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Abstract
In this dissertation we present a brief introduction to theory of elliptic partial differen-
tial equations (PDE). First we review theory of Sobolev spaces. After that we discuss
existence, regularity and other qualitative properties of weak solutions to the second
order linear elliptic PDE. Afterwards, we discuss various standard variational and
non-variational techniques to study nonlinear elliptic pde, mainly existence/nonexistence
and various qualitative properties. Finally, in the last two chapters we mention var-
ious regularity results for weak solutions to elliptic equations in divergence form, in
particular well-known theory of De Giorgi-Nash-Moser.
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Chapter 1

Introduction

The aim of this thesis is to give an introduction to the theory of elliptic partial differen-
tial equations(PDEs). To start with, let’s define what is a PDE. Throughout the thesis
Ω is an open subset of Rn unless otherwise mentioned.

Definition 1.0.1. An equation

F(Dku(x), Dk−1u(x), ..., Du(x), u(x), x) = 0 (x ∈ Ω) (1.1)

where F : Rnk ×Rnk−1 × ...×Rn ×R×Ω → R is a known map and u : Ω → R is the
unknown, is known as a partial differential equation of order k.

We say u solves the above PDE if u satisfies (1.1) and certain boundary conditions on
some part of ∂Ω. By finding solution, we mean obtaining explicit solution, which is
very difficult in most of the cases. Therefore, mostly we try to establish existence and
various other properties of solution.

Classification of PDE: (i) The PDE (1.1) is said to be linear if it is of the form

∑
|α|≤k

aα(x)Dαu = f (x)

where aα (|α| ≤ k), f are given functions. The linear PDE is said to be homogeneous,
if f = 0.
Example: ∆u := ∑n

i=1 uxixi = λu.
(ii) The PDE (1.1) is said to be semilinear if it is of the form

∑
|α|=k

aα(x)Dα + a0(Dk−1u......, Du, u, x) = 0.

Example: −∆u = λup, p > 1.
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(iii) The PDE (1.1) is said to be quasilinear if it is of the form

∑
|α|=k

aα(Dk−1u, ..., Du, u, x)Dαu + a0(Dk−1u, ..., Du, u, x).

Examples: −∆pu := ∇ · |∇u|p−2∇u = f (x).
(iv) The PDE (1.1) is said to be fully nonlinear if it depends nonlinearly on the highest
order derivatives.
Example: |∆u| = 1.
In the classical sense, the solution of a PDE must be differentiable at least as many
times as the order of the equation. However, such a point of view is very restrictive
- several interesting equations which model real life physical phenomena fail to pos-
sess such solutions.Hence it is necessary to generalize the notion of solutions of PDEs,
which in turn motivates the generalization of the notion of differentiable functions.
This is the main motivation behind weak derivative.
Throughout this thesis, we do not try to find explicit formulas. The general picture is
using "energy estimate" we first try to find solutions of certain class of PDEs. Then we
attempt to see if the solution is unique. We also study regularity properties and other
qualitative properties of the solution.

In next chapter, we study Sobolev spaces, a proper setting for the study of several
linear and nonlinear PDEs. Third chapter deals with second order linear elliptic PDEs.
The fourth chapter is about calculus of variation: finding critical points of the Euler La-
grange functional associated with the given PDE, which in turn becomes the solution
of the PDE. Variational theory is one of the most useful tools in the study of nonlinear
PDEs. We study the existence and nonexistence of solutions to various nonlinear PDEs
and qualitative properties of the solutions. In fifth chapter using some non-variational
techniques like fixed point theorem, sub and super solution method. Last chapter is
about regularities and maximum principle of solutions of nonlinear elliptic PDEs.



Chapter 2

Sobolev Spaces

The aim of this chapter is to develop the theory of Sobolev spaces which turns out to be
the proper functional setting to study Partial Differential Equations(PDEs) applying
the ideas of functional analysis. To solve a PDE, we look it as A : X → Y, where A
carries the structure of the partial differential operator, including possibly boundary
condition, etc., acting on elements of space of functions X and gives output in space of
functions Y.

2.1 Hölder Spaces

Before we get into Sobolev space, let’s define Hölder Spaces.

Definition 2.1.1. Let Ω be an open set, 0 < γ ≤ 1 and u : Ω → R be a continuous
bounded map. We define

‖u‖ := sup
x∈Ω
|u(x)|

and the γth Hölder seminorm of u to be

[u]C0,γ(Ω) := sup
x,y∈Ω, x 6=y

{
|u(x)− u(y)|
|x− y|γ

}
.

γth Hölder norm is defined to be

‖u‖C0,γ(Ω) = ‖u‖C(Ω) + [u]C0,γ(Ω).

Definition 2.1.2. The Hólder space Ck,γ(Ω) is the space of functions u ∈ Ck(Ω) such
that

‖u‖Ck,γ(Ω) = ∑
|α|≤k
‖Dαu‖C(Ω) + ∑

|α|=k
[Dαu]C0,γ(Ω)

5
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is finite, where α = (α1, · · · , αn) is a multi-index.

It’s easy to check that Hölder spaces are Banach spaces.

2.2 Weak Dervative and Sobolev Spaces

Unfortunately the Hölder spaces does not provide appropriate platform to study the
theory of PDE. Therefore, our plan is to define Sobolev spaces, which contain less
smooth functions than that of Hölder spaces.

Definition 2.2.1. Let α be a multi-index and u, v ∈ L1
loc(Ω). We say v is the αth weak

partial derivate of u, if∫
Ω

uDαφ dx = (−1)α
∫

Ω
v φ dx ∀φ ∈ C∞

c (Ω),

where C∞
c (Ω) is the space of infinitely differentiable functions with compact support.

We write Dαu = v if v is the αth weak partial derivative of u.

It can easily be shown that αth weak partial derivative is unique up to a measure zero
set, when exists. Functions that are not differentiable in the usual sense can be weakly
differentiable (Example 1). But if there is a jump discontinuity, it is never going to be
weakly differentiabe (Example 2).
Example 1: Consider f : R → R, defined by f (x) = |x|. This function is not differen-
tiable at 0, but it is weakly differentiable at all points in R.
Example 2: Consider the heaviside function defined by

f (x) =

0, if x ≤ 0

1, if x > 0.

As there is a jump at 0, the function is neither differentiable nor weakly differentiable
in weak sense.
Now we are in a position to define Sobolev spaces. For detailed exposition on Sobolev
spaces, refer to [R.75].

Definition 2.2.2. The Sobolev space Wk,p(Ω) consists of all u : Ω → R such that
u ∈ L1

loc(Ω) and for every multi-index α with |α| ≤ k, the αth weak partial derivative,
Dαu, exists and belongs to Lp(Ω).

For u ∈Wk,p(Ω), define,
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‖u‖ =


(

∑|α|≤k
∫

Ω |D
αu|pdx

) 1
p
, if 1 ≤ p < ∞

∑|α|≤k esssupΩ|Dαu|, if p = ∞.

Notation:

1. Hk(Ω) = Wk,2(Ω).

2. um → u in Wk,p
loc (Ω), we mean um → u in Wk,p(V) for all V ⊂⊂ Ω.

3. Wk,p
0 (Ω) means the closure of C∞

c (Ω) in Wk,p(Ω).

It is easy to check that Wk,p(Ω) is a Banach space ∀ k ∈N and ∀ 1 ≤ p ≤ ∞.

Theorem 2.2.1. (Elementary properties of weak derivative) Let u, v ∈ Wk,p(Ω) and
|α| ≤ k. Then
(i) Dα(Ω) ∈Wk−|α|,p(Ω).
(ii) Dα(Dβu) = Dβ(Dαu) = Dα+βu where |α|+ |β| ≤ k.
(iii) ∀ λ, µ ∈ R, λu + µv ∈Wk,p(Ω) and Dα(λu + µv) = λDαu + µDαv.
(iv) If V is an open subset of Ω then u ∈Wk,p(V).
(v) If ζ ∈ C∞

c (Ω) then ζu ∈Wk,p(Ω) and

Dα(ζu) = ∑
β≤α

(
α

β

)
DβζDα−βu, where

(
α

β

)
=

α!
β!(α!− β!)

.

The above formula is called Leibniz’s formula.

Proof. (i), (ii), (iii) and (iv) easily follows using the definition. (v) can be proved using
induction on |α|. For detailed proof, we refer [L.C86, Theorem 1, Section 5.2].

2.3 Approximations, Extension and Trace

In this section, we try to approximate functions in Sobolev space using smooth func-
tions. Given any ε > 0, define Ωε := {x ∈ Ω|dist(x, ∂Ω) > ε} and ηε(x) := 1

εn η( x
ε ),

where η(x) is defined as

η(x) =

Ce
1

|x|2−1 , if |x| < 1

0, if |x| ≥ 1.

The constant in the definition of η is chosen such a way that
∫

Rn η(x)dx = 1. The
function η is known as the standard mollifier. Note that ηε ∈ C∞(Rn) and

∫
Rn ηε dx =

1, supp (ηε) ⊂ B(0, ε).
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Theorem 2.3.1. (Local approximation) Assume u ∈ Wk,p(Ω), for some 1 ≤ p < ∞.
Set, uε := ηε ∗ u in Ωε. Then
(i) uε ∈ C∞(Ωε) ∀ ε > 0
(ii) uε → u in Wk,p

loc (Ω) as ε→ 0.

Proof. As nε is C∞, (i) follows from the properties of convolution.
To prove (ii), first note that

Dαuε = ηε ∗ Dαu in Ωε. (2.1)

Since Dαu ∈ Lp
loc(Ω), doing a standard computation using (2.1), it can be shown that

for any V ⊂⊂ Ω, Dαuε → Dαu in Lp(V) as ε→ 0, for all |α| ≤ k. Hence,

‖uε − u‖p
Wk,p(V)

= ∑
|α|≤k
‖Dαuε − Dαu‖p

Lp(V)
→ 0

as ε→ 0. For detailed proof we refer [L.C86, Theorem 1, Section 5.3].

Theorem 2.3.2. (Global approximation by smooth function) Let Ω be a bounded
open subset of Rn and u ∈ Wk,p(Ω) for some 1 ≤ p < ∞. Then there exists um ∈
Wk,p(Ω) ∩ C∞(Ω) satisfying

um → u in Wk,p(Ω).

Proof. For proof, we refer [L.C86, Theorem 2, Section 5.3].

In the next theorem, we approximate the functions in the Sobolev space upto the
boundary. Here we will need some ’smoothness’ of boundary of Ω.

Definition 2.3.1. The boundary ∂Ω of a bounded open subset Ω of Rn is said to be Ck

provided ∀ x ∈ ∂Ω, there exists r > 0 and some Ck function γ : Rn−1 → R so that
after relabeling and reorienting of coordinates if needed, we can get

Ω ∩ B(x, r) = {y = (y1, . . . , yn) ∈ B(x, r)|yn > γ(y1, . . . , yn−1)}.

We call ∂Ω to be C∞ provided ∂Ω is Ck for any integer k.

Theorem 2.3.3. (Global approximation by functions smooth up to the boundary)
Let Ω be a bounded open subset of Rn and ∂Ω is C1. Assume, u ∈ Wk,p(Ω) for some
1 ≤ p < ∞. Then there exists um ∈ C∞(Ω) satisfying

um → u in Wk,p(Ω).
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Proof. For proof, we refer [L.C86, Theorem 3, Section 5.3].

Our next goal is to extend functions in W1,p(Ω) to functions in W1,p(Rn). Note that we
can not extend the function by defining zero outside Ω as then the extended function
may not be weakly differentiable. Next theorem tells us about how to extend such a
function.

Theorem 2.3.4. (Extension Theorem) Let 1 ≤ p ≤ ∞ and Ω ⊂ Rn be bounded and
open such that ∂Ω be C1. Let V be any bounded open set such that Ω ⊂⊂ V. Then
there exists a bounded linear operator

E : W1,p(Ω)→W1,p(Rn)

such that ∀ u ∈W1,p(Ω):
(i) Eu = u almost everywhere in Ω
(ii) Supp (Eu) ⊂ V and
(iii) ‖Eu‖W1,p(Rn) ≤ C‖u‖W1,p(Ω), where C depends only on p, V and Ω.

Definition 2.3.2. The function Eu in the above theorem is called an extension of u to
Rn.

Proof. For proof, we refer [L.C86, Theorem 1, Section 5.4].

Next we discuss how to assign "boundary value" along ∂Ω for functions in u ∈W1,p(Ω).
Note that, functions u in W1,p(Ω) is defined in almost everywhere sense and so it does
not make any sense if we talk about the value of such a function on a measure zero set.
Since ∂Ω has measure zero, there is no direct meaning we can give to u|∂Ω. Using the
next theorem we resolve this problem.

Theorem 2.3.5. (Trace Theorem) Assume 1 ≤ p < ∞ and Ω ⊂ Rn be such that ∂Ω is
C1. Then there exists a bounded linear operator

T : W1,p(Ω)→ Lp(∂Ω)

such that
(i) Tu = u∣∣∂Ω

if u ∈W1,p(Ω) ∩ C(Ω).

(ii)
‖Tu‖Lp(∂Ω) ≤ C‖u‖W1,p(Ω) ∀ u ∈W1,p(Ω),

where C depends only on p and Ω.

Proof. See [L.C86, Theorem 1, Section 5.5].
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Definition 2.3.3. Tu is called the trace of u on ∂Ω.

Theorem 2.3.6. (Trace zero functions) Let u ∈W1,p(Ω) where Ω is a bounded domain
with ∂Ω is C1. Then

u ∈W1,p
0 (Ω) ⇐⇒ Tu = 0 on ∂Ω.

Proof. See [L.C86, Theorem 2, Section 5.5].

The last theorem justifies why we denoted the closure of C∞
c (Ω) in W1,p(Ω) as W1,p

0 (Ω).

2.4 Sobolev embedding

Next we study some very important inequalities which will give embedding of some
Sobolev spaces into other spaces. We set

p∗ =
np

n− p
.

Theorem 2.4.1. (Gagliardo-Nirenberg-Sobolev inequality) Let 1 ≤ p < ∞. Then
∀ u ∈ C1

c (R
n)

‖u‖Lp∗ (Rn) ≤ C‖Du‖Lp(Rn) ,

where C depends only on p and n.

Proof. See [L.C86, Theorem 1, Section 5.6].

Theorem 2.4.2. (Estimate for W1,p(Ω) for 1 ≤ p < n) Let Ω be a bounded and open
subset of Rn with ∂Ω being C1. Assume 1 ≤ p < ∞ and u ∈ W1,p(Ω). Then u ∈
Lp∗(Ω) with

‖u‖Lp∗ (Ω) ≤ C‖u‖W1,p(Ω),

where C depends on p, n and Ω.

Proof. See [L.C86, Theorem 2, Section 5.6].

Theorem 2.4.3. (Estimate for W1,p
0 (Ω) for 1 ≤ p < n) Let Ω be a bounded and open

subset of Rn and u ∈W1,p
0 (Ω), for some 1 ≤ p < n. Then

‖u‖Lq(Ω) ≤ C‖Du‖Lp(Ω) ∀ q ∈ [1, p∗],

where C = C(p, q, n, Ω).

Proof. See [L.C86, Theorem 3, Section 5.6].
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Taking q = p in the above theorem yields

Corollary 2.4.3.1. If u ∈W1,p
0 (Ω) with 1 ≤ p ≤ ∞, then

‖u‖Lp(Ω) ≤ C‖Du‖Lp(Ω)

i.e., (
∫

Ω |Du|p
) 1

p is an equivalent norm in W1,p
0 (Ω).

The above estimate is also called Poincaré’s Inequality. The other version (more gen-
eral version) of Poincaré’s Inequality, will be mentioned later.
In all the previous theorems we have assumed that p < n. Next we deal the case
n < p < ∞, where we will see that if u ∈W1,p(Ω) then u is infact Hölder continuous.
To consider the case p = n, first we observe that p∗ = np

n−p → ∞ as p → n. Therefore,
we may expect that u ∈ W1,n(Ω) implies u ∈ L∞(Ω), which is false for n > 1. In fact,
if u ∈ W1,n(Ω) implies u ∈ Lq(Ω) for all q ∈ [1, ∞) but in general u 6∈ L∞(Ω). For
example, consider Ω = B(0, 1) (a unit ball in Rn) and u(x) = log log

(
1 + 1

|x|

)
. Then

u ∈W1,n(Ω) but u 6∈ L∞(Ω).

Theorem 2.4.4. (Morrey’s Inequality) Assume n < p ≤ ∞ and u ∈W1,p(Rn). Then

‖u‖C0,γ(Rn) ≤ C‖u‖W1,p(Rn) ∀ u ∈ C1(Rn),

where γ := 1− n
p .

Proof. See [L.C86, Theorem 4, Section 5.6].

Definition 2.4.1. We say u∗ is a version of u, if u∗ = u almost everywhere.

Theorem 2.4.5. (Estimates for W1,p(Ω), n < p ≤ ∞) Suppose Ω is a bounded and
open subset of Rn with C1 boundary. Let u ∈ W1,p(Ω) for some n < p ≤ ∞. Then u
has a version u∗ ∈ C0,γ(Ω), with γ := 1− n

p and satisfies

u∗C0,γ(Ω)
≤ C‖u‖W1,p(Ω).

Here C = C(n, p, Ω).

Proof. See [L.C86, Theorem 5, Section 5.6].

Remark: In view of the above theorem, here onwards we will identify a W1,p(Ω)

(p > n) function u with its continuous version u∗.
Next, we state the general Sobolev inequalities for functions in Wk,p(Ω) ( k ≥ 1).
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Theorem 2.4.6. (General Sobolev Inequalities) Suppose Ω is a bounded and open
subset of Rn with ∂Ω is C1. Let u ∈Wk,p(Ω).
(i) If k < n

p , then u ∈ Lq(Ω) where 1
q = 1

p −
k
n and

‖u‖Lq(Ω) ≤ C‖u‖Wk,p(Ω) ,

where C depends only on Ω, k, p and n.

(ii) If k > n
p , then u ∈ Ck−

[
n
p

]
−1,γ

(Ω), where

γ =


[n

p
]
+ 1− n

p , if n
p is not an integer

any positive number less than 1 otherwise.

Moreover,
‖u‖

Ck− n
p−1,γ

(Ω)
≤ C‖u‖Wk,p(Ω) ,

where C depends on n.γ, k, p and Ω.

Proof. See [L.C86, Theorem 6, Section 5.6].

The Gagliardo-Nirenberg-Sobolev inequality yields us that for 1 ≤ p < n, W1,p(Ω) is
embeded in Lp∗(Ω), where p∗ = np

n−p . Next we show that W1,p(Ω) is in fact compactly
embeded in Lq(Ω), for all q ∈ [1, p∗).

2.5 Compact embedding

Definition 2.5.1. Let X, Y be Banach be such that X ⊂ Y. X is said to be compactly
embeded in Y, denoted by X ⊂⊂ Y if
(i) ‖u‖Y ≤ C‖u‖X, where C does not depend on u ∈ X.
(ii) each bounded sequence in X has a convergent subsequence in Y.

Theorem 2.5.1. (Rellich-Kondrachov Compactness Theorem) Let Ω be an open and
bounded subset of Rn with ∂Ω be C1. Then,
(i) W1,p(Ω) ⊂⊂ Lq(Ω) ∀, q ∈ [1, p∗), if 1 ≤ p < n,
(ii) W1,p(Ω) ⊂⊂ Lq(Ω) ∀, q ∈ [p, ∞), if p = n,
(iii) W1,p(Ω) ⊂⊂ C(Ω) if p > n.

Proof. See [L.C86, Theorem 1, Section 5.7] and [H.11, Theorem 9.16] .

We note that since p∗ > p and p∗ → ∞ as p→ n, the last theorem yields

W1,p(Ω) ⊂⊂ Lp(Ω)
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for all 1 ≤ p ≤ ∞.

2.6 Additional topics

Theorem 2.6.1. (Poincaré’s inequality) Assume Ω is a bounded, open and connected
subset of Rn and ∂Ω is C1. Let 1 ≤ p ≤ ∞ and set (u)Ω := 1

|u|
∫

Ω u dy . Then ∀u ∈
W1,p(Ω),

‖u− (u)‖Lp(Ω) ≤ C‖Du‖Lp ,

where the constant C depends only on p, n and Ω.

Proof. See [L.C86, Theorem 1, Section 5.8].

The next theorem is a special case of the above Poincaré’s inequality in ball. For that,
we set

(u)x,r =
1

|B(x, r)|

∫
B(x,r)

udy.

Theorem 2.6.2.
(
Poincaré’s inequality for B(x, r)

)
Assume u ∈ W1,p(B0(x, r)), for

some 1 ≤ p ≤ ∞. Then

‖u− (u)x,r‖Lp(B(x,r)) ≤ Cr‖Du‖Lp(B(x,r)) ,

where the constant C depends only on p and n.

Proof. See [L.C86, Theorem 2, Section 5.8].

Next we aim to study about Different quotients which will be helpful when we’ll study
regularity of solutions of second order elliptic equations.

Definition 2.6.1. Suppose u : Ω→ R is locally integrable and V ⊂⊂ Ω.
(i) For 1 ≤ i ≤ n, the ith different quotient of size h is defined to be

Dh
i u(x) =

u(x + hei)− u(x)
h

where h ∈ R be such that 0 < |h| < dist(V, ∂Ω) and x ∈ V.
(ii) Dhu := (Dh

1u, ...., Dh
nu).
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Theorem 2.6.3. (Different quotient and weak derivative) (i) Assume u ∈ W1,p(Ω),
for some 1 ≤ p < ∞. Then, for V ⊂⊂ Ω∥∥∥Dh(u)

∥∥∥
Lp(V)

≤ C‖Du‖Lp

for some constant C and all 0 < |h| < 1
2 dist(V, ∂Ω).

(ii) Suppose, u ∈ Lp(V) with 1 < p < ∞ and there exists a constant C such that∥∥∥Dhu
∥∥∥

Lp(V)
≤ C

for all 0 < |h| < 1
2 dist(V, ∂Ω). Then u ∈ Lp(V) and

‖Du‖Lp(V) ≤ C.

Remark. Assertion (ii) of the previous theorem is false for p = 1.

Proof. See [L.C86, Theorem 3, Section 5.8].

Now using Fourier transform method we see the characterization of Hk(Rn).

Theorem 2.6.4. (Characterization of Hk) Let k be a nonnegative integer.
(i) A function u ∈ L2(Rn) belongs to Hk(Rn) ⇐⇒ (1 + |y|k)û ∈ L2(Rn), where û
denotes the Fourier transformation of u.
(ii) There exists a constant C > 0 s.t.

1
C
‖u‖Hk(Rn) ≤

∥∥∥(1 + |y|k)û∥∥∥
L2Rn
≤ C‖u‖Hk(Rn) ∀ u ∈ Hk(Rn).

Proof. See [L.C86, Theorem 7, Section 5.8].

The last theorem motivates us to define fractional Sobolev spaces in the following way:

Definition 2.6.2. (Fractional Sobolev spaces) Let u ∈ L2(Rn) and 0 < s < ∞. Then
u ∈ Hs(Rn) if (1 + |y|s)û ∈ L2(Rn). For s not being an integer, we set

‖u‖Hs(Rn) := ‖(1 + |y|s)û‖L2(Rn).

Now we define the dual space of the Hilbert space W1,p
0 (Ω).

Definition 2.6.3. (dual space of W1,p
0 (Ω)) The dual space of W1,p

0 (Ω) is denoted by
W−1,p′(Ω), where p′ = p

p−1 . If p = 2 then dual space of H1
0(Ω) is denoted as H−1(Ω).
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The dual of L2(Ω) is identified with L2(Ω) but we do not identify H1
0(Ω) with it’s dual

space H−1(Ω). Rather we have the following inclusion

H1
0(Ω) ⊂ L2(Ω) ⊂ H−1(Ω).

If Ω is bounded then

W1,p
0 (Ω) ⊂ L2(Ω) ⊂W−1,p′(Ω) if

2n
n + 2

≤ p < ∞.

If Ω is unbounded subset of Rn, then the same holds but in the range 2n
n+2 ≤ p ≤ 2.

Theorem 2.6.5. Characterization of W−1,p′(Ω):
(i) Let f ∈W−1,p′(Ω). Then ∃ f 0, f 1, ....., f n ∈ Lp′(Ω) s.t.

〈 f , v〉 =
∫

Ω
f 0v +

n

∑
i=1

f ivxidx ∀ v ∈W1,p
0 (Ω). (2.2)

and
‖ f ‖W−1,p′ (Ω)

= max
0≤i≤n

‖ fi‖Lp′ (Ω)
.

If Ω is bounded then we take f0 = 0.

Notation: In the context of previous theorem we write f = f 0 −∑n
i=1 f i

xi
.

Proof. See [H.11, Proposition 9.20].



Chapter 3

Second Order Elliptic Partial
Differential Equations

In this chapter our goal is to study the existence of solution to second order uniformly
elliptic boundary value problems via energy method within Sobolev spaces. We will
also discuss regularity properties of the solution and maximum principle. For more
details on these topics, [N.S98] is a good reference.

3.1 Definitions

Mostly in this Chapter, we discuss the problem of the typeLu = f in Ω

u = 0 on ∂Ω,
(3.1)

where Ω is a bounded and open subset of Rn, f : Ω → R is given function and L is
the second order partial differential operator of one of the two forms

Lu = −
n

∑
i,j=1

(
aij(x)uxi

)
xj
+

n

∑
i=1

bi(x)uxi + c(x)u (3.2)

or

Lu = −
n

∑
i,j=1

aij(x)uxi xj +
n

∑
i=1

bi(x)uxi + c(x)u (3.3)

for given coefficient function aij, bi, c (i, j = 1, · · · , n).
If L is of the form (3.2), we say (3.1) is in divergence form and if L is of the form (3.3),
we say (3.1) is in nondivergence form. The boundary condition here, that is , u = 0 on

16
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∂Ω is known as Dirichlet boundary condition.
Remark: There is another important kind of boundary value problem, known as Neu-
mann boundary value problem. There we know the value of ∂u

∂ν on ∂Ω, where ν is
the unit outward normal on the boundary. We’ll discuss results about this problem
separately in the last section.
Throughout this chapter, we assume aij = aji.

Definition 3.1.1. The partial differential operator L is said to be uniformly elliptic if
there exists a constant θ > 0 such that

n

∑
i,j=1

aij(x)ξiξ j ≥ θ|ξ|2

for almost every x ∈ Ω and for all ξ ∈ Rn.

This means L is elliptic if for each x ∈ Rn, the matrix
(
(aij(x))

)n
i,j is positive definite

and the smallest eigenvalue is greater than equal to θ.

3.1.1 Weak Solution

Consider (3.1) where L is in the divergence form. First we try to define the weak solu-
tion of (3.1) in the appropriate Sobolev space and show the existence of such solutions
and then in later sections we’ll see the study the smoothness of such solutions.
In the following part, we’ll assume

aij, bi, c ∈ L∞(Ω) ∀ i, j = 1, ..., n (3.4)

and also
f ∈ L2(Ω). (3.5)

Definition 3.1.2. (i) For a given elliptic operator L in its divergence form (3.2), the
associated bilinear form is defined by

B[u, v] :=
∫

Ω

( n

∑
i,j=1

aijuxi vxj +
n

∑
i=1

biuxi v + cuv
)

dx ∀ u, v ∈ H1
0(Ω).

(ii) u is said to be a weak solution of the problem (3.1), if it satisfies

B[u, v] := ( f , v) ∀ v ∈ H1
0(Ω).

By ( f , v), we denote the usual inner product in L2(Ω).
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We now study a more general problemLu = f 0 −∑n
i=1 f i

xi
in Ω

u = 0 on ∂Ω
(3.6)

where L has the divergence form and each f i is in L2(Ω). From the characterization of
H−1(Ω), f 0 −∑n

i=1 f i
xi
∈ H−1(Ω).

Definition 3.1.3. u ∈ H1
0(Ω) is said to be a weak solution of the problem (3.6), if it

satisfies
B[u, v] = 〈 f , v〉 ∀ v ∈ H1

0(Ω),

where 〈 f , v〉 =
∫

Ω

(
f 0v + ∑n

i=1 f ivxi

)
dx, the usual dual space action of H−1(Ω) on

H1
0(Ω).

3.2 Existence of Weak Solutions

To study the existence of weak solution, first we discuss an abstract theorem, namely
Lax-Milgram theorem from functional analysis.

Theorem 3.2.1. (Lax-Milgram theorem) Let B : H × H → R be a bilinear form which
satisfies the following
(i) ∃ α > 0 s.t. |B[u, v]| ≤ α‖u‖‖v‖ for all u, v ∈ H
(ii) ∃ β > 0 s.t. β‖u‖2 ≤ B[u, u] for all u ∈ H.
Then for a bounded linear functional f : H → R, there exists unique u ∈ H such that
B[u, v] = 〈 f , v〉 ∀ v ∈ H.

Proof. See [L.C86, Theorem 1, Section 6.2].

The Lax-Milgram theorem is a generalization of Riesz Representation theorem in the
sense it does not assume that the bilinear form is symmetric.
In the context of weak solution of second order elliptic PDEs, take the particular bilin-
ear form B : H1

0(Ω)× H1
0(Ω)→ R having the form

B[u, v] =
∫

Ω

( n

∑
i,j=1

aijuxi vxj +
n

∑
i=1

biuxi + cuv
)

dx ∀ u, v ∈ H1
0(Ω).

We try to use Lax Milgram thorem in this set-up.

Theorem 3.2.2. (Energy Estimates) There exist constants α, β > 0 and γ > 0 such that
(i) |B[u, v]| ≤ ‖u‖H1

0(Ω)‖v‖H1
0(Ω).
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(ii) β‖u‖2
H1

0(Ω) ≤ B[u, u] + γ‖u‖2
L2(Ω) ∀ u, v ∈ H1

0(Ω).

Proof. (i) is straight forward application of traingle inequality via (3.4).
(ii)

θ
∫

Ω
|Du|2dx ≤

∫
Ω

n

∑
i,j=1

aijuxi uxjdx = B[u, u]−
∫

Ω

( n

∑
i=1

biuxi u + cu2
)

dx

≤ B[u, u] +
n

∑
i=1

∥∥∥bi
∥∥∥

L∞

∫
Ω
|Du||u|dx + ‖c‖L∞

∫
Ω

u2dx.(3.7)

Using the Young inequality with ε > 0, we estimate the middle term of the last in-
equality ∫

Ω
|Du||u|dx ≤ ε

∫
Ω
|Du|2dx +

1
4ε

∫
Ω

u2dx.

Now we plug the above expression back into (3.7) and choose ε small enough so that
ε ∑n

i=1
∥∥bi
∥∥

L∞(Ω) <
θ
2 . This yields

θ

2

∫
Ω
|Du|2dx ≤ B[u, u] + C

∫
Ω

u2dx

where C > 0 is a constant.
Now using the Poincaré’s inequality Corollary 2.4.3.1, we conclude the proof of (ii).

As can we see, if γ > 0 in previous theorem then B[ , ] does not satisfy the conditions
of Lax-Milgram theorem. In the the next theorem, we resolve this issue.

Theorem 3.2.3. (First existance theorem for weak solutions) There exists a constant
γ ≥ 0 such that forall µ ≥ γ and each f ∈ L2(Ω), there exists a unique weak solution
u of the boundary value problemLu + µu = f in Ω

u = 0 on ∂Ω.

Proof. Let γ be as obtained in Theorem 3.2.2. For µ ≥ γ, define the bilinear form

Bµ[u, v] := B[u, v] + µ(u, v) (u, v ∈ H1
0(Ω)).

This bilinear problem corresponds to the operator Lµu := Lu + µu. We have defined
Bµ in such a way that it satisfies the hypothesis of Lax-Milgram theorem.
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Now fix f ∈ L2(Ω) as in the statement of the theorem. Define the dual action of f
on v ∈ H0

1(Ω) as 〈 f , v〉 := ( f , v)L2(Ω). Clearly it is bounded linear functional on L2(Ω)

and thus on H1
0(Ω). Therefore, using Lax-Milgram theorem we find unique u ∈ H1

0(Ω)

such that Bµ[u, v] = 〈 f , v〉 ∀v ∈ H1
0(Ω). This proves the theorem.

Using the theory of Fredholm alternative, we can gain some valuable information
about solvability of second order elliptic PDE. Before that we define adjoint of elliptic
operator, adjoint bilinear form and weak solution to adjoint problem.

Definition 3.2.1. (i) The adjoint of L denoted by L∗ is defined by

L∗v := −
n

∑
i,j=1

(aijvxj)xi −
n

∑
i=1

bivxi + (c−
n

∑
i=1

bi
xi
)v

provided each bi ∈ C1(Ω), i = 1, · · · , n.
(ii) B∗ : H1

0(Ω)× H1
0(Ω) → R defined by B∗[v, u] = B[u, v] ∀ u, v ∈ H1

0(Ω) is called
the adjoint bilinear form of B.
(iii) v ∈ H1

0(Ω) is a weak solution of the adjoint problemLv∗ = f in Ω

v = 0 on ∂Ω

if B∗[v, u] = ( f , u) ∀ u ∈ H1
0(Ω).

Theorem 3.2.4. (Second Existence Theorem for Weak Solutions) (i) Exactly one of the
below holds true: either

(1)


For every f ∈ L2(Ω), there exists unique weak solution u of

(A)

{
Lu = f in Ω

u = 0 on ∂Ω,
or

(2)


there exists unique weak solution u 6≡ 0 of

(B)

{
Lu = 0 in Ω

u = 0 on ∂Ω
(ii) Moreover, if (2) holds true, then the dimension of the subspace N ⊂ H1

0(Ω) of
weak solutions of (B) is finite and equals the dimension of subspace N∗ ⊂ H1

0(Ω) of
weak solutions of {

L∗v = 0 in Ω

v = 0 on ∂Ω
(3.8)

(iii) (A) has a weak solution ⇐⇒ ( f , v) = 0 ∀ v ∈ N∗.
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The division (A) and (B) is known as Fredholm alternative.

Proof. Choose µ = γ as Theorem 3.2.3 and define the bilinear form

Bγ[u, v] = B[u, v] + γ(u, v),

corresponding to the operator Lγu := Lu + γu. Therefore, for every g ∈ L2(Ω) there
exists unique u ∈ H1

0(Ω) satisfying

Bγ[u, v] := (g, v) ∀ v ∈ H1
0(Ω). (3.9)

When ever (3.9) is satisfied, we denote u = L−1
γ g, We note that u ∈ H1

0(Ω) is a weak
solution of (A) ⇐⇒ Bγ[u, v] = (γu + f , v) ∀ v ∈ H1

0(Ω) ⇐⇒ u =

L−1
γ (γu + f ).

Writing the last equality as u− Ku = h, where Ku := γL−1
γ u and h := L−1

γ f , it can be
easily checked that K : L2(Ω) → L2(Ω) is a compact bounded linear operator. Now
applying the theory of Fredholm alternative we obtain exactly one of the following
holds true:

(C)

{
∀ h ∈ L2(Ω), there exists u ∈ L2(Ω)

satisfying u− Ku = h
or

(D)

{
there exists a nonzero u ∈ L2(Ω)

satisfying u− Ku = 0
If (C) holds true, then by the above arguments there exists a unique weak solution u
satisfying (A).
If (D) holds true, then definitely γ 6= 0 and using the theory of Fredholm alternative
we get that the space N consists of solutions of (D) is finite dimentional and has same
dimention as N∗, the space of solutions of v− K∗v = 0.
Now note that (D) holds if and only if u is a weak solution of (B) and v is a weak
solution of (3.8) if and only if v− K∗v = 0.
Recall, (C) has a weak solution if and only if (h, v) = 0 for all v satisfying v− K∗v = 0.
observe that

(h, v) =
1
γ
(K f , v) =

1
γ
( f , K∗v) =

1
γ
( f , v).

Hence (A) has a weak solution if and only if ( f , v) = 0 for all v satisfying (3.8). This
ends the proof.

Theorem 3.2.5. (Third existance theorem for weak solutions) (i) There exists at most
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a countable set Σ ⊂ R s.t. the boundary value problem

(α)

Lu = λu + f in Ω

u = 0 on ∂Ω

has a unique weak solution for each f ∈ L2(Ω) if and only if λ /∈ Σ.
(ii) If Σ is infinite, then λ1 ≤ λ2 ≤ · · · with λk → ∞ as k→ ∞.

Proof. (i) Let γ be as in Theorem 3.2.2 and λ > −γ. Without loss of generality, we may
assume γ > 0. The theory of Fredholm alternative says that (α) has unique solution in
weak sense for each f ∈ L2(Ω) if and only if u ≡ 0 is the one and only weak solution
of Lu = λu in Ω

u = 0 on ∂Ω.

This will be true if and only if u ≡ 0 is the unique weak solution of

(β)

Lu + γu = (λ + γ)u in Ω

u = 0 on ∂Ω.

For (β) to hold true, we exactly need

u = L−1
γ (γ + λ)u =

γ + λ

γ
Ku, (3.10)

where K : L2(Ω) → L2(Ω) defined as Ku = γL−1
γ u is the bounded linear compact

operator as in the proof of the previous theorem. Now if u ≡ 0 is the only solution of
the problem (3.10), then

γ

γ + λ
is not an eigenvalue of K. (3.11)

Hence ∀ f ∈ L2(Ω), (α) has a unique solution in weak sense if and only if (3.11) holds.
(ii) From the spectral theory of compact self adjoint operator, we know K has either a
finite set or a sequence of eigenvalue which converges to 0. In the second case, since
α > −γ, from (3.10) we can conclude that for every f ∈ L2(Ω), (α) admits a weak
solution except for a sequence λk → ∞.

Definition 3.2.2. Σ is known as real spectrum of the elliptic operator L.

Theorem 3.2.6. (Boundedness of inverse) For λ /∈ Σ, there exists a positive constant
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C depending only on λ, coefficient of L and Ω such that

‖u‖L2(Ω) ≤ C‖ f ‖L2(Ω),

where f is any function in L2(Ω) and u ∈ H1
0(Ω) is the unique weak solution ofLu = λu + f in Ω

u = 0 on ∂Ω.

Proof. See [L.C86, Theorem 6, Section 6.2].

3.3 Regularity of Solutions

After the existence theory of linear elliptic equations of second order, now we focus
on the question whether these weak solutions are smooth. This is called regularity
problem of weak solutions. Throughout this section Ω will be will be open, bounded
subset of Rn. Let, u ∈ H1

0(Ω) to be the weak solution of

Lu = f in Ω (3.12)

and L be in the divergence form

Lu = −
n

∑
i,j=1

(
aij(x)uxi

)
xj
+

n

∑
i=1

bi(x)uxi + c(x)u (3.13)

We also assume L is uniformly elliptic.

Theorem 3.3.1. (Interior H2 regularity) Suppose

aij ∈ C1(Ω), bi, c ∈ L∞(Ω) ∀ i, j = 1, · · · , n

and f ∈ L2(Ω). If u ∈ H1(Ω) is a weak solution of

Lu = f in Ω,

Then
u ∈ H2

loc(Ω)

and for V ⊂⊂ Ω,
‖u‖H2(V) ≤ C(‖ f ‖L2(Ω) + ‖u‖L2(Ω))
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for some C which depends on V, coefficient of L and Ω.

Proof. Take some V ⊂⊂ Ω. Now select W such that V ⊂⊂ W ⊂⊂ Ω. Using locally
finite C∞ partition of unity, we can choose a smooth function ζ such that0 ≤ ζ ≤ 1, ζ = 1 on V

ζ = 0 on Rn −W.

Clearly distance between ∂Ω and W is positive.
As u is a weak solution of (3.12), we have B[u, v] = ( f , v) ∀ v ∈ H1

0(Ω). Therefore,

n

∑
i,j=1

∫
Ω

aijuxi vxj dx =
∫

Ω
f̃ v dx, (3.14)

where f̃ = f −∑n
i=1 biuxi − cu.

Choose |h| > 0 small and k ∈ {1, ..., n}. Then define the test function v as v =

−D−h
k (ζ2Dh

k u) and we substitute it in (3.14), where Dh
k denotes the difference quotient

as defined in Definition 2.6.1. This yields

LHS of (3.14) = −
n

∑
i,j=1

∫
Ω

aijuxi

[
D−h

k

(
ζ2Dh

k u
)]

xj
dx

=
n

∑
i,j=1

∫
Ω

Dh
k

(
aijuxi

) (
ζ2Dh

k u
)

xj
dx

=
n

∑
i,j=1

∫
Ω

aij,h
(

Dh
k uxi

) (
ζ2Dh

k u
)

xj
+
(

Dh
k aij
)

uxi

(
ζ2Dh

k u
)

xj
dx.

Here we used the formulas∫
Ω

vD−h
k w dx = −

∫
Ω

wDh
k v dx and Dh

k (vw) = vhDh
k w + wDh

k v

for vh(x) := v (x + hek). Hence,

LHS =
n

∑
i,j=1

∫
Ω

aij,hDh
k uxi D

h
k uxj ζ

2 dx

+
n

∑
i,j=1

∫
Ω

[
aij,hDh

k uxi D
h
k u2ζζxj +

(
Dh

k aij
)

uxi D
h
k uxj ζ

2 +
(

Dh
k aij
)

uxi D
hk
k u2ζζxj

]
dx

= : A + B. (3.15)
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Using uniform ellipticity condition of L,

A ≥ θ
∫

Ω
ζ2
∣∣∣Dh

k Du
∣∣∣2 dx.

From the regularity of coefficients

|B| ≤ C
∫

Ω

(
ζ
∣∣∣Dh

k Du
∣∣∣ ∣∣∣Dh

k u
∣∣∣+ ζ

∣∣∣Dh
k Du

∣∣∣ |Du|+ ζ
∣∣∣Dh

k u
∣∣∣ |Du|

)
dx,

where C is a positive constant. Further more, using Young’s inequality with ε > 0

|B| ≤ ε
∫

Ω
ζ2
∣∣∣Dh

k Du
∣∣∣2 dx +

C
ε

∫
W

∣∣∣Dh
k u
∣∣∣2 + |Du|2 dx.

Now, taking ε = θ
2 and applying Theorem 6.3 in Chapter 2, we obtain

|B| ≤ θ

2

∫
Ω

ζ2
∣∣∣Dh

k Du
∣∣∣2 dx + C

∫
Ω
|Du|2 dx

Hence plugging the above estimates back into (3.15) yields

LHS of (3.14) ≥ θ

2

∫
Ω

ζ2
∣∣∣Dh

k Du
∣∣∣2 dx− C

∫
Ω
|Du|2 dx.

From the definition of f̃ and v, we also have

|RHS of (3.14)| ≤ C
∫

Ω
(| f |+ |Du|+ |u|)|v|dx. (3.16)

Applying Theorem 2.6.3 from Chapter 2,

∫
Ω
|v|2dx ≤ C

∫
Ω

∣∣∣D (ζ2Dh
k u
)∣∣∣2 dx ≤ C

∫
W

∣∣∣Dh
k u
∣∣∣2 + ζ2

∣∣∣Dh
k Du

∣∣∣2 dx

≤ C
∫

Ω
|Du|2dx + ζ2

∣∣∣Dh
k Du

∣∣∣2 dx.
(3.17)

Therefore, using Hölder inequality in (3.16) and followed by (3.17), we obtain

|RHS of (3.14)| ≤ ε
∫

Ω
ζ2
∣∣∣Dh

k Du
∣∣∣2 dx +

C
ε

∫
Ω

f 2 + u2dx +
C
ε

∫
Ω
|Du|2dx.

Next, set ε = θ
4 . This reduces

|RHS of (3.14)| ≤ θ

4

∫
Ω

ζ2
∣∣∣Dh

k Du
∣∣∣2 dx + C

∫
Ω

f 2 + u2 + |Du|2dx.
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Hence comparing the final estimations for LHS and RHS of (3.14), we write

∫
V

∣∣∣Dh
k Du

∣∣∣2 dx ≤
∫

Ω
ζ2
∣∣∣Dh

k Du
∣∣∣2 dx ≤ C

∫
Ω

f 2 + u2 + |Du|2dx,

where |h| > 0 is small enough and k ∈ {1, ..., n}. In view of Theorem 2.6.3(ii) of
Chapter 2, we can deduce from the above estimate that Du ∈ H1

loc(Ω) and thus u ∈
H2

loc(Ω) with

‖u‖H2(V) ≤ C
(
‖ f ‖L2(Ω) + ‖u‖H1(Ω)

)
.

We can refine the previous estimate by observing that if V ⊂⊂W ⊂⊂ Ω, then

‖u‖H2(V) ≤ C
(
‖ f ‖L2(W) + ‖u‖H1(W)

)
, (3.18)

where C is a constant which depends on V, W, etc. Now define a new map ζ such that

ζ ≡ 1 on W, supp ζ ⊂ U, 0 ≤ ζ ≤ 1.

Put v = ζ2u in equation (3.14) to find∫
Ω

ζ2|Du|2dx ≤ C
∫

Ω
( f 2 + u2)dx.

Hence,
‖u‖H1(W) ≤ C(‖ f ‖L2(Ω) + ‖u‖L2(Ω)).

The last inequality and (3.18) completes the proof of the theorem.

Theorem 3.3.2. (Higher interior regularity) Let m be a nonnegative integer and

aij, bi, c ∈ Cm+1(Ω) ∀ i, j = 1, · · · , n.

Also f ∈ Hm(Ω) and u ∈ H1(Ω) is a weak solution of Lu = f in Ω. Then

u ∈ Hm+2
loc (Ω)

and if V ⊂⊂ Ω, then

‖u‖H2+m(V) ≤ C(‖ f ‖Hm(Ω) + ‖u‖L2()Ω),

where C depends on m, V, coefficient of L and Ω.

Proof. This theorem can be proved by induction on m. We have proved the base case
in Theorem 3.3.1. For the detailed proof, we refer [L.C86, Theorem 2, Section 6.3].
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Theorem 3.3.3. (Infinite interior differentiability) Let aij, bi, c ∈ C∞(Ω) for all i, j =
1, · · · , n and f ∈ C∞(Ω). If u ∈ H1(Ω) is a weak solution of Lu = f in Ω, then
u ∈ C∞(Ω).

Proof. By Theorem 3.3.2, u ∈ Hm
loc(Ω), where m is any positive integer. Therefore,

applying Theorem 2.4.6 of Chapter 2, we have u ∈ Ck(Ω) for each k = 1, 2, · · · . Hence,
u ∈ C∞(Ω).

In the next theorem, we aim to extend the above regularity unto the boundary of Ω.
To obtain this, we need to assume some "smoothness" property of ∂Ω. Note that in
Theorem 3.3.1 and Theorem 3.3.2, we have not assumed any condition on boundary
of Ω and that is why the improved regularity of the solution which we have obtained
is local.

Theorem 3.3.4. (Higher boundary regularity) Let m be a nonnegative integer, Ω be
a bounded domain of class Cm+2 and aij, bi, c ∈ Cm+1(Ω) ∀ i, j = 1, · · · , n. Also
f ∈ Hm(Ω) and u ∈ H1

0(Ω) is a weak solution of the elliptic PDELu = f in Ω

u = 0 on ∂Ω.

Then
u ∈ Hm+2(Ω)

and
‖u‖H2+m(Ω) ≤ C(‖ f ‖Hm(Ω) + ‖u‖L2(Ω))

where C depends on m, coefficient of L and Ω.
In particular, if u ∈ Hm(Ω) with m > N/2 then u ∈ C2(Ω̄). Finally if ∂Ω is C∞ and
aij, bi, c ∈ C∞(Ω) ∀ i, j = 1, · · · , n and f ∈ C∞(Ω) then u ∈ C∞(Ω).

Proof. See [L.C86, Theorem 3, Section 6.3] and [H.11, Theorem 9.25] .

3.4 Maximum Principles

In this section we assume Ω is a bounded and open subset of Rn and L be given in the
divergence form (3.2).

Definition 3.4.1. If Lu ≤ 0 in Ω, then u is called a subsolution of

Lu = 0 (3.19)
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and if Lu ≥ 0 in Ω, then u is called a supersolution of (3.19).

Theorem 3.4.1. (Weak maximum principle for c = 0) Suppose u ∈ C2(Ω)∩C(Ω) and
c ≡ 0 in Ω.
(i) Lu ≤ 0 in Ω =⇒ maxΩu = max∂Ωu.
(ii) Lu ≥ 0 in Ω =⇒ minΩu = min∂Ωu.

Proof. First take Lu < 0 and on the contrary, let’s assume there exists x0 ∈ Ω such that
u(x0) = maxΩu. As it is a minima, we have Du(x0) = 0 and D2u(x0) ≤ 0.
Consider the matrix A := (aij(x0)), which is symmetric and positive definite. Hence,
from basic linear algebra we know there exists an orthogonal matrix O = (oij) which
satisfies

OAOT = diag(d1, ..., dn),

where each di > 0. Take y = x0 + O(x− x0). Then x− x0 = OT(y− x0). So we have

uxi =
n

∑
k=1

uyk oki, uxixj =
n

∑
k,l=1

uykyl okiol j (i, j = 1, . . . , n)

Hence at x0, we have (since O is orthogonal)

n

∑
i,j=1

aijuxixj =
n

∑
k,l=1

n

∑
i,j=1

aijuykyl okiol j =
n

∑
k=1

dkuykyk < 0

as dk > 0 and uykyk (x0) ≤ 0 ∀1 ≤ k ≤ n. Hence,

Lu = −
n

∑
i,j=1

aijuxixj +
n

∑
i=1

biuxi ≥ 0

at x0 by our previous calculation.
For Lu ≤ 0 in Ω, define uε(x) := u(x) + εeλx1 where λ is a particular constant to be
selected below and ε be greater than 0. Using uniform ellipticity we now show that
Luε < 0 where we choose λ sufficiently large. Thus, by the previous calculations we
already have maxΩuε = max∂Ωuε. Taking ε→ 0, we prove (i).
To prove (ii), just note that if u is a supersolution of (3.19), then −u is a subsolution of
(3.19). This proves the theorem.

Theorem 3.4.2. (Weak maximum principle for c ≥ 0) Suppose u ∈ C2(Ω)∩C(Ω) and
c ≥ 0 in Ω.
(i) Lu ≤ 0 in Ω =⇒ maxΩu = max∂Ωu+.
(ii) Lu ≥ 0 in Ω =⇒ minΩu = −min∂Ωu−.
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Proof. The idea is to define a new operator K defined as Ku := Lu− cu and apply the
previous theorem. Detailed proof can be found in [L.C86, Theorem 2, Section 6.4].

Lemma 3.4.1. (Hopf’s Lemma) Assume u ∈ C2(Ω) ∩ C1(Ω) and in the expression of
L, c ≡ 0 in Ω. Suppose Lu ≤ 0 in Ω and there exists x0 ∈ ∂Ω for which u(x0) > u(x),
for every x ∈ Ω. Also assume there exists an open ball B ⊂ Ω with x0 ∈ ∂B (interior
ball condition). Then
(i)

∂u
∂ν

(x0) > 0,

where ν is the unit outward normal to B at x0.
(ii) If c ≥ 0 in Ω, the same conclusion holds provided u(x0) ≥ 0.

Note: As u(x0) is a maxima, we already know ∂u
∂ν (x0) ≥ 0. The strength of Hopf’s

lemma is that it makes the inequality strict.

Proof. We will just prove the second part, that is for c ≥ 0. First part follows if we put
c = 0.
Take B to be B(0, r), where r > 0. For x ∈ B(0, r), define v(x) := exp

{
−λ|x|2

}
−

exp
{

λr2} where λ > 0 will be chosen below. Thus,

Lv = −
n

∑
i,j=1

aijvxixj +
n

∑
i=1

bivxi + cv =e−λ|x|2
n

∑
i,j=1

aij
(
−4λ2xixj + 2λδij

)
− e−λ|x|2

n

∑
i=1

bi2λxi + c
(

e−λ|x|2 − e−λr2
)

≤e−λ|x|2
(
−4θλ2|x|2 + 2λ tr A + 2λ|b‖x|+ c

)
for A =

((
aij)) , b =

(
b1, . . . , bn) . Define Ar := B(0, r)− B(0, r/2).

Lv ≤ e−λ|x|2
(
−θλ2r2 + 2λ tr A + 2λ|b|r + c

)
≤ 0 in Ar

provided λ > 0 is chosen large enough. As u(x0) > u(x), there exists ε > 0 small
enough such that

u(x0) ≥ u(x) + εv(x) ∀ x ∈ ∂B
(

0,
r
2

)
. (3.20)

Since, v ≡ 0 in ∂B(0, r), clearly

u(x0) ≥ u(x) + εv(x) on ∂B(0, r). (3.21)
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Moreover, Lv ≤ 0 implies

L(u + εv− u(x0)) ≤ −cu(x0) ≤ 0 in Ar.

From (3.20) and (3.21), it follows that u + εv− u()x0 ≤ 0 on ∂Ar.
Therefore, applying weak maximum principle, we have u + εv− v(x0) ≤ 0 in Ar. As
u(x0) + εv(x0)− u(x0) = 0, we find

∂u
∂ν

(x0) + ε
∂v
∂ν

(x0) ≥ 0.

This implies

∂u
∂ν

(x0) ≥ −ε
∂v
∂ν

(x0) = −ε

r
Dv(x0).x0 = −2λεre−λr2

> 0

and we are done.

Theorem 3.4.3. (Strong maximum principle ) Let Ω be a connected subset of Rn and
u ∈ C2(Ω) ∩ C(Ω). Suppose c ≥ 0 in the expression of L.
(i) If Lu ≤ 0 in Ω and u attains a nonnegative maximum over Ω at an interior point,
then u is cosntant in Ω.
(ii) If Lu ≥ 0 in Ω and u attains a nonpositive minimum over Ω at an interior point,
then u is constant in Ω.

Proof. Define M := maxΩ u and S := {x ∈ Ω|u(x) = M}. If u ≡ M, there is nothing
left to prove. Else, define T := {x ∈ Ω|u(x) < M}. Now take y ∈ T such that
dist(y, S) < dist(y, ∂Ω). Assume B is the biggest ball centred at y and completely
contained in T. Then obviously, ∃ z ∈ S along with z ∈ ∂Ω.
As T satisfies the interior ball condition at the point z, using Hopf’s lemma we have
∂u
∂ν (z) > 0. This leads to a contradiction as u has maxima at z and Du(z) = 0.

Theorem 3.4.4. (Harnack’s inequality) Let u ≥ 0 be a c2 function satisfying Lu = 0 in
Ω and V ⊂⊂ Ω be connected. Then there exists a positive constant C depending only
on V and coefficients of L such that

sup
V

u ≤ C inf
V

u.

Note: For simplicity we’ll assume aij’s are given smooth functions and bi = c = 0.

Proof. See [L.C86, Theorem 5, Section 6.4].
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3.5 Eigenvalues and Eigenfunctions

Let Ω be a connected bounded open subset of Rn and w be a nontrivial solution ofLw = λw in Ω

w = 0 on ∂Ω,

where

Lu = −
n

∑
i,j=1

(
aij(x)uxi

)
xj

,

with the assumption that aij ∈ C∞(Ω), ∀ i, j = 1, · · · , n, L is uniformly elliptic and
aij = aji (i, j = 1, · · · , n).
The set of all eigenvalues, denoted by Σ can be at most countable (from the theory
developed in Section 2 of this chapter).

Theorem 3.5.1. (Eigenvalues of symmetric elliptic operator) (i) Eigenvalues of L are
real.
(ii) If we repeat each eigenvalues according to it’s finite multiplicity then 0 < λ1 ≤
λ2 ≤ ....., and λk → ∞ as k→ ∞.
(iii) There exists an orthonormal basis {wk}∞

k=1 of L2(Ω), where wk ∈ H1
0(Ω) is an

eigenfunction corresponding to λkLw = λw in Ω

w = 0 on ∂Ω.

for k ∈N.

Remark: λ1 is known as the principle eigenvalue of L.

Proof. See [L.C86, Theorem 1, Section 6.5].

Theorem 3.5.2. (Variational principle for the principle eigenvalue)
(i)

λ1 = min{B[u, u] : u ∈ H1
0(Ω), ‖u‖L2(Ω) = 1}.

(ii) The above minimum is being attained by a function w1 which does not change sign
in Ω and solves Lw1 = λ1w1 in Ω

w = 0 on ∂Ω.
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(iii) If u ∈ H1
0(Ω) is weak solution ofLu = λ1u in Ω

u = 0 on ∂Ω,

then u is a multiple of w1.

Remark: (i) From Theorem 3.5.2(iii) , we conclude that λ2 > λ1 i.e. λ1 is simple
eigenvalue.
(ii) The value of λ1 given in the above theorem is known as Rayleigh’s formula and
can equivalently be expressed as

λ1 = minu∈H1
0(Ω),u 6=0

B[u, u]

‖u‖2
L2(Ω)

.

Proof. See [L.C86, Theorem 2, Section 6.5].

3.6 Neumann Boundary Value Problem

Let Ω be a bounded domain in Rn of the class C1. For a given f : Ω → R, we want to
solve −∆u + u = f in Ω

∂u
∂ν = 0 on ∂Ω,

(3.22)

that is, we want to find u : Ω → R satisfying the above problem. Here ν is the unit
outward normal vector to ∂Ω and this means ∂u

∂ν = ∇u · ν.

Definition 3.6.1. A function u ∈ H1(Ω) is said to be a weak solution of (3.22) provided
u satisfies ∫

Ω
∇u · ∇v dx +

∫
Ω

uv dx =
∫

Ω
f v dx ∀ v ∈ H1(Ω).

Using Green’s formula we can show that every classical solution is also a weak solu-
tion.

Theorem 3.6.1. (Existance and uniqueness of weak solution) For any f ∈ L2(Ω),
there exists unique u ∈ H1(Ω) satisfying (3.22). Moreover, the unique solution can be
expressed as

u = min
v∈H1(Ω)

{
1
2

∫
Ω
(|∇v|2 + v2) dx−

∫
Ω

f v dx
}

.

Proof. Just like the proof of existence and uniqueness of Dirichlet boundary value
problem, we use Lax-Milgram theorem on H1(Ω).
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Theorem 3.6.2. (Regularity of solutions) Assume Ω is an open subset of Rn of the
class C2 and ∂Ω is a bounded set. Suppose also f ∈ L2(Ω) and u ∈ H1

0(Ω) satisfy the
following: ∫

Ω
∇u · ∇ϕ dx +

∫
Ω

uϕ dx =
∫

Ω
f ϕ dx ∀ϕ ∈ H1

0(Ω).

Then u ∈ H2(Ω) with ‖u‖H2(Ω) ≤ C‖ f ‖L2(Ω) for some constant C depending only
upon the set Ω.
If Ω is Cm+2 and f ∈ Hm(Ω), then we have v ∈ Hm+2(Ω) with ‖u‖Hm+2(Ω) ≤
C‖ f ‖Hm(Ω), where C depends only on the set Ω.
From this we can conclude, if Ω is C∞ and f ∈ C∞(Ω), then u ∈ C∞(Ω).

Proof. The proof is not very different from the proof of regularity results for Dirichlet
boundary value problem. For detailed proof see [H.11, Theorem 9.26, Section 9.6].

Theorem 3.6.3. (Maximum principle) Assume f ∈ L2(Ω) and u ∈ H1(Ω) satisfies∫
Ω
∇u · ∇ϕ dx +

∫
Ω

uϕ dx =
∫

Ω
f ϕ dx ∀ϕ ∈ H1

0(Ω).

Then we have

infΩ f ≤ u(x) ≤ supΩ f for almost every x ∈ Ω.

Proof. Similar to the proof of Maximum principle for the Dirichlet boundary value
problem.

Note: There are other boundary conditions for second order elliptic PDEs like Robin
condition and oblique derivative problem. In Robin condition, the boundary value is
given as

∂u
∂ν

+ αu = 0 and α > 0 on∂Ω

where ν is same as in Neumann problem. In oblique derivative problem the boundary
value is given by

α
∂u
∂ν

+ β
∂u
∂τ

= 0 on ∂Ω

where τ is the tangent vector. Refer Chapter 3 of [S.03] for more details on these types
of boundary value problems.



Chapter 4

Variational Techniques

Calculus of variation is about finding critical points. Suppose we want to solve A[u] =
0, where A is any partial differential operator (can even be nonlinear). There is no
general theory to address this problem, but using calculus of variation we can solve a
particular class of problems(called ’variational problem’) in the following way:
Suppose the operator A[·] is derivative of an energy functional I i.e.

A[·] = I′[·].

Then to solve A[u] = 0, it is enough to find the critical points of I and here comes the
role of calculus of variation.
For more detailed exposition on calculus of variation, refer [A.07] and [M.96].

4.1 Eular-Lagrange equation, First variation and

Second Variation

Definition 4.1.1. Let Ω be an open and bounded subset of Rn with smooth boundary.
A smooth function

L : Rn ×R×Ω→ R

is called the Lagrangian.

Notation We write

L = L(p, z, x) = L(p1, ..., pn, z, x1, ..., xn)

where p ∈ Rn, z ∈ R and x ∈ Ω. Below, we substitute Dw(x) for the variable p and

34
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w(x) for the variable z. Set 
DpL = (Lp1 , ...., Lpn)

DzL = Lz

DxL = (Lx1 , ...., Lxn)

Let I[·] have an explicit form

I[w] =
∫

Ω
L(Dw(x), w(x), x)dx

where w : Ω→ R be smooth and satisfies the boundary condition

w = g on ∂Ω.

Moreover, assume there exists a smooth function u satisfying the boundary condition
and is also a minimizer of I among all functions which satisfies the boundary condi-
tion. We now see that u is automatically a solution for some PDE.
Choose v ∈ C∞

c (Ω) and define

γ(τ) := I[u + τv].

Since u is a minimizer of I, u + τv = u when τ = 0 and thus u + τv = u = g on ∂Ω,
we conclude that γ(·) has a minimum at τ = 0. Hence, γ′(0) = 0. As we know the
explicit formula for γ(τ), we calculate γ′(0) and equate it to 0 to get

∫
Ω

[
−

n

∑
i=1

(Lpi(Du, u, x))xi + Lz(Du, u, x)
]
v dx = 0.

The above equation holds for any test function v. So, u solves

−
n

∑
i=1

(Lpi(Du, u, x))xi + Lz(Du, u, x)) = 0.

The above equation is known as Eular-Lagrange equation associated with the energy
functional I[·] defined above.
Just now we have seen that any smooth minimizer of I[·] is a solution for the Eular-
Lagrange equation. Now we try to find solution of Eular-Lagrange equation by search-
ing for the appropriate energy functional.
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Since u was the minimum of I[·], we can conclude

γ′′(0) ≥ 0.

From the explicit formula for γ, we get

n

∑
i,j=1

Lpi pj(Du, u, x)ξiξ j ≥ 0 ∀ ξ ∈ Rn, x ∈ Ω.

Later we will see that this inequality is necessary for the existence theory.

4.2 Existence of Minimizers

Within an appropriate Sobolev space, we try to put some conditions on L so that I[·]
has a minimizer. To be precise, consider the functional

I[w] :=
∫

Ω
L(Dw(x), w(x), x)dx

defined for appropriate functions w : Ω→ R satisfying

w = g on ∂Ω.

What assumption(s) should we make to ensure the existence of a minimizer of I?
Coercivity: Consider f (x) = e−x2

. It is a function from R to R, which is smooth
and bounded. Still it does not attend it’s infimum. This example suggests us that we
should have some control over I[w] when w is large. The most intuitive way is to
assume that I[w] grows rapidly when ‖w‖ → ∞.
To be precise, for 1 < q < ∞ assume

∃ α > 0 and β ≥ 0 such that

L(p, z, x) ≥ α|p|q − β

∀ p ∈ Rn, z ∈ R, x ∈ Ω.

(4.1)

From this assumption, we can easily conclude

I[w] ≥ δ‖Dw‖q
Lq(Ω)

− γ (4.2)

where γ := β|Ω| and δ > 0 be some constant.
Hence, when ‖Dw‖Lq → ∞, we have I[w] → ∞. The equation (4.2) is known as a
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coercivity condition on I[·].
From the coercivity condition (4.2), we see that it is a good idea to define I[w] for
W1,q(Ω) functions rather than for smooth functions. Obviously, w also has to satisfy
boundary condition w = g on ∂Ω. So, we define

A := {w ∈W1,q(Ω) |w = g on ∂Ω in trace sense}

to denote the class of admissible functions w.
Weak Lower Semicontinuity: Given coersivity, a function from R to R attains min-
imum, but in general I[w] will not. The main problem here is the space W1,q(Ω) is
infinite dimensional and it is difficult to get compactness. For our purpose, we need
one more assumption.

Definition 4.2.1. A functional I[·] is called weakly lower semicontinuous (w.l.s.c, in
short) on W1,q(Ω) if for every sequence {uk} in W1,q(Ω) such that uk ⇀ u weakly in
W1,q(Ω) implies

I[u] ≤ lim inf
k→∞

I[uk].

Lemma 4.2.1. Let X be a reflexive Banach space and I : X → R be coercive and
w.l.s.c. Then I is bounded from below on X. Moreover, there exists u ∈ X such that
I(u) = min{I(v) | v ∈ X}. If I is differentiable, then I′(u) = 0.

Proof. Suppose not, that is we assume there exists a sequence {un} ⊂ X such that
I(un) → −∞. Since I is coercive, there exists M > 0 such that ‖un‖E ≤ M. This in
turn implies there exists u ∈ X such that un ⇀ u, since X is reflexive. Therefore, as
I is w.l.s.c, we obtain I[u] ≤ lim infn→∞ I[un] = −∞, which is a contradiction. Hence
I is bounded from below. Consequently, m := inf{I(v) | v ∈ X} is finite. Let wn be a
minimizing sequence for m, i.e., I(wn) → m. Again by coercivity, {wn} is bounded in
X and there exists w ∈ X such that wn ⇀ w, for some w ∈ X. Combining this with
w.l.s.c. of I,

I[w] ≤ lim inf
n→∞

I[wn] = m.

Clearly I(w) can not be strictly smaller than m and hence I(w) = m. This proves the
lemma.

Applications

Theorem 4.2.1. Assume f is locally Hölder continuous and there exists a1 ∈ L2(Ω),
a2 > 0 and p ∈ (0, 1) such that

| f (x, u(x))| ≤ a1(x) + a2|u|p ∀ x ∈ Ω, t ∈ R. (4.3)
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Then the following Dirichlet boundary value problem admits a solution in H1
0(Ω).−∆u = f (x, u(x)) in Ω

u = 0 on ∂Ω.
(4.4)

Proof. Define I : H1
0(Ω)→ R by

I(u) = ‖u‖2
H1

0(Ω)
−Φ(u),

where
Φ(u) =

∫
Ω

F(x, u(x))dx, and F(x, u) =
∫ u

0
f (x, s)ds.

Clearly, Φ ∈ C1(H1
0(Ω), R) and weakly continuous (i.e., un ⇀ u implies Φ(un) →

Φ(u)). Also it is easy to see that critical points of I are solutions of (4.4) and vice versa.
From (4.3), we have

|Φ(u)| ≤ ‖a1‖L2(Ω)‖u‖L2(Ω) +
a2

p + 1
‖u‖p+1

Lp+1(Ω)
.

Consequently, I(u) ≥ ‖u‖2
H1

0(Ω)
− ‖a1‖L2(Ω)‖u‖L2(Ω) −

a2
p+1‖u‖

p+1
Lp+1(Ω)

.. Therefore, I is

coercive as p < 1. Moreover, as u 7→ ‖u‖2 is w.l.s.c. and Φ is weakly continuous, then
I is w.l.s.c. Hence the theorem follows from Lemma 4.2.1.

Our next aim is to find suitable assumptions on L so that weak lower semicontinuity
is satisfied.
The second variation suggests us to assume L is convex in its first variable.

Theorem 4.2.2. (Weak lower semicontinuity) If L is bounded below, smooth and p→
L(p, z, x) is convex for all z ∈ R, x ∈ Ω, then I[·] is weakly lower semicontinuous on
W1,q(Ω).

Proof. See [L.C86, Theorem 1, Section 8.2].

Now we show that I[·] has a minimizer among all w ∈ A.

Theorem 4.2.3. (Existence) Assume A 6= ∅ and L satisfies coersivity inequality and is
convex in the variable p. Then ∃ u ∈ A satisfying

I[u] = minw∈A I[w].
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Proof. Define m := infw∈A I[w]. For m = ∞, there is nothing to prove. Therefore, we
suppose m < ∞. Let {uk} ⊂ A be a minimizing sequence, that is I[uk] → m. Without
loss of generality, take β = 0 in the definition of coercivity. Hence, coercivity says
L ≥ α|p|q. Hence I[w] ≥ α

∫
Ω |Dw|qdx.

As m < ∞, we see
sup

k
‖Duk‖Lq(Ω) < ∞. (4.5)

Fix any w ∈ A. Since, uk ∈ A, therefore we have uk − w ∈ W1,q
0 (Ω). Now using

Poincaré’s inequality and (4.5) we have,

‖uk‖Lq(Ω) ≤ ‖uk − w‖Lq(Ω) + ‖w‖Lq(Ω) ≤ C‖Duk − Dw‖Lq(Ω) + C ≤ C.

So, supk ‖uk‖Lq(Ω) < ∞. This result and (4.5) proves that {uk}∞
k=1 is bounded in W1,q(Ω).

As a consequence, there exists u ∈ W1,q(Ω) such that up to a subsequence ukj ⇀ u in

W1,q(Ω). Next, we claim that u ∈ A. Indeed, for any w ∈ A, uk − w ∈ W1,q
0 (Ω) and

W1,q
0 (Ω) is closed linear subspace of W1,q(Ω) and thus by Mazur’s theorem weakly

closed. consequently, u− w ∈W1,q
0 (Ω). Therefore, trace of u is g. Hence the claim fol-

lows. Therefore, by Theorem 4.2.2, I[u] ≤ lim infj→∞ I[ukj ] = m. Using the fact u ∈ A,
I[u] = m = minw∈A I[w].

The next obvious question is uniqueness of minimizers. To guarantee uniqueness we
need some more assumptions.

Theorem 4.2.4. (Uniqueness) Suppose L = L(p, x) doesn’t depend on z and

∃ θ > 0 such that
n

∑
i,j=1

Lpi pj(p, x)ξiξ j ≥ θ|ξ|2 where p, ξ ∈ Rn, x ∈ Ω (uniform convexity)

Then the minimizer in A is unique.

Proof. Suppose u 6= ũ in almost everywhere sense and both of them are minimizers.
Define v := u+ũ

2 . We’ll prove that

I[v] <
I[u] + I[ũ]

2
.

Note that this is sufficient to prove as it contradicts the minimality of u and ũ. From
uniform convexity, we deduce,

L(p, x) ≥ L(q, x) + DpL(q, x)(̇p− q) +
θ

2
|p− q|2 (4.6)
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where x ∈ Ω and p, q ∈ Rn.
Now put p = Du and q = Du+Dũ

2 and integrate on the set Ω to get

I[v] +
∫

Ω
DpL

(Du + Dũ
2

, x
)
·
(Du− Dũ

2
, x
)

dx +
θ

8

∫
Ω
|Du + Dũ|2dx ≤ I[u].

In a similar way, if we put p = Dũ and q = Du+Dũ
2 and integrate on the set Ω, we get

I[v] +
∫

Ω
DpL

(Du + Dũ
2

, x
)
·
(Dũ− Du

2
, x
)

dx +
θ

8

∫
Ω
|Du + Dũ|2dx ≤ I[ũ].

If we add the last two inequality, we find

I[v] +
θ

8

∫
Ω
|Du + Dũ|2dx ≤ I[u] + I[ũ]

2
.

From this we conclude

I[v] ≤ I[u] + I[Ũ]

2
.

If the above inequality is not strict we will get Du = Dũ almost everywhere, which in
turn will say u = ũ almost everywhere. This implies the minimizer is unique.

Recall that our aim was to solve the Eular-Lagrange equation. Now we show that any
minimizer u ∈ A of I[·] solves Eular-Lagrange equation under certain assumptions.
We have to assume some growth conditions on L and its derivatives:

|L(p, z, x)| ≤ C(|p|q + ||z|q + 1) (4.7)

and |DpL(p, z, x)| ≤ C(|p|q−1 + ||z|q−1 + 1)

|DzL(p, z, x)| ≤ C(|p|q−1 + ||z|q−1 + 1)
(4.8)

for some C and all p ∈ Rn, z ∈ R and x ∈ Ω.
Motivation behind the definition of weak solutions: Consider−∑n

i=1(Lpi(Du, u, x))xi + Lz(Du, u, x) = 0 in Ω

u = g on ∂Ω.
(4.9)

Multiply (4.9) by v ∈ C∞
c (Ω) and integrate by parts to get

∫
Ω

n

∑
i=1

Lpi(DU, u, x)vxi + Lz(Du, u, x)vdx = 0 (4.10)
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For u ∈W1,q(Ω) using (4.8) we see

|DpL(Du, u, x)| ∈ Lq
′
(Ω)

where 1
q +

1
q′
= 1. In a similar way,

|DzL(Du, u, x)| ∈ Lq
′
(Ω).

Now use the standard approximation argument to see (4.10) is valid ∀ v ∈ W1,q
0 (Ω).

This calculation motivates us to define the following:

Definition 4.2.2. u ∈ A is said to a weak solution of the boundary value problem (4.9)
if ∫

Ω

n

∑
i=1

Lpi(DU, u, x)vxi + Lz(Du, u, x)vdx = 0

∀ v ∈W1,q
0 (Ω).

Theorem 4.2.5. (Solution of Eular-Lagrange equation) If L follows the two growth
conditions (4.7) and (4.8) and u ∈ A satisfies

I[u] = minw∈A I[w].

Then u is a weak solution of (4.9).

Proof. This proof is very similar to the motivation part we did in the beginning of the
chapter. Only thing is that we can’t assume u is smooth.
Fix v ∈W1,q

0 (Ω). Define γ(τ) := I[u+ τv]. From the growth condition on L, we always
have γ(τ) is finite.
For τ 6= 0,

γ(τ)− γ(0)
τ

=
∫

Ω
Lτ(x)dx (4.11)

where

Lτ(x) :=
1
τ
[L(Du(x) + τDv(x), u(x) + τv(x), x)− L(Du(x), u(x), x)]

for a.e. x ∈ Ω. Obviously, Lτ(x) → ∑n
i=1 Lpi(Du, u, x)vxi + Lz(Du, u, x)v a.e. as
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τ → 0. We also have

Lτ(x) =
1
τ

∫ τ

0

d
ds

L(Du + sDv, u + sv, x)ds

=
1
τ

∫ τ

0

( n

∑
i=1

Lpi(Du + sDv, u + sv, x)vxi

+ Lz(Du + sDv, u + sv, x)v
)

ds.

Use Young’s inequality and (4.8), to conclude

|Lτ(x)| ≤ C(|Du|q + |u|q + |Dv|q + |v|q + 1) ∈ L1(Ω)

∀ τ 6= 0. Now using Lebesgue dominated convergence theorem and previous compu-
tation to prove that γ′(0) exists and

γ′(0) =
∫

Ω

n

∑
i=1

(
Lpi(Du, u, x)vxi + Lz(Du, u, x)v

)
dx.

As γ has a minima at τ = 0, we have γ′(0) = 0 and this proves our claim.

4.3 Regularity of solution

Let I has the particular form

I[w] :=
∫

Ω

(
L(Dw)− w f

)
dx (4.12)

where f ∈ L2(Ω). Take q = 2 and

|DpL(p)| ≤ C(|p|+ 1) (p ∈ Rn).

Then as before, any minimizer u ∈ A is a weak solution of

−
n

∑
i=1

(Lpi(Du))xi = f in Ω. (4.13)

We’ll now show that under the assumptions

|D2L(p)| ≤ C where p ∈ Rn (4.14)
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and

n

∑
i,j=1

Lpi pj(p)ξiξ j ≥ θ|ξ|2 ∀ p, ξ ∈ Rn and some constant θ > 0 (4.15)

if u ∈ H1(Ω) is a weak solution of (4.13) then u ∈ H2
loc(Ω).

Theorem 4.3.1. (Second derivative for minimizers) (i) If u ∈ H1(Ω) be a weak solu-
tion of (4.13) where L satisfies (4.14) and (4.15), then u ∈ H2

loc(Ω).
(ii) Moreover if u ∈ H1

0(Ω) and ∂Ω is C2, then u ∈ H2(Ω) with

‖u‖H2(Ω) ≤ C‖ f ‖L2(Ω)

for some C.

Proof. Proof is very similar to the proof of regularity of weak solutions of second order
elliptic PDEs. For detailed proof we refer [L.C86, Theorem 1, Section 8.3].

4.4 Constraints

In this section we use Lagrange multiplier method to solve Eular-Lagrange equation.
Let’s say we want to minimize

I[w] :=
1
2

∫
Ω
|Dw|2dx

such that w = 0 on ∂Ω and also w satisfies

J[w] :=
∫

Ω
G(w)dx = 0

where G : R→ R be a given smooth function. Denote by g, the derivative of G. We’ll
also assume some growth conditions on g and G:

|g(z)| ≤ C(|z|+ 1)

and
|G(z)| ≤ C(|z|2 + 1)

for some appropriate constant C.
The appropriate admissible class here is

A := {w ∈ H1
0(Ω) | J[w] = 0}.
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We take Ω to be a bounded, open and connected subset of Rn with a smooth boundary.

Theorem 4.4.1. (Existence of minimizer in the constrained case) IfA 6= φ, then ∃ u ∈
A for which

I[u] = min
w∈A

I[w].

Proof. Refer [L.C86, Theorem 1, Section 8.4]. .

Theorem 4.4.2. If u ∈ A be such that

I[u] = minw∈A I[w],

then ∃ λ ∈ R satisfying∫
Ω

Du · Dv = λ
∫

Ω
g(u)v dx ∀ v ∈ H1

0(Ω).

Proof. See [L.C86, Theorem 2, Section 8.4].

Now let’s try to minimize the energy functional

I[w] :=
∫

Ω

(1
2
|dw|2 − f w

)
dw

over all w in the admissible set

A := {w ∈ H1
0(Ω)|w ≥ h almost everywhere in Ω}.

Here h : Ω→ R be a given smooth function, known as the obstacle. Moreover assume
f to be smooth.

Theorem 4.4.3. (Existane of minimizer) If A 6= φ, then ∃ u ∈ A for which

I[u] = minw∈A I[w].

Proof. See [L.C86, Theorem 3, Section 8.4].

Theorem 4.4.4. (Variational characterization of minimizer) If u ∈ A be the unique
solution of

I[u] = minw∈A I[w],

then ∫
Ω

Du · D(w− u)dx ≥
∫

Ω
f (w− u)dx

for all w ∈ A.

Proof. See [L.C86, Theorem 4, Section 8.4]. .
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4.5 Critical Points

Till now we were looking for minimizers of functional associated to the given non-
linear PDE. Now we see some additional method to find other critical points. These
critical points need not in general be minimizers, rather mostly they will be saddle
points.

Definition 4.5.1. Let X and Y be two sets and f : X×Y → R. A point (x0, y0) ∈ X×Y
is called a saddle point of f over X×Y if

f (x0, y) ≤ f (x0, y0) ≤ f (x, y0) ∀ (x, y) ∈ X×Y.

Example: Let X = Y = R and f (x, y) = x2 − y2. Then (0, 0) is a saddle point of f .

Lemma 4.5.1. Let X and Y be two sets and f : X×Y → R. Then f attains saddle point
on X×Y if and only if

max
y∈Y

inf
x∈X

f (x, y) = min
x∈X

sup
y∈Y

f (x, y).

Proof. See [H.79, Lemma 2.2] (also see [S.11, Proposition 5.2.1]).

Theorem 4.5.1. (Ky Fan – von Neumann) Let H1 and H2 be two Hilbert spaces and
Ki ⊂ Hi (i = 1, 2) be bounded and closed convex subsets. Let f : K1 × K2 → R satisfy
the following:
(i) For every x ∈ K1, the map y 7→ f (x, y) is convex and upper semi continuous on K2.
(ii) For every y ∈ K2, the map x 7→ f (x, y) is convex and lower semi continuous on K1.
Then f admits at least one saddle point over K1 × K2.

Proof. See [S.11, Theorem 5.2.1].

Let H be any real Hilbert space and with ‖·‖ be the norm and (·, ·) be the inner product.
Let I : H → R be a nonlinear functional.
Notations: (i) Let

C := {I ∈ C1(H, R)
∣∣ I′ : H → H be Lipschitz continuous on bounded subset of H}.

(ii) For c ∈ R,
Ac := {u ∈ H

∣∣ I[u] ≤ c}

and
Kc = {u ∈ H

∣∣ I[u] = c, I′[u] = 0}.
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Definition 4.5.2. (i) An element u ∈ H is said to be a critical point of I if I′[u] = 0.
(ii) If Kc 6= ∅, we call c a critical value of the functional I.

Our aim now is to prove if c is not a critical value, then we can deform Ac+ε to Ac−ε in
a nice way for some ε > 0. To prove this we’ll need some kind of compactness.

Definition 4.5.3. Let X be a Banach space and I : X → R be a C1 functional. {un} ⊂ X
is called a Palais-Smale sequence (PS sequence, in short) of I on X at level c if I(un)→ c
and I′(un)→ 0 in the dual space of X.
We say I satisfies (PS) condition, respectively (PS)c condition on X if every PS se-
quence, respectively (PS)c sequence has a converging subsequence in X.

Lemma 4.5.2. (Deformation Lemma) Let I ∈ C satisfies (PS) condition and Kc 6= φ.
Then ∀ ε > 0, sufficiently small, ∃ δ ∈ (0, ε) and ∃ η ∈ C([0, 1] × H; H) such that
ηt(u) := η(t, u) (where t ∈ [0, 1] and u ∈ H) satisfies
(i) ηo(u) = u for all u ∈ H,
(ii) η1(u) = u when u /∈ I−1[c− ε, c + ε],
(iii) I[nt(u)] ≤ I[u] for all 0 ≤ t ≤ 1 and u ∈ H
(iv) η1(Ac+δ) ⊂ Ac−δ.

Proof. Claim : ∃ σ, ε ∈ (0, 1) satisfying ‖I′[u]‖ ≥ σ ∀ u ∈ Ac+ε − AC−ε.
We prove the above claim by method of contradiction. That is, if the claim is not true,
we can find sequences σk, εk both converges to 0 and uk ∈ Ac+εk − Ac−εk satisfying
‖I′[uk]‖ ≤ σk.
Palais-Smale condition tells us there exists a subsequence {ukj}

∞
j=1 such that ukj →

u, where u ∈ H. As I ∈ C1(H; R), we conclude I[u] = c with I′[u] = 0. This is a
contradiction to our assumption Kc = φ.
Fix a δ such that 0 < δ < min{ε, σ/2, σ2/2}.
Define

A := {u ∈ H|I[u] /∈ (c− ε, c + ε)}

B := {u ∈ H|I[u] ∈ [c− δ, c + δ]}.

Because I′ is Lipschitz continuous in bounded set, we have that I′ is bounded in
bounded set. This implies u → dist(u, A) + dist(u, B) is bounded by some positive
constant on bounded subset of H. Now define for u ∈ H

g(u) :=
dist(u, A)

dist(u, A) + dist(u, )
.

Note that
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• g is Lipschitz continuous on any bounded set

• 0 ≤ g ≤ 1

• g = 0 on A and g = 1 on B.

Define h : R→ R and V : H → H by

h(t) :=

1, if 0 ≤ t < 1

1/t if t ≥ 1

and
V(u) := −g(u)h(I′[u])I′[u].

Now consider 
dη
dt = V(η(t)) t > 0

η(0) = 0

where u ∈ H. Keeping in mind that V is Lipschitz continuous on bounded set and
bounded, the above ODE has has a unique solution for each u ∈ H(t > 0). Denote
the solution by η = ηt(u) = η(t, u) for all t ≥ 0 and u ∈ H. Restrict the solution for
0 ≤ t ≤ 1. Then η ∈ C([0, 1]× H → H) clearly satisfies (i) and (ii).
A little calculation will show that d

dt I[ηt(u)] ≤ 0 for all u ∈ H and 0 ≤ t ≤ 1. Hence
(iii) is proved.
To prove (iv), fix any u ∈ Ac+δ. To prove, η1(u) ∈ Ac−δ.
If we assume ηt(u) /∈ B for some t, then trivially we are done.
For ηt(u) ∈ B, we have g(ηt(u)) = 1. In this case we can show d

dt I[ηt(u)] ≤ min{−σ,−σ2}.
Using these we can show I[η1(u)] ≤ c− δ, which in turn proves (iv).

Using the deformation lemma we prove mountain pass theorem which is intuitive for
the finite dimensional cases.

Theorem 4.5.2. Mountain Pass Theorem (Ambrosetti-Rabinowitz): Let I ∈ C satis-
fies (PS) condition and
(i) I[0]=0
(ii) ∃ r, a > 0 such that I[u] ≥ a on ‖u‖ = r
(iii) ∃ v ∈ H such that ‖v‖ > r and I[v] ≤ 0.
Define

Γ := {γ ∈ C([0, 1]; H)
∣∣ γ(0) = 0, γ(1) = v}.
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Then
c := infγ∈Γmax0≤t≤1 I[γ(t)]

is a critical point for I.

The above mountain pass theorem is a classical theorem by Ambrosetti and Rabi-
nowitz [H.73].

Proof. First note that c ≥ a. Assume to the contrary that Kc = φ. Choose ε sufficiently
small such that 0 < ε < a/2.
Using deformation lemma we can say that ∃ 0 < δ < ε and a homeomorphism η1 :
H → H satisfying

η1(Ac+δ) ⊂ η1(Ac−δ) (4.16)

and
η1(u) = u if u /∈ I−1[c− ε, c + ε]. (4.17)

From the definition of c and infimum, we select γ ∈ Γ such that

max
0≤t≤1

I[γ(t)] ≤ c + δ. (4.18)

Then γ̂ := η1(γ) ∈ Γ. Also γ̂ is continuous as composition of continuous function is
continuous. But η1(Ac+δ) ⊂ Ac−δ.
Now equation (4.18) says max0≤t≤1 I[γ̂(t)] ≤ c− δ. So,

c = infγ∈Γmax0≤t≤1 I[γ] ≤ max
0≤t≤1

I[γ̂(t)] ≤ c− δ

which gives us the contradiction.

Now we apply this theorem to solve some nonlinear PDE.
Application of Mountain Pass Theorem: Consider−∆u = f (u) in Ω

u = 0 on ∂Ω
(4.19)

where f is smooth and satisfies the following growth conditions:

| f (z)| ≤ C(1 + |z|p)

and
| f ′(z)| ≤ C(1 + |z|p−1)



CHAPTER 4. VARIATIONAL TECHNIQUES 49

where C is some constant. Also. 1 < p < n+2
n−2 .

Define F(z) :=
∫ z

0 f (s)ds and assume 0 ≤ F(z) ≤ γ f (z)z for some γ < 1
2 . We finally

assume that ∃ 0 < a ≤ A such that

a|z|p+1 ≤ |F(z)| ≤ A|z|p+1.

Clearly f (0) = 0 and u ≡ 0 is a solution to the above problem. The next theorem
guarantees existence of a nontrivial solution.

Theorem 4.5.3. Under the assumptions mentioned above (4.19) has at least one weak
solution other than u ≡ 0.

Proof. See [L.C86, Theorem 3, Section 8.5].

4.6 Nonexistence of Solutions

Consider the problem −∆u = |u|p−1u in Ω

u = 0 on ∂Ω
(4.20)

Under certain geometric condition on Ω, we will show that there exists no nontrivial
solution of (4.20) when p > n+2

n−2 .

Definition 4.6.1. Let Ω be an open subset of Rn. We say Ω is star-shaped with respect
to 0 if for all x ∈ Ω, the line segment {λx| 0 ≤ λ ≤ 1} lies within Ω.

Clearly, any convex set containing 0 is star shaped but converse need not be true.

Lemma 4.6.1. (Normals to a star shaped domain) If Ω is star shapped with respect to
0 and ∂Ω is C1, then

x · ν(x) ≥ 0 ∀ x ∈ ∂Ω,

where ν is the unit outward normal.

Proof. See [L.C86, Lemma , Section 9.4].

4.6.1 Bounded domain

First, we consider the more general boundary value problem−∆u = f (u) in Ω

u ∈ H1
0(Ω),

(4.21)
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where f ∈ C1(R, R), f (0) = 0 and Ω is a smooth bounded domain in Rn, n ≥ 3.
Define, F(u) :=

∫ u
0 f (s) ds.

Lemma 4.6.2. ( Pohozaev Identity, 1965) Let u ∈ H2
loc(Ω̄) be a solution of (4.21) such

that F(u) ∈ L1(Ω). Then the following identity holds

n
∫

Ω
F(u)dx− n− 2

2

∫
Ω
|∇u|2dx =

1
2

∫
∂Ω
|∇u|2(x · ν)dS,

where ν is the unit outward normal to ∂Ω and dS is the surface measure on ∂Ω.

The above celebrated identity due to S. Pohozaev [S.65]. We also refer [J.86] for re-
markable extension by Pucci and Serrin.

Proof. Since u ∈ H2
loc(Ω), (4.21) is satisfied pointwise almost everywhere. Therefore,

multiplying the equation by x · ∇u we have

(
− ∆u− f (u)

)
x · ∇u = 0. (4.22)

Note that
f (u)

(
x · ∇u

)
= div(xF(u))− nF(u)

and

∆u
(
x · ∇u) = div

(
∇u(x · ∇u)

)
− |∇u|2 − x ·

(
|∇u|2

2

)

= div
(
∇u(x · ∇u)− x

( |∇u|2
2

))
+

N − 2
2
|∇u|2.

Therefore, integrating (4.22) in Ω and using integration by parts we obtain

−
∫

∂Ω

(
∇u(x · ∇u)− x

( |∇u|2
2

)
+ xF(u)

)
ν dS(x) =

∫
Ω

(
N − 2

2
|∇u|2 − nF(u)

)
dx.

(4.23)
Moreover, as u = 0 on ∂Ω, it is easy to see that F(u) = 0 on ∂Ω and

x · ∇u = x · ν(∇u · ν) on ∂Ω.

Therefore, (x · ∇u)∇u · ν = (x · ν)|∇u|2 on ∂Ω. Hence substituting the above relations
into (4.23) proves the lemma.

Corollary 4.6.0.1. Suppose Ω is a bounded domain which is star-shaped with respect
to 0 and ∂Ω is C1. If u is any smooth nontrivial solution of (4.20), then p ≤ n+2

n−2 .
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Proof. Assume (4.20) admits a nontrivial smooth solution u. Since Ω is star shaped
and bounded, using Lemma 4.3.1 and Lemma 4.6.2, we obtain

n
p + 1

∫
Ω
|u|p+1dx− n− 2

2

∫
Ω
|∇u|2dx ≥ 0.

On the other hand, taking u as the test function for (4.20) yields
∫

Ω |∇u|2dx =
∫

Ω |u|
p+1dx.

Substituting this to the previous expression yields p ≤ n+2
n−2 . Hence the corollary fol-

lows.

The previous corollary highlights that the exponent n+2
n−2 is critical not only from the

point of view of Sobolev embedding, but also from that of the existence of nontrivial
solutions to (4.20).

4.6.2 Unbounded domain

Next, we consider the problem −∆u = f (u) in Ω

u ∈ D1,2(Ω),
(4.24)

where f ∈ C1(R, R), f (0) = 0 and Ω is a smooth unbounded domain in Rn, n ≥ 3.
Here

D1,2(Ω) := {u ∈ L
2n

n−2 (Ω) :
∫

Ω
|∇u|2dx < ∞}.

It’s easy to check that D1,2(Ω) is a Hilbert space with the ‖u‖D1,2(Ω) :=
( ∫

Ω
|∇u|2dx

) 1
2

.

Theorem 4.6.1. Let u ∈ H2
loc(Ω̄) be a solution of (4.24) such that F(u) ∈ L1(Ω). Then

the Pohozaev identity is valid

Proof. In order to prove the Pohozaev identity in unbounded domain, one can use
truncation argument. For that let ψ ∈ C∞

c (R) such that ψ = 0 if |x| ≥ 2, ψ ≡ 1
if |x| ≤ 1, 0 ≤ ψ ≤ 1. We define, ψR : Rn → R as ψR(x) = ψ( |x|R ). Note that,
(x · ∇u)ψR ∈ C2

c (R
n), therefore multiplying (4.24) by (x · ∇u)ψR and integrating by

parts, we have

∫
Ω

∇u · ∇ ((x · ∇u)ψR)dx−
∫

∂Ω

∂u
∂ν

(x · ∇u)ψRdS(x) =
∫
Ω

f (u) (x · ∇u)ψRdx. (4.25)
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Now RHS of (4.25) can be simplified as∫
Ω

f (u) (x · ∇u)ψRdx =
∫

Ω

(
∇F(u) · x

)
ψRdx = −n

∫
Ω

F(u)ψRdx−
∫

Ω
F(u)(x ·∇ψR)dx.

Note that |x · ∇ψR)| ≤ C and hence using the dominated convergence theorem we get

lim
R→∞

RHS = −n
∫

Ω
F(u)dx. (4.26)

By direct calculation and integration by parts, LHS of (4.25) simplifies as

LHS = −n− 2
2

∫
Ω
|∇u|2ψRdx− 1

2

∫
∂Ω

(
∂u
∂ν

)2(x · ν)ψRdS(x)

−1
2

∫
Ω
|∇u|2(x · ∇ψR)dx +

∫
Ω
(x · ∇u)(∇u · ∇ψR)dx.

Here we have used the fact x · ∇u = x · ν ∂u
∂ν on ∂Ω, since u = 0 on ∂Ω. Now

lim
R→∞

|
∫

Ω
(x · ∇u)(∇u · ∇ψR)|dx ≤ C lim

R→∞

∫
R≤|x|≤2R

|∇u|2dx = 0.

Using the above estimate and taking the limit using Lebesgue dominated convergence
theorem and using the fact |x · ∇ψR)| ≤ C , we get

lim
R→∞

LHS = −n− 2
2

∫
Ω
|∇u|2dx− 1

2

∫
∂Ω

(
∂u
∂ν

)2(x · ν)dS(x). (4.27)

Substituting (4.26) and (4.27) in (4.25) yields

n
∫

Ω
F(u)dx− n− 2

2

∫
Ω
|∇u|2dx =

1
2

∫
∂Ω

(
∂u
∂ν

)2(x · ν)dS(x) =
1
2

∫
∂Ω
|∇u|2(x · ν)dS(x).



Chapter 5

Nonvariational Techniques

In this chapter we discuss some non-variational techniques to study the existence/nonexistence
of solutions to various nonlinear PDEs and qualitative properties of the solutions.

5.1 Fixed Point Method

For this section, X denotes a Banach space.

Theorem 5.1.1. (Schauder’s Fixed Point Theorem)
Let K be a compact and convex subset of X and the map A : K → K is continuous.
Then A has a fixed point in K.

Proof. See [L.C86, Theorem 3, Section 9.2].

Schauder’s fixed point theorem is not that easy to use. There is an alternative form
which is useful for our purpose. Before seeing the alternative form, let’s recall the
definition of a compact map.

Definition 5.1.1. A nonlinear map A : X → X is said to be compact if for each bounded
{uk}∞

k=1, {A[uk]} has a convergent subsequence.

Theorem 5.1.2. (Schaefer’s Fixed Point Theorem) Let the map A : X → X be compact
and continuous. Moreover

{u ∈ X|u = λA[u] for some 0 ≤ λ ≤ 1}

is a bounded set. Then A has a fixed point.

Proof. See [L.C86, Theorem 4, Section 9.2].

53
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Application to a quasilinear elliptic PDE: Consider the semilinear problem−∆u + b(Du) + µu = 0 in Ω

u = 0 on ∂Ω
(5.1)

where b : Rn → R be smooth, Lipschitz continuous. The domain Ω is bounded and
∂Ω is smooth.

Theorem 5.1.3. For µ > 0 sufficiently large, ∃ u ∈ H2(Ω) ∩ H1
0(Ω) which solves (5.1).

Proof. See [L.C86, Theorem 5, Section 9.2].

5.2 Method of Subsolution and Supersolution

In this section we show that under suitable assumption the existence of subsolution u
and supersolution u ensure the existance of solution provided u ≤ u. In this case the
solution u satisfies

u ≤ u ≤ u.

Consider the nonlinear Poisson equation−∆u = f (u) in Ω

u = 0 on ∂Ω
(5.2)

where f : R→ R is smooth and | f ′| ≤ C for some constant C.

Definition 5.2.1. (i) The function u ∈ H1(Ω) is said to be a weak supersolution of (5.2)
provided ∫

Ω
Du · Dv dx ≥

∫
Ω

f (u)v dx

for every v ∈ H1
0(Ω) such that v ≥ 0 almost everywhere.

(ii) The function u ∈ H1(Ω) is said to be a weak subsolution of (5.2) provided∫
Ω

Du · Dv dx ≤
∫

Ω
f (u)v dx

for every v ∈ H1
0(Ω) such that v ≥ 0 almost everywhere.

(iii) The function u ∈ H1
0(Ω) is said to be a weak solution of (5.2) provided∫

Ω
Du · Dv dx =

∫
Ω

f (u)v dx ∀ v ∈ H1
0(Ω).
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Theorem 5.2.1. (Existance of solution between subsolution and supersolution) Let u
and u be a weak supersolution and a weak subsolution of (5.2) such that u ≤ u almost
everywhere in Ω and u ≥ 0, u ≤ 0 on ∂Ω in trace sense. Then ∃ u, a weak solution of
(5.2), satisfying u ≤ u ≤ u almost everwhere in Ω.

Proof. See [L.C86, Theorem 1, Section 9.3].

5.3 Radial Symmetry via Moving plane method

Take Ω to be the unit open ball in Rn. Now consider the semilinear Dirichlet problem−∆u = f (u) in Ω

u = 0 on ∂Ω,
(5.3)

where f : R→ R is Lipschitz continuous. Using moving plane method, we aim to show
that if u is any positive solution of (5.3) then u(x) depends only on |x|. This result is
due to Gidas, Ni and Nirenberg [L.79].
For this purpose, we need two lemmas.

Lemma 5.3.1. (Refinement of Hopf’s Lemma) Let V be an open subset of Rn, v ∈
C2(V) and c ∈ L∞(V). Moreover take−∆v + cv ≥ 0 in V

v ≥ 0 in V
(5.4)

where v 6≡ 0.
(i) Now let x0 ∈ V be such that v(x0) = 0 and also V satisfies interior ball condition at
x0. Then

∂v
∂ν

(x0) < 0.

(ii) Moreover v > 0 in V.

Proof. See [L.C86, Lemma 1, Section 9.5].

Lemma 5.3.2. (Boundary estimates) If u ∈ C2(Ω), u > 0 in Ω satisfies (5.3), then for
each x0 ∈ ∂Ω ∩ {xn > 0} either

uxn(x0) < 0

or
uxn(x0) = 0, uxnxn(x0) > 0.

For both cases, near x0, u is strictly decreasing as a function of xn.
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Proof. See [L.C86, Lemma 2, Section 9.5].

Notation: (i) For λ ∈ [0, 1], define the plane

Pλ := {x ∈ Rn|xn = λ}.

(ii) The reflextion of x in the plane Pλ = xλ := (x1, ..., xn−1, 2λ− xn).
(iii) Eλ := {x ∈ Ω|λ < xn < 1}.

Theorem 5.3.1. If u ∈ C2(Ω), u > 0 solves (5.3), then u(x) = v(|x|) where v : [0, 1] →
[0, ∞) be a strictly decreasing function.

Proof. First consider the statement Sλ

u(x) < u(xλ) ∀ x ∈ Eλ.

By the last lemma we can say that the statement is valid for all λ < 1 and λ is close
enough to 1. Define

λ0 := inf{0 ≤ λ < 1|Sµ holds for all λ ≤ µ < 1}.

We claim that λ0 = 0.
If not, then λ > 0. Define for x ∈ Eλ0 ,

w(x) := u(xλ0)− u(x)

Then we have
−∆w = f (u(xλ0))− f (u(x)) = −cw in Eλ0

where c(x) := −
∫ 1

0 ( f ′(u(xλ0)) + (1− s)u(x))ds.
As w ≥ 0 in Eλ0 , from refined Hopf’s lemma we have w > 0 in Eλ0 and wxn > 0 on
Pλ0 ∩Ω. Hence

u(x) < u(xλ0) in Eλ0 and uxn < 0 on Pλ0 ∩Ω.

Now from the previous lemma we have

u(x) < u(xλ0−ε) in Eλ0−ε ∀ 0 ≤ ε ≤ ε0

where εo is chosen to be small enough. This contradicts the definition of λ0. Hence,
λ0 = 0.
λ0 = 0 implies u(x1, . . . , xn−1,−xn) ≥ u(x1, . . . , xn).
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Similarly in Ω ∩ {xn > 0}, we have u(x1, . . . , xn−1,−xn) ≤ u(x1, . . . , xn). So, u has
symmetry around P0 and uxn = 0 on P0.
The above logic is valid even after rotation of axes. So, the solution is symmetric about
any plane through origin and the proof is done.



Chapter 6

Regularity Theory for Nonlinear
Equations

In this chapter we discuss various regularity properties of weak solutions to elliptic
equations of divergence form and with zeroth order term. More, precisely we consider
the equation of the form

−Dj(aij(x)Diu) + c(x)u = f (x) in Ω

where Ω ⊂ Rn is a domain. We recall that u ∈ H1(Ω) is said a weak solution of the
above equation provided∫

Ω
(aijDiuDjφ + cuφ) dx =

∫
Ω

f φ dx ∀ φ ∈ H1
0(Ω).

6.1 Growth of Local Integrals

Let Ω be a bounded, open and connected subset of Rn and u ∈ L1(Ω). Define

ux0,r :=
1

|Br(x0)|

∫
Br(x0)

u dx.

Theorem 6.1.1. Suppose u ∈ L2(Ω) be such that∫
Br(x)
|u(y)− ux,r(y)|2dy ≤ M2rn+2α

for all Br(x0) ⊂ Ω, where 0 < α < 1. Then u ∈ Cα(Ω). Moreover for any Ω
′ ⊂⊂ Ω,

58



CHAPTER 6. REGULARITY THEORY FOR NONLINEAR EQUATIONS 59

we have

sup
Ω′
|u|+ sup

x, y∈Ω′ , x 6=y

|u(x)− u(y)|
|x− y|α ≤ c(M + ‖u‖L2(Ω))

where c depends on n, α, Ω and Ω
′
.

Proof. See [Q.00, Theorem 3.1].

Before stating next theorem, we introduce an important decomposition technique called
Calderon-Zygmand decomposition. To describe that we need some terminology.
By Q0, we denote the unit cube in Rn. Cut Q0 into 2n equal pieces and call each of the
cubes as first generation. Repeat the same process to the new cubes to get the second
generation of cubes. Continue this process. We call these cubes from all generation
dyadic cubes. So, any (k + 1)th generation cube Q comes from some kth generation
cube. In this case, we call the kth generation cube the predecessor of Q.

Lemma 6.1.1. (Calderon-Zygmand decomposition) Let f ∈ L1(Q0) be such that f ≥
0. α > 1

|Q0|
∫
|Q0| f dx is fixed. Then there exists sequence of dyadic cubes {Qj} in Q0

which are non overlapping and

f (x) ≤ α almost everywhere in Q0 \ ∪jQj,

α ≤ 1
Qj

∫
Qj

f dx < 2nα.

Proof. See [Q.00, Lemma 3.7].

Theorem 6.1.2. (John-Nirenberg Lemma) If u ∈ L1(Ω) satisfies∫
Br(x0)

|u(y)− ux,r(y)|2dy ≤ M2rn

for all Br(x0) ⊂ Ω, then for any Br(x0) ⊂ Ω, we have∫
Br(x0)

exp
p0
M |u−ux,r| dy ≤ Crn,

where p0, C are positive constants depend only on n.

Proof. See [Q.00, Theorem 3.5].

Remark: The functions which satisfy the hypothesis of the previous theorem are known
as functions with bounded mean oscilation(BMO). The following relation hold:

L∞(Ω) ⊂ BMO.



CHAPTER 6. REGULARITY THEORY FOR NONLINEAR EQUATIONS 60

But the converse need not be true, for example: u(x) = log x, x ∈ (0, 1).

6.2 Hölder Continuity of Solutions and gradient of solu-

tions

Let aij ∈ L∞(B1) be uniformly elliptic in B1 := B1(0), i.e.,

λ|ξ|2 ≤ aijξiξ j ≤ Λ|ξ|2 ∀ x ∈ B1, ξ ∈ Rn. (6.1)

Throughout this section we assume aij is at least continuous and u ∈ H1(B1) satisfies
the equation ∫

B1

(aijDiuDjφ + cuφ) dx =
∫

B1

f φ dx ∀ φ ∈ H1
0(B1). (6.2)

First we state two lemma which are very important in proving the main theorem of
this section.

Lemma 6.2.1. Let {aij} is constant positive definite matrix such that

λ|ξ|2 ≤ aijξiξ j ≤ Λ|ξ|2 ∀ ξ ∈ Rn

where 0 < λ ≤ Λ. Assume also w ∈ H1(Br(x0)) satisfies

aijDijw = 0 in Br(x0)

in weak sense. Then ∀ ρ ∈ (0, r]∫
Bρ(x0)

|Dw|2 dx ≤ c
(ρ

r

)n ∫
Br(x0)

|Dw|2 dx

and ∫
Bρ(x0)

|Dw− (Dw)x0,r|2 dx ≤ c
(ρ

r

)n+2 ∫
Br(x0)

|Dw− (Dw)x0,r|2 dx,

where c depends only upon λ and Λ.

Proof. See [Q.00, Lemma 3.10].

From the above lemma we can get the following corollary
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Corollary 6.2.0.1. Suppose w be as in the previous lemma. Then ∀ u ∈ H1(Br(x0)) and
∀ ρ ∈ (0, r], we have∫

Bρ(x0)
|Du|2 dx ≤ c

[(ρ

r

)n ∫
Br(x0)

|Du|2 dx +
∫

Br(x0)
|D(u− w)|2 dx

]
where c depends on λ and Λ.

Proof. See [Q.00, Corollary 3.11].

Now we state the main theorem of this section.

Theorem 6.2.1. Let u ∈ H1(B1) satisfies (6.2), where aij ∈ C0(B1), c ∈ Ln(B1) and
f ∈ Lq(B1) for some q ∈ (n

2 , n). Then u ∈ Cα(B1) with α = 2− n
q . Also, ∃ R0 depending

on λ, Λ, τ, ‖c‖Ln such that for x ∈ B 1
2

and r ≤ R0, we have

∫
Ω
|Du|2 dx ≤ Crn−2+2α(‖ f ‖2

Lq(B1)
+ ‖u‖2

H1(B1)
),

where C depending on λ, Λ, τ, ‖c‖Ln with |aij(x)− aij(y)| ≤ τ(|x− y|) ∀ x, y ∈ B1.

Remark: If we take C ≡ 0 in the elliptic PDE, we can replace ‖u‖H1(B1)
by ‖Du‖L2(B1)

.

Proof. Using Corollary 6.2.0.1, one can prove the theorem as in [Q.00, Theorem 3.8].

Theorem 6.2.2. Assume u ∈ H1 (B1) satisfies (6.2), where aij ∈ Cα (B̄1) and (6.1) holds.
Also assume, c ∈ Lq (B1) and f ∈ Lq (B1) for some q > n and α = 1− n/q ∈ (0, 1).
Then Du ∈ Cα(B1). Moreover, there exists an R0 depending upon λ, |aij|Cα and |c|Lq so
that ∀ x ∈ B1

2
and r ≤ R0 the following holds

∫
Br(x)
|Du(y)− (Du)x,r(y)|2 dy ≤ Crn+2α

{
‖ f ‖2

Lq(B1)
+ ‖u‖2

H1(B1)

}
where C > 0 is a constant depending upon λ, |aij|Cα and |c|Lq .

Proof. We refer [Q.00, Theorem 3.13].

6.3 Local Boundedness

In this section we discuss celebrated De Giorgi-Nash-Moser regularity theory for el-
liptic equations.
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Theorem 6.3.1. Assume aij ∈ L∞ (B1) and c ∈ Lq (B1) for some q > n/2 satisfy the
following assumptions

aij(x)ξiξ j ≥ λ|ξ|2 ∀ x ∈ B1, ξ ∈ Rn and
∣∣aij
∣∣

L∞ + ‖c‖Lq ≤ Λ

where λ, Λ > 0. Let u ∈ H1 (B1) is a subsolution, that is,

∫
B1

(aijDiuDj ϕ + cuϕ) dx ≤
∫

B1

f ϕ dx ∀ ϕ ∈ H1
0 (B1) , ϕ ≥ 0 in B1. (6.3)

If f ∈ Lq (B1) , then u+ ∈ L∞
loc (B1) . Moreover, for any 0 < θ < 1 and any p > 0 the

following holds:

sup
Bθ

u+ ≤ C
{

1
(1− θ)n/p

∥∥u+
∥∥

Lp(B1)
+ ‖ f ‖Lq(B1)

}

where C is a positive constant depends upon n, p, q, λ and Λ.

Proof. There are two famous approaches for the proof. One of them is by De Giorgi
and the other by Moser. We’ll discuss the one by De Giorgi.
We’ll assume θ = 1

2 and p = 2.
Define v := (u− k)+ where k ≥ 0 and assume ζ ∈ C1

0(B1). Take ϕ = vζ2 to be the test
function. When {u > k}, we have v = u− k and Du = Dv almost everywhere. When
{u ≤ k}, we have v = 0 and Dv = 0 almost everywhere. Therefore, if we substitute ϕ

in (6.3), all terms will have v or Dv and the integration will be 0 in {u ≤ k}. So, It is
enough to carry out the integration in {u > k}.
Hence, using Hölder inequality we have∫

aijDiuDj ϕ dx =
∫ (

aijDiuDjvζ2 + 2aijDiuDjζvζ
)

dx

≥ λ
∫
|Dv|2ζ2 dx− 2Λ

∫
|Dv‖Dζ|vζ dx

≥ λ

2

∫
|Dv|2ζ2 dx− 2Λ2

λ

∫
|Dζ|2v2 dx.

So, one gets

∫
|Dv|2ζ2 dx ≤ C

{∫
v2|Dζ|2 dx +

∫
|c|v2ζ2 dx + k2

∫
|c|ζ2 dx +

∫
| f |vζ2 dx

}
,

from which we have∫
|D(vζ)|2 dx ≤ C

{∫
v2|Dζ|2 dx +

∫
|c|v2ζ2 dx + k2

∫
|c|ζ2 dx +

∫
| f |vζ2 dx

}
.
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Now using Sobolev inequality and Hölder inequality, for small δ > 0 and ζ ≤ 1, we
have ∫

| f |vζ2 dx ≤
(∫
| f |q dx

) 1
q
(∫
|vζ|2∗ dx

) 1
2∗
|{vζ 6= 0}|1−

1
2∗−

1
q

≤ c(n)‖ f ‖Lq

(∫
|D(vζ)|2 dx

) 1
2

|{vζ 6= 0}|
1
2+

1
n−

1
q

≤ δ
∫
|D(vζ)|2 dx + c(n, δ)‖ f ‖2

Lq |{vζ 6= 0}|1+
2
n−

2
q .

As 1 + 2
n −

2
q > 1− 1

q for q > n/2, we get

∫
|D(vζ)|2 dx ≤ C

{∫
v2|Dζ|2 dx +

∫
|c|v2ζ2 dx + k2

∫
|c|ζ2 dx + F2|{vζ 6= 0}|1−

1
q

}
,

where F := ‖ f ‖Lq(B1).
Our claim now is∫

|D(vζ)|2 dx ≤ C
{∫

v2|Dζ|2 dx +
(

k2 + F2
)
|{vζ 6= 0}|1−

1
q

}
(6.4)

for |{vζ 6= 0}| small enough.
There is not much to prove if c ≡ 0. For the general situation, using Hölder inequality
we have

∫
|c|v2ζ2 dx ≤

(∫
|c|q dx

) 1
q
(∫

(vζ)2∗ dx
) 2

2∗
|{vζ 6= 0}|1−

2
2∗−

1
q

≤ c(n)
∫
|D(vζ)|2 dx

(∫
|c|q dx

) 1
q
|{vζ 6= 0}|

2
n−

1
q

and ∫
|c|ζ2 dx ≤

(∫
|c|q dx

) 1
q
|{vζ 6= 0}|1−

1
q .

Hence we get

∫
|D(vζ)|2 dx ≤ C

{∫
v2|Dζ|2 dx +

∫
|D(vζ)|2|{vζ 6= 0}|

2
n−

1
q +

(
k2 + F2

)
|{vζ 6= 0}|1−

1
q

}
(6.5)

Thus, we have proved our claim. Now, using Sobolev inequality,

∫
(vζ)2 dx ≤

(∫
(vζ)2∗ dx

) 2
2∗
|{vζ 6= 0}|1−

2
2∗ ≤ c(n)

∫
|D(vζ)|2|{vζ 6= 0}| 2n .



CHAPTER 6. REGULARITY THEORY FOR NONLINEAR EQUATIONS 64

Hence ∫
(vζ)2 dx ≤ C

{∫
v2|Dζ|2|{vζ 6= 0}| 2n + (k + F)2|{vζ 6= 0}|1+

2
n−

1
q

}
.

if |{vζ 6= 0}| is taken to be small. So, ∃ ε > 0 such that

∫
(vζ)2 dx ≤ C

{∫
v2|Dζ|2|{vζ 6= 0}|ε + (k + F)2|{vζ 6= 0}|1+ε

}
for {vζ 6= 0} small enough.
To choose the cutoff function ζ, fix 0 < r < R ≤ 1. Select ζ ∈ C∞

0 (BR) so that ζ = 1 in
Br, 0 ≤ ζ ≤ 1 and |Dζ| ≤ 2

R−r in B1.
Define A(k, r) := {x ∈ Br|u ≥ k}. Note for 0 < r < R ≤ 1 and k > 0, we have

∫
A(k,r)

(u− k)2 dx ≤ C
{

1
(R− r)2 |A(k, R)|ε

∫
A(k,R)

(u− k)2 dx + (k + F)2|A(k, R)|1+ε

}
(6.6)

for |A(k, R)| sufficiently small. We also have

|A(k, R)| ≤ 1
k

∫
A(k,R)

u+ dx ≤ 1
k
∥∥u+

∥∥
L2 .

Thus (6.6) holds true if we have k ≥ k0 = c‖u+‖L2 for some large C = C(λ, Λ).
Now we prove that ∃ k = C(k0 + F) satisfying

∫
A(k,1/2)(u− k)2 dx = 0.

Take h > k ≥ k0 and 0 < r < 1. Trivially, A(h, r) ⊂ A(k, r). This implies,∫
A(h,r)(u− h)2 dx ≤

∫
A(k,r)(u− k)2 dx.

and
|A(h, r)| = |Br ∩ {u− k > h− k}| ≤ 1

(h− k)2

∫
A(k,r)

(u− k)2.

Hence using (6.6), for any h > k ≥ k0 and 1/2 ≤ r < R ≤ 1,

∫
A(h,r)

(u− h)2 dx ≤ C
{

1
(R− r)2

∫
A(h,R)

(u− h)2 dx + (h + F)2|A(h, R)|
}
|A(h, R)|ε

≤ C
{

1
(R− r)2 +

(h + F)2

(h− k)2

}
1

(h− k)2ε

(∫
A(k,R)

(u− k)2 dx
)1+ε

or

∥∥(u− h)+
∥∥

L2(Br)
≤ C

{
1

R− r
+

h + F
h− k

}
1

(h− k)ε

∥∥(u− k)+
∥∥1+ε

L2(BR)
. (6.7)

Now just iterate. Define ϕ(k, r) := ‖(u− k)+‖L2(Br)
and set τ = 1/2. k > 0 will be
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determined later. For ` = 0, 1, . . . , define

k` = k0 + k
(

1− 1
2`

)
(≤ k0 + k)

r` = τ + 1
2` (1− τ).

A straight forward computation yields

k` − k`−1 =
k
2`

, r`−1 − r` =
1
2`
(1− τ).

Hence,

ϕ (k`, r`) ≤ C

{
2`

1− τ
+

2` (k0 + F + k)
k

}
2ε`

kε
[ϕ (k`−1, r`−1)]

1+ε

≤ C
1− τ

k0 + F + k
k1+ε

2(1+ε)` [ϕ (k`−1, r`−1)]
1+ε .

Using mathematical induction, it is not difficult to prove for any ` = 0, 1, . . .

ϕ (k`, r`) ≤
ϕ (k0, r0)

γ`
for some γ > 1,

provided we choose k large enough. Choosing k = C∗(k0 + F + ϕ(k0, r0)) will do the
job provided C∗ is sufficiently large.
Take `→ ∞ in the above equation to get ϕ(k0 + k, τ) = 0. So, we get

sup
B1/2

u+ ≤ (C∗ + 1) {k0 + F + ϕ (k0, r0)} .

As k0 = C ‖u+‖L2(B1)
and ϕ (k0, r0) ≤ ‖u+‖L2(B1)

, we are done.

Theorem 6.3.2. Assume aij ∈ L∞ (B1) and c ∈ Ln/2 (B1) satisfy

λ|ξ|2 ≤ aij(x)ξiξ j ≤ Λ|ξ|2 ∀ x ∈ B1, ξ ∈ Rn

for λ, Λ > 0. Suppose that u ∈ H1 (B1) is a subsolution, that is,∫
B1

(aijDiuDj ϕ + cuϕ) dx ≤
∫

B1

f ϕ dx ∀ ϕ ∈ H1
0 (B1) and ϕ ≥ 0 in B1

If f ∈ Lq (B1) for some 2n
n+2 ≤ q < n

2 , then u+ ∈ Lq∗

loc (B1) where 1
q∗ =

1
q −

2
n . Moreover,

∥∥u+
∥∥

Lq∗ (B1/2)
≤ C

{∥∥u+
∥∥

L2(B1)
+ ‖ f ‖Lq(B1)

}
,
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where C is a positive constant depends upon n, λ, Λ, q and ε(K) where

ε(K) =
(∫
|c|>K}

|c| n2 dx
) 2

n
.

Proof. See [Q.00, Theorem 4.4].

6.4 Hölder Continuity

First let’s discuss homogeneous equations without lower-order terms. Take

Lu ≡ −Di
(
aij(x)Dju

)
in B1(0) ⊂ Rn,

where we presume aij ∈ L∞ (B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξ j ≤ Λ|ξ|2 ∀ x ∈ B1(0), ξ ∈ Rn

for some λ, Λ > 0.

Definition 6.4.1. The function u ∈ H1
loc (B1) is said to be a subsolution (or supersolu-

tion) of Lu = 0 if u sattisfies∫
B1

aijDiuDj ϕ dx ≤ 0(≥ 0) ∀ ϕ ∈ H1
0 (B1) , ϕ ≥ 0.

Lemma 6.4.1. Assume Φ ∈ C0.1
loc (R) is convex. Then

(i) if u is a subsolution and Φ′ ≥ 0, then v = Φ(u) is also a subsolution presuming
v ∈ H1

loc (B1)

(ii) if u is a supersolution and Φ′ ≤ 0, then v = Φ(u) is a subsolution presuming
v ∈ H1

loc (B1).

Proof. See [Q.00, Lemma 4.6].

Lemma 6.4.2. For any given ε > 0 ∃ C depending upon ε and n such that ∀ u ∈ H1 (B1)

with
|{x ∈ B1|u = 0}| ≥ ε |B1| ,

there holds ∫
B1

u2 dx ≤ C
∫

B1

|Du|2 dx.

Proof. See [Q.00, Lemma 4.8].
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Theorem 6.4.1. (Density Theorem) Let u > 0 be a supersolution in B2 with

|{x ∈ B1|u ≥ 1}| ≥ ε |B1| .

Then there ∃ C depending upon ε, n, and Λ/λ such that

inf
B1/2

u ≥ C.

Proof. See [Q.00, Theorem 4.9].

Theorem 6.4.2. Let u be a bounded solution of of Lu = 0 in B2. Then ∃ γ ∈ (0, 1)
depending on n and Λ

λ so that

oscB 1
2
u ≤ γ oscB1u.

Proof. See [Q.00, Theorem 4.10].

Combining the above four results, it is easy to see that the following De Giorgi’s theo-
rem follows.

Theorem 6.4.3. (De Giorgi ) Assume Lu = 0 weakly in B1. Then

sup
B1/2

|u(x)|+ sup
x.y∈B1/2

|u(x)− u(y)|
|x− y|α ≤ c

(
n,

Λ
λ

)
‖u‖L2(B1)

,

where α ∈ (0, 1) depending on n, and Λ/λ.

Lemma 6.4.3. Assume aij ∈ L∞ (Br) satisfies

λ|ξ|2 ≤ aij(x)ξiξ j ≤ Λ|ξ|2 ∀ x ∈ Br, ξ ∈ Rn

for some 0 < λ ≤ Λ < +∞. Let u ∈ H1 (Br) satisfies∫
Br

aijDiuDj ϕ dx = 0 ∀ ϕ ∈ H1
0 (Br) .

Then there exists 0 < α < 1 such that ∀ ρ < r there holds

∫
Bρ

|Du|2 dx ≤ C
(ρ

r

)n−2+2α
∫

Br
|Du|2 dx,

where C and α are constants depending on n and Λ/λ

Proof. See [Q.00, Lemma 4.12].
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Theorem 6.4.4. Suppose aij ∈ L∞ (B1) and c ∈ Ln (B1) satisfies

λ|ξ|2 ≤ aij(x)ξiξ j ≤ Λ|ξ|2 ∀ x ∈ B1, ξ ∈ Rn

for some 0 < λ ≤ Λ < +∞. Assume u ∈ H1 (B1)∫
B1

(aijDjuDi ϕ + cuϕ) dx =
∫

B1

f ϕ dx ∀ ϕ ∈ H1
0 (B1) .

If f ∈ Lq (B1) for some q > n/2, then u ∈ Cα (B1) for some 0 < α < 1 depending upon
n, q, λ, Λ ‖c‖Ln . Moreover, ∃ R0 = R0 (q, λ, Λ, ‖c‖Ln) such that ∀ x ∈ B 1

2
and r ≤ R0

the following holds∫
Br(x)
|Du|2 dx ≤ Crn−2+2α

{
‖ f ‖2

Lq(B1)
+ ‖u‖2

H1(B1)

}
,

where C = C (n, q, λ, Λ, ‖c‖Ln) is a positive constant.

Proof. See [Q.00, Theorem 4.13].

6.5 Moser Harnack Inequality

Let’s assume there is no lower-order terms. Suppose Ω is a domain in Rn. Also take
aij ∈ L∞(Ω) satisfies

λ|ξ|2 ≤ aij(x)ξiξ j ≤ Λ|ξ|2 ∀ x ∈ Ω, ξ ∈ Rn

for some λ, Λ > 0.

Theorem 6.5.1. (Local Boundedness) Assume u ∈ H1(Ω) is a nonnegative subsolu-
tion in Ω : ∫

Ω
aijDiuDj ϕ dx ≤

∫
Ω

f ϕ dx ∀ ϕ ∈ H1
0(Ω), φ ≥ 0 in Ω.

Let f ∈ Lq(Ω) for some q > n/2. Then for any BR ⊂ Ω, any 0 < r < R and any p > 0

sup
Br

u ≤ C
{

1
(R− r)n/p

∥∥u+
∥∥

Lp(BR)
+ R2− n

q ‖ f ‖Lq(BR)

}
,

where C > 0 is a constant depending on n, λ, Λ, p, q.

Proof. See [Q.00, Theorem 4.14].
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Theorem 6.5.2. (Weak Harnack Inequality ) Assume u ∈ H1(Ω) is a nonnegative
supersolution in Ω, that is,∫

Ω
aijDiuDj ϕ dx ≥

∫
Ω

f ϕ dx ∀ ϕ ∈ H1
0(Ω), ϕ ≥ 0 in Ω.

Let f ∈ Lq(Ω) for some q > n/2. Then for any BR ⊂ Ω for any 0 < p < n/(n− 2) and
any 0 < θ < τ < 1 the following holds

inf
BθR

u + R2− n
q ‖ f ‖Lq(BR) ≥ C

(
1

Rn

∫
BτR

up dx
) 1

p
.

Proof. See [Q.00, Theorem 4.15].

Theorem 6.5.3. (Moser’s Harnack Inequality) Assume u ∈ H1(Ω) is a nonnegative
solution in Ω, that is,∫

Ω
aijDiuDj ϕ dx =

∫
Ω

f ϕ dx ∀ ϕ ∈ H1
0(Ω).

Assume also f ∈ Lq(Ω) for some q > n/2. Then for any BR ⊂ Ω the following holds

max
BR

u ≤ C
{

min
BR/2

u + R2− n
q ‖ f ‖Lq(BR)

}
,

where C > 0 is a constant depends on n, λ, Λ and q.

Proof. See [Q.00, Theorem 4.17].

Corollary 6.5.3.1. (Hölder Continuity) Assume u ∈ H1(Ω) is a solution in Ω, that is,∫
Ω

aijDiuDj ϕ dx =
∫

Ω
f ϕ dx ∀ ϕ ∈ H1

0(Ω).

Assume also f ∈ Lq(Ω) for some q > n/2. Then u ∈ Cα(Ω) for some α ∈ (0, 1) which
depends on n, q, λ and Λ. Moreover, for any BR ⊂ Ω the following holds

|u(x)− u(y)| ≤ C
(
|x−y|

R

)α
{(

1
Rn

∫
BR

u2 dx
) 1

2
+ R2− n

q ‖ f ‖Lq(BR)

}
∀ x, y ∈ B R

2
,

where C > 0 is a constant which depends on n, λ, Λ and q.

Proof. See [Q.00, Corollary 4.18].
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