, in order to
understand some steps required for a classification of all three character CFTs, the subject of our
paper [32]. This is extensively discussed in my collaborator Palash Singh’s thesis.

The MLDE method of classifying CFT does not specify any sort of chiral algebra the CFT
possesses, and thus can be used to find theories which are not the standard minimal models or
WZW models. Examples of such CFTs are coset models, the Monster and Baby Monster CFTs,
etc. The problem of classifying 1 character (meromorphic) CFT is a solved problem using the
techniques of MLDE [15], and so is the order 2 case [30].

Classifying using the MLDE involves solving the MLDE by fixing the free parameters in
the MLDE, and studying whether the solution has a positive integral q-expansion. Candidate or
admissible characters must have the following three properties:

1. The set of characters transform under modular transformations as a vector valued modular
form to keep the partition function of the theory modular invariant.

2. The ground state of the identity character must be non-degenerate, since any legitimate QFT
has a unique vacuum.

3. After suitably normalizing the identity character, the rest of the characters must have positive
integer coefficients in their q-expansion.

Quasi-characters are an auxiliary construction required for creating more characters which solve
MLDE with larger values of `. It turns out that for ` > 6, the number of parameters required to
solve the differential equation become too large to uniquely determine by parameters of the theory
like central charge and conformal dimensions. However, we can construct large ` characters by
taking linear combination of solutions of lower `. The solutions which are useful for this purpose
are called quasi-characters. They also have integral coefficients in their q-expansion, but are not
necessarily positive, since they do not correspond to any physical CFT. The constraint that the
“identity” character must have a non-degenerate ground state is also lifted for these solutions.
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4.1 Fusion Classes of Three Character CFTs
The first point to note is that there can in general be more primaries than characters. This happens
for example whenever a primary is complex – in this case its complex conjugate has the same
character. Thus we must be careful to account for multiplicities. For the case of interest to us,
namely order 3, it turns out that there are cases with a total of three, four, five or nine primary
fields. With three or four primaries there are nine possible fusion classes, classified in [8]. One of
our cases does not fall within the above classification – while it has three characters, two of them
correspond to complex primaries and hence the total number of primaries (counting each one and
its complex conjugate as distinct) is five. We have labelled the fusion rules for this case as B(1)

4 .
Another one of our cases is a tensor product of a two character theory. The two character theory
has a complex primary, so when taking the product with itself, one obtains 9 primaries.

By construction, characters are eigenvectors of the modular T -transformation τ → τ + 1 and
transform under τ → − 1

τ
by a non-trivial modular S-matrix. Their fusion rules can be found using

the Verlinde formula [36]:
Nijk =

∑
m

SimSjmS∗km
S0m

(4.1)

A general procedure to compute the modular S-matrix has been provided in our previous paper
[35] for a large class of characters having ` = 0. This class includes, in particular, all ` = 0
CFT’s of order 3. However there is a subtlety in using S to compute the fusion rules. This is
straightforward for theories without multiplicity, but we cannot directly use the Verlinde formula
for cases where the multiplicity is greater than one. For these, we must use the technique in [15] to
“expand” the S-matrix to a larger matrix whose dimension is equal to the total number of primaries.
This expanded matrix diagonalises the fusion rules of the primaries and can be used in the Verlinde
formula.

4.2 The Quasi-Character Families in order 3 MLDE
The key ingredient for constructing these families is the bilinear relation and the novel coset
construction. The bilinear relation of two theories is as follows. It is well known that the partition
function of a c = 24 meromorphic CFT is given by the Klein j function plus a constant. By taking
the “inner product” of characters from two different CFTs, sometimes one obtains the j function.
Such theories are called coset pairs.∑

i

χi(τ)χ′i(τ) = j(τ) +N (4.2)

In the order 2 case [30], the bilinear relation of [24] was able to construct an ` = 2 coset pair of
an ` = 0 CFT. For order 3, this is not true. The coset of a c = 24 meromorphic CFT with an ` = 0
three character CFT also has ` = 0. This suggests that they could lie in the same quasi-character
“family,” since in the order 2 case, the quasi-character family all share the same `. Using this as an
inspiration, we conjectured using known ` = 0 three character CFTs, a full quasi-character family
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for each. In some cases we were able to combine some families, and were able to make infinitely
many, shown in table 4.1.

Each family is arranged as follows. The theory listed in the second column is the k = 0 theory,
with its corresponding c and hi values. The k = 1 theory is its coset dual, constructed from a
meromorphic c = 24 theory, as described above. We were able to rule out certain congruences
of the label k in most of the families, by checking for integrality of the q-series and analyticity of
the modular S-matrix computed using the algorithm in the previous chapter. Each quasi-character
family is classified by its fusion class and the formula for the critical exponents. An interesting
thing to note is that we find quasi-characters even for r < 0 in the cases of theBr,1 andDr,1 families.

Another interesting property is that we find that the bilinear relation is satisfied by pairs of
quasi-characters as well. Particularly, the k and 1 − k members of the family are coset pairs,
where the constant N is not necessarily an integer. There is however, a small caveat. Since the
solutions of the MLDE are up to a sign, we a priori do not know the sign of the ground state
degeneracy Di for quasi-characters. Even modular invariance of the “partition function” created
by the quasi-characters does not help since the degeneracy will be squared. However, the bilinear
relation will only hold true only for a particular sign of the productDiD

′
i, and thus puts a nontrivial

relation on the signs of the ground state degeneracies for the two quasi-character solutions.
One more property we see is that, on computing the modular S matrix using our algorithm in

the previous chapter, the entire family shares the same, or a few S matrices, up to a sign of Di. So
we have two relations, the bilinear relation and the common modular S matrix to help us fix the
sign of the quasi-character.

4.3 ConstructingAdmissibleCharacters fromQuasi-Characters
in order 3

4.3.1 Adding quasi-characters
To construct solutions of p = 3 MLDE with larger values of ell, we can take linear combinations
of quasi-character to construct them. Let’s see how this can be done. Consider two sets of (quasi-)
characters with central charges c, c′ and conformal dimensions hi, h′i. They have the general form:

χi = qαi
(
a

(i)
0 + a

(i)
1 q + a

(i)
2 q

2 + · · ·
)

χ′i = qα
′
i

(
a′0

(i)
+ a′1

(i)
q + a′2

(i)
q2 + · · ·

) (4.3)

where αi = − c
24

+ hi. The coefficients a(′ )
n are integers, but need not be positive. For adding

quasi-characters to be well defined, they must satisfy these two conditions:

• the sum must have a well defined S matrix

• the q-expansion must be in integer powers of q
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Fusion Theories c h1 h2 RemarkClass

A(3)
2 M2,7

304
7
k − 68

7
20
7
k − 3

7
18
7
k − 2

7
k 6= 4 mod 7

M2,5 ⊗M2,5
208
5
k − 44

5
14
5
k − 2

5
12
5
k − 1

5
k 6= 3 mod 5

A(4)
3 G2,1 ⊗G2,1

64
5
k + 28

5
6
5
k + 2

5
2
5
k + 4

5
k 6= 3 mod 5

F4,1 ⊗ F4,1
16
5
k + 52

5
4
5
k + 3

5
−2

5
k + 6

5
k 6= 3 mod 5

B(1)
4 A4,1 16k + 4 6

5
k + 2

5
4
5
k + 3

5
k ∈ Z

2
, 2k 6= 1 mod 5

A(1)
2 Br,1 (23− 2r)k + 2r+1

2
(15−2r)

8
k + 2r+1

16
k + 1

2
r = 0, 1 incl.

A(1)
3

E7,1 ⊗ E7,1 −4k + 14 1
2
k + 3

4
−k + 3

2

Dr,1 2(12− r)k + r (8−r)
4
k + r

8
k + 1

2
r = 2 mod 4

B(4)
3 Dr,1 2(12− r)k + r (8−r)

4
k + r

8
k + 1

2

r 6= 2 mod 4
r 6= 0 mod 8

B(1)
8 A2,1 ⊗ A2,1 16k + 4 4

3
k + 1

3
2
3
k + 2

3
k ∈ Z

2
, 2k 6= 1 mod 3

Table 4.1: Infinitely many sets of quasi-character families for each fusion class. Here k, r ∈ Z
subject to the restrictions above, unless stated otherwise.

The sum, therefore looks like

χ̃i = χ′i +Nχi = qα̃i
(
ã

(i)
0 + ã

(i)
1 q + ã

(i)
2 q

2 + · · ·
)

(4.4)

For the first requirement to hold, the two quasi-characters must have the same S matrix, and
hence must be in the same quasi-character family. For the second requirement to hold, their central
charges must differ by a multiple of 24:

c′ − c = 24m (4.5)

Examples are worked out in [32].

4.3.2 The Wronskian index of a sum of quasi-characters

To calculate the Wronskian index ` of a sum of quasi-characters, let us assume without loss of
generality that c′ > c, and hence m > 0. The exponents α̃i are the more singular of the two two
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exponents αi and α′i. Since α
(′ )
0 = − c(′ )

24
, α0 > α′0, and hence

α̃0 = α′0

α̃1,2 = α̃0 + min(h′1,2, h1,2 +m)
(4.6)

One can show if h′1 < h1 + m, then h2 > h2 + m and visa versa. Thus, using the Riemann-Roch
relation (1.152), we get the results for the Wronskian index of χ̃i listed in table 4.2.

min(h′1, h1 +m) min(h′2, h2 +m) `

h′1 h2 +m 6(h′2 − h2 −m)

h1 +m h′2 6(h′1 − h1 −m)

h1 +m h2 +m 6m

Table 4.2: Possible values of the Wronskian index `

4.3.3 Admissible characters with large Wronskian Index
Now that we have seen that we can obtain quasi-characters of ` > 0, by adding quasi-characters of
` = 0. We can obtain admissible characters by tuning the parameterN which we used in the linear
combination, to “cure” the negative signs of the quasi-character. However, this requires studying
the asymptotic sign of the coefficients of the quasi-character, which leads us to classifying them in
terms of their behaviour, as given below:

• Class A: The q-expansion has only non-negative coefficients.

• Class B: After a finite power of the q expansion, there are only positive coefficients (assuming
the ground state degeneracy is chosen positive).

• Class C: After a finite power of the q expansion there are only negative coefficients (again
assuming the ground state degeneracy is chosen positive).

• Class D: The asymptotic sign of the coefficients does not stabilize but oscillates between
positive and negative values.

Note that each of the A,B,C behaviours is defined in a convention where the first term is chosen
positive, corresponding to a positive degeneracy Di. If instead one chooses Di < 0, which is
sometimes required, then the behaviour flips in an obvious way.

Once again, for examples refer to our paper [32]. Such admissible characters have been shown
to be characters real CFTs through the coset construction with c = 32 meromorphic CFTs, whose
coset pairs with three characters are ` = 0 and ` = 6.
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Chapter 5

Non-Abelian Anyons and the Quantum Hall
Effect

Here we shall talk about systems in 2+1 dimensions, for example a 2 dimensional electron gas
confined to a plane. Such systems are studied by experimentalists in the lab, so it is worthwhile
understanding the physics behind these systems, and interesting phenomena which occur here. We
shall also understand how RCFT can by used to probe these systems. [40, 41, 42]

Let us first define an anyon. Consider the wave function of two identical particles, and exchange
the particles in a counter clockwise direction

ψ(r1, r2) = eiθψ(r2, r1) (5.1)

On exchanging the particles, the wave function picks up a phase. Here θ is called the statistical
angle. Clearly when θ = 0, the wave function describes two bosons, and when θ = π, the wave
function describes two fermions. Any other phase describes particles known as abelian anyons.

When one has N particles in the system, then a more rich structure arises. These particles will
be representations of the discrete group known as the Braid group BN .

5.1 The Braid Group

The Braid group BN is the discrete group whose elements are different braidings of N strings.
Braiding two strings is the act of taking one string and exchanging it with another, either clockwise
or counterclockwise. Clockwise and counterclockwise braidings are not the same, and are in fact,
the inverse operation of each other. Clearly, the operation of braiding is the generator of the Braid
group. The generators are σi, which is the act of braiding the ith string with the (i + 1)th string
counterclockwise, and σ−1

i is the clockwise exchange. Hence, the index i takes values 1, · · · , N−1
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for N strings. The generators obey the relations:

σiσj = σjσi ∀|i− j| ≥ 2

σiσi+1 6= σi+1σi

σiσi+1σi = σi+1σiσi+1

σ2
i 6= 1

(5.2)

The last relation makes the Braid group BN have infinite elements, and differentiates it from the
permutation groupSN . An interesting subgroup of the Braid group is called the Pure Braid group,
and it is the subgroup where the strings start and end in the same order.

The relation of the Braid group to anyons is that the Braid group will act on the world line of
the anyons. Therefore, the anyons must be representations of the Braid group. The Braid group
is a non-abelian group, as seen by the generator algebra, and so in general the representations of
the group will also be non-abelian. However, the 1 dimensional irreducible representation of the
group will be abelian, since numbers commute. The abelian representation of the group is given
by exponentials eimθ, where θ is the statistical angle of the anyon. When there are more than one
type of abelian anyon species in the system, then the statistical angle will be given by a symmetric
matrix θab, where a and b label the anyon species, and θab gives us the statistical angle of exchanging
anyons a and b counterclockwise.

Particles which have to be represented by higher dimensional irreps of the Braid group will
have non-abelian braiding statistics, and will be called non-abelian anyons. This can occur when an
eigenstate of the system has some degeneracy. The degenerate subspace of the Hilbert space will
have dimension equal to the degeneracy. We will see that braiding particles will cause nontrivial
unitary rotations in this degenerate subspace, and the dimension of the representation will be equal
to the degeneracy of the eigenstate.

5.2 Abelian Anyons
Before understanding non-abelian anyons, let us quickly understand some physics of the abelian
case. We have already seen that wavefunctions that describe anyons will pick up a phase under
counterclockwise exchange, with statistical angle θ. However, one can construct other “species”
of anyons by considering bound states of anyons. Here we mean bound states in the loose sense,
as long as the particles are much closer to each other than other particles in the system, then the
collection of particles is considered a bound state. Once in the bound state, we will ignore any
internal dynamics of the bound state giving rise to any phases internally.

A bound state of m particles being exchanged counterclockwise with another bound state of n
particles will pick up a phase of

(eimθ)n = eimnθ (5.3)

since each particle in the n-particle bound state will contribute a phase of eimθ, but will happen n
times. Clearly, if there is anyon of statistics θ = π

m
, then by creating bound states we can obtain
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anyons of the following statistics:

θ =
4π

m
,
9π

m
, · · · (m− 1)2π

m
(5.4)

Fusing particles is just the process of bringing the particles together, to create new particles.
For abelian anyons it’s very simple: fuse an m and n particle bound state to get an m+ n particle
bound state. The statistical angle of the new particle will be (m+ n)2θ. Thus, we write the fusion
rules of particles, labelled by their statistical angle as:

m2θ × n2θ = (m+ k)2θ (5.5)

The story for non-abelian anyons is quite different, which we shall see now.

5.3 Non-Abelian Anyons

In the abelian case, two anyons fused to form just a single other anyon. However, in the non-
abelian case, we can allow for two particles to fuse into multiple different particles. We can neatly
encapsulate this in the formula

φa × φb =
∑
c

N c
abφc (5.6)

where φa’s are the different types of quasi-particle in the system. For abelian anyons, N k′′

k k′ =
δk+k′,k′′ . A simple set of fusion rules is the Ising fusion rules (whose fields are σ and ψ):

σ × σ = 1 σ × ψ = σ ψ × ψ = 1 (5.7)

Notice that the σ particle can fuse to give different final particles, either the vacuum or the particle
ψ. This can lead to interesting results. Consider taking the vacuum expectation value of four σ
particles 〈σσσσ〉. Their allowed fusion channels are by the fields 1 and ψ, so when two σ’s fuse
to give 1, so do the other two. Then the two 1 fields can fuse to give the final state which is the
vacuum. Or both the pairs could have fused to give ψ fields and both of which fuse to give the
vacuum. In CFT, we identified these as the two conformal blocks which contribute to the four point
function. Here we say that the system has topological charge = 1. However, if we consider the
correlation function 〈ψ|σσσσ〉, then the four σ particles will combine to form ψ in their respective
fusion channels, and it is said that this configuration has topological charge = ψ.

While computing these correlation functions, we saw that we are required to consider the
contributions from the different fusion channels. For 〈σσσσ〉, the two fusion channels are via 1
and ψ, which we can call Ψ1 and Ψψ respectively. In general, four fields can fuse through multiple
fusion channels, Ψa. However, we considered the fusion of the first two and last two pairs to
determine the fusion channels. We could have chosen to first fuse the 1st and 3rd σ’s, and 2nd and
4th σ’s, which would have given us the fusion channels Ψ̃a. Clearly, these are two different bases
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for fusion, and thus are related by the change of basis matrix, which we call the F matrix:

Ψ̃a = FabΨb (5.8)

where Fab is short for [F ijk
l ]ab which encodes the following information:

i, j
Fuse−−→ a, where all allowed a makes the first basis

a, k
Fuse−−→ l

(5.9)

j, k
Fuse−−→ b, where all allowed b makes the second basis

b, i
Fuse−−→ l

(5.10)

On fusing, the particles may have braided around each other, and picked up a phase, but would
not have changed the fusion channel. This information is contained in the R-matrix, Rab

c , which is
the phase picked up when a and b are exchanged counterclockwise, and fuse to give c.

Thus, to fully specify the braiding statistics of a system of anyons, we need to specify :

• Particle species

• Fusion rules

• F -matrices

• R-matrices

5.4 The Quantum Hall Effect
A physical system in which non-abelian anyons can be realized is a fractional quantum Hall system.
To understand the quantum Hall effect, let’s start with the classical system, using the Drude model.

5.4.1 The Classical Hall Effect
The system is a 2+1d electron gas, confined to the x, y plane. There is a strong transverse magnetic
field ~B = Bẑ, and one can turn on a small electric field ~E = Ex̂. When the electric field is
not present, the electrons will satisfy the equation m~a = −e~v × ~B, whose solutions are circular
trajectories given by

x(t) = X −R sin(ωBt+ φ) y(t) = Y −R cos(ωBt+ φ) (5.11)

where ωB = eB
m

is the cyclotron frequency, (X, Y ) is the center of the circle of the trajectory with
radius R. In the Drude model, one turns on the electric field, adds a friction term, and studies the

60



system at equilibrium (~a = 0):

m~a = −e( ~E + ~v × ~B)− m~v

τ
(5.12)

where τ is the scattering time. On applying the equilibrium condition, substituting −ne~v (n is the
current density) for ~J , the current density we get :(

1 ωBτ

−ωBτ 1

)
~J =

e2nτ

m
~E (5.13)

Comparing with Ohm’s law J = σE, we have the conductivity tensor, and its inverse the resistivity
tensor ρ:

σ =
e2nτ

m

1

1 + ω2
Bτ

(
1 −ωBτ
ωBτ 1

)
ρ =

m

e2nτ

(
1 ωBτ

−ωBτ 1

)
=

1

ne

(
m
eτ

B

−B m
eτ

)
(5.14)

The off-diagonal entries in the conductivity tensor: σxy = −e2ωBnτ2
m(1+ω2

Bτ
2)

is responsible for the Hall
effect, electric current in the y direction on application of electric and magnetic fields in the x and
z directions respectively.

What is seen in the quantum Hall effect is extremely curious. The transverse resistivity ρxy has
experimentally found to take the values h

νe2
, where ν ∈ Z, and the longitudinal resistivity ρxx = 0.

The magnetic field takes the value B = hn
νe

at the center of the plateau of the ρxy vs B. The
parameter ν can take particular fractional values if the disorder in the system is increased, which
we shall see soon.

5.4.2 Landau Levels

We shall now quantize the system. The lagrangian of this system is

L =
1

2
mẋiẋi − eẋiAi (5.15)

which is gauge invariant. The canonical momentum pi = ∂L
∂ẋi

= mẋi− eAi and the Hamiltonian is

H =
1

2m
(pi + eAi)

2 (5.16)

Notice that the canonical momentum pi is not gauge invariant, but the quantity mẋi is. We shall
call this mechanical momentum. However, mechanical momentum does not have the canonical
Poisson bracket structure, since its Poisson bracket with itself is nonvanishing.

{mẋi,mẋj} = −e εijkBk (5.17)
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Quantizing this system amounts to exchanging the poisson brackets for commutators, and
making the phase space variables x, p operators. Calling the mechanical momentum operator as
Πi = pi + eAi, the commutator reads

[Πx,Πy] = −ie~B (5.18)

We can see we can construct raising and lowering operators from the mechanical momentum:

a† =
Πx − iΠy√

2e~B
a =

Πx + iΠy√
2e~B

(5.19)

which satisfies the standard commutation relation [a, a†] = i~, and we can rewrite the hamiltonian
in terms of the raising and lowering operators:

H =
1

2m
Π · Π = ~ωB

(
a†a+

1

2

)
(5.20)

All this shows that the 2d electron gas system is behaving like a 1D harmonic oscillator. We shall
see that the extra degree of freedom goes into a macroscopic degeneracy at each energy level of the
“harmonic oscillator.” To see this, we have to specify a gauge.

Landau Gauge

Landau gauge is the gauge choice ~A = xBŷ. The hamiltonian in this gauge reads

H =
1

2m

(
p2
x + (py + eBx)2

)
(5.21)

which is translationally invariant in the y direction. To find energy eigenstates, we can plug in the
ansatz for the wave function ψk(x, y) = eikyfk(x). The energy of this wavefunction is

Hψk(x, y) =
1

2m
(p2
x + (~k + eBx)2)fk(x) =

(
1

2m
p2
x +

mω2
B

2
(x+ l2Bk)2

)
fk(x) (5.22)

As expected, the x dependent wavefunction is an eigenstate of the harmonic oscillator hamiltonian,
centered at x = −kl2B = ~k

eB
. Here lB =

√
~
eB

is the “magnetic length”. The energy levels however
do not depend on the momentum k, and is

En = ~ωB
(
n+

1

2

)
(5.23)

These energy levels are called Landau levels. Thus each Landau level has infinite degeneracy, for
an infinite plane, and no momentum cutoff, since all k are allowed at each n. The eigenstates of the
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hamiltonian in this gauge are thus

ψn,k ∼ eikyHn(x+ kl2B) e
−x+kl2B

2l2
B (5.24)

where Hn are the hermite polynomials.
If we consider a finite plane, as one would expect in a physical setting, we can estimate the

degeneracy at each energy level. Consider the plane to be a rectangle of sides Lx, Ly. Allowed
momentum are now discrete, quantized in units of 2π

Ly
. In the x direction, the wave function will be

peaked at −kl2B, where x ∈ [0, Lx]. Therefore, k can take values [−Lx
l2B
, 0]. Thus the degeneracy

will be
Ndeg =

Ly
2π

∫ 0

−Lx
l2
B

dk =
eBA

h
≡ BA

Φ0

(5.25)

where Φ0 = h
e
is called the flux quantum. Notice that the degeneracy is proportional to the area of

the sample, and the applied magnetic field.

Landau gauge with external Electric Field

On adding an external electric field, to drive current through the sample, the Hamiltonian changes
by a linear term

H =
1

2m
(p2
x + (p2

y + eBx)2)− eEx (5.26)

This will not change the form of the solutions of the wave function, but will give an E dependent
shift:

ψ(x, y) = ψn,k

(
x− mE

eB2
, y

)
(5.27)

The energy of these states also change, and the degeneracy due to k is lifted:

En,k = ~ωB
(
n+

1

2

)
+ eEkl2B −

mE2

2B2
(5.28)

We can see that we get the classical value of drift velocity of electrons immediately from this, by
calculating the group velocity |v| = ∂ω

∂k
= E

B
.

Symmetric Gauge

This gauge choice is
~A = −1

2
~r × ~B = −yB

2
x̂+

xB

2
ŷ (5.29)

which is rotationally invariant (around the z axis), which is a symmetry of the system.
This gauge is useful for defining an “alternate” momentum operator:

Π̃i = pi − eAi (5.30)
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as opposed toΠi = pi+eAi. Note that Π̃ is not gauge invariant. The commutators of themomentum
and alternate momentum operator are:

[Πx,Πy] = −ie~B [Π̃x, Π̃y] = ie~B

[Πi, Π̃i] = 2ie~∂iAi
[Πi, Π̃j] = ie~(∂iAj − ∂jAi)

(5.31)

In the symmetric gauge, these commutators simplify to be [Πi, Π̃j] = 0. Since these operators are
now decoupled, we can define a new set of ladder operators:

b =
Π̃x + iΠ̃y√

2e~B
b† =

Π̃x − iΠ̃y√
2e~B

(5.32)

This shows that we can use the ladder operators a and b to define our states, with respect to a ground
state |0, 0〉:

|n,m〉 =
(a†)n (b†)m√

n!m!
|0, 0〉 (5.33)

where the quantum number n still labels the Landau level, and thus the energy En = ~ωB(n+ 1
2
).

5.4.3 The Lowest Landau Level
The ground states in the symmetric gauge are known as the Lowest Landau Level states:

a |0,m〉 = 0 (5.34)

To find the wave function of these states, we can write the lowering operator as a differential
operator, in the coordinates z = x+ iy.

a = −i
√

2

(
lB∂̄ +

z

4lB

)
; a† = −i

√
2

(
lB∂ −

z̄

4lB

)
(5.35)

We see that the zero eigenfunction of the a operator is

ψLLL,m ∼
(

z

2lB

)m
e
− |z|

2

4l2
B (5.36)

The quantum number m is the quantized angular momentum of the solution. To see this, we can
define the angular momentum operator J = ~(z∂ − z̄∂̄).

JψLLL,m = ~mΨLLL,m (5.37)

Thus, we see that the lowest Landau level describes wavefunctions of angular momentumm, and is
peaked at radius r =

√
2mlB, which we can calculate by finding the maxima of the wavefunction,
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by setting z = reiθ and differentiating with respect to r.

5.5 The Integer Quantum Hall Effect

The integer QHE is the phenomenon in which the transverse Hall conductivity is quantized in units
of e2

h
≡ e

Φ0
, and longitudinal conductivity vanishes. We can explain this through understanding the

current in terms of the quantum operators we understood in the previous section.
First, let’s consider the effect of putting a chemical potential at low temperature in the system.

The system is essentially a free Fermi gas in an external magnetic field, whose effect is to discretize
the energy levels to the Landau levels Ei. Each Landau level has a degeneracy g = eBA/h. Let
the total number of electrons be N , and each Landau level houses ni electrons. Thus, we can write
the partition function as

Z =
∑

configs

e−β(E−µN) =
∏
i

g∑
ni=1

eβ(µ−Ei)ni =
∏
i

eβ(µ−Ei)(1+g) − 1

eβ(µ−Ei) − 1

=⇒ lnZ =
∑
i

ln
eβ(µ−Ei)(1+g) − 1

eβ(µ−Ei) − 1

(5.38)

The occupation number of an energy level 〈ni〉 is given by

〈n〉 =
1

β

∂ lnZ

∂µ

=⇒ 〈ni〉 =
(1 + g)eβ(µ−Ek)(1+g)

eβ(µ−Ek)(1+g) − 1
− eβ(µ−Ek)

eβ(µ−Ek) − 1

=⇒ lim
β→∞

〈ni〉 =

0 Ek > µ

g Ek < µ

(5.39)

which recovers the fact that at low temperatures, free fermions will completely fill up all energy
levels up to the chemical potential. Therefore, if Eν < µ < Eν+1, all ν Landau levels will be
completely filled.

The current vector Ii = −eẋi can be written in terms of the mechanical momentum operator:
Ii = − e

m
Πi = − e

m
(pi + eAi). The measured current will thus be

〈Ii〉 = − e

m

∑
filled

〈ψ|pi + eAi|ψ〉 (5.40)

where |ψ〉 are the occupied states in the system. Working in the Landau gauge, ~A = xBŷ, these
states have the wave function (5.24).
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Studying the components of the current we see

Ix = − e

m

ν∑
n=1

∫
dk 〈ψn,k|−i~∂x|ψn,k〉 = 0 (5.41)

Iy = − e

m

ν∑
n=1

∫
dk 〈ψn,k|~k + exB|ψn,k〉

= − e

m

ν∑
n=1

∫
dk

(
~k + eB

(
−~k
eB

+
mE

eB2

))
= −eνE

B

∫
dk = −e

2νEA

h
= −eνEA

Φ0

(5.42)

where we have used the fact that the states in this gauge are harmonic oscillators with potential
centered at −~k

eB
+ mE

eB2 , and the degeneracy due to finite sample size is eBA
Φ0

. From this, we see that
~E = Ex̂ =⇒ ~J = − eνE

Φ0
ŷ and thus σxx = 0, σxy = eν

Φ0
, which is exactly the values measured in

experiment.

5.6 Effects of Disorder in the Quantum Hall system

We have derived the observations seen in the Quantum Hall experiment in the previous section, but
we did not take into the fact that impurities and temperature exist, and might completely destroy any
quantization of resistivity we calculate. To check that the plateaus survive even if the sample is not
perfectly flat or clean, we can use perturbation theory! Let the disorder in the system be modelled
by some potential V . The hierarchy of energy scales in the system is β−1 << V << ~ωB. Thus,
we are still at very low temperatures, but the sample is still quite clean. The perturbations won’t
disturb the energy gap between Landau levels.

First, let’s recall the classical equations of motion of an electron in a transverse magnetic field:

x(t) = X −R sin(ωBt+ φ) y(t) = Y −R cos(ωBt+ φ) (5.43)

Notice that X, Y are constants of motion, so if we use these as quantum operators, they will
commute with the unperturbed Hamiltonian:

[X,H] = i~Ẋ = 0 [Y,H] = i~Ẏ = 0 (5.44)

These operators give the alternate momentum operators Π̃ some physical meaning:

X = − Π̃y

eB
Y =

Π̃x

eB
=⇒ [X, Y ] = il2B (5.45)

Now, adding the disorder potential to the Hamiltonian, the center of mass operators X, Y will
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now change with time:

[X,H + V ] = [X, V ] = [X, Y ]
∂V

∂Y
= il2B

∂V

∂Y

[Y,H + V ] = [Y, V ] = [Y,X]
∂V

∂X
= −il2B

∂V

∂X

=⇒ (Ẋ, Ẏ ) · ~∇V = 0

(5.46)

This means that the center of mass drifts along equipotential surfaces of the disorder potential!
Extended equipotential surfaces in the bulk are much rarer than localized ones, thus the wave
functions are localized rather than extending from one end to the other. Extended equipotential
surfaces are found more towards the edge, and all the current is carried through these surfaces.

5.7 The Fractional Quantum Hall Effect
In the previous section, we argued that by quantizing the 2d electron gas in an external electric and
magnetic field, one can accurately explain the observation that the transverse resistivity must be
quantized in integers. However, experiments have seen resistivities in quantum Hall systems where
the value of ν is not integer, but is fractional! This seems to be in conflict with our success in
explaining the integer quantum Hall effect in the previous section, however we should take a closer
look.

5.7.1 The Laughlin Wavefunction
Laughlin proposed the following wave function to explain the FQHE, after also considering inter-
electron interactions [43].

ψ(zi) =
∏
i<j

(zi − zj)me
−

∑
i |zi|

2

4l2
B (5.47)

where the prefactor encodes repulsion between electrons. Note that the wave function vanishes
when two electrons are at the same position, with a zero of order m. Since this wave function
describes a collection of fermions, it must be anti-symmetric, hencem must be odd.

Let us compute the filling fraction of this wavefunction. Focus on the particle at z1. From the
prefactor, it will get m(N − 1) powers, where N is the total number of electrons. Note that the
maximum angular momentum of the electron will also be given by the power of zi, which for z1

will also be m(N − 1). We saw that the peak of the wave function of the lowest Landau level in
symmetric gauge was

√
2mlB. Thus, the radius of the “droplet” will be R ∼

√
2mNlB, and the

corresponding area will be A ∼ 2πmNl2B. The total number of particles the system can hold is

N = ν
AB

Φ0

= ν
2πmN~B
eBΦ0

=⇒ ν =
1

m
(5.48)

Thus, this wave function does describe a system where one can get fractional filling of Landau
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levels.
More evidence that this wavefunction is indeed physical, we can see them = 1wavefunction. To

build awavefunction describingN fermions, we can use the Slater determinantψ(zi) = det[ψi(zj)].
Let us fill the lowest Landau level with electrons of momenta 0, 1, · · · , N − 1. If we take ψk to be

the LLL wavefunction with angular momentum k − 1: ψk(z) = zk−1e
− |z|

2

4l2
B , the total wavefunction

obtained is

ψ(zi) =

∣∣∣∣∣∣∣
z0

1 · · · z0
N

... ...
zN−1

1 · · · zN−1
N

∣∣∣∣∣∣∣ e
−

∑
i |zi|

2

4l2
B =

∏
i<j

(zi − zj) e
−

∑
i |zi|

2

4l2
B (5.49)

which is indeed them = 1 Laughlin wavefunction.

5.7.2 Quasiholes in the Laughlin Wavefunction

Excitations of the Laughlin wavefunction are the quasi-holes and quasi-particles of the system. An
obvious way to introduce holes is by introducing zeroes into the wavefunction at the position of the
holes. So, forM holes:

ψ(zi; ηj) =
M∏
j=1

N∏
i=1

(zi − ηj)
∏
k<l

(zk − zl)m e
−

∑
i
|zi|

2

4l2
B (5.50)

Heuristically, one can see that a hole at position ηj carries charge +e/m since if m of them came
together at one point, it would mimic the factor of an electron (zi − zj)m, but would physically
show the deficit of an electron, since ηj are not dynamical variables of real particles in the system,
but are just parameters of the system.

We shall compute the statistics and fractional charge exactly in the next chapter using the
corresponding Chern-Simons theory.

5.7.3 The Moore-Read Wavefunction

The Moore-Read wave function is also a wave function to describe filling fraction ν = 1
m
, but for

evenm [44]. The wavefunction is very similar to Laughlin’s, but with an extra factor:

ψ(zi) = Pf
(

1

zi − zj

)∏
i<j

(zi − zj)m e
−

∑
i |zi|

2

4l2
B (5.51)

where Pf is the Pfaffian, and is defined for antisymmetric even dimensional matrices:

Pf(M) =
1

2d/2(d/2)!
εi1i2···idMi1i2 · · ·Mid−1id−2

(5.52)
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Since the pfaffian is an antisymmetric function of zi and zj , for thewavefunction to be antisymmetric,
m must be even.

Introducing holes in the wavefunction is similar to the Laughlin case. Consider the 1 hole case,
exactly like the Laughlin case,

ψ(zi; η) =
N∏
i=1

(zi − η)Pf
(

1

zi − zj

)∏
k<l

(zk − zl)m e
−

∑
i |zi|

2

4l2
B (5.53)

To add multiple holes, it’s a little more complicated, we have to replace the pfaffian in the
ground state with the following function:

Pf

(∏M
l=1,n=1(zi − ηkl)(zj − ηmn) + (k ↔ m)

zi − zj

)
(5.54)

Note that there are even number of holes 2M . Also note that if there are two holes at the same
place, then the wave function is equal to 1 hole. Thus the holes have half the charge of the Laughlin
holes, i.e. e/2m.

The number of ways of inserting holes in the Pfaffian like this is 1
2
(2M)!/(M !)2, but the

dimension of the Hilbert space with with 2M holes is 2M−1. For the proof, refer to [45].
The quasi-holes in the Moore-Read wavefunction are the Ising anyons described previously in

this chapter. The link is through the TQFT description of the Quantum Hall effect, Chern-Simons
theory. In particular, the wavefunction of both the ground state and the holes of the Moore-Read
wavefunction can be derived from the edge states of the SU(2)2 Chern-Simons theory, which is the
SU(2)2 WZWmodel! Similarly the Laughlin wavefunction and holes are derived from the abelian
U(1) Chern-Simons theory, which will be shown in the following chapter.
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Chapter 6

Chern-Simons Theories

Chern-Simons theories are 2+1 d topological quantum field theories, which means that they do
not have any dynamics, but the non-triviality comes from certain topological aspects of the theory.
They are gauge theories, but the kinetic term is not given by the square of the field strength. In fact,
the action is only order 1 in derivatives! Chern-Simons theories turn out to be the effective field
theory descriptions of the Quantum Hall effect. On coupling to matter and sources, we shall see
that it is a very illuminating description of the Quantum Hall system. [46, 40]

6.1 Abelian Chern Simons

6.1.1 The Integer Quantum Hall effect

First we shall attempt to explain the Integer QHE using abelian Chern-Simons theory, coupled to a
charge carrier current. The Abelian Chern-Simons action is

SCS =
k

4π

∫
d3x εµνλAµ∂νAλ (6.1)

where Aµ is a U(1) gauge field. This action is gauge invariant, under the gauge transformation
Aµ → Aµ + ∂µω, the action changes only by a total derivative. One can couple it to a current with
the term

Scoupling =

∫
d3xAµJ

µ (6.2)

The equations of motion with the coupling are:

k

4π
εµνρFνρ = Jµ (6.3)

where Fµν = ∂[µAν] is the field strength of the gauge field. In 2+1 d, we identify the electric
field Ei = Fi0 and the magnetic field B = εij∂iAj = 1

2
εijFij . Note that magnetic field in 2+1

dimensions becomes a scalar.
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If we identify J0 with charge density ρ, and J i is current density, then from the equations of
motion we have the relations

J0 = ρ =
k

2π
B

J i =
k

2π
εijEj

(6.4)

The first relates magnetic flux to electric charge density, called “flux attachment”. The second
looks likes Ohm’s law: J i = σijEj . Thus, we get the relation

σij =
k

2π
εij (6.5)

From our study of the Integer QHE through the Landau levels treatment, we obtain σxx = 0,
and σxy = νe2

h
where ν ∈ Z. Thus we identify

k =
νe2

~
(6.6)

Since for the Quantum Chern-Simons theory, the level k is quantized in integers (for the exact
same reasons as the quantization of level of the WZW model, under a large gauge transformation,
it happens to pick up the same “winding number” term which is the Wess-Zumino term, thus
quantizing the level k for a well defined path integral), this identification makes sense. Further
more, since the theory is a U(1) gauge theory, it is abelian and the generators need not be normalized
to satisfy the algebra since there isn’t any. Hence we can scale the units of quantization, in this case
we must scale it in units of e2~ . To remove these units, we can scale the gauge field by a factor of e,
and the level will once again be purely integral (upon ~), independent of the coupling constant e.

6.1.2 The Fractional Quantum Hall effect

To describe the Fractional QHE, we introduce a new “emergent” gauge field aµ. Perhaps this
introduces the “electron interaction” which is required to modify the Landau level system to obtain
the Laughlin states in the previous discussion. Let us consider the current Jµ we coupled to the
U(1) gauge field Aµ. If we describe this current in terms of the emergent gauge field aµ, we can
write

Jµ =
e2

4π~
εµνρfνρ (6.7)

where fµν is the field strength of the gauge field aµ. Let us set the (integer quantized) level of this
gauge field to be m, and since we are in the lowest Landau level, we can set k = 0. Thus the
effective action we have is

S =
e2

4π~

∫
d3xεµνρ(Aµfνρ +maµ∂νaρ) =

e2

4π~

∫
d3xεµνρ(2Aµ∂νaρ +maµ∂νaρ) (6.8)
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Integrating out aµ by replacing it with its equation of motion : aµ = 1
m
Aµ, we get the following

action:
S =

e2

4π~m

∫
d3x εµνλAµ∂νAλ =

me2

4π~

∫
d3x εµνλaµ∂νaλ (6.9)

From here, we see that the analogous computation as the previous section gives us the Hall
conductivity:

σxy =
1

m

e2

h
=⇒ ν =

1

m
(6.10)

which is the desired filling fraction.

6.2 Edge Modes and obtaining the Quantum Hall Wave func-
tions

From the action derived previously for the fractional filling, let us see how we can recover the
Quantum Hall wavefunctions from these. For this, we must introduce a boundary to the Quantum
Hall system. Consider the boundary to be the line y = 0, with y < 0 being the bulk of the Quantum
Hall state. The boundary term of the Chern-Simons action is εijaiδaj , where i, j run over x, t. For
the equation of motion fµν = 0, we have to set a linear combination of ax and at to 0. We choose
the gauge:

at − vax = 0 (6.11)

such that the boundary term vanishes. Under the change of variables: t′ = t, x′ = x + vt, y′ = y,
the gauge choice becomes a′t′ = 0 which implies that the new equations of motion f ′x′y′ = 0 =⇒
a′i = ∂iφ. The boundary action then looks like, in the original coordinates

S =
m

4π

∫
d2x

(
∂tφ∂xφ− v(∂xφ)2

)
(6.12)

whose equations of motion are
∂tρ(x, t)− v∂tρ(x, t) = 0 (6.13)

where 2πρ = ∂xφ. These are chiral waves, since they propagate as x+ vt, waves which propagate
as x − vt do not satisfy the equation of motion. This means that the U(1) Chern Simons theory
with a boundary has a chiral boson on the boundary.

On compactifying the boundary into a circle of radius R =
√

2mNlB, and coordinate σ, we
have the action

S =
m

4π

∫
dtdσ

(
∂tφ ∂σφ− v(∂σφ)2

)
(6.14)

Decomposing the field φ into Fourier modes:

φ(σ, t) =
1√
L

∞∑
n=−∞

φn(t)e
2πiσ
L

n (6.15)
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and ρn = ikn
2π
φn, where kn = 2πn

L
is the momentum of the mode. The action in terms of the Fourier

modes, after integrating out delta functions in σ and removing boundary terms in t, we get:

S = −m
2π

∫
dt
∞∑
n=1

(
iknφ̇nφ−n + vk2

nφnφ−n

)
(6.16)

Thus the conjugate momentum of φn is − imkn
2π

φ−n, and one can write down the commutation
relation:

[φn, φk] =
2π

mkn
δn,−k (6.17)

which is the U(1) Kac-Moody algebra. In terms of fields, the equal time commutator is

[φ(σ), φ(σ′)] =
iπ

m
sgn(σ − σ′) (6.18)

The operator we will associate with the electron is the vertex operator

Ψ(σ, t) = :eimφ(σ,t): (6.19)

This has the correct charge since on calculating the commutator of Ψ and Ψ† with ρ, it inserts and
annihilates an object of unit charge respectively. Similarly, we also obtain the following relations:

[Ψ(σ),Ψ(σ′)] = 0 =⇒ m is even

{Ψ(σ),Ψ(σ′)} = 0 =⇒ m is odd
(6.20)

which implies that m must be odd for Ψ to describe a fermion. Similarly, the vertex operator
Ψqh = :eiφ: corresponds to the quasi-hole and quasi-particle with charge ± e

m
. We see that on

commuting this operator, we get a statistical phase of eiπ/m, hence describing anyonic excitations.
From now, we shall pass to complex coordinates: z = e−i(

2π
L
σ+it). Recall this is the map from

the cylinder to the plane. Let us take the correlator ofN electron operators, and insert a neutralizing
background charge operator, to respect the shift symmetry (φ→ φ+ α) of the chiral boson action.〈

Ψ(z1) · · ·Ψ(zN)e−ρ0
∫
γ d

2z′φ(z′)
〉

=
∏
i<j

(zi − zj)me−ρ0
∑N
i=1

∫
γ d

2z′ log(zi−z′) (6.21)

which uses the fact that the free boson propagator goes as 〈φ(z)φ(w)〉 = − 1
m

log(z − w). After
a gauge transformation for the integral in the exponential, taking the leading order terms, and
identifying ρ0 = 1

2πl2B
we obtain the Laughlin wave function:

〈
Ψ(z1) · · ·Ψ(zN)e−ρ0

∫
γ d

2z′φ(z′)
〉

=
∏
i<j

(zi − zj)me
∑N
i=1

|zi|
2

4l2
B

On inserting the quasi-particle and quasi-hole operators, we can easily obtain the quasi-hole

74



wavefunctions as well.
We have seen in this chapter that Chern-Simons theory can describe the dynamics and wave

functions of the Quantum Hall effect. We were able to recover the filling fractions obtained through
the Landau level treatment as well. This link to Chern-Simons theory facilitates a link to RCFT as
well. We were able to recover U(1) Kac-Moody modes as edge-modes on the boundary. In fact this
is a common feature and extends to the non-abelian case, where the theory on the boundary is a
WZWmodel of the same group and level as the Chern-Simons theory. In the abelian Chern-Simons
case, the theory that lives on the boundary is the chiral boson, an RCFT with c = 1. To describe
Non-Abelian anyons, i.e. to recover the Moore-Read wavefunction, we use the vertex operators of
a chiral boson theory and a free fermion theory, which is the SU(2)2 WZW model.

The upshot of this discussion is that the Chern-Simons theory is the effective low energy theory
which is able to describe the interesting dynamics of the system by integrating out the complicated
interactions of the strongly coupled electron gas in the system. The pure Chern-Simons theory
is topological, but we showed by coupling to a quasi-particle current, we were able to construct
all the observables of the quantum Hall system, and the topological properties of anyons, through
the wave functions. Since Chern-Simons theories are dual to boundary WZW models, we can use
properties of RCFT to help us understand aspects of the Quantum Hall system further.
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Conclusion

This thesis covers many topics, including a brief review of CFTs and WZW models, computation
of correlation functions, modular invariance and modular bootstrap techniques for classification
of RCFT, and a brief review of the Quantum Hall effect. The underlying physics governing all
these topics is RCFT. The goal was to understand some established RCFT like minimal models and
WZW models, and then explore the classification of RCFT, extending the work of [15, 24, 25, 30],
etc, and then explore its applications in physical systems like the Quantum Hall Effect.

We started by reviewing important basics of CFTs in two dimensions, the central theme of the
thesis. We covered both the basic construction of the Virasoro algebra and the Kac-Moody algebra
in the context of WZW models. Modular invariance of CFTs defined on a torus was introduced
as well, which allowed us to define characters and the partition function. We then looked at the
characters of the SU(2) WZW model, and derived the modular S-matrix of the same. Then the
Modular Linear Differential Equation method of classifying RCFTs was discussed.

The following chapter detailed some computations of correlation functions of WZW Models,
and we introduced the Dotsenko-Fateev method for calculating correlators of minimal models. The
Dotsenko-Fateev construction shows that the correlators can be expressed in terms of a contour
integral due to the introduction of “screening operators” [34]. In [37] it was proposed that these
integrals are the characters for RCFT with ` = 0. This proposal was explored by the computation
of the modular S matrix using the monodromy properties of the integral, as in our paper [35].

Following thiswe briefly discussed the classification problem for three characters and introduced
quasi-characters for the order 3 MLDE, and how they can be used to construct new admissible
characters. This work is described in the paper [32].

From here, we explore the physical system of the quantum Hall effect. First we understood
some physics of anyons and the braid group. Then we studied the 2d electron gas with a transverse
magnetic field, and constructed the Landau levels and the Landau wave function. A couple of
quantum Hall states were discussed, including the Laughlin and Moore-Read states, and their
respective quasi-hole excitations. We showed that one could also describe the system using a
topological QFT, the Chern-Simons theory. We explored the connection of the U(1) Chern-Simons
theory and explained both the integer and (abelian) fractional quantum Hall effect. We were also
able to construct the Laughlin state and its quasi-hole excitations using the Edge modes of the
Chern-Simons theory. Here is the connection to RCFT: The edge theory of a Chern Simons theory
is a WZW model. Using free field techniques similar to the Dotsenko-Fateev construction of
correlators of minimal models, we were able to construct the Quantum Hall wavefunctions using
the RCFT dual to the Chern-Simons theory used to describe the quantum Hall state.
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There are many directions this work can go in. For the contour integral representation of
characters, one can try to generalize the integrals to include the chemical potential z, once the chiral
algebra is known. To classify four character CFTs and further, one can look for the appropriate
coset theories and perform a similar construction for possible quasi-character families. It is not yet
known that quasi-character solutions exist for the order 4 and higher MLDEs. A new direction in
MLDEwould be to use cusp forms to create indicial equations for MLDE of any `, and see what this
implies for the classification problem. An interesting observation was made in the quasi-character
families of the order 3 MLDE, is that there exist quasi-characters for SO(−r), where r is positive.
It will be interesting to see what properties these negative dimension Kac-Moody algebras have.

The most immediate direction is to understand if other quantum Hall states, perhaps with
different filling fractions, can be constructed by our classification of RCFT. So far, only a few
special CFTs which have free fields have been used to construct these wavefunctions. It will be
interesting to understand the universality of these wave-functions and what other quantum Hall
states lie in the same universality classes, which are tractable to take to the thermodynamic limit
for numerical simulations.
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