GRAVITATIONAL WAVES FROM INSPIRALLING COMPACT BINARIES:

PARTIAL 3.5 PN MODES, HIGHER ORDER STATIONARY PHASE APPROXIMATION

IISER PUNE

A thesis submitted towards partial fulfilment of
BS-MS Dual Degree Programme

by

ANILKUMAR TOLAMATTI

under the guidance of

PROF. BALA IYER

RAMAN RESEARCH INSTITUTE, BENGALURU & INTERNATIONAL CENTER FOR
THEORETICAL SCIENCES (ICTS) BENGALURU.

INDIAN INSTITUTE OF SCIENCE EDUCATION AND RESEARCH PUNE



\ Certificate

This is to certify that this thesis entitled Gravitational waves from inspiralling compact
binaries: Partial 3.5 PN modes, Higher order stationary phase approrimation submitted
towards the partial fulfillment of the BS-MS dual degree programme at the Indian Insti-
tute of Science Education and Research Pune represents original research carried out by
Anilkumar Tolamatti at Raman Research Institute, Bengaluru and International Center
for Theoretical Sciences (ICTS), Bengaluru, under the supervision of Prof. Bala Iyer
during the academic year 2014-2015.

A @;\159{/\/

Student

Supervisor
ANILKUMAR

Pror. BALA IYER
TOLAMATTI



\ Declaration

I hereby declare that the matter embodied in the report entitled Gravitational Waves
from Inspiralling compact binaries: Partial 3.5 PN modes, Higher order stationary phase
approzimation are the results of the investigations carried out by me at Raman Re-
search Institute, Bengaluru and International Center for Theoretical Sciences (ICTS),
Bengaluru, under the supervision of Prof. Bala Iyer and the same has not been submit-

ted elsewhere for any other degree.

Student

Supervisor
ANILKUMAR

Pror.BALA IYER
TOLAMATTI



Acknowledgements

I would like to express my deepest gratitude to my advisor, Prof. Bala Iyer, for his
excellent guidance, caring nature, patience and providing me an excellent opportunity to
pursue my interest. I am thankful to him for always being available for discussions. I am
forever indebted to him.

Secondly, I wish to thank Prof.P.Ajith and Dr.Chandra Kant Mishra for their valuable
inputs during programming and suggestions in general. I would like to thank Dr. Suneeta
Vardarajan for being my TAC member and also for introducing me to this field.

I would also like to specially thank the Astrorel Group at ICTS. The environment in
the group has been most friendly and supportive and the suggestions I got from the group
have always been helpful. I am also thankful for the weekly seminars, paper discussions
and journal clubs that take place. They have really fueled my interest in this field and
increased the breadth of my knowledge greatly.

I am grateful to RRI and ICTS for the hospitality provided during my stay here in
Bengaluru. Finally, I would like to thank my family and friends especially Abhijith,Ashok,
Bhavesh, Nagesh, Sainath, Siddharth, Viraj and Utkarsh for their constant support and

care.



Abstract

For both data analysis and validation of numerical waveforms we need to know the
Post-Newtonian (PN) waveforms as accurately as possible. Comparison between PN
waveforms and numerical waveforms is implemented by projecting the waveforms onto
spin weighted spherical harmonics and comparing the individual components. I am fo-
cusing on the inspiral part of non-spinning coalescing compact binary (CCB) system,
as they are the most promising sources for laser interferometric detectors. To compute
the spherical harmonic modes (h'™s) for inspiralling compact binaries (ICBs) we need to
know the source multipole moments of the system. Earlier investigations have calculated
the spherical harmonic modes for 3 PN accurate gravitational waveform and some modes
for [ = 2,3, at 3.5 PN accuracy. My aim is to go half a PN order further and calculate
spherical harmonic modes for 3.5 PN accurate full waveform for non-spinning ICBs. To
this end, I discuss the accuracy of the source multipole moments which will contribute
to 3.5 PN waveform. By doing literature survey I have checked the availability of these
moments and listed the available ones. I show that with the available source moments we
can calculate spherical harmonic modes(h!™s) with full 3.5 PN accuracy, only for modes
l = 2,3 when [+ m is even, for [ =5 when [ +m is odd and for [ > 6. With the available
source multipole moments as inputs, I have written a mathematica code, which gives
spherical harmonic modes for 3.5 PN accurate waveform as a function of [ and m. This
new code also reproduces the spherical harmonic modes till 3 PN order consistent with
the earlier work. Finally I display the spherical harmonic modes for [ = 5 when [ + m is
odd and for [ = 6 to [ =9 which are obtained in this work and are new.

Extreme mass ratio inspirals (EMRIs) are one of the important sources for evolved
laser interferometric space antenna (eLISA). Recent works [4] have calculated the 22 PN
waveforms for extreme mass ratio binaries (EMRIs) using the black hole perturbation
theory. Vijay et al [8] have calculated the Fourier transform of gravitational waveform
for EMRIs to 22 PN order using the leading stationary phase approximation (SPA). The
SPA can be improved by computing the next order correction terms. In the second part
of my project, I find the first order correction terms to the Fourier transform of the
gravitational waveform for EMRIs.

Chapter 1 gives a broad overview of the field, I will discuss the importance of the
present project. Chapter 2 deals with the generation of gravitational waves under different
approximations, summarizing the standard material [10, 9, 2]. In chapter 3, I discuss the
dynamics of binary system under gravitational radiation reaction. Chapter 4 deals with
the present work and lists the new results. Chapter 5 discusses the the Fourier transform
of gravitational wave signal using SPA. I compute the the correction terms to the phase
of the Fourier transform for GWs from EMRIs and display the results.
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Chapter 1
Introduction

Existence of gravitational waves (GWs) is one of the most important predictions of the
General Theory of Relativity. In General relativity, gravity is described as the curvature
of spacetime produced due to the presence of mass and energy in spacetime. When
massive objects accelerate they produce the distortions or ripples in spacetime. We
call these ripples as gravitational waves and they travel with speed of light. According
to the Newtonian theory the orbital period of the bound binary system should be a
constant. However General relativity predicts that, two masses moving around each other
emit gravitational waves. Since the GWs carry away energy and angular momentum of
the system, orbital energy of the system reduces and binaries spiral towards each other
resulting in decrease of the orbital period. This predicted decrease in orbital period was
first observed in the binary pulsar PSR 1913 + 16 by Hulse and Taylor|11] which won
them a Nobel prize for physics in 1993.

Gravitational waves carry some information about astrophysical objects that can not

be obtained by any other means. For example,

e Electromagnetic waves from astrophysical objects are emitted from atoms or elec-
trons and hence they are microscopic origin. GWs are emitted due to coherent, bulk
movement, of the sources and are macroscopic. Therefore GWs give a completely
different kind information about the universe complementing the electromagnetic

observations.

e Unlike electromagnetic waves, GWs couple with matter very weakly, so they travel
through spacetime almost un-scattered or unabsorbed. Thus they can bring infor-
mation about regions like interior of supernova explosion or Big Bang which have

never been probed before.

GWs produced due to most of the astrophysical events in the universe are extremely small
and the fact that the GWs couple with matter very weakly make it very challenging to

detect them. Currently many laser interferometric detectors such as advanced LIGO,



advanced VIRGO are operational to hunt down the first gravitational wave signal.
One may wonder the need for high post-Newtonian waveforms. Let me give two main

reasons for why we should calculate the gravitational waveforms with high precision.

e One of the most promising sources of gravitational radiation for laser interfero-
metric detectors are coalescing compact binary (CCB) systems of neutron stars or
black holes. In GW detectors, signal is buried in the noise of detectors which makes
detection even more challenging. In order to unearth the the weak GW signal from
the strong noise, we make use of the technique called matched filtering technique.
This data analysis technique relies on cross correlation between noisy detector out-
put and theoretical template banks. In order for matched filtering to be successful

we need templates as accurate as possible.

e The evolution of the binary system can be divided into 3 major phases viz. inspiral
phase, merger phase and ringdown phase. In the inspiral phase the component
objects of binary system are well away from each other and over the time they
spiral towards each other emitting GWs. As the system lose energy in the form of
GWs the companions come close and plunge towards each other resulting in merger.
This phase is called the merger phase. In the ringdown phase the resulting compact

object emits energy in excited quasi-normal modes.

Well before the merger phase, velocities involved are much less than the speed of
light(c) and gravitational fields are weak. Hence we can apply post-Newtonian
(PN) approximation to general relativity to describe the GWs from binaries in the
inspiral stage. However merger phase and ringdown phases being highly relativistic
it is difficult model them. So we switch to numerical relativity to calculate the
numerical waveforms in these phases. In order to validate, interpret and to assess
accuracy of the numerical waveforms, we need to compare them with the high
accuracy post-Newtonian (PN) waveforms in an overlapping region. Currently such
comparisons have proved to be very successful, showing the need to compute the

accurate PN waveforms in terms of both phase and amplitude.

In the current project, I am focusing on inspiralling compact binaries (ICBs) with spin
of individual binaries being zero as they are the most prominent sources for detection. I
compute the gravitational waveform produced by such systems in quasi-circular orbits till
three and half a post-Newtonian (3.5 PN) order!. The full waveform (FWF) at 3.5 PN
order we mean, the waveform with amplitude till 3.5 PN order and all the higher order
harmonics contributing to 3.5 PN waveform. This in contrast with restricted waveform

(RWF) which focuses only on the dominant harmonic, twice the orbital frequency of the

'We usually refer terms of the order~ (v/c)?" as n PN terms. Here v is typical velocity of binary
system and c is the velocity of light.



source. Calculation of FWF is more difficult compared to computation of RWF, since
we need source multipoles with higher multipolarity and with higher accuracy. BFIS|16]
provided the results to 3 PN and listed down all the harmonics in the 3PN accurate FWF.

To calculate FWF we need to use the multipolar post-Minkowskian (MPM) formalism,
wherein the radiation field in the region where our detectors are located is parametrized
using two sets of radiative moments. These moments are next expressed in terms of
canonical moments which are in turn functions of source moments. Recent studies |17,
13, 18, 19| have calculated the required source moments for binaries. In the present work
[ have done a literature survey and identified the availability of the source moments.
With the help of these available moments, I compute the spherical harmonic modes for
3.5 PN FWF.



Chapter 2
Theory of Gravitational Waves

The essence of general relativity can be summarized by Einstein’s equations,

1 81G
le — §gWR = ?T/ﬂ" (201)

General relativity is invariant under huge group of coordinate transformations of the form
= o' (x), (2.0.2)

where, z/# is an invertible, differentiable function of z* and having differentiable inverse.

This property is referred as gauge symmetry of general theory of relativity.

2.1 Linearized Theory

Movements of the mass and energy densities (sources) in the spacetime causes perturba-
tions in the usual flat spacetime metric 7,,. We choose a reference frame, in which the

metric is slightly perturbed from the flat space metric. e
Guw = T + By, with, Ry, | << 1. (2.1.1)

We study the Einstein’s equations (2.0.1) till linear order in h,,. For convenience we

define the new perturbations related to old ones as

_ 1
Faw = My = S1sh. (2.1.2)

Using the gauge symmetry of general relativity, in the Lorentz gauge

8 Ry, = 0, (2.1.3)



it can be shown that, the linearized Einstein’s equations become,

_ 167G
Oy = == T (2.1.4)

where [ is defined as flat space d’Alembertian given by,
0 = n,0"0” = 0,0". (2.1.5)

Since, the perturbations h,, follow the wave equation with the source 7}, we call them
as gravitational waves. Conceptually in linearized theory, we use Newtonian gravity to
describe the dynamics of the sources of GWs. However, while describing the motion of

test masses in the presence of GWs h,,, generated by these sources, we use the metric

s
Guv = N + hyu. And again we keep only linear order terms in h,, while calculating
their equations of motion (EOM). At the distances, far away from the source where GW
detectors are located, T, = 0, and the linearized Einstein equations in Lorentz gauge
(2.1.3), take the form,

Ohy = 1% 0405k, = 0. (2.1.6)

This is the three dimensional wave equation. [ = —C%g—; + V2, suggests that GWs

propagate with the speed ¢ equal to that of light.

2.1.1 Transverse and Traceless (TT) Guage and Lambda Tensor
(1)

Out side the source, we define T'T gauge by the conditions,
ho, =0, hi=0, &h;=D0. (2.1.7)

In this gauge we explicitly have the two physically relevant degrees of freedom for h,.

The plane wave solution to linearized vacuum Einstein equation (2.1.6) in the TT gauge
looks like,

0 0 0 O
0 h h 0
hET(t,z) = M. , (2.1.8)
0 0 0 O
with,
hy = hye™ and, hy = hy,e™". (2.1.9)

The two independent components A and hy are called as "plus" and "cross" polarizations
respectively. GWs carry away energy and angular momentum from the source. It can be

shown that, energy contained in gravitational wave h;; per unit time, per unit solid angle



is given by,

= = < RITpTT >, 2.1.10
dtdQ) 327G R ( )
where < --- > denotes the temporal average over time period of GW and r is distance

from source.
Lambda tensor(A) is a tool to convert the given solution h,,(z) into a T'T' gauge solution.
Outside the source, If a gravitational wave h;; is traveling in the direction n and is already

in Lorentz gauge (2.1.3), then in TT gauge it looks like
hz;-T — Aij,kl(ﬁ)hkla (2111)
where the Lambda tensor(A) is defined as,

1
Aij7kl<IA1) = Plk]D]l — Eljijpkl Where P”(fl) = 51’]’ — nmj. (2112)

2.2 Generation of Gravitational Waves in Linearized

Theory

We assume that gravitational field produced by the sources is sufficiently weak so that we
can apply linearized theory to the systems. The system of mass m and having the spatial
extent d, produces the weak gravitational field, if it satisfies the conditions, R;/d << 1
and v << ¢, where Ry, = 2Gm/c? is the Schwartzchild’s radius and v is the typical
internal velocity. For a time being we assume them as independent parameters.

For such systems the solution to linearized Einstein equation (2.1.4) is given as,

_ 4 1 Y
P (X, 1) = _G/d%;’ T (t — Ix X’,x’). (2.2.1)

ct lx —x/| " c

The various notations are explained in the following figure.



Let |x| = r, then at r >> d we can write,

2

Ix — x/| :r—xl-ﬂ+0<d7). (2.2.2)

In order to calculate the value of hg;T at detector location, we take limit » — oo, at fixed

t and making use of Lambda tensor, we will get,

x'-n

14G R r
hif (t,x) = ;C—4Aij,k:l(11) /dngkz <t -t

)+ O(%). (2.2.3)

2.2.1 Low Velocity Expansion

Typical velocities inside the source (v) will be comparable to w,d, where wy is typical
frequency of internal motion of the source. The gravitational wave frequency w will be

of the order of wy, i.e w ~ ws ~ 5. Using reduced wavelength
A =c/w (2.2.4)

we can write,

< Cc
A~ —d. 2.2.5
- (225)

It shows that, for non relativistic sources, reduced wavelength generated is much bigger
than the size of the source. It clearly suggests that, the macroscopic knowledge of source
is good enough to calculate the gravitational radiation at far distances and we do not

need to know the internal dynamics in detail.

r
¢’

Taylor expanding T}, (t -+ X/T'ﬁ, x’) around retarded time, t, =t —

/ i, 0
X

- 0T + Taz”n%”n@STkl +o (2.2.6)

: n,x') ~ Tru(t,, x') +

Th <tr +
c

derivatives are being evaluated at the point (¢,,x’).

Let us define the momenta of the stress energy tensor of matter T as,
Si(t) = / BT (¢, %), (2.2.7)
Sik(t) = /deT”(t,x)xk, (2.2.8)

Sy / BT (¢, %)t (2.2.9)

10



Inserting the expansion (2.2.6) into Eq.(2.2.3), and making use of above moments, we

will get,
4G

T
hij (t> X) R

1. 1 .
[Skl + ZSk:l,m + gnmnpskl’mp 4+ , (2210)

ret

where the subscript "ret" indicates, bracketed expression is to be evaluated at t,.. This is
sometimes referred as multipole expansion. Let us look at S*¥ and S¥™ carefully. S¥-m
has an additional factor of 2™ ~ O(d) compared to S*. Time derivative of S*™ brings
an extra factor w, to it. So the tensor S¥ gets a factor O(w,d) ~ O(v) with respect to
S*. S0 in the expansion (2.2.10) 2"¢ term is correction of the order of v/c, 3" term is

correction of the order of (v/c)? and so on.

2.2.2 Quadrupolar Radiation

At lowest order in the multipole expansion (2.2.10) only S% contributes, which can be

written as .
S = 5M"]’, (2.2.11)

where,

- 1 o
MY = — / dP*xT(t,x)x'a?, (2.2.12)
C

known as quadrupole term. So the quadrupolar radiation expression becomes,

12G .
[hg‘T(t7X)]quad = ;FAij,kl(n)Mkl@r)- (2.2.13)

Also in terms of quadrupole moment ();;, defined by,

Qv = MY — My, (2.2.14)
= /d?’xp(t,x)(:clxj - §r25”), (2.2.15)

the quadrupolar radiation emitted by the source is given by,

12G o
[hZ;‘T(th)}quad = ;FAij,kl(n)le(tr), (2.2.16)
126G -
-y (). (2.2.17)

This is called Finstein’s quadrupolar formula. Using equation (2.1.10) it can be shown

that, total radiated power (Luminosity) in quadrupolar approximation is given by,

Pyuaa = £5 < Q;;Qij > - (2.2.18)

11



2.3  Generation of GWs from Post Newtonian Sources

In linearized theory, the spacetime in which sources move was taken to be the Minkowski
spacetime. Physically, we were assuming that sources responsible for GW emission, will
not alter the background space-time significantly. We then discussed production of GWs
writing a multipole expansion (2.2.10), in the parameter v/c. We discovered that leading
order contribution comes from mass quadrupole term. Note that this algorithm assumes
internal velocity v of the source and background curvature as independent. It takes into
account v/c corrections, while still assuming background spacetime as flat one. When
the system is governed by non-gravitational forces ( like system of accelerated charged
particles), the above mentioned algorithm is sufficient.

But most of the astrophysical systems, which are potential candidates for GW de-
tection are gravitationally bound systems. When internal velocities of these systems
become moderately higher, then the systems contribute significantly to background cur-
vature. So our assumption of treating background curvature and velocity of the system
independently in linearized theory needs modification.

In this section, we go beyond LT and discuss post-Newtonian (PN) formalism, to de-
scribe dynamics of the weakly self gravitating system having moderate internal velocities.
In post-Newtonian formalism, we calculate corrections to the equation of motions given
by Newtonian gravity, in higher powers of small parameter v/c (= R,/d).

Through out this section we assume that system is of finite spatial extent (d) and
matter composition is smooth inside. In previous section we found that reduced wave-
length A (2.2.4) of GW is much bigger than the extent of source(d). Let us classify the
region of space into two zones, near zone (d < r << \) and far zone (r >> )). In the
near zone where retardation effects are negligible, we use PN formalism to describe the
GWs. In the far zone, retardation effects are crucial and we will adapt to a method called

post-Minkowskian expansion.

2.3.1 The relaxed Einstein equations

Let us define the field h®” which is a measure of the deviation from flat space metric by,
h*? = (—g)/2g% — P, (2.3.1)

Note that this h is different from the one we used in linearized theory and also relation
between h*” and g, is non linear. We are not making any assumptions about h here.
But it reduces to negative of 2" when h*” is small. We choose harmonic gauge (2.1.3)

or de Donder gauge, which in terms of h* becomes,

9sh*” = 0. (2.3.2)

12



In this gauge, the Einstein equations take the form,

Oh*? = 16;Graﬁ, (2.3.3)
where,
o
— (—g)T"‘ﬁ—I—WPQB, (2.3.4)

with 7% is the matter energy-momentum (E-M) tensor. The tensor P is independent of

source and is given by,

167G

af
P c4

(—g)t5% + (9,h**9,h® — h*9,d,h"), (2.3.5)
where 197 is called Landau-Lifshitz pseudo energy momentum tensor [10], which is highly
non linear functional of h*”. Einstein equations are completely equivalent to equation
(2.3.3), together with harmonic gauge condition (2.3.2). Note that we can first solve
Eq.(2.3.3) without requiring that, the harmonic condition is satisfied. Then we can
apply gauge condition (2.3.2) to get full exact solution. Therefore these 10 independent
equations (2.3.3) are called as the relazed Einstein’s equations.

Finding the exact solution to Eq. (2.3.3) is very difficult as right hand side is highly
non-linear function of the h*”, for which we are solving for. So we must adopt some
approximate methods depending on which region we are solving the equation. In near
field, since retardation effects are small, we make use of PN formalism. In far regions,
where retardation effects are crucial we make use of post-Minkowskian expansion tech-
nique. Then in intermediate region where both the methods hold, we match the solutions
from both the methods.

2.3.2 Post-Newtonian Expansion in near zone

Near the sources, the background metric will be very complicated and it will have enor-
mous deviation h*” from flat space metric. Solving the Einstein equations (2.0.1) an-
alytically will be very difficult. So we will use a approximation technique called post-
Newtonian expansion to solve the Einstein equations (2.0.1). In PN expansion technique
[10, 2] one finds the background metric where the source lie, as a expansion in a small

expansion parameter,

e~ (Ry/d)"/* ~v/c. (2.3.6)

The procedure involved in the technique is iterative. We start from Newtonian equations
for motion and we add the general relativistic corrections to those equations of motion.

As we get the modified EOMs, we compute the the new energy momentum tensor for

13



the source and we solve for new metric corrections. With corrected metric, again we
calculate the modified EOMs, then new E-M tensor and then new metric corrections,
and this procedure goes on. We can calculate the metric and EOMs with desired PN

order.

2.3.3 Post-Minkowskian expansion outside the source

Now we consider the region outside the source i.e the region given by d < r < oo.
Outside the source, matter E-M tensor vanishes and we are left with relaxed vacuum

Einstein equation,
Oh*? = pob, (2.3.7)

At a distance r, deviation from Minkowski metric can be expressed as an expansion in
the parameter R,/r. Since R, = 2G'm/c* we can as well write expansion in terms of

parameter GG. Therefore we write,
h*? = ) Ghy’ (2.3.8)
n=1

We plug this into Eq.(2.3.3) and we equate the terms of same order in G. The tensor P
depends on ¢*® which is highly non linear functional of h®” it starts from terms which

are quadratic in h. Thus we can write,
PP = Nh h] + M*[h, h,h] + L*?[h, h, h, ] + O(h%), (2.3.9)

where N,M and L etc can be found by the calculation of P*?. Since P does not contain

terms of order G, so at lowest order we have,

On? = 0, (2.3.10)

and for next order in G we get,
Oh° = N[hy, hy], (2.3.11)
Ohy" = M®[hy, hy, hi] + N°Phy, hy] + N°P[hy, ha], (2.3.12)

and so on.

We make use of a iterative algorithm called multipolar post-Minkowskian (MPM) expan-
sion algorithm to generate most general solution h®? of the field equation (2.3.3). In this
algorithm as a first step we solve for h; and then compute hs using Eq.(2.3.11). Using

both hy; and hy we solve for hy and so on. Finally we get the full solution to vacuum field

14



Einstein equations parametrized by six sets of symmetric and trace free (STF) moments
I, J;, known as source moments and Wy, X, Y., Z; known as gauge moments. To-
gether these moments are called as the algorithmic moments and are arbitrary functions
of retarded time ¢,. The full solution looks like,

haﬁ — ZGnth[[InJL7WL7XLaYL7ZL]- (2313)

n=1

2.3.4 Matching of the solutions

We know that post-Newtonian expansion is valid both inside the source and in the exter-
nal near zone. The post-Minkowskian expansion uses the parameter G which is related
to Rs/r at a distance r outside the source. So in order to compare the PN solution with
the post- Minkowskian solution it is necessary that both the expansions should have the
same expansion parameter. So in the near external region(d < r < R) of the source, we
expand the post-Newtonian solution using R/r or d/r as an expansion parameter, which
gives rise to "multipolar post-Newtonian expansion".

Now we are armed with the solution to h®” in both near zone and external zone of the
source. In external zone solution is characterized by the algorithmic multipole moments
(I, Jp, W, X1, Yr, Zr). But as of now these moments are just some arbitrary functions
of retarded time and are yet to be determined. However in the near zone the solution
is in terms of post-Newtonian expansion, and E-M tensor of source directly enters the
expansion. So we match both solutions in near external zone where both solutions are
valid and fix the STF multipole moments (I, J, W, X1, Y7, Z1) in terms of matter and
gravitational fields of source. The explicit expressions for these moments are given in
[24, 25|
It is possible to parametrize the six sets of source and gauge moments in terms of only
two sets of STF moments called canonical mass-type and canonical current-type multipole

moments, M, and Sy, respectively. It can be shown that [16],

ML = IL+M[IL7JL7WL7XLaYL7ZL]7 (2314)
Sy = Jo+ S, Jp, W, X, Y, Z1], (2.3.15)

where, M and § are some non-linear functionals of source and gauge moments. They

are at least quadratic and start only at 2.5 PN order.

15



Chapter 3
Inspiralling compact binaries

In this chapter we discuss the dynamics of inspiralling compact binaries (ICBs). We
consider a binary system, consisting of two neutron stars (NS) or two black-holes (BH)
or a neutron star and a black-hole. We assume that individual compact objects are non-
spinning. Let their masses to be m; and my and positions to be r; and ry respectively.
To find out the equations of motion, we go to the center of mass frame (CM) where, in
Newtonian approximation the problem becomes equivalent to that of a particle with mass
i = mymgy/m called reduced mass moving in gravitational potential of mass m = mj+my

at a distance r = |r; — ry|. The Newtonian equation of motion is given by,
r=———r. (3.0.1)

Let us assume that binaries are in circular orbit. Then orbital frequency wy is related to
radius of the orbit R as,
,  Gm

w. =

We calculate the quadrupole moment of the system using (2.2.14) and compute the gravi-
tational waveform using linearized theory. Therefore quadrupole waveform in Newtonian

approximation is given by,

4 GMC o 7ngw 2/31+C0802
S ?( 2 ) ( c ) 5 €08 (27 fouty +20), (3.0.3)
4 GMC o 7wa 23 .
here,
M, = M3/5m2/5 _ y3/5m, (3.0.5)
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called the chirp mass where,

v o= : (3.0.6)

is called the symmetric mass ratio. 6 , ¢ and r indicate the location of the source in the
sky. Also wg,, = 2w, i.e gravitational wave frequency is double that of source frequency.
Using luminosity equation (2.2.18), it can be shown that, total power radiated in the

form of GWs by the system is given by,

32¢° [ GM, o7
Pbmary - c ( ngw> (307)

5G 2¢3

3.1 Adiabatic inspiral quasi circular orbits

Even though the binary system starts in an elliptical orbit, over the time with emission

of gravitational radiation, system loses energy. Energy of the system is given by,

Esys = Ekin+Epota (311)
Gm1m2

= —— 3.1.2

SR (3.1.2)

It is easy to see that as the system loses energy, radius must decrease so that energy
becomes more and more negative, and Eq.(3.0.2) implies that as radius decreases the
orbital frequency (ws) increases. On the other hand, by Eq.(3.0.7) it is clear that as orbital
frequency increases, system loses more and more energy and radius decreases further. So
it is a runaway process, which after a sufficiently long time leads to coalescence of the
binary system.

Using Eq.(3.0.2) it is easy to write,

. 2 _w

R = —-ZR-= 3.1.3
3w ( )
2w,

S

So it clear that if the condition w, << w? is fulfilled, then R is much lesser than tangential
velocity ws R and we say that the system is in adiabatic quasi circular orbit. Let us assume
that orbit of the system is in the X-Y plane. Let n = r/r be the unit vector along the

relative separation vector r. So

n=cosp ex+sing ey, (3.1.5)
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where, ¢ is the orbital phase of the system. Now we can describe the motion of the binary
using the rotating orthogonal basis given by (n, A\, ez) where A = ez x n. Using simple
vector algebra we can derive the expressions for the relative position x, velocity v, and

acceleration a, as follows,

X = ran, (3.1.6)
vV = T n+rwA, (3.1.7)
a = (F—rw?) n+ (rd+ 2rw)A, (3.1.8)

where the orbital frequency w is given by, w = ¢. In adiabatic approximation, till 2PN
order, we can describe the orbit of the binary system as a circular orbit, so7 =7 =w =0
and rw? = — n- a.

But at 2.5PN order, the back reaction of GWs comes into picture, so we must consider

inspiral motion of the binary system. In Newtonian gravity the orbital energy is given

by,

1 Gm?
EF=—v m
2 T

+0(e). (3.1.9)

Using Eq.(3.0.2) in Eq.(3.0.7) it can be shown that in quadrupolar approximation the
gravitational luminosity is given by,
32 ,G*'m?
Now we assume that energy carried away by GWs is balanced by the reduction in the
orbital energy (i.e. dE/dt = —L). Therefore
dE dE. 64 G*m?

— (= /7 — - 7/2
r= ( dt d?”) 5 v T3C5 +O<€ ) (3]_]_1)

and using the above equation we deduce the rate of change of the orbital frequency as,

, dw ,dr 96 [/ GTm™\ > /9

Substituting above results into Eqs.(3.1.7) and (3.1.8) we derive the expressions for

the relative velocity and acceleration till 3PN order as follows,

64 G3m3

vV = TWA—EVTS—Z/; n+0(€7/2), (3113)
32 G3*m3

a = _W2X_EVC5—:Z v+ O("7?). (3.1.14)
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The orbital angular frequency till 3 PN order [21, 20] is given as,

G
w® = T—gn{1+7(—3+1/)+72(6+—v+y>
75707 41 r
-1 —_— = 22In | —
+7( O—i—[ 310 +647T+ n(é)]u
19 2 3 4
+?V +v + O(€"), (3.1.15)

where we used the post Newtonian parameter

Gm
= —, 3.1.16
=75 (3.1.16)
and the constant 7, is explained in [21, 20]. In terms of another post-Newtonian param-

eter

v = (Gmw)z/g (3.1.17)

3

v is given by,

1 65
v o= x{l+x<1—§u)+x2<l—ﬁy>
2203 41 22
+22 1+ |- =———7*—=In L, v
2520 192 3 o

229 1 \
+ %V + i )} + O(€"). (3.1.18)

3.2 Source mass multipole and source current multi-

pole moments for ICBs

For ICBs in circular orbits, general expressions till 1 PN order for source multipole mo-
ments (I, .Jp) are available in literature. Source mass multipole moments (/1) at 1 PN

are given in appendix A of Kidder[15] as,

502 +60+9
72(6 +1)(2¢ + 3)

00 —1)(0+9) r2 ,
+2(£ +1)(2¢ 4 3) f€+1(’/>g$<L—2Uu_1ie>} + O(€), (3.2.1)

I, =vim { {fz—l(V) = 1fe(v) + fz+1(V)} (L)
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where,

m, S (v for ¢ even,
{m, fr(v)} = o, ax)) (3.2.2)
{=dm,di(v)} for ¢ odd,

where s, = (m4 +m4)/m* and d, = (m{ — m%)/mt. These can be written as functions of

o =[5 () e
do(v) = :Zj (6 _i_ 1)(—y)k, (3.2.3)

x; and v; denote the components of relative position x (3.1.6) and relative velocity v
(3.1.7) of the binary system. Similarly, source current multipole moments (.J;) till 1 PN
is given in appendix A of the paper by Damour, Iyer and Nagar [23].

v 20+ 3
Jr = VMEab(igmavb{xLD [CEH(V) +7 (—270”1(’/) + Y, bes1(v)

+2V€+ 1bg,1(y) +1 (£+ 1 (- 1)(€+4))> CM(V)}

4 2\ ¢ (0+2)(20+3
r? (=1 —-2)(¢+4) 9

+ C_QxL*3UiZ72,Ui£—1> 2(€ T 2)(2£ T 3) Cg+3<l/) + O(E )}, (324)

where,
be(v) = X5+ (—)' X7, (3.2.5)
c(v) = X5+ (-) X (3.2.6)

with

Xy =my/m, (3.2.7)
Xy = mso/m. (3.2.8)

In literature, general expressions for I, and .J;, are available only till 1 PN. However some
of the individual multipoles are known to high accuracy. For example ;; is known up to
3.5 PN accuracy [26] and V;; upto 2.5 PN accuracy [16], etc.
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Chapter 4

Gravitational Waveform and
Computing spherical harmonic modes
for 3.5 PN accurate gravitational

waveform for non-spinning I1CBs

The multipolar post-Minkowskan solutions h®” is valid in the exterior region and so at
future null infinity, i.e at r — oo with ¢ —r/c fixed, where our detectors are located. But
these solutions exhibit a logarithmic character ~ Inr?/r* at these distances in harmonic
coordinates z# = (t,r). Appearance of these Inr terms in the solution is due to the
coordinate effect. It is possible to choose coordinate system, at futute null infinity called
radiative coordinates, in which one can make the log terms absent. We denote such
coordinates by X* = (T, R) and let R = |X| and retarded time T =T — R/c.

We now introduce two sets of STF multipole moments called as radiative multipole
moments denoted by Uy (mass type) and Vi (current type) and these are functions of

retarded time Tg. In terms of these moments the waveform is given by,

AG 1 20
hi = EA;IEZ(N) ; %{NL2 Uniz—2(Tr) — 1) Nar—2€an(k Vl)bLQ(TR)} +0 () -

(4.0.1)

Here N = X/R = (V) is the unit vector pointing from the source to the far away detector
along which GWs travel from the source.
In terms of the two gravitational wave polarizations, h, and hy, the spin weighted

spherical harmonic modes (simply called as spherical harmonic modes or sometime just
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modes) h'™s are given by,
00 l
hy —ihye =Y > WM Y(O, ), (4.0.2)

=2 m=-—I

where, _,Y'™ (O, ®) is spin weighted spherical harmonic of spin weight -2.3 The h!™s are

related to radiative multipole moments Uy, and V}, as follows,

lmii Im _3 Im
T (U (Tr) ~ 2V (TR)), (4.0.3)

with,

160 [(1+1)(1+2)

Um = Uy, m 4.0.4
r+on\  2a¢-1 T E (4.0.4)
327l (1+2)
Im — Ylm* 4.0.
v (zz+1)u\/zz(z+1)(z—1>VL L (4.0.5)

where Y/™ are the STF spherical harmonics which are related to the scalar spherical

harmonics by,

Y'™(©,®) = Y/™Ny. (4.0.6)
Alternatively,
47!
m Im
yim = —(2l+1)!!/dQN<L>Y . (4.0.7)

3We define the spin-weighted spherical harmonics of spin weight s using the Wigner d-functions as

follows [15],
m s 2£+1 im
—Y(6,8) = (-1))/ = —dp (©)™?,

d(0) =V U+m)l—m)(L+s)(l—s)

y Z (*1)16(8111 %)QkJrsfm(COS %)2£+m7572k
= Ell+m =k —s—k)!(s—m+k)

where

where k; = max(0,m — s) and ky = min(¢ +m, ¢ — s), (R, O, ®) are usual spherical coordinates.
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4.1 Radiative multipole moments

The radiative moments(Uy,V;) are non-linear functionals of canonical moments(Mp,,Sy).
The contributions to radiative multipole moments can be classified into instantaneous,

tail, tail-tail and memory terms as follows,

UL — Uant + Uzail + Uzail—tail + Uznemory7 (411)
VL — VLinst + VLtail + VLtaz‘l—tail + VLmemory‘ (4.1‘2)

Various terms contribute to radiative moments at various PN order. Instantaneous terms
involve canonical moments, those are to be evaluated at retarded time. Tail terms arise at
1.5 PN, due to scattering of GWs from the static mass monopole of the source. Tail-tail
terms comes from cubic interactions between two monopoles M and one static multipole.
They contribute at 3 PN order. Memory terms arise due to quadratic interaction between
two radiative multipoles at 1.5 PN order. Apart from instantaneous terms all other terms
are collectively called as hereditary terms, for the reason, they all depend on past history
of source.

In this chapter we discuss the calculation of the spin-weighted harmonics h!™s, that
contribute to the 3.5 PN accurate gravitational waveform of binaries in circular orbits.
Previously Kidder [15] has calculated the spherical harmonic modes for 2.5 PN accurate
gravitational waveform for ICBs in circular orbit. Then Blanchet et al [16] went on to
compute the spherical modes that contribute to 3 PN accurate waveform. In here, I go
half a PN order higher and calculate spherical harmonic mode for 3.5 accurate waveform

with available source moments in literature.

4.2 Accuracy of radiative multipole moments required

for 3.5 PN waveform.
The Equation (4.0.1) can be schematically written as,
T 1 1
hih o~ K|Uj+ E(wj + NyUiji) + g(Nkvijk + NuUiji) + -+ (4.2.1)

From this, it is eveident that, for a particular PN order waveform, only a finite number
of multipoles will contribute. Higher the multipolarity of multipoles, at higher the order
they will contribute to the waveform. The table below lists out the accuracy of different

multipoles required to obtain the 3.5 PN accurate waveform.
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Radiative Multipoles | Required PN accuracy
Ui; 3.5
Uijk,Vij 3
Uik, Vijk 2.5
Us,V, 2 ) (4.2.2)
Us,Vs 1.5
U7, Vs 1
Us, V7 0.5
Uy, Vs 0

So the modes from [ = 2 to [ = 9 will contribute to the 3.5 PN accurate gravitational
waveform. FBI [22] have listed down all instantaneous terms and hereditary terms (tail
terms, tail-tail terms, memory terms) which will contribute to radiative moments of the

above mentioned accuracy. Here I am giving some of them, which I require for my work.

4.2.1 Instantaneous terms

The mass-type moments are given by.

Ubtthan = M{3mn
A R VB D YN VI DY
MM, - B, - BN,
9;89 MOME) ) — e M) Mgy — 2 Mg M) — MM,
—%M}ZLMZ% %M&M%, (4.2.3)
U, =M" for 1>7. (4.2.4)
Current type moments are given by,
‘/zljr;cslsn = SUSlzlm
+C—C§ ; 7Sk — %M<(1>S,§ljn> 12M) S5 — 2T Sy
- SMsE - Dudsh - 2;M<6 Sy — 3502,
— SUME, DM, 85O, ~ Dsu,
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20 .5y, 8406 3 (6)
- 35@']' Mklm) - gS@'j Mklm) - 5S<iMjklm>
1 (M) © 3 403
+ 8ab<i<ﬁMjﬁMklm M Mklm)b - 5M Mklm 3M Mklm)b
30 r(@) 7 r(3) 1 (5) 1 7(2) ) 1 (7)
- §Mjg Mklm)b - §M Mklm)b + 35 M]a Migimyp + ?MjkgMzmw
2 (1) 4 (6 4 5 1 4
+ MM, + SMEMT, + 3B, | (4.2
Sy =1" for [>5. (4.2.6)
4.2.2 Tail terms
i 20GM [Tr .5 Tp—T
U () = 2 /_ M) | () (4.2.7)
ai QGM Tr YAR)) TR — T
ViAl(TR) = =nl S£+ )(7') In 5 + 7| T (4.2.8)

Note that constant b comes in a relation between Tk and t,.. k, and 7, are given for

general £, in harmonic coordinates, as [22]

202 + 50+ 4 (-1
= H,_ =—+Hy 4.2.9
Ke €<€+1)(€+2>+ -2, Uy €(€+1)+ -1 ( )
where Hjy, = Z?Zl %
4.2.3 Memory terms
mem G [Tm]5 15
Uit (Ti) = / [;Mészli% (1) = MG Mgy (|7 (42.10)

4.3 Computing 3.5 PN spherical harmonic modes for
non-spinning ICBs

In this section I will discuss the availability source moments for ICBs, mode separation
and the procedure that I have followed to calculate spherical harmonic modes of 3.5 PN

accuracy.
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4.3.1 Availability of source moments

Careful observations of expressions for instantaneous and hereditary terms (from (4.2.3)
to (4.2.10)) tells that, radiative moments depend only on canonical moments (M, Sy),
which in tern depend on source moments(/y, Jr). So the procedure is clear, we first have
to gather the source moments of desired accuracy then derive canonical moments. Then
from the help of these canonical moments, we will construct radiative moments (Up,, V1)
which are essential to compute the spherical harmonic modes. In the table below I am
listing the accuracy of source multipole moments of non-spinning ICBs, required to com-

pute 3.5 PN accurate gravitational waveform and their availability.

I;, | Required PN accuracy | Availability | J; | Required PN accuracy | Availability
I;; 3.5 v Jij 3 X
L 3 v Jijk 2.5 X
Lik 2.9 X Jijki 2 X
I 2 X J5 1.5 v
I 1.5 v Jg 5 v
17 1 v J7 0.5 v
Ig 0.5 v Js 0 v

Iy 0 v
(4.3.1)

From above table (4.3.1) it is clear that not all the required source moments are available
in literature in order to calculate 3.5 PN harmonic modes. Note that we have general
formula for source moments till 1 PN (3.2.1),(3.2.4) and next order correction to these
source moments comes at 2 PN, so effectively we have general expressions for source
moments till 1.5 PN.

4.3.2 Mode separation for non-spinning binaries

Using parity invariance of Einsteins equations it can be proved [26] that, for non-spinning
binaries, for particular [ the mode h'™ is given only by mass radiative moments (Uy,) when

[ 4+ m is even, and only by current radiative moments (V) when [ + m is odd. i.e

tm _ ﬁUzm(TR) when [+ m iseven (4.3.2)
c
him = —LV“"(TR) when [+m is odd (4.3.3)
\/§RCZ+3 e
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Above equations imply that, to have all the modes for particular [, with need to have both
the radiative moments U, and V;, with desired accuracy. If one of them is not available

then we can only have modes, either for [ + m even or for [ + m odd, for particular /.

4.3.3 Awvailable radiative moments for ICBs.

By noting down the availability and non-availability of various source moments (which
are same as canonical moments till 2 PN order) from table 2 (4.3.1), and by observing
the instantaneous and the hereditary terms eqs (from (4.2.3) to(4.2.10)), we can decide
which radiative moments can be computed with desired accuracy listed in (4.2.2). and
which cannot. In the table below I am listing the availability of radiative moments for

non-spinning ICBs in the current literature.

Ur | Desired PN accuracy | Available 7 | V; | Desired PN accuracy | Available ?
Ui; 3.5 v Vij 3 X

Uijk 3 v Viik 2.5 X

Uiji 2.5 X Vijki 2 X

Us P x Vi 1.5 v

Us 1.5 v Ve 5 v

Uy 1 v Vz 0.5 v

Us 0.5 v Vs 0 v

Uy 0 v

(4.3.4)

Therefore in the above table in a particular row, if we have both the moments U; and
V;, are marked with v'then only we can have all spherical harmonic modes for the corre-
sponding [ with full 3.5 PN accuracy (the reason is explained in subsection 4.3.2). For a
particular [, if only Uy, is marked with v'then, we will only have modes with [ + m even
with full 3.5 PN accuracy, on the hand if we have only V}, available, then we will only have
modes with [+m odd with full 3.5 PN accuracy. Therefore, for [ = 2 only (2,2) and (2,0),
for I = 3 only (3,3) and (3,1) are computable with 3.5 PN accuracy and they are already
computed [22]. We cannot compute any modes for | = 4 with full 3.5 PN accuracy as
neither of the radiative moments Uj;i; and Viji is available with required accuracy. For
I =5only (54), (5,2),(5,0) and for [ = 6,7,8,9 all the modes can be computed with 3.5

PN accuracy. In this work I am able to compute them I will display the results.

4.3.4 Procedure

We know that till 2 PN canonical moments (M, Sy) are same as source moments (I, Jr)

(2.3.14). So, since we know 1.5 PN expressions for source moments (3.2.1),(3.2.4) for non-
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spinning ICBs, implies that we have expressions for 1.5 PN accurate canonical moments.
From expressions (4.2.3) to (4.2.10) we calculate all the instantaneous terms and heredi-
tary terms. Note that while taking the time derivatives of the source moments we make
use of equations of motion (3.1.13), (3.1.13) and expression for w (3.1.15). By taking the
product between the radiative moments and STF spherical harmonics Y}™ (4.0.7), we
construct U™, V™  Using these multipoles we calculate spherical harmonic modes with
the help of equation (4.0.3)

I coded the general expressions for source moments(Iy, J,) (3.2.1),(3.2.4) in mathe-
matica. Using these expressions as inputs I am able to come with a mathemaitca code
for spherical harmonics modes (h!™s), calculable from available source moments (dis-
cussed in previous subsection 4.3.3) for 3.5 PN accurate gravitational waveform for ICBs.
While performing computation, I have used integration techniques given in section IV
and Appendix C of Kidder[15] to evaluate hereditary terms.

In the new phase variable 1 given by,

v=¢-3"[1- ]I xﬁo (4.3.5)

2/3 . . . . .
where, 1o = (%) /% is an arbitrary constant linked to coordinate transformation from

near zone to far zone (radiative) coordinates, the h!™ can be factorized as,

2Gmvx 167 - .
Im __ Ilm _—ima)
W= [ H e (4.3.6)

To have FWF with 3.5 PN accuracy, we need to have each of the H'™s from | = 2 to
[ =9 with 3.5 PN accuracy.

4.3.5 Results and Discussion

Note that till 1 PN radiative moments U;, and V7, are just the [ derivatives of the source
moments [, and Jy, respectively. Since we have general expression for source moments for
any [, we can compute all the radiative moments till 1PN irrespective of multipolarity ([)
of the moment, without bothering about the hereditary terms as they will not come into
picture at 1 PN. Therefore even though we need moments Ug, Uy and V7, Vg with accuracy
less than 1 PN order, we can use the full 1 PN expressions for these and come with the
modes more accurate than 3.5 PN. Therefore spherical modes that I have computed for
Il =17,8,9 are of higher accuracy than 3.5 PN.

Here I am displaying results for H'™ which are new results of this work and they all

contribute to 3.5 PN full waveform. The modes for negative m are given by the relation,

R = (—1)' Rt (4.3.7)

28



with * indicating the complex conjugate. Till 3 PN order, the results are in agreement
with the modes given in BFIS [16].

. 32 4451 3619v  521v%  3391°
H54:_ 2 1-5 5 2 3 _ _
9v/165 {E (1=5v+5%) +2* ( ~g5+ 30~ "3 T g
52 2882711
+ﬂ“(m-2wV+mm%(—€+®mgm+u(5w&)—4M%QO))]
. 2 3911 3079r 4132 2313
o> = (1-5v+507) +2° | - —
27\/55{x (L=tv+)+o (g + 30 ~ 13+ a6
26 16237y 186112
+z”2(2#—]0ﬁu+lﬂﬂul+i(—i;4— 3&;/— 25/)>}-%0($ﬂ» (4.3.9)
. 54 113 91w 393
H = FQI—&Hﬁﬁ +ﬁ<———+———6@?+ )
5v/143 ( ) 14 " 2 2
249 21678149
+ 27/ (67r — 307y + 307V + i (_E +v (—217728 — 60 10g(3))
2230871
121 2 (601 - !
+12log3 + v (60 0g(3) TS14d >} + O (%)
(4.3.10)
H65 — M [355/2 (1 —dy+ 31/2)
504+/429
149 349y 40902 2917
72 (1% _ o (z* 4.3.11
v ( 2 12 2 3 ) }'+' (=) (4.3.11)
N 128 [2 93  Tlv 19,3
H64:—— = 21_5 52 3 _ __442
100 39{90( v+ 1/)—1—5(: 14—|— 5 Z 5
83 23696105
—|—(L’7/2 (471‘—207TV—|—207T1/2+Z(—7+1/(W—4010g(2))
2566755
8log2 + 1% [ 40log(2) — ——r— O (2*
+81og2-+7 (1010g(2) - B0 )| 40 o)
(4.3.12)
. 81i A
H“:—u————hw21—4y+3ﬁ
616165 ( )
133 301r 32912
/2 [ =902 o 3 4
x ( 5 T 13 D +7u”+0(x)
(4.3.13)
. 2 81 59v %
H&:—————P21—5u+&ﬂ~+ﬁ(——~+———3%ﬂ+——)
297165 ( ) 14 2 2
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83 11251300 24280112
72 (27 — 10 10702 44 | —— —
i (” AT T T 13m0 1120
+ O (%)
(4.3.14)
. A 125 277y 2801  1TiP
H61 — Z— 5/2 1 _4 3 2 7/2 ey .
8316\/%{x (L= v+ 307) % T 12 12 3
+(9(x4)
(4.3.15)
H% =0 (2
(4.3.16)
. 16807i A [ 7
H77 o= 0 5/2 1—4 2
1440V 858 {m (1-4v+3%)
319 22250 255817 23007
7/2 e _ 4
i ( 34 51 51 17 )]J“O(x)
(4.3.17)
o 81 [3
76 __ 3 2
H" == m[a; (1—7v+140% = T0%)
1787  A1177v  141800° 587318 273504
4 _ _ _ 9/2
! ( 238 74 102 5l 102 >] +0(=)
(4.3.18)
oo 156251 A
H75:—Z{x5/2 (1—4V—|—3l/2)
26208+/66
071 1793y 183812 13407
T2 2= - 4
g ( 34 51 51 17 )]HD(“")
(4.3.19)
. 128 [2
H74: o - 3 1— 14 2 3
sV 33 {x ( Tv + 14v 71/)
14543 365570 1220002 1501,  20750*
4 _ _ _ 9/2
( o142 714 02 17 102 )] +0(=7)
(4.3.20)
. 243i A [3
H73 — _ < 1,.5/2 1—4 2
160160 2[$ (1= v +3%)
239 15050 135802  TO0L°
72 22 o 4
v ( 34 T 51 51 +17>]+O(x)
(4.3.21)
. 1
H™ = {x?’ 1—7v+ 140° — 70°
3003+/3 ( )
13619 337850 110212  1371% 16790
4 _ _ _ 9/2
( 212 714 02 17 102 )} +0(=7)
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771 i A 5/2
H :mlﬁ/(l—ély‘i‘gl/Z)

223 1361y 111802  38°
7/2 _ /= . 4
g ( 34 B 51 17 >} +0 ()

=0 (a*)

- 16384 [ 2
H® = =2 \/85085[x3(1——7V—%14V2——7V3)

3653 9325 2235112 10702 4081v*
—|—x4( v 35l/+9071/_081/):|+0(x9/2)

32 T 11 114 57 114

- 117649 | 7
87 : 7/2
HY = ——2 i zanoP/ (1 —6v+ 100 — 4°)
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where A = ™=™2 1355 difference ratio.
m
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Chapter 5

Fourier Transform of GW signal and

Stationary phase approximation

In the previous chapter, we had only concentrated on improving amplitude part of the
gravitational waves till 3.5 PN. In this chapter let us look at phase part of the GW. In
matched filtering technique the template must remain in phase with the signal as long as
possible for effective cross correlation. This forces us to model the phase of the GWs as

accurately as possible for data analysis.

5.1 Time domain phasing formulas

By applying the PN approximation, it is possible to calculate the binding energy E and
gravitational wave flux F as a series expansion in the parameter v for ICBs at early
inspiral stages. Here v is characteristic velocity related to gravitational wave frequency
F" and total mass m as

v = (rmF)3. (5.1.1)

Currently F is available till 3 PN and F is available till 3.5 PN beyond Newtonian order for
the binaries consisting of masses comparable to each other. Total relativistic energy of the
system Fy is related to binding energy E as Fy,; = m(1+ FE). In adiabatic approximation
(section 3.1) Energy balance equation dFE;/dt = —F gives us the following coupled
differential equations for orbital phase ¢ |1, 3].

dp 3 B
dv Fv)
= + mE(0) ~ (5.1.2b)

The derivative in E’'(v) is taken with respect w.

Depending on how we treat the rational function F(v)/E’(v) while solving the phasing
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formulas 5.1.2 we will get different approximants such as TaylorT1, TaylorT2, TaylorF2
etc [1]. Particularly, TaylorT1 gives the expression for dv/dt and TaylorT2 gives the
expression for phase ¢ as series expansion in v. TaylorF2 gives the phase of the GWs in
frequency domain. Currently these approximants are known upto 3.5 PN for comparable
mass binary systems|3|, as we know the flux only till 3.5 PN and binding energy E only
till 3 PN order for such systems.

5.2 Fourier transform of GW signal and usual SPA

Let us consider the GW signal given by,

h(t 2a(t) cos ¢(t) = a(t)e Y + a(t)e™® (5.2.1)

do(t)  _
where, 5 = 2nF(t) > 0. (5.2.2)

\_/
I

where a(t), ¢(t) and F(t) indicate the amplitude, phase and instantaneous frequencies of
signal respectively. Amplitude (a(t)) is related to the gravitational wave frequency F'(t)
by,

a(t) = C(mM.F(t))*? (5.2.3)

where C is constant which depends on orientation of the binary with respect to detector,
distance and masses of the system. F(¢) is monotonically increasing function during the
inspiral stages of the binary. We denote the Fourier transform of h(t) as h(f). Since h(t)
is real, we have h(—f) = h(f)*. The Fourier transform of the signal (5.2.1) is given as,

h(f) = h(f)+h(f), (5.2.4)
where, h_(f) = / dt a(t)e'Pr =) (5.2.5)
hi(f) = / dt a(t)e'®r/tre®) (5.2.6)

Integrands in both the integrals h_(f) and A, (f) are violently oscillating. So the domi-
nant contribution to the integrals comes from the neighborhood of the points where their
phase (27 ft — ¢(t)) has an extrema. We call this approximation as stationary phase ap-
prozimation (SPA). We usually call such points as stationary points or sometimes saddle
points. We assume f > 0, so only iz,(f) has such stationary point. Therefore, in the

SPA approximation, Fourier transform of the signal (5.2.4) becomes,

12

h(f) h_(f) ~ / h dt a(t) e (5.2.7)
where, ¥¢(t) = 2nft— ¢(t). (5.2.8)
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To find the stationary points we equate di¢(t)/dt to zero and evaluate for t. Let such
point be denoted by ¢;. Note that di(t)/dt = 0 translates to F'(tf) = f, so basically, the
stationary point t; is the value of the time variable when the gravitational wave frequency
becomes F' equal to Fourier variable f. In the vicinity of stationary point ¢;, we replace

a(t) , ¥¢(t) by their truncated Taylor expansions,

Gy(ty) — TRt (t = ty)?, (5.2.9)
a(t) ~ a(ty). (5.2.10)

<

~

=
2

and compute the equation (5.2.7), to get FT in stationary phase approximation. Note
that we have kept only first term in the Taylor expansion of the amplitude (5.2.10).
Because anyway the second term a(t;)(t —t;) does not contribute to the integral (5.2.7)
as it makes the integrand odd and vanishes after integration.

These inputs turn the Eq.(5.2.7) into a Gaussian integral,

h(f) ~ / dt alty) estn)=mEn)=t)? (5.2.11)
Which upon solving gives the Fourier transform under stationary phase approximation
as,

Buspa(f) _ a(tf) ei[wf(tf)—ﬂ/4] : (5212)

\ F i)
We call this expression as usual SPA, abbreviated as uSPA. In the adiabatic approxima-

tion using phasing formulas (5.1.2) it can be shown that,

_ " E'(v)
t _tC+M/vf o (5.2.13)
Uref E/
Vi(ty) = 2w fte — pe + 2 /vf (v} —v?) f((:j)) dv, (5.2.14)
where
vp = (wMf)"? (5.2.3)

and ¢, t. are arbitrary constants. Currently the SPA phase (TaylorF2) U, = ¢¢(ty) —
7/4 is known upto 3.5 PN for comparable mass binaries. For Newtonian signal the SPA

phase is given by,

3
12805

qji\;}a(f) = 27Tftc - ¢c - % + (524)
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5.3 Extreme mass ratio inspirals (EMRIs)

Till now we had not assumed anything about the mass ratios of constituent masses of
the ICBs. The stellar mass compact object inspiralling towards supermassive black hole
(SMBH) is one of the potential sources of GWs for the evolved Laser Interferometric Space
Antenna (eLISA). Such systems are known as extreme mass ratio inspirals (EMRISs).
The GWs emitted from EMRIs can reveal the information about spin, mass and the
environments near the central black-hole. The mass ratio of EMRIs is about 10~ to
1077, For such systems GW emission can be calculated using black-hole perturbation
theory instead of PN theory. Using black-hole perturbation theory for EMRIs one can
calculate the binding energy E and gravitational wave flux F with more PN accuracy
than PN theory for comparable mass ICBs. Gravitational waveforms for a test mass
circling around Schwarzchild’s black-hole, have been calculated till 22 PN using black-
hole perturbation theory [4]. Recently Vijay et al [8] have come up with different template
families (TaylorT1, TaylorT2 TaylorF2 etc) till 22 PN using the 22 PN expressions for
energy and flux computed in ref[5]. 22 PN expressions for dv/dt, gravitational wave phase
¢ and uSPA phase U, for EMRIs are available online |8].

5.4 Adding corrections to the uSPA phase for EMRIs

Note that, while deriving the uSPA formula (5.2.12) we have used the truncated Taylor
expressions for the phase ¢(t) and amplitude a(t). DIS[3] have retained the next two
terms in both the expansions ((5.2.10),(5.2.9)) and calculated the integrals (5.2.7). They
have proved that it is equivalent to multiplying the uSPA by a phase factor e”. So 4 is
basically the correction to uSPA phase ¥, and is given by,

1 la 1lafF 1F 5<F>

T 2rE(;) | 2a  2aF 8F 24

7 (5.4.1)

t=ty

where @ indicates the time derivative of a(t) and similarly for F(t). I refer to 0 as the
first order correction term.

As mentioned earlier, Vijay et al |[8] have calculated the uSPA phase U, for EMRIs
till 22 PN order, without considering this intrinsic correction §. In the 2" part of project
[ am computing the corrections to the uSPA phase ¥, for EMRIs using the first order

correction term § (5.4.1).
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5.4.1 Procedure

For a moment let us concentrate on correction term ¢. It has to be evaluated at ¢;. Note
tr (5.2.13) is a function of vy (5.2.3) but in SPA approximation it is equal to v (5.1.1)
as Fourier variable f is same as the gravitational wave frequency F'. So to calculate the
correction term 0 we first have to calculate ¢; (5.2.13) and then calculate a, F' which will
be the functions of v. But explicit calculation of ¢; is not necessary as explained below.

The § requires amplitude (5.2.3) and gravitational wave frequency F'(5.2.2). Since the
amplitude (5.2.3) is the function of F, it means that we ideally need only instantaneous
gravitational wave frequency F(t) (5.2.2) for the calculation of 0. Since we know the
gravitational wave phase ¢(t) till 22 PN 8| as a expansion in parameter v, we can compute
F(t) till 22 PN using (5.2.2). So we will have both a(t) and F'(¢) till 22 PN as an expansion
in parameter v. The time derivatives are calculated using the chain rule and expression

for dv/dt which is again expansion in parameter v, for example

b dF _dFdv

= = 4.2
dt dv dt (54.2)

So we will have the all the terms in § as functions of v directly. So we do not need
to calculate t; separately. As I have said earlier from gravitational phase ¢, we can
calculate F using (5.2.2) and from F' we can calculate amplitude a using (5.2.3). For
EMRIs gravitational phase ¢ is available till 22 PN in [8] as an expansion in parameter
v. To calculate correction to the uSPA phase U,,, for Newtonian signal we need to put
Newtonian amplitude and Newtonian frequency F' (which are calculated using Newtonian
phase ¢.) into first order correction term 6(5.4.1). Droz [6] et al have calculated the first
order correction (0) to uSPA phase Wy,, for Newtonian signal. Using the method of
steepest descents |7| they showed the first order correction d to be (92/45)nv°, and they
also showed 2"¢ order correction term is of the order #'°. So compared to uSPA phase
U, for Newtonian signal (5.2.4)the correction is less by a factor of order v~'°. Since for
Newtonian signal 2"¢ order correction term appears at the order 9'°, so I am assuming
that for all post-Newtonian signals (PN) the 2"¢ order correction term will appear at the
order v'%. So the first order correction § will be accurate till the order +” for all the PN
signals till 22 PN.

I have written a mathematica code to calculate the correction to the uSPA phase ¥y,
for each signals of different PN order. The code takes expression for 22 PN phase ¢ from
[8] as input and calculates amplitude a and gravitational wave frequency F' till required
PN order. It calculates a,d, F, E', F using expressions for dv/dt [8] as explained earlier.
The code calculates n'* PN amplitude a and n'* frequency F using n'* PN phase ¢, to
calculate the first order correction term & for n'* PN signal. The end result for first order
correction term ¢ is expanded in parameter v and is truncated at order v” as at order v'°

second order correction terms appear.
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5.5 Results and Discussion

The mathematica code that I have written, takes n (PN order) as argument and gives
first order correction term ¢ as a function of n. I am displaying the results for PN orders

starting from Newtonian signal.

5[0] = 924V5UB+O(U)10, (5.5.1)
5[0.5] = 924V5U5+O(v)10, (5.5.2)
5[] = 924V5@5+17g§§gv7+1263987110221y09+0(v)10’ (5.5.3)
g = B IO
S W TN
o = B TOT S T

The first order correction to the uSPA phase W, for Newtonian signal is in agreement
with the result derived in [6].
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Notations

Greek letters stand for the spacetime indices and Latin letters for space indices.

Subscript I denotes the multi index consisting of [ spatial indices each ranging from

1 to 3, therefore I, = I;, ... s, Ior—1 = lgiy . s,_, and xp = x;, -+ - @4,

The angular brackets (---) around the indices indicate the symmetric and trace
free (STF) projection of the expression with respect to those indices i.e z,v; =

1 1
3 (v + T5v;) — 305X - V.

If any index is underlined in the angular brackets (---) that index should be ex-
cluded from STF projection. e.g. Tiiq;) = %(ij + Tai) — %5ikaak-
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