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Abstract

We study relativistic hydrodynamics as an e↵ective field theory to describe strongly inter-

acting quantum field theories like QCD at long wavelengths. This approach can be used

to model the Quark-Gluon Plasma formed in relativistic heavy-ion collisions with excellent

agreement with observations.

The Müller-Israel-Stewart formalism is a phenomenological extension of hydrodynamics

which makes the theory causal, unlike finite order hydrodynamics. This introduces certain

relaxation modes in the system which lead to the existence of an attractor solution to which

the system flows rapidly before reaching equilibrium, even for initial conditions very far away.

This is the hydrodynamic behaviour which could explain out of equilibrium fluids and the

e↵ectiveness of hydrodynamics in modelling QGP.

Based on observations, to improve models of QGP, weakly interacting modes are coupled

to a strongly interacting fluid through e↵ective metrics of the two sectors, in the framework

of semi-holography. Such coupled fluids demonstrate a second order phase transition for a

particular value of the coupling parameter. The critical behaviour of physical quantities like

the entropy, and the hydrodynamic and non-hydrodynamic modes in the total system, is

computed to understand the critical behaviour.
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Introduction

Relativistic hydrodynamics is a very e↵ective framework to describe the Quark-Gluon Plasma

(QGP), a recently discovered state of matter in relativistic heavy-ion collisions. The QGP,

which is governed by strong QCD interactions, behaves as an almost perfect fluid in observa-

tions. The system seems to undergo very quick thermalisation to give this fluid like behaviour

until the temperature falls below the deconfinement temperature and hadronisation occurs.

Understanding this phase of matter and the e↵ectiveness of relativistic hydrodynamics in

describing it is a very important problem in Physics.

With this motivation, in chapter 1, we study the general framework of modern hydro-

dynamics as an e↵ective field theory description of any strongly interacting quantum field

theory at large length scales where fluctuations in expectation values are negligible. The

e↵ective theory is constructed from symmetry considerations alone by means of a gradient

expansion. Successively higher order gradients are assumed to be smaller as fluctuations are

long wavelength.

But completing the hydrodynamic theory requires computation of transport coe�cients

from the underlying theory of QCD. For such strongly interacting fluids, the AdS/CFT

correspondence, or more specifically the fluid/gravity duality [1, 2] gives a procedure to do

such computations by working in a weakly coupled gravitational dual theory [3, 4, 5]. These

computations are otherwise very di�cult due to the failure of perturbation theory at strong

coupling. Here the microscopic theory is assumed to be described closely by a conformal

N = 4 Supersymmetric Yang-Mills theory (this is expected to be true qualitatively for QCD

in heavy-ion collisions).

But a pure hydrodynamic theory with a gradient expansion violates causality due to

the presence of superluminal propagation [5]. In chapter 2, we see how certain phenomeno-
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logically motivated relaxation terms can cure this issue while improving agreement with

observations. These terms induce relaxation modes in the system which lead to the recently

observed phenomenon of hydrodynamic attractors [6]. The system irrespective of a wide

range of initial conditions, flows to a unique attractor solution much before reaching equi-

librium. This is a remarkable result which could help develop an understanding of out of

equilibrium hydrodynamics, and also explain the e↵ectiveness of the hydrodynamic descrip-

tion of QGP.

The relaxation modes introduced are seen to be non-hydrodynamic modes. The fluid/gravity

duality places them analogous to Quasi-Normal Modes in Black Holes. The phenomenological

correction made is also seen to be in agreement with the result obtained by the mathematical

procedure of Borel resummation of the usually divergent hydrodynamic gradient expansion.

Trying to make improvements to the hydrodynamic description of QGP, some obser-

vations indicate the possibility of weakly coupled modes also existing simultaneously with

strongly coupled modes in the system (This is expected before the formation of QGP and

during hadronisation). In chapter 3, we see a recently developed method to couple such

modes using a semi-holographic approach [7, 8]. This allows us to couple two di↵erent

subsectors in a system with di↵erent types of interactions, through couplings between the

e↵ective metrics in which these subsectors live. This way, a strongly interacting fluid can

be coupled with a weakly interacting kinetic theory to model the QGP and its transition

between regimes.

A remarkable second order phase transition has been shown to exist even for the simplest

case of two coupled ideal fluids in [7]. This critical behaviour is shown here for coupled MIS

fluids, and the rich dynamics near the critical point is explored further. This has important

implications for hydrodynamic and non-hydrodynamic modes in the system, and their critical

behaviour are derived here. These results are important to understand fluctuations near the

critical point especially if stochasticities can also be included (similar to [9]). It could give

important consequences when kinetic theories are coupled to MIS fluids to model QGP. It

could possibly even be extended to couple black hole solutions.
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Chapter 1

Hydrodynamics as an E↵ective Field

Theory

The modern theory of hydrodynamics is developed in a very generic form as a long wavelength

e↵ective field theory (reviewed in [10, 11]). For any system, if the fluctuations around equi-

librium and transport of conserved quantities occur at a much higher length scale compared

to the characteristic length or the mean free path, an e↵ective hydrodynamic description

can be constructed for the macroscopic degrees of freedom using the underlying symmetries.

The systematic way to proceed is to consider a gradient expansion for the macroscopic con-

served quantities, where higher order gradients are succesively smaller because microscopic

variations are assumed to exist at long ranges.

For a relativistic system, the expectation values of the Energy-Momentum tensor T µ⌫

and any conserved charges represent the relevant macroscopic variables to be expanded in

gradients of local hydrodynamic fields [12]. For a system without any conserved charges,

these fields will be a Lorentz scalar a corresponding to the energy, and a Lorentz vector

bµ corresponding to the momentum. Thus the symmetric second rank tensor T µ⌫ is to be

built from a, bµ, and the metric gµ⌫ , treated as the source of perturbations. The dynamical

equations for the hydrodynamic fields are the conservation equations

rµT
µ⌫ = 0. (1.1)

.
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1.1 Zeroth order hydrodynamics

At zeroth order, the fluid is ideal as no fluctuations exist within the system, because all

derivatives of the hydrodynamic fields are considered to be zero. In this case, the most

general form for T µ⌫ can be seen to be

T µ⌫ = a(c1b
µb⌫ + c2g

µ⌫) + f(a)(c3b
µb⌫ + c4g

µ⌫) (1.2)

However for the equilibrium system, in the equilibrium frame, from the definition of the

energy-momentum tensor and rotational symmetry,

T µ⌫ = diag(✏, P, P, P ) (1.3)

where ✏ is the local energy density, P (✏) is the fluid pressure, and the Minkowski metric

is ⌘µ⌫ = diag(�1, 1, 1, 1). The form of P (✏) is determined by the equation of state in the

microscopic theory. The fluid velocity which is also the time-like eigenvector of T µ⌫ with

eigenvalue �✏, is here uµ = (1, 0, 0, 0). Therefore identifying the timelike eigenvector bµ of

(1.2) with uµ and its eigenvalue a with ✏, comparing the form of (1.2) in the Local Rest

Frame(LRF) to (1.3), we can solve for the coe�cients to get

T µ⌫
(0) = (✏+ P )uµu⌫ + Pgµ⌫ (1.4)

To determine the dynamical equations, it is very useful to define the projection operators

4
µ⌫

⌘ uµu⌫ + gµ⌫ which along with uµ project the spatial and temporal parts respectively

of a tensor. This can be clearly seen in the LRF where uµ reduces to (1, 0, 0, 0), and 4
µ⌫

reduces to diag(0, 1, 1, 1). These can be used to project the components of rµT µ⌫ , and lead

to the relativistic Euler equations

D✏+ (✏+ P )r?
µu

µ = 0, (✏+ P )Duµ + c2sr
µ
?✏ = 0 (1.5)

where D = uµ
rµ and r

µ
? = 4

µ⌫
r⌫ are the co-moving temporal and spatial derivatives

respectively, and cs =
p

@P (✏)/@✏ is the thermodynamic speed of sound.

With the entropy density S defined thermodynamically by,

✏+ P = TS (1.6)
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the entropy current Jµ defined below can be seen to be divergenceless, showing how the ideal

flow doesn’t produce any entropy.

Jµ = Suµ, rµJ
µ = 0 (1.7)

1.2 First Order Hydrodynamics

To include out of equilibrium e↵ects like viscosity, it is necessary to move to higher orders

in the hydrodynamic gradient expansion. First order hydrodynamics makes corrections to

the ideal fluid by including first order covariant derivatives of the hydrodynamic fields ✏, and

uµ, and their combinations (the covariant derivative of the metric vanishes, and P = P (✏) ).

Similar to the case of ideal fluids, uµ is defined again as the timelike eigenvector of T µ⌫ in the

Landau frame for the out of equilibrium system. This poses restrictions on the form of the

higher order correction ⇧µ⌫ to the stress tensor, because uµT
µ⌫
(0) = �✏u⌫ holds already, which

forces uµ⇧µ⌫ = 0. This is because we can use lower order equations to make simplifications

at higher orders when solving the system order by order.

The components of rµ✏ and rµu⌫ can be projected out using the projectors and the

zeroth order Euler equations then show that the only independent terms are the spatial

dertivatives r?
µ ✏ and r

?
µu⌫ . However, to create the symmetric second rank tensor T µ⌫

(1) (the

first order terms in T µ⌫) satisfying uµT
µ⌫
(1) = 0, the possible terms are 4

µ⌫
r⇢u⇢ and r

?
(µu⌫),

which is the symmetric combination of r?
µu⌫ and r

?
⌫ uµ.

A linear combination of these terms which separates the traceless part of T µ⌫
(1) is given by

4
µ⌫
r⇢u

⇢, �µ⌫ = 2r<µu⌫> = 2r(µ
? u⌫)

�
2

d� 1
4

µ⌫
r⇢u

⇢ (1.8)

where d is the dimension of the space-time. This is useful especially when moving to confor-

mal fluids later. �µ⌫ is the traceless part of T µ⌫
(1) , which can now be written as

T µ⌫
(1) = �⌘�µ⌫

� ⇣4µ⌫
r⇢u

⇢ (1.9)

The transport coe�cients ⌘ and ⇣ are the coe�cients of shear viscosity and bulk viscosity

respectively, which have to be computed from the underlying theory.
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The Ward Identity now gives the relativistic Navier-Stokes Equations

D✏+ (✏+ P )(r?
⇢ u

⇢) =
⌘

2
�µ⌫�µ⌫ + ⇣(r?

⇢ u
⇢)2 (1.10)

(✏+ P )Du⇢ + c2sr
⇢
?✏ = 4

⇢
µr⌫(⌘�

µ⌫ + ⇣4µ⌫
r

?
� u

�) (1.11)

This process of determining the most general form of the gradient expansion can be

continued in principle to any finite order to improve the accuracy of the approximation.

However as mentioned in the next section, there is a causality issue associated which impedes

the computational utility of these finite order descriptions. The summation is also possibly

not well-defined if the expansion diverges (which is shown to be the case very often, in [13]).

These two issues are avoided by phenomenological modifications to the theory or the process

of Borel Resummation. These are explained in detail in section 2.2, and 2.8, and both of

these are seen to lead to equivalent results in section 2.8.

1.3 Causality issue of finite order hydrodynamics

At any finite order in hydrodynamics, causality is violated. This can be seen from the first

order Navier-Stokes equations (1.10) which contain only first derivatives in time while spatial

derivatives occur upto second order. So this is a parabolic system of di↵erential equations

without a well-defined initial value problem since any perturbations to the initial conditions

propagate instantaneously [5]. This is an issue when numerically evolving a system as it

might move out of the light-cone because of the superluminal propagation.

This is easy to see in the simpler case of di↵usion in a fluid with a single conserved

charge, discussed in the next section. The straightforward cure for this issue is to add

phenomenological terms which make any fluctuations in the system exponentially decay

rather than propagate instantaneously. This procedure is shown in section 1.4 for di↵usion,

and in section 2.2 for first-order hydrodynamics. These terms produce relaxation modes with

characteristic time scales of decay in both the cases, which help to restore causality.

8



1.4 Di↵usion in a fluid

For a di↵usive system in Minkowski background with a single conserved charge ⇢, the dy-

namical equation is the continuity equation

@µj
µ = @t⇢+r · j = 0 (1.12)

jµ = (⇢, j) is the current density associated with the flow of charge ⇢. Analogous to the

hydrodynamic expansion, we can write j in a derivative expansion of the fundamental con-

served charge ⇢. No zeroth order term is possible as j is a vector and ⇢ is a scalar. At first

order, we get

j(1) = �Dr⇢ (1.13)

where the di↵usion constant D is a transport coe�cient. (1.12) gives the di↵usion equation

@t⇢�Dr
2⇢ = 0 (1.14)

This is again a parabolic equation similar to first order hydrodynamics. Adding higher

derivative terms of ⇢ clearly doesn’t resolve this issue. The fourier transform of (1.14) gives

the dispersion relation of the di↵usive mode

! = �iDk2. (1.15)

A group velocity could be defined as vg = d|!|/dk, and then it can be seen to be larger than

1 for large k ( k > 1/2D ). This shows the di↵usive spreading of a perturbation could be

acausal.

A possible solution is to include a phenomenological term which gives a rapid decay of

any fluctuations around the equilibrium,

j = �Dr⇢� ⌧@tj (1.16)

This ensures that when r⇢ = 0, j decays exponentially. This expression can be expanded

iteratively to higher orders. However it can be seen that this iterative expansion is not

identical to the gradient expansion because it does not contain any nonlinear terms like

r(r⇢ ·r⇢) which occur in the general gradient expansion at higher orders. So this process

9



can be thought of as a resummation, which is later explained in section 2.8.

The di↵usion equation is now

@t⇢�Dr
2⇢+ ⌧@2

t ⇢ = 0 (1.17)

This is easily verified to be a hyperbolic di↵erential equation with second order time deriva-

tives also, and hence it does not have a causality issue. The dispersion relation is di↵erent

in this case, with the two modes given as

! = �
i

2⌧
±

r
�

1

4⌧ 2
+

Dk2

⌧
(1.18)

This leads to the very interesting and important consequence of the existence of non-

hydrodynamic modes. The modes in finite order di↵usion or hydrodynamics (as seen in 1.15

and later in section 2.7) are such that ! ! 0 as k ! 0 (the hydrodynamic limit) which is

indicative of the fact that long wavelength modes carry low energies. However from (1.18),

along with the usual di↵usive mode (1.15), we get a new non-hydrodynamic mode which

does not go to 0 in the k ! 0 limit.

! = �iDk2, ! = �
i

⌧
(1.19)

The new relaxation mode ! = �i/⌧ is responsible for rapid decay of fluctuations in the

system, making the system causal. They remain finite even in the long wavelength hydro-

dynamic limit unlike the hydrodynamic modes which die o↵. We are interested in this limit

because hydrodynamics is a long wavelength theory, and clearly the relaxation modes have

a very large contribution in this regime.

This description agrees well with observations in di↵usive systems, where fluctuations do

decay very rapidly. Such a decaying mode also occurs in hydrodynamics on the addition

of an analogous relaxation term to the hydrodynamic expansion (section 2.2), and has very

important consequences leading to the hydrodynamic attractor (section 2.8). In the context

of the fluid/gravity duality, they have also been shown to be analogous to Quasi-Normal

Modes in Black Holes. So they could also provide important qualitative insights into black

holes.
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Chapter 2

Hydrodynamic Attractor

The hydrodynamic attractor is a recently observed phenomena in fluids which sheds impor-

tant information on the e↵ectiveness of hydrodynamics in describing systems like the QGP.

The crux of the result is the existence of an attractor solution to which the fluid flows even

when far from equilibrium [6]. This shows the process of thermalisation in out-of-equilibrium

fluids.

The result was observed for a system obeying the Müller-Israel-Stewart (MIS) theory

[14, 15] (seen in section 2.2), specifically in a type of fluid flow called the Bjorken flow [16]

commonly used to model Relativistic Heavy-Ion Collisions. This makes it a good model to

possibly describe the dynamics of QGP formed in these collisions. The non-hydrodynamic

mode from the MIS theory is also seen to play a very crucial role in the existence of the

attractor by forcing decay of fluctuations around this solution. Another assumption com-

monly used is to treat the fluids as conformally invariant. This allows several simplifications

to the model and enables the use of the AdS/CFT correspondence in computing transport

coe�cients for the strongly interacting fluid [3, 4]. These preliminaries required and the

attractor solution are explained in the next sections.
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2.1 Conformal Fluids

Confromal fluids (reviewed in [5, 10, and 11])are defined to be conformally invariant, or more

specifically, invariant under a Weyl transformation of the metric,

gµ⌫ = e2�g̃µ⌫ . (2.1)

We require the relevant physical quantities and equations to be Weyl invariant so that the

theory is also Weyl invariant. A tensor Qµ1···µn
⌫1···⌫m is said to transform homogenously or called

Weyl invariant, with a conformal weight !, if under the Weyl transformation of the metric

given by (2.1), it transforms as

Qµ1···µn
⌫1···⌫m = e�!�Q̃µ1···µn

⌫1···⌫m (2.2)

From the definition of the inverse metric gµ⌫ , and the normalisation of the fluid velocity

uµuµ = �1, it can be seen that

gµ⌫ = e�2�g̃µ⌫ , uµ = e��ũµ (2.3)

To find the transformation rule for the energy-momentum tensor T µ⌫ , we use the requirement

that the dynamical conservation rule (1.1) should remain invariant. This can then be shown

(appendix D of [17]) to imply

gµ⌫T
µ⌫ = 0, T µ⌫ = e�(d+2)�T̃ µ⌫ , (2.4)

i.e., T µ⌫ is traceless, and transforms with a conformal weight of (d+2) where d is the dimen-

sion of the space-time. This poses restrictions on the form of T µ⌫ for conformal fluids. The

tracelessness condition applied at the zeroth order implies

✏ = (d� 1)P (2.5)

This relation provides the equation of state P (✏) and fixes the speed of sound cs =
p

dP/d✏

as a dimension dependent quantity,

cs =
1

p
d� 1

(2.6)

12



Going to first order hydrodynamics in conformal fluids, only the the shear term �µ⌫

can contribute to T µ⌫ as it is traceless, while the bulk viscosity term will not be present

because it has a non-zero trace. These modifications simplify the study of conformal fluids

considerably and allows the system to be thought of as having a microscopic theory like

the N = 4 SYM model, which in turn makes it possible to use the fluid/gravity duality to

perform microscopic computations. Going ahead we will be exclusively studying conformal

fluids though many of the results obtained can, and have been generalised to non-conformal

fluids. But an important requirement is to consistently use Weyl invariant quantities and

equations. This does not occur for terms with the ordinary covariant derivative as discussed

below. So a new generalisation to the covariant derivative is required. This is done in the

Weyl covariant formalism [18].

2.1.1 Weyl covariant formalism

The usual covariant derivative of a tensor does not transform homogenously under a Weyl

Transformation. This is explicitly seen for the derivative of uµ

rµu
⌫ = e��(r̃µũ

⌫ + �⌫µũ
⇢@⇢�� g̃µ⇢ũ

⇢g̃⌫�@��) (2.7)

But for a tensorQµ···
⌫··· which transforms homogenously with a conformal weight !, it is possible

to define the Weyl covariant derivative which also transforms with the same conformal weight

! under a Weyl transformation as below

D�Q
µ···
⌫··· = r�Q

µ···
⌫··· + !A�Q

µ···
⌫··· + (g�↵A

µ
� �µ�A↵ � �µ↵A�)Q

↵···
⌫··· + · · ·

�(g�⌫A
↵
� �↵�Anu� �↵⌫A�)Q

µ···
↵··· + · · ·

where requiring the following two conditions

Dµu
µ = 0, uµ

Dµu
⌫ = 0 (2.8)

fixes uniquely the form of Aµ as

Aµ = u�
r�uµ �

1

d� 1
uµr�u

� (2.9)
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This Weyl covariant derivative can be used to replace the usual covariant derivative in

the hydrodynamic theory to ensure that all the physical variables like �µ⌫ and dynamical

equations like the conservation equations are Weyl invariant. It can also be shown that for

T µ⌫ , the Weyl covariant derivative is equivalent to the usual covariant derivative and is 0.

Hence this formalism is very useful to study the dynamics of conformal fluids.

2.2 The Müller-Israel-Stewart formalism

Analogous to the gradient expansion in di↵usion, a phenomenological term is added to the

hydrodynamic expansion in the Müller-Israel-Stewart (MIS) theory [12, 13] with the intention

of resolving the causality violation. Upto first order, the correction ⇧µ⌫ to the ideal fluid

energy-momentum tensor is [5]

⇧µ⌫ = �⌘�µ⌫
� ⌧⇧u

⇢
D⇢⇧

µ⌫ (2.10)

(There is no bulk viscosity term because as mentioned earlier we are continuing to work with

conformal fluids)

Here ⇧µ⌫ , called the MIS field, is treated as a new independent field in the system which

obeys the dynamical equation (2.10). This MIS field is responsible for the decay of fluctua-

tions and the non-hydrodynamic modes discussed later in section 2.7. This construction can

also be done at higher orders in hydrodynamics by adding an appropriate relaxation term

to the finite order stress tensor (second order MIS theory is considered in section 2.4).

2.3 Bjorken Flow

Bjorken flow [14] is a special case very often used in Relativistic Heavy-Ion Collisions to

model QGP dynamics. The fluid is assumed to flow only in one longitudinal direction -

usually chosen to be z. It is assumed to be homogenous with infinite extent in the x and y

directions and hence the flow is independent of these directions. The flow is also assumed

to be boost invariant in the z-direction. Though this is a very simplified model, it still

gives many important results about the hydrodynamic behaviour, and is very relevant for
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understanding experimental observations.

We assume the fluid to live in the flat Minkowski background, but the symmetries of the

system makes it convenient to go to the Milne co-ordinates (⌧, x, y, ⇠) defined by

⌧ ⌘
p
t2 � z2, ⇠ ⌘ arctanh(

z

t
) (2.11)

where ⌧ is the proper time, and ⇠ the rapidity. In these new co-ordinates, using the trans-

formation rules for tensors, it can be shown that

uµ = (1, 0, 0, 0), gµ⌫ = diag(�1, 1, 1, ⌧ 2) (2.12)

The spatial components being zero and the time component being identity for uµ means that

in the Milne co-ordinates, the fluid is at rest, while the form of gµ⌫ is that of an expanding

space-time in the z-direction. Thus going to the Milne co-ordinates allows us to reinterpret

the system as a fluid at rest in a space-time which is expanding longitudinally rather than

an expanding fluid in a static metric. In these co-ordinates, the Christo↵el symbols are

computed to show that the only two non-zero components are,

�⇠
⇠⌧ = 1/⌧, �⌧

⇠⇠ = ⌧ (2.13)

The Riemann tensor is zero as expected because the background is Minkowski.

This redefinition allows us to simplify the study of the Bjorken flow even further because

all variables are dependent only on the single co-ordinate ⌧ , the proper time. Though we

will work with the Bjorken flow to calculate the attractor as done in the original work of

Heller and Spalinski [6], later works have shown similar attractor solutions in some other

fluid flows also.

2.4 Second order MIS theory

Following the original computation of the attractor in [7], we consider a strongly interacting

fluid in Bjorken flow obeying a second order MIS theory. Here, the modification to the

zeroth order stress tensor includes upto second order hydrodynamic gradients along with a

relaxation term.

15



With the restrictions on the correction ⇧µ⌫ that it should be symmetric, uµ⇧µ⌫ = 0 in the

Landau Frame, and gµ⌫⇧µ⌫ = 0 because of conformal invariance, eight possible second order

terms can be constructed. However only five combinations of these transform homogenously

under the Weyl transformation. These along with the first order shear term give the most

general form of ⇧µ⌫ [5]

⇧µ⌫ = �⌘�µ⌫
� ⌧⇧

h
D⇧µ⌫i + 

⇥
Rhµ⌫i

� (d� 2)u⇢R
⇢hµ⌫i�u�)

⇤

+
�1

⌘2
⇧hµ

⇢⇧
⌫i⇢

�
�2

⌘
⇧hµ

⇢⌦
⌫i⇢ + �3⌦

hµ
⇢⌦

⌫i⇢

Here ⌧⇧ is the phenomenological parameter which dictates the time-scale of the decay of

fluctuations, and , �1, �2, and �3 are various transport coe�cients. D is defined as uµD
µ,

and for a second rank tensor Qµ⌫ ,

Qhµ⌫i =h Qµ⌫i =
1

2
4

µ⇢
4

⌫�(Q⇢� +Q�⇢)�
1

d� 1
4

µ⌫
4

⇢�Q⇢� (2.14)

Rµ⌫⇢� is the Riemann tensor, Rµ⌫ the Ricci tensor, and ⌦µ⌫ the vorticity defined as

⌦µ⌫ =
1

2
4

µ⇢
4

⌫�(D⇢u� �D�u⇢) (2.15)

However as we are interested in the case of Bjorken flow in the Milne co-ordinates, the

Riemann tensor is zero, and Dµuµ = 0, so the flow is irrotational and the vortcity is zero.

Therefore, in our case, the MIS equation reduces to

⇧µ⌫ = �⌘�µ⌫
� ⌧⇧

h
D⇧µ⌫i +

�1

⌘2
⇧hµ

�⇧
⌫i� (2.16)

2.5 Transport coe�cients from Fluid-gravity duality

For completely understanding a hydrodynamic theory, computing the transport coe�cients

from the underlying theory is important. For strongly interacting fluids, the AdS/CFT

correspondence provides a way to do this computation.

In [1], the AdS/CFT correspondence has been used to show a more specific duality

between strongly interacting conformal fluids and certain black hole solutions, known as
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the fluid/gravity duality. This duality allows us to do computations in gravity which are

relatively simple, as compared to strongly interacting theories like N = 4 SYM theory (which

in many qualitative aspects resemble QCD) where perturbation theory breaks down. Thus

it allows us to look into a regime otherwise di�cult to explore. It could also possibly have

more general applications in understanding problems in fluid dynamics like turbulence, or

problems in black holes like Quasi-Normal Modes. It is used very commonly in the context

of modelling QGP because of the strong QCD interactions which determine its dynamics.

In the case of the MIS system, the fluid/gravity duality has been used to compute the

transport coe�cients in the theory [3, 4, 5]

⌧⇧ =
C⌧⇧

T
, �1 = C�1

⌘

T
, ⌘ = C⌘s (2.17)

where T is the temperature, and s the entropy density. ForN = 4 SYM theory, the constants

above have been computed (reviewed in [12])

C⌧⇧ =
2� log2

2⇡
, C⌘ =

1

4⇡
, C�1 =

1

2⇡
(2.18)

2.6 The Attractor solution

The attractor was shown in [6] by studying the dynamical evolution of the MIS system

and finding the trajectory of the fluid for a range of initial conditions of the system. For

the conformal Bjorken flow following the MIS theory, the dynamical equations are given by

the conservation equations (1.1) and the MIS equations (2.16). But a simplification of the

form of the MIS field ⇧µ⌫ can be done using the conformal symmetry and symmetries of

the Bjorken flow. In the Milne co-ordinates, the symmetry of the flow implies that ⇧µ⌫ is

diagonal while the Landau frame condition uµ⇧µ⌫ = 0 requires ⇧⌧⌧ to be zero. ⇧xx = ⇧yy

again from symmetry, and tracelessness of ⇧µ⌫ requires that it has only one independent

component

� = �⇧⇠
⇠ = 2⇧x

x = 2⇧y
y (2.19)

The first dynamical equation, the ward identity (1.1) gives

⌧ ✏̇ = �
4

3
✏+ � (2.20)
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and the MIS equation (2.16) gives,

⌧⇧�̇ =
4⌘

3⌧
�

�1�2

2⌘2
�

4⌧⇧�

3⌧
� � (2.21)

Here the dot above a variable refers to a proper time derivative. From (2.20), � can be

substituted in (2.21) to get a single second-order di↵erential equation in ✏(⌧). Using the

relation ✏(T ) ⇠ T 4 in a 4-dimensional conformal system, this can be further rewritten as a

second order equation in T (⌧). Assuming �1 = 0 for simplicity to avoid non-linear terms

(this is equivalent to using the first order MIS equation),

⌧C⌧⇡

T̈

T
+ 3⌧C⌧⇧

 
Ṫ

T

!2

+

✓
11C⌧⇡

3T
+ ⌧

◆
Ṫ �

4

9⌧
(C⌘ � C⌧⇡) +

T

3
= 0 (2.22)

(2.22) can be reformulated in terms of the dimensionless quantities [6]

! = ⌧T, f =
⌧ !̇

!
. (2.23)

Since conformal symmetry involves scale invariance, dimensionless quantities are physically

relevant, and this change also gives a first order equation,

C⌧⇡!ff
0 + 4C⌧⇧f

2 +

✓
! �

16

3
C⌧⇧

◆
f �

4

9
(C⌘ +

16

9
C⌧⇡)�

2!

3
= 0 (2.24)

where a dash over a variable indicates a derivative with respect to !.

This equation was solved numerically in [6] with appropriate initial conditions relevant to

the QGP fireball conditions to plot trajectories on the f �w plane. The result is reproduced

below in Fig. 2.1. for qualitative understanding. It can be seen that irrespective of a wide

range of initial conditions, the numerical solutions of (2.24) - the blue curves, tend to flow to

a single attractor - the black curve, before reaching equilibrium - the red curve. The green

curve corresponds to the first order hydrodynamic solution.

Any finite order hydrodynamic theory has a single solution instead of a family of curves

because of the lack of the independent MIS variable �. This leads to a first order equation

in T (⌧) and a polynomial solution in 1/! for f(!). These solutions are

f(0)(!) =
2

3
, f(1)(!) =

2

3
+

4C⌘

9!
(2.25)
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and so on, with the next higher order term in 1/! appearing at the next order in hydrody-

namics. Here f(n) is used to note the solution for nth order hydrodynamics.

The numerical attractor solution (the black curve) is found by taking the ! ! 0 limit of

(2.24), and estimating the value of f(! ! 0).

lim
!!0

f(!) =
2
p

C⌧⇧ +
p

C⌘

3
p

C⌧⇧

(2.26)

This relation is used as the initial condition to numerically solve (2.24) and get the black

curve. This curve extends the attractor solution to very small values of !.

Figure 2.1: Attractor solution plot f � !. The blue lines are numerically obtained solutions
for various initial conditions, the black line is obtained using the initial condition for f at
small ! (2.26), the red line is from ideal hydrodynamics (equilibrium), and the green line is
from first order hydrodynamics.

The MIS solution (2.24) can also be perturbatively solved for f in orders of 1/! because

the system has smaller gradients at late times ⌧ , or when ! is large. We can remarkably

recover the entire hydrodynamic gradient expansion upto any finite order [6] by this method
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and can be verified at higher orders.

f(!) =
2

3
+

4C⌘

9!
+

8C⌘C⌧⇧

27!2
+O

✓
1

!3

◆
(2.27)

This shows that similar to the modified di↵usion scenario, even though the relaxation

term does not capture all the possible terms in the hydrodynamic gradient expansion of

T µ⌫ , it still can be thought of as a resummed version of the expansion [6] which removes the

divergence issue but captures the hydrodynamic behaviour completely . This is a remarkable

result further justified using the formal definition of Resummation in section 2.8.

The attractor solution suggests that the fluid irrespective of large fluctuations, tends

to damp down quickly to the attractor before finally reaching equilibrium. This has been

defined to be the ’hydrodynamic behaviour’ by Heller and Spalinski in [6]. This process of

hydrodynamisation could explain the e↵ectiveness of hydrodynamics in various systems like

QGP. It could also be studied further to possibly understand the theory of out of equilibrium

thermodynamics. The fact that the attractor exists even for extremely small values of !

(the black curve with initial condition from (2.26) ) further justifies this because finite order

hydrodynamic expansions of f in 1/! are otherwise expected to break down at small ! (as

the hydrodynamic approximation is expected to break down at small times due to large

fluctuations).

The decay of fluctuations away from the attractor is due to the non-hydrodynamic modes

in the theory (section 2.7). A small perturbation around the attractor solution can be seen

to die o↵ [6] as

�f(!) = e
� 3!

2C⌧⇧ !
C⌘�2C�1

C⌧⇧

✓
1 +O(

1

!
)

◆
(2.28)

This is shown in [6] to agree with the results of Borel resummation of the hydrodynamic

gradient expansion (section 2.8).

2.7 Hydrodynamic and non-hydrodynamic modes

An important aspect of the theory we are interested in is the response of the system to

small fluctuations around equilibrium. We introduce small perturbations to the equilibrium
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stress tensor and see the linear response of the system to these changes [5]. The conservation

equations can then be solved perturbatively, and using the zeroth order relation, we get the

propagation modes for the fluctuations.

We have many possible components of the stress tensor to introduce fluctuations in.

But we can note that the system has spatial rotational invariance in three dimensions (the

equilibrium breaks Lorentz invariance). If we choose the propagation of the modes to be

along a particular direction, say z, then the rotational invariance reduces to only the x-y

plane. So any perturbation along z would behave as a scalar and we call this the sound

sector of perturbations, since the fluctuations are along the propagation direction . But

any perturbation on the x-y plane behaves as a vector and forms the shear sector, since

the perturbation is orthogonal to the propagation direction. Thus we find the perturbations

categorised into di↵erent sectors, and the shear and sound sectors are explored for an MIS

fluid in the next sections.

2.7.1 Shear Sector

In the shear sector, if the propagation direction is along z, the perturbations lie in the

x-y plane. For simplicity, we assume they are along the x-direction. So even though in

equilibrium the normalised fluid velocity uµ = (1, 0, 0, 0), we introduce a perturbation �ux
⇠

ei(!t�kz) (any other perturbation is also assumed to have such a form). So we expect a shear

viscosity term with xz component, and include the MIS field ⇧xz to capture this. With just

these perturbations to the equilibrium, we can derive the Ward identity (1.1) and the MIS

equation (2.10) for the system. Assuming the equilibrium energy density and pressure to be

✏ and P respectively, we can use the zeroth order equations for simplification.

rµT
µ⌫ = 0, rµT

µ⌫
(0) = 0 ) rµ�T

µ⌫ = 0 (2.29)

where �T µ⌫ is the perturbation to the equilibrium stress tensor T µ⌫
(0) . (2.29) gives

(✏+ P )@t�u
x + @z⇧

zx = 0 (2.30)

and with a fourier transform of (2.30) we get

!(✏+ P )�ux + k⇧zx = 0 (2.31)
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Similarly from the MIS equation (2.10), we get

⌧⇧@t⇧
zx + ⇧zx = �⌘@z�u

x (2.32)

which after fourier transform gives

(1� i!⌧⇧)⇧
zx = ik⌘�ux (2.33)

From (2.31) and (2.33), the perturbations �ux and ⇧zx can be eliminated to derive

!2⌧⇧ + i! � k2 ⌘

(✏+ P )
= 0 (2.34)

The solutions to (2.34) give the dispersion relation in the shear sector. In the hydrodynamic

limit, i.e., k ! 0 (where hydrodynamics works well as it is a long wavelength theory), we

get two solutions

!h = �i
⌘

(✏+ P )
k2, wn = �

i

⌧⇧
(2.35)

Here the mode !h is a hydrodynamic mode because it dies o↵ in the hydrodynamic limit, but

the new mode !n is a non-hydrodynamic mode beacuse it remains finite at the hydrodynamic

limit. From the form of !n, it is clear that this mode arises as a result of the relaxation term

in the MIS field. So this mode is responsible for the rapid decay of fluctuations near the

attractor. The hydrodynamic mode meanwhile has a form closely resembling the di↵usion

mode with a dependence on k2. These results will later be rederived for coupled fluids in

section 3.4 to see a very similar structure.

2.7.2 Sound Sector

In the sound sector, perturbations to the system are along the direction of propagation,

z. Here we can have perturbations to diagonal components of the stress tensor and hence

we assume a possible perturbation �✏ to the equilibrium energy density ✏. This gives a

perturbation �P = c2s�✏ to the equilibrium pressure P . The perturbation to the fluid velocity

is also along the z direction, �uz. The only possible non-zero component of the MIS field is

⇧zz due to the rotational symmetry in the x-y plane. As in the case of the shear sector, we
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can derive the correction to the ward identity (1.1) using the equilibrium relation to get

@t�✏+ (✏+ P )@z�u
z = 0, (✏+ P )@t�u

z + c2s@z�✏+ @z⇧
zz = 0 (2.36)

The MIS equation (2.10) gives the relation

⌧⇧@t⇧
zz + ⇧zz +

2(d� 2)

d� 1
⌘@z�u

z = 0 (2.37)

Similar to the shear channel, the fourier transforms of (2.36) and (2.37) can be used to

eliminate the perturbations and derive the dispersion relation. In the hydrodynamic limit,

we get the modes

!± = ±csk � i�k2, !n = �
i

⌧⇧
(2.38)

The modes !± are hydrodynamic modes since they vanish in the hydrodynamic limit. Here

� is the attenuation constant given by

� =
⌘

✏+ P

d� 2

d� 1
(2.39)

We again get the same non-hydrodynamic mode !n as in the case of the shear sector. This

is to be expected because by definition these are modes which exist independent of the

propagation vector k and hence are independent of the choice of di↵erent sectors based on

the orientation of k. This mode as mentioned earlier is responsible for the attractor due

to the rapid decay of fluctuations. Later, in section 3.6, these modes are also studied in a

system of coupled MIS fluids to understand the critical point in the system better.

2.8 Borel resummation

In [6], the method of Borel resummation is shown to be a very e↵ective tool in understanding

the hydrodynamic expansion and the attractor. The hydrodynamic gradient expansion is

shown to be in general divergent in [13]. However in [6], this expansion is shown to be

Borel resummable in a generalised way, which allows us to get meaningful results from the

expansion. The exact definition is clearly described in [10] through an example. This is

explained below for clarity.
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f(x) defined by the power series

f(x) =
1X

n=0

(�1)nn!xn (2.40)

is divergent. The Borel transform of a function g(x) =
P1

n=0 knx
n is defined as gB(x) =

P1
n=0(kn/n!)x

n. So for f , the Borel transform is given by

fB(x) =
1X

n=0

(�1)nxn =
1

1 + x
(2.41)

which converges for |x| < 1. The Borel resummation of f is then defined as f̃ by

f̃(x) =

Z 1

0

dze�zfB(xz) (2.42)

The integration has been shown in [10] to give the function (e1/x/x) �(0, 1/x) where �(0, x)

is the incomplete Gamma function, and this is well defined for all positive x. But near 0, the

Taylor expansion of this resummed function matches exactly with the original function.Thus

the Borel resummed function when compared with any finite order truncation of the original

divergent series, gives the most sensible result. This is also observed in the case of di↵usion

and hydrodynamics, where a resummed expansion gives a more sensible result compared to

finite order theories.

In [6], the Borel resummed theory is further shown to produce the exact fluctuations (2.28)

as found in MIS theories. The hydrodynamic expansion (2.27) is Borel transformed, and is

then analytically continued by the numerical method of Padé approximants. Integrating

the Borel transform is shown to produce contour dependent ambiguities because of branch

cut singularities. These however exactly agree with the fluctuations around the attractor

solution (2.26), indicating how the MIS theory can be thought of as the resummed version

of hydrodynamics. Further details on this resummation can be found in [6].
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Chapter 3

Semi-holographically coupled systems

We have tried to model QGP dynamics in the hydrodynamic regime as a strongly interacting

fluid in chapter 2. However some results from the Relativistic Heavy Ion Collider (RHIC)

suggests the presence of some weakly coupled modes also in the QGP [7]. Before the onset

of the hydrodynamic regime and immediately after it during hadronisation, weak couplings

are expected to be present and can be modelled by a kinetic theory description. So a more

e↵ective approach would be to try coupling both strong and weakly interacting modes in a

single system. However there is some di�culty to achieve this since the strongly interacting

sector is usually modelled by a N = 4 SYM fluid, while the weakly interacting sector is

modelled by kinetic theory.

A recent approach developed to achieve this goal in [7, 8], is using couplings between

e↵ective metrics in the framework of semi-holography. This gives a very useful tool to couple

two separate sectors with possibly di↵erent underlying theories and develop an e↵ective

theory of the collective system. The two separate sectors are assumed to behave like a fluid

or kinetic theory and live in some di↵erent e↵ective metric backgrounds which are created

as a result of the interaction with the opposite sector. In this simplified model, this is the

only way we assume the two sectors interact.

Coupling equations for these e↵ective backgrounds are then written down such that

conservation laws are obeyed by each sector, but morover, allowing the construction of a

single conserved stress tensor for the collective system in the real physical background metric.

Thus this gives a remarkably simple model to couple to two weakly or strongly interacting

25



sectors to give exciting results and a qualitative picture of the theory. This approach is

explained in detail in the next section.

3.1 Coupling the e↵ective metrics

We consider two subsystems S1, S2 of a larger collective system S living in a physical

background metric g(B)
µ⌫ . But the subsystems S1, S2 are assumed to live in some e↵ective

metrics gµ⌫ , g̃µ⌫ respectively. We assume that these metrics are not physical metrics, but

what the subsystem in its e↵ective field theory description feels due to the interaction with

the opposite system. So these are the only places where the interactions between the two

sectors enter into the description. More explicitly, if tµ⌫ , t̃µ⌫ are the e↵ective stress tensors

corresponding to S1, S2 respectively, then we assume gµ⌫ = gµ⌫(t̃µ⌫ , ..), and g̃µ⌫ = g̃µ⌫(tµ⌫ , ..).

This is called a democratic coupling and is a simplified toy model to study coupled systems

[7, 8].

So the interaction between sectors is determined by the coupling between the e↵ective

metrics. To form a reasonable theory, we require that

rµt
µ⌫ = 0, r̃µt̃

µ⌫ = 0 (3.1)

where r, r̃ are the covariant derivatives in the e↵ective metrics gµ⌫ , g̃µ⌫ respectively. All

raising and lowering of indices for any tensor associated with a subsector is assumed to be

done by the individual e↵ective metrics. We constrain the coupling equations so that there

exists a T µ⌫ for the collective system living in the physical background g(B)
µ⌫ , which satisfies

r
(B)
µ T µ⌫ = 0 (3.2)

where r
(B) is the covariant derivative for g(B)

µ⌫ .

From the ward identity of the first subsystem rµtµ⌫ = 0, using the relation �µ
µ⇢ =

@⌫(ln
p
�g), and multiplying by

p
�g, we get,

@µ(t
µ
⌫

p
�g)�

1

2
tµ⇢

p
�g@⌫gµ⇢ = 0 (3.3)
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Using (3.3) and its analogue for the second system, it is possible to show that for the

following coulping equations between the e↵ective metrics and the background, we can con-

struct a total conserved T µ⌫ for the whole system [7].

gµ⌫ = g(B)
µ⌫ +

�
�g(B)

µ⇢ t̃⇢�g(B)
�⌫ + �0g(B)

µ⌫ g(B)
⇢� t̃⇢�

� p
�g̃p
�g(B)

(3.4)

g̃µ⌫ = g(B)
µ⌫ +

�
�g(B)

µ⇢ t⇢�g(B)
�⌫ + �0g(B)

µ⌫ g(B)
⇢� t⇢�

� p
�gp
�g(B)

(3.5)

Here �, �0 are coupling constants which determine the strength of coupling between the two

sectors.

To construct the explicit form of T µ⌫ , we can note that for

�K = �
�

2

 
tµ⇢

p
�gp
�g(B)

!
g(B)
⇢�

 
t̃�⌫

p
�g̃p
�g(B)

!
g(B)
⌫µ

�
�0

2

 
tµ⌫

p
�gp
�g(B)

!
g(B)
µ⌫

 
t̃⇢�

p
�g̃p
�g(B)

!
g(B)
⇢�

using (3.3), for Kµ
⌫ , Lµ

⌫ defined below, rµKµ
⌫ = 0, and r⌫Lµ

⌫ = 0 [7].

Kµ
⌫ = tµ⌫

p
�g + t̃µ⌫

p
�g̃ +�K�µ⌫ (3.6)

Lµ
⌫ = tµ

⌫p
�g + t̃µ

⌫
p

�g̃ +�K�µ
⌫ (3.7)

So a symmetric second rank tensor T µ⌫ obeying rµT µ⌫ = 0 can be defined as

T µ
⌫ =

1

2
(Kµ

⌫ + L⌫
µ) (3.8)

This will be used as the e↵ective stress tensor for the combined system in the physical

background g(B)
µ⌫ .
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3.2 Coupled ideal fluids

To study the consequences of this form of coupling between two systems, the first attempt

is to consider two fluids which are very close to equilibrium and can be approximated by

zeroth order hydrodynamics [7]. This can later be generalised to MIS fluids or kinetic theory

to model QGP. But even though this is a very simple scenario, we get a lot of qualitative

intuition regarding the dynamics of the total system and also encounter an exciting phase

transition in the combined system.

We consider the total system to be living in the Minkowski background ⌘µ⌫ and consider

the scenario where both the sectors have had su�cient time to interact with each other and

reach a near equilibrium state defined by subsystem temperatures T1 and T2. This allows us

to expect the total system also to be close to an equilibrium defined by some temperature

T . We can then use zeroth order hydrodynamics

T µ⌫ = ("+ P )UµU ⌫ + P⌘µ⌫ (3.9)

with Uµ = (1,0,0,0) the fluid velocity, " the energy density, and P the pressure of the whole

system.

Similarly for the subsystems we have

tµ⌫ = (✏1(T1) + P1(T1))u
µu⌫ + P1(T1)g

µ⌫ , t̃µ⌫ = (✏2(T2) + P2(T2))ũ
µũ⌫ + P2(T2)g̃

µ⌫ (3.10)

where ✏1, ✏2, P1, P2, T1, T2 are the individual energy densities, pressures, and temperatures.

We continue to work with conformal fluids and so

✏1(T1) = 3n1T
4
1 , P1(T1) = n1T

4
1 , ✏2(T2) = 3n2T

4
2 , P2(T2) = n2T

4
2 (3.11)

n1, n2 are some constants depending on the underlying theory.

The e↵ective metrics can be assumed to be stationary, but they may not be flat in the

presence of the interaction between the subsystems. But from symmetry considerations we

can assume the following forms [7]

gµ⌫ = diag(�a2, b2, b2, b2), g̃µ⌫ = diag(�ã2, b̃2, b̃2, b̃2). (3.12)
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So the individual normalised fluid velocities would be uµ = (1/a, 0, 0, 0), ũµ = (1/ã, 0, 0, 0).

The total energy momentum can be computed from (3.8), and comparison with (3.9)

gives the energy density and pressure of the combined fluid.

" = ✏1(T1)ab
3 + ✏2(T2)ãb̃

3 +
�

2

✓
✏1(T1)✏2(T2)

a2ã2
+

3P1(T1)P2(T2)

b2b̃2

◆
ab3ãb̃3

+
�0

2

✓
�
✏1(T1)

a2
+

3P1(T1)

b2

◆✓
�
✏2(T2)

ã2
+

3P2(T2)

b̃2

◆
ab3ãb̃3

P = P1(T1)ab
3 + P2(T2)ãb̃

3
�

�

2

✓
✏1(T1)✏2(T2)

a2ã2
+

3P1(T1)P2(T2)

b2b̃2

◆
ab3ãb̃3

�
�0

2

✓
�
✏1(T1)

a2
+

3P1(T1)

b2

◆✓
�
✏2(T2)

ã2
+

3P2(T2)

b̃2

◆
ab3ãb̃3

To find the relation between the subsystem temperatures and the total temperature, we

can think of T as defined through the imaginary time formalism by 1/T =
R �

0 d⌧ , where ⌧ is

the imaginary time with period � [7]. For the subsystems which live in gµ⌫ , g̃µ⌫ , similarly

T�1
1 =

Z �

0

p
�g00d⌧ = a�, T�1

2 =

Z �

0

p
�g̃00d⌧ = ã� (3.13)

This gives the subsystem temperatures as T1 = T/a, T2 = T/ã.

For the subsystems, the respective light-cone velocities v, ṽ are defined as

v =
a

b
, ṽ =

ã

b̃
(3.14)

Also defining the ratio ��0/� = r, the metric coupling equations (3.4), (3.5) give

1� v2b2 = 3�T 4n2
1� r(1� ṽ2)

ṽ5b̃2
(3.15)

1� ṽ2b̃2 = 3�T 4n1
1� r(1� v2)

v5b2
(3.16)

b2 � 1 = �T 4n2
ṽ2 + 3r(1� ṽ2)

ṽ5b̃2
(3.17)
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b̃2 � 1 = �T 4n1
v2 + 3r(1� v2)

v5b2
(3.18)

There are certain restrictions on the metric coupling coe�cients to ensure causality is

not violated. Adding (3.15) and (3.17) gives (1 � v2) > 0 only if � > 0, and similarly from

(3.16) and (3.18), (1 � ṽ2) > 0 only if � > 0. So this restriction on � has to be maintained

to keep the theory causal.

By eliminating b̃ from (3.16) and (3.18) we get

n1�T
4 =

v5(1� ṽ2)(3 + ṽ2)

(3 + v2ṽ2 � 3r(1� v2)(1� ṽ2))2
(3.19)

And by eliminating b from (3.15) and (3.17) we get

n2�T
4 =

ṽ5(1� v2)(3 + v2)

(3 + v2ṽ2 � 3r(1� v2)(1� ṽ2))2
(3.20)

The denominators of these equations which are identical, can stay non-negative but attain

zero, only if r > 1. This condition is needed so that the temperature T is not restricted to

some finite value. So when r > 1, the theory is UV complete as the temperature can go to

infinity [7]. Hence we impose this restriction on possible values r can take.

As usual, the entropy density S for the whole system and s1, s2 respectively for the

subsystems are defined thermodynamically by

✏1 + P1 = T1s1, ✏2 + P2 = T2s2, "+ P = TS (3.21)

Using the relations for the subsystem energy and pressure (3.11), the subsystem temperatures

T1 and T2 (3.13), the light-cone velocities (3.14), and the constitutive relations for the total

energy density and pressure,

S = 4T 3
⇣n1

v3
+

n2

ṽ3

⌘
(3.22)

This relation is useful later in computing the thermodynamic sound speed cs in the system

c2s =
dP

d"
=

✓
dlnS

dlnT

◆�1

(3.23)

The total system can now be numerically solved for any values of n1, n2. Any variable in
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the theory is a function of only the system temperature T since we are studying the theory

near an equilibrium solution characterised uniquely by this T . The coupling equations (3.15)

to (3.18) can give a, ã, b, b̃ as functions of the two light-cone velocities v, ṽ. But (3.19), (3.20)

can be numerically solved to get v, ṽ as functions of T alone. So all other functions like

the total energy density or pressure can be numerically solved as a function of T . The

conservation equations are by definition always satisfied for the total stress tensor in (3.9).

3.3 The second order phase transition

When solving the system as mentioned earlier, we encounter a second-order phase transition

with a critical point [7]. This is easiest to see in the case of identical subsystems when

n1 = n2 = n, which also requires v = ṽ and so a = ã, and b = b̃ from the symmetry of

the coupling equations (3.17) and (3.18). In this simplified case (3.19) and (3.20) identically

give �T 4 as an analytic function of v.

n�T 4 =
v5(1� v2)(3 + v2)

(3 + v4 � 3r(1� v2)2)2
(3.24)

This is plotted in Fig. 3.1 to see a phase transition with a critical point as the paramater

r is varied for r > 1, as originally shown in [7]. As r is varied from 1 to higher values, we

see a critical point at an intermediate value r = rc where the curve transitions from having

two extrema to just having one point of inflection at v = vc. As seen later, this leads to the

second derivative of v as a function of �1/4T blowing up at rc. This shows why the phase

transition is second order at rc, as the first derivative of v as a function of T is discontinuous

at rc while the function itself is continuous. But as will be explained later in this section

when studying the total entropy of the system, the phase transition is first order below

rc with a discontinuity in the function indicative of superheating and supercooling. The

critical point is determined analytically by finding the vc which extremises the function r(v)

obtained in turn by extremising n�T 4(v) and its v derivative at the inflection point. This

critical point is easily computed in appendix D. of [7] to be at vc ⇠ 0.35097, rc ⇠ 1.114509,

and n�T 4
c (v) ⇠ 0.0539768.

When plotting these curves, we initially also encounter an additional branch of solution.

But these are found to be unphysical since they do not behave as required in the decoupling
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Figure 3.1: �T 4
� v for coupled identical ideal fluids. The blue, green, and red curves are

the analytical solutions for �T 4 as a function of v for r = 1.0, r = 1.11451, and r = 1.2
respectively. The critical point occurs for r = rc ⇠ 1.11451.

limit , i.e., when � ! 0. In this limit, we expect the two fluids to completely decouple

with no interactions between them, and so the individual e↵ective metrics should go to the

Minkowski metric, taking the light-cone velocities to one. This indeed occurs in the physical

branch plotted at each r, but does not happen in the unphysical branches. This is shown

in Fig. 3.2. The presence of an unphysical branch is something which recurs for all curves

plotted later, but in each case, the behaviour as � ! 0 distinguishes it from the physical

branch.

It has also been shown in [7] that |�T 4
� �T 4

c | ⇠ |v� vc|3 near the critical point (Similar

results are derived for the entropy and di↵usion constant below). This relation allows for

the computation of the critical exponent ↵ for the specific heat CV since CV = T@S/@T ,

and near the critical point, we expect

|S � Sc| ⇠ 24nT 3
c v

�4
c |v � vc| (3.25)

where we have used the form of S in (3.22) and used the assumption that the two fluids are

identical. And since |T 4
� T 4

c | ⇠ 4T 3
c |T � Tc|, we get

|S � Sc| ⇠ |T � Tc|
1/3 (3.26)
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This easily shows that the critical exponent ↵ is 2/3 for CV . The scaling behaviour of the

entropy is explicitly solved later to show the validity of this derivation in Fig. 3.8.

Figure 3.2: Physical and unphysical branches in the �T 4
� v plot. The dotted line represents

the unphysical branch for a particular r (here rc) while the solid curve is the physical branch.
Only the solid curve goes to v = 1 at �T 4 = 0.

The relation �T 4(v) can be inverted numerically to plot v as a function of �T 4 [7] (we

take n = 1 for simplicity) as reproduced in Fig. 3.3. The system encounters a second-order

phase transition at rc, where though the function v is continuous, the first derivative blows

up at Tc. Below rc, the solution is multivalued which indicates a first order phase transition

due to supercooling and superheating phases (explained later when discussing entropy in this

section). The region denoted by the dotted lines in the blue curve in Fig. 3.3 is unphysical

which will also be clear after studying the entropy curve. For all values above rc there exists

a well-defined and smooth curve for v.

Since v can be numerically solved as a function of �T 4, the coupling equations (3.15 -

3.18) can be written as analytic expressions in v and �T 4, and then numerically solved as a
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Figure 3.3: Numerical solution of v. The dotted part of the blue curve is unphysical. A
jump happens between the solid blue curves below rc due to superheating or supercooling.
The green curve has a blow up of its derivative at Tc. The red curve is smooth.

function of �T 4 alone. b2 has the analytic form

b21 = �

q
4�1T 4v7 (v2 � 3r (v2 � 1)) +

�
�1T 4

�
3r (v2 � 1)2 � v4 � 3

�
+ v5

�
2

2v7

+
3�1rT 4 + 3�1rT 4v4 � 6�1rT 4v2 � 3�1T 4

� �1T 4v4 + v5

2v7

and a2 similarly has the analytic solution which is computed using a = vb.

The numerical solutions are derived in Fig. 3.4 for b, and Fig. 3.5 for a. We see the

critical behaviour of both functions at rc where the first derivative blows up for b, and

becomes discontinuous for a. Below rc the functions show a first order crossover, and above

rc they are smooth single-valued functions.

These solutions computed here can also be verified by computing the individual subsystem

temperatures T/a as functions of �1/4T . This is verified to be in exact agreement with [7] and

is shown in Fig. 3.6. The first derivative is discontinuous for rc, while multiple solutions exist

below rc showing a first order transition. We can also similarly reproduce all the identical

system curves produced in [7].
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Figure 3.4: Numerical solution of b. The green curve has its first derivative blow up at Tc.
Crossover occurs for the blue curve.

Figure 3.5: Numerical solution of a. The slope of the green curve is discontinuous at Tc.
Crossover occurs in the blue curve.

We are interested in studying the evolution of the total entropy of the system defined in

(3.22). This would help us understand physically the crossover and the critical point. The

dimensionless quantity S/T 3 is derived below in Fig. 3.7.
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Figure 3.6: Subsystem temperature as a function of the total temperature. T1 = T2 also shows
critical behaviour at rc ⇠ 1.11451, and crossover below rc.

Figure 3.7: Total entropy curve. Critical point occurs for rc (green curve), while crossover
occur below it. The dotted blue lines correspond to the superheating and supercooling
phases.

In the entropy curve, below rc, i.e. for the blue curve in Fig. 3.7, the continuous dotted
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curve which connects the two endpoints of the solid curves is an unphysical region since here

the entropy seems to have a negative slope which is unphysical. So the system undergoes

superheating when approaching the dicontinuity from lower temperatures by a sudden jump

in the entropy. Supercooling occurs when this jump is approached from a higher temperature.

This kind of a jump is exactly what happens for all other variables below rc. They exhibit

supercooling or superheating depending on how the entropy is a↵ected at the jump.

Since v has a critical behaviour |v� vc| ⇠ |T � Tc|
1/3, we expect all analytic functions of

v to exhibit a similar scaling behaviour close to Tc. This is explicitly checked to be true for

the total entropy S by computing the logarithmic plot of |S � Sc| near the critical point in

Fig. 3.8. We get a straight curve whose slope is very close to 1/3 (we do not get extremely

accurate results because of the loss of precision in plotting the points even when using very

precise values of rc, vc, and Tc. Numerically getting a large number of points very close to

Tc is also di�cult, and so the log plot has to be extrapolated). This is also later verified for

the di↵usion constant in the next section.

Figure 3.8: Logarithmic plot of S near the critical point. The slope of the curve is seen to
be ⇠ (2.26� 2.0)/(9.8� 9.1) ⇠ 0.37, close to 1/3.

Another important physical quantity whose critical behaviour we are interested in is

the thermodynamic speed of sound cs defined in (3.23). This speed is numerically computed

below in Fig. 3.9 to show that it not only has a crtical point at r = rc (due to the discontinuity

in the slope ), but it also vanishes exactly at this point. This is a remarkable result which
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confirms our expectation that at the critical point, due to the existence of correlations at all

length scales, there should not be any thermodynamic propagation. For any other value of

rc, there is no critical point and the sound speed does not drop to zero. In the decoupling

limit when � ! 0, we get the expected conformal sound speed in four dimensions, 1/
p
3.

Figure 3.9: Thermodynamic sound speed solutions The thermodynamic sound speed vanishes
exactly at the critical point when r = rc (green curve).

We would also like to compute the dispersion relation for a sound like perturbation to the

coupled system and find the critical behaviour for the sound speeds in such modes. It is very

useful to study the behaviour of all the di↵erent hydrodynamic modes in this case of two

coupled ideal fluids. This allows us to further study the sound speed in the sound channel,

and see the presence of attenuation in these modes. Their critical behaviour is calculated in

section 3.5. Such calculations can also be done in the shear sector to compute the di↵usion

constant in the shear modes, and study their critical behaviour (section 3.4). Moving to two

coupled MIS fluids allows us to study non-hydrodynamic modes for the first time in coupled

systems.
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3.4 Di↵usion constant in Shear sector

To compute the shear modes, similar to the case of a single fluid, we assume the combined

system and the subsystems are close to equilibrium. We then assume fluctuations which lie

in the shear sector (section 2.7) for the hydrodynamic fields, and treat the modified system

with the fluctuations as obeying first order hydrodynamics [7].

Due to rotational symmetry (as Boost invariance is broken by the equilibrium), we can

assume the propagation of fluctuations to be in the z-direction. But characteristic of the

shear sector, the velocity fields will be perpendicular to the propagation direction, and is

assumed to be along x. To retain the normalisation, these will have the form

uµ = (
1

a
, ⌫, 0, 0), ũµ = (

1

ã
, ⌫̃, 0, 0) (3.27)

where the perturbations ⌫, ⌫̃ can be assumed to have a propagating wave like form ⇠ ei(kz�!t).

Such a form can also be assumed for any other perturbation in the system.

The e↵ective metrics also have perturbations which couple with each other through the

coupling equations (3.15) - (3.18). Since the velocity flow is along x while the propagation

vector is along z, in the shear sector, only the tx and xz components of the metrics have

perturbations. The unperturbed metrics are the same as defined in (3.12). So

�g01 = �, �g13 = �13, �g̃01 = �̃, �g̃13 = �̃13 (3.28)

The first order stress tensor can be expanded upto first order in these perturbations to

find that it only invloves a modification to the ideal stress tensor by

�t01 = �
P1

a2b2
� +

(P1 + ✏1)

b
⌫, �t13 = �

P1

b4
�13 +

⌘

b2
@z⌫ �

⌘

ab4
@t�13 (3.29)

�t̃01 = �
P2

ã2b̃2
�̃ +

(P2 + ✏2)

b̃
⌫̃, �t̃13 = �

P2

b̃4
�̃13 +

⌘̃

b̃2
@z⌫̃ �

⌘̃

ãb̃4
@t�̃13 (3.30)

where ⌘ and ⌘̃ are the shear viscosity coe�cients for the two subsystems.

The equations available to solve these perturbations to the system are the two ward

identities (3.1) and the four coupling equations (3.15) - (3.18). These give the required six
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equations in the perturbations ⌫, ⌫̃, �, �̃, �13, and �̃13. Taking the Fourier transform of these

equations, the four relations obtained from the coupling equations are solved to get the

metric perturbations �, �̃, �13, and �̃13 as functions of ⌫, ⌫̃. Substituting these back in the

two ward identities gives a set of two homogenous equations in ⌫, and ⌫̃. For the existence

of a non-trivial solution for ⌫, and ⌫̃, we need the determinant of the 2⇥2 coe�cient matrix

for the system of equations in ⌫, and ⌫̃ to be zero. This gives the required equation in !, k

which has to be solved for the dispersion relation !(k) [7]. At leading order, the behaviour

is determined to be,

!(k) = �iDk2 +O(k3) (3.31)

So the leading behaviour is seen to be a di↵usive mode with di↵usion constant D which has

two solutions. For identical fluids, they are computed here

D1 =
a2 (a5 � b�T 4)

4⇡b2T (a5 + 3b�T 4)
, D2 = �

a2 (a5 + b�T 4)

4⇡b2T (3b�T 4 � a5)
(3.32)

These two di↵usion modes are numerically solved and plotted in Fig. 3.10, Fig. 3.11, and

Fig. 3.12.

Figure 3.10: The two di↵usion modes below rc.

This is very useful in understanding the behaviour of the shear modes near the critical

point. As before, we are able to observe a second order phase transition at r = rc, where
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Figure 3.11: The two di↵usion modes at rc.

Figure 3.12: The two di↵usion modes above rc.

the derivative of the di↵usion constant blows up for one of the modes. However the second

mode remains constant for all r. But the di↵usion constant clearly does not vanish at the

critical point unlike the thermodynamic sound speed in Fig. 3.9. This indicates some non-
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zero transport even at the critical point. A log-log plot of |D � Dc| again confirms it is

proportional to |T � Tc|
1/3 near Tc (Fig. 3.13).

Figure 3.13: Logarithmic plot of D near the critical point. The slope of the line is ⇠ (5.8�
5.4)/(9.5� 8.3) = 1/3.

3.5 Sound speed and Attenuation in Sound sector

For the same system of two ideal coupled fluids, close to equilibrium for the total system and

the individual subsystems, we choose propagation of fluctuations in the z-direction. However,

characteristically for the sound sector the perturbations align along the same direction as the

propagation direction. Hence the e↵ective metrics have the form in (3.12) with the general

form of perturbations permitted by symmetry given as

�g00 = �2a�a, �g11 = �g22 = 2b�b+ �, �g33 = 2b�b� 2�, �g03 = � (3.33)

�g̃00 = �2ã�ã, �g̃11 = �g̃22 = 2b̃�b̃+ �̃, �g̃33 = 2b̃�b̃� 2�̃, �g̃03 = �̃ (3.34)

As in the case of a single fluid, we have possible diagonal perturbations to the metrics and

the stress tensors because the perturbations are along z. The subsystem temperatures could

also have the perturbations �T1, �T2 due to the same reason. The fluid velocities will now
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be modified as

uµ =

✓
1

a
�

1

a2
�a, 0, 0, ⌫

◆
, ũµ =

✓
1

ã
�

1

ã2
�ã, 0, 0, ⌫̃

◆
(3.35)

A similar procedure as before in the shear sector is done to construct the first order stress

tensor from these hydrodynamic fields [7]. The equations available to solve the system are

the two ward identities (3.1) and the four coupling equations (3.15 - 3.18) whose Fourier

transform is taken to obtain the dispersion relation !(k). Each of these six equations give

two independent relations in the twelve fluctuations �a, �ã, �b, �ã, �, �̃, �, �̃, ⌫, ⌫̃, �T1, �T2.

The eight equations obtained from the coupling relations can be used to solve for the

metric perturbations �a, �ã, �b, �ã, �, �̃, �, and �̃ in terms of ⌫, ⌫̃, �T1, �T2. These are then

substituted in the four equations obtained from the ward identities. This gives a system of

four linear homogenous equations in ⌫, ⌫̃, �T1, and �T2. The existence of a non-trivial solution

demands that the determinant of the 4⇥4 coe�cient matrix of the system of equations be

zero. This condition in ! and k can be solved to find the dispersion relation !(k).

The leading behaviour of !(k) is seen to be of the form [7]

! = ck � i�k2 +O(k3) (3.36)

where c is the hydrodynamic speed of sound, and � the attenuation coe�cient.

So the critical behaviour of the sound sector modes are determined by the hydrodynamic

speed and the attenuation constant. They have to be numerically solved as functions of

�1/4T . The sound speed behaviour is derived in Fig 3.14 - Fig. 3.16. for di↵erent values

of r, while the attenuation constant qualitatively behaves exactly like the di↵usion constant

solutions (one solution shows a similar criticality while the other remains constant).

The two sound mode solutions can smoothly exchange between one another which is more

clear if the individual solutions are carefully observed. They seem to have discontinuities

individually, but smoothly connect with the discontinuities in the other mode. The exciting

result at rc is that one mode is exactly the thermodynamically defined sound speed (3.23,

Fig. 3.9.). This mode vanishes at the critical point. However the second mode does not

vanish at rc, but remains finite. This is very interesting to explore further to understand how

this transport works at the critical point. In the case of the attenuation constant, like the

di↵usion constant in the shear sector, both modes remain finite at the critical point. One of

43



them is constant for all r. This is again worth studying further to understand transport at

the critical point.

Figure 3.14: Sound modes below rc. Both solutions seem to be multivalued with crossover
below rc. The few points lying close to the x-axis are from the unphysical branch.

Figure 3.15: Sound modes at rc. One of the solution is exactly the thermodynamic speed in
Fig. 3.9. which vanishes at the critical point, while the other does not. The few points lying
close to the x-axis are from the unphysical branch.
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Figure 3.16: Sound modes above rc. Both solutions are well behaved above rc. The few
points lying close to the x-axis are from the unphysical branch.

3.5.1 Unequal systems

So far we have only solved the system for two identical fluids. We can perform any of the

above calculations for unidentical systems. For ideal fluids, in the case of sound speed, we

observe a significant di↵erence from the case of identical systems. We have computed the

sound modes for two unequal systems to show that neither of the mode is the same as the

thermodynamic sound. Neither vanish at the critical point, which here occurs at a di↵erent

value of the coupling parameter r depending on n1, n2.

We no longer have v1 = v2. So all variables are analytic functions of v1, v2 instead of

a single v. The coupling equations (3.19), (3.20) provide the total system temperature T

as a function of v1, v2, along with a constraint equation between v1, v2. These two can be

used together to numerically solve for v1 and v2 as functions of T . This in turn allows us

to numerically solve for all physical quantities as a function of only T similar to the case of

identical fluids.

Another di↵erence noticed is the absence of the unphysical branch in our calculations.

This is again because we have two distinct light cone velocities v1 and v2, unlike the case of

identical fluids where v1 = v2.
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The next step in developing the theory of coupled systems is to consider two MIS fluids.

This provides a more accurate description of two strongly coupled subsystems. We also

encounter non-hydrodynamic modes for the first time in coupled systems because of the

relaxation terms in the MIS stress tensor. The behaviour of these modes near the critical

point is explored in the next section. In future, it would also be interesting to find the

hydrodynamic attractor for this coupled system and find its critical behaviour.

3.6 Non-hydrodynamic modes in Coupled MIS fluids

Since we have been studying coupled fluids obeying ideal hydrodynamics, we have only en-

countered hydrodynamic modes so far. So to study the critical behaviour of non-hydrodynamic

modes, we need to consider two coupled MIS fluids which are very close to equilibrium. We

add perturbations to the stress tensor and an MIS field, which obey the Ward identities (3.1)

and the MIS equations (2.10) for the individual subsystems.

To compute non-hydrodynamic modes, we can treat the perturbations as functions of

only time with no spatial dependence since these modes are the ones which exist in the

k ! 0 limit. Therefore there is no preferred direction for the fluctuations and hence there is

no separation into di↵erent sectors for these modes. Even if we assume perturbations of the

form of one of the sectors, we get identical non-hydrodynamic modes in all of them. This is

seen in the case of a single MIS fluid in section 2.7.

So we can assume any particular form of perturbations for computing these modes. We

assume a simple scenario with e↵ective metric perturbations in addition to (3.12) of the form

�g13 = �13, �g̃13 = �̃13 (3.37)

Further adding a �g01 term similar to the shear sector just gives a trivial solution for �g01.

This also happens on adding an analogous perturbation to uµ. So uµ is (1/a, 0, 0, 0) and a

similar form holds for the second subsystem also.

We also add the independent MIS fields ⇧13 = �, ⇧̃13 = �̃ to the ideal stress tensors of

the respective subsystems. Upto first order in perturbations, the only modification to the
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ideal stress tensor is

�T 13 = ��
�13P1

b4
, �T̃ 13 = �̃�

�̃13P2

b̃4
(3.38)

Now the equations available to solve for the perturbations are the two ward identities (3.1),

the two MIS equations, and the four coupling equations (3.15) - (3.18). The Ward identities

are trivially satisfied, the MIS equations after fourier transform give

�

✓
1�

i⌧!

a

◆
�

i�13⌘!

ab4
= 0, �̃

✓
1�

i⌧̃!

ã

◆
�

i�̃13⌘̃!

ãb̃4
= 0, (3.39)

and the coupling equations give the relations

�13 � �ãb̃3�̃+
�ãP2�̃13

b̃
= 0 �̃13 � �ab3�+

�aP1�13
b

= 0 (3.40)

Solving the coupling equations (3.40) gives �13, �̃13 as functions of �, �̃. This can be substi-

tuted into equations (3.39) to give a system of two linear homogenous equations in �, �̃. A

non-trivial solution is guaranteed only if the determinant of the 2⇥2 coe�cient matrix for

the system of equations is zero. This gives the dispersion relation for the non-hydrodynamic

modes. The two solutions for identical systems are plotted below in Fig. 3.17 and Fig. 3.18.

We consider T ⌧ instead of ⌧ since it is a dimensionless quantity.

Figure 3.17: First relaxation mode solution. The first relaxation time has a critical point for
rc (green curve), but always remains finite.
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Figure 3.18: Second relaxation mode solution. The second relaxation time also has a critical
point at rc (green curve), but always remains finite.

We do observe critical behaviour in both modes with the blow up of first derivative at rc

for one solution, and discontinuity in the slope at rc for the second solution. But both the

solutions remain finite at the critical point. This again is interesting because we might expect

the relaxation mode to be absent at the critical point because of the prevalent long-range

correlations.
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Chapter 4

Summary and Outlook

We have studied the very useful method of e↵ective field theory to construct hydrodynamic

descriptions of strongly interacting systems at long wavelengths. The hydrodynamic gradient

expansion was studied, but shown to be acausal. The causal MIS theory adds phenomeno-

logical relaxation modes in fluids and these modes lead to the existence of hydrodynamic

attractors. This result is very important in explaining the e↵ectiveness of the MIS theory in

describing the Quark-Gluon Plasma, and helps in developing an out of equilibrium theory

of hydrodynamics.

We saw how the non-hydrodynamic modes arise in MIS fluids and how these lead to

the decay of fluctuations near the attractor. The other approach to improving finite order

hydrodynamics motivated by the necessity to cure the problem of divergent hydrodynamic

gradient expansions is the mathematical process of Borel resummation. This provides a sen-

sible result for the divergent expansion which is much better than any finite order truncation.

We also saw how this procedure however leads to the exact results as obtained from the MIS

formalism hence increasing our confidence in both these methods.

A more accurate description for the QGP can be constructed by coupling both strongly

interacting and weakly interacting modes. Semi-holography provides a model to possibly

introduce such couplings through e↵ective metrics for the two sectors. In this approach we

already observe a rich theory of critical dynamics for two strongly interacting ideal fluids.

All physical variables in the theory of coupled identical ideal fluids are analytic functions
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of a single light-cone velocity, and so all these variables show a similar critical behaviour when

numerically solved as functions of the total system temperature T . Their derivative with

respect to T blows up or becomes discontinuous at the critical value of the coupling parameter

rc, though the function itself remains continuous. Below rc, the functions themselves are

discontinuous and thus exhibit a first order crossover by superheating or supercooling. Above

rc they remain continuous and smooth. Some variables like the entropy and di↵usion constant

were explicitly shown to scale exactly like v as expected ⇠ |T � Tc|
1/3.

To explore how propagation of modes are a↵ected near the critical point, we computed

the thermodynamic sound speed and the hydrodynamic and non-hydrodynamic modes. The

thermodynamic sound vanished exactly at rc, and one of the sound modes in the sound

sector also exhibited this same behaviour in the case of identical fluids. However the di↵usion

constant in the shear mode, the attenuation constant in the sound mode, and the relaxation

time in the non-hydrodynamic mode remained finite at rc even though they had a critical

point. The significance of these non-zero modes at the critical point has to be studied further.

To understand fluctuations near the critical point better, we need to include stochastici-

ties since these could be large near this point. This is a direction we are currently pursuing.

A renormalised theory can possibly be constructed analogous to the description for a single

fluid developed in [9], and the RG flow of transport coe�cients could be studied.

We hope to extend the developments in [7] and this thesis, to include couplings between

kinetic theories and fluids. This would be very relevant to QGP dynamics which does show

very close agreement to kinetic theory beyond the fluid regime when the interactions become

weaker. What the critical point in these systems signify in the context of QGP dynamics

would be important to understand. We could also study if an attractor exists for the coupled

system, and how the attractor solution for the MIS subsystem a↵ects the kinetic subsystem

dynamics.

Another goal is to study the phase transition for coupled MIS fluids near the attractor

for the combined system. Such an e↵ort has been started by Dr. Ayan Mukhopadhyay

and colleagues, who were able to recently derive the hydrodynamic attractor in a hybrid

MIS theory. The next step is to find the critical value of the interaction parameter for this

attractor and then perform further computations near it. This could show how the attractor

behaves near the critical point and help find out if the critical behaviour itself is modified in

the presence of the attractor.

50



Bibliography

[1] S. Bhattacharya, V. E. Hubeny, S. Minwalla, and M. Rangamani, Nonlinear fluid dy-
namics from gravity, JHEP 0802, 045 (2008), arXiv:0712.2456 [hep-th].

[2] V. E. Hubeny, S. Minwalla, and M. Rangamani, The fluid/gravity correspondence,
arXiv:1107.5780 [hep-th].

[3] G. Policastro, D. T. Son, and A. O. Starinets, From ADS/CFT correspondence to hy-
drodynamics, JHEP 09, 043 (2002), [hep-th/0205052].

[4] G. Policastro, D. T. Son, and A. O. Starinets, From ADS/CFT correspondence to hy-
drodynamics. II: Sound Waves, JHEP 12, 054 (2002), [hep-th/0210220].

[5] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets, and M. A. Stephanov,Relativistic
viscous hydrodynamics, conformal invariance, and holography, JHEP 0805, 087 (2008),
arXiv:0801.3701 [hep-th]. ‘
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