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Abstract

Here we explore the electronic structure of Monolayer Sn/Si(111)
√

3 ×
√

3 R300 which

is thought to be a correlated 2D Mott insulator. Previous theoretical considerations have

indicated that the system might display a row-wise AFM phase or a 1200 AFM Neel state.

Utilizing DFT and DFT+U calculations we compare the various magnetic configurations

to identify the ground state configuration for the system which turns out to be in a row-

wise AFM order. The mechanism behind the insulating behaviour can be attributed to be

either a weak correlation driven Slater insulator or a true strongly correlated Mott insulator.

We show that the system is most likely to be a Slater insulator from our calculations. By

examining the core level electronic spectra we are also able to provide an explanation for

the 2 double peaks seen in the core level ARPES spectra. Finally, we are able to observe

a doping driven insulator to metal transition and calculate the electronic structure and

magnetic configuration of these possible doped states.
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Introduction

Strongly correlated systems have become a cornerstone of condensed matter physics in re-

cent years. This field gained prominence and caught the interest of the community after

the discovery of high temperature superconductivity in 1980s[1]. This discovery brought

a whole host of new problems involving physics which couldn’t be explained by actions of

individual particle like entities and have to be treated with keeping the collective interac-

tions of electrons in mind. This renewed interest was also accompanied with a surge in the

computational capabilities and development of methods attempting to gain insights into the

electronic properties of materials.

The study of 2-D materials has also been growing in prominence after the isolation of

graphene in 2004 [2] which gave the community the opportunity to experimentally study the

role of dimensionality in the structural and electronic properties of material. 2-D also pro-

vides us with an ideal ground to study systems with electronic correlation as well as studying

phase transitions and competing phases. This is due to the increase in competition between

entropy change and internal energy in 2-D compared to 3-D where entropy usually dictates

the nature of phase space. Such correlated behaviour usually involve the d or f orbital which

have shown a propensity for being localized and thus showing strong electronic interaction.

Therefore materials involving transition metals , lanthanides and such like transition metal

dichalcogenides (TMD) have been the focus of research in this area. However another class of

materials involving metal adsorbates on semiconductor surface have emerged as a platform

to study electronic correlations. The coverage of the adsorbate can be controlled precisely

to form phases where electronic correlation effects begin to dominate.

The 1/3 ML Sn/Si(111) is an example of such a material and the focus of this theses. This

material is also special because photoemission [3] and scanning tunneling spectroscopy (STS)

[4] experiments have found this material to be insulating which is not expected because of the
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half filled band inside the semiconducting band gap. This insulating behaviour is attributed

to the presence of electronic correlations and thus this material is predicted to be a Mott

insulator. This material is also exciting as recently hole doped 1/3 ML Sn/Si(111) has

shown supercoductivity [5] at a Tc of around 4.5K which is even exceeds that of bulk Sn

(Tc = 3.7K). The study seems to suggest that the mechanism of action might be similar to

that found in high temperature unconventional superconductors. If this is indeed the case,

a study of this simpler material might help us gain valuable insights into unconventional

superconductivity in the complex layered superconductors.

Density functional theory (DFT) has been employed to solve solid-state problems since

the 1970s but still has been largely unsuccessful in dealing with materials involving strong

interactions. DFT+U has been put forward as a tool to incorporate some elements of the

many body interaction in the simple DFT framework and has found relative success in

describing materials like TiO2 [6], Ce2O3 cite7 and various organometallics [8] where DFT

has traditionally failed.

In this study we employ DFT and DFT+U based methods to identify the correct ground

state and magnetic properties of the 1/3 ML Sn/Si(111) correlated material and investigate

the nature and extent of correlation effects based on these calculation. We also try to prepare

the actual samples and image them using a scanning tunneling microscope.
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Chapter 1

Theory

1.1 Density functional theory

Density functional theory (DFT) is the backbone of this project. It is a very powerful com-

putational tool for ab-initio calculation of electronic structure of many body systmems. The

foundations of the theory lie in two theorems proved by Walter Kohn and Pierre Hohenberg

known as the Hohenberg-Kohn (H-K) theorems [8]. These theorems are given as :

• Theorem 1: For any system of interacting particles in an external potential V(r), the

V(r) is determined uniquely, except for a constant, by the ground state particle density

n(r).

• Theorem 2: A universal functional for the energy E[n] in terms of the density n(r) can

be defined, valid for any external potential V(r). For any particular V(r), the exact

ground state energy of the system is the global minimum value of this functional, and

the density that minimizes the functional is the exact ground state density n(r).

Based on these theorems an energy functional in terms of electron density can be constructed

.

EHK = T [n] + Eint[n] +

∫
d3rVext(r)n(r) + EII (1.1)

Where the terms T [n] is the kinetic energy contribution and Eint the interaction between
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the electrons
∫
d3rVext(r)n(r) the interaction energy between the nucleus and the electrons

and EII is the interaction between the nuclei the many body system.

The problem appears to be simplified on the surface owing to a simple term n(r) instead

of equations for individual electrons but it is still intractable as it involves many body

interactions which can’t be solved analytically. To solve this problem a different framework

was introduced by Walter Kohn and Lu Jeu Sham which reduced this problem to a system

of non-interacting electrons acting in an effective potential [9]. The H-K functional written

in the Kohn-Sham (K-S) framework is ,

EKS = Ts[n] +

∫
d3rVext(r)n(r) + EHartree[n] + EII + EXC [n] (1.2)

Where

Ts = −1

2

∑
σ

Nσ∑
i=1

< ψσi |∇2|ψσi >=
1

2

∑
σ

Nσ∑
i=1

∫
d3r|∇ψσi (r)|2 (1.3)

is the single particle kinetic energy in terms of the single particle wavefunctions ψσi and

EHartree =
1

2

∫
d3rd3r

′ n(r)n(r
′
)

|r − r′ |
(1.4)

is the direct coulomb interaction and EXC includes the many body exchange interaction and

correlations which is now approximated to solve the full system.

Now minimizing the K-S functional w.r.t the wavefunction we can arrive at Schrodinger-

like equations given by

(Hσ
KS − εσi )ψσi (r) = 0 (1.5)

where εσi are the K-S eigenvalues and

Hσ
KS = −1

2
∇2 + V σ

KS (1.6)

V σ
KS = Vext(r) +

∂EHartree
∂n(r, σ)

+
∂EXC
∂n(r, σ)

= Vext(r) + VHartree(r) + VXC(r) (1.7)

Now these equations can be solved in a self consistent manner according to 1.2. Note that our

solutions are only as good as our approximations for EXC . The most popular approximation

for EXC is the local density approximation (LDA) where the functional depends only on the
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Figure 1.1: From [11]. Schematic representation of the self-consistent loop for solution of
Kohn–Sham equations.

local density of electrons,

ELDA
XC =

∫
εXC(n)n(r)d3r (1.8)

In our work we extensively utilized Perdew–Burke-Ernzerho (PBE) [10] functional which

is a type of generalized gradient approximation (GGA) functional which also includes the

gradient of electron density and takes into account the potential non-homogeneity of the
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electron density. The general form can be written as ,

EGGA
XC =

∫
εXC(n,∇n)n(r)d3r (1.9)

1.2 DFT+U

1.2.1 Hubbard model and LDA+U

Density functional theory has proven to be very successful in describing systems where

the electronic interactions are not strong and system has well defined quasiparticle like ex

citations. However it fails quite heavily to successfully capture the behaviour of systems

where strong electronic interactions dictate the electronic structure. An example of such a

system is a Mott insulator [12][13] where the coulomb interactions are so strong that electrons

become localized to specific orbitals. DFT functionals like LDA and GGA generally tend to

over delocalize the valence orbitals and tend to stabilize a metallic ground state and hence

fails to capture the physics of strong correlations due to localization.

To understand the phenomenon of electronic correlations and localization we employ a

fairly simple model called the Hubbard Model where a simple one band Hamiltonian is given

as ,

HHub = t
∑

<i,j>,σ

(c†i,σcj,σ + h.c) + U
∑
i

ni,↑ni,↓ (1.10)

Here the sum involves only nearest neighbours i,j , c†i,σ, cj,σ are the electron creation and

annihilation operators at site i and j respectively and ni,σ are the number operators for

electrons at site i and spin σ. The parameter t controls the hopping of electrons between

sites i and j and is proportional to the bandwidth while the term U takes care of the on-site

coulomb interaction when electrons of opposite spin are present at the same site. If t� U ,i.e

there is a huge cost associated with putting the electrons on the same site and the hopping

cannot overcome this coulomb repulsion we get an insulator even with a half filled band

which would have been predicted to be a conductor by electron counting. This behaviour

is not correctly described by DFT which can normally account for the other limit U � t

(where system behaves like having well defined quasiparticles) quite well.
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While there exists some many-body methods like DMFT (dynamical mean field theory)

[14] and cluster approximations [15] which can capture such strongly correlated behaviour

,the simplicity and computationally low cost of DFT encourages us to find a way to incorpo-

rate features of such behaviour in it. This gives rise to the LDA+U approximation [16](which

can be extended to other functionals also and generally called DFT+U) . Within LDA+U ,

the energy functional is given as

ELDA+U [ρ(r)] = ELDA[ρ(r)] + EHub[n
Iσ
mm′ ]− Edc[nIσ] (1.11)

here , EHub contains the electron-electron interaction according to the Hubbard Hamiltonian

and Edc is the double counting term which removes the interaction energy already present

in ELDA to avoid problems due to double counting. nIσ
mm′ are the occupation numbers of the

localized orbitals and are defined as ,

nIσ
mm′ =

∑
k,v

fσkv < ψσkv|φ
I,σ

m′ >< φI,σm |ψσkv > (1.12)

where ψσkv are the K-S orbitals and φI,σm are the states of localized basis set. According to

[18] the total Hubbard correction EU = EHub − Edc can be given by

EU [{nIσ
mm′}] =

∑
I,σ

U I

2
Tr[nI,σ(1− nI,σ)] (1.13)

1.2.2 Calculation of U using linear response method [17]

Generally a value of U is approximated by comparing with the experiments and fitting a

parameter to match certain properties and is not known a-priori. However depending on the

system’s properties including structure and magnetism this value is not fixed and therefore,

should be calculated for a given system to gain some predictive power while working with

correlated systems.

The total energy given by DFT is an approximately analytic function of electron occu-

pancy of the orbitals. However , it should instead be a series a straight line segments which

match with the analytic curve at integer occupancy [19, 20, 21]. This piece-wise linear cor-

rection has the form of eq. 13 if we take the value of U to be the curvature of this function.

Therefore U can be calculated as the second derivative of energy as a function of electron
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Figure 1.2: From [17]. Schematic representation of the DFT total energy as a function of
electron occupation. Red line represents the exact energy, black line the DFT energy and
blue line represents the difference between the two.

occupancy which recovers the physical behaviour of the DFT energy function. This value

is calculated by utilizing a small perturbation to the K-S potential which is proportional to

the projector on the localized states of atom I.

Vtot|ψσkv >= VKS|ψσkv > +αI
∑
m

|φIm >< φIm|ψσkv > (1.14)

For the modified K-S energy functional the ground state if α dependent and is given by

E(αI) = min
η

(EDFT (η) + αInI) (1.15)

where η is the one body density matrix. We can write E[{nI}] = E(αI)− αInI for electron

occupancy nI at the minima of above equation. Therefore we get d2E/d(nI)2 = −dα/dnI .
If we vary αI and record the variation in all nJ we obtain a response matrix χIJ = dnJ/dαI

(I and J are the sites of Hubbard atoms ). The inverse of this response matrix gives the

value of Hubbard U, U I = −χ−1II . An extra term which measures the rehybridization of the

wavefunctions in response to perturbation has to be subtracted out which is given by χ0.

Therefore, the linear response value of Hubbard U is given by U I = (χ−10 − χ−1)II .
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1.3 Mechanisms for Insulating behaviour

The various mechanism behind insulating behaviour of a solid can be summarized as follows:

• Band Insulator : This can be understood by using a simple 1-D tight binding model

where the the Hamiltonian is given as,

Htbh = −t
∑
<j,i>σ

((c†1,σcj,σ + h.c)− µ
∑
j

(nj↑ + nj↓) (1.16)

where c†i,σ, cj,σ are the electron creation and annihilation operators at sites i and j

respectively. This can be solved by going to momentum state operators and we get the

diagonal hamiltonian as ,

H = −2t
∑
kσ

cos(k)c†kσckσ =
∑
kσ

εknkσ (1.17)

where c†kσ = 1√
N

∑
j e

ik.jc†jσ is the momentum space fermionic operators. Therefore

we get a continuous tight banding band. Now if we introduce a staggered potential

∆
∑

j(−1)jnjσ in the Hamiltonian we actually open a gap at momenta k = ±π/2 and

the energy dispersion is now given by ,

Ek = ±
√
ε2k + ∆2 (1.18)

Instead of a staggered potential ,if multiple fermionic species are present ,depending

on the relative strength of the hopping parameter we can also get insulating behaviour.

• Spin density wave : Consider the Hubbard Hamiltonian

HHub = −t
∑
<j,i>σ

((c†1,σcj,σ + h.c)− µ
∑
j

(nj↑ + nj↓) + U
∑
j

nj↑nj↓ (1.19)

Using mean field approximation the Hubbard term can be written as,

U
∑
j

(nj↑ < nj↓ > +nj↓ < nj↑ > − < nj↑ >< nj↓ >) (1.20)

If we consider an antiferromagnetic (AFM) pattern for electron occupation < nj↑ >=

9



η + (−1)jm and < nj↓ >= η − (−1)jm ensuring physical value of occupation ,we get

a very similar case of tight binding Hamiltonian in a staggered potential as before and

an insulating gap opens up. This type of spin density wave AFM insulator in relatively

weak Coulomb repulsion is also known as Slater insulator.

• Charge density wave : In this case electrons interact primarily through phonon

modes and the Hamiltonian known as the Holstein Hamiltonian can be written as ,

HHolstein = −t
∑
<j,i>σ

((c†1,σcj,σ + h.c) +
1

2

∑
j

(p2j + ω2q2j ) + λ
∑
j

(nj↑ + nj↓)qj (1.21)

where pj and qj are the phonon momentum and displacement operators. Now, if we

ignore the phonon kinetic energy and consider an oscillating displacement < qj >=

(−1)jq0 we again get a tight binding model with a staggered potential and an insulating

gap appears.

• Mott Localization : Consider equation 2.19. At intermediate value of U we expect

that an AFM order is stabilized as electrons of opposite spin can travel near each other

and lower the energy of the system by t2/U (second order energy approximation).

However, if if t ≪ U this movement of electrons becomes more constrained and there

comes a point where the system can be insulating without any apparant magnetic

order. This localization at strong correlations results in the Mott insulator.

• Anderson Localization : This type of localization occurs due to randomness or

defects in the tight binding Hamiltonian. Solving the tight binding Hamiltonian in

presence of defects result in the formation of localized wavefunctions at the site of the

defect and if the presence of such localized wavefunctions is sufficient enough this can

hinder the movement of the band electrons and open up an insulating gap.

10



Chapter 2

Experimental Concepts

2.1 Low Energy Electron Diffraction (LEED)

Low energy electron diffraction (LEED) is a widely used technique to probe the surface

structure of a crytalline material. The typical energy of electrons range from 20-200eV.

2.1.1 Theory

The low energy of electrons involved ensures that only the surface structure is probed by

the electron beam. If only elastic scattering is ensured the magnitude of incident electron

wavevector k0 is equal to the the scattered wavevector k. Now, as only the surface electrons

contribute to the scattering and there is no scattering in the perpendicular direction to the

surface and the Laue Condition [22] can be given as an

k|| − k
||
0 = Ghk = ha∗ + kb∗ (2.1)

where a∗ and b∗ are the reciprocal space primitice lattice vectors of the real surface lattice.

This can be visualised using the Ewalds sphere [23] (fig 2.1). The lattice points perpendicular

to surface from a continuous rod as there is no diffraction condition in that direction. In this

way LEED allows us to directly probe the surface organization and allows us to easily keep

track of the surface reconstructions during the preparation of the sample.
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Figure 2.1: Ewalds sphere construction. The numbers indicate the value of h and k for the
diffracted beam

2.1.2 Experimental Setup

Figure 2.2 shows a schematic of a LEED setup. The electron gun fires a beam of electrons

at the sample and the backscattered electrons which are elastically scattered reflect back

towards the fluorescent screen and from the pattern of the surface reciprocal lattice. To

ensure that only elastically scattered electrons are collected a series of grids are used to slow

down and scatter away low energy electrons.

2.2 Scanning Tunneling Microscopy (STM)

2.2.1 Theory

The operating principal behind STM is the phenomena of electron tunneling through a

barrier. A simple 1-D Schrodinger equation in presence of a potential barrier U(z) can be

12



Figure 2.2: A schematic showing the basic setup of a LEED device.[33]

written as ,

− ~
2m

∂2ψn(z)

∂z2
+ U(z)ψn(z) = Eψn(z) (2.2)

In the classically forbidden region we have exponential decay of the wavefunction and ψn(z) =

ψn(0)e±kz where k =
√

2m(U − E)/~2. Extending this idea to a sample-vacuum-tip interface

in real life applications , the tunneling current Itip is found to be proportional to e−2zk and

k is now equal to k =
√

2mφ/~2 where φ is the work function of the surface and the bias

is small enough so that only the states near Fermi level are probed. Therefore, due to the

exponential response of the tunneling current, STM is very sensitive to surface changes in

the z direction. The STM can be operated in two primary modes based on the control of

operating parameters.

• Constant current mode, where the tunneling current is kept constant by the feedback

mechanism, i.e. if the tip and the sample are too far apart and the tunneling current
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decreases, the feedback mechanism will bring the tip closer to the surface to increase

the current to the defined constant value. By tracking the movement of the tip, we

obtain a topographic image of the surface by this method.

• Constant height mode, where the height of the tip above the surface is kept constant

(i.e the feedback mechanism controlling the tip height is turned off ) and the changes

in the tunneling current as the tip moves over the sample are tracked. If the sample

is completely flat, this method allows to map the local density of states (DOS) of the

sample surface if we also vary the bias at every point. We can thus obtain a dI/dV

map which is proportional to the local DOS.

2.2.2 Experimental Setup

Figure 2.3: a) The experimental setup . b) A schematic depicting the various chambers and
components of the setup . From [34].

The setup is shown in figure:STM. The STM consists of three main chambers, the load-

lock chamber which is used to transfer tips and sample into the STM, the preparation

chamber which houses the electron beam evaporator and the quartz microbalance. We can

also attach the LEED and Auger devices to this chamber which allows us to prepare the

necessary samples in-situ. The STM chamber is able to operate at temperature upto 300mK

, has a base pressure of 10−11mbar at room temperature and work with magnetic fields upto

7T. WSxM [24] software was used to obtain the topographic images.
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Chapter 3

The Sn/Si(111) surface

3.1 Tetravalent adatoms on Semiconductor Surfaces

Figure 3.1: Top and side view of the charge ordered 1/3 ML Pb/Si(111) surface. Red and
blue highlighted areas represent the

√
3 ×
√

3 and 3 × 3 reconstruction respectively. The
up-down Pb atoms of the 3× 3 can be visualized in the side view. From [27]

1/3 ML Sn/Si(111) belongs to a family of surfaces with similar isoelectronic phases like

Pb/Si(111), Pb/Ge(111), Sn/Ge(111) and Sn/SiC(0001). At 1/3 ML coverage these adatoms

saturate three Si atoms each but are left with an unsaturated electron which results in a

half filled band in the semiconducting gap. However, a small class of these materials like the

Sn/Si [3, 4] and Sn/SiC [25] have been found to be insulating and have been classified as

Mott insulators.
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All of these systems show a
√

3 ×
√

3 reconstruction at room temperature. Several

studies to investigate the nature of these systems at low temperature have been conducted

which reveal that some systems like Pb/Ge(111), Pb/Si(111) and Sn/Ge(111) transition to

a charge ordered 3 × 3 phases with distortions of the adsorbed atom perpendicular to the

surface [26, 27, 28]. The Sn/Ge(111) system also shows such a charge ordered phase but

goes back to a
√

3×
√

3 phase with insulating behaviour at still lower temperatures.

3.2 1/3 ML Sn/Si(111)

As discussed earlier, at room temperature this system exists in a stable
√

3×
√

3 with the Sn

atoms being located at the T4 sites above the second layer Si atoms does not show any sign of

transition to a different reconstruction at lower temperatures [4]. STM measurements have

indicated a Mott transition at a temperature between 30 to 40K with an insulating gap of

around 70 meV [29]. As an insulating gap is often occompanied by some magnetic transition,

an investigation of magnetic order at low temperature is very important for understanding

the electronic structure of this system. However, no direct magnetic measurements as of

yet, have been performed on this system. Theoretical considerations have indicated that the

system might display a row-wise AFM phase or a 1200 AFM Neel state (In plane triagonal

order in this theses) [21]. A recent ARPES study [3] has claimed to provide evidence for the

row wise AFM order but the insulating gap reported in the ARPES studies is much larger

than the ones found in the STS studies.

Figure 3.2: Top and side view of the 1/3 ML Sn/Si(111) surface. Red balls depict the Sn
atoms at T4 sites while the light blue and dark blue balls represent Si atoms in the first and
second bilayer from the top.
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Chapter 4

Results

4.1 Density functional theory based calculations

4.1.1 Optimization of the initial structure

All calculations were based on QUANTUM ESPRESSO [30] code. It utilizes plane waves

basis set and are thus quite suited for calculations involving periodic crystal like structure.

The initial supercell consisted of a Si(111) surface with 3 silicon bilayers with hydrogen

atoms bonded to the dangling electrons of the bottom Si surface and around 16 Å of vacuum

to simulate a slab and prevent interactions between the slabs in z direction. The Sn atoms

were then placed at T4 positions above the Si(111) surface and the position of the atoms of

the top two Si bilayers along with the Sn atoms was optimized to reduce any residual forces

introduced by adding the Sn atoms. Calculations were mainly done using a GGA exchange-

correlation functional (PBE) and using an ultrasoft pseudopotential with an energy cutoff

of 45 Ry.

4.1.2 The
√

3×
√

3 supercell

The
√

3×
√

3 supercell was constructed with one Sn atom per supercell. The paramagnetic

calculations showed a clearly isolated surface band in the bulk bandgap. However we see

17



Figure 4.1: Top: a) The side view of the
√

3×
√

3 supercell with 16 Å of vacuum to stimulate
the 2D slab like model. b) Top view of the supercell c) Paramagnetic band structure. Bottom:
The paramagnetic DOS with and without SOC. SOC only causes a band splitting of 20meV
or 5% of the total band.

the surface band is conducting which is in clear contradiction to the experimental data [29],

therefore a simple paramagnetic (PM) model is unable to accurately describe our system.

Spin orbit coupling (SOC) was then implemented in our system using relativistic pseudopo-

tentials but we observe only a 5% SOC splitting therefore we don’t include any relativistic

effects in further calculations.
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Figure 4.2: Cartoon representation of the up-down order found to be stabilized in presence
of collinear magnetism.

4.1.3 The 3× 3 supercell

A possible charge ordered 3×3 reconstruction was investigated (similar to the blue highlited

zone in Fig. 3.1) which have been found to be stable in some similar correlated surfaces like

1/3 ML Pb/Si(111) [27]. The paramagnetic calculations of the electronic structure of a 3×3

supercell with 3 Sn atoms don’t reveal a charge ordered phase but a collinear ferrimagnetic

magnetic order with out of plane magnetization of the Sn atoms does stabilize a phase with

2 Sn atoms about 0.1 Å above than the third one as shown in 4.2.

4.1.4 Investigation of the magnetic order

Figure 4.3: The supercells used in DFT calculations. 6× 3 cell is green, the
√

3×
√

3 cell in
in yellow and the 2

√
3×
√

3 cell is depicted in brown.
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Figure 4.4: Top: DOS of row-wise AFM configuration without any U. Middle: DOS in
the presence of U=2.12 eV with a gap of 70meV. Bottom: Band structure of the AFM
configuration (2

√
3×
√

3 supercell) with U.
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The potential for magnetic ground state was investigated next. The
√

3 ×
√

3 supercell

only has one Sn atom per supercell, therefore to investigate competing magnetic orders a

bigger supercell was needed. The possibility of a row-wise antiferromagnetic (AFM) order has

been suggested by earlier investigations [29], therefore a 2
√

3×2
√

3 supercell was constructed

with 4 Sn atoms and a row-wise AFM order. The density of states (DOS) at the fermi level

is sharply depleted and see an apparent stabilization of the AFM order compared to the

paramagnetic order which qualitatively matches some earlier experimental studies[4]. To

accurately compare the ground state energetics of the various magnetic states. Figure 4.5

shows the various magnetic orders studied.

The calculations reveal that the AFM phase is indeed the most stable one with a magnetic

moment of magnitude 0.05 µB . Inspite of being the most stable magnetic configuration in

our calculation and showing a strong depletion of DOS at the fermi level we don’t really

see a insulating gap in our calculations as seen in the experimental studies. To improve our

calculations and enhance the effects of correlations in our system a rotationally invariant

formulation of DFT+U approximation was used [18]. The self consistent value of U was

calculated to be 2.12 eV using the linear response method [17]. The p-orbital of the Sn atom

with its dangling electrons was subject to the on-site Hubbard repulsion as it is identified to

be most likely to localized at the surface.

The various magnetic structures were all then also studied in a 6×3 unit cell to get an

accurate comparison of the energies.In addition to the collinear out of plane magnetic orders

we also include some in plane magnetic order like the 120◦ inplane anti-ferromagnetic order

which is also touted as a possible ground state for the system [21] along with a seemingly

irregular inplane magnetic order which occurs out of stabilization of some inplane magnetic

calculations. This irregular magnetic order is recognized to be the incomplete stabilization

of an inplane row-wise AFM order and it matches very closely in energy with the out of

plane row-wise AFM order. The charge ordered phase which appeared with the 3 × 3 order

also disappeared upon stabilization in presence of U and therefore was not considered for

further calculations.

The DFT+U calculations show that the row-wise AFM phase is still the most stable

configuration of the ones studied and the Hubbard U makes the energy difference more

pronounced which imply an important consequence of adding the on-site coulomb repulsion.

The energy gap is around 70 meV and this is of the order of the energy gap found in STS
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experiments [29] .

Mag. config AFM FIM FM PM

∆E/Sn 0.000 0.042 1.683 2.610
Mag.Moment 0.0519 0.0267,-0.0508 0.0208 0.000

Table 4.1: Energy of collinear magnetic configurations using PBE functional(GGA). The
∆E/Sn values are the energy difference (in meV) w.r.t the AFM configuration. The Mag.
Moment is the magnitude of on site Sn magnetic moment (in µB). The magnitude of the
spin up and spin down Sn atoms are listed separately of the case of FIM.

Mag. config AFM FM IP TRI IP AFM

∆E/Sn 0.000 16.669 0.171 0.071
Mag.Moment 0.0908 0.0841 0.085 0.0970

Table 4.2: Energy of collinear magnetic configurations using PBE+U.The value of U is 2.1
eV. The ∆E/Sn values are the energy difference (in meV) w.r.t the AFM configuration. The
Mag. Moment is the magnitude of on site Sn magnetic moment (in µB).

4.1.5 Characterization of the surface band

Orbital resolving the surface band reveals that it has about 65% Si p orbital ,24% Sn p

orbital, 5% Si s orbital and 4% Sn s orbital character. This suggests that the Sn adatoms

are heavily hybridized with the Si atoms underneath. Indeed, resolving the surface band

according to the contributing Si bilayers in case of the most stable AFM configuration reveal

that there is non-trivial contributions of the bulk Si atoms to this band . This hybridization

is more clearly seen by plotting the localized Wannier wavefunction .

4.1.6 Calculation of magnetic exchange strength

If we assume that the electrons are localized sufficiently we can map the energy of interactions

between the the magnetic atoms with an Ising hamiltonian which is given by

Hising = −1

2

∑
<i,j>

JijSiSj (4.1)
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Here the sum over i,j involves only nearest neighbour i.e the superexchange interaction is

short ranged , Jij = J , the exchange coupling is homogeneous over the lattice and Si, Sj

are the magnetic moments at site i j. We can relate the energy difference of the FM and

AFM configuration to the the strength of the exchange coupling if we assume the Ising type

magnetic interaction .The magnetic energy of the FM configuration in the 6× 3 supercell is

given as −7JS2
z and of the AFM configuration is given by 3JS2

z .

∆E = EAFM − EFM = 10JS2
z (4.2)

Assuming Sz to be 1/2 we get the exchange strength of the system with and without Hubbard

U as -0.040 eV and -0.004 eV respectively. So we see that in the case of DFT+U calculations

we have an order of magnitude increase in interactions between the magnetic atoms.

4.1.7 Core d-orbitals

Photoemission spectra studies reveal that the core level spectrum of the Sn atom can be

modeled by two doublets [4]. It has been debated whether these are the result of some

distortion due to presence of unequal Sn atoms resulting in a 3× 3 phase or due to magnetic

considerations. To investigate this we calculated the DOS of the
√

3 ×
√

3 supercell with

nonmagnetic Sn atoms with relativistic considerations. This reveals a two peak structure at

comparable energies to that of the experiments. Calculating the maximally localized wannier

wavefunctions of the d-orbitals and plotting them reveal that the smaller of the two peaks

at higher binding energy is due to the orbital dx2−y2 and dxy and the larger peak is due

to the orbitals dz2 , dxz and dyz. This result seems to be consistent with the geometry of

the 2-d surface where the Sn orbitals extending in z direction should feel the most overlap

and repulsion from the Si orbitals. Furthermore ,plotting the DOS for the AFM 2
√

3×
√

3

shows that the core level spectra is actually split in 4 peaks separated by very small energy

differences, however as we are not able to successfully complete a magnetic calculation with

relativistic considerations we are not able to capture an accurate representation of the core

level in this calculation. But based on these calculations, it wouldn’t be a far stretch to

say that the core level spectra can be explained to be the result of predominantly geometric

consideration and the doublets are a result of splitting of energy due to magnetization of

the orbitals instead of the presence of a distorted 3× 3 phase which is not stabilized by our

DFT+U calculations.
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4.2 HSE functionals [32]

Calculations using HSE functional (using 25% mixing parameter) which calculates accurate

values for exchange part of the energy, was also performed in Gaussian basis set using the

CRYSTAL17 package. QUANTUM ESPRESSO was not used as using HSE functional in

plane wave basis set is computationally very expensive and not feasible for our calculations.

Using HSE functionals in Gaussian basis set overestimated the band gap by a lot which

may be due to inherent localization of the Gaussian basis set and the overestimation of the

exchange part of the interaction. This is supported by the observation that decreasing the

range of interaction made the band structure closer to that of PBE+U in plain wave basis

set.

4.3 Doping induced Insulator-Metal transition

Following the discovery of superconductivity in hole doped 1/3 ML Sn/Si(111) [5], we tried

to investigate electronic structure of the hole doped systems. We found that a doping level

of 1 hole per 6 Sn atoms (16.67%) was enough to induce a transition from insulating to a

conducting phase as evident by the calculated DOS (Fig. 4.9). The transition to a conducting

phase is accompanied by the appearance of a van Hove singularity (VHS) peaks near -20meV

which is similar to the peaks appearing in STS studies of 20% Boron doped systems (peaks

near -10meV) [31]. However, there is no clear indication of spectral weight transfer to a

well defined quasiparticle band as found in the experiments. We also found that the AFM

phase is again the most stable phase in presence of doping compared to the paramagnetic

and FM phases. This may indicate a possible coexistence of AFM magnetic order with the

superconducting (SC) phase below the superconducting critical temperature.

4.4 Sample preparation and imaging

A Phosphorus doped Si(111) sample was used as the substrate. The surface was prepared it

by flashing it multiple times upto 11000C. After the final flash the temperature was reduced

to about 9000C and then sample was annealed by slowly decreasing the temperature to 5000C
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in 30 minutes. The surface reconstruction was checked under a LEED to ascertain if we get

the 7× 7 reconstruction of the Si(111) surface.

Sn was evaporated on the Si substrate using an electron beam evaporator. A flux of 0.5

ML per minute was used to evaporate 1.5 ML of Sn in 3 minutes at room temperature. The

surface was then annealed at around 6000C for 2 minutes to evaporate the extra Sn atoms

and obtain a 0.33 ML coverage for the
√

3 ×
√

3 reconstruction. This was confirmed under

LEED with a clear transition from the 7× 7 pattern followed by a 1× 1 pattern and finally

the
√

3×
√

3 pattern.

The prepared substrates were imaged under the STM to validate a good quality surface

before deposition of the Sn adatoms. However, the STM images revealed the substrate to

be full of defects and unwanted adsorbates like the presence of SiC islands. We are still in

process of countering these problems and hope to get a clean surface for the Sn deposition

and analysis by STS.
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Figure 4.5: The different magnetic configurations. Top two configuration are inplane while
the bottom three are out of plane magnetic moment configurations.
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Figure 4.6: Top: The orbital resolved DOS of paramagnetic state with labeled contributions.
Bottom left: DOS of AFM configuration in DFT+U resolved by the contributions coming
from different layers with 15meV gaussian smoothing. Bottom right: Side and top view
of Wannier functions plotted over the crystal lattice to illustrate the hybridization between
layers.
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Figure 4.7: Top: The dual 4d peaks in DOS of paramagnetic
√

3x
√

3 cell with relativistic
considerations. Middle: DOS of an Sn atom in 6×3 supercell with row-wise AFM order with
U=2.12 eV. We can see the the spin polaraized peaks depicted by black and red form two
doublets. Bottom: The results of wannierization procedure which 2 clear group of hybridized
orbitals highlighted by orange and green boxes.
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Figure 4.8: Top: HSE band structure for AFM configuration when interactions are restricted
to less than 1 Å, the insulating gap is around 50meV. Bottom : HSE band structure for AFM
configuration with default range of interactions, the insulating gap is around 0.7 eV. Alpha
and Beta represent the two opposite spins.
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Figure 4.9: DOS of 1 hole doped and 2 hole doped AFM configuration compared to no
doping. The calculations where done in a 6× 3 supercell with a Hubbard U of 2.12 eV.
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Figure 4.10: Top left : LEED image of Si(111) 7 × 7 surface reconstruction. Top right:
LEED image of 1/3 ML Sn/Si(111) 3× 3 surface reconstruction. Bottom left: A 50x50 nm
image of Si(111) 7× 7 surface showing various defects and impurities. The blue inset shows
a zoomed in image of the boxed area with clear 7 × 7 cells visible. Bottom right: A large
scale 2x2 µm image showing a large amount of SiC islands along the step edges.
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Chapter 5

Conclusion

5.1 Discussion

Based on the DFT calculations, we are now ready to draw some conclusions keeping in mind

that these are still approximations to the real system and have to be verified by careful

experimentation.

The ground state appears to have the magnetic order of collinear row-wise AFM and not

the 1200 inplane triagonal order has been suggested by some. We have tried to calculate

an optimal value of Hubbard U but this result may not be correct if the actual value of

Coulomb repulsion is not similar to the one we calculated. This is beacause changing the

value of Hubbard U can change the relative stability of the different magnetic phases.

As seen in section 4.1.5, the Sn adlayer is heavily hybridized with the Si layers underneath

it which can also explain the small value of magnetization observed. This hybridization can

open up the pathway for superexchange interaction of the Sn atoms via Si inspite of the

Sn atoms being located far away from each other. This interaction in turn, can explain the

opening up of an insulating gap in the AFM configuration in the presence of an intermediate

value of U which is characteristic of a Slater type insulator. To confirm this, we will have

to test if the onset of insulating behaviour coincides with the appearance of magnetic order

i.e the Mott transition happens near the Neel’s temperature. This also suggests that this

system is not as strongly correlated as thought earlier and may not be a Mott insulator.
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5.2 Future investigations and questions

Through the course of performing the calculations we have realized that the insulating gap

is very small and the SOC which had been ignored earlier might influence the accuracy of

the gap calculated. However, we were not able to achieve a convergence of the magnetic

solution in presence of Hubbard U and SOC together. It should be interesting to see if the

nature of the band changes in presence of SOC in the future.

A large part of this project involving experimental measurements using scanning tunnel-

ing spectroscopy (STS) could not be performed in time due to various technical difficulties

with the setup. We hope to investigate the predictions of the thesis in near future experi-

ments.

We were also able to obtain isoenergy images and joint density state(JDOS) plots for the

surface of the system using Wannier wavefunctions and we hope to analyze these images and

compare it to future experimental results.

Figure 5.1: Isoenergy surface and joint DOS of the DFT+U AFM calculation at -50meV
energy. The black box represents the brillouin zone of 2

√
3 × 3 periodic cell which houses

the row-wise AFM order.

The very interesting claim of unconventional 2-D superconductivity in doped 1/3 ML

Sn/Si [5] is sure to be followed up by a lot of work in such correlated materials. We have

done a brief investigation of the insulator to metal transition in presence of hole doping as
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discussed in 4.3. We could not go to lower doping levels due to being constrained with the size

of the supercell. A lower doping level would require a bigger cell and higher computational

cost. We hope that future studies can help characterise the transition point of the insulator

to metal transition as a function of doping. Furthermore, it will also be interesting to see

if we are able to calculate the properties of the superconductor using DFT or the system is

truly governed by strong electronic correlations instead of electron-phonon interactions so

that DFT is unable to capture the physics of the superconductor.
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