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Abstract

The goal of the project is to prove the Hodge decomposition theorem for compact Rieman-
nian manifolds. This theorem states that any smooth differential form on such a manifold
can be expressed in a unique way as a sum of a harmonic form, a closed form and a co closed
form. The proof involves a study of elliptic differential operators on manifolds. We will see
applications of this theorem can be used to prove some theorems like the Poincaré duality

and the Kunneth Formulae.
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Introduction

Let us start with two finite dimensional vector spaces U and V' and a linear map T between
them. We have the adjoint of this map, 7. Now what can we tell about the solutions of
the equation Tu = v. One necessary condition for the existence of the solution would be
that v L Ker(T*), since if x € ker(T*), then (v, x) = (T'u, x) = (u, T*x) = 0, had a solution
existed. In fact, for the finite dimensional case this is in fact a sufficient condition as it can
be shown without a lot of trouble that I'm(T) = (Ker(T*))*. The Hodge Decomposition

Theorem is a generalisation of this simple theorem.

Consider the the differential operator L := # for smooth function on the real line, this
is just the map that sends a function f to its second derivative f”. This is a linear operator.
Let us work with the space of functions with period 27 so that we can define an inner product
on this space as, (f,g) = fo% fgdx. Then L is a linear operator, which we observe using

" = ( forces u to be

integration by parts, is in fact self-adjoint. What is the kernel of L? u
linear of the form v = ax + b, but it has to be 27 periodic, this constrains a = 0. Hence

Ker(L) = constants.

Suppose we are trying to look for a solution of Lu = f. We cannot use the arguments
in the previous paragraphs as we are working with infinite dimensional spaces. However
integrating both sides from 0 to x, we see u'(x) = u/(0) + fox f. Now suppose we have a
solution, then it has to be periodic, and «'(0) = «/(27r) = [ f = 0. Recall that L is a
self adjoint operator Ker(L*) = Ker(L) = constants. Clearly [ f =0 = [ L Ker(L).
Hence we have a necessary condition, which in fact turns out to be sufficient. Hence, even

in this infinite dimensional case, Lu = f has a solution iff f 1| Ker(L).

This is precisely the Hodge Decomposition Theorem where your manifold is R. For a

general manifold, L turns out to be what is called the Hodge-Laplacian, A which is a self



adjoint linear operator on smooth forms. The Hodge-Decomposition Theorem states that
Aw = « has a solution precisely when o € (Ker(A))t. However there are a lot of subtle
things that need to be done since we don’t have a well defined notion of a PDE on a manifold

to start with, or an inner product on the space of smooth forms.

The goal of this project is to give a self contained proof of the Hodge Decomposition
Theorem. This is an exposition closely following the proof outlined in [1]. The result has far
reaching consequences in getting information about the cohomology groups of the manifold
which is an algebraic quantity and as such not an easy quantity to calculate. Below is a brief

outline of the chapters.

The proof involves a study of PDE on manifolds. But what does it mean to have a PDE
on a manifold? Is it independent of the co-ordinate system? Does it match with our usual
notions when we consider R™ as a smooth manifold. All these questions are dealt with in
the first chapter. The analysis of PDE involves a inevitable study of Sobolev Spaces. This is
a vast theory and studying it in it’s generality will sufficiently take us off course. Hence we
limit our study to the case of periodic functions which is far easier to deal with. The second
chapter involves a brief section on Fourier Analysis, as you would’ve guessed, as does any
theory on periodic functions, then we define Sobolev spaces and see generalisations of some

things from calculus.

The third chapter deals with defining PDE and looking at some properties of the solutions.
Most of these are a direct consequence A special class of PDE, called the elliptic PDE. In order
to work with and study PDE e develop the theory of Sobolev Spaces, not in generality, but for
periodic functions, which is much easier due to the techniques of Fourier Analysis. We give
a brief exposition on the same(Fourier Analysis. We will see this is sufficient for our purpose
for compact manifolds. The final chapter gives us the proof the main analytical theorems
that will be used to prove the Hodge-Decomposition Theorem. This is a self contained
read, with the reader assumed to have a working understanding of functional analysis and
differential geometry along with the elementary notions of a Riemannian metric and the

concept of partitions of unity.



Chapter 1

The Hodge Decomposition Theorem

The Hodge decomposition theorem is an important result in differential geometry about
certain representatives of the de Rham cohomology class. This theorem tells us that we
can always find certain “nice” representatives called Harmonic forms for each class. These
are “nice” in the sense that these representatives minimizes some sort of energy function on
p-forms. This is very useful in calculating the cohomology groups of manifolds which is not
a trivial task. Using something called the Bochner Technique we can conclude results about
the cohomology classes given some conditions on the curvature, for instance if the curvature
of a compact oriented manifold is positive then the cohomology class is trivial since there

exist no harmonic forms.

Now we would like to define the Laplacian on the manifolds, but it is not straight forward
how to define PDE’s on manifolds, let alone the Laplacian, because the usual notion of partial
derivatives seems to change with the choice of co ordinate system on the manifold. However
we have an exterior derivative d which is a well-defined operator resembling some sort of
derivative which acts on forms, and functions are nothing but zero forms. We will define the
0 operator which is the adjoint of d, and then the Laplacian using these two linear operators.
We will see that defining the Laplacian like this in fact coincides with the usual definition of

the Laplacian on functions in R™.



1.1 The % operator

Let V be a finite dimensional vector space of dimension n, with an inner product (., .). Since
we have an inner product, we can use this to get an isomorphism between V' and V* and as
a result APV ~ APV*. Since Hom(V,W) = V* @ W and we already have an isomorphism
between APV and APV*, the inverse gives an element Hom(APV*, APV'), we get an element
of APV*® APV. But an element here is nothing but an inner product on APV. We have used
the fact that APV* = (APV)* This inner product on AP(V) is follows:

(Wi Awg Awy ... Ap,v1 Ava A ... Awy) = det(w;, v;)
where w;’s and v;’s are in V. Extend this bilinearly to whole of AP(V).

The inner product defined on AP(V') as above is clearly independent of the initial vectors
you start with, since we are using the inner product on V and there is no reference to
any basis. Now if B = {ej,es,...,e,} is an orthonormal basis of V,(.,.), then B, =
{ei, Newy Ao Neiy, e, € Briyp <y < ... <1y} is an orthonormal basis for APV with the
inner product defined as above. This follows directly from the definition of the inner product

on APV

Definition 1.1.1 (The * operator). Let V' be an n dimensional vector space with an inner
product (.,.). Choose an orthonormal basis of V, B = {ej,e1,...,e,}. Now define x as

follows:

x: AP(V) — A"7P(V)
*(eil VAN €iq VANRIAN €Z‘p) = (-1)89n(1)€j1 VAN €, NN €jn7p
where {j1, ja, ..., Jn—p} is the complement of {iy,is,...,7,} in {1,2,...,n}, that is,

{1,2, PN ,n}\{’il,iz, Ce ,ip} = {jl,jg, Ce ,jn_p}

and sgn([I) is the sign of the permutation I, which takes {1,2,...,n} to {i1,42,...,0p, J1,J2,- - s Jn—p}

Another way to look at is just as the complement in the standard volume form.

(e AeiA. . Nei )Ax(eg AepA. . Ae) = (=1 De; Nei A Aes, Alej Aej, A . ey, ) = e1AeaA. . . Aey,

First we need to show that this definition is well-defined. What if we start with another



basis B = {¢},¢},...,¢e,}? Note we have to put an extra condition that this basis needs
to be the same orientation 8 since we used this to define the sign of the map. We can find
a n x n matrix A such that Ae; = e,. A will be an orthogonal matrix since with positive

determinant since we have orthogonal basis of the same orientation. Now,

*(ej, Nejy N A€ ) = w(Ae, A Aei, Ao A Aey) = det(A) x (e, Nei Ao Nei)

Since det(A) = 1, we conclude that the * operator is well-defined.

Lemma 1.1.1. The * operator satisfies the following property: x* = (—1)®=r)

Proof. Suppose *(e;; Aey, N...ANei,) =ej Nej, A...Aej,_ orin other words
(e Neiy N Ne,) Nej Nejy Ao Nej, , =erNeaN... Aey (1.1)

Here we have used up the factor of (—1)*"D) to reorder the basis elements of the image.
Now, clearly * x (e, Aegy A...Ae;) = (—1)"(e;; Aeiy Ao Aey,), i.e it gives back the same
element (since complement of a complement is the same thing) upto a sign which we have to

determine. This is done by:
k(e Neig Ao Ne) Nxx (e Negg Ao Ne,) =eg Nea Ao Ney
ey Nej Ao Nej A(=1D) (es, Nesy AcoAe)=erAesA... Ney
Notice that from 1.1, we just need to show
?
6]‘1/\6]‘2/\.../\6]‘”71)/\(—1) (61‘1/\61‘2/\.../\6%) = (61‘1/\81‘2/\.../\ez‘p)/\ejl/\6]'2/\.../\6]‘71717

Now we need to move each e;, across n — p terms of ej,. There are p e;’s. Since each
step gives us a factor of —1, we see that the the we need to multiply by (—1)?™~?). Hence
xk (e New Ao Nep) = (1P Ple; Aey, Ao Ney) O

This operator seems to have popped out of nowhere. But in fact it is closely related
to the inner product that we started out with. We already have some hints towards some

relation as the definition of * involved choosing an orthonormal basis.

Lemma 1.1.2. (v, w)voly = *(v A xw)



Proof. We just have to verify this for the basis elements, due to linearity it will follow for all
vectors. Suppose we start with two distinct basis vectors v and w, then there will be some
common e; between v and *w, and due to this *(v A xw) = 0. Since v and w are orthogonal
(v,w) = 0. Next when we take the same basis vectors, *(v A xv) = x(ey Aea A ... Ney) = 1.
Also (v,v) = 1 since it’s an orthonormal basis. Hence by verification we have proved the

lemma. O

We have the inner product as above on AP(T,M) for each x € M. Given two smooth p

forms w, n, we can define
(w, n)(x) = {w(z),n(z))

Using this we can define an inner product on QP(M) as follows:

o) = [ wand@yvolss = [ s(ula) nsnfa)

1.2 The ) operator

The 0 operator is the formal adjoint of the exterior derivative, d, where QP(M) is equipped

with the inner product as defined as above.

(dw,mn) = {w,on)
where w € QP(M) and n € QP M
Definition 1.2.1 (The ¢ operator). The ¢ operator is defined as follow:
5 QPTH(M) — QP(M)

5 — (_1)n(p+2)+1 * d*

and J satisfies:
(dw,n) = (w, dn)

for all w € (M) and n € QP M. For zero forms it is just the zero map.

We will show that with the definition of § as above it is in fact the adjoint of d. Take

6



ac€ QP7IM and B € QPM. Then
dla AN*p) =da A3+ (1)’ taAdx* B
Since #* = (—1)P~DM=P+Y) acting on d * 3, we have:
d(a A *B) = da A xf + (—=1)P7H=1)P= DO A x5 d x B

dlaNxf) =da N+ —a A0

Now integrate both sides and using stokes theorem we obtain (d«, 8) = («, §/3)

1.3 The Hodge Laplacian

We can use d and 9§ to define a symmetric linear operator on the space of smooth p-forms.

Definition 1.3.1 (The Hodge Laplacian). The Hodge Laplacian denoted by A, is defined
as follows:
A QP (M) — QP(M)

A =dd+dd

Lemma 1.3.1. Properties of A

1. The Hodge Laplacian, A is a symmetric linear form on the space of smooth p-forms.
2. Ap=0 <= dp=0 and dp =0

3. The Hodge star commutes with the Laplacian, *xA = Ax

Proof. 1. Let o, B € QP(M). Clearly A is linear as it is the composition of linear operators.

(Aa, B) = ((dd + dd)a, B)

= (dda, B) + (dda, )
= («, ddp) + (o, dd )
= (o, (0d + do) )

=

a,AB)

7



This shows that it is symmetric.

2. Observe the following:

(A, ¢) = (do¢ + 6d, §)

= (d0, ¢) + (dd¢, §)
= (00,09) + (d¢, do)
= |

[66][* + [|de]|*

It follows directly from the above equality and the definition of A.

3. Straightforward calculation using the definition of § and that result x* = (—1)™®=P),

]

Okay now we have defined the Hodge-Laplacian. The least we can expect is for this
operator to be equal to the usual Laplacian on R"™ for functions or zero forms with the
euclidean metric. We will show that this is indeed that case. We will also calculate it for

smooth p forms and notice that it is just the Laplacian of each of the components. We have

a global basis for the tangnet bundle and co-tangent bundle given by { Bcgcl’ 8512, ey 851”
and {dzq,dzs,...,dx,}. 6f = 0 since it is a zero form. Next we need to calculate ddf, that

8



is (—1)*"*1 % d x df (Since df is a one form). Hence ddf = — * d * df
Ny,
df = Za—fd
i=1 '
“~ Jf ., - 8f
*df:*(z amdav)*Z*(am z)
. 1 7

=

_Z O et Nda® A AdatV A dz AL A da”
0@
- 1laf i—1 i+1 n
dxdf =d() (—1) (%da: Adz? A AdET A dETTE A LA da?)
=1
—Z ’1d6 de' ANdz® A NdETE A AT A LA dat) (1.2)
Ty

=> (1)~ a"’;d:p ANdz' Ndz® AL Ad T AN AT A LA da)

n 2
:Zafd Adz® A ... Ada"

@
o
3 ﬁw

2
—*d*df——*(zgxédx ANdz® A ... Ada™)

Hence

dsf + 8df = —

So we get back our usual Laplacian with a negative sign. The calculations for p forms can
be similarly be computed and we will see that for w = Y, w;dz! where I = (iy,...,i,) is a
multi-index and dx! = dz™ Adz® ... Adz®. Then

Aw = (d6 + 0d)w = Z(d5 + 6d)wrdz! = Zw}dwl
I

1

where

N\

p
--y. 2o
k=1 Zk

for I = {iy,...,ip}



Definition 1.3.2 (Harmonic p-forms). The space of harmonic p-forms in just the kernel of
the Hodge-Laplacian. It is denoted by HP.

HP ={w e QP(M) : Aw = 0}

We have now developed the the various definitions and operators for stating the Hodge

theorem.

1.4 The Hodge Decomposition Theorem and Applica-

tions

Theorem 1.4.1 (The Hodge Decomposition Theorem). Given any integer 0 < p < n, the
space of harmonic forms is finite dimensional and we have the following orthogonal direct
sum decomposition of the space QP(M) of smooth forms on a compact oriented Riemannian
manifold, M:

QP(M) = A(QP(M)) @ HP(M)

Consequently, the equation Aw = « has a solution w € QP (M) if and only if the p-form « is

orthogonal to the space of harmonic p-forms.

Once we have this theorem we now show that any de-Rham cohomology class has a

unique harmonic representative.

Corollary 1.4.1.1. Every de-Rham cohomology class of a compact oriented manifold con-
tains a unique harmonic representative. Hence the de-Rham cohomology groups are all finite

dimensional.

Proof. Let |w] be some p-th de-Rham cohomology class. Take an element in this class,
a € [w]. Now from Theorem 1.4.1 we see that a« = A¢ + 7, where ¢ € QP(M) and n € HP.

Hence
a=Ap+n=dép+ ddp+n

We apply d on both sides. Since d?> = 0 and An =0 = dn =0, and « is a closed form,

10



we obtain:

0 = dode

6d¢||> = (d¢, bde)
= (dodg, do)
= (0, d¢)
~=0

Hence ||dd9||* =0 = dd¢ = 0. Now since
0 = S + 5dé+ 1 = dbé + 1

Observe that a and 7 differ by a closed form. Hence 7 is the desired harmonic representative
in [w]. Now we show that this form is unique. Let 7,72 be two harmonic forms in the same
class. Then n; — 7 is a harmonic forms and they differ by a closed form, i.e, n; — ny = da.

Now,

N — 12, — 7]2>
T _7727da>

|l — || =
= (0(m — M), )

{
{
(0,a)
0

Hence 1, — 72 = 0 which means that 7, = 1. Hence the harmonic representative is unique.
The finite dimensionality of the de-Rham cohomology group follows as the space of harmonic
forms is finite dimensional and from above we have a unique harmonic representative for each

class. O

Corollary 1.4.1.2 (Poincaré Duality). Let HY .. (M) denote the p-th de-Rham coho-

mology of a compact oriented manifold M. Then we have an isomorphsim:

ng_—pRham(M) = (HcIZe—Rham(M))*

Proof. Since we are working with finite dimensional spaces with an inner product, H), (M) =
(HY. o (M))* is the same as having a non-degenerate bilinear from on H) ", (M) x

HY  ppo (M). We define the form as follows. Represent any class in the cohomology groups

11



by their harmonic representatives. Then:

(o], [8]) = /M o nxf

This is well defined since the harmonic representatives are unique.Clearly this is bilinear.
Now suppose for a fixed [o], ([a], [3]) = 0 for every §. Since * commutes with A, A(xa) =0

and as a result *« is a closed form. Take the class [*a]. Now,
([a], [*a]) =0 = / aAxa=0 = |[la|*=0
M

Hence o« = 0. This proves non-degeneracy. O

1.5 Proof of The Hodge Decomposition Theorem

We will give a proof of the Hodge Decomposition Theorem in this section. We will be

assuming two theorems, which we will be proving in the subsequent sections.

Theorem 1.5.1 (Regularity Theorem). Let a € QP(M), and | be a weak solution to the
equation Aw = a. That is | : QP(M) — R is a linear map with the property that l[(Aw) =
(a,w). Then there exists wy € QP (M) such that

U(B) = <W0,5>

for every B € QP(M), which implies that Awy = «.

In general it is a difficult to say whether a general PDE has a smooth solution. However
the Laplacian is a very special PDE,called an elliptic PDE (which we will show later).
Roughly it means that all the partial derivatives of the solution are controlled by the a
smaller set of partial derivatives for every order. Hence we can conclude the existence of

smooth solutions under some additional conditions.

Theorem 1.5.2 (A is a compact operator). Let {a,} be a sequence in QP(M) such that
l|an || < ¢ and ||Aay,|| < ¢ for all n and for some fized ¢ > 0. Then there ezists a subsequence

{an, } which in Cauchy in QP(M).

12



Again this theorem makes use of the fact that A is elliptic. It is not surprising then
since we have a bound on both the values of the function and all it’s partial derivatives of

all order, to expect some sort of convergence. Now we need a technical lemma.
Lemma 1.5.1. For any 3 € (HP)* there exists ¢ > 0 such that

18] < cllAB]|

Proof. Assume to the contrary that there exists no such constant ¢. Then for every n € N,

there exists 3, € (H?)* such that ||3,|] > n||AB,||. By renormalizing, i.e setting 1, = —Hﬁﬁ’\bll ;
|2

we obtain a sequence of forms, {¢,,} € (H?)*-. Now |[¢,|| = 1. Since ||Ae,|| < L for all
n, this means that ||Avy,|| — 0. Since the series {||Aw,||} converges, it is bounded, say
||At,|| < c. Hence we have

[¥nll < c+1

|AYn|| <c+1

from Theorem 1.5.2, we obtain a Cauchy subsequence which we denote by the same index
{tn}. We conclude that for a fixed ¢, (14, ¢) is a Cauchy sequence because

(Y1, 8) = (WU )] = [ — Y, $)| < [t — Vil ][]
Now define a linear functional on Q2(M) as follows:
1:QP(M) - R
l(¢) = lim (¢, ¢)

This is well defined since for a fixed ¢ the sequence converges as it is Cauchy as shown above.

Now we observe that:
[(A¢) = lim (¢, Agp) = lim (Ae),, ¢) = 0.
n—oo n—oo

Hence [ is actually a weak solution of the PDE Aw = 0. From Theorem 1.5.1, we know that
there exists ¢ € QP(M) such that ((¢) = (¥, ¢). Hence,

Tim (3, 0) = (1),6).

13



This means that t,, — 9. Since 1; € (H?)* and ||¢;]| = 1 for all i, we obtain that ¢ € (H?)*,

since (HP)* is closed and |[1|| = 1, since ||.|| is a continuous function. However since Ay = 0,
we have ¢ € HP. Then ¢ € (H?P)+ N HP = {0}. But this is impossible since ||¢/|| = 1. Hence
we have a contradiction. O

Now we proceed to the main proof:

Proof of Theorem 1.4.1(The Hodge Decomposition Theorem). First we will show that H? is
finite dimensional. Assume to the contrary that H? is not finite-dimensional. Then we
can find an infinite sequence of orthonormal elements in H?, say {«,}. Now since «, €
H? Aa,, = 0. Also since our sequence is orthonormal we have ||a,|| = 1. Hence we can use
Theorem 1.5.1 to conclude that there exists a Cauchy subsequence. But ||ay, — an,|| = v/2
for all n, m since the sequence is orthonormal, and consequently there cannot be a Cauchy

subsequence. So we have a contradiction. Hence H? is finite dimensional.

Select an orthonormal basis of H?, {wy,ws,...,w;}. Then for any a € QP(M) set f =
a— ' {wi, a)w;. Note that (8,w;) = 0 for each i. Hence 8 € (HP)*. Since H? N (HP)+ =
{0}, we conclude that QP(M) = (H?)* & HP. Hence the proof is reduced to showing that
(H?): = A(Qr(M)).

First we show that A(QP(M)) C (HP)+. Suppose w € A(QP(M)) and o € HP i.e Aa = 0.
Let Aw’ = w Then
(w,a) = (AW, a) = (W', Aa) = 0.

Hence we have one way containment.

Next to show that (H?)* C A(QF(M)). So given a € (H”)*, we need to find w € QP(M)
such that Aw = «. Hence we need a solution to the PDE Aw = «. The procedure is to
construct a weak solution and then obtain the required w by using Theorem 1.5.1. Hence

we need

1:QP(M) = R

which satisfies
I(Aw) = (o, w)

We will start by defining a linear functional with this property on the subspace A(QP(M)).

14



Define:
[ AQP(M)) - R

l(Aw) = (o, w)

We want to extend this function to all of QP(M) is order to use Theorem 1.5.1. This can be
achieved by using Hahn-Banach Extension theorem, which requires [ to be bounded. We use
Lemma 1.5.1 to show this. But first we need to show that [ is well-defined, i.e if Aw; = Aws,
then [(Aw;) = [(Awy). But this is clear since A(w; —ws) = 0 which means [(A(w; —ws)) = 0.

By linearity we conclude that [ is a well-defined function.

Now to show that [ is bounded. Note that in order to apply Lemma 1.5.1 we need
w € (H?)t. But we already know that

(M) = (H)" & HY

Hence write w = w; + wy where wy € (Hl”)L and wy € HP. Now,

(AW = [[I(Aw)[] = [(a, 1)
< laf| fjwr]] < cflal| [|Aw || = || Aw]]

We have shown that [ is a bounded linear functional on A(QP(M)). Hence, using the Hahn-

Banach Extension theorem we can extend [ to obtain,
I':QP(M) - R

satisfying the property !'(Aw) = I[(Aw) = (o, w). Hence from Theorem 1.5.1, there exists
W' € QP(M) such that Aw’ = a.Therefore we have found a solution to the equation Aw = «

and this completes the proof of the theorem. O
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Chapter 2

Sobolev Spaces

This section we develop the relevant theory for proving the two theorems used in the proof of
the Hodge Decomposition Theorem. The general theory of Sobolev spaces is a huge topic and
studying that will take us considerably off course. So we restrict ourselves to space of periodic
functions, these are a lot easier to deal with since we can use the Fourier decomposition.
This is sufficient in the case of manifolds since we will always prove things locally. We will
use charts and partitions of unity, and due to compact support we can extend it periodically
to the whole of R™. These will become more clear in the next chapter where we will actually
put to use all the machinery developed here.

First we define some notations:

P ={f:R™ — C™ such that f is smooth and periodic with period 27}

C>® = {f :R" — C™ such that f is smooth}

Cs° = {f :R" — C™ such that f is smooth and compactly supported}

Ce(V)={f:R" — C™ such that f is smooth and supp f C V'}

2.1 Fourier Series

In the section we will look at the necessary results from Fourier analysis. In the next section
of Sobolev Spaces, we will prove of lot of properties and theorems, for functions that are
periodic and smooth, so that we can use some of the results of this chapter. Proving the

theorems of general Sobolev spaces, which requires us to do a lot of analysis on LP functions,
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will take us significantly away from the present topic. Hence we prove all the theorems for a

certain subset of functions, which are nice, in the sense they have a Fourier series expansion.

Some notations: a = (ay,...,q,) where ;s are all non-negative integers. For £ € Z", we
denote:

a __ Q1 «@
€ =&"...a"

o]l =a;+ ...+ ay
P =& +... +&

We denote
0 0

Oxon  Oz{!
Let P = {f : R® — C™ such that f is smooth and periodic with period 27}. And @

be the cube of side 47 centered at zero in R", also called the 27 cube centered at 0, i.e

Q={p=1,...,pn) €ER" : |p;| <21, 1< j <n}
Take an element ¢ € P. For each £ € Z™, define

_ 1 T e—im.{
%= Gy [ 0

Theorem 2.1.1. Let ¢ € P, and ¢¢ defined as above. Then the following series converges

Z ¢£ eizf

gezr

D* =

uniformly to ¢.

Proof. By repeatedly integrating by parts we obtain the following for each non-zero ¢ € Z™:

Ck

H €2k

Now we prove a useful inequality that we will be using very frequently.

|pe| <

A+ =0+ +... +&)

T (e

[a]=k
<c]]&*

18



|
Here (¥) = —* Hence
o aql...an! )

Ck Ck

[TeF = (Ut epr

Hence we reduce the problem to the convergence of the series > m

|pe| <

First define the

set

A]:{gz (617"'7571) - max ‘51’ :j}

0<i<n

We will calculate the cardinality of A;. First we fix the component which attains the max-
imum, there are n possibilities for this. It could take the value j or —j.The other n — 1
elements can take values ranging from —j, ..., 7, i.e, any of these 25 + 1 elements. There is
a subtle overcounting going on but we can anyways conclude than the cardinality of A; is
less than 2n(2j 4+ 1)"!. Also observe that for each & € A; we have [£]? > j2.

1 1 1
g = e <Y e < (2 1)
A A+t T A ) (1+ %)
J J

Now for j > 1, we have (25 +1)"! < ¢j" ! and (1 + j2)F > j%. Hence we conclude that,

‘n—1-2k
a; < ¢j

We know that the the second term which is a geometric series converges when n — 1 —
2k < —1, that is when & > |%] + 1. But since ¢ is smooth, we can take k to be as
large as possible. Hence by the comparison test, we conclude that the Zg ¢¢ converges
absolutely to some continuous function ¢ (since the finite sums are all smooth functions and
the convergence is uniform). Now we show that in fact ¢ = ¢. Let & = ¢ — 1. Let ¢ be a

trigonometric polynomial, i.e, a finite sum of terms of the from a¢e’”* where a; € C™. Take
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t= Zfinite ageix'é Now notice:

/Qq>.t_/Q(¢—¢).t
:/ng.t—/Qw.t

=/Q¢-(Z @éeix'f)—/cz?ﬁ-(z age™™)

finite finite
= Z /qb.agem'g— Z /@/J.agem'g
finite finite
=D b~ ) agde
finite finite
=0

Now by the Stone-Weierstrass Theorem we can find a trigonometric polynomial ¢, such
that ||® —t[| < e.

s 1 1 B 1 :L B B
I91° = 5z [ 00 = o [ ~Gr [ 0= g [ 2@ -0 < o~

@] < e

Since € is arbitrary and @ is a continuous function, we conclude that & = 0 and hence ¢ = .

We have proved that the series converges uniformly to ¢.

¢ _ Z ¢§€i$'£

gezn

We now look at the derivatives of ¢ and how these change the Fourier coefficients. By using
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integration by parts, we observe:

2m)m Jg
(-1

_ _ A\la]ea —iz.€
= @) /Q( i) 4% N0,
= il*l¢o g,

For ease of notation we will denote D® to actually mean

1 0 0
pll — — -
iled 9zan Oz

Then we have

(D)e = £

2.2 Sobolev Spaces

We define the set S := { sequences in C™ indexed by £ € Z"}. Hence a typical element of
S would be denoted by u = {u¢} where each ue € C™ as £ varies over Z".

Definition 2.2.1 (Sobolev Spaces Hy).

Hi={ues: Z(l + €]7)* |ue|* < oo}

¢ezn

If we define an inner product on S as

(u,v)s = Y (1+[€P) ueve

gezr

then H, is precisely the subset of S with a finite norm, the norm being induced from (., .),
Notice that any ¢ € P has a Fourier series and hence we can identify ¢ with the series
{¢pe}e € S, and from the results of the previous section we conclude that P C H, for each

s. Now we define the operators D®. The intuition is as follows. We know that for smooth
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periodic functions we have the Fourier coefficients, ¢¢, and we have an obvious way for
defining D%¢¢ to be (D%¢)¢, i.e, D*pe = £%¢¢. We extend this to all the sequences in S.
For ¢ € S,

(D%(9))e = & ue
Also from previous inequality we can conclude that the more the differentiable the function
is, the higher the order of the Sobolev space it belongs to. And the converse is also true.

Suppose u € H, for large s, then we can show that the formal Fourier series actually converges

to a smooth functions with some derivatives.

Theorem 2.2.1 (Properties of Sobolev Spaces). We have the follow inequalities which will
be useful:

w s a complex valued smooth periodic function on R™, ¢, € P

(a) Ift < s, then ||ull; < ||u||s, hence Hs C Hy. Denote by H_ to be the union of all H.

(b) D* is a bounded operator from Hg (o) to Hy for each s. We have the inequality,

[1D%ulls < [lullsto

(¢) K, ¥)s| < [ l]stel[]]s—e

(d) (Peter Paul Inequality) Given t' <t < t" and any € > 0, we can find another constant
which depends only on €, call it c(€) such that :

1ol < ellolli + c(e)llgll7

Proof. (a) t<s = (14 [¢]*)" < (1+£]?)*, as a result ||ul|; < ||ul|s, and Hy C H,.

(b) (Du)e = & ug
So

1D%ul2 =Y (14 [E*)*| (D u)e|?
¢

=D (P I ue® = Y (1 + [€)° € uel

¢ ¢
<D IR A+ 1€ g = [l o
¢
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(c) We will use the Cauchy Schwartz inequality for the complex numbers to prove this.
(0, 0)sl = D (1 + [EP)°dethe
13
s+t s—t—
=D (L [EP)F o (1 + 16%) = v
3

<A+ 1P oe)F O (1 + €y )z

€ ¢
= [|B]]s1¢|[¥]|s—¢

(d) We have the following observation: " —¢ > 0 and ¢t —t' > 0. Now if y > 0, then either

y or i has to be greater than 1. Hence we have:

1 t—t’
s (3
Y

Now given ¢, take y = eﬁ(l + |€]?) to obtain:
(14 [€%)" < e(1+ € + e(e) (1 + [€])"

where c(e) = ¢~ The required inequality follows from the above by multiplying

throughout by |¢¢|* and summing over &.

2.3 Sobolev and Rellich theorem

In this section we prove two useful theorems. Sobolev theorem makes our previous intuition,
of a formal Fourier series converging to a function that is more differentiable, the higher the
order of the Sobolev space it belongs to, more rigorous. Rellich theorem is concerned with
whether we have a convergent sequence or in particular a Cauchy sequence. This is a hard
question in general, and whether there is exists a Cauchy subsequence is easier to answer.
This too is not easy to do using elementary analysis. The way we get around this is, we
impose conditions on the sequence in higher order Sobolev spaces, and this is sufficient to

give us some sort of convergence in a lower order Sobolev space.
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Theorem 2.3.1 (Sobolev Theorem). If s > || + 1, then the series Zg uge'™ converges

uniformly. Thus each s > |5] + 1 corresponds to a continuous function.

Proof. We will show that 25 uge™ converges absolutely. Since for finite sums this is a

continuous function, that means the limit is also a continuous function.

1) S uee S| <> Jugl

[§I<N [§|<N

= L+ EP) T+ [E)E ug

[§|<N

<A+ IER T+ [€]?)*|uel)2

E<N

=+ ) ulls

E<N

But since s > [ 5] +1, 3"y (1 +[&[*)~* converges. Hence by using the Weierstrass M-test,

we conclude that the series Zg uge'™* is uniformly convergent. O]

Corollary 2.3.1.1. Ifu € H,, t > |5] +1+m. Then if [o] < m, D*u € H;_[o) from (a)
of 2.2.1. Nowt — [a] > |5] + 1. Hence from the Sobolev Lemma we conclude that D*u is

continuous. We conclude that uw € C™

Theorem 2.3.2 (Rellich Theorem). Let {u'} be a bounded sequence in Hy, that is ||u’|]; < ¢
for some ¢ > 0. Suppose s < t. Then there erists a subsequence {u™} which converges in
H,.

Proof. We have Y. (1 4 [§[*)"ug|* < ¢ for each i. Now fix £ € Z". The sequence {(1 +
t . . . .

€1?)2|ug|} is a bounded sequence in R. Hence we have a convergent subsequence which we

denote by the same index. Now we use the diagonal argument to obtain a sequence {u’},

such that {(1+ [£ |2)%|u2’“|} converges for all £. {u'} is the required Cauchy subsequence in
H,

e =2 = 3000+ (€[ el =

3
= Y (LR + ) g = uf P+ D (U + €)1+ [€P) ud — |
E<N §2N
=:A+B
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B=>Y (1+ I[P 1+ ul — ul

E>N

SN2 D (L 16P) (g o+ g + 2l g )
cen

:“*N?)”(Z( 6P T [P+ D (U IR 2 Y (1 [€f) 2 <1+\sr2>2ru§’)
Een cern gezn

(L+ N ([l + [ Il + (™, ul).)
(1+ N e+ e [Ju*]]s Ju” )
(14+ N?)*Hc+c+?)

IAINA

A

€
2

by choosing N large enough since s —t < 0. Now after choosing such an N = N,,

A= 3 (U P+ IEPY i — P
< ST IEPY g — ul P

Since for a fixed &, {(1+ |§]2)%|u§

} converges, we can find J¢ such that, for all ji,j; > Je,

(LI ) < [

where 0 = #{¢ € Z" : €] < Ny}. Since we have only a finite number of |{| < N,, we choose:
J =maz{Je : || < No}
Now if jg, 5, > J, then

A<Zl+]§\ |u ”2
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Hence combining the estimates for A and B, we conclude that, for large enough jx, 71,

=2 = A+ B
< €+€
—2 2

= €

Hence {u/i} is our required Cauchy subsequence in Hi. ]

2.4 Difference Quotients

What does it mean for a function to be differentiable. Suppose f : R — R is a continuous
function. Then we say that f is differentiable at xq if the following limit exists and the limit
is called the differential of f at z,, denoted by f’(x).

/(o) = lim f(zo+h) — f(xo)

h—0 h

Note that if this limit exists then w is necessarily bounded. And conversely if there
is a uniform bound on this term for all h, then in fact the limit exists and f is differentiable.
Keeping this example and intuition in mind we proceed to define difference quotients.

Suppose ¢ € P, then we want to look at the term ¢(x + h). Since we already have a Fourier

decomposition, we observe the foll wing:
¢($ + h) _ Z ¢§€i(z+h).f _ Z gbgei(z.&—l—h.f) _ Z ¢£eix.§6ih.f _ Z eih.gqbgeix.{
3 3 3 3

Hence we see that a translation by h corresponds to the {th Fourier coefficients being scaled

by e¢. We extend this to the space S. We define the translation map, T}, as follows:
(Th(u))e = ™ 4ug

Now we can define the difference quotients for u € S. We denote it by u”, defined as:

Th(u) —u

h h

u =
|hl
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Th(u))e —ue  eMfue —u
" _ (Tw(u))e —ug _ €~ Ug
e =" g

Similar to the real one dimensional case, we have analogous theorem for Sobolev spaces.

Lemma 2.4.1. Ifu € H,,y, then |[u"||s < ||ullss1 for all non-zero h € R™.

Proof.

[ = D (1 + [€) g ?

3

ih&,, _
=S+ [ePy ¢ e T U
¢

2

||

eih.{ -1 2

:;(1“5\ )’ T

el

By using the series expansion of e¢#¢ and the Cauchy-Shwarz inequality we can that

eth-s — 1 ’

—|| <1+P
7

Hence, we have:

2
eihf -1

[la"(2 = (1 +[€[*)’ 7]

¢
<D IEP L+ 1) uell®
¢

el

= [lulls+1

Now for the converse,

"Il

Lemma 2.4.2. Ifu € Hy, and there exists a constant ¢, such that ||[u"||s < ¢ for all non-zero

heR", ie, ||ul|], is uniformly bounded, then u € Hy.,,.
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Proof. We will give a sequence in Hgy; which converges to u. The obvious candidate for
this sequence which agrees with u in a finite number of places and is zero for all the other

indices, i.e,{ux} is defined as follows:

(un)e = ,
0 otherwise

Clearly this sequence converges to u. We will show that this sequence is uniformly bounded
in Hy 1. First an observation, if we let h = te; where {ej,...,e,} form an orthonornmal

basis for R™, then:
o eifter Coetei ] )
lim ————— = lim ———— = i&e™
t—0 |t€i| t—0 |t|

Now,
2
eth-€ — 1

<K
I

la"ls <& = D (1+[€°)fuef
jel<n

We take h = te;, then take limit as £ — 0 to obtain

Z(l + 1€ ueP|&)? < k2 for 0 <i <
E<N

Adding up all these inequalities and the fact that u € H, we conclude:
lunlZer = DU+ P JueP(1+ Y 1617) < nk? + [[ull3
E<N i=1

We see that {uy} is bounded in H,,; uniformly. Therefore u € Hgyq. O

2.5 Some Technical Results

We prove some technical lemmas in this section which are required to prove the various
theorems and inequalities in the upcoming sections the most important of which is the elliptic
regularity and the fundamental inequality for periodic elliptic partial differential operators.
First we will prove some lemmas for H,, which will then be used to prove required lemmas

for partial differential operators.
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To prove the following two lemmas, we define a new operator called K*. This will be an
isometry between Sobolev space of different another orders. The reason behind doing this is,
we can prove these lemmas rather easily for when s > 0. Then the case for s < 0 is proved
by using K* to reduce it to the case of s > 0.

Define for u € S, K'u, where the sequence is given by,
(K'u)e = (1 +[€]*) ue

Lemma 2.5.1. Properties of K*
1. K': H;, — H,_o is an isometry
2. The inverse of K' is K~

3. IfpeP andt >0, then
n 82 t
i — — _
o= (1 ;ax3)¢

4. For every s and t,u,v € Hs; we have the following:

(u, v)s = (u, K'v)s s = (K'u,v)s_

Now we have defined K*, we proceed to prove the following technical lemmas.

Lemma 2.5.2. Let w be a smooth real valued periodic function on R™. Then given an integer
s, we can find constants ¢ which depends only on s and n, and ¢ which depends on s,n and

w and it’s derivatives such that:

lwlls < ellwlloolll]s + ¢[6]]s-1

In particular, due to Theorem 2.2.1 we can say, ||w||s < "||@]]s.

Proof. We first prove for the case s > 0, follows from the fact that: [[¢|[s < C > o |[D%¢]|-
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Then

lwglls < C Y IDwél| = C Y [|[Dwe —wD ¢ +wD*¢||

[a]=0 [a]=0
<C Y (D —wDe||+C Y [[wDd|]
[a]=0 [a]=0

s S
<Y Ml +ellwlloe D Nl
1=0 1=0
< (s = DI[¢lls—1 + esllwllocl8]]s = CI6]]s-1 + C[[wlloll¢] s

Now when s < 0, we hit it by K*® to reduce it to the s = 0 case.

lwol|s = (wo, wd)s = (WK K ¢, K*we)o
— (WK K6+ KWK — KwK*¢, K°wéo
= (K°wK?®p, K*wo)o + (WK™ — K°w) K¢, K°wa)g

Using the case of s > 0(since —s > 0), Cauchy Schwartz and properties of K*, we see that

for the first term:

(KWK, Kwh)o| = [(WK*¢, K*w) |
< lwKol| o[ Kwe|| -
< (w0l [K*0| s + K[| K7 @|| —s—1) w5
< (cllwllssll9l]s + Kl ls—1)[lwd |s

For the second term, we use the definition of K* on smooth functions, i.e 3) of Lemma

2.5.1 to obtain that: et

wK™? — K %w = Z an,D*

[a]=0
where a,, are continuous functions of derivatives of w. Then by using elementary analysis,

Cauchy Schwartz and the properties of D* and K*® we obtain:

(WK™ = K7°w)K°¢, K*wé)o| < const]|¢||s—1|lwl|ss||]]s
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From the bounds on the two terms we get our desired inequality.

Lemma 2.5.3. Let w be a complex-valued smooth periodic function on R™. Then for any
mteger s,

[(wo, )s = (&, W) s| < c(l[o]]s][¢]]s—1 + [lol]s—1l[¢]]5)

And we have a special condition when s =0, (wo, )y = (¢, W)o

Proof. The case for s = 0 when ¢, ¢ € P is nothing but a direct consequence of the fact that
(., .)o is the same as the L? norm and as P is dense in Hy. Take s < 0 and ¢,v € P. Then

we have:

(W, )s = (W, K)o = (WK K ¢, ¥)o

K7 K20, 0K )0 = (K°¢, KWK )g
V)s — (6, W)s + (K¢, KWK )0
V)s = (K0, w00 + (K°¢, KWK 1))

W) s + (K°¢, (K *w — WK ~*)K*)g

EI

EI

{
=
= (¢,
= (¢,
= (¢,

We already did an approximation in the previous lemma for a term similar to the second
term. After re-arrangement and observing the symmetry we obtain the desired inequality.

The case for s > 0 is proved exactly as above but you use K ~* first. O
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Chapter 3

PDE Theory

In this chapter we define partial differential operators and some analytic results on them.
These are pretty straightforward from the bounds that we proved the D® operator and
after all a partial differential operator will be made up of these, so we can easily extend
those results. More importantly e deal with a very special kind of operator called an elliptic
operator, the prime example being the Laplacian. These operators have positive eigen values

and that allows us to prove more stronger results and have better control over the solutions.

3.1 Partial Differential Operators

We prove some lemmas on partial differential operators which are a direct consequence of

the lemmas of the previous section.

Definition 3.1.1 (Partial Differential Operators). An partial differential operator of order
1 is,
L=P(D)+..+ P(D),

where each P)(D) is a m x m matrix, and each element of the matrix is a partial differential
operator on complex-valued functions of a constant order, that is, (Fi(D))i; = >, a5; D%,

where a is a multi-index, a = (a1, @, ..., @) and af; are complex valued smooth functions

)l

;;’s are periodic functions

on R™. The partial differential operator is called periodic when the a

and we say that it is an operator on P
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The simplest examples partial differential operators are the usual constant coefficients
8k

» ozhk-

the orders, along with multiplying them with smooth functions give us the class of linear

partial derivatives of functions on R"

Also linear combinations of these and varying

partial differential operators for single valued functions. These are the building blocks for the
differential operators on multi-valued functions, which are nothing but matrices composed

of elements, which look like the partial differential operators on single valued functions.

Lemma 3.1.1. Let L be a partial differential operator on P of order . Given ¢ € P, we
can find constants:

¢ which depends on n,m,l and s;

k which is a bound on the coefficients of the highest order term of L;

c which depends on n,m,l,s and all the coefficients of L and it’s derivatives;

such that:

HL¢HS < Ck”¢“5+l + CIH¢H5+1_1

In particular || Lo||s < ”"||@|]s1i-

Proof. The proof for m = 1, is nothing but a direct consequence of the inequalities in b0 of

2.2.1 and 2.5.2. The case for an arbitrary m, follows from seeing that

ILgIZ =D (1 + € [1(Lo)ell”
3

=5 (@i L)
3 =1

=3 (Za+rian)
=1 13

=3l

Now we have: [|Lo|[7 = 1L, [[(Lo)ill? = >0, 220 | L@l Hence we can find a constant
which depends only on m, to get [|Lo[|s < >, . [|Lij¢;lls- Now the general inequality follows

from the m = 1 case. O

Remark. 1.Notice that looking at P as a subset of H; we can look at L as a bounded linear
map from a dense subset of H,,; to Hy. Hence by Hahn-Banach extension theorem we can

extend this map to obtain, L : H,y; — Hj, satisfying the above inequalities.
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Remark. 2. If L is a partial differential operator of order [ and w is a smooth function, then

Lw — wL is a partial differential operator of order [ — 1. Hence we have (Lw — wL)(¢) <

cl|@]]s41-1

Lemma 3.1.2. Let w be a smooth-real valued periodic function on R™ and L be a periodic

partial differential operator of order . Then for all uw € Hysyy,there exists ¢ > 0, such that:

[(L(w?u), Lu)s — (Lww), L{wu))s| < cflullsllullsi-1

Proof.

(L(w*u), Lu)s — (L(wu), L(wu))s = (wL(wu), Lu)s — (L(wu), wLu) g+
(L(wu),wLu)s — (L(wu), L(wu)) s+
(L(w.wu), Lu)s — (wL(wu), Lu)

[(L(w*u), Lu)s — (L{wu), L(wu))s| < {wL(wu), Lu)s — (L(wu), wLu) |+
[{L(wu), (WL — Lw)u)s|+
[{((Lw — wL)(wu), Lu),|

The first term is reduced using Lemma 2.5.3 and use the Cauchy Schwartz on the last two
terms. Then repeated use of Lemma 3.1.1 and remarks, and Lemma 2.5.2 gives us the desired

inequality. O

3.2 Elliptic PDE

Definition 3.2.1. Elliptic Partial Differential Operator Given a partial differential operator

of order 1,

L= P(D)+ ..+ Py(D),
where , (F(D))ij = >4y ai;D®, where o is a multi-index, a = (a1, @z, ..., an) and af; are
complex valued smooth functions on R™. For each £ = (£;,&s,. .. ,&,) construct a new matrix

P,(§), where you substitute for each D that element £~ = &' ... &2, We call the partial

differential operator L elliptic at z if P,(§)(z) is invertible for each non-zero &.
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The prototypical example for an elliptic PDE is the Laplacian on R™, which is a second

order operator. The Laplacian, L, of a function f on R" is defined as

Writing this in the form of our definition, since the range of the function is in R, the Py(D)

are 1 x 1 matrices or just numbers. Also only there are only terms with order 2, i.e,

L= Py(D)

n

Py(D) =) D"

i=1
where ¢; = (0,...,2,...,0), with 2 at the i-th place. Then for any non-zero { € R",
Py(§) = >, (&)?. Since £ is non-zero we see that P(¢) is non-zero and hence invertible.

Therefore the Laplacian on R”™ is an elliptic operator.

Remark. Notice that the condition is only for the matrix consisting of the highest order

derivatives.

Lemma 3.2.1. The partial differential operator L of order | is elliptic at x if and only if

L(¢'u)(x) # 0

for any u, a C™-valued functions smooth functions on R™ such that u(x) # 0 and ¢, a smooth

function on R™ such that ¢(x) =0 and dé(z) # 0

Proof. Fix © = (x1,...,x,). We need to show that this condition is equivalent to the fact
that P(&)(x) is invertible for each non-zero . Another equivalent way of telling this is
P,(&)(x) # 0 when x # 0. The condition ¢(z) = 0 forces only the highest order derivatives

to survive in L(¢'u)(z) as seen below:
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Suppose o = (v, ..., ). Then:

1 0 ¢!
& l = —— s s .
D) = iled 9gon  Qat

10 0 L, 00

BRGNP (l¢ a_:cl)
1 0 0 5,00 09 0%

= — — 12 22 -1z 7
T gzan 92 (1= By 0y T aﬁ)

Now since ¢(x) = 0, only the terms independent of ¢ survive. This would require us to

differentiate the remaining powers of ¢ again and again to get terms of the form (for example

z<z—1)...(z—[a]>¢,M(@)“"m (@)‘”
i[a] 8xn 81:1

Hence only for [a] = I, ¢ disappears and the terms survive. Hence,

in the case above):

L(¢'u)(x) = Fi(del.)(u)(x)

9¢

7...,6‘%1
T x

where dol, = (72

>. Now for each £ € R™ non-zero, set

gb(t) = (gl(t - 5(71), cee 7§n(t - xn))

Observe that ¢ is smooth, ¢(z) = 0 and d¢|, = (&,,...,& ) which is non-zero. Now
P(d¢|,) = B(&). Since this is a constant matrix,

Bi(do.)(u)(x) = Pi(&)(u(z))

Now for any non-zero v € R™ we define u(t) = v, the constant function. This is clearly

non-zero. For this particular choice of ¢ and u we see:

L(¢'u)(w) # 0 <= P(dl:)(u)(x) #0 = R(§)(v) #0

Since this is true for all u(t) = v where v is non-zero, the last terms is the same as the matrix

being invertible. Hence the two statements are equivalent. O]

Now we proceed to prove two of the main theorems on elliptic PDE, the fundamental
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inequality and the regularity theorem.

Theorem 3.2.1 (Fundamental Inequality). Let L be an elliptic operator on of order 1, and

let s be an integer. Then there exists a constant ¢ > 0 such that
ullsr < e([|Lulls + [[ulls)

for alluw € Hgyy

Proof. We will first prove it for the special case where L is an elliptic operator of order [,
consisting of only [-order terms and the coefficients being constants. Also since P is dense
in Hy, it is sufficient to prove the theorem for ¢ € P. Since the operator is elliptic, P(§)
is invertible for all non-zero . This means that for any non zero u € R", P,(§)u # 0, that
means |P(§)ul? > 0. Now since the order of each term is [, and is the same throughout, we

can just look at the map:
Slx g 4 R

(&) = |F(E)uf?

Since S"1X 5" is compact, and the map is easily seen to be continuous(since it’s a com-
position of continuous map),we deduce that |P(§)ul* > ¢ for some ¢ > 0. Now given any

non-zero &, u € R™\0, %, ‘—Z| € S™~!. Hence we obtain that:
|Fi(&)ul® > cl¢*'|ul®
Thus for ¢ € P,

1Zo()lIZ = 1 P(2)]]3
=D L+ [P I(P(@))el
3

= (1 + [EP) PE) e
3

> > "1+ [g)cle pe
3

=c) [€71o* (1 + ¢
¢
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Proceeding,

(IZo() + [18]12)* = lILo(o)II3 + ¢l
> e [Pl (L+ 1€ + Y (14 [EP) Il
¢ ¢

> Y e (14 €7 (6 + 1)
13

> Y g1+ [E7)P (1 + [€P)
13

= ") el (1 + [7)
13

= "[|¢ll5x

Hence we have proved it for elliptic operators with constant coefficients which consists of
only the highest order terms. To prove it for general periodic elliptic operators we will show
that for any point p € R", we can find a neighbourhood of p,U, such that for all ¢ € P with
support in U and 27 translates of U, the theorem holds. Then we will use a partition of
unity argument to prove it for global periodic smooth functions. Let Ly denote the highest

order coefficient matrix at the point p. We already know that for such operators,

19l]s1 < e(l[Lo(d)]]s + l|2]]s)

Writing Ly = Ly — L + L and using the triangle inequality(keep this general procedure in

mind, we will be frequently using it):

16]ls+1 < C(ILells + [1(Lo — L)olls + [16]])

Now we know that for a PDE L on P, we have the following inequality, ¢ € P:

ILolls < ckllol]sti + ell]|s4i1

Choose € < ﬁ Now choose a neighbourhood of of p such that the coefficients of the highest
order terms of L = Ly — L are bounded by e. This can be done since the coefficients are
smooth functions on R™. Notice that L is no longer periodic. Hence we choose a smaller
neighbourhood U, on which L agrees with a periodic elliptic PDE on that set. Abusing
notation we denote this too by L. Now for ¢ € P with support in U,(and it’s 27 translates),
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we observe that:

19lls41 < (1L¢lLs + [1(Lo — L)l s + [11])
(1Ll + 1Ll + 1lel],)

(

(

IN

1Lolls + ckl[lls1 + el ol sr1-1 + [|]]s)
1Lo]s + cel|@l]sri + el s + [[9]]5)

1 .
< LGl + S0l + Sl lsri-1 + I6]]s)

/
/

c
c

IN

1
4c'é?

Now applying Peter-Paul Inequality to ||@]|ss—1 with s <s+1—1< s+, and e =
obtain that:

we

19]ls+1-1 < €[ l]s 1 + const]|9]]5

Hence,

1 .
10lls+1 < LGl + 11 Dlls4s + CCel|9]]s1 + € const][d]]s + [ ]l
1 1
= ILells + Sl 0lls+a + Z 11l + const]|¢]],

3
< LGl + 0l + const|o]]s

1 /
8l = NIl + const[#]ls
ollsrr < CUILo]s + [19]]5)

Now we have some sort of local result. We proceed for the global case as follows. First cover
R"™ by {U,}pern, where the U, are as above.Consider the torus 7™ obtained by quotienting
out R" by translations by 27. Cover T™ by the projections of these open sets onto the torus.
This is an open cover for 7™ and since 7™ is compact we have a finite subcover, {Uy, ..., Ui}.
Now we consider a partition of unity w; of sub-ordinate to this finite cover with the extra
condition that Zle w? = 1. This can be done. There are some subtle points to note here.
We construct the finite cover and the partitions of unity on the torus. But notice that pulling

it back to R™ we get a cover of R” with 27 translates of these open sets and a partition of
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unity which are real 27 periodic smooth functions on R™. Now,
||¢||s+l gb ¢ s+l — Zw ¢ QS s+l

= Z<w3¢, B)sti
lzl
< Z(%fﬁa wi@)s11 + const||B|] sl @]]s41-1

= Z [lwigl[511 + const]| @] 1] |6]]s+1-1

From c),d) of Theorem 2.2.1 and the fact that w;’s are real. Now since suppw; C U;, and
there are only a finite number of terms, we can take the biggest constant among the terms

from the inequality we proved locally.Hence,

16lle11 < 1 Z 1 Zwigll; + call 12 + cslldl]ssall Bl i

k

— e Y {Lwid, Lwnd)s + calll2 + cllollosallllorios
=1
k

<D ALW9), L)y + ol + S5l sl |l o1

i=1

k
= 40 L(wi9), Lo}, + calloll: + 5110l |l [s+1-1
i=1

k

< ALY wie) Lo + eollo|[2 + (o

i=1

= &\(Lo, Le); + callgl]; + ||¢||s+z+04||¢||s+z 1

H¢Hs+l
2c, 2

— )

Using the same trick as before, applying the Peter-Paul Inequality to ||¢||s1—1, with s <
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s+l—1<s+1, ande:ﬁ,weobtain:

1 1

191151 < AllLSIL + callolly + SOl + 71811 + constl| @[S
3

18115+ < AlILSIS + Hlloll; + Z 116115

1
19115 < AllLSIS + callolly

Hence we conclude that:

19lls+2 < c(l[L]]s +[191]5)
O

Theorem 3.2.2 (Regularity for Periodic Elliptic Operators). Let L be a periodic elliptic
operator of order l. Let w € H_o, and v € H; such that

Lu=wv

Then u € Hyyy

Proof. 1t is sufficient to prove that for u € Hy and v = Lu € Hy 11 , u € Hgy. We will
prove this by showing that the difference quotient of u, is bounded in the ||.||s norm. Before
that we denote by L" the partial differential operator where the coefficients functions are

replaced by their difference quotients. Now we observe that,
Lu" + L"(Tyu) = (Lu)"

Since L is linear and the equality is component wise, it is sufficient to check the condition
for a single term, and the above formulae will hold for L. due to linearity. Taking a single

term, it is of the form: a®(x) D%u(x) = v(z).

u(x + h) —u(zx)
1]
2. (a®(2)D*)"(Tyu) = (a*)" () D*(u(x + h))
_ a*(x 4+ h) —a*(x)
Id

1.a*(x)D*u"(z) = a®(2) D"

D*(u(x + h))
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Adding 1 and 2, we obtain:

a®(z)Du"(z) + (a®(2) D)"(Tyu)
qul@+h)—u(z) a*(x+h)—a*(x)

=a®(x)D ) 7 D*(u(x + h))
_ a*(@)D%u(e + ) — a®(@) D*u(x) + a®(a + h)D*(u(x + h) — (@) D*(ula + h)
1]
_ a®(x + h)D*(u(x + h) — a®(z) Du(x)
Id
Th(a*Du)(x) — (a*D%u)(x)

7]
= (a®Du)"(x)

Hence we have showed

(a*D*)(u") + (a*D*)"(Tyu) = (a*D*(u))"

Now using the fundamental inequality and the above result,

1" [ls < el Zu®[|s=1 + [[u"[]s=1)
< e([|(Lu)" = LNTyu)sm + [ []s=1)
< e([1(Lu)" st + 1L (Tha)l |-t + [Ju"]]s-2)

Since u € Hy, and [ is at least 1, we see ||[u"||s_; < |[u”]]s-1 < ||ulls.

Similarly, Lu € Hy 11, hence ||(Lu)"||s—; < ||(Lu)]|]s—111-

Now since the coefficients of the differential operator are all smooth, this means that the
difference quotients are all uniformly bounded. Hence, ||L"(Thu)||s—; < c||Thulls. But we
know that T}, is an isometry, therefore ||Thu||s = ||ulls.

From all the arguments above we conclude :
[lu"(ls < el Lulls—r1 + [lull,)

Hence u € Hg O
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3.3 Reducing to Periodic case

Till now we have been working with and in fact all the theorems we proved are for periodic
functions and periodic elliptic partial differential operators. But in general this need not be
periodic, for example the Laplacian on the manifold. How do we get around this problem.
We will show that given any elliptic differential operator of R", for each p € R", we can find
a neighbourhood V', on which it agrees with a periodic elliptic partial differential operator.
Let Lo denote the value of this of the elliptic operator at p. Since ellipticity is a continuous
condition on the coefficients(the determinant being a continuous map),we can find ¢ > 0,
such that the operator is still elliptic if the coefficients differ by at most € from that of
Ly. Choose a neighbourhood, U of p, which is contained in the 27 cube centered at p, and
on which the coefficients of L differ from that of Ly by at most ¢(This is possible since the
coefficients are all smooth functions and there are only a finite number of them). Now choose
V C V C U, and construct a smooth function w such that 0 < w < 1, w = 1 on V and
suppw C U. Define:

L=wL+(1-w)L

Observe that the coefficients of L differ from that of L by at most € inside U. And outside
U it is just Lg. Hence we have a elliptic partial differential operator defined all over R".
Also, L = L on V. However there is a subtle point to see that this is not periodic. That can
easily be taken care of by observing that it uniformly takes the value of Ly at the sides of
the 27 cube(since U C 27 cube), which is the same as the value at the center. Hence we can

extend it periodically to whole of R™ to obtain the required periodic elliptic operator L.

3.4 A is an elliptic PDE

We show that the Laplacian is an elliptic PDE. We need some results from vector spaces.

Lemma 3.4.1. Let U, V, W be finite dimensional inner product spaces. Suppose the following

sequence s exract:
A B
U=V —=>W

Suppose the adjoints of A and B are A* and B* respectively. Then the map:
AA*+B*B:V -V
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s an isomorphism.

Proof. Since the domanin and co-domain have the same dimension, by the rank-nullity
theorem we need to just so that the map is injective. First we wil show, A* : V — U is
injective on the image of A,Im(A). Suppose v € Im(A), i.e, v = Au for some u € U and
v € Ker(A*), then
A*(v) =0 = A"Au=0
= (A"Au,u) =0
= (Au, Au) =0
= Au=0v=0
Hence A* is injective on the Im(A). Now we will show AA* + B*B is injective. Let v # 0.
(AA*+ B*B)jv=0 = ((AA* + B*B)v,v) =0
= (AA"v,v) 4+ (B*Bv,v) =0
= (A%, A™v) + (Bv,Bv) =0
If Bv # 0, then (AA*+B*B)v # 0. Suppose Bv = 0, i.e, v € Ker(B) then since the sequence

is exact, v € Im(A). Now we know that A* is injective on Im(A). Hencev # 0 — A*v #0
and consequently (AA* + B*B)v # 0. Hence v #0 = (AA*+ B*B)v # 0 O

Lemma 3.4.2. Suppose & € V, a finite dimensional inner product space. Then the following

sequence s exact:
AP V) S APV S APV

where {(w) =& Aw

Proof. O]

Theorem 3.4.1 (A is Elliptic).

Proof. Let £ € Q'(M). We have the following exact sequence for each m € M:
NPT M) 25 AP(T7 M) 225 APFY(T M)
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where &,,(w(m)) = £(m) Aw(m), where w is an alternating smooth form. We know that the
adjoint of &, is
En = (=1)" % Gt

Now, we have

Em&m + Enbm + A(T5, M) — AP(T7, M)

By using the expression for £ we obtain that:

Emon + Embm = (1) &+ +(=1)"P D 5 & & (3.1)

Now to prove that A is elliptic. We will show that for any point m on the manifold,
A(P*a)(m) # 0 for all smooth p-forms a, a(m) # 0 and smooth functions ¢, satisfying
¢(m) =0 and d¢p(m) # 0.

A=dd+od: NP(T; M) — NP(T M)
— (_1)71(P+1)+1d* d * +(_1)n(p+1+1)+1 wdsxd
= (=)™ s d x4 (—1)"PH x dx d

next

((=1)"PHDH G s d s 4 (=1)""H 5 d % d)(¢%a) (m)
= (1) g (Ra)(m) + (1P % dx d(R0)(m)

A(¢*a)(m)

Let us calculate d * d * (¢%a)(m) and *d * d(¢*a)(m).

d*dx (¢*a) = d*d(¢? * a)
=d * (2¢do A xa + $*d * a)
= d(2¢ * (dp N\ *a) + ¢* * d * a)
= 2(dp A *#(dp A xa) + 20d(x(do N %)) + 2¢de A (xd * @) + ¢*d * d * «

Observe that since ¢(m) = 0, we obtain that d x d * (¢?a)(m) = 2(dé A *(d¢p A xa)(m). Now
if we let do(m) = &,,, we see that

d* dx (¢*a)(m) = 26, * & * a(m)

where we the same symbol &, to denote the map from
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Similarly,
xd * d(¢*a)(m) = 2 x &, * Ea(m)

Therefore,
A(¢*a)(m) = (=1)"P dx d x (6°a) (m) + (—1)™" x d * d(¢a) (m)
= (—1)”(p+1)+12§m * Em ok a(m) + (=112 x €, % £,a(m)
—2[(=1)"P &y * &y * +(_1)n(p_1) * Em * Em] (@(m))

From 3.1,we know that this is an isomorphism and since a(m) # 0, we conclude that
A(¢*a)(m) # 0. This shows that A is an elliptic operator. O
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Chapter 4

Proofs

In this chapter we will prove the two main theorems we used in the proof of the Hodge
Decomposition Theorem, namely theorems on regularity and compactness. The procedure
for both these proofs is to prove them locally, in a small enough chart so that we can
reduce it to working with periodic elliptic PDE which is always possible in a small enough
neighbourhood. Choose such neighbourhoods then use a partition of unity to patch the
results of each neighbourhood to get a sort of global result. Also using the compactly

supported functions lets us extend the functions periodically to whole of R™.

4.1 Proof of Regularity

We prove the regularity theorem.

Proof of 1.5.1. We will denote the inner product and norms in QP(M) as (.,.)" and ||.||
while the standard inner product and norms on the euclidean space as (.,.) and ||.||. So

given f € QP(M) and a bounded linear map
I':QP(M) - R
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such that I'(A¢) = (f, ¢)’ for all ¢ € QP(M), then there exists u € QP(M) such that

and Au = f. We first reduce the problem to a local problem. Let (U,~) be a chart around
m € M such that v(U) = R". Now we observe that smooth p-forms correspond to smooth
functions from R™ to R™ C C™ where m = (Z)

Also functions in C§° can be extended by zero to obtain complex valued smooth forms on
M with support inside U. We would like to extend (.,.)" to complex valued smooth forms.

This is done by defining;:
(ug + tug, v1 + 1) = (uy, uz) + (v1,ve) + i({ug, v1)" — (ug,v2)")

We note that this is a hermitian inner product on complex-valued p-forms which agrees with
our initial inner product on real valued p-forms. Now we have an the usual L, inner product

on C§°, given by

(9, 0) = - o0
where ¢.1) = ¢1.01 + Go.hy + ... 4+ Gt

we can define another inner product on C§°, by first looking at it as complex valued p-forms
on the manifold M. Then

(o.0) = [ o4
Rn

where gg, 1/; are p-forms on M by extension by zero.
Since both (.,.)" and (.,.), are defined as integrals of point wise inner product there exists

an invertible matrix A such that
(u,v) = (u, Av)

A induces a elliptic partial differential operator L of order 2. Let L* be the adjoint of L
w.r.t (.,.). Note that the adjoint of L w.r.t (.,.)" is nothing but the adjoint of A. Take
¢, € C5° and observe that:

(L7, ¥) = (9, L))
= (A7}, Ly)’
= (A"A™9,4) = (AA™ 9, ¥
= (AAAT,¥)
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Hence L* = AAA™! Define
[:C5¢ —=C

I(¢) =1'(A""9)

Claim: [ is locally represented by a smooth function. That means given any p € R”, there
exists a neighbourhood W, of p, and a smooth function w, € P, such that, for any ¢ €
e (W),

(@) = (up, &)

Claim == the proof.

First we collect all such u,’s on R". Now if W, "W, # ¢, then u,|w,aw, = uq|w,nw, since
they agree on all ¢ € C5°(W, N W,). Hence we can patch up these to define a function
u € C° which satisfies u|y, = up|w,. Now take a partition of unity {¢;} subordinate to the
cover {W,}. Now for any ¢t € C§°,

1) =13 o)
= ZZZ(@t)
= Z<u dit)
= <;, >_oit)
= (u, t;
Now suppose ¢ is a smooth form on M with support in U. Then
() = I(Ag) = (u, Ag) = (u, ¢)’

Using similar arguments as above we can patch up the various u’s and we get that for any
¢ € QP(M),
(@) = (u,9)’
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Proof of claim: Fix p € R™. Construct a 27 cube with p as the center, Q@ = {y € R" :
|2;(p) — 23(y)| < 2m,¥0 <4 < n}. Choose an open set V C V C Q. Denote [ = loge(vy-

1. 1is a bounded linear functional.
Since V is compact and || . || is continuous, ||A;!|| attains a maximum value as z varies

over V.

1) = |I'(A"9)|
< cl|A7g|)
= c|(A1g, A1g)|3
= c|{p, A'¢)|2
< dlgl|2||A7g]|2
< cf|¢l|2 sup(||A7]]2)ll]|2

z€V

1(9)]

< d[|g]l

(L*¢) = I(A™'L*¢)
= l/(A_l(AAA_l)gb)
=I'(A(A™"9))
= (f,A7¢) = (f. )

Recall (, ) = (, )o. From 1) we see that [ is bounded linear functional, by the Hahn Banach
extension theorem, we can extend it to the closure of C3°(V) ~ P w.r.t the norm induced
by (, )o to obtain a Hilbert space. Using the Riez’s representation theorem, we can find
@, such that I(t) = (@, t)o. Now we want to show that on a small enough neighbourhood,
u represents a periodic smooth function. That is we can find v € P and a neighbourhood
W, such that u|w, = i|w,. Choose a neighbourhood of p, Oy C Oy C V such that we can
find a periodic elliptic partial differential operator,z which agrees with L on Oy. Choose
another neighbourhood of p, O which is contained in in Oy. Now construct a series of open
sets, O;,1 > 0 satisfying, O C O; and O; C O;_1. For each i > 0, define real valued smooth
functions w; as follows:

w; =1 on O;
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suppw; € O; 1

Take v; = wiu € H

Z’Ul = Ewlﬁ
= wlzﬂ + zwlﬂ - wlzﬂ

= wlza + (zwl — w1Z)’L~L

Notice that since L is of order 2, M, = Ewl - wlz is Hy, we see that Myu € H_;. The first

term w1Zﬁ, we claim is equal to wq f.In fact for any ¢ > 0, we show wiZ& =w;f.

(wiLi — wif, $)o = (wiLd)o — (wif, d)o

This means that w; La € C5°(0;_1). In particular, wi Li € C3°(0) ~ P C H, for all s.
Hence Zvl € H_,. Now since Lisa periodic elliptic operator of order 2, and v € H_4, we
conclude from the Theorem 3.2.2, that u € H;.

Next let vy = wott = wowytt = wovy. Proceeding as above:
EUQ = WQZ{)/ + (Z(UQ - WQE)Ul

wQZfL € C°(0y) = P C H, for each s. My = EwQ — wzz has order 1 so Msv; € Hy. Hence
vg € Hy from Theorem 3.2.2.

Similarly we can prove that v; = w;u € H;. Choose an open set containing p, W, such
that W, C Op. Construct a real valued smooth function w such that w = 1 on W, and
suppw C O. Define u = wt = ww;t for all i > 0. Hence we see that u € C3°(0)) ~ P. Take
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NS C(C))O(Wp)z

4.2 Proof of Compactness

This will be a proof of Theorem 1.5.2. Hence given a sequence {a,} € QP(M), such that,
llan|] < ¢ and ||Aa,|| < ¢, for some ¢ > 0, then there exists a Cauchy subsequence. Again

we will prove the theorem locally. First we show:

Lemma 4.2.1. Given a point p on the manifold M, there exists a neighbourhood W, such

that for all functions ¢, with supp ¢ C V', the sequence {¢a,} has a Cauchy subsequence.

Proof of 1.5.2(A is a compact operator). By using Lemma 4.2.1, cover the manifold M by
neighbourhoods W), such that, for each for each function ¢, with supp ¢ C V, the sequence
{pa,, } has a Cauchy subsequence. Now since M is compact we have a finite subcover, say
{Wy, Wy, ..., Wi}. Now choose a partition of unity {¢;} subordinate to this cover. Start
with W;. We have a Cauchy subsequence of {¢;c,} since supp ¢1a,, = supp ¢; C Wi, Call
it {¢1am; }. Now consider the sequence {¢scv,;}. Again supp ¢oar,, = supp ¢ € Ws. Hence
we get another subsequence of, say {gbgang}. Now look at {qbgozn;_}.Continuing this process,
as we have to do this only a finite number of times, due to a finite cover, we finally obtain a

sequence, {a, } such that for each ¢;, the sequence {¢;a,} is Cauchy due to our construction.
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{an } is the desired Cauchy subsequence.
|l — || = [|1.(vnr — )|

k
=113 dilow — an)]
121
= || Z(@%ﬂ - ¢z‘04m’)||
kl—l
< Z |’¢i05n’ - <Z5z'04m"|
i=1

Since for each i, we have a Cauchy sequence, we can make each of the terms in the last sum

as small as we want. Hence {a,/} is a Cauchy subsequence. ]

Proof of Lemma 4.2.1. Choose a co-ordinate neighbourhood around m, (U,7) such that
v(m) = p and y(U) = R". Let us stick to the same notations as in the proof of regu-
larity. Suppose ¢ is a function with support in Oy, we would like to show that {¢a,} has
Cauchy subsequence in the || .||’ norm. But we know that since Oy is compact, the || .||’
norm is equivalent to the || .|| norm on CY (Oy)

But we know that on C% (Oy) the ||.||o norm is the same as the || .|| norm. Hence our
problem is reduced to showing that there is a Cauchy subsequence is the || .||p norm. This

can be shown by proving that that the sequence is bounded in || . ||; norm and using Rellich
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Theorem 2.3.2.

[¢anllr < c(||Ldan|| -1+ [|danl| 1)
=c¢(A+ B)

A=||Lpay||-1 = ||La||-1
= ||¢Layn + (Lo — pL)an| -
< [|[¢Lan|[-1 + [[(Lp — ¢L)an]| 1

(Lo = dL)Tan|| 1 < [[ran||
< d|ranllo = cl[ranl|
< cf[ran|/

< cf|an]/

[|[@Lan|| -1 < ¢l|pLanllo = cl|pLa]|2
< CH(bLOénH/
< c||Aay|/

B = [|¢an||-1 < ¢f|pam]lo
< d||¢an|/

= cffon]l

Since ||a,||" and ||Aay,||" are bounded we see that ||¢ay,||; is bounded for all n. Hence we
have a Cauchy subsequence in Hy, which implies we have a Cauchy subsequence in the || . ||’

norm. L]
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