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Abstract

This thesis presents a study of the quasilocal stress tensor proposed by Brown and York in

1993 from the perspective of the AdS/CFT correspondence which was carried out by Kraus

and Balasubramanian in 1999. The thesis begins with a quick review of the essential ideas

of AdS/CFT. The subsequent chapter explains the variational principle for the gravitational

action and explains the need for introducing the Gibbons-Hawking-York boundary term

and the nondynamical counterterm in the action. The chapter following this elucidates the

challenges involved in describing a local stress-energy tensor for the metric of a spacetime and

describes the earlier mentioned proposal by Brown and York. Later, we work out in detail

and confirm the expressions for quasilocal stress tensor for asymptotically AdS spacetimes

in various dimensions and also show that these lead to the right masses and momenta for

various spacetimes as shown by Kraus and Balasubramanian. The interpretation of the

quasilocal stress tensor from the CFT side is also discussed. We verify the result obtained

by Brown and Henneaux and also make a key observation that for metrics that satisfy the

fall-offs suggested by them, one may be able to drop the GHY term in the action thus leading

to a modified stress tensor that could potentially give the same (correct) results for mass

and momenta of various spacetimes.
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Chapter 1

Introduction

This thesis presents an attempt, from the point of view of holography, to resolve a long-

standing problem in the field of gravity, which is to define a stress-energy tensor for the

gravitational field. Holography is the idea that a physical theory in d + 1 dimensions is

essentially equivalent to some other theory living at infinity, in d or fewer dimensions. This

is, in fact, great since it enables us to easily compute some (not so easily calculable) quanti-

ties in one theory by using the other equivalent description of the theory. The holographic

principle was first proposed by Gerard ’t Hooft [1] and later made more concrete by the

work of Leonard Susskind [2], where he suggested that string theory could be a sensible

realization of the notion introduced by ’t Hooft. A concrete realization of the holographic

principle is the anti de-Sitter/conformal field theory (AdS/CFT) correspondence also termed

as the gauge/gravity duality, which was first proposed by Juan Maldacena in 1997 [3]. The

AdS/CFT correspondence has been instrumental in scientists’ search for a quantum theory

of gravity and is widely considered as the best-understood theory of quantum gravity till date.

Many have tried and failed in the attempt to define a stress-energy tensor for the grav-

itational field (or equivalently, a stress-energy momentum for the metric of a spacetime

manifold) which is an open problem even now. J. David Brown and James W. York have

been somewhat successful in this attempt; in 1992, they gave a definition for such a quantity,

which was not exactly defined at a point but localized over the boundary of the spacetime

under consideration, thus being partially successful [14]. Since the quantity cannot actually

be described as local, it is referred to as a quasilocal stress tensor. It is basically defined
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as the functional derivative of the gravitational action (action for the metric of a spacetime

manifold) with respect to the metric on the boundary of the spacetime.

Per Kraus and Vijay Balasubramanian in 1999 realized that this problem is particu-

larly attractive from the point of view of holography [15]. This is because, via the AdS/CFT

correspondence, one can assume the equivalence between the partition function on the grav-

ity side and the CFT partition function (subject to the constraint that the partition function

on the gravity side is expressed as a functional of a bulk field whose boundary limit couples

to the CFT operator with respect to which we express the partition function of the CFT).

In the semiclassical limit of the gravitational theory, using saddle point approximation, one

can see that the partition function on the gravity side essentially reduces to the bulk grav-

itational action viewed as a functional of the boundary field(s). Hence, from the point of

AdS/CFT correspondence, there is a natural notion of viewing the gravitational action as a

function of the boundary metric, thus enabling us to compute functional derivatives of the

action with respect to the boundary metric.

A major drawback of the proposal by Brown and York stems from the definition that

they propose for the counterterm in the gravitational action which renders the action itself

as well as the quasilocal stress tensor finite. They propose an embedding of the boundary

hypersurface (which is the region of integration to obtain the counterterm) in a reference

spacetime and to consider the resulting gravitational action as the counterterm. The above

procedure, commonly referred to as background subtraction, is not always feasible since the

embedding of a hypersurface with an arbitrary metric in a reference spacetime may not be

possible always. Thus, the procedure suggested by Brown and York is ill-defined to some

extent. This problem has an effective resolution from the perspective of AdS/CFT corre-

spondence. From the perspective of CFT, the quasilocal stress tensor can be thought of

as giving the expectation value of its stress tensor. Therefore, the divergences (that show

up in the asymptotic limit) in the quasilocal stress tensor can be thought of as ultraviolet

divergences arising in a field theory which can be gotten rid of by considering counterterms

that depend solely on the geometry of the boundary hypersurface over which the CFT is

defined. One can express the integrand of such a counterterm as a function of the invariants

formed from the curvature(s) of the boundary metric, which is always possible as opposed

to the method by Brown and York.
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The following chapter gives a brief summary of the key details of anti-de Sitter spaces,

conformal field thoeries, and the method of computing correlators by making use of the

duality. The chapter following the next one explains the Lagrangian formulation of general

relativity and explains the need for extra terms in the gravitational action so that we have

both a well defined variational principle and also an action that is finite in the limit of large

distances. The chapter after that expounds on the proposal by Brown and York and that by

Kraus and Balasubramanian. We also explicitly show all the calculations required to arrive

at the results observed by Kraus and Balasubramanian for various spacetimes. In addition,

we make a key observation which might pave the way for an alternate method to arrive at

the results observed by Kraus and Balasubramanian.
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Chapter 2

Overview of the AdS/CFT duality

AdS/CFT correspondence is the observation that any theory of quantum gravity in a family

of asymptotically AdS spacetimes in d + 1 dimensions is equivalent to a conformal field

theory in a d dimensional spacetime [3, 4]. This relationship between the two theories is

an instance of holography since the conformal field theory lives in one smaller dimension

compared to the gravitational theory. We know that a hologram is a 2-dimensional version

of a 3-dimensional object which completely describes the latter. Similar is the equivalence

between the gravitational theory and CFT. The claim is that there is an equivalence between

the two theories because one can interpret the calculations of physical quantities in one

theory via a ‘dictionary’ that relates these to calculations in the dual theory. Thus, every

physical quantity in one theory has a dual in the other theory. The fact that any physical

quantity that can be computed in one theory can also be computed in the dual theory lets

us conclude that there is a total equivalence between the two theories. As we will see later,

the isometry group of AdSd+1, SO(d, 2), acts on the d dimensional conformal field theory

as the conformal group (which happens to be the symmetry group of the CFT) and this

therefore lets us conclude that symmetries on either sides of the duality are equivalent as

well. Gravity in AdS can essentially be viewed as ‘gravity in a box’. We will see why this

is the case in one of the coming sections. Any theory that is well approximated by coupling

matter to general relativity in AdS may be regarded as a ‘quantum gravity’ theory. One way

of viewing the duality between the two theories is to assume the existence of an isomorphism

between the Hilbert spaces of the two theories [5].
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2.1 Anti-de Sitter spacetime

Anti-de Sitter spacetime is a maximally symmetric spacetime with a negative curvature.

Since it is maximally symmetric, the curvature is guaranteed to be a constant. AdS solves

Einstein’s equations for an empty universe with a negative cosmological constant. d + 1

dimensional AdS can be obtained by embedding a hypersurface of the same dimension in

Minkowski spacetime in one higher dimension, i.e, d+2 dimensions, in (2, d) signature. d+2

dimensional Minkowski metric in (2, d) signature is given by

ds2 = −dX2
0 − dX2

d+1 + dX2
1 + .....+ dX2

d , (2.1)

and the hypersurface to be embedded takes the form

X2
0 +X2

d+1 − ~X2 = l2, (2.2)

where l is a parameter with units of length, conventionally referred to as the AdS length

scale. In global coordinates, defined by

X0 =
√
l2 + r2 cos(t/l)

Xd+1 =
√
l2 + r2 sin(t/l)

~X2 = r2,

(2.3)

the metric of AdS takes the form

ds2 = −
(

1 +
r2

l2

)
dt2 +

dr2(
1 + r2

l2

) + r2dΩ2
d−1, (2.4)

where r ∈ [0,∞), t ∈ (−∞,∞), and Ωd−1 stands for the round metric on Sd−1. Defining

r = tan ρ, with ρ ∈ (0, π/2), we see that AdS metric now assumes the form

ds2 =
1

cos ρ2
(−dt2 + dρ2 + sin2 ρdΩ2

d−1), (2.5)

which lets us conclude that the causal structure of AdSd+1 can be identified to be that of a

“solid cylinder”,

ds2 = −dt2 + dρ2 + sin2 ρdΩ2
d−1, (2.6)

6



as the conformal factor plays no role in determining the null geodesics of the space time.

Therefore, in these coordinates, AdS can be pictured as the interior of a cylinder. It is seen

that a signal sent from the centre of the spacetime by an observer at rest hits the asymptotic

boundary and reverts back to the centre in a finite proper time, ∆t = π. This is the reason

why Ads gravity is commonly referred to as ’gravity in a box’. The boundary of AdS at

r =∞ or ρ = π/2, with topology R×Sd−1, is what is popularly referred to as its asymptotic

boundary. Now, the metric in (2.4) is the appropriate one for empty universe; the presence

of any matter in the spacetime would cause the metric to deviate from (2.4).

Maximal symmetry of AdS implies that it has as many independent symmetries or as

many killing vectors as Minkowski spacetime of the same dimension. In d + 1 dimensional

Minkowski spacetime, we have d+ 1 translations, d boosts, and 1
2
d(d− 1) rotations and thus

a total of d+ 1 +d+ 1
2
d(d−1) = 1

2
(d+ 1)(d+ 2) independent symmetries. As we saw earlier,

AdSd+1 can be obtained by embedding the hypersurface

XAX
A ≡ X2

0 +X2
d+1 − ~X2 = l2 (2.7)

in d + 2 dimensional Minkowski spacetime in (2, d) signature. In terms of the coordinates

given in (2.5), the parametrization of this hypersurface looks like

X0 = l
cos t

cos ρ

Xd+1 = l
sin t

cos ρ

~X2 = l2tan2 ρ.

(2.8)

The above 2 equations elucidate the fact that isometries of AdS are merely the rotations

and boosts of XA [6]; we have one rotation between the timelike coordinates X0 and Xd+1, d

boosts between either of the timelike coordinate and the Xis, and
(
d
2

)
= 1

2
d(d− 1) rotations

between the Xis. The general form of the generator of these transformations look like

GAB = XA∂B −XB∂A, (2.9)

with all of these individual generators together generating the isometry group of AdS,

SO(d, 2).

The AdS metric(s) that we saw till now were all in Lorentzian signature; the metric had

all positive eigenvalues but one. In contrast to this, a metric with all eigenvalues being pos-
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itive is said to be in Euclidean signature. For obtaining AdS metric in Euclidean signature,

the hypersurface to be embedded looks like

X2
0 −X2

d+1 − ~X2 = l2, (2.10)

and the embedding space is d + 2 dimensional Minkowski spacetime in (1, d + 1) signature.

In global coordinates, Euclidean AdS looks like

ds2 =

(
1 +

r2

l2

)
dt2 +

dr2(
1 + r2

l2

) + r2dΩ2
d−1. (2.11)

Compared to the Lorentzian case, we just have a flip in the sign of dt2 in the Euclidean case.

Another commonly used set of coordinates for AdS are the Poincare coordinates, which

parametrizes the hypersurface in (2.10) as

X0 = l

(
1 + ~x2 + z2

2z

)
Xd+1 = l

(
1− ~x2 − z2

2z

)
~X = l

~x

z
.

(2.12)

Here, ~x is a spatial d dimensional vector, i.e., ~x ∈ Rd, and z > 0 (so that we have a consistent

positive sign for X0). In Poincare coordinates, euclidean AdS metric looks like

ds2 = l2

(
dz2 +

∑d
i=1 dxi

2

z2

)
. (2.13)

This makes explicit the fact that AdS is conformal to R+ × Rd and also the fact that in

Poincare coordinates, the asymptotic boundary (situated at z = 0) has Rd geometry [7]. To

find the metric of Lorentzian AdS in Poincare patch, we parametrize the hypersurface in

(2.2) as

X0 =
z

2

(
1 +

l2 + ~x2 − t2

z2

)
Xd+1 =

l

z
t

Xi<d =
l

z
xiXd =

z

2

(
1− l2 − ~x2 + t2

z2

)
Xi<d =

l

z
xi,

(2.14)
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where ~x is a d− 1 dimensional spatial vector. The metric of AdS in these coordinates look

like

ds2 = l2

(
−dt2 + dz2 +

∑d−1
i=1 dxi

2

z2

)
, (2.15)

where 0 < z <∞. It can be seen that Poincare coordinates in Euclidean signature cover the

whole of Ads while the same set of coordinates in Lorentzian signature covers only a wedge

shaped region of the whole spacetime, popularly referred to as the Poincare patch.

2.1.1 Classical equations of motion in AdS

For illustrative purposes, consider a free scalar particle in 3 dimensional AdS spacetime.

Since we know that free particles traverse along geodesics, the action for the same in an

arbitrary spacetime could be expressed as

S = m

∫
dτ = m

∫
dt

√
gαβ(x(t))

dxα(t)

dt

dxβ(t)

dt
, (2.16)

where τ is the proper time, m is the mass of the particle, and xα(t) corresponds to the world

line of the particle. For AdS3 in global coordinates, xα(t) = (t, ρ(t), θ(t)), and therefore the

action in (2.16) looks like

S = m

∫
dt

√
−1 + ρ̇2 + θ̇2 sin2 ρ

cos ρ
. (2.17)

Since the Euler-Lagrange equations for this action take a complicated form, we can choose

an alternate approach to deriving the classical equations of motion. Since we know that Ads

is obtained by embedding a hypersurface in Minkowski spacetime of one higher dimension,

we could write an action principle for the coordinates XA in (2.7), considering XA = XA(τ).

The action with a Lagrange multiplier takes the form

S =

∫
dτ
(
ẊAẊA + λ(R2 −XAX

A)
)
. (2.18)

From the Euler-Lagrange equation for this action, ẌA = −λXA, we see that different values

of λ are all equivalent upto a sign (since the equation of motion is a homogenous second order

differential equation). Therefore, the possible values that λ can take are -1, 0, or 1. These
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correspond to spacelike, null, or timelike geodesics in AdS. From our study of the harmonic

oscillator, one can easily infer that massive particles in AdS move along periodic geodesics.

The fact that all trajectories for a free particle in AdS have the same period with respect

to the coordinate t implies that discrete energy levels obtained by quantizing the dynamics

of an AdS free particle are integer spaced. Stated otherwise, the discrete energy levels must

obey

E = E0 + n, (2.19)

for some E0, with n being a non negative integer.

2.1.2 Quantum mechanics and field theory in AdS

For illustrative puropses, we’ll work with a free particle in AdS2. The action in (2.16) for

AdS2 looks like

S = m

∫
dt

√
−1 + ρ̇2

cos ρ
. (2.20)

The momentum conjugate to the coordinate ρ is

Pρ =
mρ̇

cos ρ
√
ρ̇2 − 1

, (2.21)

and therefore, the Hamiltonian is given by

H = Pρρ̇− L =

√
Pρ

2 − m2

cos2 ρ
. (2.22)

Quantization can be imposed by demanding [ρ, Pρ] = i, which is satisfied if we have Pρ =

−i∂ρ. We could then solve for the wavefunction of a free particle by expressing the Schrodinger

equation using the above information; in fact, solving the squared form of Schrodinger equa-

tion is less laborious.

Although we could solve for the free particle wavefunction by writing down the Schrodinger

equation as above, an easier method to obtain the same would be to use the isometries of

AdS. From (2.9), we see that the three generators of AdS2 isometries are G01, G02, and G12.

Now, G01 basically mixes X0 and X1 between themselves and therefore its action could be

expressed as

X0 → X0 + εX1, and X1 → X1 + εX0. (2.23)
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If we are working with global coordinates, using the parametrization given in (2.8), we can

express the above transformation as a transformation of t and ρ as

cos(t+ εgt)

cos(ρ+ εgρ)
≈ cos t

cos ρ
+ ε tan ρ

tan(ρ+ εgρ) ≈ tan ρ+ ε
cos t

cos ρ
,

(2.24)

whose solutions are
gt = − sin t sin ρ

gρ = cos t cos ρ.
(2.25)

From this, we can conclude that

G01 = − sin t sin ρ∂t + cos t cos ρ∂ρ. (2.26)

By following the same approach, we can arrive at the expressions for the other two generators

and see that they satisfy the commutation relations

[G01, G02] = G12, [G02, G12] = G01, and [G01, G12] = G02, (2.27)

which we identify with the SO(2, 1) algebra. The above equation tells us that defining

D = G02, P = 1
2
(G01 + iG12), and K = 1

2
(G01 − iG12) helps us recast them in the form

[D,P ] = iP, [D,K] = −iK, and [K,P ] = iD. (2.28)

The above equations elucidate the fact that the states can be labelled as eigenstates of the

operator D, and therefore satisfy

D |ψ〉 = ∆ |ψ〉 , (2.29)

where ∆ is an eigenvalue of D. With respect to these eigenvalues, P and K act respectively

as raising and lowering operators. Since K is the lowering operator, if |ψ0〉 is the ground

state, it should satisfy

K |ψ0〉 = 0. (2.30)

Any arbitrary state can be constructed by the (repeated) action of the raising operator on

|ψ0〉. Using (2.26) and the similar expression for G12, we see that K is given by

1

2
e−it(−i sin ρ∂t + cos ρ∂ρ) (2.31)
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for ψ expressed in the (t, ρ) coordinate basis. We see that (2.30) when expressed in the

coordinate basis takes the form

− i sin ρ∂tψ0(t, ρ) + cos ρ∂ρψ0(t, ρ) = 0. (2.32)

Assuming a separable solution ψ0 = ei∆tχ(ρ), we see that the above equation becomes

∆χ = − cot ρ(∂ρχ), (2.33)

which is solved by χ(ρ) = cos∆ ρ, and thus the full ground state solution is given by

ψ0(t, ρ) = ei∆t cos∆ ρ. (2.34)

Now, any two successive eigenstates obtained by the repeated action of the raising operator

on the ground state differ in energy by the same amount. That is, energy increases in equal

steps of a finite quantity.

Now, we only had 3 isometry generators for the case we considered previously since

there were only 3 independent isometries in the simple case of AdS2. However, in arbitrary

dimensions (say d+ 1), as discussed before, there are 1
2
(d+ 1)(d+ 2) number of independent

isometries. The conformal algebra SO(d, 2) pertinent to that case is given by

[D,Pµ] = iPµ [D,Kµ] = −iKµ [Kµ, Pν ] = 2i(ηµνD − Lµν)
[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) [Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ),

(2.35)

where the index µ ranges from 1 to d. Comparing with (2.9), we see that the operator def-

initions that are consistent with the above equation are given by D ≡ −iG0,d+1 (dilation

generator), Pµ ≡ iGd+1,µ + G0,µ (translation generators), Kµ ≡ iGd+1,µ − G0,µ (SCT gen-

erators), and Mµν ≡ −iLµν (rotation generators). The second line of (2.35) describes the

transformation of Pµ and Kµ as vectors under rotations, while the vanishing commutator of

D with Lµν is a reflection of the fact that it transforms as a scalar under rotations. The

latter fact enables us to label quantum states by their energy and angular momentum which

are the eigenvalues of D and Lµν respectively. The first 2 equations in the first line of (2.35)

lets us conclude that Pµ acts as a ‘raising operator’ while Kµ acts as a ‘lowering operator’

with respect to the generator of dilations, which explains the integer spacing between the

energy levels of single particle quantum states. If we denote the lowest energy state by |ψ0〉,
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it should satisfy

Kµ |ψ0〉 = 0, (2.36)

since the lowering operator annihilates the lowest energy state. We call this operator as the

primary operator, which, from the perspective of quantum mechanics in AdS, is the lowest

energy state of a particle. A general one particle quantum mechanical state in AdS can be

constructed from the primary operator by the repeated application of raising operator(s) as

|ψn,l〉 =
(
P 2
µ

)n
Pµ1Pµ2Pµ3 · · ·Pµl |ψ0〉 , (2.37)

which (by construction) has energy given by En,l = ∆ + 2n + l, where we assume that the

energy of |ψ0〉 is given by ∆.

The position space wavefunctions of these quantum states can be obtained by expressing

the lowering operator in coordinate basis using equations (2.8) and (2.9) as well as the

definition of the lowering operator in terms of (2.9). Once we obtain this, one can impose

the constraint that the lowering operator annihilates the ground state to obtain the position

space wavefuntion of the ground state. Applying the raising operator repeatedly on the so

obtained ground state wavefunction gives us position space wavefunction of the state given

in (2.37), whose completely general form is expressed in terms of a hypergeometric function.

Multiparticle states (states in the Fock space) have quantum numbers that are sums

of quantum numbers of individual single particle states. Since this applies to the energy

eigenvalue as well, one can construct the eigenstates using harmonic oscillator creation and

annihilation operators. The Hamiltonian operator for AdS maybe expressed using these

operators as

D =
∑
n,l,J

(∆ + 2n+ l) a†nlJanlJ , (2.38)

where n, l and J are individual eigenvaluess of different single particle states and a†nlJanlJ is

the number operator familiar from the harmonic oscillator analysis. One can arrive at the

same expression for energy by quantizing the AdS free scalar field action, given by

S =

∫
AdS

dd+1x
√
−g
(

1

2
gµν∇µφ∇νφ−

1

2
m2φ2

)
. (2.39)
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2.2 Conformal field theory

A conformal field theory is one that has 2 additional symmetries compared to ordinary

field theories with Poincare symmetry; dilations and special conformal transformations. The

complete symmetry group of a CFT is what is commonly referred to as the conformal group.

2.2.1 Conformal transformations in d dimensions

Any symmetry transformation of a CFT is what we refer to as a conformal transformation.

LetM = Rp,q be a manifold Rd, with d = p+ q such that the metric is diagonal with p of the

entries equal to +1 and q of them equal to -1. We have a Euclidean metric when p = d, and

a Lorentzian metric when p = 1 and q = d − 1. For AdS/CFT, we usual work with p = 1

and q = 2 when the space is 3 dimensional. Consider a smooth change of coordinates from

x to x′ (both belonging to M), x → x′(x) , such that the transformed metric is a scalar

multiple of the old one:

g′µν(x
′) =

∂xα

∂x′µ
∂xβ

∂x′ν
gαβ(x), (2.40)

with

g′µν(x
′) = Ω(x)gµν(x), and Ω(x) > 0. (2.41)

Such a transformation is called conformal. The group of all such transformations is called

the conformal group, denoted by Conf(Rp,q).

Let us consider an infinitesimal conformal transformation

x′µ = xµ + εµ(x), (2.42)

so that upto first order in εµ, the metric changes as

g′µν(x
′) = ηµν(x) + (∂µεν + ∂νεµ). (2.43)

We use ηµν in place of gµν since we are working with flat space metric. For the above equation

to satisfy (2.41), we require

∂µεν + ∂νεµ ∝ ηµν , (2.44)
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so that

∂µεν + ∂νεµ =
2

d
(∂.ε)ηµν , (2.45)

where the proportionality constant can be fixed by tracing (2.44). Therefore, the overall

factor by which the metric scales is given by

Ω(x) = 1 +
2

d
(∂µε

µ). (2.46)

It follows that

ηµν2 + (d− 2)∂µ∂ν(∂.ε) = 0, (2.47)

where 2 = ηµν∂µ∂ν [8]. (2.45) and (2.47) are highly constraining; for d > 2, they demand

that derivates of ε of order 3 or greater must vanish. That is, ε can at most be quadratic in x.

Therefore, the possible dependences of ε on x, and thus the possible infinitesimal conformal

transformations are given by

εµ(x) = aµ, a constant (translations)

εµ(x) = ωµνx
ν , ω antisymmetric (Lorentz transformations)

εµ(x) = λxµ, λ > 0 (dilations)

εµ(x) = bµx2 − 2xµ(b.x) (special conformal transformations),

(2.48)

where the first expression is zeroth order in x, second and third are first order in x, and the

final expression is second order in x. Integrating these expressions, we get finite conformal

transformations. The most general conformal transformation is a combination of these 4.

Special conformal transformations bring infinity to a finite point and vice versa. If one adds

infinity in (compactification), these transformations form a group under composition. The

corresponding generators of the above infinitesimal transformations look like [8]

Pµ = −i∂µ (translations)

Lµν = i(xµ∂ν − xν∂µ) (Lorentz transformations)

D = −ixµ∂µ (dilations)

Kµ = −i(2xµxν∂ν − x2∂µ) (special conformal transformations).

(2.49)
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2.2.2 Classical conformal field theory

A conformal theory, at its most basic, gives some kind of representation of the conformal

group on the degrees of freedom of the theory. Classical CFTs essentially describe classical

field representations of conformal symmetry. In the non relativistic case, we impose [H, Gs] =

0 as a requirement for a symmetry, where H is the Hamiltonian of the theory and Gs is the

generator of a symmetry. This definiton does not hold in the relativistic case; we need our

theory to be local, which is defined by having a set of local observables φa(x), where x ∈ Rp,q

and a ∈ I, some index set. Not all representations may give rise to local theories.

Working with fields is perhaps the only way we can furnish a local set of observables,

since by definition, a field φ(x) is defined at a point. We all know that a general classical

field theory is defined by an action given by

S =

∫
d4xL (φa, ∂µφa). (2.50)

We say that our theory is conformally invariant if the Euler-Lagrange equations of motion

(obtained from a variational principle of the above action) are invariant under conformal

transformations; the action as such need not be invariant. This means that L is allowed to

change by a total derivative under a conformal transformation. The corresponding transfor-

mations of fields can be studied by analyzing representations of the infinitesimal generators

of conformal group.

Under an (active) symmetry transformation, the general transformation of a field can be

expressed as

φ′a(x) = π(O)abφb(O
−1x), (2.51)

where O is the symmetry transformation matrix, and π(O) is a matrix referred to as the

representation, which acts (possibly) non trivially on the field configurations at O−1x. Here,

a repeated index implies a summation over the same (Einstein summation convention). The

representation is called trivial when π(O)ab = δab, and fundamental when π(O)ab = Oab.

In the case of conformal group, we see that its generators satisfy the commutation rela-

tions

[D,Pµ] = iPµ [D,Kµ] = −iKµ [Kµ, Pν ] = 2i(ηµνD − Lµν)
[Kρ, Lµν ] = i(ηρµKν − ηρνKµ) [Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ).

(2.52)
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We will look at the kind of fields that transform under representations of Conf(Rp,q) and also

how they transform. This task is greatly simplified if we know the Lie algebra of Lorentz

group, which is a sub-algebra of the Lie algebra of Conf(Rp,q). From the above equation, we

see that the Lie algebra of Poincare group is given by

[Pρ, Lµν ] = i(ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i(ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ).
(2.53)

If we have a representation of Conf(Rp,q), then by restriction, we have a Poincare Lie algebra.

A field transforming under Conf(Rp,q) transforms under the Poincare subgroup (generated

by Pµ and Lµν) as

φa(x)→ π(Λ)abφb(Λ
−1x), (2.54)

by restricting to just the Poincare subalgebra. We will focus on a subgroup of Conf(Rp,q)

that leaves the origin invariant. Except translations, all elements of Conf(Rp,q) fall into this

category. Such a transformation (infinitesimal) could be expressed as

Λ = eiω
αGα , (2.55)

where Gα ∈ {Kµ, D, Lµν}. Since the origin is left invariant, the corresponding transformation

of the field is given by

φa(0)→ π(eiω
αGα)abφb(0). (2.56)

Since ωα is infinitesimal, we could approximate π(eiω
αGα) to first order in ωα as

π(eiω
αGα) ≈ π(1) + iωαπ(Gα). (2.57)

Now, if we define π(D) ≡ ∆̃, π(Kµ) ≡ Kµ, and π(Lµν) ≡ Sµν , then near the origin, we have

[∆̃,Sµν ] = 0, [∆̃,Kµ] = −iKµ, and [Kµ,Kν ] = 0. (2.58)

Suppose Sµν are irreps of Lorentz group. Then, since [∆̃,Sµν ] = 0, by Schur’s lemma, we

have ∆̃ ∝ 1, and therefore, from (2.58), we have Kµ = 0. For the purpose of convenience, let

us assume that

∆̃ = i∆1. (2.59)

17



At the origin, under a dilation x→ λx, a field transforms as

φa(0)→ (1 + iε∆̃)(1 + iε∆̃) · · · · · ·φa(0), (2.60)

where we have constructed a dilation by composing a large number of infinitesimal dilations.

The RHS of the above equation can be expressed [9] as λi∆̃φa(0), which is in turn equal to

λ−∆φa(0) by (2.59). This formula can be extended to the transformation of fields at arbitrary

points by the Baker-Campbell-Hausdorff formula [9]. Therefore, under a dilation x→ λx a

field transforms as

φ′a(x) = λ−∆aφa(λ
−1x), (2.61)

where ∆a is referred to as the scaling dimension of the field φa. Since the Jacobian for a

dilation is
∣∣∂x′
∂x

∣∣ = λd, (2.61) can also be expressed as

φ′a(x
′) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆a
d

φa(x). (2.62)

2.2.3 Constraints of conformal invariance on Quantum CFTs

The only way a quantum theory can be conformally invariant is if we have a projective

unitary representation, U(g) with g ∈ Conf(Rp,q), to describe the symmetry transformations

of the theory, i.e., conformal transformations. In a quantum CFT, we demand that the

vacuum, |0〉 , is invariant under global conformal transformations; at max, we allow the

transformed state to pick up a phase: U(g) |0〉 = eiφ(g) |0〉 . Also, we demand that the theory

be local, which means that [Aj(x), Aj(y)] = 0 when (x − y) is spacelike. Here Aj(x) is an

observable labelled by x and j, where j belongs to an index set J and x ∈ Rp,q. There exists

a subset of {Aj(x)|j ∈ J, x ∈ Rp,q} called quasi primaries, denoted by {φ̂k(x)|k ∈ K}, such

that, under a conformal transformation U(g), they transform as

φ̂k(x)→
∣∣∣∣∂x′∂x

∣∣∣∣−
∆k
d

φ̂k(x) (= U †(g)φk(x)U(g)), (2.63)

where x′ = gx and g ∈ Conf(Rp,q). Local operators in a CFT are of types; primary and

descendant. A primary operator is defined as one that satisfies (2.61) in addition to the

requirement that, at the origin, it is left invariant under the action of special conformal
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transformations. Therefore, a primary operator may be defined as one that satisfies

[Kµ, φ(0)] = 0, [D,φ(0)] = ∆φ(0) (2.64)

where ∆ is the scaling dimension of the operator. Each primary operator is a quasi primary

operator, but not all quasi primaries are primaries. A descendant operator maybe expressed

in terms linear combinations of derivatives of primary operators, while this is not the case

with a primary operator.

As a consequence of the above requirements and observations, we see that the trans-

formation of n-point functions of quasi primaries under global conformal transformations is

given by

〈0| φ̂′k1
(x′1) · · · φ̂′kn(x′n) |0〉 =

∣∣∣∣∂x′∂x

∣∣∣∣−
∆kn
d

· · ·
∣∣∣∣∂x′∂x

∣∣∣∣−
∆k1
d

〈0| φ̂k1(x1) · · · φ̂kn(xn) |0〉 . (2.65)

The above equation constrains the form of correlation functions in a conformal field theory.

For xj, xk ∈ Rp,q, we see that (xj − xk) is left invariant under translations. For the case of

rotations, the quantity left invariant would be rjk ≡ |xj − xk|, while for the case of dilations,

the corresponding invariant quantity would be
rjk
rlm
. Although not as straightforward to see

as the other cases, one can work out that the quantity left invariant under special conformal

transformations is
rjkrlm
rjlrkm

, commonly referred to as cross ratio. Therefore, for correlation

functions to be invariant in the sense of (2.65), we require that they be functions of cross

ratios.

For the case of 2-point functions, (2.65) tells us that

〈φ̂′1(x′1)φ̂′2(x′2)〉 =

∣∣∣∣∂x′∂x

∣∣∣∣−
∆1
d
∣∣∣∣∂x′∂x

∣∣∣∣−
∆2
d

〈φ̂1(x1)φ̂2(x2)〉. (2.66)

Translational and rotational invariance together impose the 2 point function to be of the

form f(r12), i.e., to have dependence only on the magnitude of separation between the two

points, r12. Furthermore, invariance under dilations enforce f(r12) = λ∆1+∆2f(λr12). To

deduce the sort of functions that satisfy this property, we expand f(r12) in a Taylor series

as: f(r12) =
∑

a far
a
12. We see that for all a 6= −(∆1 + ∆2), fa vanishes, and thus

f(r12) =
f−(∆1+∆2)

r∆1+∆2
12

=
c12

r∆1+∆2
12

, (2.67)
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where c12 is a constant that can be fixed by normalizing the fields. Following this, if we

demand invariance under special conformal transformations as well, we see that the 2-point

function vanishes whenever ∆1 6= ∆2. Therefore, we see that the general form of a CFT

2-point function is given by

〈φ̂1(x1)φ̂2(x2)〉 =
c12

r2∆
12

, (2.68)

where ∆1 = ∆2 = ∆. Similar calculations show that the general form of the 3-point function

in a CFT looks like

〈φ̂1(x1)φ̂2(x2)φ̂3(x3)〉 =
c123

r∆1+∆2−∆3
12 r∆2+∆3−∆1

23 r∆1+∆3−∆2
13

. (2.69)

For n ≥ 4, constraining the general form of n-point functions are not as easy as the previous

two cases and thus we do not mention it here.

2.3 Correlators from the duality

A massive particle at rest in AdS is the dual of a primary operator in CFT. Hence, as we saw

before, a primary state in Ads is the ground state of a massive particle with energy given

by ∆, which is the scaling dimension of the primary operator in CFT. Similarly, descendant

operators in a CFT correspond to moving particles in the AdS dual. The process of taking

derivatives of primary operators in a CFT to get descendants essentially corresponds to

going from free particle ground states to excited states in the AdS dual. Also, the conformal

group SO(d, 2), which is the symmetry group of a CFT, corresponds to the isometry group

SO(d, 2) of AdS. Furthermore, local operators in a CFT correspond to bulk fields in AdS;

scalar operators correspond to scalar fields in the bulk, vector operators correspond to vector

fields in the bulk, and finally tensor operators correspond to tensor fields in the bulk.

It is a well known fact [10] that if one has a bulk field φ(x), with a boundary value equal

to φ0(x), which is dual to a boundary (CFT) operator O(x), it is equivalent to deforming

the CFT by adding a source term for O(x) as∫
ddxφ0(x)O(x). (2.70)

This is a very important result as it helps us in proving a maxim in AdS/CFT; a global

symmetry in the boundary theory corresponds to a gauge symmetry on the bulk side. To
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prove this, consider deforming the boundary theory by adding the term∫
ddxaµ(x)Jµ(x), (2.71)

where aµ(x) = Aµ(x, z)|z=0 (in Poincare coordinates) is the boundary limit of some bulk field

Aµ(x), which is dual to the conserved boundary current Jµ(x) (conserved since it corresponds

to a global symmetry in the boundary). Now, for some arbitrary differentiable Λ(x), the

transformation

aµ(x)→ aµ(x) + ∂µΛ(x), (2.72)

is an invariance of (2.71) if we assume that aµ vanishes reasonably fast at the boundary. Now,

since (2.72) is a sub class of the gauge transformations of Aµ(x) (which leaves the boundary

dynamics invariant), we see that a global symmetry in the boundary theory corresponds to

a gauge symmetry in the dual bulk theory.

We will explore the computation of CFT 2-point function from the bulk side as done

in [4]. To start with, we consider a massive scalar field φ in AdSd+1 with its boundary value

equal to φ0. As seen previously, we assume that φ0 couples to some boundary operator

(which is the CFT dual of φ) O via the coupling
∫
∂AdS

φ0O. Let Zs(φ0) be the partition

on the bulk side with the constraint that φ at the boundary takes the value φ0. In the

semiclassical limit, using the saddle point approximation, we see that

Zs(φ0) ' e−Is(φ0), (2.73)

where Is is the action corresponding to the bulk theory.

The interpretation given in [4] of the duality between the two theories is that

〈exp

∫
∂AdS

φ0O〉 = Zs(φ0), (2.74)

where on the LHS, we have the generating functional of CFT correlation functions. As a

result, one can obtain CFT correlation functions by taking functional derivatives with respect

to the bulk partition function as opposed to taking them with respect to the generating

functional of CFT correlation functions. For this, we will first need to solve for the equations

of motion of a massive scalar field in the bulk and see its asymptotic behaviour.
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The action for a free massive scalar field in AdSd+1 is given by

S =
1

2

∫
dd+1x

√
−g(gµν∂µφ∂νφ+m2φ2), (2.75)

where gµνdxµdxν = R2

z2 (−dt2 + d~x2 + dz2), and thus corresponds to the metric of AdSd+1

in Lorentzian Poincare coordinates. The equations of motion that follow from a variational

principle for the above action is given by

1√
−g

∂µ(
√
−ggµν∂νφ) = m2φ. (2.76)

We make the following ansatz [10] for the solution to this equation:

φ(z, xi) =

∫
ddk

(2π)4 e
ik.xφ(z; k), (2.77)

where xi ≡ (t, ~x) and k.x = ηijk
ixj. Substitution of the above expression into (2.76) gives

zd+1∂z(z
1−d∂zφ)− k2z2φ−m2R2φ = 0, (2.78)

where ki = (ω,~k) and k2 = −ω2 + ~k2. In the asymptotic limit (z → 0), the above equation

reduces to

z2∂z
2φ+ (1− d)z∂zφ−m2R2φ = 0. (2.79)

This homogeneous partial differential equation could be solved by assuming a power series

solution for φ. If we let φ ∼ z∆, (2.79) reduces to

∆(∆− 1) + (1− d)∆−m2R2 = 0, (2.80)

whose solutions are given by

∆ =
d

2
±
√
d2

4
+m2R2. (2.81)

If we define v ≡
√

d2

4
+m2R2, ∆ ≡ d

2
+ v, and ∆− ≡ d

2
− v = d−∆, then the general form

of asymptotic (z → 0) solution can be expressed as

φ(ki, z) = α(ki)zd−∆ + β(ki)z∆, (2.82)
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or equivalently as

φ(xi, z) = α(xi)zd−∆ + β(xi)z∆. (2.83)

Now, we see that ∆ ≥ d
2
, and therefore z∆ always approaches 0 as z → 0. Hence, we may

conclude that

φ(z, xi)
∣∣
z=0

= lim
z→0

zd−∆φ0(xi), (2.84)

φ0(xi) is a function of the boundary coordinates.

Now that we have obtained the asymptotic behaviour of the free scalar field in the bulk,

we may express the general solution of bulk wave equation (in terms of the solution at the

boundary) as

φ(z, x) =

∫
dd+1x′K(x, x′; z)φ0(x′), (2.85)

where φ0(x′) is the boundary value of φ as in (2.84), and K(x, x′; z) is the bulk to boundary

propagator, which gives us the bulk solution in response to a source localized on the boundary

(which is the boundary value of the bulk field). As one can easily see, the bulk-boundary

propagator satisfies the equation

(2−m2)K(x, x′; z) = zd−∆δ(x− x′), (2.86)

since φ satisfies the free massive scalar field equation (Klein-Gordon equation). One can

solve for the bulk-boundary propagator [11–13] to obtain

K(x, x′; z) = C∆

(
z

z2 + (x− x′)2

)∆

, (2.87)

where C∆ is a constant that depends solely on ∆. Now that we have obtained (2.85), we

can plug this expression into the bulk on-shell action and take functional derivatives of the

same with respect to φ0 (and evaluate the resultant at φ0 = 0) to obtain CFT correlators.

One can verify that the CFT 2-point function so obtained is given by

〈O(x)O(x′)〉 =
δ2

δφ0(x)δφ0(x′)
Zsφ0

∣∣∣∣
φ0=0

=
1

|x− x′|2∆
. (2.88)
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Chapter 3

Gravitational action and an action

principle for general relativity

In this chapter, we look at a variational principle for gravitational action starting with the

simplest form which it can assume. We then introduce term(s) in the action so that we

have a well defined variational principle (by which we mean that setting the variation of

the action with respect to the metric equal to zero yields the Einstein’s equations) as well

as a non-divergent action when we take the asymptotic limit (large r). We conclude the

chapter by giving the most general form of gravitational action from which one may obtain

the Einstein’s equations.

3.1 Einstein-Hilbert action

By the principle of general covariance, one can deduce that the action for an arbitrary metric

gµν should assume the form

S =
1

2κ

∫ √
−g d4xf(gµν), (3.1)

where f is a scalar function of the metric, g is the determinant of the metric and κ = 8πGN ,

where GN is the gravitational constant. The simplest scalar that can be constructed out of

the metric is the Ricci scalar R, which is also the unique choice when we demand metric

derivatives that are not higher than order 2 [16]. This gives rise to the Einstein-Hilbert
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action, given by

SEH =
1

2κ

∫
d4x
√
−gR. (3.2)

With the aim of obtaining vacuum Einstein’s equations, we vary this action with respect to

the metric, which gives us

δSEH =
1

2κ

∫
d4x(Rδ

√
−g +

√
−g δR). (3.3)

Now, we know that δ
√
−g = 1

2

√
−ggµνδgµν = −1

2

√
−ggµνδgµν . Also, since, R = gµνR

µν =

gµνRµν , we obtain

δSEH =
1

2κ

∫ √
−gd4x(Rµν −

1

2
gµνR)δgµν +

1

2κ

∫ √
−gd4x gµνδRµν . (3.4)

Since the first term on the RHS alone gives us the Einstein tensor, we expect the second

term on the RHS to be a boundary term that would arise from a total derivative. From the

formula for Ricci scalar obtained by the contraction of the first and 3rd indices of Riemann

tensor, we see that

δRµν = ∂λδΓ
λ
µν − ∂νδΓλµλ + δΓλλρΓ

ρ
νµ + ΓλλρδΓ

ρ
νµ − δΓλνρΓ

ρ
λµ − ΓλνρδΓ

ρ
λµ. (3.5)

Although Christoffel symbols themselves are not tensors, their variations with respect to the

metric transform like tensors. This is because of the fact that the (second derivative, inho-

mogenous)term obtained under coordinate transformations that makes christoffel symbols

non tensorial is independent of the metric. Thus, metric variations of Christoffel symbols

transform like tensors. In fact, these metric variations are given by [16]

δΓµνλ =
1

2
gµρ(∇νδgρλ +∇λδgρν −∇ρδgνλ). (3.6)

Also, one can see that using covariant derivatives, (3.5) can be expressed in a much simpler

looking form as

δRµν = ∇λδΓ
λ
µν −∇νδΓ

λ
µλ. (3.7)

Using the above formula, we obtain

gµνδRµν = ∇λ(g
µνδΓλµν)−∇ν(g

µνδΓλµλ)

= ∇λ(g
µνδΓλµν − gµλδΓννµ),

(3.8)
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which establishes our claim that gµνδRµν must be a total derivative. Using (3.6), the above

formula can be equivalently expressed as

gµνδRµν = (∇µ∇ν − gµν2)δgµν

= (gµαgνβ − gµνgαβ)∇µ∇νδgαβ

= ∇λ

(
(gλαgνβ − gλνgαβ)∇νδgαβ

)
,

(3.9)

which indeed is consistent with our hunch that it must be a total derivative. Thus, using

the above formula, the variation of Einstein-Hilbert action could be expressed as

δSEH =
1

2κ

∫ √
−gd4x(Rµν −

1

2
gµνR)δgµν +

1

2κ

∫ √
−gd4x∇λ

(
(gλαgνβ − gλνgαβ)∇νδgαβ

)
=

1

2κ

∫ √
−gd4xGµν +

ε

2κ

∮
Σ

√
−hd3y nλ

(
(gλαgνβ − gλνgαβ)∇νδgαβ

)
,

(3.10)

where Gµν is the Einstein tensor for the metric, nλ is the normal vector to the boundary

hypersurface Σ of the manifold, h is the determinant of the induced metric on Σ, and

nµn
µ ≡ ε = +1 or −1 depending on whether the boundary hypersurface is timelike or

spacelike respectively. For writing the second equation in (3.10), we use the Gauss integral

theorem in general relativity, which is given by∫
M

√
−gdnx∇µV

µ =

∫
Σ

√
−hdn−1x nµV

µ, (3.11)

where M is the n dimensional spacetime manifold with boundary Σ, g and h are the deter-

minants of the metric on M and Σ respectively, and nµ is the normal vector to Σ. Now,

the integrand of the boundary integral in (3.10) can be expressed using the decomposition

of the metric on Σ, given by

gµν = hµν + εnµnν , (3.12)

as
(gλαgνβ − gλνgαβ)∇νδgαβ = (nρgµν − nµgρν)∇µδgρν

= nρhµν∇µδgρν − nµhρν∇µδgρν .
(3.13)

Now, if we impose the condition that the variation of the metric vanishes at the boundary

(Dirichlet boundary conditions), i.e.,

δgρν |Σ = 0, (3.14)
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then, since the first term in the RHS of the second equation in (3.13) depends only on δgρν

and its tangential derivatives hµν∇µδgρν , it would vanish if we impose Dirichlet boundary

conditions as in (3.14). On the other hand, the second term in the RHS of the second equation

in (3.13) depends on δgρν and their normal derivatives nµ∇µδgρν , and is therefore non-zero.

Thus, we see that with Dirichlet boundary conditions, the variation of Einstein-Hilbert action

gives rise to a term that gives the Einstein tensor and a non vanishing boundary term:

δSEH =
1

2κ

∫ √
−gd4xGµν +

ε

2κ

∮
Σ

√
−hd3y(−hρνnµ∂µδgρν). (3.15)

Hence, we see that the variation of Einstein-Hilbert action is not exactly equal to the Einstein

tensor; another term needs to be added to the action for the metric so that its variation

cancels with the boundary term arising from the variation of Einstein-Hilbert action such

that the net variation gives us just the Einstein tensor. This term is the Gibbons-Hawking-

York boundary term.

3.2 Gibbons-Hawking-York boundary term

In the previous section, we saw that apart from just the Einstein-Hilbert action, another piece

needs to be added to the gravitational action in order for the net variation to be exactly

equal to the Einstein tensor. We choose this term to be a boundary term so that the bulk

variation is unaffected, and for Dirichlet boundary conditions, we could choose this term in

such a way that it exactly cancels the boundary term in the variation of Einstein-Hilbert

action.

The Gibbons-Hawking-York boundary term is given by

SGHY =
ε

κ

∮
Σ

√
−h d3yK, (3.16)

where K is the trace habKab of the extrinsic curvature Kab of Σ, which is defined as

Kab ≡ ∇βnαe
α
ae

β
b , (3.17)

where eαa ≡ ∂xα

∂ya
are tangent vectors on the hypersurface (since we specify the hypersurface

using the parametrization xα(ya)). Here, xα are coordinates on the spacetime manifold while
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ya are coordinates on the hypersurface. The trace of the extrinsic curvature of the boundary

hypersurface Σ can be expressed as

K = habKab = hab∇βnαe
α
ae

β
b

= ∇βnα(habeαae
β
b + εnαnβ)

= ∇βnαg
αβ

= ∇αn
α,

(3.18)

where in the second equation, we have used the fact that nαn
α = ε = ±1. Also, from the

second equation, we see that

K = hαβ∇βnα

= hαβ(∂βnα − Γγαβnγ),
(3.19)

so that the variation of the scalar extrinsic curvature (under Dirichlet boundary conditions)

is given by

δK = −hαβnγδΓγαβ

= −1

2
hαβnµ(∂βδgµα + ∂αδgµβ − ∂µδgαβ)

=
1

2
hαβnµ∂µδgαβ,

(3.20)

where we have used the fact that the tangential derivatives of the metric, hµν∇µδgρν , vanish

on Σ. Also, it is because we impose Dirichlet boundary conditions that we do not have any

variation of the normal vector with respect to the metric. Therefore, the variation of the

Gibbons-Hawking-York boundary term with respect to the metric is observed to be

δSGHY =
ε

2κ

∮
Σ

√
−hd3yhρνnµ∂µδgρν . (3.21)

We see that this exactly cancels with the boundary term in the variation of the Einstein-

Hilbert action, and thus we conclude that the sensible gravitational action from which we

can obtain Einstein’s equations is given by

S = SEH + SGHY =
1

2κ

∫
d4x
√
−gR +

ε

κ

∮
Σ

√
−h d3yK. (3.22)

However, it might be the case that the above action might lead to divergences when we

integrate over the whole spacetime manifold (which is non compact). In order to fix this

problem, one can introduce a counterterm to the above action which is independent of the
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metric with respect to which we vary, and thus renders the variational problem as well

as equations of motion invariant. We achieve this by a technique commonly known as

background subtraction as will be explained in the subsequent section.

3.3 Nondynamical counterterm

The counterterm that cancels out the divergences arising from the dynamical pieces (Einstein-

Hilbert term and Gibbons-Hawking-York term), as mentioned in the last section, is given

by

Sct =
ε

κ

∮
Σ

√
−h d3yK0, (3.23)

where K0 is the scalar extrinsic curvature of Σ embedded in a reference background space-

time, which is responsible for the ‘background subtraction’ terminology [17].

As an example, consider the 4 dimensional flat space metric in spherical polar coor-

dinates with Σ defined by two constant time slices, t = t1 and t = t2, and a constant r

hypersurface defined by r = R. One can easily verify that the scalar extrinsic curvature van-

ishes on the constant time slices. The induced metric on the r = R hypersurface is simply

ds2 = −dt2 = R2dΩ2
2, for which

√
−h = R2sinθ. Also, for this hypersurface, nµ = ∂µr = δrµ,

and ε = 1 since it is timelike. One can also check that the scalar extrinsic curvature on this

hypersurface is given by K = ∇αn
α = 2

R
. Therefore, for the 4 dimensional flat space metric,

the action in (3.22) looks like

S = SGHY =
ε

κ

∮
Σ

√
−h d3yK

=
8π

κ
R(t2 − t1),

(3.24)

where the contribution from Einstein-Hilbert action vanishes since Ricci scalar vanishes for

flat spacetime. We see that when the constant r hypersurface is pushed to infinity , i.e., when

R → ∞, the action in (3.2) diverges. Thus, we see that, even with (finite) constant time

slices, the gravitational action for Minkowski (flat) spacetime diverges. This problem would

persist even for curved spacetimes, and thus, the gravitational action for asymptotically flat

spacetimes diverge (provided the spacetime manifold is non-compact). The remedy for this

is to consider the nondynamical counterterm in gravitatonal action, which would cancel off
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the divergence. Thus, when the spacetime is asymptotically flat, we embed the boundary

in flat spacetime and compute the counterterm using the scalar extrinsic curvature of the

boundary as viewed as en embedded hypersurface in flat spacetime.

3.4 Most general gravitational action

From the discussions we have had till now in this chapter, we see that the most general form

of gravitational action is given by

Sg[gµν ] = SEH [gµν ] + SGHY [gµν ]− Sct

=
1

2κ

∫
d4x
√
−gR +

ε

κ

∮
Σ

√
−h d3yK − ε

κ

∮
Σ

√
−h d3yK0,

(3.25)

where κ is the gravitational constant, g and h are the determinants of the metric gµν and the

induced metric hab on the boundary hypersurface Σ, R is the Ricci scalar of gµν , K is the

trace of the extrinsic curvature Kab of Σ, K0 is the scalar extrinsic curvature of Σ embedded

in a reference background spacetime, and ε = +1 or −1 depending on whether the boundary

hypersurface is timelike or spacelike respectively.
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Chapter 4

Quasilocal stress tensor for

asymptotically AdS spaces

In this chapter, we look at a definition of the quasilocal stress tensor proposed by Brown

and York [14] in 1993. We review the interpretation of the same quantity when applied to

asymptotically AdS spaces as proposed by Kraus and Balasubramanian [15] in 1999, and

also make a key observation which may pave the way for obtaining the results obtained by

Kraus and Balasubramanian starting with a slightly different definition of the quasilocal

stress tensor.

We have seen multiple definitions of stress-energy tensor such as the Hilbert stress-

energy tensor (defined as the functional derivative of matter action with respect to the

metric: Tµν = −2√
−g

δSmatter
δgµν

= −2√
−g

∂(
√
−gLmatter)
δgµν

), the canonical stress-energy tensor (defined as

the stress tensor associated with a conserved Noether current resulting from invariance under

translations in spacetime), etc. Nevertheless, defining a stress tensor for the gravitational

field (metric) itself is a non-trivial problem and has been a subject of active research for

quite some time now.

There are a few reasons why such a definition is hard. First of all, a definition analo-

gous to that of the covariant matter energy-momentum tensor (Hilbert stress-energy tensor)

for either the metric or for matter coupled to the metric does not work (where the metric
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satisfies Einstein’s equations), since by Einstein’s equations, we identically obtain zero:

T totµν =
−2√
−g

δ

δgµν
(SEH [gαβ] + SM [φ, gαβ])

= −1

κ
Gµν + Tµν = 0,

(4.1)

where SEH is the Einstein-Hilbert action, SM is the matter action, Tµν is the matter energy-

momentum tensor, and gαβ is assumed to be a solution of Einstein’s equations.

Furthermore, a local definition of the stress tensor also seems pointless from the per-

spective of the equivalence principle [16], by which one can always go to an inertial frame

where gravitational effects vanish. This implies that the gravitational energy-momentum

tensor should vanish in a local inertial frame, and since the object is tensorial in nature, it

must vanish in any arbitrary frame as well. Thus, it seems as if the only way a non vanishing

momentum-energy stress ‘tensor’ for the gravitational field could exist would be if it were

non-tensorial in nature. However, since a local inertial frame is defined by the metric being

Minkowski along with vanishing first derivatives of the metric, it might be possible to come

up with a notion of ‘non-local’ gravitational energy-momentum stress tensor (constructed

out of metric derivatives of order 2 or greater) which need not vanish.

From the ADM formalism of general relativity, it has however been observed that it

makes sense to define the ‘total’ energy, momentum, and angular momentum of an isolated

spacetime, and that these can be obtained from boundary surface integrals over a 2-sphere

placed at infinity. In addition, one can also make sense of a notion of a somewhat more

localised form of energy (possibly attributed to a localised finite region of spacetime) [16].

This is the idea behind the quasilocal energy-momentum stress tensor, which we will make

precise in the coming section.

4.1 Brown and York’s definition of the stress tensor

In 1993, J.D. Brown and J.W. York, Jr suggested a definition of the quasilocal stress tensor

which was primarily motivated by the Hamilton-Jacobi theory [14]. In Hamilton-Jacobi

theory for a mechanical system, we start out by expressing the action in the usual canonical
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form given by

S =

∫
dt

(
p
dx

dt
−H(x, p, t)

)
. (4.2)

The above equation can be expressed equivalently as

S =

∫ η2

η1

dη(pẋ− ṫH(x, p, t)), (4.3)

where η parametrizes the dynamics of the system in phase space, and ẋ ≡ dx
dη

and ṫ ≡ dt
dη

.

Variation of this action looks like

δS = (terms that give classical EOM) + pδx|η2

η1
− Hδt|η2

η1
. (4.4)

We observe that fixing the variations δx and δt at the boundary points η1 and η2 makes the

boundary terms vanish and directly gives us the equations of motion (just like the case with

Dirichlet boundary conditions in the variation of gravitational action). Now, if we restrict

the variations to happen between classical paths, we see that

δScl = pclδx|η2

η1
− Hclδt|η2

η1
., (4.5)

where “cl” implies that the corresponding quantity is evaluated at a classical solution. From

the above equation, we observe that

pcl|η2
=
∂Scl
∂x2

Hcl|η2
= −∂Scl

∂t2
,

(4.6)

where t(η2) = t2 and x(η2) = x2, and pcl|η2 and Hcl|η2 correspond to the classical momentum

and energy at the boundary η2.

A rough sketch of the proof given by Brown and York is as follows. Consider the action

for general relativity as given in [14]:

S =
1

2κ

∫
M
R
√
−gd4x+

1

κ

∫ t2

t1

K
√
−hd3x− 1

κ

∫
3B

Θ
√
−γd3x, (4.7)

where t1 and t2 are constant time (spacelike) hypersurfaces in the manifold M, 3B is the 3

dimensional timelike hypersurface of M which when put together with t1 and t2 constitute
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the boundary ∂M of the manifold M. Varying the above action gives

δS = (terms that give EOM) +

∫ t2

t1

d3x P ijδhij +

∫
3B

d3x πijδγij, (4.8)

where P ij is the momentum conjugate to the metric hij on the spacelike hypersufaces em-

bedded in M , while πij is the momentum conjugate to the metric γij on the boundary

hypersurface 3B. In order for us to obtain classical equations of motion from this varia-

tion of the action, we impose boundary conditions that fix the metric hij on constant time

hypersurfaces and the metric γij on the boundary hypersurface 3B. Now, as before, if we

consider variations just between classical solutions so that we can determine the dependence

of classical action on the fixed boundary data γij, h
1
ij ≡ hij(t1), and h2

ij ≡ hij(t2), we obtain

δScl =

∫ t2

t1

d3x P ij
cl δhij +

∫
3B

d3x πijclδγij. (4.9)

From this, we see that the analogue of the first equation in (4.6) is

P ij
cl

∣∣
t2

=
δScl
δh2

ij

(4.10)

for the gravitational momentum conjugate to hij, evaluated at t2. Now, as we saw before in

the case of gravitational action, we can add a nondynamical boundary counterterm to the

action which does not disturb the bulk equations of motion. Including this counterterm, we

see that the analogue of the second equation of (4.6) is given by

τ ij ≡ 2√
−γ

(πijcl − π
ij
0 ) =

2√
−γ

δScl
δγij

, (4.11)

where πij0 = δS0

δγij
is the functional derivative of the counterterm S0 with respect to the

boundary metric γij. The quantity that functions as the gravitational analogue of the fixed

boundary quantity t2 from the earlier problem of nonrelativistic mechanics is the metric γij,

which determines the time interval between constant time (spacelike) hypersurfaces. How-

ever, since the metric γij also gives us the spacetime intervals on the boundary 3B, the

quantity in (4.11) has an interpretation as a surface stress energy-momentum tensor, rather

than just energy, as was the case previously.
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In summary, Brown and York define the quasilocal energy-momentum stress tensor as-

sociated with a spacetime region as

T µν =
2√
−γ

δSg
δγµν

, (4.12)

where Sg is the gravitational action as defined in (3.25) thought of as a functional of the

metric on the boundary, γµν .

4.2 Kraus and Balasubramanian’s prescription for asymp-

totically AdS spaces

The counterterm present in the action Sg to render the stress tensor finite (or equivalently

the action Sg itself finite) is obtained by embedding the boundary hypersurface in a refer-

ence spacetime as we have seen previously in section 3.3. However, embedding an arbitrary

boundary metric in a reference spacetime may not always be feasible, and thus the prescrip-

tion by Brown and York is ill-defined to an extent. Kraus and Balasubramanian in 1999

suggested an effective remedy for this drawback in the case of asymptotically AdS space-

times [15]. By the AdS/CFT correspondence, one can view the bulk gravitational action

as a functional of the data on the boundary, as we had seen before (in the last section of

the first chapter). Therefore, by the application of this duality, one can view the quasilocal

stress tensor for asymptotically AdS spacetimes as giving the expectation value of the stress

tensor of the conformal field theory living on the boundary:

〈T µν〉CFT =
2√
−γ

δSeff
δγµν

. (4.13)

The divergences observed in the asymptotic limit in the quasilocal stress tensor can now be

given the interpretation of UV divergences in the CFT, which maybe taken care of by adding

counterterms to the action which depend solely on the boundary geometry. This therefore

helps us get around the ill-defined prescription of embedding the boundary hypersurface in

a reference spacetime to get the counterterm, which may not always be possible as discussed

before.
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Consider the foliation of a d+ 1 dimensional spacetime manifoldM by a set of d dimen-

sional timelike hypersurfaces that maybe obtained by continuously deforming the boundary

hypersurface ∂M. A decomposition analogous to the ADM decomposition (where we foliate

the spacetime using spacelike hypersurfaces) for this spacetime maybe expressed as

ds2 = N2dr2 + γµν(dx
µ +Nµdr)(dxν +Nνdr), (4.14)

where grr = − 1
N2 , and gνr = γµνN

µ ≡ Nν . Here γµν is the induced metric on a constant

r (timelike) hypersurface ∂Mr which maybe thought of as bounding the region Mr. Also,

the coordinates xµ are assumed to span the constant r hypersurfaces.

Varying the gravitational action, with respect to the boundary metric, among the solutions

to Einstein’s equations yields

δS =

∫
∂Mr

ddxπµνδγµν +
1

8πGN

∫
∂Mr

ddx
δSct
δγµν

δγµν , (4.15)

where πµν is the momentum conjugate to the boundary metric γµν and is explicitly given by

πµν =
1

16πGN

√
−γ(θµν − θγµν), (4.16)

where θµν is the extrinsic curvature of the hypersurface ∂Mr, and is given by

θµν = −1

2
(∇µnν +∇νnµ), (4.17)

where nµ is the (normalized) normal vector to the hypersurface ∂Mr. Also, θ is the trace of

the extrinsic curvature (a.k.a scalar extrinsic curvature) given by θ = hµνθµν . Using (4.16),

we can express (4.15) as

δS =
1

16πGN

∫
∂Mr

√
−γ ddx(θµν − θγµν)δγµν +

1

8πGN

∫
∂Mr

ddx
δSct
δγµν

δγµν . (4.18)

From the above equation, we see that the quasilocal stress tensor as given in (4.12) may be

expressed as

T µν =
1

8πGN

(
θµν − θγµν +

2√
−γ

δSct
δγµν

)
. (4.19)

The above equation is general and it applies to Brown and York’s prescription too. The

difference arises in the case of asymptotically AdS spaces where (as suggested by Kraus and
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Balasubramanian) we construct the (local, covariant) counterterm out of boundary curvature

invariants (R,R2, etc., where R stands for the Ricci scalar of the boundary metric), since

it may be assumed to be a local functional of the geometry of the boundary hypersurface

∂Mr. In general, higher order curvature invariants like R2, R3, ...,etc., do not contribute

to the counterterm since in the asymptotic limit, their contribution is negligible (i.e., they

vanish rapidly at large r). Thus, in most cases, we are allowed to express the counterterm

as

Sct =

∫
∂Mr

√
−γ ddx(a+ bR), (4.20)

where, as mentioned before, R is the Ricci scalar of the boundary metric γµν . The countert-

erm should be chosen in such a way that at large r, the quasilocal stress does not exhibit any

divergences. Brown and York propose to embed the hypersurface ∂Mr in an AdS background

and consider the gravitational action of the resulting spacetime region as the counterterm.

As mentioned before, such an embedding may not be possible always and that is why their

prescription is, strictly speaking, ill-defined.

Performing an ADM decomposition of the boundary metric lets us define expressions

for the mass and momentum of asymptotically AdS spacetimes [14]. The ADM decomposi-

tion of the boundary metric γµν may be expressed as

γµνdx
µdxν = −N2

Σdt
2 + σab(dx

a +Na
Σdt)(dx

b +N b
Σdt), (4.21)

where Σ is a constant time spacelike hypersurface in ∂M (the boundary hypersurface of

M), with induced metric σab. Here, the function NΣ is referred to as the lapse function, and

Na
Σ is referrred to as the shift vector field. If uµ is the (normalized) normal vector to the

hypersurface Σ, then it describes the direction of time flow in ∂M. The conserved charge

associated with a boundary killing vector ξµ (generator of an isometry of the boundary

metric) has been defined by Brown and York [14] to be

Qξ =

∫
Σ

dd−1x
√
σ(uµTµνξ

ν) (4.22)

The conserved charge associated with the symmetry under time translations is the mass of

the spacetime, which maybe expressed as

M =

∫
Σ

dd−1x
√
σNΣε, (4.23)
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where we define a (proper) energy density

ε ≡ uµuνTµν . (4.24)

We observe that if we choose ξµ = NΣu
µ in (4.22), we obtain the the expression (4.23) for

the mass of the spacetime. A similar definition holds for the momentum of a spacetime, and

is given by

Pa =

∫
Σ

dd−1x
√
σja, (4.25)

where we define ja ≡ σabuµT
bµ.

In addition, we also observe that with the fall-offs suggested by Brown and Henneaux, for

leaving the asymptotic form of the metric of an asymptotically AdS space space invariant, the

variation of the Gibbons-Hawking-York boundary term vanishes, and so does the boundary

piece in the variation of the Einstein-Hilbert action. Therefore, we assume that the Gibbons-

Hawking-York boundary term might not be needed in the action, and one can possibly make

sense of a quasilocal stress tensor derived from the action obtained by dropping the GHY

term.

4.3 Quasilocal stress tensor for asymptotically AdS3

spaces

Consider the metric of AdS3 in Poincare coordinates:

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + dx2). (4.26)

For a constant r hypersurface, the (normalized) normal vector is given by

nµ =
∂µr√

gµν∂µr∂νr

=
δµ,r√
grr

=
l

r
δµ,r.

(4.27)

The extrinsic curvature of this hypersurface may be expressed as

θab = −∇βnαe
α
ae

β
b , (4.28)
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where eαa = ∂xα

∂ya
. Here, xα = (t, r, x) are the coordinates that span the spacetime manifold

while ya = (t, x) are the coordinates that span the constant r hypersurface.

The component θtt of the extrinsic curvature maybe expressed as

θtt = −∇βnαe
α
t e

β
t = −∇tnt

= −∂tnt + Γσttnσ

= Γrttnr = −1

2
nrg

rr∂rgtt

=
r2

l3
.

(4.29)

Similarly, the other components of the extrinsic curvature are given by

θxx = −1

2
nrg

rr∂rgxx = −r
2

l3
, (4.30)

and

θtx = −1

2
nrg

rr∂rgtx = 0. (4.31)

The metric on the timelike hypersurface (denote it by Σ) is given by

ds2
Σ =

r2

l2
(−dt2 + dx2), (4.32)

where r is the constant value of the radial coordinate on the hypersurface. The scalar

extrinsic curvature is therefore given by

θ = γabθab =

(
− l

2

r2

)(
r2

l3

)
+

(
l2

r2

)(
−r

2

l3

)
= −2

l
,

(4.33)

where γab are the components of the induced metric on the hypersurface. Applying the above

results in (4.19), we find that the components of the quasilocal stress tensor for AdS3 are

given by

8πGNTtt = θtt − θγtt −
2√
−γ

δSct
δγtt

=
r2

l3
−
(
−2

l

)(
−r

2

l2

)
− 2√
−γ

δSct
δγtt
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= −r
2

l3
− 2√
−γ

δSct
δγtt

8πGNTxx = θxx − θγxx −
2√
−γ

δSct
δγxx

= −r
2

l3
−
(
−2

l

)(
r2

l2

)
− 2√
−γ

δSct
δγxx

=
r2

l3
− 2√
−γ

δSct
δγxx

8πGNTtx = θtx − θγtx −
2√
−γ

δSct
δγtx

= − 2√
−γ

δSct
δγtx

. (4.34)

4.3.1 Determining the counterterm

In (4.34), Sct is the yet to be determined counterterm for the gravitational action which

should make the action itself and the stress tensor finite in the large r limit. Without the

counterterm, we see that, for instance, the stress tensor components Ttt and Txx diverge.

Therefore, it is necessary to have the counterterm. We assume the form as given in (4.20)

for the counterterm:

Sct =

∫
∂Mr

√
−γ dtdx(a+ b(2)R), (4.35)

where (2)R is the Ricci scalar of the metric on the boundary hypersurface, γµν , and the

coefficients a and b have to be chosen so as to cancel the divergences. The variation of Sct

can be expressed as

δSct =

∫
∂Mr

dtdx
(
δ
√
−γ(a+ b(2)R) + b

√
−γδ(2)R

)
=

∫
∂Mr

dtdx
(
− 1

2

√
−γγµνδγµν(a+ b(2)R) + b

√
−γ
(

(2)Rµνδγ
µν + γµνδ(2)Rµν

) )
=

∫
∂Mr

√
−γdtdx

(
δγµν

(
b

(
(2)Rµν −

1

2
γ(2)
µν R

)
− 1

2
aγµν

)
+ bγµνδ(2)Rµν

)
=

∫
∂Mr

√
−γdtdx

(
δγµν

(
b(2)Gµν −

1

2
aγµν

)
+ bγµνδ(2)Rµν

)
, (4.36)
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where (2)Rµν and (2)Gµν are the Ricci tensor and the Einstein tensor of γµν respectively.

Since the Einstein tensor vanishes identically for a 2 dimensional metric, we have (2)Gµν = 0.

Also, since the last term in the paranthesis is independent of δγµν (cf. (3.9)), we see that

2√
−γ

δSct
δγµν

= −aγµν . (4.37)

To fix the coefficient a, we apply the above result to make Ttt in (4.34) finite (zero in this

case) in the large r limit:

8πGNTtt = −r
2

l3
+ a

(
−r

2

l2

)
= 0, (4.38)

which is satisfied only when we have a = −1
l
. Also, since the Einstein tensor identically

vanishes in 2 dimensions, we see that the coefficient b maybe arbitrary; for convenience, we

set it to zero.

Thus, the counterterm in the action for asymptotically AdS3 spaces is given by

Sct =

(
−1

l

)∫
∂Mr

√
−γ dtdx. (4.39)

We also see that, with the above definition, the components Txx and Ttx also vanish, and

thus we see that the quasilocal stress tensor for AdS3 vanishes. Also, the stress tensor is free

of divergences since it vanishes everywhere.

4.3.2 General formula for asymptotically AdS3 spaces and an ap-

plication

Since the counterterm is the same for all asymptotically AdS3 spacetimes, we apply the

definition of quasilocal stress tensor given in (4.19) to compute and verify the masses and

momenta of some of these spacetimes. We assume these spacetimes to have the form

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + dx2) + δgabdx

adxb, (4.40)
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where δgab are functions of r, t, and x, and xa = r, t or x. We see that the induced metric

at a constant r hypersurface ∂Mr (denote in by Σ) is given by

ds2
Σ =

r2

l2
(−dt2 + dx2) + δgMNdx

MdxN , (4.41)

where xM = t or x.

Let us calculate the components of the extrinsic curvature of the hypersurface ∂Mr. The

normal vector to the hypersurface is given by

nµ =
∂µr√

gµν∂µr∂νr

=
δµ,r√
grr

, (4.42)

where grr = 1
grr

. Therefore, 1√
grr

=
√
grr. Since grr = l2

r2 + δgrr, by taylor expansion to first

order in δgrr, we see that

nµ =

(
l

r
+
r

2l
δgrr

)
δµ,r. (4.43)

Analogous to (4.29), we see that

θtt = −1

2
nrg

rr∂rgtt

= −1

2

(
l

r
+
r

2l
δgrr

)(
r2

l2
− r4

l4
δgrr

)
∂r

(
−r

2

l2
+ δgtt

)
(4.44)

=
r2

l3
− r4

2l5
δgrr −

r

2l
∂rδgtt,

where the RHS is upto terms first order in δgab. Also, grr = 1
grr

=
(
l2

r2 + δgrr

)−1

is obtained

by Taylor expansion to first order in δgrr as

grr =
r2

l2
− r4

l4
δgrr, (4.45)

which is made use of in (4.44).
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Similarly, the other components of the extrinsic curvature are given by

θxx = −1

2
nrg

rr∂rgxx

= −1

2

(
l

r
+
r

2l
δgrr

)(
r2

l2
− r4

l4
δgrr

)
∂r

(
r2

l2
+ δgxx

)
= −r

2

l3
+
r4

2l5
δgrr −

r

2l
∂rδgxx

θtx = θxt = −1

2
nrg

rr∂rgtx

= −1

2

(
l

r
+
r

2l
δgrr

)(
r2

l2
− r4

l4
δgrr

)
∂rδgtx

= − r
2l
∂rδgtx. (4.46)

The scalar extrinsic curvature (to first order in δgab) is given by

θ = γabθab = γttθtt + γxxθxx + 2γtxθtx

=
1

γ

((
r2

l2
+ δgxx

)(
r2

l3
− r4

2l5
δgrr −

r

2l
∂rδgtt

)
+

(
−r

2

l2
+ δgtt

)(
−r

2

l3
+
r4

2l5
δgrr −

r

2l
∂rδgxx

))
=

1

γ

(
2r4

l5
− r6

l7
δgrr +

r3

2l3
∂r(δgxx − δgtt) +

r2

l3
(δgxx − δgtt)

)
, (4.47)

where γab is the inverse of the induced metric on ∂Mr and γ is the determinant of the

induced metric γab.

The determinant, upto first order in δgab, is given by

γ = −r
4

l4
+
r2

l2
(δgtt − δgxx), (4.48)

which is a function of δgtt − δgxx. Therefore, one can express the inverse of the determinant

as well as a Taylor series in δgtt − δgxx, which to first order in the same is given by

1

γ
= − l

4

r4
− l6

r6
(δgtt − δgxx). (4.49)
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Plugging the above equation in (4.47), we find the scalar extrinsic curvature (to first order

in δgab) to be

θ = −2

l
+
r2

l3
δgrr +

l

2r
∂r(δgxx − δgtt) +

l

r2
(δgxx − δgtt). (4.50)

Using the above results, we see that the components of the quasilocal stress tensor are given

by

8πGNTtt = θtt −
(
θ +

1

l

)
γtt

=
r4

2l5
δgrr +

δgxx
l
− r

2l
∂rδgxx

8πGNTxx = θxx −
(
θ +

1

l

)
γxx

=
δgtt
l
− r

2l
∂rδgtt −

r4

2l5
δgrr

8πGNTtx = θtx −
(
θ +

1

l

)
γtx

=
δgtx
l
− r

2l
∂rδgtx. (4.51)

As is obvious from (4.23) and (4.24), the expression for the mass of the spacetime with metric

described by (4.40) is given by

M =

∫
dx
√
σxxNΣ u

µuνTµν

=

∫
dx
√
gxxNΣ u

tutTtt. (4.52)

In the above repression, the lapse function NΣ is given by

NΣ = (−γtt)−
1
2 =

√
− γ

gxx
, (4.53)

where γ is the determinant of the induced metric on ∂Mr. Also, the timelike normal to Σ

is given by

uµ =
δµ,t√
γtt

=

√
γ

gxx
δµ,t. (4.54)
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Plugging the above two equations in (4.52), we see that the mass of the spacetime is given

by

M =

∫
dx Ttt, (4.55)

which clearly diverges in the absence of the counterterm. For a spacetime with metric of the

form in (4.40), we see that its mass is given by

M =
1

8πGN

∫
dx

[
r4

2l5
δgrr +

δgxx
l
− r

2l
∂rδgxx

]
. (4.56)

A similar calculation reveals that the momentum of such a spacetime is given by

Px = −
∫
dx Ttx

= − 1

8πGN

∫
dx

[
δgtx
l
− r

2l
− ∂rδgtx

]
. (4.57)

As an application of the above results, we consider the BTZ metric [18, 19] given by

ds2 = −N2dt2 + ρ2(dφ+Nφdt)
2

+
r2

N2ρ2
dr2, (4.58)

where

ρ2 = r2 + 4GMl2 − 1

2
r2

+, r2
+ = 8Gl

√
M2l2 − J2,

N2 =
r2(r2 − r2

+)

l2ρ2
, Nφ = −4GJ

ρ2
, (4.59)

and φ has a period of 2π. The above metric can be rearranged in the form

ds2 =

(
l2

r2 − r2
+

)
dr2 +

dt2

ρ2

(
r2

l2
(r2

+ − r2) + (4GJ)2

)
+

(
ρ2

l2

)
dx2 −

(
8GJ

l

)
dtdx. (4.60)

Now, in the limit of large r, one can approximate

1

ρ2
≈ 1

r2
− 1

r4

(
4GMl2 +

1

2
r2

+

)
(4.61)

1

r2 − r2
+

≈ 1

r2
+
r2

+

r4
. (4.62)

47



Plugging the above 2 expressions in (4.60), we see that the BTZ metric looks like

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + dx2) +

8GMl4

r4
dr2 + 8GMdt2 − 8GJ

l
dtdx (4.63)

in the limit J � Ml. Therefore, when J � Ml, in the large r limit, we see that the metric

looks like the one given in (4.40), where

δgrr =
8GMl4

r4
, δgtt = 8GM, δgtx = −4GJ

l
. (4.64)

Substituting x = lφ with
∫
dx → l

∫ 2π

0
dφ, we see from (4.56) that the spacetime mass is

given by

M =
l

8πG

∫ 2π

0

dφ

[
r4

2l5
8GMl4

r4

]
= M, (4.64)

which is consistent with the observed result. Similarly, from (4.57), we see that the momen-

tum of the spacetime is given by

Pφ = − l

8πG

∫ 2π

0

dφ

[
−4GJ

l

]
= J, (4.65)

which again is in agreement with the expected result.

4.3.3 Reproducing Brown and Henneaux’s result

Brown and Henneaux in 1993 have shown that the 2 dimensional conformal field theory dual

to gravity in asymptotically AdS3 spacetime has central charge equal to c = 3l
2G

[20]. Since

we interpret the quasilocal stress tensor to be equivalent to the expectation value of the

stress tensor of the CFT, we can verify the above fact by studying the transformation of

the stress tensor under diffeomorphisms which preserve the asymptotic form of the metric

of AdS3.
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Consider the metric of Poincare AdS expressed in the form

ds2 =
l2

r2
dr2 − r2dx+dx−, (4.66)

where

x+ =
t+ x

l
and x− =

t− x
l

. (4.67)

The conformal field theory can be thought as living on the boundary of AdS with metric

ds2 = −r2dx+dx−, with r eventually taken to infinity. Diffeomorphisms of the form

x+ −→ x+ − ξ+(x+), x− −→ x− − ξ−(x−) (4.68)

transform the stress tensor on the boundary as

T++ −→ T++ + 2∂+ξ
+T++ + ξ+∂+T++ −

c

24π
∂3

+ξ
+

T−− −→ T−− + 2∂−ξ
−T−− + ξ−∂−T−− −

c

24π
∂3
−ξ
−, (4.69)

where in either of the equations, the last term arises from an effect that is of quantum origin

while the other terms just follow from the transformation rules for a tensor under coordinate

transformations. Although, (4.68) is a translation and thus classically a symmetry of the

CFT, at the quantum mechanical level, it fails to be one since they introduce a conformal

factor in the metric [15]. Brown and Henneaux observed that only those diffeomorphisms

that leave the asymptotic form of the boundary metric of AdS invariant correspond to

symmetries of the CFT (at the quantum level) for which the metric of AdS is bound to

satisfy the following fall-offs [20]:

grr =
l2

r2
+O(

1

r4
), g++ = O(1), g−− = O(1),

g+− = −r
2

2
+O(1), g+r = O(

1

r3
), g−r = O(

1

r3
). (4.70)

The coordinate transformations that preserve these conditions are given by

x+ −→ x+ − ξ+ − l2

2r2
∂2
−ξ
−

x− −→ x− − ξ− − l2

2r2
∂2

+ξ
+

r −→ r +
r

2
(∂+ξ

+ + ∂−ξ
−). (4.71)
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For large r, the transformations of x+ and x− look like those in (4.68) since the extra cor-

rections in the above equations are negligilble. Under the above diffeomorphisms, the metric

of AdS3 transforms as

ds2 −→ l2

r2
dr2 − r2dx+dx− − l2

2
(∂3

+ξ
+)(dx+)2 − l2

2
(∂3
−ξ
−)(dx−)2. (4.72)

As this transformation leaves the metric invariant in the asymptotic limit, it is a symmetry.

For the above form (4.72) of the metric, we compute the quasilocal stress tensor as follows.

The metric in (4.72) could be equivalently expressed in terms of the usual Poincare co-

ordinates of AdS as

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + dx2)− 1

2
(∂3

+ξ
+ + ∂3

−ξ
−)(dt2 + dx2) + (∂3

−ξ
− − ∂3

+ξ
+)dtdx, (4.73)

from which we identify that

δgtt = δgxx = −1

2
(∂3

+ξ
+ + ∂3

−ξ
−), δgtx =

1

2
(∂3
−ξ
− − ∂3

+ξ
+). (4.74)

Therefore, from (4.51), we see that the components of the quasilocal stress tensor are given

by

8πGTtt = − 1

2l
(∂3

+ξ
+ + ∂3

−ξ
−)

8πGTxx = − 1

2l
(∂3

+ξ
+ + ∂3

−ξ
−)

8πGTtx =
1

2l
(∂3
−ξ
− − ∂3

+ξ
+). (4.75)

Now, from the tensor transformation rules, on going from (r, t, x) coordinates to (r, x+, x−)

coordinates, we see that

T++ = (∂+t)
2 Ttt + (∂+x)2 Txx + 2(∂+t)(∂+x)Ttx

T−− = (∂−t)
2 Ttt + (∂−x)2 Txx + 2(∂−t)(∂−x)Ttx. (4.76)

From (4.67), we see that

∂+t = ∂+x = ∂−t =
l

2
, ∂−x = − l

2
. (4.77)
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Therefore, using the above 3 equations, we have

T++ =
l2

32πG

[
−1

l
(∂3

+ξ
+ + ∂3

−ξ
−)

]
+

l2

16πG

[
1

2l
(∂3
−ξ
− − ∂3

+ξ
+)

]
= − l

16πG
∂3

+ξ
+, (4.78)

and

T−− =
l2

32πG

[
−1

l
(∂3

+ξ
+ + ∂3

−ξ
−)

]
− l2

16πG

[
1

2l
(∂3
−ξ
− − ∂3

+ξ
+)

]
= − l

16πG
∂3
−ξ
−. (4.79)

Since these transformation rules should match with those given in (4.69), we see that

− c

24π
= − l

16πG
⇐⇒ c =

3l

2G
, (4.80)

which matches perfectly with the result obtained by Brown and Henneaux.

4.3.4 An important observation and its consequences

We see that with the Brown-Henneaux fall-offs, the variation of the Gibbons-Hawking-York

term for asymptotically AdS spacetimes vanishes. The expression for the variation of the

GHY term is given by (3.21). We consider the metric of AdS3 as given in (4.66) with the

fall-offs given by Brown and Henneaux as in (4.70). We consider a constant r timelike

hypersurface for which ε = 1. For ease of calculation, we consider the inverse metric whose

components are comprised solely of the leading order behaviour in r. This would mean

that we are considering the inverse of the exact AdS3 metric in (4.66). As seen before, the

(normalized) normal vector to the boundary hypersurface is given by

nµ = grrnrδ
µ,r

=
r

l
δµ,r. (4.81)

With the above ingredients, the variation of the GHY term is given by

δSGHY =

∫
∂Mr

√
−γ dx+dx−γαβnµ∂µδgαβ. (4.82)
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The above expression evaluates to

δSGHY = 2

∫
∂Mr

√
−γ dx+dx−h+− nr∂rδg+−

= 2

∫
∂Mr

dx+dx−
(
− 2

r2

)
O(

1

r2
)
(r
l

)(r2

2

)
,

∼ O(
1

r
), (4.83)

which vanishes in the limit of large r. Here, we have only considered the leading order

dependence of r while calculating the determinant of the metric which goes like r2. Also,

since g+− = − r2

2
+ O(1), we see that δg+− ∼ O( 1

r2 ). Therefore, we see that the Gibbons-

Hawking-York term is not really a mandatory component of the gravitational action for

asymptotically AdS3 spaces; we might as well drop it since the only role it plays is in making

the variational problem well defined by cancelling of the boundary term in the variation

of the Einstein-Hilbert action which we anyways observe to be zero. This means that we

might be able to obtain standard results even from a quasilocal stress tensor derived from

the action obtained by dropping the Gibbons-Hawking-York term.

4.4 Quasilocal stress tensor for asymptotically AdS4

spaces

4.4.1 AdS4 in Poincare coordinates

Consider the AdS4 metric in Poincare coordinates:

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + dx2

1 + dx2
2). (4.84)

The induced metric on a timelike hypersurface ∂Mr (denote it by Σ) defined by a constant

value of r is given by

ds2
Σ =

r2

l2
(−dt2 + dx2

1 + dx2
2), (4.85)

where r is the constant value of the radial coordinate.
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From the ADM decomposition of the induced metric, we see that the lapse function N

and the shift vector field Na are given by

N =
√
−γtt =

r

l
, Na =

γat

N2
= 0. (4.86)

From (4.23), the mass of the spacetime can be observed to be

M =

∫
∂Σ

dx1dx2

(
r2

l2

)(r
l

)
(ut)

2
Ttt

=

∫
∂Σ

dx1dx2
r

l
Ttt, (4.87)

where, in going from the first to the second equation, we use

√
−σ =

r2

l2
, (ut)

2
= − 1

gtt
= −gtt =

l2

r2
. (4.88)

Also, the region of integration ∂Σ is a spacelike surface in the boundary hypersurface ∂Mr

of AdS4 with metric σab. Therefore, from (4.87), we expect Ttt ∼ 1
r

for the mass to not

diverge at large r. The (normalized) normal vector to the hypersurface ∂Mr is given by

nµ =
δµ,r√
grr

=
l

r
δµ,r. (4.89)

Analogous to those in (4.29), the components of the extrinsic curvature of the hypersurface

∂Mr are given by

θtt = −1

2
nrg

rr∂rgtt

=
r2

l3

θxixj = −1

2
nrg

rr∂rgxixj

= −r
2

l3
δij

θtxi = −1

2
nrg

rr∂rgtxi

= 0. (4.90)
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The scalar extrinsic curvature is given by

θ = γttθtt + γxixjθxixj + γtxiθtxi

=

(
− l

2

r2

)(
r2

l3

)
+ 2

(
l2

r2

)(
−r

2

l3

)
= −3

l
. (4.91)

Therefore, the components of the quasilocal stress tensor are given by

8πGNTtt = θtt − θγtt −
2√
−γ

δSct
δγtt

=
r2

l3
−
(
−3

l

)(
−r

2

l2

)
− 2√
−γ

δSct
δγtt

= −2
r2

l3
− 2√
−γ

δSct
δγtt

8πGNTxixj = θxixj − θγxixj −
2√
−γ

δSct
δγxixj

= −r
2

l3
δij −

(
−3

l

)(
r2

l2

)
δij −

2√
−γ

δSct
δγxixj

= 2
r2

l3
δij −

2√
−γ

δSct
δγxixj

8πGNTtxi = θtxi − θγtxi −
2√
−γ

δSct
δγtxi

= − 2√
−γ

δSct
δγtxi

. (4.92)

In the above expressions, γµν is the induced metric on the hypersurface ∂Mr. It is easily

seen that the counterterm that cancels off the divergences in the stress tensor components

is given by

Sct =

(
−2

l

)∫
∂Mr

√
−γ dtdx1dx2, (4.93)

and we see that incorporating the above counterterm in the action for AdS4 renders Tµν = 0.
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4.4.2 AdS4 in global coordinates

Consider the metric of AdS4 in global coordinates:

ds2 = −
(

1 +
r2

l2

)
dt2 +

dr2(
1 + r2

l2

) + r2(dθ2 + sin2 θdφ2). (4.94)

The induced metric on a constant r timelike hypersurface ∂Mr (denote it by Σ) is given by

ds2
Σ = −

(
1 +

r2

l2

)
dt2 + r2(dθ2 + sin2 θdφ2). (4.95)

In global coordinates, after doing an ADM decomposition of the above boundary metric, we

see that the lapse function N and the shift vector field Na are given by

N =
√
−γtt =

√
1 +

r2

l2
, Na =

γat

N2
= 0. (4.96)

Also, the other ingredients that make up the RHS of (4.23) are given by

√
−σ = r2 sin θ, (ut)

2
= − 1

gtt
= −gtt =

(
1 +

r2

l2

)−1

. (4.97)

Using the above information, we see that the mass of the spacetime, in the limit of large r,

looks like

M =

∫
∂Σ

dθdφ r2 sin θ

(
r2

l2

)− 1
2

Ttt

=

∫
∂Σ

sin θ dθdφ (lr)Ttt. (4.98)

The same expression can be used for determining the mass of asymptotically AdS spacetimes

in the limit of large r. The (normalized) normal vector to the hypersurface ∂Mr is given by

nµ =
δµ,r√
grr

=
δµ,r√
1 + r2

l2

. (4.99)
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The components of the extrinsic curvature of the hypersurface ∂Mr are given by

θtt = −1

2
nrg

rr∂rgtt

=
r

l2

√
1 +

r2

l2

θθθ = −1

2
nrg

rr∂rgθθ

= −r
√

1 +
r2

l2

θφφ = −1

2
nrg

rr∂rgφφ

= −r sin2 θ

√
1 +

r2

l2
. (4.100)

The trace of the extrinsic curvature is given by

θ = γttθtt + γθθθθθ + γφφθφφ

= − r
l2

(
1 +

r2

l2

)− 1
2

− 2

r

√
1 +

r2

l2
, (4.101)

where γµν is the metric on the hypersurface ∂Mr. Now, the difference between the 2 co-

ordinate systems shows up in the counterterms that needs to be added in either case; as

opposed to the counterterm in (4.93) for the case of Poincare coordinates, we see that the

corresponding counterterm in the action when the metric is expressed in global coordinates

is given by

Sct =

∫
∂Mr

√
−γ
(
−2

l
+
l (3)R

2

)
, (4.102)

where (3)R is the Ricci scalar of the boundary metric γµν . From (4.36), we see that the

contribution to the quasilocal stress tensor arising from this counterterm is given by

2√
−γ

δSct
δγµν

=
2

l
γµν + lGµν . (4.103)

Finally, we see that the components of the quasilocal stress tensor are given by

8πGNTtt = θtt − θγtt −
2

l
γtt − lGtt
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=

(
1 +

r2

l2

)[
−2

r

√
1 +

r2

l2
+

2

l
+

l

r2

]

=
l

4r2
+

l3

8r4
+ · · ·

8πGNTθθ = θθθ − θγθθ −
2

l
γθθ − lGθθ

= r

√
1 +

r2

l2
+
r3

l2

(
1 +

r2

l2

)− 1
2

− 2r2

l

=
l3

4r2
− l5

4r4
+ · · ·

8πGNTφφ = θφφ − θγφφ −
2

l
γφφ − lGφφ

= 8πGNTθθ sin2 θ

=
l3

4r2
sin2 θ − l5

4r4
sin2 θ + · · · . (4.104)

In evaluating the above expressions, we expand the quantities within the square root around

r =∞. These expansions look like√
1 +

r2

l2
=
r

l
+

l

2r
− l3

8r3
+

l5

16r5
+O

((
1

r

)7
)

(
1 +

r2

l2

)− 1
2

=
l

r
− l3

2r3
+

3l5

8r5
− 5l7

16r7
+O

((
1

r

)9
)
. (4.105)

4.4.3 An example calculation: AdS4 Schwarzschild metric

We consider the metric of AdS4 Schwarzschild in global coordinates:

ds2 = −
(

1 +
r2

l2
− r0

r

)
dt2 +

(
1 +

r2

l2
− r0

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (4.106)

The induced metric on a constant r timelike hypersurface ∂Mr (denote it by Σ) is given by

ds2
Σ = −

(
1 +

r2

l2
− r0

r

)
dt2 + r2(dθ2 + sin2 θdφ2). (4.107)
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The (normalized) normal vector to this hypersurface is given by

nµ =
δµ,r√
grr

=
δµ,r√

1 + r2

l2
− r0

r

. (4.108)

The components of the extrinsic curvature of this hypersurface are given by

θtt = −1

2
nrg

rr∂rgtt

=
( r
l2

+
r0

2r2

)√
1 +

r2

l2
− r0

r

θθθ = −1

2
nrg

rr∂rgθθ

= −r
√

1 +
r2

l2
− r0

r

θφφ = −1

2
nrg

rr∂rgφφ

= −r sin2 θ

√
1 +

r2

l2
− r0

r
. (4.109)

The scalar extrinsic curvature is given by

θ = γttθtt + γθθθθθ + γφφθφφ

= −
( r
l2

+
r0

2r2

)(
1 +

r2

l2
− r0

r

)− 1
2

− 2

r

√
1 +

r2

l2
− r0

r
, (4.110)

where γµν is the metric on the hypersurface ∂Mr.

The tt component of the quasilocal stress tensor is given by

8πGNTtt = θtt − θγtt −
2

l
γtt − lGtt

=

(
1 +

r2

l2
− r0

r

)[
−2

r

√
1 +

r2

l2
− r0

r
+

2

l

]
− l
(

1

r2
+

1

l2

)
=
r0

lr
+ · · · , (4.111)
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where, in writing the finl expression on the RHS, we use the following expansion around
1
r

= 0 : √
1 +

r2

l2
− r0

r
=
r

l
+

l

2r
− r0l

2r2
− l3

8r3
+
r0l

3

4r4
+O

((
1

r

)6
)
. (4.112)

Applying the above result in (4.98), we calculate the mass of the spacetime as

M =
1

8πGN

∫
∂Σ

sin θ dθdφ (lr)
r0

lr

=
4πr0

8πGN

=
r0

2GN

. (4.113)

Since r0 is the radius of the black hole horizon (or in other words, the Schwarzschild radius),

we see that the result we have obtained is consistent with what one would expect for the

mass of a black hole.

4.5 Quasilocal stress tensor for asymptotically AdS5

spaces

Consider the metric of AdS5 in Poincare coordinates:

ds2 =
l2

r2
dr2 +

r2

l2
(−dt2 + dx2

1 + dx2
2 + dx2

3). (4.114)

The metric induced on a constant r hypersurface ∂Mr (denote it by Σ) is given by

ds2
Σ =

r2

l2
(−dt2 + dx2

1 + dx2
2 + dx2

3). (4.115)

From the ADM decomposition of the metric on Σ, we see that the lapse function N and the

shift vector field Na are given by

N =
√
−γtt =

r

l
, Na =

γat

N2
= 0, (4.116)

where γµν is the induced metric on the hypersurface ∂Mr.
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Applying the above equation in (4.23), we see that the mass of the spacetime is given by

M =

∫
∂Σ

dx1dx2dx3

(
r3

l3

)(r
l

)
(ut)

2
Ttt

=

∫
∂Σ

dx1dx2dx3
r2

l2
Ttt, (4.117)

where we use
√
−σ = r3

l3
and (ut)

2
= −γtt = −gtt in going from the first to the second

equation. Therefore, for the mass to not to diverge at large r, we expect Ttt ∼ r−2 in the

limit of large r.

We see that that the (normalized) normal vector to the hypersurface ∂Mr is given by

nµ =
δµ,r√
grr

=
l

r
δµ,r. (4.118)

We see that the components of the extrinsic curvature of the hypersurface ∂Mr are given

by

θtt = −1

2
nrg

rr∂rgtt

=
r2

l3

θxixj = −1

2
nrg

rr∂rgxixj

= −r
2

l3
δij

θtxi = −1

2
nrg

rr∂rgtxi

= 0, (4.119)

which are exactly the same as those for AdS4 in Poincare coordinates. However, difference

arises in the scalar extrinsic curvatures, which for the case of AdS5 is given by

θ = γttθtt + γxixjθxixj + γtxiθtxi

=

(
− l

2

r2

)(
r2

l3

)
+ 3

(
l2

r2

)(
−r

2

l3

)
= −4

l
. (4.120)
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As expected, this is different from that for AdS4 given in (4.91). The components of the

quasilocal stress tensor are given by

8πGNTtt = θtt − θγtt −
2√
−γ

δSct
δγtt

= −3r2

l3
− 2√
−γ

δSct
δγtt

8πGNTxixj = θxixj − θγxixj −
2√
−γ

δSct
δγxixj

=
3r2

l3
− 2√
−γ

δSct
δγxixj

8πGNTtxi = − 2√
−γ

δSct
δγtxi

. (4.121)

From the above equation, we see that a finite stress tensor for AdS5 in Poincare coordinates

is obtained by picking the counterterm

Sct =

(
−3

l

)∫
∂Mr

√
−γ dtd3x. (4.122)

On the other hand, analogous to the case of AdS4, we see that in global coordinates, an extra

term is required in the counterterm to cancel off the divergences in the quasilocal stress tensor

components. We see that the counterterm in the case of AdS5 in global coordinates is given

by

Sct =

∫
∂Mr

√
−γ dtd3x

(
−3

l
+
l

4
(4)R

)
, (4.123)

where (4)R is the Ricci scalar of the induced metric γµν on the boundary hypersurface ∂Mr.

We verify that this is indeed the case with the following examples.

4.5.1 Example calculations

As the first example, we consider the metric that arises in the near-horizon limit of the

D3-brane:

ds2 =
r2

l2

[
−
(

1− r0
4

r4

)
dt2 +

3∑
i=1

(dxi)
2

]
+

(
1− r0

4

r4

)−1
l2

r2
dr2. (4.124)
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The induced metric on a constant r hypersurface ∂Mr (denote it by Σ) is given by

ds2
Σ =

r2

l2

[
−
(

1− r0
4

r4

)
dt2 +

3∑
i=1

(dxi)
2

]
. (4.125)

The (normalized) normal vector to this hypersurface is given by

nµ =
δµ,r√
grr

=
l

r

(
1− r0

4

r4

)−1

δµ,r. (4.126)

The components of the extrinsic curvature of this hypersurface can be calculated as

θtt = −1

2
nrg

rr∂rgtt

= −1

2

(
l

r

)(
1− r0

4

r4

)−1(
r2

l2

)(
1− r0

4

r4

)
∂r

[(
−r

2

l2

)(
1− r0

4

r4

)]
=

(
r4 + r0

4

r2l3

)√
1− r0

4

r4

θxixi = −1

2
nrg

rr∂rgxixi

= −1

2

(
l

r

)(
1− r0

4

r4

)−1(
r2

l2

)(
1− r0

4

r4

)
∂r

[
r2

l2

]
= −r

2

l3

√
1− r0

4

r4
. (4.127)

The scalar extrinsic curvature is given by

θ = γttθtt + γxixiθxixi

=

(
−3

l
− 1

l

(
r4 + r0

4

r4 − r0
4

))√
1− r0

4

r4
. (4.128)

Finally, we see that the components of the quasilocal stress tensor are given by

8πGNTtt = θtt − θγtt −
3

l
γtt

=
3(r4 − r0

4)

l3r3

[
r −

√
r4 − r0

4

r2

]
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=
3r0

4

2l3r2
+ · · ·

8πGNTxixi = θxixi − θγxixi −
3

l
γxixi

=
1√

r4 − r0
4

(
3r4

l3
− r0

4

l3

)
− 3r2

l3

=
r0

4

2l3r2
+ · · · , (4.129)

where to arrive at the final expression on the RHS for the first and the second equations, we

use the following expansions (around r =∞ or equivalently around 1
r

= 0) respectively:√
r4 − r0

4

r2
= r − r0

4

2r3
− r0

8

8r7
− r0

12

16r11
+O

((
1

r

)13
)

1√
r4 − r0

4
=

1

r2
+
r0

4

2r6
+

3r0
8

8r10
+O

((
1

r

)13
)
. (4.130)

Using the expression for Ttt, we see that the mass of the spacetime is given by

M =
3r0

4

16πGN l5

∫
∂Σ

d3x, (4.131)

which is in agreement with the standard formula [21].

As the next example, we consider the AdS5-Schwarzschild metric:

ds2 = −
[
1 +

r2

l2
−
(r0

r

)2
]
dt2 +

dr2[
1 + r2

l2
−
(
r0
r

)2
] + r2(dθ2 + sin2 θdφ2 + cos2 θdψ2). (4.132)

The induced metric on a constant r timelike hypersurface ∂Mr (denote it by Σ) is given by

ds2 = −
[
1 +

r2

l2
−
(r0

r

)2
]
dt2 + r2(dθ2 + sin2 θdφ2 + cos2 θdψ2). (4.133)

The (normalized) normal vector to this hypersurface is given by

nµ =
δµ,r√
grr

=
δµ,r√

1 + r2

l2
−
(
r0
r

)2
. (4.134)

63



The extrinsic curvature components of Σ are given by

θtt = −1

2
nrg

rr∂rgtt

=

(
r

l2
+
r0

2

r3

)√
1 +

r2

l2
−
(r0

r

)2

θθθ = −1

2
nrg

rr∂rgθθ

= −r
√

1 +
r2

l2
−
(r0

r

)2

θφφ = −1

2
nrg

rr∂rgφφ

= −r sin2 θ

√
1 +

r2

l2
−
(r0

r

)2

θψψ = −1

2
nrg

rr∂rgψψ

= −r cos2 θ

√
1 +

r2

l2
−
(r0

r

)2

. (4.135)

The trace of the extrinsic curvature of Σ is given by

θ = γttθtt + γθθθθθ + γφφθφφ + γψψθψψ

= −
(
r

l2
+
r0

2

r3

)
1√

1 + r2

l2
−
(
r0
r

)2
− 3

r

√
1 +

r2

l2
−
(r0

r

)2

, (4.136)

where γµν is the metric induced on the hypersurface ∂Mr.

The tt component of the quasilocal stress tensor can be calculated as

8πGNTtt = θtt − θγtt −
3

l
γtt −

l

2
Gtt

=
3(r4 − r0

4)

l3r3

[
r −

√
r4 − r0

4

r2

]

=
3r2

l3
−
(

3r

l2
+

3

r
− 3r2

0

r3

)√
1 +

r2

l2
−
(r0

r

)2

+
3lr2

0

2r4
− 3r2

0

r2
− 3l

2r2
+

3

2l

=
3l

8r2
+

3r2
0

2lr2
+ · · · , (4.137)
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where Gµν is the Einstein tensor of γµν and is given by Gtt = 3
r2

(
1 + r2

l2
−
(
r0
r

)2
)

. In writing

the final expression on the RHS, we make use of the following expansion around 1
r

= 0:√
1 +

r2

l2
−
(r0

r

)2

=
r

l
+

l

2r
− l4 + 4l2r2

0

8lr3
+O

((
1

r

)5
)
. (4.138)

Applying the expression for Ttt in (4.23), in the limit of large r, we calculate the mass of the

spacetime as

M =

∫
∂Σ

dθdφdψ r3 sin θ cos θ
1√

1 + r2

l2
−
(
r0
r

)2

(
3l

8r2
+

3r2
0

2lr2

)

=
3πl2

32GN

+
3πr2

0

8GN

, (4.139)

where we use

√
−σ = r3 sin θ cos θ, N =

√
−γtt, (ut)

2
= −γtt = − 1

γtt
. (4.140)

We see that the mass we have obtained has a term in addition to the standard observed

value of 3πr2
0/8GN [21]. The additional term corresponds to the mass of empty AdS5 when

r0 = 0.
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Chapter 5

Conclusion

The thesis started out by presenting a brief review of the essential aspects about AdS/CFT.

We saw that the isometry group of AdS and the symmetry group of AdS are the same thing.

We also looked at particle dynamics in AdS, both classical and quantum, and understood

the interpretation of CFT primary and descendant operators in AdS. Following this, we

saw how conformal invariance constrains the form of CFT correlation functions. In particu-

lar, we employed the definition of AdS/CFT dictionary to explicitly compute CFT 2-point

correlators.

In the third chapter, we reviewed the Lagrangian formalism of general relativity. We un-

derstood that the Einstein-Hilbert action alone does not give rise to a well defined variational

principle. Also, neither is it finite in the limit of large distances. Hence the need for the

Gibbons-Hawking-York boundary term and the nondynamical counterterm. We concluded

the chapter by giving the most explicit form of the action for a spacetime metric.

In the last chapter, we understood why defining a stress-energy tensor for the metric of

a spacetime manifold is hard. We studied in detail the proposal of quasilocal stress tensor

for a spacetime by Brown and York and how it applies to asymptotically AdS spaces as

investigated by Kraus and Balasubramanian. We computed the masses and momenta of

various spacetimes using the stress tensor and saw that we indeed were getting the right

results. We studied the interpretation of this quantity from the point of view of CFT. We

explicitly showed the result obtained by Brown and Henneaux and saw that for metrics that

satisfy these fall-offs, one may drop the GHY term in their gravitational action, thus leading
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to a slightly different definition of the quasilocal stress tensor. This may pave the way for

obtaining the standard results obtained before, nevertheless starting with a slightly different

definition of the stress tensor.
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