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Abstract

The recent developments in antibody-based immunotherapy are believed to be promising
against B cell leukemia, the most commonly diagnosed blood cancer. This disease has a
peculiar tendency to reappear and lacks a quantitative understanding of post-treatment
residual disease, which may have a role in the relapse. The need to predict the relapse,
and reduce the adverse toxic effect of current standard, chemotherapy, demands a
quantitative effort. We formulate a stochastic model that captures not only the
deterministic behavior but also the fluctuations taking place in the residual disease.
We also use first-passage analysis techniques developed for random walks to predict the
long-term effects of fluctuations. The immunotherapy model predicts the containment
of tumors for an adequate response of the immune system. We propose a sequential
chemotherapy-immunotherapy strategy that may provide better outcomes. The
mathematical workflow developed here sheds light on an equivalent formulation of
master equations, that provides remarkable speed up for numerical computations. All
in all, we provide a cell-population based stochastic model, to understand contemporary
leukemia treatments, that can be used to test strategies as well as their outcomes.
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Chapter 1

Introduction

1.1 Blood

Every living cell in our body depends on blood for its normal working. Blood is a fluid
tissue that maintains the physio-chemical environment for cells within the functional
limits throughout the body. The blood continually circulates in the body delivering
oxygen, nutrients, and other vital substances while providing means for excretion of
cellular metabolic waste and carbon dioxide. Blood is a heterogenous fluid comprised
of plasma and blood cells. Plasma is a slightly yellow clear fluid that contains essential
substances in the form of solution or suspension. Blood cells are divided into three
types based on their morphology and function: platelets, red blood cells (RBC), and
white blood cells (WBC). The platelets are responsible for clotting of blood on the
damaged surface while the RBCs carry oxygen to the cells.

The WBCs share a crucial role in the immune system of our bodies. There are two
sub-types in the immune system: innate system and adaptive system. The adaptive
immune system is comprised of highly specialized cells that can identify foreign objects
and eliminate them. The lymphocytes, namely, B cells and T cells are vital players
of the adaptive immune system. The B cells can manufacture antibodies (protein
macromolecule), specific to pathogens, that neutralize and help to kill the pathogens.
The T cells can command B cells and several other cells that can perform mass killing
of disease-causing microbes. T lymphocytes can also command our abnormal cells to
commit suicide; due to this effector function, this specialized subset is known as the
killer T cells.

1



2 CHAPTER 1. INTRODUCTION

1.2 Acute Lymphoblastic Leukemia

A cell, within a multicellular lifeform, matures from a single zygote cell to a complex
system of tissues, or to cells performing different tasks. The body keeps a reservoir
of unmatured stem cells as most of the mature cells lose their ability to divide.
The specialization of different cells is acquired through a process called cellular
differentiation. All the blood cells in the circulation are differentiated from hematopoietic
stem cells (HSC) of the bone marrow (Figure 1.1). The stem cells, for a protective
reason, do not divide themselves but give rise to progenitor cells that undergo
proliferation and differentiation. The B and T lymphocytes are differentiated from a
lymphoid progenitor through multiple steps of differentiation.

Myeloid
progenitor cell

Lymphoid
progenitor cell

Platelets

Bone marrow

Plasma cellDendritic cell Macrophage

Hematopoietic
stem cell

T cell B cell NK cellBasophilEosinophil Erythrocytes Monocyte NeutrophilMegakaryocyte

Figure 1.1: The hierarchy of hematopoietic cell lineage. The hematopoietic
stem cells differentiate into myeloid and lymphoid progenitor cells; these progenitors
give rise to the myelocytes and lymphocytes, respectively. B cells and T cells, which
makeup the adaptive immune system are small lymphocytes differentiated from the
lymphoid progenitor cells.

Leukemia is a group of disorders of cell proliferation, and differentiation arrest in the
blood cells. The accumulation of a series of genetic modifications in hematopoietic
progenitors may lead to leukemia. Acute lymphoblastic leukemia (ALL) is a malignant
disorder of lymphoid precursors due to specific genetic modifications (Pui et al. 2008).
ALL is the most common form of cancer among children between the age of 2 and 5.
It is also the most diagnosed form of leukemia in adults after the age of 50 (Faderl
et al. 2010). WBC count in a healthy individual typically does not exceed 104 cells/µl;
counts larger than this are considered unhealthy and serve as a diagnostic parameter
for leukemia. ALL is generally discovered when the disease becomes symptomatic or
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when the WBC counts are high in a blood test. By the time one of these symptoms
occurs, the disease becomes challenging to treat as the leukemic cells can invade the
central nervous system, testicles, or other vital organs (Pui 2006; Jabbour et al. 2010).

1.3 Current Treatment

Leukemia treatment aims to induce remission, defined as the absence of measurable
leukemic cells. Currently, the standard treatment for ALL is chemotherapy, combining
anti-leukemic medications that affect cell growth. Chemotherapy is divided into
three phases: Remission induction, Intensification, and Maintenance. The Remission
induction phase lasts for a month and aims to eliminate progenitor cells from the blood.
The intensification phase uses increased doses of chemotherapy to reduce tumor load
further and can last between one to three months. The maintenance phase lasts for at
least two years at lower doses but can be interrupted by the intensification phase.

Due to risk-adapted treatments, the 5-year survival rate of newly diagnosed adults
has increased from under 10% to over 90% within the last three decades (Siegel et al.
2015; Della Starza et al. 2019). However, the disease returns in more than 50% of
cured adult patients after successful treatment (Gökbuget et al. 2012). Such relapsed
leukemias are likely to respond unfavorably to chemotherapy and require more intense
treatment. The current profile of chemotherapy drugs already causes severe toxicity
that leads to infections and other complications (Schmiegelow et al. 2017), even death
in 2-3% of the cases (Prucker et al. 2009; Stary et al. 2014). Leukemia can sometimes
also develop resistance to chemotherapy. Patients with such unfavorable responses to
chemotherapy are suggested to undergo allogeneic bone marrow transplant.

1.4 Recent Achievements

As a modern alternative, patients with the relapsed disease may also be staged for
targeted treatments, such as immunotherapy. The adaptive immune system is capable
of identifying different objects through protein receptors. A recent bi-specific antibody
(protein macromolecule) construct, Blinatumomab (Nagorsen and Baeuerle 2011),
showed an increase in remission rates, and longer overall survival with manageable
toxic effects (Kantarjian et al. 2017). This antibody on one end binds to the killer
T cells and on the other end binds to lymphoid progenitor destined to differentiate
into B cells. The binding with a target indeuces formation of tethering knows as the
immunological synapse. This formation leads to the death of the target cell. The killer
T cells also proliferate due to this effector function. The process of killer T cells killing
several targets one after another is known as serial killing though T cells can run out
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of ammunition and become refractory.

BlinatumomabCD3 CD19 Immunological
synapse

Killer T CellTrajectory

dying
CD19 cells

CD19 cells

Killer
T cell

Figure 1.2: The role of Blinatumomab in immunotherapy. Blinatumomab is a
bi-specific T cell engager antibody, that binds on one end to CD3 macromolecules,
present on the surface of T cells. On other end it binds to CD19 macromolecules,
present on lymphoid progenitors primed to differentiate into B cells. This binding
induces the effector function of T cells and make them kill multiple lymphoid progenitor
cells.

Both types of treatment rapidly decrease the leukemic cell counts below the resolution
of the routine microscopy. The use of highly sensitive technologies like flow cytometry
and polymerase chain reaction has allowed the detection of low levels, accurate up
to 1 in 106 cells, of leukemia. An independent predictor, Minimal residual disease
(MRD), has shown notable prognostic importance during recent efforts to develop
personalized treatment strategies. The presence of persistent leukemic blasts after
treatment at a level below the limit of conventional morphologic detection is defined as
MRD positivity. This factor is associated with disease aggression, treatment response,
and drug resistance (Bassan et al. 2019).

1.5 Literature Survey

The field of mathematical oncology is as old as the work of Knudson (1971), well-known
as the two-hit hypothesis of carcinogenesis. The work of M. Kimmel and Axelrod
(1990) contrasts the growth advantage of non-resistant clones with gene deamplification
in the context of tumor growth and drug resistance. The number of studies has
increased since the importance of a quantitative understanding of cancer biology has
been recognized. Modeling efforts have targetted various aspects of the disease like
cancer initiation, progression, metastasis, heterogeneity, treatment response, as well as
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resistance (Altrock et al. 2015).

Chronic leukemia has been a subject of in-depth studies and modeling growth and
treatment response of the disease (Michor et al. 2005; Dingli et al. 2008). These
studies focus on the mutant clone dynamics during hematopoiesis, as the drivers
of chronic leukemias are believed to the mutated stem cells. Michor et al. (2005)
divide hematopoiesis into four compartments; stem cells, progenitors, differentiating
and terminally differentiated cells, and represent each by linear ordinary differential
equations. Werner et al. (2011) take this idea further by allowing an arbitrary number
of compartments with hierarchical cell organization and its relation to the origin of
cancers. Komarova (2006) use the birth-death process with mutations to track the
dynamics of the disease.

The tumor microenvironment and cellular interactions have a crucial contribution to
disease progression. Spatial 2D lattice-based models (Ferreira et al. 2002) followed as an
effort to make cancer models more realistic. Multiscale models use a hybrid approach;
discrete stochastic description for cell interactions and continuous deterministic
description to model environmental factors (Macklin et al. 2009). 3D continuum
simulations revealed dynamic patterns of clonal heterogeneity and their implications
(Waclaw et al. 2015).

With the addition of modern targetted therapies, the cancer cells can be attacked
without affecting other tissues (Nagorsen and Baeuerle 2011; Kalos et al. 2011). As a
result, recent efforts have turned towards the interplay between components of the
immune system and tumor (G. J. Kimmel et al. 2019).

1.6 Scope of this study

This study is an attempt to model the treatment response and the persistent disease,
unifying the deterministic and stochastic approach flexibly. We also provide a way to
analyze the stochastic behavior of the persistent disease. The leukemic cell numbers
cover a wide range during the treatment and relapse. The dynamics are very ‘regular’
at large population sizes, and ordinary differential equation provides an accurate
picture. This deterministic idea breaks down at small population sizes where the
dynamics are irregular. To model this, we need an equally flexible mathematical
object that can capture both behaviors. We propose using jump processes as the
deterministic motion and fluctuations arise out of the same description. The study
attempts to model immunotherapy, a novel treatment type for B cell leukemia, as a
first step, to understanding the interactions taking place during the treatment. The
study also makes an alternative approach to understanding chemotherapy by using
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two types of cells that are affected differently during chemotherapy.

The stochastic models used in the study features diffusion matrices that are not limited
to linear terms, and diagonal entries to find more accurate covariance for smaller
populations. We exploit the idea of random walks for stochastic analyses of minimal
residual disease. All the mathematical tools required to derive the stochastic model
and analyze are compiled in the methods section. There are dedicated divisions for
chemotherapy and immunotherapy, that covers necessary details of the treatments
and implementation of the tools.

1.7 Objectives

1. To understand the effect of existing treatments on the disease.

2. To investigate the contribution of residual disease in the relapse.

3. To optimize treatment strategies in ways that reduce the adverse side effects.



Chapter 2

Methods

2.1 Outline

Jump processes can provide a convenient description for any system, such as a
population of different interacting objects: individuals, cells, or particles. This
description is flexible in the sense that one can obtain macroscopic laws of motion and
the microscopic random nature of the system. To obtain such a description, we start
by writing chemical reactions representing the biological process happening in the
system of interest. Chemical reactions provide quantitative change occurring in the
system as well as the rate of reaction, that is how often the biological process takes
place. With the combined information of all the biological processes, one can write
down an equation called the master equation. This equation describes the quantitative
change in the total number of each interacting cell in a probabilistic manner.

To investigate the behavior of the disease under the effect of microscopic transitions,
we make use of the random walk. While studying the random walk, one is usually
interested in phenomena where the object undergoing a random walk reaches a specified
state of the system or the exact numbers of the cells in the population. To leverage the
analysis techniques developed for a random walk, we need to convert our description
into a compatible form, that is the Fokker-Planck equation. The popularity of this
equation opens the door for the translation of dynamics into differential equations.

The two treatment types, chemotherapy, and immunotherapy, affect the disease in a
fundamentally different way. To maintain this distinction, we model them separately.
To avoid the derivation twice and reduce the effort, we first present the mathematical
workflow, then simply plug in the details of respective treatments. The population of
leukemic cells is the system of interest in chemotherapy. The killer T cell population

7
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and the disease combined is the system of interest in immunotherapy.

Some common assumptions are as followed: It is assumed that the system is Markovian;
that is, the future state of the disease depends only on the most recent state. It is also
assumed that the system is well-mixed, such that the cells are evenly distributed in the
blood. For both the treatments, the therapeutic agents, i.e., chemotherapy medication
and Blinatumomab for immunotherapy, are present in a constant and non-limiting
concentration.

2.2 Reactions

To capture the quantitative changes occurring in the system, we need to track the
biological interactions. Each process takes place at a specific frequency, changing the
total number of involved cell types. We use chemical reactions to capture the change
in numbers and transition probabilities to capture reaction frequencies.

Consider N interacting cell types Xi; i = 1, 2, . . . , N , undergoing M different
reactions Λk; k = 1, 2, . . . ,M . Let us denote the total number of each cell type Xi

as ni. The rate associated with setting off of each reaction Λk is represented by T k.
Each reaction Λk can be written as

Λk : pk1 X1 + pk2 X2 + . . .+ pkN XN
Tk

−−−−−→ qk1 X1 + qk2 X2 + . . .+ qkN XN .

Where pki and qki are the quantities of reactant cell type Xi and product cell type Xi

in reaction Λk. Then for each reaction Λk one can write the following

pk = (pk1, p
k
2, . . . , p

k
N)

qk = (qk1 , q
k
2 , . . . , q

k
N)

rk = qk − pk.

Each reaction Λk changes the count of different cell types, i.e., the state of the system
changes from n to n+ rk.

2.3 Master Equation

The action narrated by all the reactions and their respective rates can be described by a
master equation. This equation is also known as the differential Chapman-Kolmogorov
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Figure 2.1: Flux created by the reactions. The reaction ending in the state n acts
as an influx for Pr(n, t) and reactions starting from the state n acts as an outflux for
Pr(n, t).

equation in the literature of stochastic processes.

∂τ Pr(n, τ) =
∑
n′ 6=n

[T (n′) Pr(n′, τ)− T (n) Pr(n, τ)] .

Where Pr(n, τ) is the probability that there are ni cells of type Xi at time τ . The rate
T (n) is the transition rate of the population from the focal state n to a neighboring
state n′. The transition rate, in general, is a function of the counts of cell types
involved in the reactions.

The rate of change of Pr(n, τ) at time τ is governed by the difference between incoming
and outgoing probability flux. For our reaction system, the M reactions establish the
probability flux between the states.

∂τ Pr(n, τ) =
M∑
k=1

T k(n− rk) Pr(n− rk, τ)︸ ︷︷ ︸
influx to n

−Pr(n, τ)
M∑
k=1

T k(n)︸ ︷︷ ︸
outflux from n

. (2.1)

2.4 Diffusion Approximation

Let us now scale the variables n by the inverse of the system size R2 so that the
number density x is approximately continuous for sufficiently large system. We also
scale the time τ such that the transition rate from n to n−rk is same as the transition
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rate from x to x− 1
R2r

k.

x =
1

R2
n; t =

1

R2
τ.

The influx terms are functions of neighboring states x − 1
R2r

k, whereas the outflux
terms are function of the focal state x. Let us now denote P = Pr(x, t) and T k = T k(x)

and consider the Taylor series around state the x up to second order 1
R4

Pr(x− 1

R2
rk, t) ≈ P − 1

R2

N∑
i=1

rki ∂xiP +
1

2R4

N∑
i=1

N∑
j=1

rki r
k
j ∂xi∂xjP

T k(x− 1

R2
rk) ≈ T k − 1

R2

N∑
i=1

rki ∂xiT
k +

1

2R4

N∑
i=1

N∑
j=1

rki r
k
j ∂xi∂xjT

k

(2.2)

Substitute Equation 2.2 into Equation 2.1, we find

∂tP =
M∑
k=1

[(
P − 1

R2

N∑
i=1

rki ∂xiP +
1

2R4

N∑
i=1

N∑
j=1

rki r
k
j ∂xi∂xjP

)
(
T k − 1

R2

N∑
i=1

rki ∂xiT
k +

1

2R4

N∑
i=1

N∑
j=1

rki r
k
j ∂xi∂xjT

k

)
− PT k

]
.

The zeroth order terms cancel out with the outflux terms. If we only consider the
terms up to the second order 1

R4

∂tP =
M∑
k=1

[
− 1

R2

2∑
i=1

rki ∂xi [T
k P ] +

1

2R4

N∑
i=1

N∑
j=1

rki r
k
j ∂xi∂xj [T

k P ]

]
.

Evaluating the sum over all reactions gives us the Fokker-Planck equation.

∂t Pr(x, t) = −
N∑
i=1

∂xi [ai(x) Pr(x, t)] +
1

2

N∑
i=1

N∑
j=1

∂xi∂xj [bij(x) Pr(x, t)]

ai(x) =
1

R2

M∑
k=1

rki Tk

bij(x) =
1

R4

M∑
k=1

rki r
k
j Tk.

(2.3)

2.5 The Fokker-Planck Equation

The Fokker-Planck equation is equivalent to the convection-diffusion equation and
occurs in many other contexts under different names. Here, it describes the time
evolution of probability density function Pr(x, t) of the number density x at time t.
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The RHS of the equation has two terms: deterministic drift and diffusion. Hence,
a(x) is called the drift vector and B(x) is called the diffusion matrix. Here, these
terms account for the average dynamics and the random fluctuations of the system,
respectively.

∂t Pr(x, t | x0, t0) = −
N∑
i=1

∂xi [ai(x) Pr(x, t | x0, t0)]︸ ︷︷ ︸
deterministic drift

+
1

2

N∑
i=1

N∑
j=1

∂xi∂xj [bij(x) Pr(x, t | x0, t0)]︸ ︷︷ ︸
diffusion

.

(2.4)

Additional information is required for this equation to be useful in applications, for
instance, initial conditions and boundary conditions. An initial condition Pr(x, t0) =

δ(x − x0) can also be encoded as Pr(x, t | x0, t0). The Fokker-Planck equation is
valid for this conditional probability as well (Gardiner 2009). There are many types of
boundary conditions which can be imposed based on the first principles, but we shall
only work with absorbing boundaries, i.e., Pr(x, t) = 0 on the boundary.

2.6 Mean-field Limit

The system size R2 controls the relative contribution between the drift and the diffusion
terms. Letting R2 → ∞, the equation takes form of the Liouville’s equation. This
form connects Pr(x, t) to the average time evolution of the state.

∂t Pr(x, t) = −
N∑
i=1

∂xi [ai(x) Pr(x, t)]

=⇒ dx(t)

dt
= a(x).

2.7 Stochastic Model

Equating the Fokker-Planck equation to the form given by Feynmann-Kac formula
(Øksendal 2003), we get a system of Itô’s stochastic differential equations (SDE). These
SDEs can also be written in the form of Langevin equations.

ẋ = a(x) +
√
B(x) ξ(t). (2.5)

The dot over a symbol represents the derivative with respect to time t. Here, a(x) is
deterministic drift vector and B(x) is the diffusion matrix. The notation

√
B denotes
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square root of a matrix. Any matrix A is a square root of matrix B if the matrix
product AA is equal to B (Denman 1981; Björck and Hammarling 1983).

Stochastic differential equations can only rarely be solved analytically. In such cases,
one resorts to numerical solutions; however, finding the square root of matrices
is challenging for higher dimensions. One can write another system of stochastic
differential equations with matrix C instead of

√
B such that CCT = B. Since both

follow the same Fokker-Planck equation, they are equivalent (Section 5.1, Allen 2007).

For a system with N entities and M ≥ N reactions, where each reaction Λk alters the
state x by the amount 1

R2r
k with transition rate T k. One can write C such that

cik = rki (T k)
1
2 .

ẋ = a(x) + C(x) ξ∗(t). (2.6)

Where ξ = (ξ1, ξ2, . . . , ξN) and ξ′ = (ξ1, ξ2, . . . , ξM) and ξi are gaussian white noise
terms such that

〈ξi(t)〉 = 0,

〈ξi(t)ξj(t′)〉 = δ(t− t′).

2.8 First-passage Analysis

When the disease reaches a state of zero tumor cells, it goes extinct and cannot
reappear, this is said to be an absorbing state of the system. A system based on
its description can have multiple absorbing states, resulting in specific consequences,
e.g. extinction. The study of meeting these conditions for the first time is known
as the survival or the first-passage analysis. While Equation 2.4, called the forward
equation, describes dynamics in the future the backward Fokker-Planck equation
describes dynamics in the past. The forward equation is useful for prediction, i.e.
inferring observed quantities in future, whereas the backward equation is more useful
for studying the first passage properties.

Let us denote the forward variables as (x′, t′) the backward variables as (x, t) for
first-passage analysis. Just like how the forward equation requires initial conditions and
boundary conditions, the backward equation requires final conditions and boundary
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conditions.

∂t Pr(x′, t′ | x, t) = −
N∑
i=1

ai(x) ∂xi Pr(x′, t′ | x, t)

− 1

2

N∑
i=1

N∑
j=1

bij(x) ∂xi∂xj Pr(x′, t′ | x, t).

If the process does not explicitly depend on time, i.e. a and B are function of only x
and not t, then it is said to be homogeneous in time. For homogeneous processes

Pr(x′, t | x, 0) = Pr(x′, 0 | x,−t).

Then the backward Fokker-Planck equation for homogeneous processes

∂t Pr(x′, t | x, 0) =
N∑
i=1

ai(x) ∂xi Pr(x′, t | x, 0)

+
1

2

N∑
i=1

N∑
j=1

bij(x) ∂xi∂xj Pr(x′, t | x, 0).

(2.7)

2.9 Probability of First-exit

We now make an analogy between a particle experiencing random fluctuation in a
region R and the state of the system. If we enumerate through different instances
of this motion with a fixed initial condition, i.e. a starting point of the particle, we
find that it hits different point on the boundary S with different probability. We are
interested in this probability of particle exiting as a function of the initial condition.
Turning this problem around we ask for the probability of reaching a point, in past, in
the region R starting from a fixed final condition.

The probability to exit from a region R through an infinitesimal surface element dS(z)

at a point z on the surface S for the first time given that you start at a point x is
said to be the first-exit probability. The probability that particle exits through dS(z)

after time t can be obtained by collecting the flux exited through dS(z) after time t

g(z,x, t)|dS(z)| =
∞∫
t

dt′J(z, t′ | x, 0) · dS(z). (2.8)
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where components of the flux J(z, t′ | x, 0) are defined as

Ji(z, t
′ | x, 0) = ai(z) Pr(z, t′ | x, 0)− 1

2

N∑
j=1

∂xjbij(z) Pr(z, t′ | x, 0).

such that the forward Fokker-Planck equation takes the form of well-known continuity
equation.

∂t Pr(x, t) +
N∑
i=1

∂xiJi(x, t) = 0.

Using the definition of g(z,x, t) (Equation 2.8) and the fact that J(z, t′ | x, 0) also
follows the backward Fokker-Planck equation (Equation 2.7) we get the following
equation (Section 5.5.4, Gardiner 2009).

∂tg(z,x, t) =
N∑
i=1

ai(x) ∂xig(z,x, t) +
1

2

N∑
i=1

N∑
j=1

bij(x) ∂xi∂xjg(z,x, t). (2.9)

Now let us denote the probability of ultimate exit g(z,x, 0) as πz(x). Note that for
any deterministic initial condition Pr(z, 0 | x, 0) = δ(z − x) the probability density
is concentrated at the point x at time t = 0. Thus, the flux also only exists in an
infinitesimal neighborhood of x. Therefore J(z, 0 | x, 0) must vanish for every point
x 6= z at time t = 0. Hence, by letting t → 0 the right hand side of the equation
vanishes as it is the integration of J(z, t′ | x, 0).

0 =
N∑
i=1

ai(x) ∂xiπz(x) +
1

2

N∑
i=1

N∑
j=1

bij(x) ∂xi∂xjπz(x).

Suppose that particles can only exit through dS(z) then boundary conditions for the
backward Fokker-Planck equation of πz(x) is

πz(x) = δS(z − x).

2.10 Mean First-exit Time

We also want to know how long does a particle take to exit a region R for the first
time. This can similarly be rephrased as time taken to reach a point in region R given
a final condition. Let the particle initially be at x, the probability it is somewhere
within R at time t is

G(x, t) =

∫
R

dx′ Pr(x′, t | x, 0). (2.10)
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Let us denote the time particle leaves the region R for first time as T . For any time t,
T ≥ t means that particle has not left the region R. Thus, Pr(T ≥ t) is the probability
it is still in the region R at time t

Pr(T ≥ t) = G(x, t). (2.11)

Integrating the backward Fokker-Planck equation (Equation 2.7) with respect to dx′

and using the definition of G(x, t) (Equation 2.10) we find that G(x, t) also satisfies
the backward equation.

∂tG(x, t) =
N∑
i=1

ai(x) ∂xiG(x, t) +
1

2

N∑
i=1

N∑
j=1

bij(x) ∂xi∂xjG(x, t). (2.12)

With the initial conditions Pr(x′, 0 | x, 0) = δ(x′ − x) the G(x, t) takes the following
values

G(x, t) =

 1 x ∈ R

0 elsewhere

We impose absorbing boundary condition for G(x, t) as particles starting anywhere
on the boundary S will exit immediately T = 0. Thus when x is on the boundary,
Pr(T ≥ t) = 0 and

G(x, t) = 0, x ∈ S.

Since G(x, t) is the complementary cumulative distribution function of T , because of
the form of Equation 2.11, the mean of any function f(T ) is

〈f(T )〉 = −
∞∫
0

f(t)dG(x, t).

and thus, the mean exit time T (x) = 〈T 〉 is given by

T (x) = −
∞∫
0

t∂tG(x, t)dt

=

∞∫
0

G(x, t)dt.

(2.13)

Substituting this in Equation 2.12 we get

− 1 =
N∑
i=1

ai(x) ∂xiT (x) +
1

2

N∑
i=1

N∑
j=1

bij(x) ∂xi∂xjT (x). (2.14)
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with absorbing boundary conditions

T (x) = 0, x ∈ S.

2.11 Numerical Solutions

We used Gillespie’s stochastic simulation algorithm (Gillespie 1977) to simulate the
system of reactions. This algorithm is reliable and used widely in the field to produce
an exact instance of the master equation. The major drawback of this algorithm is
high computational complexity arising from the need to simulate each reaction firing
separately. Due to this way of simulations, the computation time scales with the
number of interacting cells.

The Fokker-Planck equation can be solved using standard finite difference methods for
parabolic partial differential equations. The alternating direction implicit method was
preferred over the Crank-Nicholson method and the explicit forward-time-central-space
method. The reason being the alternate-direction implicit method offers the best
timestep to resolution ratio. However, the Fokker-Planck equation is stiff for the
majority of the parameter space and gives rise to a trade-off between resolution and
computation time. Taking into account that cells follow exponential growths needing
large 2D domains contribute to the difficulty.

To escape from both; simulation of the master equation and numerically solving
the Fokker-Planck equation, a more robust strategy was called for. Solving Ito’s
stochastic differential equations is identical to solving the afore-mentioned equations
yet numerically less resource hungry. These can be solved with the Euler-Maruyama
method (Kloeden and Platen 1992), which is a generalization of Euler’s method for
ordinary differential equations. However, in recent years there has been development
in stochastic Runge-Kutta (SRK) methods. These methods offer higher efficiency
with a considerable reduction in computational complexity (Rößler 2009). A python
package ‘sdeint’, that features an implementation of stochastic Runge-Kutta, was used
to numerically solve stochastic differential equations (Aburn 2015).



Chapter 3

Model for Chemotherapy

Symbol Description Default values

X slowly proliferating cells
Y rapidly proliferating cells

rX , rY proliferation rate constants 0.2, 1 day−1

pX , pY switching rate constants 0.02, 0.02

α strength of chemotherapy 2

Table 3.1: Symbols used for variables and parameters in the chemotherapy
model.

Chemotherapy targets leukemic cells differently, proportional to their growth rate,
i.e., the faster-growing cells experience more mortality rates. To understand the role
played by the slowly growing leukemic cells in relapse, we assume two types of leukemic
cells: slowly proliferating and rapidly proliferating cells. It is assumed that the slow
and fast-growing subpopulations can switch their types, i.e., slowly growing cells can
change into the rapidly growing cell and vice-versa. The slowly proliferating cells are
denoted as X and rapidly proliferating cells as Y .

Reactions corresponding to the biological processes carried out by cells are summarized
in Table 3.2. The per-capita cell growth rates are denoted as rX , rY , and cell
proliferation is depicted by reactions 3.1 and 3.2. The per-capita cell-type switching
rates are denoted pX , pY , and the conversion between the tumor cell types is captured
by reactions 3.3 and 3.4. The reactions 3.5 and 3.6 that symbolize the death of tumor
cells where α is the strength of chemotherapy. The α is the proportionality constant
for the death of leukemic cells.

17
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Figure 3.1: Illustration of the chemotherapy model. The slow and fast cell
types, denoted X and Y , proliferate with respective growth rates rX , rY . Both the
cell types switch to the other type with rates rX pX , rY pY , respectively. During
the chemotherapy there is an additional mortality rate that is proportional to the
growth rate of the cell types. The proportionality constant, i.e., the strength of the
chemotherapy is α.

Reaction Rate Change vector

X −→ X +X rX X r1 = (1, 0) (3.1)
Y −→ Y + Y rY Y r2 = (0, 1) (3.2)
X −→ Y rX pX X r3 = (−1, 1) (3.3)
Y −→ X rY pY Y r4 = (1,−1) (3.4)

X −→ φ α rX X r5 = (−1, 0) (3.5)
Y −→ φ α rY Y r6 = (0,−1) (3.6)

Table 3.2: Reactions used in the chemotherapy model.

3.1 Master Equation

Substituting the reaction rates and change vectors in Equation 2.1 we get the following
master equation for chemotherapy

∴ ∂t Pr(nX , nY , t) = rX (nX − 1) Pr(nX − 1, nY , t) + rY (nY − 1) Pr(nX , nY − 1, t)

+ rX pX (nX + 1) Pr(nX + 1, nY − 1, t) + rY pY (nY + 1) Pr(nX − 1, nY + 1, t)

+ α rX (nX + 1) Pr(nX + 1, nY , t) + α rY (nY + 1) Pr(nX , nY + 1, t)

− [rX (1 + pX + α) nX + rY (1 + pY + α) nY ] Pr(nX , nY , t)

(3.7)
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3.2 Fokker-Planck Equation

Carrying out Taylor series expansion of the master equation as directed in section 2.4
we obtain the deterministic drift vector aC, the diffusion matrix BC and the alternative
diffusion matrix CC obtained from the chemotherapy reaction rates (Table 3.2).

aC(x) =

rX (1− pX − α) x+ rY pY y

rY (1− pY − α) y + rX pX x


BC(x) =

rX (1 + pX + α) x+ rY pY y −(rX pX x+ rY pY y)

−(rX pX x+ rY pY y) rY (1 + pY + α) y + rX pX x


CC(x) =

√rX x −√rX pX x
√
rY pY y −√α rX x

√
rY y

√
rX pX x −√rY pY y −√α rY y


(3.8)

Substituting the drift vector and diffusion matrices in the Fokker-Planck equation
(Equation 2.4) we get the Fokker-Planck equation for chemotherapy.

∂t Pr(x, t) = −
2∑
i=1

∂xi [a
C
i (x) Pr(x, t)] +

2∑
i=1

2∑
j=1

∂xi∂xj [b
C
ij(x) Pr(x, t)]

3.3 Mean-field Limit

Application of Liouville’s theorem leads to a system of ordinary differential equations.

ẋ = aC(x)

The mean-field model is linear and has one fixed point at (0, 0).

xtr = (0, 0)

Linearizing around the fixed point we get the following Jacobian matrix

J(xtr) =

rX (1− pX − α) rY pY

rX pX rY (1− pY − α)
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Let us consider the following 2x2 matrix a b

d c

 .
Where

a = rX (1− pX − α)

b = rY pY

c = rY (1− pY − α)

d = rX pX .

The eigenvalues of the Jacobian matrix J(xtr) are

λ± =
1

2

[
a+ c±

√
(a− c)2 + 4bd

]
.

Now, the cell type switching rates b, d are always positive (Table 3.1). The realized
growth rates a, c are negative during chemotherapy as α = 2; and are positive otherwise
because α = 0. The term (a − c)2 is always positive, that means (a − c)2 + 4bd is
positive, hence eigenvalues are real.

For very small switching rates b, d << 1 (Table 3.1), we can ignore 4bd and λ± ≈
1
2

[a+ c± |a− c|]. In case of chemotherapy 0 > a > c, and otherwise 0 < a < c. Thus
for chemotherapy, λ+ ≈ a; λ− ≈ c and otherwise λ+ ≈ c; λ− ≈ a.

In chemotherapy, xtr is a stable fixed point as the eigenvalues are negative. Otherwise,
it is an unstable fixed point because eigenvalues are positive. The largest eigenvalue
drives the system and for low switching rates, the growth rate of corresponding
subpopulation determines the growth rate of the disease.

To dissect the effect of cell type switching, we simulate four different cases (Figure 3.2).
The extinction of a cell type is defined as the absence of the cell type, i.e., xi = 0.

Case 1 : No cell type switching

No switching of cell types was allowed in this case, i.e. pX = pY = 0. In this case, the
populations did not survive until the end of the treatment and went extinct.

Case 2 : only slow to fast cell type switching

Only slowly growing cells were allowed to switch into rapidly growing cells, that is
pX = 0.02, pY = 0. Both the populations faced extinction in this case.
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Case 3: Only fast to slow switching
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Case 4: Two-way cell type switching
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Figure 3.2: Mean-field dynamics of slow and fast cells under chemotherapy.
The treatment starts on day 0 and lasts for 30 days. The blue and orange lines
represent the slow and fast cell types, respectively. The gray line represents the total
number of leukemic cells. The initial condition was x = (10, 90) for all cases. The
growth rate of slow cells rX = 0.2, the growth rate of fast cells rY = 1, growth rate
of slow cells rX = 0.2, strength of chemotherapy α = 2. Panel (a) no switching rate,
pX = pY = 0 result in extinction of both cell type with absence of a relapse. Panel (b)
only slow to fast switching rate pX = 0.02, results in extinction of both the cell types.
Panel (c) fast to slow switching rate pY = 0.02, results in extinction of fast cell with a
slow relapse. Panel (d) two-way switching rate pX = pY = 0.02, reult in extinction of
fast cells with fast relapse.

Case 3 : only fast to slow cell type switching

Only rapidly growing cells were allowed to switch to slowly growing cells, that is
pX = 0, pY = 0.02. The rapidly growing population went extinct, whereas the slowly
growing population survived the treatment. The relapse following the treatment was
represented by the remaining slow-growing cells.

Case 4 : two-way cell type switching
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Both the cell types are allowed to switch into each other, that is pX = pY = 0.02. The
slowly growing population survived the treatment while rapidly growing population
faced extinction. The relapse after the treatment had both types of the cell because of
the two-way switching.

At the beginning of the treatment, the slow populations did not decline right away.
The influx from rapidly growing cells supported the slowly-growing populations. The
support persisted until the rapidly growing cells declined below a particular value.
After a specific duration into the treatment, the decline of rapidly growing cells was
supported by the slowly proliferating cells. Right after the treatment, the relapse was
slow, but later it was represented by the fast-growing cells.

3.4 Stochastic Model

Using the Feynmann-Kac formula (section 2.7), we can obtain the stochastic differential
equations for chemotherapy.

ẋ = aC(x) +
√
BC(x) ξ(t).

Using the procedure to obtain the alternative system as directed in section 2.7 we get

ẋ = aC(x) + CC(x) ξ∗(t).

3.5 First-passage Analysis

The exit probability through a particular exit always decay as you go away from it;
i.e., there is no periodic behavior or increase in the probability. This observation is
due to the boundary condition (section 2.9) and the diffusive nature of Equation 2.7.
Solving this equation numerically for the entire domain, i.e. square boundary of ∞
length is impossible. Thus, we solve for more feasible boundaries. The maximum
chance of exit increases for larger domains; for the smaller domain (Figure 3.3a), there
was a maximum 2.5% chance of exit. Whereas for a larger domain, (Figure 3.3b),
there was, maximum 6% chance of exit. The system behaves according to the the
original domain, therefore exit probability obtained by solving any finite boundary
length will underestimate the chance of exit.

Reduction in the leukemic cell counts led to more frequent extinction. This was
concluded using the first-exit probabilities (section 2.9) for the chemotherapy model.
The probability of exit at (0, 0) was spread along the y-axis, i.e., the number density of
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Figure 3.3: Comparison of different boundary lengths for extinction in
chemotherapy. All the panels have equal parameter values rX = 0.2, rY =
1, pX = pY = 0.02, α = 2, R = 1. Panel (a) shows exit probabilities at xts for
square boundaries of length 1 unit. Panel (b) shows exit probabilities at xts for square
boundaries of length 10 units. An increase of spread in exit-probabilities is observed
from panel (a) to (b) as boundaries expand.
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(a) Deterministic trajectories for chemotherapy
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(b) Stochastic trajectories for chemotherapy

Figure 3.4: Comparison of deterministic and stochastic trajectories of slow
and fast cells under chemotherapy. All the panels have equal parameter values
rX = 0.2, rY = 1, pX = pY = 0.02, α = 2, R = 1. Panel (a) shows
deterministic trajectories for chemotherapy. Panel (b) shows stochastic trajectories for
chemotherapy. Panel (b) is the average of 50 individual stochastic trajectories. The
stochastic model for same parameter values predict an extinction of the disease during
chemotherapy while deterministic model predicts a relapse.

fast cells. The random fluctuations realized in the population allowed it to go extinct
(Figure 3.4b) even when there is no extinction in the mean-filed model (Figure 3.4a).
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Model for Immunotherapy

Symbol Description

X leukemia cells
Y cytotoxic T cells

rX , rY birth rate constants 1, 1 day−1

K T cell carrying capacity 1

χ inverse of T cell killing capacity 1

δ T cell mediated killing rate constant 1 day−1

β T cell activation rate constant 1 day−1

Table 4.1: Symbols used for variables and parameters in the immunotherapy
model.

Immunotherapy uses the patient’s own killer T cells against the tumor. The bi-specific
antibody, Blinatumomab, can bind to both killer T cells and the lymphoid progenitor
cells. The binding caused by the antibody induces an immunological synapse between
the killer T cells and the target cells. Formation of a synapse lead the killer T cells
to release lethal molecules, making them kill the tumor cells. Moreover, this effector
function of killer T cells also induces their proliferation, known as T cell activation. To
understand the role played by the effector cells of the immune system, we assume two
cell types: target (tumor) cells and T cells. The tumor cells are denoted as X, and
the T cells are denoted as Y . The killing imposed by T cell depletes their resources
and makes them refractory. The refractory T cells do not contribute to the treatment
and are considered dead for the scope of this study.

Reactions corresponding to the biological interactions experienced by tumor cells and
T cells are summarized in Table 4.2. The per-capita proliferation rate of tumor cells is

25
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Figure 4.1: Illustration of the immunotherapy model. The tumor and killer T
cells, denoted X and Y , proliferate with respective growth rates rX , rY . The T cells
are under immune regulation, with a competetive exclusion rate of rY /K, imposing a
carrying capacity K. The presence of Blinatumomab bound target cells leads to T
cell activation with the rate β. The T cell mediated killing takes place at the rate δ
and removes χ T cells for target cell killed.

denoted rX , and the tumor growth is depicted by reaction 4.1. The per-capita growth
rate of T cell is denoted rY , and the T cell growth is represented by reaction 4.2.
The immune regulation of T cells is captured by reaction 4.3 where K is the immune
carrying capacity, and R2 is the total volume of blood. The activation of T cells is
symbolized by reaction 4.4, β is the per-capita activation rate of T cells. The effector
function of T cells is shown in reaction 4.5 where δ is the per-capita killing rate, and
χ is the inverse of the average number of B cells killed by a T cell.

Reaction Rate Change vector

X −→ X +X rX X r1 = (1, 0) (4.1)
Y −→ Y + Y rY Y r2 = (0, 1) (4.2)
Y + Y −→ Y rY

K R2 Y
2 r4 = (0,−1) (4.3)

X + Y −→ X + Y + Y β
R2 X Y r5 = (0, 1) (4.4)

X + χ Y −→ φ δ
R2 X Y r3 = (−1,−χ) (4.5)

Table 4.2: Reactions used in the immunotherapy model.
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4.1 Master Equation

Substituting the reaction rates and change vectors in Equation 2.1 we get the following
master equation for immunotherapy

∴ ∂t Pr(nX , nY , t) = rX (nX − 1) Pr(nX − 1, nY , t)

+ rY (nY − 1) Pr(nX , nY − 1, t)

+
rY

K R2
(nY + 1)2 Pr(nX , nY + 1, t)

+
β

R2
nX (nY − 1) Pr(nx, nY − 1, t)

+
δ

R2
(nX + 1) (ny + χ) Pr(nX + 1, nY + χ, t)

−
[
rX nX +

δ

R2
nX nY

+ rY nY +
rX
K R2

n2
y +

β

R2
nX nY

]
Pr(nX , nY , t)

(4.6)

4.2 Fokker-Planck Equation

The deterministic drift vector aI , the diffusion matrix BI and the alternative diffusion
matrix CI are obtained by performing Taylor series expansion of the master equation
as directed in section 2.4 using the immunotherapy reaction rates (Table 4.2).

aI(x) =

 rX x− δ x y

rY y (1− y
K

) + (β − δχ) x y


BI(x) =

rX x+ δ x y χ δ x y

χ δ x y rY y (1 + y
K

) + (β + χ2 δ) x y


CI(x) =

√rX x −
√
δ x y

√
rY y −

√
rY
K
y2
√
β x y −χ

√
δ x y


(4.7)

Substituting the drift vector and diffusion matrices in the Fokker-Planck equation
(Equation 2.4) we get the Fokker-Planck equation for immunotherapy.

∂t Pr(x, t) = −
2∑
i=1

∂xi [a
I
i (x) Pr(x, t)] +

2∑
i=1

2∑
j=1

∂xi∂xj [b
I
ij(x) Pr(x, t)]
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4.3 Mean-field Model

Application of Liouville’s theorem leads to a system of ordinary differential equations.

ẋ = aI(x)

The immunotherapy mean-field model has three fixed points: trivial, treatment succes,
co-existance. We denote the fixed points as xtr, xts, and xco respectively. We denote
(∞, 0) as x∞ for convenience.

xtr = (0, 0); xts = (0, K); xco = (
rY (rX −Kδ)
Kδ(β − δχ)

,
rX
δ

)

The co-existence fixed point is only relevant when the X component is greater than
zero as we restrict the model to the first quadrant of the real plane. That is either
(rX −Kδ) and (β − δχ) both positive together or negative together.

Linearizing around these fixed points one-by-one

J(xtr) =

rX 0

0 rY



The eigenvalues of J(xtr) are rX and rY , by definition they are always positive. Hence,
xtr is always an unstable fixed point.

J(xts) =

 rX −Kδ 0

(β − δχ)K −rY



The eigenvalues of J(xts) are (rX −Kδ) and −rY with corresponding eigenvectors
( rY +rX−Kδ
K(β−δχ) , 1) and (0, 1) respectively. As −rY is always negative xts is always attracting

on the y-axis. For (rX −Kδ) > 0, xts is a saddle point and for (rX −Kδ) < 0 it is a
stable fixed point.

J(xco) =

 0 − rY (rX−Kδ)
K(β−δχ)

rX
δ

(β − δχ) − rXrY
Kδ



The eigenvalues of J(xco) are λ± = 1
2

[
−γ ±

√
γ2 − 4γ(rX −Kδ)

]
where γ = rXrY

Kδ
.

For (rX − Kδ) > γ
4
, eigenvalues are imaginary and have negative real part. For

(rX −Kδ) < 0, λ+ is real and positive while λ− is real and negative.
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The patient dynamics can be categorized into four cases based on the behavior of fixed
points in different parameter regions.

Case 1: Treatment Success
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Case 2: Tumor Control
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Case 3: Treatment Failure
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Case 4: Bistability
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Figure 4.2: Mean-field phase portrait of tumor cells and T cells under
immunotherapy. Panel (a) the phase space trajectories in this parameter region
lead to xts fixed point. Panel (b) the phase space trajectories in this parameter region
converg to xco fixed point. Panel (c) the phase space trajectories in this parameter
region diverge to x∞. Panel (d) the phase space trajectories in this parameter region
converge to either xts or diverge to x∞ based on the initial conditions.

Case 1: Treatment Success (Figure 4.2a) (rX −Kδ) < 0 ; (β − δχ) > 0

rX = 0.5, rY = 1, β = 2

When the tumor growth rate is less than the rate of killing imposed at immune
carrying capacity, and the overall T cell proliferation due to effector function is
positive, treatment success is observed. In this case, there is only one fixed point xts,
and tumor cells go extinct independent of the starting conditions.
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Case 2: Tumor Control (Figure 4.2b) (rX −Kδ) > 0; (β − δχ) > 0

rX = 1.5, rY = 1, β = 2

When the tumor growth rate is not less than the rate of killing imposed at immune
carrying capacity, and the overall T cell proliferation due to effector function is positive,
control of tumor load is observed. There are two fixed points xts and xco that is
leukemia either get cured or is maintained at an equilibrium level. The basin of
attraction of xts is the y-axis, and for any positive number density of tumor cells leads
to xco.

Case 3: Treatment Failure (Figure 4.2c) (rX −Kδ) > 0; (β − δχ) < 0

rX = 2, rY = 1, β = 0

When the tumor growth rate is higher than the rate of killing imposed at immune
carrying capacity, and the overall T cell proliferation due to effector function is negative,
treatment failure is observed. There is a fixed point xts with the y-axis as the basin.
Trajectories from every other initial point diverge to x∞, that is, tumor cells do not
go extinct.

Case 4: Bistability (Figure 4.2d) (rX −Kδ) < 0; (β − δχ) < 0

rX = 0.5, rY = 1, β = 0

When the tumor growth rate is lower than the rate of killing imposed at immune
carrying capacity, and the overall T cell proliferation due to effector function is also
negative, bistability is observed in the system. There are two fixed points, xts and
xco, corresponding to the eradication of tumor cells, and coexistence with effector T
cells, respectively. There is a stable manifold separating the basin of attraction of xts
and x∞ passing through xco.

4.4 Stochastic Model

Using the Feynmann-Kac formula (section 2.7), we can obtain the stochastic differential
equations for chemotherapy.

ẋ = aI(x) +
√
BI(x) ξ(t)
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Using the procedure to obtain the alternative system as directed in section 2.7 we get

ẋ = aI(x) + CI(x) ξ∗(t)

4.5 First-passage Analysis

The killing of tumor cells leads to an increased contribution of random fluctuations in
the dynamics. The system does not strictly follow deterministic trajectories due to
fluctuations. We perform first-passage analysis for the parameters that correspond
to the case of Bistability. As a proxy to exit on the x∞, we measure exit probability
on the unstable manifold at x = (2, 0.1). The probabilities of exit at xts, and a point
on the unstable manifold have a peculiar effect on the effective basin boundary. The
line of equal probabilities of exit through either of the exit points is not on the stable
manifold. This line is away from the y-axis, increasing the realized basin for the
extinction of tumor cells (Figure 4.3c).
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Figure 4.3: Exit probabilities and the realized basin boundary under
immunotherapy. The extinction of tumor population can take place with some
non-zero probability even if deterministically it is in different basin of attraction. The
white dotted line is the line of equal probabilities of exit through either of the exit
points. This line is away from the origin compared to the stable manifold, i.e. the
points between stable manifold and the line of equal probability have higher chance of
getting extinct compared to diverging to x∞ despite being in the basin of x∞.
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Discussion

In this study, we model B lymphocyte leukemia that is known for its tendency
to return. The basis of the disease relapse is correlated with the post-treatment
residual disease (Della Starza et al. 2019), motivating a stochastic description. To
obtain an understanding of the disease relapse, we model leukemia under contemporary
treatments, chemotherapy, and immunotherapy. The treatments affect the lymphoblast
populations in fundamentally different ways. The chemotherapy targets cell proliferation;
hence, the faster the cells grow, the more are they affected. The leukemia populations
are functionally heterogeneous, due to the mutations; proliferation is one of the ways
this can surface (Hope et al. 2004). Before treatment, the fast-growing cells represent
the populations; this is reversed due to chemotherapy. Since the slow cells represent
the disease, the relapse followed by chemotherapy is slow.

The immunotherapy directs the adaptive immune system to kill the tumor cells using
an antibody (Nagorsen and Baeuerle 2011). Blinatumomab, a bi-specific T cell engager,
targets CD19, a cell surface-bound macromolecule, that is fundamental to the existence
of a B lymphocyte tumor cell. As a result, killer T cells eliminate any target cells
presenting the CD19 molecule, regardless of their growth rate. Hence, if slow cells and
fast cells are present in the same amount, they will experience similar mortality rates.
Since the proportion of slow and fast cells are the same at the end of the treatment,
the relapse tends to be dominated by fast-growing cells.

There are studies by Viossat and Noble 2020, Gatenby et al. 2009 suggesting tumor
containment over eradication. The eradication strategy specifies using a high dose
of treatment to kill all the tumor cells. Contrary to that, the tumor containment
strategy suggests maintaining the tumor below lethal levels. The latter approach is
better in two ways: reduced toxicity and low chance of resistant tumor. Containing

33
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the tumor requires less dosage of drugs, and therefore fewer adverse effects. Resistance
to chemotherapy usually comes with fitness disadvantages (Gatenby and Brown 2018)
and can not outgrow non-resistant cells in the absence of high selection pressure.
Exploiting this type of competition, we can maintain a treatment sensitive disease
under control. The proposed model of immunotherapy predicts a way to contain the
tumor (Figure 4.2b) without requiring any competition. Specifically, if the immune
system can be primed such that the T cell activation outweighs T cell exhaustion,
(β − δχ) > 0, the disease does not grow indefinitely (Figure 4.2a, Figure 4.2b).

For a series of coin tosses, if a particle is moved right at every occurrence of heads
and moved left every tail on a line, the particle is said to follow a random walk. Far
away from the starting position of the particle, if one keeps a hole, with the condition
that once the particle reaches the hole, it can not continue further; this is known as
the absorbing boundary for random walks. It is known that independent of the initial
position after sufficient time, the particle is found in the hole. The tumor cell numbers
are reduced rapidly in both types of present-day treatments. Population with small
sizes fall vulnerable to random fluctuations. If the system persists in this state, the
fluctuations are capable of driving the system to extinction. To show this, we draw
an analogy between the state of the disease and random walk. The analysis of exit
probabilities confirms that the tumor populations with a low number of cells have
more chances of getting extinct stochastically (Figure 3.3, Figure 4.3).

The tumor always grows by the rate of the fastest present phenotype. Thus, if the fast
cells are removed, then the net growth rate of the disease is reduced (Figure 3.2). The
immunotherapy performs better for a slow-growing tumors, (rX−Kδ) < 0 (Figure 4.2a,
Figure 4.2d). First, applying chemotherapy lowers the net growth rate of leukemia. It
is easy to control the slow-growing tumor by applying immunotherapy. This way the
tumor gets extinct by a persistent immune response (Figure 4.2a) or stochastically
(Figure 4.3). The sequence of an initial block of chemotherapy followed by prolonged
immunotherapy can not only contain tumors effectively but also escape the adverse
effects of high dose treatments.

The master equation and the Fokker-Planck equation arise in all the fields of science.
Given the rarity of analytical solutions, the only way to solve the equation is through
numerical methods. However, in practice, this more often than not, demand a lot
of computing power. The connection between the Fokker-Planck equation and the
stochastic differential equation, the Feynmann-Kac formula, has been realized but has
rarely been implemented for computations. This study illustrates an implementation
of this connection and brings attention to advances in Runge-Kutta algorithms to solve
the stochastic differential equation. Additionally, the alternative stochastic model
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proposed with the equivalent diffusion matrix C instead of B in the section 2.7 provides
more speed up in solving stochastic differential equations. It exploits the fact that
computing square root of the entries of a matrix is orders of magnitude faster than
computing the square root of a matrix.

The formulation of the models is in such a way that it can be used in practice right
away. The input/output of the model is in terms of cell numbers or tumor load,
a norm in the clinical practice. Blood counts are monitored frequently during the
treatment to asses the situation; using these patient-specific trajectories of lymphocyte
counts can be obtained. The reactions used in the model represent the real biological
processes, and their rates can be calibrated using a time series of lymphocyte counts.
Parameters related to the growth and death of cells can be calibrated by fitting patient
data. The parameters related to cell interactions may require additional in vitro
experiments. The workflow developed here is such that by writing chemical reactions
for the system, the master equation, the Fokker-Planck equation, and the differential
equations immediately follow. To conclude, we present a simple implementation of a
model integrating cell interaction into a quantitative understanding of contemporary
leukemia treatments. The study bridges some standard tools from statistical mechanics
and economics to analyze the behavior of the disease easing the computational effort
required to examine treatment strategies.
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