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Introduction

This document compiles some theorems and proofs primarily related to measure-theory
and geometry in view of a part of my reading project done at TIFR CAM, in the context
of my MS Thesis at IISER Pune.

With the assumptions of the basic knowledge on Measure Theory, Functional Analysis,
and Linear Algebra, this document proves the extension of measures from a variety of
family of sets, Taylor’s formula, the Change of variables among the spaces of the same
dimension, some properties of functions which are absolutely continuous and the Inte-
gration by parts. It also gives an insight via a compilation of some theorems and proof,
of, the Fubini and Tonelli theorem( without the use of the monotone class lemma), the
Radon-Nikodym theorem and the Radon Nikodym derivative, some covering theorems
and some of the important properties of Lipschitz functions, namely the Rademacher
theorem. It also has information on the dimension of fractals ( going with the name of
Hausdorff dimension), the Isodiameteric inequality, which is further used to prove the
change of variables formula among spaces of a different dimensions, which goes by the
name of the Area and the Co-Area Formula.

Most of the materials in this document are taken from the references mentioned at the

end of this document.
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Some Notations and Conventions

RTL

The n dimensional euclidean space.

dr = dzxi.dzy ... dz,

The n-dimensional lebesgue measure on R"”

cr The n-dimensional complex space.
B The ball with the center as that of B,
but with the radius 5 times of B
GL,(R) The group of n x n invertible matrices with real entries.
A The topological closure of the set A.
A° The topological interior of the set A.
0A The boundary of the set A := A — A°
m Measure defined in the definition
(m|A) Measure restricted to the set A as in definition
Dyv Density of v with respect to u
Lr Lebesgue measure on R"
a(n) Lebesgue measure of a unit ball in R”
Card(K) Cardinality of the set K
MCT Monotone Convergence Theorem
DCT Dominated Convergence Theorem
Xa Charecteristic function with respect to the set A
H™ The n dimensional Hausdorff measure.
diam(B) The diameter of B
Sa(A) Steiner symmetrisation of A w.r.t the plane P,
[ f inf{ [ ¢ ; ¢ is simple and f < ¢}
[[L]] Jacobian of L
C.(X) Real valued continuous functions with
compact support on X
Ck(X) Real valued k times differentiable functions
with compact support on X
a.e almost everywhere

viii



Chapter 1

Pre-Requisites

1.1

Linear Algebra

V' is a Vector Space over a field F , generally considered over R or C,
if Ve,y € V and Vo, 8 € F,

Denote ax + Sy € V as the joint binary operation on V'

Basis of a vector space V is defined as a collection of elements of the vector space
such that the collection of elements are linearly independent and spans the whole

V' by finite linear combinations.

V' is a finite dimensional vector space if there exists a basis for V' which is finite

by cardinality.

If V and W are two vector spaces, T is a linear transformation from V to W if

T(ax + py) = oT'(z) + BT (y), with the usage of notations as in previous points.

A subspace S is a subset of a vector space V and is a vector space itself, that is,

ScVandforalz,ye S, a,8€F, ax+ By € S.

ker(T) :={x €V | T(z) =0} and Range(T) :={y € W | Iz € V,T(z) = y} are

examples for subspaces of V. and W respectively.

If V is finite dimensional vector space and given any two basis of it, one can
transform from one basis to another in matrix representation, by an invertible

matrix called change of basis matrix.



e Rank-Nullity theorem : For a linear transform defined earlier on a finite dimen-

e For a subspace W of V', W is said to be invariant under T if TW C W.

e A complex (Real) vector space H is called an inner product space if Vz,y € H,

sional vector space V', we have

dim(V) = dim(ker(T')) + dim(Im(T))

there is an associated complex number (real number), denoted by < z,y > called

the inner product with the properties:

- <z, y>=<y,r>

- <ar,y>=a<z,y>forallz,ye HaecC

—<z,x>>0forallz e H

One can define norm on H by ||z||? =< z,7 > and hence, one can define distance

<z, x>=0 <= =0

on H by d(z,y) = ||z — y|

Cauchy Schwartz inequality: For a inner product space defined in the earlier point,

| <@,y > <2l llyll ; for all 2,y € H

H is a Hilbert space if it has an inner product structure and is complete by the

convergence of every cauchy sequence in H with respect to the metric defined

above.

If H is a Hilbert space over R, then H is called real Hilbert space.

Every linear map T over finite dimensional space V', spanned by the basis {e1, ea, . .

<z+y,z>=<zx,2>+<Y,z>

resented by a m x n matrix which is given by

where a;; is defined by

ai

a21

am1

a12

a22

Aln

A2n

mxn

T(el) = Zajifj for all 1 < ) <n

j=1

© e’n}v

to a finite dimesional space W, spanned by the basis {fi, f2,... fim}, can be rep-



e Let GL,(R™) be the set of all invertible matrices over R. Any T' € GL,(R") can

be written as product of finitely many elementary transformations of the types:

— 1:T(xy, 20, .y gy ..o ) = (21, T2, ..., CT4y ... Tp) 5 ¢ # 0
—1II: Tg(xl,xg,...,a;i,...a;n):(xl,xg,...,a:i—i—cxk,...xn), k#£i
— I : T3(z1, 20, ..., @4y, Tj o Tp) = (T, T2, .., T,y T T

e Let S, denote all bijections from {1,2,...n} to {1,2,...n}. S, forms a group
under composition. Any element of S,,, called as permutation, can be decomposed
as product of transpositions, where a transposition is defined as an element of S,
which just interchanges two elements of {1,2,...n}, keeping the other elements
fixed. For a o € S,, we define sgn(c) = (—1)" ; where m is the number of
transpositions in the decomposition of o. Here,for an element of S, the sgn is
invariant of representation by composition of transpositions.

An important property of sgn is for any two elements ¢ and 7 in S,, we have
sgn(o o 1) = sgn(o)sgn(r)

e Determinant of a matrix A of order n X n : is a multinlinear map D from
C" x C" x ...C", times to C with the property : for all R;,L; € C" , 1 <i<n
and for all o, 8 € C

— Multilinear : For all 1 <7 < n,
D(Rl,Rz,...,aRi—}-ﬁLi,...,Rn)

OéD(Rl,RQ,...,Ri,...,Rn)+BD(R1,R2,...,LZ',...,R”)

— Alternating : For all 1 <i,5 <mn,
D(Ri,R2,...,Ri,...,Rj,...,Ry,) = (—1)D(R1,Ra,...,Rj,...,Ri,..., Ry)
— Define E; = (0,...,0, Lith place; 0, - . ., 0) € C", we have
D(Ey,Es,...,E,) =1

e Some properties of determinant includes :

— Let A be a nxn matrix. The determinant of A, denoted by det(A), is defined
to be D(Ry, Ra, ..., Ry), where R; is the ith row of A.

— Let 0 € 5, then

D(Ra(l), RJ(Q), ey Ro(n)) = sgn(U)D(Rl, RQ, oo ,Rn)



Let A = [aijlnxn, then

n

det(A) = > sgn(o) [ [ a0

gESy i=1

det(AB) = det(A).det(B)

For A to be invertible,
det(A™!) = det™1(A)

If AT is the transpose of the matrix A = (a;5) ,
given by (aj;), then
detA = det(AT)

For a to be an element in the field,
det(ad) = a"det(A)

Determinant of diagonal matrix, triangular matrix (upper triangular or lower
triangular matrix) is product of elements of the principle diagonal elements
of the matrix, that is, if the matrix of order n x n is given by (a;;j)nxn, then

the determinant of it is [[;" ; ai;

Invariance of determinant with regard to the basis:

For a linear transformation S and for a basis of the n—dimensional vector
space V', say {ej,ea,...,e,}, denote the matrix representation by [S]. For
{f1, f2,---, fn} to be another basis, and [S’] to be the representation of S
in the new basis, then there exists an invertible matrix, P, such that [S] =
Po[S]oP L.

And hence, by the properties of determinant, mentioned earlier, we have
det([S]) = det([S'])

For a linear transformation S and the basis {ej, es, ..., e, }, denote the matrix
representation by [S]. Then the charecteristic polynomial of S is a polynomial

of degree n with the variable A, given by

det (unxn - [5]>

The roots of the above polynomial are called the eigenvalues of [S] and det([S])
is precisely the product of eigenvalues. The trace of [S] denoted by T'r([S]) is



given by Y1 [S]; i.e the sum of the diagonal elements of [S] = ([S];;)

nxn’

which is precisely equal to the sum of the eigenvalues of [S].

For an inner product space V, with the inner product defined by <, >, we say
a,b € V is orthogonal, denoted by a L b if < a,b >= 0.
Two sets A and B are said to be orthogonal, if a L b for all a € A, b € B.

For a linear transformation T" from H to H as defined earlier with H to be a finite
dimensional Hilbert space, we define the adjoint of T', denoted by T, as a linear

map which satisfies

<Tx,y>=<uz,Ty> Ve,yc H

Let {V,<,>} and {W, (,)} be two finite dimensional Hilbert spaces with the cor-
responding inner products <, >, (,).

O is called an orthogonal transformation if for all v1,ve € V, we have

(O(v1), O(v2)) =< v1,v9 >

Let O : V — W be an orthogonal transformation and let v1,v9 € V, then

< V1,V >= (O(’Ul),O(Ug)) =< O*O’Ul,’l)z >

Some properties of the orthogonal transformation :

— O*0Owvy = vy, for all v1 in V. Hence O*O = Iy, where Iy, denote the identity
map from V to V.

— Let W be the range of O. Then there is a x € V such that w = O(z). Hence,
O0*(w) = 00*(0Ox) = O(0*0O(z)) =O0(z) =w

Thus OO* is precisely the identity map on the range of O.

— With the orthogonal basis of the vector space fixed, O represents a matrix

called the orthogonal matrix.

Let H be a finite dimensional Hilbert space with the inner product <, >. Let the
dimension of H be n. Let V, W be finite dimensional subspaces of H such that
k=dim(V)=dim(W). Let T : V — W be an orthogonal transformation. Then,
there is an orthogonal transformation ) : H — H such that @ =T on V.

In order to prove this, let {e1,es,..., ey} and {f1, fo,..., fn} be 2 orthonormal
basis for H such that



— span{ei,ea,...,ext =V

—Tei:fiforlgigk.

Define Q : H — H by Q(e;) = f; for all 1 < i < n. Then @ is orthogonal and
Q(e;) = T(e;) for all 1 < i < k. Hence, @ is the required orthogonal transforma-

tion.

e Spectral theorem : For V' a finite dimensional Hilbert space with <, > as inner
product, let 7' be a linear, self adjoint operator i,e T* = T and p(\) be the
charecteristic polynomial of 7', with A1, ... A; having multiplicities mi, mo, ... myg
be the distinct eigenvalues of T.

Let
The \; eigen space of T : V), = {v € V | Tv = \jv}

then

dim(Vy,;) = m;, Vi

\; € R, Vi

Vi LWVa,, i #J

V=1, ®D BV

e Remark to the above point: If A is a real symmetric matrix, the above theorem
holds for A and also that A is diagonalizable, that is, there is P orthogonal matrix
and D diagonal matrix such that A= PoDo P! .

e Riesz Representation theorem : Let (V, <, > ) be a finite dimensional Hilbert space
and L :V — V be a linear transformation.
Then Jlw € V s.t L(v) =< v,w >,Yv € V.

e Define (standard) inner product for x = (z1,...,z,) € R" and y = (y1,...,yn) €
R™, called the dot product of x and y as

n
Ty = inyi eR
1

1.2 Calculus involved in Linear Algebra

Theorem 1.1. Polar Decomposition :
For L : R™ — R™, linear transformation, L can be decomposed as the following, in the

cases given below :



en<m,

L=0oS
where O : R™ — R™; orthogonal, S : R" — R™ Symmetric

en>m,

L=S00*"

where O : R™ — R™; orthogonal, S : R™ — R™ Symmetric

Proof. Consider the case n < m. Consider C = L*o L : R* — R"
(Cx).y = (L* o Lx).y = Lx.Ly = z.(Cy)

Hence C is symmetric.
(Cx).x = Lx.Lx >0

And hence the eigenvalues of C are non negative. This concludes that C' is symmetric and
non negative definite. Hence, there are Aq,..., A, positive and there is an orthonormal
basis {z1,...x,} of R" with Cz; = A\x;

W.L.O.G assume that A; # 0 for i < s and A\; = 0 for s < i < n.

For i < s, define

ui:"i‘\/)‘»i

o-u(3)
Uj
Uq

1 1, W;

Then, for 1 <1,j < s,

Hence, {{1,...,&s—1} is an orthonormal set of R™. Let {&,...,&n} C R™ be such that

{&,...,&n} forms the orthonormal basis of R™.
Declare S on {z;} as
ij = UjT;
and O as
O$j = £j
Then O is orthogonal and S is symmetric. Furthermore, for 1 <i < s,

(O @) S)(I‘Z) = O(uzxz) = UZO(.%Z) = U4 sz = Lacl-

U




And, for i > s,
(00 8)(zi) =0(0) =0 = La;

Hence, L = O o S and this completes the proof for the case n < m.
For the case n > m, repeat the proof for L* : R™ — R" to get the corresponding .S and
0. O

Definition 1.2. Assume that L : R™ — R™ be linear.

o If n < m, declare L = O o S as above and we define the Jacobian of L to be

[[L] = |detS]

e If n > m, declare L = S o O* as above and we define the Jacobian of L to be
[[L]] = |detS]

Theorem 1.3.

o Ifn<m, then
[[L]]? = det(L* o L)

o Ifn>m, then
[[L]]? = det(L o L*)

Proof. For the case n < m, declare L = O o S. Then L* =5 o O* and hence
L*oL=S00*0008=5"

Using the property of orthogonal maps, that is O* o O = I, we get,
det(L* o L) = det(S?%) = [[L])?

The case of n > m, is similar to the previous one, but consider L o L* and repeat the

proof as above. O

Remark 1.4. If L has another representation of S and O, then the previous theorem says

that the [[L]]? is independent of the representations and [[L]] = [[L*]].

Definition 1.5. Let L be a linear map from R” — R™,



e If n < m, then define

A(m,n) :=={X:{1,....,n} = {1,...,m} | Ais increasing }
e For each A € A\(m,n), declare Py : R"™ — R" as

Py(z1, - @m) == (@A) - - Ta@m))

Theorem 1.6. Binet - Cauchy Formula :

Assume n < m and L be a linear map from R™ — R™ Then

=3 (dem o L>)2

AEA(m,n)

Proof. With respect to the standard basis on R™ and R™, write the matrix as

L= ((li5)) sn
A=L"o L= ((ay)),,,

Hence, the (i,7)"" element of A turns out to be precisely

m
aij = Y lilk
k=1

Thus, by the definition of determinant,

HLHZ = detA = Z sgn(o) H Qi o (1)
i=1

UES’n
where S,, denotes the permutations of {1,2,...,n}. Hence
n m
[[LH2 Z Sgn H Z lkllkd (3)
oESH i=1 k=1

Z sgn(o H hilio@) + lilao@) + 7 + bnilmo(s)]
i=1



[11lio(1) + l21loo() +  + bt lino (1)) \
X
[l12l10(2) + l22la0(2) + +++ + Im2lmo (2)]
= Z sgn(o) X
€Sy,
X
[ U1nlio(n) T l2nlog(n) + + lnnlmo (n)]

=Y sgn(o ZH% loyo + Y L1 ls6)ilo)o)]

oceSy, ped i=1 p¢d i=1

=Y sgn(o ZH% wilswom + O s91(0) > [ lewile.ot)

oceSy ped i=1 oES, Pgdi=1
=1L+ I

where ® := { one - one mappings of {1,2,...,n} into {1,2,...,m} }
Finite sums can be interchanged and hence

=Y Y sgn(o H 6(i),il(i).0 (i)

P¢d oES, 1=

=>. (H loiys Y, sgn(o )H%(i),o(z'))

gD o€Sy i=1

For ¢ ¢ ®, denote the matrix A(¢) = ((ai;(¢))), where

aij (@) = ly(i).j
Then,

det(A(¢)) = D sgn(o)are() - - an.o(m)

oeSy

= Z sgn(o)ly(1),0(1) - - - lp(n),o(n)

oeSy
Now, since ¢ ¢ ®, there is some iy # j, in {1,2,

.,n} such that ¢(ig) = ¢(jo). Hence,
if R; denote the ith row of A(¢), then

Riy = (aig,1(#), - - - » aig n(9))

= (lp(io),15 - - - » Lg(ig)m)

(p(o),15 - - Lo(jo)n) = Rio
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Two rows are same implies the determinant, det(A(¢)) = 0. Thus, I can be taken to

be zero and I; only survives in the sum. Hence,

=Y sgn(o ZHIW ilo(i),o

geSy ped i=1

Now we use the fact that for each ¢ € ®, it can be uniquely written as ¢ = X o § where
0 €S, and A € A(m,n). So,

[L))? = Z sgn(o Z Z Hl,\oe ilxod(i),0 (i)

ceSy /\GA (m,n) 0€Sy, i=1
SDIRICID SHD BY | TR
0ESy AEA(m,n) 0ES, i=1

= D > D somlo le OLYORZO)

AeA(m,n) 0ES, 0€ES,

Letting p = 0 0 0, we obtain,

= D > > sgn(@)sgnlp Hl (0),0)IA(0),0()

AEA(m,n) pESH OES,

Z (Z sgn(0) HZA(i),G(i))Q
=1

AEA(m,n) 0ES,
= Y (det(PyoL))’
AeA(m,n)

O]

Remark 1.7. To calculate [[L]]?, we compute the sum of squares of the determinants of

each n X n - submatrices of the m X n - matrix representing L.

Definition 1.8. Let U C R" be an open set and f : U — R™ be a map. Let g € U.
f is said to be fréchet differentiable at x if there exists A : R™ — R™, a linear map such

that,
Given € > 0,3§ > 0 such that

[1f (zo + h) — f(z0) — Ah|| < €[h]

whenever |h| < §

Here, ||.|| denoted the euclidean norm in R™ and |.| denoted the euclidean modulus in

R™.



(xo) exists and

Lemma 1.9. Let f = (f1,..., fm) be fréchet differentiable, then ;ﬁz

-y ; ]
G(mg) Bi(ag) ... Hi(ay)
d di d
L Eo) ) )
dfm dfm dfm
o) fata) o)
Proof. Let ] _
ail a2 ... Gip
A a1 a2 ... Q9n
_anl an2 ... ann_

and e; = (0,0,...,1,...,0) , i.e having 1 at the ith position.

Then _
ain a2 ... ap| |0 ai;
a1 G2 ... G2 : ag;
Aei = " = '
1
_anl an2 ... ann_ _ani_
0
Let h = ne; , then | o
ai;
ag;
Ah =nAe; =n '
_anz_

Hence, _
ai;
az;

|[f(zo + h) — f(zo) — AR|| = || f(zo + mei) — f(xo) —n | ||l
—ani—

Ji(xo + he;) — fi(zo) — nain

fo(xo + he;) — fa(zo) — nagy,
= : <elnl; Vinl <6

fm(wo + he;) = frn(T0) — Namn
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= |fj(wo +me;) — fi(zo) — najil <elnl; Vin| <0

n
_ df
— aj; = dz; (1‘0)

This proves the lemma.
O

Definition 1.10. f: U — R™ is said to be fréchet differentiable in U if Vz € U, f'(x)

exists and is given by

[ d d d ]
o O o OB I
dj dj dj
) - P(g) @) ... L)
EACEE ORI 0]

which is called the gradient matrix of f at x.
Remark 1.11. For f linear map, i.e f(z) = A.x, f/(x) is same as A for all z.

Definition 1.12. For f : R® — R", assume f to be fréchet differentiable at x, then,
for the gradient matrix D f(z), defined as above, which is a m X n matrix, we define the

Jacobian of f at x, denoted by Jf(x), to be
Jf(x) = [[Df(2)]

Remark 1.13. f is fréchet differentiable at zg implies that all the partial derivatives of
f exist at xg.
The converse is not true, in general.

Counter-example : Consider the following function,

f(:c,y):{xffy? if(fv,y)#(o,o)}
0 else
Here, . .
df o oy = S0 = f(0.0) _
--(0,0) = - .y
4 0.0y = £0.m) = f(0,0) _
ay " 7 0
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And hence, (%(0,0), %(0,0)) exists.
Suppose f is fréchet differentiable at (0,0), then ,
daf df

f/(()?O) = (%(0,0), @(070)) = (07(])

Declare 0* := (0,0) € R?, then
|£(0" + 1) = f(0%) = f/(0")A] < e[h] ; V|| <&

= [f(R)] <elh]; [n] <6

Let h = n(1,1) = (n,m). Then [h] = \/@)ln| <5 = In| < §/v2
Thus, f(h) = f(h1,h2) = f(n,n) = 1 and this implies 1 = | f(h)| < (v/2)en.
Let n — 0 to get a contradiction.

Theorem 1.14. Let f: U C R® — R™ be a map such that

° %(m) exist, V1<j<mV1<i<nVzeU

df; . .
°r— %(x) is continuous.
K2

Then f is fréchet differentiable in U and as a m X n matriz,

df;

dz; } 1<j<m,1<i<n

ra =i

Proof. Denote
df ;
6o) = ()
Li J1<j<m,1<i<n
By the second point in the hypothesis of the theorem, G is continuous and hence, Vz € U,

given € > 0,39 > 0 such that

|Gz +h) —G(2)|| <€ V|h| <9

Now, it is enough to show that Vj, f; : U — R is differentiable. Hence, consider for
the case m =1,1.e f: U — R and (ddTiv . %)(m) exist and is continuous, as per the

hypothesis of the theorem.
Let € U and § > 0 such that B(x,0) C U . Let |h| < 0, then x + h € B(z,d) C U.
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Let = (hy,...,hy) and G(z) = ({L ... 2L )(2). Consider

dx1

flx+h)—f(z)=flxr1+h1,..., 20+ hy) — f(z1,...2)

= f(.ﬁUl+h1,.%'2+h2,$3+h3,---,-’1)n+hn)—f(x1,$2+h2,...,$n+hn)
+f(w1, 29+ hay ooy + hy) — f(@1, 22,03 + hg . 2 + hy)

+f(z1, 0,23+ h3 ..., 2y + hy) — f(z1, 22,23, ..., 2y + hy)

+f(x1, .o X1, T+ hn) — f21, .. p)

n
|:f(£1?1, e, L1, xi—i—hi, xi+1+hi+1, - ,.,”Un—i-hn)—f(.%'l, e, L1, X4, l‘i+1+hi+1, - ,xn—i—hn)
1

1=

Thus,
flx+h)— f(x) — G(z).h

n

= [f(ﬂﬁl,«'-,%‘1,$i+hi,$i+1+hi+1,--~,$n+hn)

i=1
—f(.%’l, ey Xi—1, Tjy Tig1 + hi+1, ey T+ hn)
d
_di (113‘1, . ,.’En)hz]
df
—Zh (1, w1, @+ thy, i1 + hig1, .., 20 + hy)
0 dZEz
d
—d7£($1, o ,l‘n):| dt
Now, since ddT{: is continuous, for a given ¢ > 0,35 > 0 such that
dj dj
V|h| <4, df (w1, i1, @ A thy, Tipr + higr, oo T+ hy) — d—i(xl, o Ty)| <€
— |f(z+h) = f(z) = Gla).h] <D |hil), VY bl <&
i=1
This tells that f is fréchet differentiable and f' = G
O

Theorem 1.15. Let U C R” open, V C R™ open.
Let f:U —=V ,g:V — RP be two fréchet differentiable maps. Then go f: U — RP is
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fréchet differentiable and as linear maps,
(g0 f)(x) =g'(f(x))o f(x)

Remark 1.16. For fixed x, f'(z) : R™ — R™ is a linear map and ¢'(f(x)) : R™ — RP? is

a linear map. Hence,
g'(f(z))o f'(z) : R* - RP

is a linear map.
EXphCltlyv let f = (f17f27 .. fm) , 4 = (917927' .. ’gp)'

Then, in their respective coordinates,

(i) B@) .. L)

fio) jf;;:c) ;Z;(x) ()

(@) P2(e) . )]

[dn(y) dn(y) ... don(y)]

/() = 2(y) flii.(y) jjé(y)

) ) . 2w

Hence,

(@) U@ o gmee)] [ B )]
S @ef (o) — | BUED EUE) - @) jgm gg<x> gg;w
(B0 (f(2)) B(f@) ... e (f@)] L) L) . dm)

" dgi df;
- | e

j=1 ]léiﬁp ; 1<I<n

Proof. Proof of the theorem :
Let
flx+h) = f(z) = f'(x).h = e(h)

By the differentiability criteria,

le()]
|h]

—0as |h|—0
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Also, f(z+ h) = f(x) + f'(x)h + e(h) holds and hence,

g(f(x+h)) = g(f(z) + f(2)h + e(h))

Let
n=f'(x)h+e(h)
Then,
g(f(x+h))=g(f(z)+n)
So,

g(f(@ +h)) = g(f(2)) = g'(f (@) f"(x)h
=g(f(x) +n) — g(f () — ¢'(f(2))f'(x)h
=g'(f())n+bn) — g (f(x))f'(2)h
=g (f(x))(n = f'()h + b(n))

where % — 0 as [n| — 0.

Looking at n , n = f'(x)h +e(h) = |n| — 0 as |h| — 0 and
l9(f(z + 1)) = g(f(x)) = ¢'(f(2))f (x)h]

= lg'(f(x))e(h) + b(n)|

< (lg'(f@NIT+ D((e(R)] + [b(n)])

9(f(z + 1) = 9(f (@) = g'(f(@) f'(@)h] _ [lg'(f (@)l + Dle(r)] + [b(n)])
Id N Id

As |n| = 0 as |h| — 0, the RHS of the above inequality tends to 0.

Thus,

Hence g o f is differentiable and

(g0 f)(z) =g (f(x))f ()

Example 1.1. let T : R™ — R™ be a linear map given by

ti1n tie ... tin 1

tor to2 ... top T9

tml th tmn_ _.’En_
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Then
T/

|
N~

Proof.
T(x+h)—T(x)=T(x)+T(h)—T(x) =T(h)

T is linear and by above,
T(x+h)—T(x)—T(h)=0

This tells that by the definition of the differential, 7" =T

1.3 Taylor’s formula

Notations 1.17. e For Q C R,

CF(Q) :={f: Q=R ; fisk times differentiable for all points in 0}

e Closed line segment [a,b] := {ta + (1 — t)b;t € [0,1]}

e Fora=(ai,...,a,) € N", define

Do - d (a1) d (a2) d (an)
©\dn dza T \dzy,

al = aqlas!. .. ap!

o — a ., 01 02

4 = (21, 22,...,0p)" =725 x,
la| i=a1 + a4+ oy

Theorem 1.18. Taylor’s formula:
Let Q be open in R™ and f € CF(Q). Ifz,y € Q and the closed line segment [x,y] joining

x to y is also in §,then,

a T — ) 1
f@ = Y EI0 e 3 EE L+ oy - o

O[' — 0
o <k—1 o=k



19

Lemma 1.19. Let N be a neighbourhood of the closed interval 0 <t <1 in R and let
g € CF(N), then,

k=1 (8) 1
o= T a0t
Dy |

where g*¥) (x) denotes the k-th derivative of g at .

Proof. Integrate by parts, k many times to get :

1
T _1 O /O (1 —t)* g™ @)at

(k1) .
- _g(k - 1(?!) e —1 2)1 /0 (1—t)F2g"V()dt

k=l () 1
N ,,(0)+/ g (t)dt
= J: 0
k—1 j 0
— -2 ) g0)
=0 7
Hence,
k=1 G) (o 1 1
s =Y s L [t ar
= (k=1!Jo

Lemma 1.20. Letn>1, k>0, £:=(&,&2,...,&,) € R" | with £ € A", where A is a

commutative algebra, then,

@+t +&) =R S

Proof. of the lemma : Fix k and the proof is by induction on n. For n = 2, by the

binomial theorem,
n

(& + &)" Z 515

= k! Z %;foraz(r,kfr)
laj=k

Assume now that the lemma holds upto n — 1 and let n = & + &3+ - - - 4+ &,, then,

G +ba+-F+&E) =G+ =k Z ﬁ apb

a+b=k
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=k > %%(gﬁ...gn)b

a+b=k

&Ll &' ... &
—ny Sy St
I p! | |
arb—k a! b BottBr—b 62. v 511
B E3E57 ... Enn
=KD ) alBil. .. B!
a+b=k Ba+-+Bn=b "
_ &
=K ol
IvI=k

This proves the lemma.

Corollary 1.21. Let

0 0
L= (f—— 4o g b
(&1 Fr. + € 8%)

be the first order differential operator . Then

Lk =k Z %DO‘

la|=k

Proof. Let
0 0

n= (8751’ ceey %)
Apply the lemma to (£1m1 + -+ + &) to get :

LF = (& 4 - 4 &amn)*

g Y S

ol . .ap!

Proof. of the theorem. Let x,y €  such that ty + (1 —¢)x € Q for all ¢ € [0, 1]. Let
g9(t) = f(ty + (1 —t)z)

Then7 g(O) = f(l‘)ag(l) = f(y) Let gz =Yi — Ty, then7

dg <=0
=2, ) )
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— (glail T .. .gnai)f(a: +t(y —x))

Hence, from the corollary, we have,
D0 bt Y (il — )
— = 181'1 Ce nax y

n

=Y St iy - 0)

laf=j
From the lemma 1.19 , we have,
k=1 G) (o 1 1
s =3 0 s [ - o
= I (k=1 Jo

afio ! 1
- ¥ Hu-ar s i [ pehen- o

la|<k—1

“f(x — ) 1
= Z Dj!( )(y_x)a+k’z(ya!)/0(1—t)k_1D°‘f(:r+t(y—x))dt

lor| <k—1 |o|=k

This proves the taylor’s formula.

1.4 Some pre-requisite calculus.

1.4.1 Semi-continuity

Definition 1.22. Let (X,||.||) be a normed space and f : X — R be a function. f is

called lower semi-continuous at y if
Ve, 30> 05|z —yl <6 = f(zx) > fly) —€

Definition 1.23. Let (X(,||.||) be a normed space and f : X — R be a function. f is

called upper semi-continuous at y if
Ve,36 > 05 |lz —yl| <6 = f(z) < f(y) +e

Theorem 1.24. f is lower semi-continuous aty <= for all x, — y, liminf, . f(x,) >

f(y).
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Proof. Let f be lower semi- continuous and let y € X. Let z,, — y, that is, ||z, —y|| — 0
as n — 00. Let € > 0 be chosen and fixed for the argument.

Then, there is N € N such that, for n > N, ||z, — y|| < J, where J is chosen as per the
definition of lower semi-continuity, i.e 39, for the fixed €, with f(x,) > f(y) —e. Thus
for all n > N, f(x,) > f(y) — € and hence,

inf f(@n) > fl) —e

. . > —
— nlg]go Igif(ﬂik) > fly) —¢

= liminf f(2,) > f(y)

Coversely, suppose that f is not lower semi-continuous at y, then, there is € > 0 such

that for any 6 > 0, there is x5 with

lzs —yll <0 = f(xs) < fy) —€

Let 6 = % and denote x, = x5.

= liminf f(z,) < f(y) —e < f(y)

n—oo

There is N € N, such that for all n > N, ||z, — y|| < § and thus,
— inf f(ra) < f(y) — €
n>N

= liminf f(an) < f(y) — ¢

This contradicts the fact that :

liminf f(z,) > f(y)

n—oo
[
Remark 1.25. f is upper semi-continuous at y <= for all z,, — y, liminf, , f(x,) <

f(y).

The proof is similar to that of the previous theorem, but it has to be applied to the class

upper semicontinuous functions.

Theorem 1.26. f is lower semi- continuous <= Vt, Uy :=={zx € X ; f(z) > t} is

open.
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Proof. Let f be lower semi-continuous and let y € Uy, then f(y) > t. For e suffeciently
small, we have f(y) >t + €. By the assumption , there is 6 > 0 such that

[z —yl| <0 = f(x) > fly) —e>t

Thus,
B(ya 5) - Ut

Thus U; is open.
Conversely, suppose that f is not lower semi-continuous at y, then, there is an ¢ > 0
so that Vo > 0, there is zs such that ||zs — y|| < § and f(zs5) < f(y) — €. Denote
§ =1 z5=u,and t = f(y) — 5. Then there is a sequence {z;,} such that @, — y with
flxn) < fly) —e=1—-5. But f(y) =t+§ >t = y € U;. Thus, there is some r >0
such that B(y,r) C U;. Now, x, — y as n — oo and hence 3N € N such that, for all
n> N, ||z, —y|| <rand f(z,) >t. This contradicts the fact that f(z,) <t - §.

O

Remark 1.27. f is upper semi- continuous <= Vi, U, := {x € X ; f(x) < t} is open.

The proof is similar to the above theorem.

Remark 1.28. This theorem tells that f is either upper or lower semi-continuous implies
that it is measurable, where the definition of measurable functions is given in the next

section.

1.5 Measure Theory

1.5.1 Some set theoretic measure theory.

Let X be a non empty set and P(X) denote the set of all subsets of X.

Definition 1.29. m : P(X) — R* = [0, 0) is called a measure if for all A, B, A; € P(X)

(;i=1,2,...), m satisfies

o m(¢) =0
e Monotone property : If A C B, then m(A) < m(B)

e Countable sub-additivity : If A =[J;2; A;, then m(A) <>, m(4;)

Here (X, m) is called a measure space.
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Definition 1.30. Consider (X, m) to be the measure space as defined in the earlier

point. A set A C X is called measurable set ( or m - measurable set ) if for all £ C X,
m(E)=m(ENA)+m(EnN A
Definition 1.31. A measure m on X is called regular if for all sets A C X, there is a

m— measurable set B such that A C B and m(A) = m(B)

Definition 1.32. A measure m on R" is called borel if every borel set is m— measur-

able,i.e every borel set B satisfies
VACR", m(A) =m(ANB)+m(AN B°)

Definition 1.33. A measure m is borel regular if

e m is Borel

e For all A C R” there is a borel set B such that A C B and m(A) = m(B)

Ezample : For a measure on a topological space to be borel, but not borel regular.
Consider the space to be R with the topology given by just {¢,R}. Associate counting
measure m to the above space. Observe that since, m(R) = oo, m(¢) =0, m({0}) =1,

there is no borel set B, open in the prescribed topology such that m{0} = mB, in measure.

Ezample : For a measure on a topological space such that , there is some borel set
such that it cannot be approximated by open sets.

Consider the space to be R and associate it with the counting measure m along with the
standard topology, generated by open intervals. Note that any open sets can be written
as disjoint union of open intervals. Since, each intervals contain infinitley many point,

counting measure of any open set is by default co. Also, clearly {0} is a borel set. As
m({0}) = inf{m(U) ; {0} CU , U is open.}

LHS = 1. But RHS is always infinity. Hence, {0}, which is a borel set, cannot be ap-

prozimated by open sets from the outside in measure.

Definition 1.34. A measure m on R" is a radon measure if m is borel regular and

m(K) < oo for all compact sets K C R”

Definition 1.35. For X a set and P(X) to be it’s power set, we define F C P(X) to be
sigma-algebra (o - algebra) of X if
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e 0, X €S

o {A}2,eF = U2 AieF

e AcF = A°cF
Definition 1.36. For X a set and P(X) to be it’s power set, we define S C P(X) to be
semi-algebra of X if

e 9, X €S

e ABeS = ANBeS

e AcS = A°= Ufinite B; ; such that B;’s are disjoint and are elements of S
Definition 1.37. For the before defined X and P(X), A C P(X) is called an algebra of
sets if

e A is a semi algebra.

e ABc A= A|UBec A

Theorem 1.38. Caratheodory theorem:
Let (X,m) be a measure space and define A € P(X) is said to be measurable if for all
E e P(X),

m(E) =m(ENA)+m(EN A

Let

F ={ all measurable sets as defined earlier}

Then

F#¢.

e F is a o— algebra.

Countable additivity : If A =\J;2, Ai, with A, A; € F, A;’s are disjoint, then

m(A) = m(4)
=1

Complete measure space : For a set N € P(X), it is called a null set if m(N) = 0.
Here all the null sets belong to F for the above definiton of m, F.

Lemma 1.39. If A and B are in F, then A|JB,A°,B¢ € F, i.e if A and B are

measurable, then A|J B and A€, B¢ is measurable.
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Proof. Clearly, A € F implies A¢ € F, by the definition of measurable sets. Any set (

in particular , here A ) is measurable implies for any C € P(X), we have
m(C) =m(CNA)+m(Cn A%

Notice that it is sufficient that m(C') > m(C N A) + m(C N A¢) holds, is equivalent to
saying that the set A is measurable, as the other inequality follows from sub additive

property. In particular, we have for C' = C' N B¢,
m(CNB°) =m(CNB°NA)+m(CnNB°N A°)
Notice that
CN(AUuB)=(CnNnB)U(CNANB°)

Hence,
m(CN(AUB)) <m(CnNB)+m(CnNAN B

Thus, from the above 2 equations,
m(CN(AUB))+m(CNB°NA°) <m(CNB)+m(CNANB°)+m(CnNA°NB°)

=m(CNB)+m(CnNB°
= m(C)
This proves the lemma. O

Lemma 1.40. For any set A € P(X) and E1,Es, ..., E,, finite sequence of disjoint

measurable sets , we have

m(Am [UEZ-]> 3 m(AN E;)

=1

Proof. The proof proceeds by the induction on n. This is clearly true for n = 1. Assume
that the statement is true upto the case n — 1. For the case of n, notice that E;’s are

disjoint and hence,
n

AN [UEZ} NE,=ANE,
=1

AN [OEZ} NE;=AnN [jU_llEz}

=1
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Hence,
n

n—1
m(Aﬁ [UEZ»]) =m(ANE,) +m<Am Y EZ-]>
i=1 i=1
By the process of induction, we have
n—1

=m(ANE,) + Y m(ANE;)
i=1

This proves the lemma. ]
Proof. of the theorem 1.38:
e F is not empty as trivially X, ¢ € F i.e they satisfy the formula for the measura-
bility of sets, as mentioned in the hypothesis of the theorem.

e F is a sigma algebra :

— Clearly, X, ¢ € F.
— Lemma 1.39 tells that F is an algebra of sets. If {4;}?°, € F, then it is

required to show (7o, 4; is in F.

Declare
A, ifn=1.
B, =
" A, — [U?le AZ} else.
Hence,
UAi = UBZ- , say , it is equal to E
i i
and
B;’s are pairwise disjoint, by construction.
Let

6 U

i=1
Then G,,’s are measurable for all n and E° C Gy, for all n.

So, for any arbitrary set A, we have

m(A) =m(ANG,) +m(ANGS) >m(ANG,) + m(AN E)
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By the lemma 1.40,
n
m(ANGy) =Y m(ANB)
i=1
Thus, combining the above 2 equations , we have
n
m(A) > m(AN B;) +m(ANE°)
i=1
Note that the LHS of the above is independent of n and hence,
[0.9]
m(A) > m(AN B;)+m(AN E°)
i=1
>m(ANE)+m(ANE°)
This proves that the countable union of measurable sets is measurable.

— If A is measurable, i.e it satisfies the formula mentioned in the hypothesis,

A€ also satisfy the same formula as for A and hence A€ € F.

e To prove the additivity of measure of countable disjoint sets {A;}.

i=1 i=1
Hence,
o(04)>(4)
i=1 i=1

With the use of A = X in lemma 1.40,

The other inequality follows form the subadditivity.

e If N is a set of measure 0, then for any A € P(X), m(NNA) <m(N)=0 =
m(N N A) =0. Hence,

m(NNA) +m(ANN) =m(ANN°) <m(A)
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Hence all null sets are measurable.

Lemma 1.41. Let S C P(X) be a semi algebra. Let

A={UL, 454 €5}

Then A is an algebra.
Proof. ABe A —= A= Ule A; and B = Ué.:l Bj. Hence,

e ANB=\J;;(4iNBj) € Aas S is closed under finite intersection.

e AcS = A= Ule A;, A; € S, by the property of semi algebra and hence
A e A

o Let A= A; € A then A°=nF A5 A5e A — Acc A

Hence A is an algebra.

O]

Definition 1.42. A is called the algebra generated by S, constructed as in the previous

lemma.

Theorem 1.43. Let m be a reqular measure on X. If
A CAC---CA,C...

then
hm m(Ag) = U Ag)

Proof. Since m is regular, there are measurable sets {Cj, } 32, with A, C Cj, and m(A4y) =
m(C%) for all k. Declare
B, = ijij

Then, Ay C B C Cj, and each By is m— measurable. Also, m(Ax) = m(By). Thus,

hm m(Ay) = hm m(By) = ( U Bk) > m( U Ak>
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Note that Ay C J;Z; A;. Hence,

Jim m(Ag) < m( G Ak;)

k=1

Remark 1.44. Here Aj’s need not be measurable.

Definition 1.45. Let m be a measure on X and A C X. Then m restricted to A,
written as

(m|A)

is the measure defined by
(m|A)(B) :=m(ANB) ; forall BC X

Lemma 1.46. Let m be a borel, reqular measure on R™. Suppose A C R"™ is m—

measurable and m(A) < co. Then (m|A) is radon measure.
Proof. Declare
m = (m|A)

Since every m— measurable set is Ti— measurable, 77 is a borel measure.
Claim: m is borel regular.
Proof of the claim : Since m is borel regular, there exist a borel set B such that A C B

and m(A) = m(B) < oo. Since A is m— measurable,
0=m(B) —m(A) =m(B — A)

Choose C C R"”, then,
(m|B)(C) =m(C N B)
=m(CNBNA)+m((CNB)—A)
<m(CNA)+m(B-—A)
= (m|A)(C)

Thus, by subadditivity and above result,
(m|B) = (m|A)

And hence, one can assume A is a borel set.

Consider C' C R™. It is required to show the existence of a borel set D such that
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e CCD

o m(C)=m(D)

Since, m is borel, regular measure, there is a borel set E such that

ANCCE

m(E) =m(ANC)

Declare
D:=FU([R"-A)

Since A and E are borel, so is D. Also,
Cc(AnC)UR*"—A)cC D
Finally, since D N A = E N A holds, we now have

(D) = m(D N A) =m(ENA) <m(E) =m(ANC) =m(C)

Clearly m(K) < oo , for all compact sets K.
O

Remark 1.47. If A is a borel set, then (m|A) is borel regular, irrespective of finiteness

of m(A).

Lemma 1.48. Let (X,d) be a metric space and m be a measure on X.
Let ‘H denote the set of all m— measurable sets.
(A) Assume that

o m(X) < oo

e B C H, where B is the c— algebra of borel sets.

Let A € B and € > 0, then there is a closed set F' and an open set U such that

e FCACU
e M(A—-F)<$
e m(U—-A)<S§

(B) Assume that



32

e m is borel.
o There is a sequence of open sets {Uy}7°, such that

- m(Uk) < 00

- X:UZilUk

Let A be a borel set, then

m(A) =inf{m(U) ; ACU,U is open}

Proof. (A) : Let
F = {A € H ; For each € > 0, there is a closed set C' C A such that m(A — C) < e}

Notice that, by definition, all closed sets are in F.
Claim 1: If {A4;}°, C F, then A:=nN°,A; € F.
Proof of the claim 1 : Fix € > 0. Since, A; € F, there is a closed set C; C A; with

(A — C) < <

5 (=12

Let C' :=nN52,C;. Then C is clearly closed and

m(A - C) =m(N2 4 — N2,Ci)

o0

<m(|J4i - C)

i=1
<> m(Ai-Ci) <e
=1

And hence, A € F. This proves the claim 1.
Claim 2 : If {A;}2, C F, then A :=J;2, 4; € F.
Proof of the claim 2 : Fix € > 0. Choose C; as above and since m(A) < m(X) < oo,

lim m(A — U Ci) = W(U A — U Ci)
=1 =1

m—00 |
=1
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Thus, by the convergence of the tail of the series to 0, there is an integer m such that

But (J;"; C; is closed and hence, A € F. This proves the claim 2.

Claim 3 : Every open set of X, can be written as the countable union of closed sets.
Proof of the claim 3 : If QU = ¢, then U = X which is both open and closed. Hence,
consider the case OU # ¢. Let

E,:{x€U; d(z,0U0) > l}
n

F,’s are clearly closed and U = |J;2 | Fj,.
This proves the claim 3.
Thus, by the claim 1, U € F. By the claim 3, we have F contains all the open sets as

well. Now declare
G={AeF;R"-AcF}

The purpose of construction of G is that if A € G , then A° € G . Also, notice that G
contains all the open sets.

Claim 4 : If {A;}°, C G, then A:=J7, 4; € G.

Proof of the claim 4 : Claim 4 is a trivial consequence of the claim 2 and the fact of
demovier’s inequality that is (|JA4;)¢ = N(AS) and (NA4;)¢ = U(AS). This proves the
claim 4.

Thus G is a sigma algebra containing all the open sets and by the definition of the borel
sigma algebra, i.e the smallest sigma algebra containing the open sets, G contains the
borel sigma algebra. In particular, B € G and hence by the construction of F and G,
given € > 0, there is a closed set C' C B such that

m(B—-C) <e
Now, C C X — FE < E C X —C =U, where U is open.
= mU-E)=m(X-C)-E)=m((X-E)-C) <e

= m(E) =inf{m(U) ; U is open and £ C U}

This proves (A).
(B) : Let D be a borel set and m,, := (m|U,), then m,, is a finite borel measure and
hence, by the earlier part of this lemma, for every e > 0, there is an open set V, such

that
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e« U,NnDCV
e m((U,NV,) — (Un,ND)) < 5=
Declare V,, := V! N U,, then
U,NnDcV,cV,!
V. CUp,
(Vi — (Up N D)) =m((V.NU,) — (U N D)) < Qin

Let V =J;2, V4, then
D= UUnﬂDCV

n=1

o

m(V — D) :m< UJVva- U(Uan)> gzm<m—(UmD)> <e
n=1 i=1
= m(D)=inf{m(V); DCV}
This proves the (B) part and hence the lemma. ]

Corollary 1.49. Let m be a borel measure on R™ and A be a borel set such that m(A) <

oo. Then,

m(A) =sup{m(F) ; F C A, F is closed. }

m(A) =inf{m(U) ; AC U,U is open. }
e Let m be a radon measure. Then, for all sets A C R™,

m(A) =inf{A C U ; U is open. }

Proof. Identify R™ as a metric space with the usual euclidean metric, i.e

d(l‘, y) = d((xla T2,. .. ,.’En), (yla Y2, yn)) =

n
Dz — il
=1

Let m1(C) = m(ANC), then, from the previous lemma, (1) follows. Let m be a radon

measure. Then, for every compact set K C R", m(K) < oo.

= m(Uy) =m(B(0,k)) <m(B(0,k)) < oo

where Uy, := B(0, k) is a ball around 0 with radius k. Note that R" = |J;2, B(0, k).
Let A C R™. Case 1: m(A) = oo : Take U = R™.
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Case 2 : m(A) < co. By the borel regularity, there is a borel set E such that A C E

and m(A) = m(F) < co. From the previous lemma,
m(A) =m(E) =inf{m(U) ; E C U,U is open. }
Since A C W, W is open, it implies that m(A) < m(W) and thus,
m(A) < inf{m(W); W is open, A C W} < inf{m(U); E C U,U is open } = m(E) = m(A)

This proves the corollary.

Theorem 1.50. Caratheodory’s criterion:
Let m be a measure on R™ as defined earlier. If m(A|JB) = m(A) + m(B) for all
A, B C R"™ with dist(A, B) :=inf{la—b| ; a € A,b € B} to be strictly positive, then m

1s borel measure.

Proof. 1t is sufficient to show that all closed sets are measurable. Suppose C' C R"” is

closed, it is required to show that for any A C R",
m(A) >m(ANC)+m(A-C)

If m(A) = oo, then the above inequality is obvious. Now assume m(A) < co.

Declare
1
Cr={z eR"; dist(z,C) < %} ;forall k € N

Then, dist(A—Cy, ANC) > % > 0. From the hypothesis, we have
m(A—Cr)+m(ANC)=m((A—-Cr)U(ANC)) <m(A)

Claim : limy, oo m(A — Cy,) = m(A - C).

Suppose that the claim is true, then taking limit n — co on both the sides, we get,
m(A—C)+m(ANC) <m(A)

This proves the theorem.

Proof of the claim : Declare

1 1
= A —— ) < 2V o 11
Ry :={zxe€A; k+1<dzst(x,0)_k}, orall ke N

Let x € A—C. Suppose that d(z,C) < %, for all k, then d(x,C) = 0. Hence, z € C = C,

which is a contradiction.
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Thus d(z,C) > 0.
Now, for k # [,
Rop N Ry = ¢

Rory1 N Ry = ¢

— gm(Rgl) = m( O R21> <m(A)

=1

and

k
Z m(Ra41) = ( U R21+1> <m(A)
=1

=1

k k
= > m(R) <Y m(Ry) + Y m(Ras) < 2m(A) < oo
=1 =1

=1

Letting k£ — oo, we get

Now, for k£ > 0,
A-CrLCcA-CcC(A-CyU URl

m(A—Cr) <m(A—-C) <m(A-Cy) + im(Rl)
1=k

Letting k — oo,

= hmsupm(A C’k) <m(A-C) < hmlnfm(A C’k + hm Zm R)) = hmlnfm(A Ck)

k—o0 l L
This proves the claim.

O]

Definition 1.51. Let S C P(X) be a semi algebra and m : § — R is called a measure
if

e m(A) >0, forall A€ S.

e ACB = m(A) <m(B).

o If A=J;2, A; with A, A; € S, A;’s are disjoint , then m(A) = >"2, m(4;).
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Lemma 1.52. Let m be a measure on the semi algebra S C P(X). Let A be the algebra
generated by S. Define,
m:A— RY
k k
m(A) = Zm(Ai); for A = U A;, where A;’s are disjoint elements of A.
i=1 i=1

Then m is well defined and satisfies

e m(A) >0 for all A € A.
o A=J2, A with A, A; € A, A;’s are disjoint. Then m(A) =3 2, m(A;).
Proof. (Step 1) : Let A=J;", B; ; B; € S. Define
C1 =B

CQZBfﬂBQ

C3 = BN BSN By

C,=BiNBsN...NB;_1NB,

This gives C;’s to be disjoint and B; € S = B{ = U Sij, with S;;, € S and are

Ji=1
disjoint. Hence,
Cl =B € S
n1
Ch = Ba M (UF_,S11) = | (S1ju N Ba)
Ji=1
ny  n
Cy = By M (UF_815,) N (U2 So35) = | Suja N S2js N By
Jj1=1j2=1

Cn:Bnﬂ( 1= 151.71) ( Jo= 152.72) O(U?::lsn]n)

ny  n2

=4 U- U (B M S1j, N Sajy N1 S

Ji=1lj2=1 = jn=1
Hence, define :

By j, = BaN Sy, for 1 < g3 <my

And similarly define,
Bsjyj» = B3 M S15 N 52,5,
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Brjygns = BnNS1j -+ Sn-14, 4

Then,
C1 =B
na
Cy = | By
j=1
ni Nn
Co=J - U Bujrin
Jji=1 Jn—1=1
Since Cj’s are disjoint elements of S, we have {B1, B2 j,, B3j, jo,- - Bnji,...jn_1 } to be
disjoint elements and
N Ny
A=JB=JG

1 1

<.
Il

7

for some Ns i.e every element of A € A is written as the disjoint union of elements from
S, which may not be unique.
(Step 2) : Let A= UM, A = UM, Bi , Ai, B; € S with A;’s disjoint and By’s disjoint.

Hence,

Ng Nl
A = L_J(Bz NAg); B; = U(B] NA;)
i=1 i=1
Hence,
N2
m(Ag) =Y m(BiN A)
i=1
N N1 Ny
> m(Ar) =Y m(B; N Ap)
k=1 k=1 i=1
Summing over leads to
No N2
=> m(UBNA) =Y m(B;)
i=1 i=1

Hence m(A) = >_ m(Ay) is independent of representation and hence is well defined.
(Step 3) : Let A= Uf\; A; , A A; € A with A;’s disjoint. Then,
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From step (1),
N;

Ai = U Sij s Sz'j € S with Sij’S to be diSjOint.
j=1

Since A;’s are disjoint , S;;’s are disjoint and hence,

| |
||(::2

Ni

N N
m(A) = Z = Zm(A

j=1

(Step 4) : Let A =J;2, A; with A;’s to be disjoint and A, A; € A and A;’s are disjoint.
Let

N N
A=]Si,S eS8 = m(A) =) _ m(S)
=1

=1
A; = Sij ; Sij €S Sij’s are disjoint = m(AZ) = Zm(SU)
j=1 j=1

Then,

N oo N;
Usi=4-UUss
=1

i=1j=1

=JUEsns) forall1 <1< N
i=1j=1

Since S NS € S, (Si; N S;) N (Spr N Sy) = (Si; N Spr) NSy = ¢ is (4,5) # (p,7). Now,

by the definition of m, we have

oo N;
= Z Z m(S;; N S)

i=1 j=1
N N oo N;
m(A) =Y m(S) =Y _> Y m(S;NS)
=1 =1 i=1 j=1
Ni Ni
SiNA; = U (Si N Sl'j) = m(SN4;) = Zm(Sl N Sij)
Jj=1 J=1

Hence,

N N N; N N;
m(A;) =) m(SiNSy) =YY mSnA)=>Y > m(SnS)
=1 =1 j=1 =1 j=1
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1.5.2 Construction of measure on X for a given measure on Algebra.

Let § C P(X) be a semi algebra and m be a measure on S. Let A be the algebra
generated by S and 1 is the extension of m on A. For F C X, define

m*(E) = inf{zgil m(Ai) ;s ECUj  Ai, A € -A}

For E C F, and if F =J;2, A, then E C ;2 Ai = m*(E) < m*(F).
Hence, by the caratheodory’s extension theorem, there is a complete o— algebra F C

P(X) of measurable sets.

Theorem 1.53.
ScF

Proof. We need to show that if A € S, then A is measurable and m*(A) = m(A).
Since AC AeS,m*(A) <m(A)
Fix € > 0 and choose A; C A such that A € |J;2, 4; and

m*(A) > m(A;) — e
i=1
Declare

B — A; ifi=1
' AiNATN .. NAS else

Thus B;’s are disjoint and |JA4; = UB; = A C U2, B;.
Also note that B; C A; = m(B;) < m(4;).
Note Ae S, AclY,Bi = A=U,(ANB;); ANB; € Awith (AN B;)’s are disjoint.

Hence,

Hence,
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— m*(A) = m(A)

Claim: A € § implies A is measurable.
Let E C X be any set and let € > 0 such that E C ;= A; with 4; € A.

m*(E) = > m(A;) — e
1=1

Let U;2, Ai = U2, B; with B; € A and B;’s are disjoint with B; C A; implies
m(B;) < m(A;). Hence,

m*(E) > m(A) —e>) m(B) -
=1 =1

Now ANE C J;,(ANB;) and A°NE C |J;(A°N By).
Hence, B; = (B; N A) J(B; N A°) and this implies m(B;) = m(B; N A) + m(B; N A°).
Also, by the previous part of the proof, m*(B;) = m(B;) and thus,

im(Bi) > im(Bi NA)+ im(Bi N A°)

=1 i=1

Since E C A C |J;(BiNA) with B; N A € A, by the definition of m*,

m*(ENA) <Y m*(BinA)
Similarly
m*(ENA°) <Y m*(B;n A

Hence,
oo [e.e] o0
m*(E) > Y m*(B;)—e=>» m(B;NA)+> m(B;NA°)—e
i=1 i=1 i=1
=m"(ENA)+m"(ENA°) —e¢
€ was arbitrary and hence sending € — 0 we get the result of the theorem, i.e,

m*(E) > m*(E N A) +m*(E N A°)

= m*(A) =m(A)

Hence, A € F and m* =m on A.

e Let X # ¢ and Fi, F2 be 2 sigma algebras in P(X). Assume:
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— F1 C Fy

— There are measures m; and mo on F; and F3 respectively such that m; = mg
on Fji.

Let F; and F» be the caratheodory completion of F; and F» with respect to mq

and mg and denote the extenxion of measures to be m] and mj respectively. Then,
— If A C F; and m}(A) = 0, then m3(A4) = 0.
— m} =mbon Fy
- FCF
Proof. Let A C X, then, for j = 1,2,
o0 o0
mi(A) =inf{d m;(Bi); Ac|JBi, Bi€ Fj}
i=1 i=1

Then m3(A) < mj(A). Hence, mj(4) =0 = mj(A) = 0. But A € F; implies
A € F,. This shows that F; C Fo.

Lemma 1.54. Some applications include

e Lebesgue measure on R :
Let

S={(a,b] ; a,b e R} J{(a,00) ; a e R} J{(~00,0) ; bER}
m((a,b]) =b—a

Claim : S is a semi algebra and m is a measure.
Proof.

if b1 < by <
¢ 1I 01 =~ a2 Or 2_a1}€S

(max(ay,az), min(by, ba)] otherwise

(a1,b1] N (ag,bo] = {

Now,
R — (a,b] = (—o0,a] | J(b,0) € S

Let [a,b] = ;2 (ai, b;] with (a;, b;] disjoint. Let € > 0 such that a + € < b. Then
oo

€
b i,bi -
[a+ e, ]CH((L +21)
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By compactness, 3 n(e) = N €

N such that

N

€
o+ e8] < (@i b+ 55)

Hence,

e > 0 was arbitrary and hence,

i ) — 2¢

m((a,b]) =b—a < Zm((a,-, bi))

Now, VN > 0,

l

Choose € > 0 such that a; < b; —

N
Ulaib
i=1

And (a;, b; — 57)’s are mutually

N
Z (bs
=1

let € — 0 to get

Let N — oo to get

oo
D mlai,
i=1

Hence,

=1

Uil (ai, bi] C (a,b] }

(ai,b;]} are disjoint.

£ V1<i<N. Then

CUal, i

disjoint. Hence,

N o
— a) sz

bi] < io:(bZ —a;) <b—a=mla,b

b = m(ai, b
=1
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Thus , m is a measure on S. Hence, by the theorem, there is a complete o—

algebra F C P(R) and a measure m* on F such that

-SerF

—m*=monS

o(S) C F and o(S) is Borel o— algebra on R. F is called the lebesgue measure

space with m* = dx to be the lebesgue measure.
O

Lebesgue measure on R" :
Let

S= {H?:l(ai,bi} i Qoo = —00 , by = 00 are included and if b; = oo, then (a;,b;] = (ai,oo)}

Claim : S is a semi algebra.
Proof of the claim :

<H(ai,bz‘}> n (H(q,c&]) = H((ai,bi] N (¢, di])

i=1

::]:

(a17 B’L}

Let P(n) denote the power set of {1,2...,n}. Then, by induction,
n
(H au % ) H DJ
i=1 JeP(n

where, D is the disjoint collection of sets in of the form : Let J = (j1,72,- -, k),
then
Djy=A1 x Ay x ... x A,, where

Ai=(apb ifi ¢ J
A; = (i, b]° = (—00,a;] U (b, 00) ifi € J
Hence, S is a semi algebra.

Claim : m is a measure on S.

Proof of the claim : For
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they are disjoint and thus

n 0o n
H a“b] ZHX JdJ l'z

=1 Jj=1li=1

Now, in each variable, dz; is the lebesque measure.
Apply DCT to get

Hence, there is a complete o— algebra Fo and a measure m denoted by dx
dri.dxs . ..dx, such that S C Fy and m =m on S.

Here m = dx is called the n-dimensional lebesgue measure.
Let (X, A, p) and (Y,B,v) be 2 measure spaces and Z = X x Y. Let

S={AxB; AcA, BeB} CP(Z)

MA x B) = pu(A).0(B)

Then S is a semi algebra and X\ is a measure on S.

Proof.
(A1 X Bl) N (A2 X Bg) = (A1 N AQ) X (Bl X Bg)

(A x B)° = (A° x B)U (A x BY) U (A° x B°)

Thus S is a semialgebra. Let

1=1

for A;;A € A, B;, BB and A; x B;’s are disjoint.
Then, for z € X,y € Y , we have,

Xa(2)Xp(y) = Xaxp(@,y) ZXA <8, (2,Y)

= X, ().,
=1

Hence, by MCT, we have Vy € Y, we have

=> (A Xz, (y)
i=1
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= p(Av(B) = ZM(Az')U(Bi)
=1

= MAXB)= i)‘(Ai x B;)
i=1

Hence there is a complete o— algebra F C P(Z) and a measure \* on F such that

-SCF
—X=XonS

A* is called the product measure and sometimes denoted by p x v.
O]

Let {(X;, Fi,m;) }icr be a family of probability spaces, i.e, m;(X;) = 1 for alli € I.
Let

X = HXz' = {(@i)ier ; zi € Xi}
el

Let

S = {H A; s A; € Fi, A; = X; for all but finitely many z}
el

A (H AZ-) = [ mi(4i)

icl icl
Claim : S is a semi algebra and A is a measure.

Proof of the claim :

HA,QHBZ:H(AZQBZ) €S ; for HAuHBzGS

iel icl icl el el

Since A; N B; = X; for all, but finitely many 4. Let o = [[,c; A; , let
Jo:=Jo(a) ={iel; A #X;}

The clearly Card(Jy) < oo. Hence, for J C Jy, define

sr=1[¢7

iel

oo (X g
' A ifieJ
Thus 85 N AL = ¢, if J # L and

a=Js,=U [[¢/

JCJo JCJgied

where
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And hence S is a semi algebra.
Define m : § — [0, 1] as

m ( 11 Ai> = [[mi(4i) = iej;l;[ﬂi mi(Ai)

Claim : m defined as above, is a measure on the semi algebra.

Proof of the claim : Suppose
114 =1 (Hc{) for [[Cin][CF=¢.ifj#k
il j=1 \iel il iel

Then, for z = (z;)ier,

1T %4 (@) = Xpa,(= Z

i€Jp

Z

ZH e (1)
j=1icJ;
where
Jo={iel; A # X;}
Ji={iel; 0! #X;}

Then, clearly Card(Jy) < oo, Card(J;) < co. By DCT,

H XAZ- (xz Z H J -fUz

el j=1lied;

[T =m (H Ai) = (Tmen) =3 (H cg)

i€Jo icl j=1 \ieJ; j=1 \iel
Hence, m is a measure on S. Thus there is a complete o—algebra Fg O S and a

measure m on Fy such that m = m on §. Here m is called the product measure.

O]

Lemma : Let X be a non-empty set and g : X — [0,00] be a function. Define Ay For
ke NU{0} as,
(k‘ = 0) 5 AO = gb

(k=1), Ar:={z; g(z) 2 1}



48

(Fork>2), Ay :={z; g(x)>

Then,

S|

g9(z)

D X, (x)
=1

Furthermore, if g is a measurable function, then A;’s are measurable sets.

Proof. Suppose that g(x) = oo, then z € A;, for all i. Hence,

1 =1
i=1 i=1

Let 0 < g(z) < oo. Since, for any k& > 0, Zfik% = 00, there are infinite sets K, L C N
such that KN L =¢ and N= K U L.
x ¢ A;forie€ K and a € A, for all | € L, define S: K — LU {0} as

SG)=0ifx ¢ A; , Vi< j

S(y)=max{i; i<j, x€ A}

Hence, for all j € K, x ¢ Aj and x € Ag(), if S(j) # {0}.

T 2o 1 =2
= 5G) + ; gXAi(CL“) <g(x) < j+;iXAi($)
. 1 1 1
(i.e) Z ;XAZ-(QJ) <g(x) < ;JF Z ~ Xy, ()

i
i<j {i<i 5 i¢K}

Since K is an infinite set, letting j — oo, we get

1

1 oo
g(z) = Z ;XAz(‘/L‘) = Z ZXAz(l‘)
{i=1; i¢K} i=1

Remark : In more generality, if r; > 0, > 7, r; = 00, define
Ag:=¢

Ay:={zx e X ; f(z) >mr}
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k—1
Fork>2, Ay :={z e X ; f(x) >rp+ ZriXAi(x)}
i=1
Then,
o
fl@) =) rida,(z)
i=1
Proof of the remark follows the same proof as in the previous lemma with r; = % O

1.5.3 Geometry and measure theory on R

Denote m* to be the outer lebesgue measure on R, that is

m*(4) = inf {2, (L) s A UE, L)
Iz’ = (a,;,bi) N l([z) = bi — a;

Lemma 1.55. Vitals :
Let E be a set of finite outer measure and I be a collection of intervals which cover E in
the sense of vitali i.e given € >0 and v € E,3I € I such that x € I and [(I) < e. Then

given € > 0 there is a finite set of disjoint intervals {I1,...,I,} of intervals in I such

that .
m* [E - U I,-] <e
=1

Proof. Since, the endpoints of an interval is of measure zero, W.L.O.G we can assume
the intervals in I are closed. Also, since F is a set of finite outer measure, we can assume
that E C O , for some open set O of finite measure. The collection of intervals from I
which are contained in O, also form a vitali cover. Consider this new set to be I. Let
I €1, then I C O and thus I(I) < m(0) < co = sup{l(]) ; I € I} <m(0) < 0.
Algorithm for choosing the disjoint intervals:

Let I; be any interval of choice from 1.

If E C Iy, then nothing is to be done. Else, let
Fo:={I€el; INl =¢}

kg :=sup{l(I) ; I € Fo}
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Now, choose Iy € Fj3 such that I(I3) > %

By induction, suppose that Iy, I3, ... ;1 are chosen, then define
fj:I{IEH; INly=¢, VE<j—1}

kj :=sup{l(I) ; I € Fj}

Choose I; € F; such that [(I;) > %]

This way, we generate a sequence of intervals {I,,} and k, < m(O) < oo, Vn.

Now UI, C O implies > I(I,) < m(O) < oo. Hence, given € > 0,3N such that
>oN+1lIn) <5

Declare

Note that &k, — 0 as it is a tail of a convergent series.

Claim : m*R < e which is the exact conclusion that is needed for the theorem.

Proof of the claim : Let z € R implies z € E and = ¢ UZ]-LL-, which is a closed set by
assumption and hence, d(z,UY | I;) > 0.

Since the cover is vitali, there is an I € I such that x € I and I NI; = ¢, for all
ji=12,...,N.

Suppose that IN1I; = ¢, Vj, then I(I) < k; for all j and as k, —p—00 0, [(I) = 0 which
is a contradiction.

Hence, let n > N + 1 be the smallest integer such that I N I; = ¢ for all j <n —1 and
INI, # ¢. Hence, I € F,, and thus I(I) < k, < 2I(I,). Let z € I NI, and m be the
midpoint of I,,, then for a € I,

I(I,
2

S—
o~
—
:'N
S~—
ot

dist(a,m) < dist(a, z) + dist(z,m) < (1) +

Let J, be the interval around m , but with 5 times the radius of I,,. Hence, J,, covers
o, ¢]
I,I,,x,m. This implies z € J,, . Hence RC |J J,.

n=N+1
m*R < Zl(Jn)gf)Zl(In)gSg:e
N+1 N+1

Theorem 1.56. For f:[a,b] — R to be increasing monotone function,

o f/ = % exists for almost every x € [a,b].

e f is measurable.
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o [0 f(@)da < F(b) - f(a).
Proof. Define 4 quantities as follows :

D7 f(x) = limsup flzth) - @)
h—0+ h

D™ f(x) = limsup fle+h) - f@)
h—s0— h

D f(x) = iminf flz+ h})L — f(z)

e @) = f(2)
Dfle) =Rl ==,

And f is said to be differentiable at x if all of the 4 quantities are same. Clearly,
D*f(2) = Dy f(x) and D~ f(2) = D_f(x)

The idea is to show that the set where the 2 derivatives are unequal is of measure zero,
i.e we want the set {z : DT f(z) > D_f(z)} and {z : Dyf(z) > D~ f(x)} to have
measure zero. Then, outside this set, all the derivatives are equal.

Consider the set E = {x : DT f(x) > D_f(x)}. The other case is similar.

E= U Eyy = U {:c:D+f(:z:)>u>v>D_f(m)}

u,vEQ u,vEQ
where Q is the set of rationals. It is good enough to show that m*(E, ) = 0. Since [a, b]
has finite measure, let s = m*(Ey,). Note, it is not yet known if E, , is measurable,
hence the outer measure. Now, get an open set O such that E,,, C O and m(O) < s+e,
by the outer regularity.
Now, z € By, C O = 31/ > 0 such that B(z,h’) C O. Modify with the condition
with D_(f) < v to get, for small h < h' | f(x) — f(x—h) < v.h. Thus all, I, = [z — h, z]
forms vitali cover for Ey .
By the previous theorem , there are finite intervals I ... Iy such that

m*(Eyy — Ufil I;) < € and as a consequence,

N
[f(xi) = f(xi — ha)] < Zv'hi <v.m(0) < v(s+e)

=1 =1
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Let the interior of these intervals cover a set A along with AN E, , C A. Since,

A=y

Euy=(EuoNA)N(Ey,—A)

we have
s=m"(Eyy) <m*(Eyy NA)+m"(Eyy—A) <m*(E,,NA)+e¢

Hence,

m*(Eyy NA)>s—e

Repeating the above logic of generating vitali cover for A N E,, and looking at the
corresponding sum of images of f, with respect to DT (f) > u, we get Ji,...Jy which
covers a set B of AN E,, with the properties :
% M
e M(ANEy, — U, Ji) <e.
e J;’s are disjoint and J; is of the from [y;, y; + k;].

e Given 4, 3l such that J; C I}.

o [f(yi+ki)— fyi)] = uki.

Now,
M M
E,,NA= (Eu,vam(UJj)> U (Euvva—(UJj)>
j=1 j=1
Hence,
M
s —e<m*(Ey,NA) gm*(Euvvam(UJj)> +e
j=1
M
= m*(EumﬂAﬂ(UJj)) > 5 — 2¢
j=1
Now,
M M M
Z [f(yi + ki) = fyi)] > u Zkz =u ZZ(JJ)
i=1 i=1 j=1
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> u(s — 2¢)

Summing over those ¢ for which J; C I,,,
f(@n) = f(@n — hn) 2 Zf(%"‘kz) — f(wi)

N

D f(@n) = f@n—hn) 2 Y flyi+ ki) = f(w)

n=1
The above is got with the usage of f being non-decreasing function.
Hence, v(s + €) > u(s — 2e).
Now u > v == s = 0 which also shows that F, , is measurable.

This gives that
h—0 h

is defined almost everywhere and f is differentiable when h is finite.

Set hy(x) = n[f(x 4+ 1/n) — f(z)] with declaration of f(x) = f(b) for x > b.

Now, h, — f a.e and hence h is measurable. Thus,

b b
/ f'(z)dz < lim inf/ hp(x)dz
a k—oco Jg

b+~
= lim n[/ f(a;)d:c—/
n—oo CL+%

b
b+1 ats
= nh_)rrolon[/b f(z)dx —/ f(a:)dac]

= f(b) = fat)

f(a:)dx]

where f(a+) := lim,, f(x). Since f(a) < f(a+), the theorem is proved.

Definition 1.57.

e For f: R — R define f* = max(f,0) and —f~ = min(f,0).
e For f: [a,b] — R and partition a = xo < z1 < ...zp_1 < 2, = b of [a, ] define

p= Z[f(fﬂz’) — flzi)]"
i=1

n

n=> [fla:)— flzi1)]”

=1
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t:n+p=Z\f(xi) — f(zi—1)]
i—1

e Define P, N, T to be sup p , sup n and sup t, supremum taken over all partitions

of [a, b] respectively.

e Sometimes, the above P, N, T are also denoted by ng, N® T? referring the interval

a’ a’
[a, b].
e f:[a,b] = R is said to be bounded variate over [a,b] if T is finite.
Remark 1.58. For notations as above, t =p+nand PN <T <P+ N

Lemma 1.59. If f is bounded variate over [a,b], then T = P+N and f(b)—f(a) = P—N

Proof. For any subdivision of [a, b],

p=n+ f(b) = fla) <N+ f(b) — f(a)
and hence,
P <N+ f(b) = fla)

Reversing p and n, we get P — N = f(b) — f(a) . Hence,
T>p+n=p+p—[f(b)—fla))=2p+N—-P

And so,
T>2P+N—-P=P+N

Along with T < P+ N,weget T =P+ N
O]

Theorem 1.60. f : [a,b] — R is bounded variate iff f is a difference of 2 monotone

functions.

Proof. Define P to be the P for the interval [a,z] and similarly define, N¥ and Ty .
By the supremum property, they are increasing real valued. By the previous lemma,
f(z) = P? — N¥ + f(a) which is the one way result needed.

Conversely, if f = g — h on [a, b] with g, h be increasing, then for any subdivision,

Z | ()= f(zim1)| < Z [g(xi)*g(xzél)]?LZ [h(2i)—h(zi—1)] = g(b)—g(a)+h(b)—h(a)

i

and hence T is bounded.
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Corollary 1.61. If f, for f : [a,b] — R is bounded variate, then f is differentiable

almost everywhere in [a, b].

Proof. Monotone functions are differentiable almost everywhere by the earlier theorem
and sum of 2 differenctiable functions is differentiable.
O]

Lemma 1.62. For f to be non negative integrable function over a set E. Then given

€ > 0, there is a 6 > 0 such that

for every AC E, m(A) <§ = /f<6
A

Proof. If f is bounded, say image of f is in [0, M], then, [, f < M m(A). Choosing §
be 57 will do the job.
If f is not bounded, Truncate f as sequence with f,,(z) = f(z) if f(z) < nand f,(z) =n

elsewhere. Then f,, converges to f pointwise monotonically. Hence by MCT,

fEf — fEfN < €/2. Letting 0 < 5%, we get

/f /f In)+ /fN< + N m(A) <

for all A with m(A) < é.

O
Lemma 1.63. If f is integrable on [a,b] , then the function F defined as
x
= / f(t)dt
a
is a continuous function of bounded variation on [a,b).
Proof. By the previous lemma, F' is continuous.
It is just left to show that F' is bounded variate.
For this consider any partition of [a,b] by a = zo < x1 < --+ < x, = b then,
n
S| F(as) - Flai ) Z/ ()|t = /yf J[dt < o
i=1
This is true for all partitions of [a,b] and T is thus bounded by f: |f(t)|dt.
O

Lemma 1.64. If f is integrable on [a,b] and

/a " f(t)dt =
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for all x € [a,b], then f(t) =0 a.e in [a,b].

Proof. (Proof by contradiction.) Suppose f is not 0 a.e, then assume W.L.O.G f > 0
on E which has a strict positive measure. By the inner regularity, there is a compact
set K C FE such that fK f > 0. Now K¢ = U(a;, b;) disjoint intervals. By hypothesis,
JYif= [l f— [ f=0.Let U= (a,b) — K. Then

0=/abf=/Kf+/Uf
— [1==[1

/Kf#O — /Uf=Z/:f#0

[reom e

Now,

But, for all 7,

This is a clear contradiction.

Lemma 1.65. If f is bounded and measurable on [a,b] and

Pla) = /xf(t)dt—i—F(a)

then, F'(z) = f(z) for a.e z € [a,b).

Proof. By the lemma 1.63, F is bounded variate on [a,b] and hence f’ exists for almost
all z € [a,b].

Declare
_ F(x+h)-F(z) 1

z+h
fn(z) = N = h/ f)dt ; for h=1/n

Now, |f| < M = |f,| < M. And Bounded Convergence Theorem along with f,, — F’
for a.e x implies that for any ¢ € [a, b],
C

/C F'(z)dz = lim Cfn(:c)d:z = lim 1 [F(z 4+ h) — F(z)]dx

n—oo J, h—0 h J,

~ lim Lll / N e)de % / a+hF(x)dx] ~ Fle) — Fla) = / " F@)da
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The above uses that F' is continuous. So, [[F'(z) — f(z)]dz =0, Vc € [a,b].

By the previous lemmas, we have F'(z) = f(x) a.e.

Lemma 1.66. Let f be an integrable function on [a,b] and if

F(z) = F(a) + / o

then, F'(z) = f(x) for a.e z € [a,b].

Proof. W.L.O.G assume f > 0. Note that F' is an increasing monotone function. Trun-
cate f as sequence with f,(x) = f(x) if f(z) < n and f,(x) = n elsewhere. Then
f—fn > 0and so, hy,(z) = ff( f— fn) is an increasing function. Hence, it has derivative

a.e. Note that this derivative will be positive. Now by the previous lemma,

d x
& o e

and hence,
4

F’(m) T dx

d x
hp, + dx/a fn > fn(m) a.e

Now n was arbitrary. This tells that

F'(z) > f(z) a.e

/abF’z/abf:F(b)—F(a)

Since F' is continuous and increasing, by the theorem 1.56,

Also,

/bF/(x)da: < F(b) — F(a)

:>/abF':F(b)—F(a):/:f ; /ab[F’—f]Z

Since, F — f > 0, it tells that F” — f =0 a.e and so F'(z) = f(z) a.e
O

Definition 1.67. f : [a,b] — R is said to be absolutely continuous, if given ¢ > 0,35 > 0

such that for every collection of finite disjoint intervals {(z;, z;)}1, with

Slmi— il <6 = Y [fxi) — fz)] <e
=1 i=1
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Lemma 1.68. If f is absolutely continuous on |a,b], then it is of bounded variation on

[a, b].

Proof. Fix e = 1. By the definition of absolute continuity, there exists §. Now for any
subdivision of [a, b], we can split the division further into L set of intervals with each of
length less than ¢ ; where L is the largest natural number less than ‘”f’%a.

Therefore, t is always less than L for any subdivision. Hence, f is bounded variate.
O

Corollary 1.69. If f is absolutely continuous, then f' exists almost everywhere

Proof. By the previous lemma, absolute continuous functions are bounded variate and
hence sum of 2 monotone functions and hence differentiable almost everywhere.
O

Lemma 1.70. If f is absolutely continuous on [a,b] and it is given that f'(x) =0 a.e,

then f is identically a constant function.

Proof. The main idea is to show f(a) = f(c¢) V¢ € [a,b]. By the hypothesis, let E C (a,c)
be the set of measure ¢ —a in which f’ = 0. Let €, be any 2 positive real numbers. Let
& be the corresponding one for € in the definition of absolute continuity. For each z € F

, there is a small interval [z, + h] C [a, ¢] such that

[f(z+h) = f(z)| <nh

Now, these {[z,z + h|} form a vitali cover for E. By the vitali lemma, we can get
{[zk, yx]} such that they are disjoint and cover whole of E except for a set of measure

less than §. Label the intervals such that z; < 1. We have
Yo=a<21<y1 <x2<Y2 < <Yy < C= Ty

and

n
D ki —ykl <6
k=0

D 1F k) = f)l <0 (yk —21) <n.(c—a)
k=1 k=1

By the construction of the intervals and absolute continuity of f,

D 1 f (ki) = flur) < e
k=0
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n n

k) = Sl + YU — Sl < 40—

k=0 k=1

1f(e) = fla)| =

Now, the constants €, were random. Hence, f(c) — f(a) = 0.
O]

Theorem 1.71. A function g is an indefinite integral iff it’s an absolutely continuous

function.

Proof. By the lemma 1.62, F' is indefinite integral implies it is absolutely continuous.
Conversely, if F' is absolutely continuous on [a, b], then it is bounded variateand hence
sum of 2 monotone functions, say F' = Fj—Fy, where Fy, F5 are monotonously increasing.

Hence, by theorem 1.56,
/ F/(2)] < Fy(b) + Fa(b) — Fi(a) - Fa(a)

And F’ is integrable. Declare

H(x) = /I F'(t)dt

Here H is absolutely continuous and so is F' — H = f. By the lemma 1.66, f/'(z) =

F'(x) — H'(x) = 0 a.e and hence by the previous lemma, f is constant. Thus,

Flz) = / " F)dt + Fla)

O]

Corollary 1.72. Every absolutely continuous function is an indefinite integral of it’s

derivative.

O

o As an immediate consequence, we have the integration by parts, which is used in
proving the Rademacher’s theorem in this document.

Let f be absolutely continuous function on [a,b] and ¢ € CL(a,b). Then,

[ @ = [ rowa

Proof.

LHS = - / ' fla) () = — / ") [f(a) " / ) f’<t>dt} d
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= 1@ [ o~ [ o [ raw)w
= —1@(o0) - @) - [ 6@ ( [ Ko s/ 00}t
-/ " (o (/ ) )z ) at
[ [ swi)a

= /b f'(t)é(t)dt = RHS

Here, we have used the fact that ¢(a) = ¢(b) = 0 and this proves the integration
by parts.
O

Definition 1.73. A function ¢ : (a,b) — R is said to be convex if Vz,y € (a,b),c € [0, 1]

we have,

d(cx + (1 —c)y) < co(z) + (1 — c)p(y)

Lemma 1.74. If f is convex on (a,b) and if a < x1 < x9 < x3 < x4 < b, then

f(x2) — f(x1) < f(x3) — f(z1) < f(z4) — f(22) < f(z4) — f(x3)

T2 — 21 T3 — I Ty — X2 T4 — X3

Proof. x1 < xg < x3 = 3t € [0, 1] such that

xro = trs + (1 — t)l'l =x1 + t(.’L‘g - .%'1)

T2 — I T3 — T2

= t =

1-t)=
xg—acl’( ) r3 — I1

T — I T3 — T2
— X9 = xr3 + X1
xr3 — I1 r3 — I1

— flag) < 20

f(z3) +

r3 — I xr3 — X1
= f(z2) — f(71) < pra— (f(x3) — f(x1))
f(x2) = f(z1) _ f(xs) — f(z1)

e S
T2 — I xr3 — I

T2 — I

Also

Fas) < (1 _Z mz)f(xs) T ke

xr3 — X1 xr3 — 1

T3 — T2

= f(z3) +

(o0 - £(e))

3 — I
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f(z3) = f(z1) _ f(xs) — f(x2)

= <
r3 — I xr3 — T2
Thus
fxo) = fz1) _ flzs) = flz2) _ [(w3) — fla2)
To — I - €T3 — T2 - T3 — T2
Similarly,

flxs) = flaz) _ flxa) = flw2) _ flxa) = f(a3)

xr3 — T2 - T4 — T2 - T4 — X3

This proves the lemma.

Corollary 1.75. At all z € (a,b),

R (GRS CEl)

exists and the properties are

o = — [’ () is non-decreasing.

xz — fl(x) is non-decreasing.

o fL(z) < fi(x).

For almost every x € (a,b) that is, at the points of continuity of f or f,
fL(z) = fi(z)

Proof. Let 0 < hy < hg with x —hg € (a,b), then x —hy € (a,b) and x —hy < x—hy < z.

Now, by the convexity of f, we have

fl) = flx—ha) _ fz)— flz— M)

<
ho o ha
— h— flz) — £ (z—h) is non increasing, bounded function.
Hence Fla) — f( h)
, L x) — f(x— .
f(z) = }1113%) . exists.

Let x < y and choose 0 < h; < hg such that z — hy € (a,b) and z < y — hy. Then,
x —h) <z <y—he <y and by the convexity,

f(x) = f(x—hy) < fy) = fly —ha)
h1 - h2
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Let hi,hys — 0 to get
fL(z) < fL(y)

This proves the first part of the corollary. The second part of the corollary involves the
same proof as the first part.
Let hi,he > 0 such that z — hy,z + he € (a,b), then x — hy < x < x + hy. By the

convexity of f,

f(x) = f(x—hy) <f(95+h2)—f(55)
hl - h2

Letting A1, hy — 0 gives the third point of the corollary.
Let x,y € (a,b) with z < y and h; > 0, hy > 0 such that

r<x4+h <y—ho<y

By the convexity of f,

f(x+hy) — f(x) < fy) — fly—ha)

Let hy, hy — 0 to get
fi(@) < fL(y)
= fL(@) < filx) < fy), Vo <y
Noting that f’ is monotone and every monotone function is continuous except on a

countable set, which has measure zero, let x be the point of continuity of f’,

— lim f/ (¢ +h) = f ()

Since z < x + h, we have

fl(x) < fi(x) < fL(z+h)

Since, limy_o f* (z + h) = f' (z), letting h — 0,

fl(z) < fi(x) <lim f' (z+h) = f (2

h—0
— f/(x) = fi.(z) ; for all z where f’ is continious

As the complement of the set where f’ is continuous is of measure zero, this proves the

corollary’s fourth point.

Definition 1.76. Let ¢ be a convex function on (a,b) and let & € (a,b).
The line {(z,y) ; y = m(z — ) + ¢(Z)} through (Z, ¢(Z)) is called the supporting line
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at T if it always lies below the graph of ¢ that is, ¢(z) > m(z — Z) + ¢().

Remark 1.77. Existence of a supporting line.
Let f : (a,b) — R be a convex function and zg € (a,b). Then there is a m[ = fi (zo)]
such that

f(z) > f(xo) + m.(x — z0)

Proof. Let L(z) := f(z0) + f_(xo)(x — o).
Case (1) :

a<z<xg

Let h > 0 be such that a < x < xg — h < x9. Then, by the convexity of f,

flzo) = f(x) _ f(wo) = f(zo—h)
To— T - h
Letting h — 0, we have
— — —h

= f(z) > f(zo) + f (o) (x — x0)

Case (2) : Let g < © < b. Let h > 0 be such that a < 9 — h. Then z9g — h < o < x

and the convexity of f gives

f(zo) = f(xo — h) < f(x) — f(z0)
h - T — Xo
Letting h — 0,
e ey < F@) = 1)
r — X

= f(z) > f(zo) + f (o) (x — x0)

Combining the above 2 cases, we have

f(@) = f(wo) + f2(z0)(x — z0) Va € (a,b)

Similarly,
f(@) = f(wo) + fi(z0)(x — z0) Va € (a,b)

This shows the existence of a supporting line and hence the remark is proved. ]
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Lemma 1.78. Jensen Inequality :

Let ¢ be a convex function on R. For f an integrable function on [0, 1],

o(f(1))dt > ¢< 5 f(t)dt>

[0,1]

Proof. Let a = [ f(t)dt and y = m(z — a) + ¢(c) be the equation of a supporting line
at a. Then, clearly,
o(f(t)) =m(f(t) —a) + ¢(a)

Now integrate both the sides to conclude.

Lemma 1.79. The generalised Jensen’s inequality:
Let ¢ : R — R be a convex function. Let (X, A, n) be a probablitistic measure space,
e (X)) = 1. Let f € LY X, A, ), i.e f: X — R measurable along with the property

[ [f(0)]du(v) < oo, then
/X ¢>(f(t)>dtz¢>< /X f(t)dt)

Proof. Given that ¢ is convex on R, let y,m € R such that Vz € R,

P(z) > d(y) + m(z —y)

Let z = f(v), then
¢(f(v) = ¢(y) +m(f(v) —y)

Integrate to get
[ o)) = 6(0) +m( [ f0)dnt) =)

Choose y = [y f(v)du(v), then
[ ot Naute) = o [ f)due))

O]

Remark 1.80. Let ¢ € C?(a,b). ¢ is convex iff it’s second derivative is globally non
negative i.e ¢’ > 0.
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Proof. of the remark: Given that ¢ € C?(a,b) = ¢’ exists and by the previous theo-
rem, ¢'(x) is increasing. Hence ¢”(z) > 0.

Conversely, to show if ¢” >0 = ¢ is convex.

Let a < x; < z2 < b and for ¢ € [0,1], define

F(t) = ¢(tzr + (1 — t)z2) — td(z1) — (1 —t)¢(x2)

Hence,

F(0) = ¢(z2) — ¢p(x2) = 0 = d(1) — p(z1) = F(1)
F'(t) = ¢'(ter 4 (1 — t)aa)(x1 — 22) — d(21) + H(2)

F'(t) = ¢"(txy + (1 — t)aa) (1 — x9)?

Claim : F(t) <0Vt € [0,1]
Proof of the claim : If the claim is not true, then 3ty € (0, 1) such that

F(ty) = max F(t) >0

te(0,1]
Hence,
F'(ty) =0
F'(t)) <0

Subclaim : Suppose that ¢”(z) > 0, for all z, then F(¢t) <0 for all ¢ € (0,1).

Proof of the subclaim: If not, by the hypothesis,¢”(x) > 0, V2 € (a,b) which implies
F"(t) > 0Vt € [0, 1]. Hence at ty, F"(tp) > 0 which is a contradiction.

Now, let € > 0. Define

o) = B(a) + 5o°

Then ¢!(z) = € > 0. Hence, by the subclaim, ¢, is convex. i.e
G (txy + (1 — t)wg) < tde(z1) + (1 — t)pe(22)
So,
. 2
gb(tfcl +(1- t):m) + = (txl +(1— t)a:2>

2

<t {(15(961) + ;3312] + (1 —1) [¢(962) + t3322]

Tend € — 0 to get ¢ is convex.
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1.5.4 Fubini and Tonelli theorem.

Let (X, A, ) and (Y,B,v) be 2 complete measure spaces. Consider the product of the
2 spaces, denoted by X x Y :={(z,y); v € X, y e Y}.

Definition 1.81.

e A x B is called a rectangle if A C X and B CY.
e A x B is called a measurable rectangle if A € A and B € B.

Remark 1.82. The collection of measurable rectangles R is a semi algebra as
(AxB)N(CxD)=(ANC)x (BND)
(Ax B)*=(A°xB) U (Ax B U (A° x B
Definition 1.83. For a measurable rectangle A x B, declare the product measure
AMA x B) = u(A).v(B)

Lemma 1.84. Let {A; x B;} be countable disjoint collection of measurable rectangles

whose union is a measurable rectangle A x B. Then

AMAx B) =) M4 x B;)

Proof. {A; x B;} are disjoint and hence,

Xa(z)Xp(2) = Xaxp(z,y) = ZXAiXBi(x’y) = ZXAi(x)XBi(y)
i=1 =1

Fix x € A.
y — Xa,(z)XB,(y) is measurable

Then for each y € B, (z,y) € A; x B; for exactly one A; x B; This tells that B is a
disjoint union of those B; such that the corresponding A; has x. Thus, as v is countable
additive,

ZUBi'XAi (x) =vB.Xs(x)

By MCT,
Z/vBi.XAi(:c)du: /vB.XA(x)du
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Hence,
ZUBi-NAi =vB.uA

O

Remark 1.85. This lemma implies that there is a unique extension of A to a measure on
the algebra R’ which contains all finite disjoint union of sets in R. Now extend A to a

complete measure on a sigma algebra S containing R and denote it by p x v.

Definition 1.86. Forany EC X xY,ze€ X, ye€Y,

e Define £, ={y €Y : (z,y) € E}.
e Define EY = {z € X : (z,y) € E}.

Remark 1.87. Xg,(y) = Xe(x,y) and Xgv(z) = Xp(z,y).

Remark 1.88. Note that proving a statement for F, is similar to proving the analogous
statement for £Y and hence, for the following lemmas and theorems in this subsection,

only one case ( say F, ) will be proved.

Lemma 1.89. Let x € X and E C Rys. Then E, is a measurable subset of Y and EY

s a measurable subset of X.

Proof. Case 1: If E € R , then by the definition, E, is measurable.
Case 2 : If E € R, then E = U2, E; such that each E; is a measurable rectangle. Now

E, = (UZ, E;), = UR (B

Now (E;), is measurable for all i and hence, E, is measurable.
Case 3: If ¥ € Ry, then F = N72, F; such that each F; € R,. Now

E, = (NZ Ei), = N2 (E)e

Now (F;), is measurable for all i, by the case 2, and hence, F, is measurable.

Lemma 1.90. For E € R,5 with p x v(E) < oo, g defined by

is a measurable function of x and

/gduzu x v(E)
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Proof. Case 1: If E = A x B is a measurable rectangle, then g(z) = v(B) if z € A, else,
it is an empty set and hence measurable. Also [ gdp = p(A)v(B) = pu x v(E).
Case 2 : If Fisin R,. W.L.O.G, assume that ¥ = UE; where E;’s are disjoint. Declare

gi(z) = v[(Es)e]

g is thus measurable and is a positive function. Also note that g = ) g; and hence g is
measurable. By M.C.T,

/gdu—nlgrgog/gidu—Z/gz-du—Zu x v(E;) = p x v(E)

Case 3: If Fisin R,5. W.L.O.G, assume that £ = NE; where E; C F;+1 and E; € R,.
By approximation, we can assume u X v(E7) < oco. Let g;(x) = v[(E;)z]-

Hence, g = lim g; and hence g is measurable. Since [ g1du = p x v(E) < 00, g1(z) < 00
can be concluded for a.e x . Now {(E;),} is a decreasing sequence of finite measurable
sets and their intersection gives F,. From the knowledge of measure theory, since the

first set in the intersection has finite measure, we can have
9(z) = v(E,) = limv[(E;),] = lim g;(z)
And thus

gi —4g

a.e. which also implies g is measurable.
Since g1 > g; > 0, the D.C.T tells

/gdu = lim/gid,u =limp x v(E;) = p X v(E)

which is true form the limit of the intersection property.
O

Lemma 1.91. For E with p x v(E) = 0, we have for p almost every x , v(E,) = 0.
Remark : Note that the product measure is defined only for rectangles until now. To
make sense of p x v(E) with E C X XY, define C to be the algebra generated by the

semi algebra R and hence define,

N(E) = inf {2, () B C Uy 4, {42, cc}
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By the Caratheodory’s theorem, there is a complete sigma algebra containing R( as well
as C) and a measure A on the sigma algebra, such that X matches with the u x v on R.
Hence, from now on, if the set is not mentioned to be in R and is a subset of X XY,

then p X v s to be taken as A\*.

Proof. Using the approximations dictated by the infimum property of A*, by the unions
and intersections and controlling measure with it, we can get a G € R,s such that

E C G and p x v(G) = 0. And by the previous lemma, we get,

0=pxv(G)= /U(Gx)d,u(x)

As © — v(G,) is a positive function, the above implies that for p almost every =z,
v(Gg) = 0. Also E; C G, and so v(E;) =0 for p— a.e x.
O

Lemma 1.92. For E to be a measurable subset of X XY with pxv(E) < oo, for almost

every x, F, is a measurable subset of Y. Also,

9(x) = v(Ez)

is measurable function for p almost every x and

/ g()du(z) = u x v(E)

Proof. By the approximations by the unions and intersections and controlling measure
with it, 3G € Rys, E C G with u x v(E) = u X v(G). Now, look at F' = G — E. Since

F and G are measurable, so is F'.

1 x 0(G) = x o(E) + i x o(F)

Since p x v(E) is finite and is equal to p x v(G), we can conclude
uwxv(F)=0
Thus by the previous lemma, we can conclude, v(F;) = 0 for u almost all . Hence

E, CGy=F,UE, = v(E;) <v(Gy) <v(F;)+v(Ey) =v(E,) for paex
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= g(z) :==v(E;) =v(Gy) for paex

This tells that ¢ is a measurable function, by the lemma 1.90. And also, by the same

lemma (1.90), we have
gdp = p x v(G) = p x v(E)

Theorem 1.93. (Fubini theorem) :
For (X, A, ) and (Y,B,v) be 2 complete measure spaces as before and f is an integrable

function on X XY, we have

e For almost every x, the function f, defined by f.(y) = f(x,y) is an integrable

function on Y.

e For almost every y, the function f, defined by fy(x) = f(x,y) is an integrable

function on X.
° fY x,y)dv(y) is an integrable function on X.

° fX x,y)du(z) is an integrable function on 'Y .

JoL gl [ gawscor= [ [ o

Proof. Tt suffices to prove the theorem for one of the cases, because of the symmetry

involved between z and y. Also note that for any f, it can be decomposed as f — f~
and if the conclusion of the theorem holds for 2 functions implies it holds even for
their difference. Hence, W.L.O.G assume f is positive. Now f can be approximated by
increasing simple functions {¢,, } such that it take finite values in the image and vanished
outside a set of finite meaasure. If the theorem is true for charecteristic function over a
set of finite measure, by M.C.T we can conclude for the positive f. The previous lemma
tells that the theorem is true for a charecteristic function over a set of finite measure.
Hence by M.C.T, we have

[ fewdoty) = [ oule)dot)
Y Y

Also, by M.C.T,

/x {/ fdv} dp = lim {/y %dv] dp = lim oy Gnd(p x v) = /XXY fd(p % v)
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Remark 1.94. Here, the sigma finiteness of the spaces are not required.

Theorem 1.95. (Tonelli theorem) :
For (X,A,pn) and (Y,B,v) be two o—finite measure spaces and f is a non-negative

measurable function on X XY, we have
e [or almost every x, the function f, defined by f.(y) = f(x,y) is an non-negative
measurable function on Y.

e For almost every y, the function f, defined by f,(x) = f(x,y) is an non-negative

measurable function on X.
° fY x,y)dv(y) is an measurable function on X.

o [y f(z,y)du(x) is an measurable function on'Y .

JoL gl [ gawscor= [ [ o

Proof. As the spaces are o—finite , any non negative function can be approximated by

simple integrable functions and hence the similar proof like that in the fubini theorem
works.

O

1.5.5 Change of Variables

Let T': R™ — R"™ be a linear map and {ej,ez...,e,} be the standard basis of R".
Then T is represented by a matrix with the elements as T; ; = < Tej,e; >. By the
property of determinant, determinant is the product of the eigenvalues. Let GL,(R) to

be the group of all n x n invertible matrices.

Theorem 1.96. Let T' € GL,(R), then
e If f is measurable and either f >0 or f € LY(R™), then so is foT and

f(z)dz = |detT| | (foT)(x)dx
Rn R™

o [f E be a measurable subset, then T'(E) is lebesque measurable and

L(T(E)) = |detT|L"(E)
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Proof. Note : Any T' € GL,(R) can be written as product of finitely many transforma-

tions of elementary matrices of the type:

o I:Ty(x1,me,... x4y ...2pn) = (T1,T2, ..., CTjy ... Tp) ; CF£ O
o II: Th(xy, o, ... &y ... xp) = (T1,T2, ..., Tj + CThy ... Tp), kK F# 0
o III : T5(x1,22,. .., Tiy ..., Tj... Ty) = (T1, T2, .., Ty oo, Tjo .. Tpy)

Now, Since T is continuous , f is borel measurable implies f o T is Borel measurable.

For the case (I), with the usage of fubini’s theorem,

foT(x)dx = / / . / flxi, o, ... e, ..., xp)dardey . . . dr;_dridxiyy ... dx,
R® R JR R

:/// (/f(a:l,:vg,...,cxi,...,xn)dxi>dx1d:v2...dxi1d3:¢+1...dxn
R JR R \JR

e

\C’ R™
And
|c| foT(x)dx = f(z)dx
Rn R™

Where |detT| = |c|. For the case (II), W.L.O.G assume, that the change is happening
at the nth place.

foT(x)dx://--~/f(xl,xg,...,xn+cxi)dx1d9:2...dxn
Rn RJR R

—//...[/f(xl,xg,...,wn—i—cxi)dwn}dzxn_l...dml
R JR R

z; is constant for the integration over z, and [ g(a + ¢)dt = [ g(t)dt due to translation

invariant lebesgue measure. Hence

:/R/R_,,{/Rf(xl,x%...mn)d:cn]dxn1...dx1= | f@)

Also note that |detT>| = 1. This implies the justification of the first point of the
hypothesis for the case (II). For the case (III): Similar calculations as the previous

cases, but with detT3 = —1 and hence |detT3| = 1.

For the general case of T' € GL,(R),

T=T10---0Ty
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where T;’s are like in one of the cases. So

/f(a:)dx = \detTl\/foTl(x)dx

= |detTh||detTs| /f oT) o Th(x)dx

= |detT| /fonm

To prove the second point of the theorem, consider f = Xp(g).
O

Theorem 1.97. Change of variables formula: Suppose 2 is an open subset of R™

and g : Q — g(Q), a C*- diffeomorphism.

o If f is lebesgue measurable on g(f2), then f o g is lebesqgue measurable on Q and if
f>0orfeL' then

/ f(@)de = / (f 0 9)(x)|detDgldz
9() Q

o If E C Q is lebesque measurable, so is g(E) and

m(g(E)) = /E \detD,glde

where m(A) denotes the lebesgue measure of A C R™.

Proof. First we prove the result for the borel measurable functions and borel sets. Since
g and g~ are both continuous , f o g is borel measurable and g(E) is a borel set.

Let @ be a cube with center x and side 2h such that Q@ C Q, Q@ ={y ; ||z — Y|l < h}.
Here

|z = ylloo = joax. 25 — yj

Now, g;(y) — gj(x) = Dgj(2).(y — x) where z is in the line joining = and y.
So for any y € @Q,
l95(0) = 950l < o sup D))
Z€Q

i.e g(Q) is contained in a cube of side length (sup,cq|[Dg(z)||) times that of Q.

Therefore

(@) < (swpl1pg] ) mi@)

z€Q
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Let T € GL,(R™). Now apply the previous change of variables formula to get

m(g(@)) - m(To ! og(@))

~laetTlm (T 05(Q))

< fderT|sup [HD(Tl og)(zmm] m(Q)

Since gt og(z) =2 and D(g ' og) = I i.e Dg~'(g(x)).Dg(x) = I
Fix € > 0. Subdividing @ into subcubes Q1, @2, ...Q, whose centres are x1,xo,..., T,

and their interiors are disjoint with side length less than , where § corresponds to

IDg~" (g(xi)) Dg(y)||I* < 1+ ¢

whenever ||y — 2| < 0

- by the continuity of Dg and Dg~!

By the previous estimate on each @Q; with T'= Dg(z;), we get

m(9(Qy)) < |det(Dg(y))| [sup HDg—1<xi>.Dg<y>|oo]nm@z-)

yeQR;

Then,

r

m(o(@) = 3" m(9(@0)

=1
r

= (14¢€))_|det(Dg(z:)) |m(Qs)

i=1
Note that >, |detDg(z;)].m(Q;) is Riemann sum corresponding to the integral fQ |det Dg|
corresponding to the partition @ = |J;_; Q.

Therefore as § — 0, we get
m(9(@) <1+ [ 1dety
Q
Now € > 0 was arbitrary. Hence

m(9(@) < /Q (det Dgldi

The above, now holds for any open cube contained in 2. Noting that any open set is a

disjoint union of countable cubes. And hence,

m(g(U)> < / |detDgldxz ; YU C 2, U is open.
U
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Let E be a borel set of finite measure, there is a sequence of open sets by the outer

regularity such that

° UlDUQDUgD...
° ECﬂ?ilUi
e m(N2, (U;—E)) =0

= lim |det Dg| :/ |det Dg|dx
Un NUR

n—oo

:/ |det Dg|dx
E

Now if E' is borel , then E can be decomposed as

o E=UZ En
o m(E,) <o

e i CE,CE3C...

Then,
m<g(E)> < / |detDg|dz ; VE C Q, E is Borel.
E

Consider the function,

fzzn:aiXAi ;>0
=1

to be simple function on ¢(2), then

z)dr = a;m(A4;
/g(mf() > am(4)

< Zaz/ |detDg| ; as Ai = gog " (A;)
i=1 g1 (Ay)

:/Zang_l(Ai)|deth|
Q
- /Q (f o g)(@)|det D]

By MCT, for any f > 0 and borel measurable,

(x)dx < /(f o g)(x)|detDg|dx ; for all f borel
9(€) Q
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1

Applying this result to f replaced by f o g and for g to be g7+, we have,

/ (f 0 9)(x)|detDy|dz < / (Fogog™) detD(gog~")()| |detg™ (x)
Q 9(2)

= / f(z)dz
9(22)
This proves the result for f > 0.
For the case, f € L', decompose f as ft — f~ and do the same for f* and f—,
individually to get the desired result.
For the part (b), consider f = Xp.



Chapter 2

Geometric measure theory.

2.1 Covering theorems

In this chapter, a ball generally refers to a closed ball until mentioned otherwise.
Also,in this chapter, until otherwise mentioned, measure of a set is same as the outer

measure of that set.

Definition 2.1. e If B is a closed ball in R", say around x, denote B to be that ball

around z but with radius 5 times that of B

o A collection F of closed balls in R"™ is said to be a cover for a set A C R™ if

ACUB

BeF

e F is said to be a fine cover for A if in addition from being a cover for A, the

following holds :

inf{diamB ; t € B,B€ F} =0 ; foreach x € A

2.1.1 Vitali’s Covering lemma .

Theorem 2.2. Vitali’s covering theorem :
Let F be any collection of non-degenerate ( radius to be non zero) closed balls in R™

along with the criteria that

sup{diamB ; B € F} < 0

"
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Then there exists a countable family G of disjoint closed balls in F such that

(U BctU B

BeF Beg

Proof. Declare
D = sup{diamB ; B € F}

For the D defined as above, which is finite by the hypothesis, declare

D , D .
Fi={BeF; §<dzamB§2j—_1};forall]:1,2...

Algorithm to construct G; :
(step 1) : Choose G; to be the maximal disjoint set of closed balls from Fj.
(Step 2) : Choose Gy to be the maximal collection of disjoint sets from F» such that

VBeG ,VB €Gy,, BNB' =¢

(Step 3) : For a general N € N, assume that Gy,Ga,...,Gn_1 has been chosen.

Choose Gy to be the maximal disjoint subcollection of

N—-1
{BeFy; BNB =¢ forall B e | G;}
j=1

Once, G;’s are chosen as above, declare

g= ng‘
i—1

Clearly G is a collection of disjoint balls and

GgeF

Claim : For each B € F, there is a ball B’ € G such that

e BNB # ¢
e BCH

Proof of the claim : Fix B € F. If B € G, for some i, the claim is trivially true.
Suppose that B ¢ G;, for any i. By the definition of {]-'J}]o’;l, there is a number j such
that B € F;. By the construction of G;, that is, the maximality of G;, B ¢ G; and thus,
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there is a ball B’ € G; with BN B’ # ¢, for some i < j — 1 or it violates the maximal
disjointness of G;, that is, there is some B’ € G; such that B N B’ # ¢.

— 3B’ € G; with BN B’ # ¢, for some i < j

Now
2D

i1 < 2 diam(B')

) D

So, diamB < 2 diamB' = B C B’. The claim and hence the theorem is true.

Corollary 2.3. Assume that F is a fine cover of A by closed balls and
sup{diamB ; B € F} < o0

Then there is a countable family of disjoint balls G in F such that for each finite subset
{Bl,BQ,...,Bn} Cc F,

{A- ] Br}c{ U B}
k=1

BEG—{B1,B3,....Bn}

Proof. Choose G as in the proof of the previous theorem.

Fix a finite collection {B1, Bo, ..., B,} C G as in the hypothesis.

Case 1 : If A C |J;_, B, then there is nothing to show.

Case 2 : Else, let y € A —J;_, Bx. Note that the balls B;’s are closed and hence
the point y is at a finite, non-zero distance from the boundary of all balls from the set
{B1,B2...,B,}. F is given to be a fine cover for A. Hence, for that finite, non zero

distance, say d, there is an element B in F such that

e diamB < d

e BNBj=¢;foralj=12....n

By the proof of the claim in the proof of the previous theorem, there is B’ € G such that
BN B’ # ¢, which tells that B’ ¢ {B1, Ba, ..., B,}. Also, note by the proof of the same
claim that y € B, B C B’. This proves the corollary.

O
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Corollary 2.4. Let U C R™ be open . Fix § > 0. Then there is a countable collection
G of disjoint closed balls in U such that diamB < ¢ , for all B € G and

E”(U— U B)zo

Beg

Proof. Choose and fix 6 such that 1 — 5% <0 <1
Case 1 : Assume L™(U) < oo.
Claim : There is a finite collection {B;}M of disjoint closed balls in U such that

diam(B;) < 0 for i = 1,2..., My, along with the criteria that
My
Lr (U - Bz-) <0L™(U)
i=1

Proof of the claim : Declare
Fi1:={Bisaclosed ball ; BC U, diamB < §}

F1 is clearly a fine cover and hence, by the vitali’s covering theorem, there is a countable

disjoint family G; C F; such that

Thus

The above is true by the translation invariant property of the lebesgue measure. Now,

because of the disjointness of the elements of G,

= 5"Ln U B

Beg,

And thus,
n 1 n
L ( U B> > = L"(U)
BeG

Subtracting £"(U) from both the sides,

£"<U— U B> < <1—5‘2> LMU)

Beg,
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Since G is countable, there are balls By, Bo, ..., By, such that

( U B) <0L™(U)
Now, declare
My
=U-|JB
i=1

Fy={Bis aclosed ball ; B C Us, diamB < §}

F2 is a fine cover and thus applying the same logic as above , we get Bas, 41, Bar 42, - - -

such that

M,
Lr <U2 - Bz-) < L™ (Us)

=1

Hence,

M2 M2
n (U - Bi> =L [Ua— | Bi| <0LMU,) <6°LM(U)
=1

i=Mi+1

Inductively we get disjoint balls such that

( UB> <otLMU); (k=1,2,...)

Noting that # < 1 implies ¥ — 0, the corollary is true for finite measure sets.
Case 2 : If L"(U) = oo, then the trick is to look at

U={zeU;i<|z|<l+1};(1=0,1,2,...)

7BM2

Note that U;’s are open and by the previous step, denote Bj; to be the balls generated

as per the corollary within U;. Thus, by the disjointness of sets and noting that the

measure of the boundary of Uy, is 0,

(oG x) (G- G (G- G

~e(Ow-0m) =S (5-0) =0

=1

This proves the corollary.
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2.1.2 Besicovitch covering lemma .

Theorem 2.5. If for any collection, say F, consisting of non-degenerate closed balls in
R™ with the criteria

sup{ diamB ; B € F} < o0

and if A is the centers of the balls from F |, then there is a dimensional constant N such
that there are families of disjoint balls from F , say G1,Ga,...,GN ,(note that the balls
within each G; are disjoint, but may not be disjoint from a ball from some other family
Gj) such that

ACGUB

i=1 Beg;

Proof. As before, assume for now that A is bounded. Declare
D :=sup{diamB ; B € F}

By the sup property, choose B; := B(a,r1) € F such that %% < 7.

Given that By is chosen, choose By as :

Case 1 : If Ay := A — Bj is empty, then stop and set J = 1.

Case 2 : If Ay := A— By is not empty , then by the sup property choose By = B(ag,r2) €
F with ag € Ay such that

3
Zsup{r; B(a,r) e F, a€ Ay} <ry <sup{r; B(a,7) € F, a € Az}

Inductively with By, Ba, ..., B;_1 chosen earlier, choose B; as

Case1: If Aj := A — Uf;ll B; is empty, then stop and set J = j — 1.

Case 2 : If A; := A — Ug;ll B; is not empty , then by the sup property choose B; =
B(aj,r;) € F with a; € Aj such that

3
Zsup{r; B(a,r) e F, ac Aj} <rj <sup{r; B(a,7) € F, a € Aj}

With the above logic, if Ay # ¢ for all k£, then declare J = c.

Claim 1 : Suppose i > j , then r; < %rj .
Proof of the claim 1 : Suppose i > j , then observe that a; € A; and a; ¢ A;. Thus

3 3
1 < Zsup{r ; B(a,r) € Foa€ Aj} <
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This proves the claim 1.

Claim 2 : The balls {B(a;, %)}3]:1 are disjoint.
Proof of the claim 2 : Let ¢ > j. Then, as observed before, a; € A; and a; ¢ A;. Hence
073 ¢ Bj. So

|a-—a-|>r‘zﬁ—|—%>ﬁ—l— g § T.>ﬁ+ﬁ
g 73 3 =3 3/\4) "7 3 3

This tells that the radius of any 2 balls in the set considered , is strictly greater than

sum of the individual radii and hence, the balls are disjoint. This proves the claim 2.

Claim 3 : If J = oo , then lim;_,, r; = 0.

Proof of the claim 3 : By the claim 2, the balls {B(a;, %)}‘]]:1 are disjoint. Now, since a;
is in A which is bounded as per the assumption,that is, A C B(0, M) for some M > 0.
Hence, by summing the measures of disjoint balls, >, a(n) (%J)n < M, where a(n) de-
notes the lebesgue measure of the unit ball in R™. Since the tail of the convergent series

goes to 0, we can conclude that r; — 0. This proves the claim 3.

Claim 4 : A C U;-le B;.

Proof of the claim 4 : If J < oo, then, by the construction of B;, the inclusion is trivial.
Hence, assume J = oc.

Let a € A. Then, by the definition of A, there is some r > 0 such that B(a,r) € F. If
aé U;’;l B; = a € Aj, for all j. Thus, by construction, for all j,

3 3
Zr< Zsup{r; Be F,ac Aj} <y

By the claim 3, r; — 0. which contradicts the non-degeneracy of the balls, that is r # 0.

This proves the claim 4.
Fix k > 1 and set
I'={j; 1<j <k BjNBy# ¢}
K:=1In{j; r; <3r}

I=KU(I - K)

Claim 5 : Cardinality of K constructed above is less than or equal to 20™ ( which
is independent of k).
Proof of the claim 5 : Let j € K . Then,by the construction of K, B; N By, # ¢ and
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rj < 3rg. Choose any @ € B(aj, %). Then,as Bj N By, # ¢,
Tj 4
|x—ak|§\:U—aj|—|—|aj—ak|§§+rj+rk:§rj+rk§4rk+rk:5rk

Thus
Bla;, <) € Blay,5r1)

Claim 2 tells that the balls with 1/3rd radius are disjoint and hence integrating, we get

a(n)s"ry = E”(( ak,57"k Z E" aj, ) = Z a(n) (%)n

jeK JjeEK
By the claim 1 and noting that 7 < k in the definiton of K,
TE\"™ Ty
C> LR R k
> ;(a(n) ( 4) Card(K)a(n) <4n>
J

This proves the claim 5.

Estimate on Card(I — K):
Leti,j € I — K with i # j.
Then

o 1 <4, <k.
e BiNBL# ¢, 3ry <y
OBjﬂBk#¢,3Tk<’l“j.

For simplicity, let a = 0 and a;, a; be seen as the vectors with magnitude |a; — ax| and
|a; — ay| respectively from 0 and preserving the direction. Let 0 < 6 < 27 be the angle
between a; and a;.

The idea is to find the lower bound on 6.

Some observations to be noted :

Since i,j < k and 0 = ay, ¢ B; U By,

o r; < |a;| and rj < |a;|.
e BNBL#¢and BjNBy # ¢ = |a;| <7 +rp, and |aj| < 7j + 7.

e W.L.O.G, assume |a;| < |a;].
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Putting this in a compact form, we have the following:
3r < i < |ag| < i+

3ry < ry < |(1j| < T + g
|a;| < laj

We prove that there is a constant 6y > 0 such that it depends only on the dimension of
the space and for i # j, 1 <14,57 < k with B; N By, # ¢, B; N By, # ¢, the angle between

a; — ai and a; — ay, is greater than 6.

Claim 6 : { If cos(#) > 2, then a; € B;} = {a; ¢ B; => cos(f) <
Proof of the claim 6 :

[SN[S)]

}.

Case 1 : |a; — a;j| > |aj]

The law of cosines gives

Thus a; ¢ B; and |a; —a;| is greater than the radius of B;. The contra-positive statement
requires that cos(6) < % which is got by the law of cosines as above.

Case 2 : If a; ¢ B; and |a; — a;| < |aj|. Then, as r; < |a; — aj| , we have

_ il +agl? — lai — a ]

cos(0)
2|ai||ay]
_ Jail (ol = Jai — a5)laj] + |ai — a5))
2|yl 2|a;||ayl
< }+ (laj| — lai — a;|)(2]ay])
2 2|ail|a]|
< 1 n ri+TE—7;
-2 T
1 LT 1 N 1_5
2 1 2 376

This proves the claim 6.
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Claim 7 : If a; € Bj, then
0 < la; — aj| + |ai| — |aj| < la;|g(0)

where
9(0) = 5 (1 - cos(9))

Proof of the claim 7 : Since a; € Bj, we must have ¢ < j and hence a; ¢ B; and so
‘CLZ' — aj| > r;. Thus
|ai — aj| + |ai| — |a;|

o<
|aj]

As lai] < laj| = |ai — aj| = |ai] + |aj] > |ai — a;| = 12=tdelail > g

lai—aj]

lai — aj| + |a;| — |ag| _ la; — a;| + |ai| = |aj| |ai — aj] — |a;| + |ay]
|ajl -

|ajl ' |a; — ajl

_lail® +ag]? — 2lai|a | cos(9) — lail* — |a;|* + 2]ail|a]

lajl|ai — aj]
_ 2|a;|(1 — cos(H))
|a; — aj
< 2(r; + Tk);l — cos(f)) < 2(1 + é)mil — cos(h)) _ 4(0)

This proves the claim 7.

Claim 8 : If a; € Bj, then cos(f) < 5.
Proof of the claim 8 : Since a; € Bj and a; ¢ B;, we have r; < |a; — a;| < r;. Since
t<jandr; < %ri,

|ai — aj] + |ai| —laj| = ri+ri —1j — 1%
3
2

2 Tj—T’j—Tk

= §T] — TL
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Thus by the previous claim,
1
glail < lai = ajl +lail = |aj| < la;lg(9)

Hence |,

This proves the claim 8.
Claim 9 : For all 4,5 € I — K with ¢ # j, let § be the angle between a; — a; and
aj; — Qg. Then,

64
Proof of the claim 9 : From the claim 6, 7 and 8,

6 > cos™! <61> =6y>0

61
< — <
cos(f) < o1 O cos(f) <

| ot

Since, % < %, and observe that cos is a decreasing function in [0, 5],

2
61 5
= =) <o< I
0 < 0y = cos <64>_0_cos 5

This proves the claim 9.

Claim 10: There is a constant L, depending only on the dimension of the space such
that Card(I — K) < L,

Proof of the claim 10: Fix rg > 0 such that if xg € 0B(0,1) and for y,z € B(x,r0),
the angle between y and z from the origin is less than 6y, where 6; is defined in claim
9. The idea involved is considering sectors of the circles dictated on the boundary as
above. By compactness of the boundary, choose L, so that 9B(0,1) can be covered by
L,, many balls with radius 7y and centers lying on 0B(0, 1), but cannot be covered by
L,,—1 balls.

That is, for any y, z in one of the L,, balls,

<y,z > 61
———— < cos(bp) = —
lyl|=] 64

Consider B(0,t) and x¢ € 9B(0,1).
y € B(xg,trg) <~ % € B(?,ro) with ? € 0B(0,1)

Therefore, 9B(0,1) is covered by L, ( not L,_;) many balls of radius r¢ if and only if
0B(0,t) is covered by L,, (not L,_1) many balls of radius tro. Now, with the same logic,
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for the above fixed k, B(xp,ry), treating z; = 0 and r, = t, we have 0B(xy,rg) can
be covered by L, many balls of radius r,ry and not by L,_1 many balls of radius rrg.
Also, by the claim 9, if 7,5 € I — K and ¢ # j, the angle between a; — a and a; — ay, is
greater than or equal to 6y and 0By is covered by L,, (not L,_1) many balls implies the
rays a; — a and aj — aj cannot go through the same ball on 0B;,.

Thus Card(I — K) < L,, , which is independent of k. This proves the claim 10.

Now , set

M, =20"+L,+1

Thus, clearly
Card(I) < M,

Claim 11 : Let
Q = {Bz = B(ai,ri) 3 1 < 1 < J}

For k > M, + 1 and define G;;, for 1 <i < M, as :

e B, € Gy ; Vk, 1 <i< M,.
e G consists of disjoint balls from G such that if B € G;; and B # B;, then there is
some j such that M, +1 < j < k such that B = B;.

o If B € G, then B¢ Gjj, , forall j <i—1.

Let -
G; = U Gik

k=M,+1

Then, A C UB:]@(U B>

Beg i=1 N Be€gG;

Proof of the claim 11 : (Existence of {G;;}.) The proof for the existence of the family
of sets follows by induction on k.

Declare, for 1 < i < M,, and for any k > M,, that
G consists of B; and hence non empty.
For k = M,, + 1, by the previous calculation, the estimate on the cardinality of I gives
Card{1<i<k=M,+1; B;NBy # ¢} < M,

Thus, by the strict inequality as above, there is an ¢ < M, such that By N B; = ¢.
Choose a minimal 7 such that By NB; = ¢ and BN B; # ¢,Vj <i—1. Hence By, € Gj.

Now, assume the statement is true upto k ( which is greater than M, + 1 ).
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As Card{i < k; BiNBki1 # ¢} < My, thereisone 1 < i < M, such that By 1NB; = ¢,
for all B € G;;. Hence, by taking the minimum ¢ such that the above happens,

= Biy1 € Gipt1

This proves the existence of {G;;} and by claim 4,

AcUBEACj(UB>

Beg i=1 “Be€g;

This proves the claim 11.

We proved the result under the assumption that A is bounded.
Relaxing that condition and assume A is unbounded. Partition A as follows:
For [ > 1, declare,

Ap=An{z; 3D(l—-1) < |z| < 3Dl}

Fi:={B(a,r) € F; a€ A}

Since A; is bounded, by the previous step, there is finite family of countable collection

of disjoint closed balls,say gﬁ, gé, e gﬁwn in F; such that

Declare

Gi=Jg" Hor1<j< M,
=1

Qf:Gg?lforlgngn
=1

My,

J(U »)

j=1 * Beg!

= AC

U (U s)

j=1 * Beg?

Re-labelling the balls, we get that the required dimensional constant for the theorem
N is 2M,, and the family G; consists of countable disjoint closed balls. This proves the
theorem.

O

Corollary 2.6. Let m be a borel, regular measure on R™ and F be any collection of
non degenerate closed balls. Let A denote the set of centers of the balls in F. Assume
m(A) < oo and

inf{r ; B(a,r) € F} =0 for eachac A
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Then, for each open set U C R"™, there is a countable collection G of disjoint balls in F

such that
U BcU
Beg

and

m<(AmU)— UB)zO

Beg

Remark 2.7. Here, A need not be m— measurable.

Proof. Fix 1 — % < 0 < 1, where N is the dimensional constant as in the Besicovitch

theorem.
Claim : There is a set of finite disjoint closed balls By, Ba, ..., By, in U such that

(AﬂU UB) <Om(ANU)

Proof of The claim : Let
Fir:={B; Be F,diamB <1,BCU}
Note that the centers of the balls in 7 are precisely A N U. This is true as

e Clearly B C U. By the defintion of F/, BC ANU

e Let a € ANU. Then, there is r, such that 0 < r < 1 and B(a,r) C U and
B(a,r) € F . This is by the infimum property mentioned in the hypothesis. Thus

a is centre of some ball in Fj.

Thus, by the Besicovitch theorem, there are families of disjoint balls G1, Go, . ..GxN from
JF1 such that

(ANU) UUB

i=1 Beg;

And thus,

N
m(ANU) <> m | (AnU)n (] B)
i=1 Beg;

Thus there is a j such that

e 1<j<N

m<(Am U) NUpeg, B) > +m(ANU)
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If not, there m ((ANU) N (Uspeg, B)) < +m(ANU), for all i and thus summing it,

N

N

zunfgz: (AnU)n(|J B) < ymANU) = m(ANU) <m(ANU)
: Begz

Now, as per theorem 1.43 there are balls By, Bo, ... By, € G; such that

(AmU UB> —m(ANU)

Now |J B; is measurable, implies

M, My
m(AmU):m<(AmU)mUB) +m<(AmU)—UB)
=1

i=1

Thus ,

(AmU UB> < Om(ANU)

Now, Declare
My

%:U—U&
=1

Fo:={B; B € F,diamB < 1,B C Uy}

Clearly, the centers of F» are precisely ANUs, by the same logic as before. Hence, There
are disjoint balls By, 41, ..., By, € Fa such that

Mo

(AmU lJB) m|(An) - |J B

i=My+1
<Om(ANUy) < ?m(ANU)

This process gives a countable collection of disjoint balls from F, within U such that

My,

m(mmUy{J&>gmmmmU)

=1

6% — 0 as k — oo concludes the corollary. O
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2.2 Differentiation of Radon measures.

Definition 2.8. Let u,v be two radon measures on R". For each x € R", define

Do — lim sup,._,q % if u(B(x,7r)) >0 for all r >0
400 if u(B(z,7)) = 0 for some r > 0

lim inf, o Z((g((igg if w(B(z,7)) >0 for all » >0
wV = ’
B +o0 if u(B(x,r)) =0 for some r > 0

Definition 2.9. If D,v(z) = D, v(z) < +00, we say that v is differentiable with respect

to u at x and denote
Dyv(x) = Dyv(z) = D, v(x)

Dyv is called the derivative of v with respect to u. It is also called as density of v with

respect to u.

Lemma 2.10. Fiz 0 < o« < 0o. Then

e ACc{zeR"; D) <a} = v(A) <au(4)......... (1)
e AC{zeR"; Dy(z)>a} = v(A)>au(d)......... (i)

Proof. Assume u(R"™) and v(R"™) are finite. Fix € > 0. Let U be open and A C U, where
A satisfies the hypothesis of (i) . Declare

F:={B; B=B(z,r),r € A,BCU,v(B) < (a+e€)u(B)}

Then
Claim : For all x € A, inf{r; B(z,r) € F} =0

Proof of the claim : Notice that A C {x € R" ; D, v(z) < a}

~—

B
— liminf v(B(z,7)

< f A
r—0 qu,r))_a’ orwe

B
—> lim inf v(B(z,r))

— <
=0 |r|<e’ u(B(z,r)) ~ “

There is € > 0, small enough such that

. U(B 3:77’)) € " /
p OWIT) L e
e w(Bla,r)) ST e <€

and

As U is open, B(z,r) C U, for all |r| < €



93

Thus there is ' < € such that

v(B(z,r"))

711(3(:0,7")) <a+t+e

= v(B(z,7")) < u(B(x,7"))(a +€)

This is true for all € < €. Thus sending €” to 0 and hence, r to 0, concludes the claim.
This proves the claim.

By the corollary 2.6 (the corollary to the besicoivitch theorem), there is countable col-
lection G of disjoint balls in F such that

’U<A—BLEJQB> =0

Since (Jpeg B is measurable,

v(A)zv(Aﬂ(U B)> +U<A— U B>

Beg Beg

<) u(B)

Beg
< Z (o + €)u(B)
Beg

< (a+e)u(l)

This estimate is valid for each U such that A C U.
Regularity result of the radon measures says that any measurable set can be approx-
imated by the open sets from the outside. That is, for m to be radon measure, we

have
m(A) =inf { m(U) ; AC U, U is open }

Thus, taking infimum on the estimate obtains,
v(4) < (@ + eu(A)

Noting that € > 0 was arbitrary, (i) is proved, for the case of finite measure on the whole

space, as per the assumption.

For the non finite case, let Uy = B(0,k) C B(0, k).
= v(U) < o0, v(Ug) < o0

Declare

ug, := (u|Uy)
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v = (v|Ug)

Clearly, u; and vy are finite radon measures and now, let Ay = A N Uy.

Since, Uy’s are open and

AkC{JZEUk;%Uk(.%)ﬁa}; AkCAk-Jrl;A: UAk
k=1

= v(ANU) = vi(Ag) < aug(Ag) = au(ANUg) < au(A)

Let kK — oo to get
v(A) = klim v(ANV;) < au(A)
—00

This proves (i) of the lemma.
(ii) of the lemma has the same steps as for the first part and the proof follows.
O

Definition : Let X be a set and Y be a topological set. Assume that m is (an outer)
measure on X.
A function f : X — Y is said to be m— measurable if for every open set U C Y, f~1(U)

is m— measurable.

Theorem 2.11. Let u,v be radon measures on R™. Then Dyv exists and is finite u

almost everywhere. Furthermore, Dyv is u— measurable.

Proof. Assume that v(R™) and u(R™) are finite.
Claim 1 : Dyv exists and is finite w almost everywhere.
Proof of the claim 1 : Let

I:={z; D,v(x) =400}

and for all 0 < a < b, let

R(a,b) :={z ; D,v(z) <a<b< Dyv(z) < o}

For each a > 0, I C {z ; Dyv(z) > a}. By the previous lemma,

u(l) < —v(I)

QI+

Let a — 0o, we see that u(I) = 0 and so D, is finite u almost everywhere.
Now,

R(a,b) C {z ; Dyv(z) > b}

and
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R(a,b) C {zx; D,v(x) <a}

Thus,by the previous lemma,
b u(R(a,b)) < v(R(a,b)) < a u(R(a,b))
Since b > a, we have u(R(a,b)) = 0. Also,

{x; D,v(x) < Dyv(r) < o0} = U R(a,b)
0<a<bd ; a,beQ

As a consequence, D,v exists and is finite u almost everywhere. This proves the claim 1.

Claim 2 : For each x € R"™ and r > 0,

limsupu(B(y,r)) < u(B(z,r))

Yy—x

limsupv(B(y,r)) < v(B(x,r))

Yy—x

Proof of the claim 2 : Choose {y;} in R™ such that y, — x. Set

fk = XB(yk,r)

= XB(J:,T)

Then,
(8) : limsup fi < f

k—o0
This is true as :
Case 1: f=1. Since f =0 or 1, the statement (S) is true for this case.
Case 2 : If f(y) =0, i.e y is not in B(z,r). Say y ¢ 0B(x,r) . Clearly, |x —y| > r and
there is a kg > 0 such that for all & > ko we have that |y, — 2| < min{|y — 2|, 5} and
thus B(yk, ) N {y} = ¢. Hence, fr(y) = 0 for all k¥ > ko. This proves the statement (.5)
for this special case.
Case 3 : Same conditions as in case 2, but, if y is on the boundary. Note that, as per
the assumption made earlier, the balls are closed if nothing is mentioned about them.
So, y ¢ B(x,r) implies y ¢ 0B(z,r) and hence, only case 2 is possible.
Thus, combining all the 3 cases, the statement (.5) is true.

Now,

liminf(—fx) > —f

k—o0

= liminf(1 — fi) >1—f
k—o00
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Thus, by the fatou’s lemma,

/ (I—f)du< / liminf(1 — fi)du < liminf/ (1 — fr)du
B(z,2r) B(w,2r)

(B(z,2r) k—o0 k—o0
Hence,

k—o0

uw(B(z,2r)) — u(B(z,r)) < liminf [u(B(x, 2r)) — u(B(yk, 27"))]
Now, as u is a radon measure and W is compact implies
w(B(x,2r)) < u(B(z,2r)) < oo
Thus

limsupu(B(y,r)) < u(B(z,r))

Yy—x

The same result holds for v as well and this proves claim 2.

Claim 3 : D,v is measurable with respect to u.

Proof of the claim 3 : By the claim 2,
x — u(B(z,r))
x — v(B(z,r))
are upper semi-continuous and thus borel measurable. As a consequence, for every r > 0,

fol) = ey uBlr) >0
T +oo if u(B(x,r)) =0

fr defined above is u— measurable.

Note that
Do =lim f, = lim fi,

The above is true for u almost everywhere as per the claim 1. So D,v is u measurable.

This proves the claim 3.

Suppose that u, v are not finite, observing that w,v are radon, we have, for k € N,

u(B(0,k)) < u<B(0k)> < 00

o(B(0.K)) < U(Bmm) <0
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As before, declare

Thus, for z € B(0, k),

Dy, vi(x) = Dyv(x)

Hence, if I} := I N B(0,k), then u(ly) = ux(Ilx) = 0 = u(l) = limg_ oo u(ly) = 0.
Similarly, if a < b, let

Ri(a,b) :={z € B(0,k) ; Dy, vp(z) < a<b< Dyvr(x)}

= Ry(a,b) C B(0,k) , uk(Rk(a,b)) = u(Rk(a,b)) =0
= u(R(a,b)) = kli}n;o u(Ry(a,b)) =0

Hence, D,v(x) = D, v(x) exist for u— almost everywhere and  — D, v(z) is a uy—measurable
function for all k implies for an open set U C R™, (Dyv~*(U)) is up— measurable for

all k. That is, for any set B C R",
u(B) = uy (BN Dy ' (U)) 4+ ug (B — Dyv ' (U))

The above is true for all & and hence, taking the limit & — oo, we see that z — Dy v(z)

is 4 measurable.

2.2.1 Radon-Nikodym Derivative

Definition 2.12. The measure v is absolutely continuous with respect to u, written as
v u
if

For all A C R", with u(A) =0, then v(A4) =0
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Definition 2.13. The measures v and v are mutually singular, denoted as
vlu
if
If there is a B C R", borel, such that «(R" — B) =v(B) =0

Theorem 2.14. Radon-Nikodym Theorem/ Differentiation theorem for Radon
Measures
Let u,v be radon measures on R™ with v < u. Then, for all A which are u— measurable

subsets of R™,

v(A) = /A Dyv du

Proof. Let A be u— measurable. This implies there is a borel set B such that u(A) =
u(B).
— u(A—-B)=0

— v(A-—B)=0
This tells that A is also v—measurable. Set
Z :={z eR"; Dyv(x) =0}
I'={z eR"; Dyw(z)= +oo}
Let
Zy:=ZNB0,k), keN
Then, for any a > 0, we have Z; C {x € B(0,k) ; Dyv(z) < a}.

From the previous lemma, we therefore have v(Zy) < au(Zy). Letting o — 0,

= v(Z) = %ig})v(Zk) =0

Note that this also gives that Z is v measurable, as v is a complete measure.

Case 1 : The case for Z.
(Z)=0

v
/Duvdu:/Oduzo
z Z

This tells that the theorem is true for Z.
Case 2 : The case for I. It is noted that v(/) = 0. And by the previous theorem, D,v
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is finite u—almost everwhere and hence,

/Duvdu—()
I

This proves the theorem for I.

Case 3: For any other u—measurable set A. Choose and fix 1 < t < oco. Define , for

m € 7,

Ap = An{z e R"; ™ < Dyo(z) < t™}

A is u— measurable and {z € R" ; t™ < Dyv(z) < t™+1} = Dot ([t t™1)) is also

u— measurable as per the previous theorem and hence, A,, is u— measurable and thus

v— measurable.
Also

+00
A—UAmc( D

Thus,

As a consequence,

As, A;’s are disjoint,

Also

ZUJUIU{x; Dyv(z)# D,v(z)}

— 00

U(A—QAW> 0

)
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1 X
m+1

m=—0Q0

1 o0
n Z D,v du

m=—0o0 Am

1
:/Duvdu
tJa

1
/Duvdugv(A)St/Duvdu
tJa A

Notice that ¢ was arbitrarily greater than 1. Thus taking ¢ — 14, we can conclude that

v

As, A;’s are disjoint,

Hence,

v(A) = /A Dy du

This proves the thoerem.

Theorem 2.15. Lebesgue Decomposition theorem :

Let u,v be radon measures on R™.

e Then

V = Vge + Vg
Vae K U
vs Lu

e [Furthermore, for u— almost everywhere,
D,v = Dyvge

Dyvs =0
and

v(A) = /ADuv du + vs(A)

Definition 2.16. v, is the absolutely continuous part of v with respect to .

vg 18 the singular of v with respect to w.

Proof. Assume v(R™) is finite.
Let
e:={ACR"; Aisborel ,u(R"—A) =0}
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Clearly, € is not empty as R" € e. By the infimum property, choose By € € such that

1
v(By) < inf v(A) + Z

A€e
Set -
B= (B
k=1
Since,
u(R" - B) <Y u(R" - B;) =0
k=1
— u(R"—-B)=0 = Bce
So,
v(B) = iféfev(A)
Declare

Vac = (v|B)
vs = (0](R" — B)

Clearly, vs(B) = 0,u(R™ — B) = 0 and thus vs L u.
Let A be a borel set such that u(A) = 0.

Case 1 : If AN B = ¢, then clearly, v,.(B) = 0.
Case 2 : If A C B with u(A4) = 0.

Claim : v(A) = 0.

Suppose not, say v(A) > 0. Since A is a borel set

— B-Ace,asu(R"— (B—-A)) =u((R" - B)UA) =u(R" — B) +u(A) = 0.

— ggev(C) <v(B—-A)=v(B)—v(4) <v(B)= ggev(C')

This is a contradiction and thus proves the claim.
If A C B and not borel, but with u(A) = 0, then, by the borel regularity, choose A1, a
borel set such that

o AC Ay
[ ] U(Al):O
Declare Ag := A1 N B.
— ACA,CB

Ay is a borel set and u(A2) = 0. Hence, by the claim, v(A2) = 0 and therefore,
Vae(A) = v(A) = 0. This proves that v, < u and v, = v on every subset of B.
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Finally, fix @ > 0 and set
C:={x € B; Dys(x)>a} CB

By the earlier lemma 2.10,
au(C) <vs(C)=0

= u(C)=0asa>0

Thus Dyvs =0, u— almost everywhere. Now,

Dus(a) = {an% uBerl) i, for all r > 0, u(B(z,7)) > 0}

+00 else.
V = VUqe + Vs implies,

. Vae(B(x,r . vs(B(x,r .
Duo(z) = {hmrﬁo W + lim, W if, for all > 0, u(B(z,r)) > 0}

+00 else.

Hence,

D,v=D,v. + D,vs

Dyv; is zero u— almost everywhere and hence,
Dyv = Dyvge, u— almost everywhere
Therefore, for A, a borel set ,
Vae(A) = /ADuv(az)du(x)
Since v = Vge + Vs,
e 0(A) = vee(A) + vs(A) = /A Duo(2)du(z) + vs(A)

Thus,
v(A) = / Dyv du+ vs(A)
A

For the case when v(R"™) is not finite, let {K;} be an increasing sequence of compact

sets covering R", that is

e R" = U?il K
o K C Kiq
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By the assumption, since v is a radon measure, v(K;) < oo, for all . Let v; := (v|K;).
Then, by the previous case of the finite radon measure, there are borel sets /Bvl € € such
that

v(By) = inf v(B)

Bee
Define o
Bj = ﬂ /BZ
j=l
— B, C Bj41, Byisborel. , B, C B; and
o] . o .
R" — B, = R" — (ﬂBj> clJ (R"—Bj)
j=l j=l
i —
= u(R"—B)) <) u(R"—B;) =0
j=l
= By €eand inf v(B) <vy(B) < vl(E) = inf v;(B)
Bee Bee
= u(B) = u(B) = inf u(B)
Bee
Let -
BO = U Bl
1=1
Vae := (v|By)

vs := (v|R"™ — By)
Then, for any borel set A,
v(A) =v(AN By) + v(AN(R™ — By)) = vae(A) + vs(A)

Clearly, vs(Bp) = u(R" — By) =0 = vs L u.
Claim : v4 < u.
Proof of the claim : Let u(A) =0, A is a borel set. Then

ANBy=¢ — ’UaC(A):’U(AﬁBo):O

Now, consider the case A C By.
Suppose that vee(A) > 0, then v(A N By) > 0. Since A = U3, (AN K,), we have
v(Ufﬁ’zl Ufil(AﬂKmﬂBl)) > 0. Hence, there are ng, [y such that v(ANK,,NB;,) > 0.
Since, K, C Kpmy1, By C By,

= Vm >ng, | >y, U(AﬂKmﬂBl) >0
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Choose p > max{ng, lo}, then v(AN K, N B,) > 0.
u<]R” — (B, — (AN Bp))> =u(R" - By) + u(AN By) < u(R" — B,) +u(A) =0

= B,—(ANBy) €e

= ]'gnf vp(B) < vy (Bp—(AﬁBp)> = vp(Bp) —vp(ANB,) = ]ignf vp(B)—v(ANK,NBy)
€e €e

inf v, (B
<o)

This is a clear contradiction. Hence, vg.(A) = 0 and thus vg. < u.
Since, vs(By) =0, u(R" — Bo) = 0, we have, as noted earlier, Dyvs(x) = 0 for u a.e x.

Hence, for u a.e z,
Dyv(x) = Dyvge(x) + Dyvs() = Dyvae()

e 0(A) = vae(A) + v5(A) = /A (Duvac) (2)du(z) + vs(A)

= / Dyv(x)du(x) 4+ vs(A)
A
Definition 2.17.

e Denote the average of f over the set F, with respect to u as

]ifdu::u(lE)/Efdu

The definition is valid provided 0 < u(E) < oo and the intergal on the R.H.S is
defined.

o [}l

loc

R u) :={f:R* =R ; [, |fldu < oo, for all compact sets, K C R" }

Theorem 2.18. Lebesgue Besicovitch Differentiation theorem

Let u be a radon measure on R, f € L] (R",u). Then,

lim fdu= f(x), for u— a.e x € R"
=0 B(z,r)

Proof. For Borel B C R", define

vF(B) ::/Bfi du
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Then, by MCT, v* are o— finite measures on the o— algebra of borel sets. For an

arbitrary set A C R", define
vE(A) = inf{v*(B) ; A C B, B is borel}

From the construction of measures from semi-algebras, it follows that v* are regular,

borel measures. Now for any compact set K,
vE(K) :/ fEdu(z) < / | fldu < oo
K K

Thus v* are radon measrues as well.

Also, note that v* < u. Thus, by the Radon-Nikodym theorem, for all u— measurable

set A,
/ fHdu=vt(A) = / Dyt du
A A
/ fTdu=v(A) = / D,v™ du
A A
Thus
Dyv* = f* ; u— almost everywhere
Consequently,
lim + f du = lim ft du — lim fdu
r—0 B(z,r) r—0 B(z,r) r—0 B(z,r)

, 1 -
= iy s [ (Bl ) — v (B, )]

= Dt (z) — Dyv~ (x) , u— almost everywhere
=fT(@) = f(2)

= f(x) for all x, u— almost everywhere

Remark 2.19. The same result holds for f to be in £ (R", u), where

loc

ﬁp

loc

(R u) :={f:R" =R ; / |f|Pdu < oo, for all compact sets, K C R" }
K

Corollary 2.20. Let u be a radon measure on R", 1 < p < oo and f € LY (R" u)

loc

where

LP

loc

(R u):={f:R" > R; /K |fIPdu < oo, for all compact sets, K C R" }
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Then

lim |f(y) — f()|P du(y) =0 ; for u— almost every x
r—0 B(:E,T)

Definition 2.21. z is a lebesgue point with respect to u, if

i {  1£) — F@P duly) =0
r=VJB(x,r)

Proof of the corollary: Let {r;}3°, be countable dense set in R .
Claim 1 : f(x) —r; € LY (R™ u)

loc

Proof of the claim 1 : Fixz a compact set K C R™. Then, by the minikowski’s inequality,

(/Klf—ml” du)@(/}{lﬂp du)’l’+<m|f> u(K)>;<oo

This proves the clatm 1.

By the Lebesgue-Besicovitch differentiation theorem 2.18,

lim |f(y) = ri|P du(y) = |f(z) — 1| ; for u— almost every x.
r—0 B(z,r)

This implies that there are {A; C R"}2°, such that, for A =J;2, Ai, we have u(A) =0
and satisfy the property: Yo ¢ A, Vr;,

= lim [f(y) = ril” duly) = [f(x) = raif”
r—0 B(z,r)

Let © ¢ A and by the dense property, choose r; such that

@) =nl < o

Then, by the holder’s inequality,

r—0

lim sup ]é O =1

r—0

< or-t [hmsupjf |f(y) — ril” du(y) +J[ |f (@) = raf? dU(y)]
B(z,r) B(w,r)

=27 l70) =+ 11 Go) = )
<€

€ was arbitrarily greater than zero. This concludes the corollary. 0
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Corollary 2.22. If f € L]  for some 1 < p < oo, then

R
Jim 1) = F@P dy =0 for £ ez

Remark 2.23. Here Blﬁn} means the limit is taken over all closed balls containing x with
x

diam(B) — 0.

Note that the balls need not be centered at x in this kind of limit.

Proof. Let B be a ball with diam(B) = d and = € B with x being the lebesgue point.
Then, B C B(z,d) and hence,

Hence,

_ L£"(B(z,d)) e . ot
fisw - s@pay < =i s s@ra < f s - sy

As z is a lebesgue point, d > 0 = RHS — 0 and this proves the corollary.

Corollary 2.24. Let E C R" be L™— measurable, then

L B(z,7)NE)

0 2Bz, 1) =1 for L"— almost every x € E

L B(z,r)NE)
r—0  L"(B(z,r))

=0 for L"— almost every x € E°

Proof. Let f = Xg. As E is L"— measurable, f is locally integrable as u(E N K) <
u(K) < co. By the above corollary,

lim fly) dy = f(z) for L"— almost every x.
r—0 B(z,r)

As per the hypothesis,

[H.S = lim 22 B@.1) 0 E)

50 Lr(B(x, 1)) =0 or 1 = R.H.S accordingly a.e.

This proves the corollary. O
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Definition 2.25. Points of density :
Let E be a L"— measurable set of R”. x € R" is called a point of density for F if

i L (B(:L‘, r) N E)

r—0  L"(B(z,r)) =1

Remark 2.26. From the previous corollary, for almost every x € E, x is a point of

density.

2.2.2 Riesz Representation Theorem.

Definition :
C.(R™;R™) :={f:R" = R™; fis continous and has compact support in R"}

Theorem 2.27. Let L : C.(R™";R™) — R be a linear functional satisfying, for each
compact set K C R",

sup{L(f) ; f € Ce(R™;R™) 5 |f| <1, support(f) C K} <oo  ——(¥)

Then there is a radon measure u on R™ and a u— measurable function o : R™ — R™
such that for all f € C.(R™;R™),

o |o(x)| =1 for u— almost every x
d L(f) :fRan du

Definition 2.28. u is called the variational measure which is defined for each open set
V CR” as

w(V) :=sup{L(f); fe€C(R"R™); |f| <1, support(f) C V}

Proof. Firstly observe that L(f) <0 = L(—f) > 0. Hence, for an open set, define u

on open sets V' as above and set and for an arbitrary set A C R™
u(A) =inf{u(V); ACV;V is open}

Claim 1 : w is a measure ( i.e, subadditivity is satisfied ).

Proof of the claim 1 : Let V', {V;}°, be open sets in R” with V' C U2, V;. Choose
g € C.(R™;R™) such that |g] <1 and support(g) C V.

By the compactness, support(g) C UQ?:IV}. By the partitions of unity, let {Q}?Zl be

a finite sequence of smooth, non negative functions such that support({;) C V; and
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Z;?ZI & = 1 on support(g). Then, clearly, g = 25:1 g&; and hence,

k

k 00
L) = |32 L&) < D IEg&)] < Y ()

Jj=1

Taking supremum over g, we get

(V)< S u(vy)

=1

Now let {A;}32, be arbitrary sets with A C U2, A;. Fix € > 0. Choose open sets V;
such that A; C V; and u(A;) + 57 > u(Vj). Then

This proves the claim 1 as € was arbitrarily positive.
Claim 2 : u is a radon measure.

Proof of the claim 2: Let U,V be two open sets with dist(U, V) > 0.
Let g € C. (U U V,Rm> and |g| < 1. Then g1 := g|y and g2 := g|y are in C.(U,R™)

and C.(V,R™) respectively. Also, g = g1 + g2 with |g1| <1 and |g2| < 1. Hence,
L(g) = L(g1) + L(g2) < uw(U) +u(V)

Taking supremum over ¢ — u<U U V> <u(U) +u(V)

Let € > 0. Choose g1, g2 with g :== g1+g2 and u(U) < L(g1)+e€/2 and w(V) < L(g2)+€/2
— o(UUV) 2 20) = Lo + Lisw) 2 u(0) + ulV) -

Letting € — 0,we have
w(UUV)=u(U) 4+ u(V)

The above is true for open sets. Now, for arbitrary 2 sets with strict positive distance
between them, we have :

Let A, B be subsets of R™ and dist(A, B) =r > 0.

Let e = 7 and Uc := {z € R" ; d(x,A) < ¢} and V, := {z € R" ; d(z,B) < €}. Then
d(Ue,Ve) > 5. Let AUB C We, where We is an open set such that u(AUB) > u(WE) -5
Declare Wy e := W, N U and Wa . = W NV, then dist(Wy,e, Wa ) > dist(Ue, Ve) > §

— u(AUB) >u(W) — - > u(W,UWy,) — %

DO
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> u(Wie) +u(Wae) — <

5 > u(A) +u(B) —%

Letting € — 0, we have
u(A) +u(B) <u(AUB) <u(A) 4+ u(B)

— u(AUB) =u(A) +u(B)

Thus, by the caratheodory’s criteria, we have u to be a borel measure. Also, by the defi-
nition of wu, it is also borel regular, i.e, given A C R™, there is Vj, open such that A C V;
and u(V;) < u(A) + ¢, for all k € N. Thus u(A) = u(Nf, V). Now, (x) condition of the
hypothesis implies that u(K) < oo, for all K, compact subsets of R™. This proves the

claim 2.

Now, let
CS(R") == {f € C.(R",R) ; f >0}

For f € CF(R"), set

A(f) =sup{|L(g)| ; g € Cc(R",R™) , |g| < f}

Some observations include :

e If f,g € CH(R") and f < g, then A(f) < A(g).
e For f € CHR™), \(cf) = cA(f), for all ¢ > 0.

Claim 3 : For all f,g € CF(R"™), we have A(f + g) = A(f) + A(g).

Proof of the claim 3 : If hy, ho € C.(R™,R™) with |hi| < f and |ha| < g,

then |h; +he| < f+4g. We can, without loss of generality, assume that L(hy), L(ha) > 0.
Thus

|L(h1)| 4+ |L(h2)| = L(h1) + L(h2) = L(h1 + h2) = [L(h1 + h2)| < A(f + g)
Taking supremum over h; and hy in C.(R™, R™), we get

M)+ A(g) <A +9)

Now fix h € C.(R™, R™) with the criteria that |h| < f + g. Set

Lho
hy= { Tt9 iff+g>0
0 iff+g=0
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gh
hoy=  TH9 iff+g>0
0 iff4+g9g=0

Then, clearly, hi, he € C.(R",R™). Also h = hy + he and |hi| < f and |ha| < g.Thus
|L(R)| < [L(h1)[ + [L(h2)| < A(f) + Ag)

As a consequence,
A(f+9) <)+ Ag)

This proves the claim 3.

Claim 4 : A\(f) = [gn [ du ; for all f € CF(R").

Proof of the claim 4 : First observe that f~1({t}) is a closed set in R and

YN fY({s}) =g ift #5s Let 0 <s <tand K C R" be a compact set. For
every | > 0, define

SIK) = {0 € [s,t] ; u(fHO)NK) >

S(K) :={0€[s,t]; u(f 1) NK) >0}

Clearly,

Since u is a radon measure, u(f~1(0) N K) < u(K) < oo

card(Sy(K)) <

= card(S(K)) <l u(K) < o0

Hence, for every K compact, S(K) is countable. Let S := {6 € [s,t] ; u(f~'(9)) > 0},
then S = (J;2, S(K;), where K; C Kjy1, R" = (J;2; K;. Hence S is countable and
S C [s,t]. Therefore, for almost every 6 € [s,¢], u(f~'(8)) = 0. Let e > 0. Choose
0=to <ty <ty <...tysuchthat ty =2 |[f|[zee ,0 <t —ticy <e,u(ft:}) =0
for j=1,2..., N. Declare

Uj == 1 ((tj-1,17))

Uj’s are clearly open and since support of f is compact, u(U;) < oo. By the ap-
proximation by the compact sets for radon measure, there is K; C U; such that
uw(lU; — Kj) < , forall j = 1,2,...,N. Also, there are functions g; € C.(R",R™)
with [g;] < 1, support(g;) C U; and |L(g;)| > u(Uj) — «. Also, observe that there are
functions h; € CJ(R"™) such that support(h;) C Uj and 0 < h; < 1, and hj = 1 on
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K; U support(g;). Then,

A(hy) > |Ligy)| = u(Uy) = &
and
A(h;) = sup{|L(g)| ; g € Cc(R",R™) , |g| < h;}
<sup{|L(g)| ; g € C(R",R™) , |g| <1, support(g) C Uj}
= u(Uj)
whence

€
u(Uj) = i = Alhy) < u(lj)
Since {U;} are disjoint and support(h;) C U; = f(1— Z;VZI hj) > 0, declare

A:={z; f(z) (1 — Zhi(:ﬂ)) > 0}

Here, A is clearly open. Now, we compute
7j=1

N N
A (f ~f Zhj) = sup{|L(g)| ; g € Ce(R™,R™) , |g| < (f = fD_hj)Xa}

<supf{|L(g)| ; g € Ce(R",R™) , [g| <|[f]lzee Xa}

= [[fllze sup{[L(g)| ; g € Ce(R™,R™) , |g] < Xa}

= |[fl|Le u(A)
N
= |[fllzee u (U(Uj —{h; = 1})>

j=1

N
< Ifllzee Y u(U; - K;)
j=1
< €|l fl] e

Hence,

N N
A(f) = A (fthj) +A (thj)
j=1 j=1

N
< ellfllzee + > A(fhy)

=1

N
<ellfllz= + Y tjuU))

J=1
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and

N
Af) =D A(fhy)
j=1
al €
> th—l (U(UJ) - N)

Since u(f_l({tj})) =0,

N N

St () < / fdu< Y tu(ty)

j=1 Jj=1

we have
N
M) = | dul < Dt = ti—)u(U) +el|fl]ze + et
j=1
< € u(support(f)) + 3 €||f||r

This proves the claim 4.

Claim 5 : There is a u— measurable function o : R™ — R™ such that L(f) = [z. f.0 du
for all f € C.(R",R™).
Proof of the claim 5 : Fix a = (a1, a9, ...,a,) € R™ such that |a] = 1. Define

Aa(f) = L(fa)

Note that (f a)(z) = f(z).(a1,a2,...,am) = (a1 f(x), a2, f(2),..., f(x)ay) € R™ and is
compactly supported, for f € C.(R™). Then )\, is linear and

Aa(H)] = [L(f a)] <sup{|L(g)] ; g € Ce(R™,R™) , |g] < [f[}

=MD = [ 11 du

Thus,by the Hanhn-Banach theorem, we can extend A, to a bounded linear functional
on L'(R" u). Hence, there is 0, € L°°(u) such that

A(f) = /R foudu; for f € Cu(R")
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Let eq, eq,...e, be the standard basis of R™. Define

o
o= E Te; €5
Jj=1

Then if f € C.(R",R™), we have

m

L(f) = _L((f€))e))

J=1

m

zgg/qu%m

:/fam

This proves the claim 5.

Claim 6 : |o| =1 u— a.e.

Proof of the claim 6 : Let U C R™ be open and u(U) < co. Then, by definition,

uw(U) = sup{/ foodu; feC(R"R™), |f| <1, support(f) CU}  (xx)

Take gp € C.(R™,R™) such that |gx] < 1 and support(gr) C U and gx.0c — |o|
almost everywhere. Then, by the (),

/ lo| du = lim /gk.a du < u(U)
U k—o00

Also, if f € C.(R™,R™) with |f| <1 and support(f) C U, then
/f.a dug/ lo| du
U

By (*%),
u(U) §/U|0| du

Thus
u(U) :/ lo| du
U

for all open sets U C R™ and hence,

|o| =1 ; u— almost everywhere

; u—
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Corollary 2.29. Let L : C.(R") — R be linear and non-negative, so that
L(f) > 0 for all f € C2*(R™), f >0
Then there is a radon measure u on R™ such that

L(f) = f du for all f € C°(R"™)
R

Proof. Choose any compact set K in R™ and select smooth function ¢ such that £ has
compact support, £ = 1 on K and 0 < { < 1. Then, for any f € C(R") with
support(f) C K, set g = ||f||r=& — f > 0. The hypothesis of the corollary implies

0 < L(g) = |l fllze=L(§) — L(F)

and so

L(f) < ClI |z~

where C = L(§) . Thus L extends to a linear mapping from C.(R™) to R such that it
satisfies the condition of the Reisz representation theorem. Hence, there is u, o as before

such that
L(f) = /n fodu feCXPR"Y)

with ¢ = +1 u— a.e. The hypothesis of the corollary forces o =1 , u— a.e. O

Remark 2.30. There is a generalised version of the Riesz representation theorem in Real
and Complex analysis, W.Rudin which says the following :

Let X be a locally compact Hausdorff space, A be a positive linear functional on C.(X),
ieif f > g, then A\(f) > A(g). Then, there is a o— algebra M which contains all the
borel sets in X and there is a unique positive measure u on M which represents A such

that

e Mf) =[x fduforall feCuX):={f:X — R; support(f) is compact in X}
u(K) < oo for all K compact subset of X
For all £ € M,

u(E)=inf{u(V); ECV , V isopen.}

For all E open and in M, with u(E) < oo,

u(F) :=sup{u(K) ; K C £, K is compact.}

FEeM, ACE,u(E)=0 = AeM



116

2.3 Hausdorff Measures

2.3.1 Definition and some elementary properties.

Definition 2.31. Let ACR" ,0<s< o0, 0<d < oo. Define

O'zC/J
|||

Z_: <dzam CJ)> i AC U Cj , diam(Cj) < 6}

=1

where

o0
I'(s) ::/ e P25 ldr;0< s < o0
0

w\»—A

From the definition, a(0) =1 and a(1) = Now,

F()

1 o0 _ oo
(=)= / et T dt = 2/ e dz
2 0 0

= 4/ / @ +9%) g dy = 4/2 </ re_r2dr>d0 — 72
0 0

= a(l) =2

[NIES

Definition 2.32. For A and s as above, define

H(A) = } mH3(A) = ?51;18 H3(A)

We call H® to be the s— dimensional Hausdorfl measure on R"™.

Remark 2.33. Here ‘supremum’ is the ‘limit’ as H§ increases as 6 — 0, by the infimum
property.
Theorem 2.34. H?® is a Borel - regular measure. (0 < s < 00)

Remark 2.35. H* need not be a radon measure as for # is counting measure, #°([0, 1])

is not finite.
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Proof. Claim 1 : H3 is a measure.
Proof of the claim 1 : Let {A4;}7°, C R™ and suppose that A; C U 1 C’k for all k with
dzam(C]’?) < 4, then {Cj’?}j .1 becomes a cover for (i, Ay.

Thus oy s
> dmm(C )
k=1 k=1 j=1

Taking the infimum, we get

’Hi(UAk) <> H5(AR)
k=1 k=1

And clearly, if A C B, then,

H3(A) < H5(B) and Hs(¢) =0

This proves the claim 1.

Claim 2 : H?® is a measure.
Proof of the claim 2 : Let {A;}7°, C R™. Then, by the claim 1,

The second part of the inequality is due to the supremum property. The above is true

for all 6 > 0 and hence, taking 6 — 0, we get
" (U Ak) SN
k=1 k=1

Clearly H*(¢) = 0 as H3(¢) = 0. Also, for A C B, Hj(A) < H3(B) < H*(B). hence, by
letting 0 — 0, we have H*(A) < H*(B).

This proves the claim 2.

Claim 3 : H® is a Borel measure.

Proof of the claim 3 : ( idea is to use the caratheodory criteria ).

Choose A, B C R" with dist(A,B) > 0. Let 0 < 6 < w . Suppose AUB C ;2 Ck
and diam(Cy) < 9, then , set

A:={Cj; CinA# ¢}

B:={C;:0;N B # ¢}
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Clearly, if C; € A and Cy, € B, then, (C;NA) N (CxN B) = ¢,
diam(Cj; N A) < diam(Cy) < 6, diam(Cy, N B) < diam(C}) < 6, by the construction of
J.

Hence,

> H5(A) + H5(B)

This is true for all covers {C}} of AU B and thus

HY(AUB) > Hy(A) + H}(B)

provided 0 < § < M

Let § — 0, then,
H(AUB) > H*(A) + H®(B)

By the sub-additivity, we have
H (AU B) =H*(A) + H*(B)

provided dist(A, B) > 0.
By the caratheodory criteria, H* is borel.

This proves the claim 3.

Claim 4 : H? is Borel-regular.
Proof of the claim 4 : Observe that diam(C) = diam(C), for all subsets C of R". Hence

1nf{z <dzamCJ)>S ; AC U Cj , diam(Cj) <0, Cj’s are closed.}
j=1
Let A C R™
Case 1 : H*(A) = o0 :
As A CR", H5(R") =
Case 2 : H*(A) < o0
= H3(A) < oo, for all § > 0. For k > 1, choose {C’k} © , such that

. dz’am(C]’?) <1
e AC U;’il Cck

iam(CF
e By the infimum property, >>22, a(s). <d 2(CJ)> < ’Hl/k(A) +1
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Let Ay := U2, CF and B := M2 Ay
Then A C A forallk = AC B = H*(A) < H*(B).
Also, for all k, B C Ay = U;’il C]’?, hence

e diam(C*)\* 1
Te(B) <D als). (2(’)> < Hijp(A) + o ; for all k

Sending k — oo, we get
H*(A) = H*(B)

And hence, for all A, there is B Borel subset of R™,
H(A) = H(B)
This proves the claim 4 and thus the theorem.

Remark: For Gs to be the collection of sets which are Hj measurable, note that in
general, for 6 > 0, G§ need not contain the Borel sigma algebra.
Counter-Example : Let X =R, d(z,y) = |[r —y| and 0 < s < 1. Let H§ and

H? = lims_,0 H§ be the corresponding hausdorff measures as defined earlier.

AS(Z%’) < a; ,if0<s<1

=1 =1

= for any [a,b] with b—a < (6 = 1),

Hi(la,0]) = Hi((a,b]) = Hi([a,b)) = Hi((a,)) = (b—a)®

Hence,
1
H(10.5]) = 5
1
i((fv 1]) = 27
But,
1 1

Hi ([0’ 1]) 7& Hf([O, 5]) + ,Hf((§7 1])

Hence, the intervals are not measurable with respect to the measure Hf. O
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Theorem 2.36. Elementary properties of Hausdorff measures.

o HO is counting measure.
e H'=L'onR

e H*=0onR", foralls>n

H5(NA) = NH5(A), for all A > 0, A C R”

H*(L(A)) = H?(A), for all isometries L : R™ — R™ | that is, distance preserving maps
from R™ to itself, with A C R"

Proof. e Observe that a(s =0) = ﬁ =1.

Thus H° ({a}) = 1 and this proves that H° is a counting measure.

e Let A C R" and § > 0. Note that I' (3) = VG- Hence a(1) = 2. Also, if C C R,
then there is an interval I with C' C I such that diam(C) = diam(I). Thus

LYA) = inf{z diam(I;) ; AC U I; ; I; are intervals.}
i i=1

= inf{} diam(C;) ; Ac |y}
J

J=1

< inf{z diam(Cj) ; A C U Cj 5 diam(Cj) <0}
J

j=1
= inf{z (dzarr;(C])) a(l); AcC szle ; diam(Cy) < 6} = Hi(A)

Conversely, set, for k € Z
Iy, = [k6, (1 + k)J]

Then diam(C; N I;) < 6 and
+oo

Z diam(C; N I,) < diam(Cy)

k=—o00

Hence,
LY (A) =inf{) " diam(Cy) ; Ac | JC;}
j=1 j=1
o0 +o0 oo o0
>inf(> Y diam(C;n 1) ;s Ac | UGN} = Hi(A)
j=1 k=—c0 j=1k=1
Thus

LYA) = H(A) ; for all § > 0
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— Ll=H'on R"

e Fix m > 1, an integer.
The unit cube in R™ which is @ =[0,1]" :=[0,1] x [0,1] X ... X [0, 1] times can be

. . . 1/2
decomposed into cubes of side % and diameter % Therefore,

m" /2 § 7,Ls/2 9 3
1/2 Za = a(s) — m" = a(s) ns/2 mn—s

Now, if s > n, and letting m — oo tells that H®* = 0 on @ , for all s > n on unit

cube Q. Now R™ C |J Q;, where @Q;’s are unit cubes spanning the space. Thus

HAR") <D H(Qi) =0
concludes that H*(R™) = 0.

e For L to be an isometry,

mf{z (dmmC’ﬂ) ; AC U Cj , diam(Cj) < 6}

Z_: <dmm@>> L L) € | E(Cy) , diam(L(Cy)) < 8)

Let D; = L(C}), then,
1nf{z (CM) L L(A) C Ule  diam(D;) < 6} = H3(L(A))
j=
Sending § — 0, we get
H?(A) = H(L(A4))

This also implies H?® is translational invariant.

Lemma 2.37. A convinient way to verify that H® vanishes on a set:
Suppose A C R"™ and Hj(A) =0 for some 0 < 6 < oo, then H*(A) =0

Proof. Case 1: s=0 . Given that H3(A) = 0 for some 0 < § < oo,
Claim : A = ¢.

Proof of the claim : Suppose not, then, there is some x € A. Consider C; of diameter ¢
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( say a ball of radius g at x). Note that a(s =0) =1 and

1

(diam(Cj) ) s=0
2

and hence, H35(A) > 1 for s =0 = 0 > 1. This is a contradiction and thus proves the

claim and hence the case 1.

Case 2 : s >0 and H(A) = 0 for some 0 < § < oo.

Fix € > 0. Then there is {C;}32; such that diam(C}j) < 4. Note that the choice of Cj

depends on € as
Za(s). (dzan;(C])) <€

J

Hence,

Sending € — 0, we have

Lemma 2.38. Let S CR" and 0 < s <t < 0.

o IfH*(A) < oo, then H'(A) =0
o IfH!(A) >0, then H5(A) = o

Proof. Note that the above 2 points are contrapositive to one another and hence, it
suffices to prove just one of them, say the first one.
Let H*(A) < oo and 0 < § < 1. Tt is needed to be shown that H!(A) = 0.

= 3{C;}32, such that diam(C;) <6 ; Ac | C;
j=1

And

Then
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_ a(t) s—t = als dlam(OJ) ° iam(C S
- S e (5 diam(c)

As § — 0, we have

Note that «a(s) # 0, for all s. O

Definition 2.39. The hausdorff dimension of a set A C R” is defined to be
Haim(A) = inf{0 < s < 00 ; H(A) =0}

Remark 2.40. e For A C R", Hyim(A) < n ; by the elementary property (3) men-

tioned in theorem 2.36.

e Let Hyim(A) = s, then

0 forall t > s
H'(A) =< areal number=s  fort=s
+00 forallt < s

o Hgim need not be an integer, in general.

2.3.2 Examples and calculation of Hausdorff measures for some sets.

e Hausdorff dimension of the Cantor set.

The hausdorfl dimension of the cantor set is ﬁzgg
Proof. Declare
log2
S = —-
log3

The cantor set , as defined as the removal of the middle 1/3rd length spaces at each
iteration, it can be denoted as C := NgenCr, where each Cf is the finite union of
the 2 intervals of length 3% Now, given § > 0, choose K > 0 such that 3%{ < 0.

Observe that Ck covers C and consists of 2% intervals of length 3%( < 9. Thus

s log2 2\
wie <o () (5)
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Note that s satisfies 3° = 2,

log2
S <
— H(C) <« <log3>

Definition 2.41. A function f on a subset E of R" satisfies a lipshitz/Ho6lder
condition with exponent + if there is a constant M > 0, such that for all x,y € F,

[f(z) = f(y)] < Mz —y|”

Lemma 2.42. Suppose that f is a function defined on a compact set E and satisfies
the Hoélder condition with the exponent vy, then, for some M' > 0,

— For f=2, HP(f(E)) < M'H*(E)

— dim(f(E)) < %dlm(E)

Proof. Suppose that {F}}r is a countable family of sets that cover E, then {f(E N
Fy)} covers f(E) and diam(f(E N Fy)) < M (diam(Fy))”, where M is defined as
in the definition 2.41. Thus,

Z (dz’am(f(E N Fk))> ’ < M~ Z (diam(F;))”
k=1 i=1

Now, for diam(F}) less than 6 and as § — 0, we have diam(f(E N Fy)) — 0 and

S

hence, for g = =%

HP(f(B)) < M'H*(E)

where
AI,::_A{BQS(L*%)Q(ﬁ)
a(s)
This proves the first part of the lemma. The second part of the lemma follows from
that fact that first part implies H*(E) =0 = H?(E) = 0. O

Remark 2.43. Construction of the cantor function :

As defined earlier, C' = N3, C}, with C}, to be the union of disjoint intervals of

length 2.
Iteration :
C1=[0,1]U[2,1] : Define f; continuous, on [0,1] as

0 =20
1 1 2
2 3<T<3
1 r=1

A straight line joining the end points elsewhere
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Co=10,4]U[2,4U[2, LU [3,1] : Define f, continuous, on [0, 1] as

0 r=0

: J<a<}

: b<os?

1 gT<y

1 z=1
A straight line joining the end points elsewhere

And so on for each ¢ € N.

Each f; takes the value atmost 1 and f;’s are increasing. It also has the property
that |frr1(x) — fu(x)] < TL% Hence, f; converges uniformly to a continuous
function called the cantor function defined as

f(z) := lim fi(x)

1—00

and satisfy

Lemma 2.44. The cantor function f defined on C satisfies the Hélder condition

log2
log3 "

with the exponent v =

Proof. Note that f,, is piecewise continuous linear function and hence it is absolute
continuous with the existence of f] () a.e. Also, observe that f/(z) is bounded by
(2)". Therefore, for z,y € [0, 1],

Y 3\"
)= 5l = | [ ruwar] < (3) 1o
Let & # y and choose n > 1 such that 3% <lzr—y| < 3,%1

= |f(@) = fW)| < [f (@) = fa(@)] + | fu(x) = fu()] + [fu(y) = F(Y)]
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_ o — log2
where v = s = Tog3 O

For the other inequality in the calculation of the dimension of the cantor set, let

E = C, f be the cantor function defined as above and s = v = ézgg The above 2

lemmas give H'([0,1]) < M'H*(C). Thus #*(C) >0 = dim(C) > 22 Thus

. log2

Hausdorff dimension of a general fractal :
Theory :
Consider (X, d) to be a metric space. Let A,BC X,z € X, > 0.
Define:
d(xz,A) := inf{d(z,a) ; a € A}

A’ :={zeX; dxA) <
d(A,B) :=inf{0; Ac B®, Bc A%}

Lemma (*1) : Let A, B,C be closed subsets of X. Then,
— d(A,B) =d(B, A)
- d(A,B)=0 < A=8B
— d(A,B) < d(A,C)+d(C, B)
—~ACB = Ac¥

Proof. From the definition, d(A, B) = d(B, A).

Clearly, A= B = d(A, B) = 0. Conversely, if d(A, B) = 0, then for all § > 0,
A C BY and B C A% Hence, for every a € A, there is a bs € B such that
d(a,bs) < 9. Let 6 = %, b, = bs. Then, b, — a as n — co. Hence, a € B = B and
thus A C B. Similarly, B C A and this concludes that A = B.

Let 61 > 0 and d2 > 0 such that d(A4,C) < 41 and d(B,C) < d2. Let a € A, then
there is a ¢; € C and b; € B such that d(a,c1) < 01 and d(eq,b1) < 0.

— d(a, B) < d(a, bl) < d(a,cl) + d(Cl,bl) < 01+ b9

— A C Bhto2

Similarly, B C A%+%2,
— d(A, B) < &1 + b9

Letting 1 — d(A,C) and 62 — d(B,c), we have the third point of the lemma

proved.
Let z € A% Then, d(z,A) < ¢ and hence, d(z, B) < §. thus z € B® and hence,
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A% C BY.
This proves the lemma.

O
Definition:

Let S: X — X be a map. S is said to be a similarity map with ratio 0 < r < 1, if
d(S(z),S(y)) =r d(z,y), for all z,y € X.

Definition :

Let 51, 59,...,5; be similarity maps with the same ratio . Let A C X. Define,
L(A):=5(A)U---US(A)

Definition :

A C X is said to be self similar with respect to {S1,...,S;} if L(A) = A.

Lemma (*2):
Let 51,53, ...,.5; be similarity maps on X with the same similarity constant. Let
A, B be subsets of X and for k > 0, define

Fo(A) =A

Fi(A) := L(Fr-1(A))

1060 = {75 T {120 k) = (12,0 )
Then,
— diam(S(A)) < r diam(A)
For J € I(k, 1),

diam <SJ(1) 008y (A)> < ¥ diam(A)

For J € I(k,l), denote
SJ Z:SJ(l)OSJ(Q)O---OSJ(k)
Then

Fi(A) = U Sy(A)
JEI(k,1)

dist <L(A), L(B)) < r dist(A, B)
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Proof. Since, d(S(z),S(y)) = r diam(A, B), we have that diam(S(A)) < r diam(A).
Repeat this k£ many times to get,

dzam(SJ(A)) = diam(SJ(l)oSJ(Q)o . -OSJ(k) (A)) S r diam(SJ(Q)oSJ(3)o- . 'OSJ(k) (A))

<7k diam(A)

Now, for the third point of the lemma. This is true by induction on k. For k =1,
it is true by the definition. Assume that the statement is true upto k£ — 1. Then,

Fi(A) = 51(Fp-1(A)) U+ U Sy(Fi-1(A4))
z
U U SJ(A)
=1 JeI (k-
U Sy(A)

Jel(k,d)

Let 6 > d(A, B), then A C B® and B C A°,

Claim 1: S(A) c S(B)™, S(B) C S(A)"

Proof of the claim 1: For x € S(A), y € S(B), then there is a € A, b € B such that
S(a) = x and S(b) = y. Hence,

d(z,y) = d(S(a), S(b)) = r d(a,b)

And hence,
d(z,S(B)) <7 d(a,b) , for all z € S(A)

Now, taking infimum over A and B, we get

d(z,S(B)) <r inf d(a,b)=rd(A,B)<rd
a€AbeEB

Hence, S(A) C S(B)™ and similarly, the same kind of proof gives S(B) C S(A)"
From the claim 1, we have for 1 < i <[, S;(4) C S;(B)" and Si(B) C Si(A)T‘S

Thus, from the lemma(*1) as mentioned before,
L(A) = Si(A) U+ U Si(A)
C Sl(B)r(s Uy---u SI(B)M

c (Sl(B) u.--us,(B)>mS

= L(B)"
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Similarly, we also have L(B) C L(A)"™. Hence,
dist <L(A),L(B)> <rd, Vo> dist(A,B)
By letting d | d(A, B), we get
dist (L(A), L(B)> < r dist(A, B)
This proves the lemma. O

Lemma(*3):

Let 51, .59,...,5; be similarity maps with the same ratio 0 < r < 1. Then,
— Let A C X such that S;(A) C A, for all 1 <7 <. Then

Fi11(A) C Fi(A)

— For i <1, let S;(A) C A and F'(A) =N, Fi(A), Then,
L<F(A)> = F(A)
—Letxp € X, a:= max{dist<5’i(:co),x0> ;1 1<i< l} and R > 1%, then,
L(B(a;o,R)> c B(zo, R)
Proof. Given, for all 1 <i <1, S;(A) C A. Thus, for all J € I(k,1),

Sj(A) = Syayo- 085 (A) CSyayo---085m-1)(A) C Fr_1(A)

L(F(A) = [ L(Fu(A) = [] Frsr(A) = [ Fu(A) = F(A)
k=0 k=0 k=1

Since, Fk+1(A) C Fk(A)
Now, let R > 1% and x € B(wo, R), then for 1 <i <1,

d(Si(z), z0) < d(Si(z), Si(zo)) + d(Si(wo), z0) <7 d(z,z0) +a <rR+a <R

This proves the lemma. O
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Lemma(*4) :
Assume that there is zp € X and for all R > 0, B(zg, R) is compact. Then, there

is a unique invariant compact set in X for S1,59,...,5;.

Proof. Uniqueness : Let E, F' be two compact invariant sets for the family Sy, ..., .5;.
Then, L(F) = F and L(F) = F, and from the lemma (*2),

d(E,F)=d(L(E),L(F)) <r d(E,F)

Since r < 1, we have d(E, F') = 0 and hence, £ = F..
Existence : Let a = max{d(Si(xO),:po) i1 gigl} and R > %, and A =
B(xo,R). Then, from the lemma (*3), we have S;(A) C A, Fjp1(A) C Fi(A)
and Fj(A) is compact for all & > 0. Hence, F(A) # ¢ and is an invariant set to
the family {Si,...,5;}.

O

Lemma (*5):
Let X = R™ and d be the euclidean distance. Let S1, 53, ....5; be similarity maps
with the same constant 0 < r < 1. Let F' be the invariant set for {S1, Sa,..., S}

Then, for s = lol;’glﬁr, we have H*(F') < oo.

Proof. Hypothesis of the lemma (*4) is satisfied with z9p = 0. Hence, for A =
B(wo, R), F11(A) = L(Fy(A)), we have

F=F(A) = ﬂ Fj(A) to be the invariant set.
k=0
From the lemma(*2), for all J € I(k,l), we have

dz’am(SJ(A)) = diam (Sj(l) o+ 08y (A)>

<r diam <SJ(2) 0-+-0 SJ(@(A))
< 7% diam(A)
= 2Rrk

Since, F' = F(A) C Fy(A) = UjergSi(A), let 6 < 2Rr*, then, as Ir® = 1, i.e,
_ logl
" log %’

Hi(r() <al) 3 ()

2
JeI(k,l)
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< a(s)(Rr*)® card(I(k,1))
= a(s)(Rrk)slk
= o(s)R? (lrs)k
< a(s)R?
Since, r < 1, as k — 00, § — 0 and therefore,
H(F)=H’(F(A)) <a(s)R* < o0

This proves the lemma. O

Definition :
Let S1,59,...,5; be similarities with the same ratio . Then, S1,59,...,S5; are

seperated if there is an open bounded set O such that

S(0)NS;(0)=¢ ifi+j

Remark: Let S1,.5,...,5; be seperated as above with the existence of O. Then,
for any J, K € I(k,1), J # K,

_ S,(0)c O
= S;(0)NSK(0) = ¢

Proof. Since J # K, choose o such that
J(i) = K(i) for all i <ip—1
J(io) # K(io)
Since S; 0 5;(0) C S,(0),
5;(0) = (SJ(l) 0--083G)0 -0 5J(k)>(0) C (SJ(l) 0--:0 SJ(ig)) (0)

Similarly,
Sk(0) C Skayo- 08k (0)
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Claim :

<SJ(1) 0---0 SJ(io)(O)) N <SK(1) 0-:-0 SK(io)(O)> =0

Proof of the claim : For, if x is in the intersection, then there is z; and zo such that

Syay0- 0 Sy (21) = = Sk1) 0 0 Sk(ip)(O)(22)

Hence, by the choice of iy, we have

S(i0)(21) = Sk (o) (22)

This is clearly a contradiction and hence the claim is proved. Hence,
S7(0O)NSK(0) = ¢ for J # K

This proves the remark. O

Lemma(*6) :

Let A C R™ be a compact set and 0 < s < n with H*(A) < oo. Then,

Hi(A) = inf {20, (dw’; UJ‘)S  diam(U;) <6, Ac Ui, Us}

Proof. Since H*(A) < oo, we have that H3(A) < oo for all § > 0.
Let e > 0,0 <d < 1and A C U2, Cj, with Cj’s closed and diam(Cj) < § with

the property that
= di C;
Z N ( iam > CHI(A) +e
7j=1

Choose €; > 0 such that 0 < ¢; < diam(C}) , diam(C;) + 2¢; < 2§ and
Eoo 6Imn{l s}

j=16€j < €. Then, for some A > 0 which depends on s, we have

i o (dmm > Z <dzam C]> 4 Z mm{l s}
7j=1

Let
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= diam(U;) < diam(Cj) +2¢; <, AC U C; C U U;
j=1 j=1

Now, as A is compact, there is N such that A C Ujvzl Uj. Then,
N diam U diam C; 5
Za(s)< J) Z ( +ej> = H3(A) + (1 + Xa(s))e
=1 =1

This proves the lemma as € > 0 was arbitrary. O
Let {S1,S52,...,5;} be a seperating family of similarity transformations with the
same ratio 0 < r < 1, with the bounded open set to be O, as in the definition of
the seperability. Let Ry > 0 and F' C B(0, Ry) be the invariant set. Let 6 < 1

and F C | J!_, U; with diam U; < 4. Since F C B(0,Ry), we can assume that
U; C B(0, Ry) for all i. Let

Ai=sup{jv—z; ve O, z€B(0.Ry)}
Let k > 1 be such that
b < min{diam(U;)} < r*1

Letz € Fand 1 <p<k.
Define :
Gp = {U; ; 7" < diam(U;) < rP~1}

G . J=(J1),...,J(); 1<J()<1,V1<t<q,Vg>Il-1
P SJ(T)EUZ', UZ‘Ggp

Lemma (*7):
With the above definitions valid, there is a ¢y > 0 that depend on n, Ry, O such
that

card(Gpi) < col® P

Proof. For J € Gp;, declare J := (J(1),J(2),...,J(p — 1)).
Claim : There is a ¢y > 0 such that it depends on n, Ry, O and

card{J ; J € Gy} < co
Proof of the claim : Let J € G, ;. Then, for v € O,

1J(Z) — J(v)| < rp_l}SJ(p) 0---0 Sj(q)(f) — v‘ < ArPH
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Since, J(Z) € U; and diam(U;) < rP~1, we have, for all v € O and for all z € U;,
[J(v) = 2| < [T (v) = J(@)| + [T (Z) - 2
< ArP7t 4 diam(U;)
< (A+ 1)t
= J(O) C B(z, (A +2)r"1)

Since diam(J(O)) = rP~'diam(O) and {J(O)} are disjoint,
if 7= card{J(O); J € Gp,;}, then,

TL (O™~ < (A +2)"L"(B(0,1))r"0—)

A+2)"L"(B(0,1
— Tgcowithc(,:( + )L( ©, ))

£(0)
For each J, there are atmost {*~P elements in Gp,i and hence the cardinality of G, ;
is atmost ¢ol*~P. This proves the lemma. O
Theorem :

Let {S1,S5%,...,5;} be a seperating family of similarity transformations with the

common ratio to be 0 < r < 1. Let s = lol;’gl% and I be the invariant set. Then,
there exist «, 8 > 0 such that o < H*(F) < . This concludes that the hausdorff
dimension of F is %.

g 1/r

Proof. From the lemma (*5), we have that H*(F') < /8 for some § > 0. Also, from
the lemmas (*6) and (*7), we prove the lower bound for H*(F'). Let 0 < § < 1 and

N
F c | JU; ; with diam(U;) < 6.
=1

Let k > 1 be such that
rk < min{diam(U;)} < r*!
For 1 < p <k, define

Ap) := {i ; P < diam(U;) < rP~1}

N(p) := card (A(p))
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Then, from the lemma (*7), there is a constant ¢y > 0 such that it is dependent on

O and Ry such that the following holds.

card( U U gpl) < COZN
p=1icA(p)
Since for J € I(k,1), J() € F ¢ UY, U;. And hence J() € U; for some 7 with

rP < diam(U;) < rP~1. Hence for ¢; = 1

57

N(p)

= "< ¢ Z N (p)IF~P or equivalently, Z e >
P
Now,
ol diam(U;)\°
>ate) (M) = ol ¥ v
=1 P
:M@z:(m@mp
I
P
N(p)
> afs) 3 L
P
>l
Hence,

This proves the theorem.

Examples as facts with the application of the previous theorem :

As seen earlier, the cantor set has dimension ﬁggg

The van Koch curve has dimension ﬁggg, where the similarities and the details are
given by

- Si() =

— Sa(z) =p3 ta

— S3(x) = %§+ﬁ

- i) =5

wlx

— Here p is the rotation centered at the origin and of angle %, that is (say) e’
— Here, m=4,r=1/3
— Refer the diagram for the fractal as well as the definition of «, 3, 7.



136

Iteration of the Van-Koch curve - fractal KO

K,

K>

K3

Pep

Fig(a) : Figures of the iteration of the Van Koch curve - fractal.

Q)
Similarity of the
ﬂ Sierpinski
triangle

(1) (2)

()
Similarity of the Van Koch
curve

Q
o
Q
2
—

0 g

Fig(b) : Figures of the similarities of both the van Koch curve and the Sierpinski

triangle.

Iteration of the
Sierpinski
triangle -

fractal

o

Fig(c) : Figures of the iteration of the Sierpinski triangle - fractal.
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The Sierpinski triangle has dimension ézgg The similarities and the details are
given by

- Si(z) =3

— S(z) =5+«

~ Si(z) =%+ 8

— Here, m = 3 and r = % Refer the diagram for the fractal and the definition
of a and 8 which are basically midpoints of the sides on the triangle as shown

above.

2.3.3 Isodiametric Inequality

Goal : To show that H" = L™ on R™.

Lemma 2.45. Let f : R" — [0,00) be L™ measurable. Then, “the region under the

graph of f7 which is
A= {(x7y) sz eR"yeR0<y < f(.’L‘)}

is LY measurable.

Proof. Let g(z,y) := f(x) —y. Note that, by setting h(z,y) = f(x) and a(z,y) = y, for
any 8 € R,

{(z,y) eR" xR ; h(z,y) < B} ={z €R"; f(z) < B} xR

{(z,y) eR" xR a(r,y) =y < B} =R"x{y e R; y < B} =R" x (~00,B)

Both the above sets belong to the £"t! — o— algebra and thus g is £**! measurable
and
A={(z,y) e R"xR; y>0}n{(z,y) e R" xR ; g(z,y) >0}

Thus A is £*t! measurable. O

Definition 2.46. Define for a,b € R",
p :={b+t.a; t € R} = The line through b in the direction of a.

P, :={x € R"; x.a = 0} = Plane through the origin perpendicular to a.
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Definition 2.47. Steiner Symmetrization of A.
Choose a € R™ with [|a|| = 1. Let A C R™. We define the steiner symmetrization of A
with respect to P, to be the set

1
Sq(A) = U {n+m;u1g§H%AmL@}
{bePy ; ANLE#0}

Lemma 2.48. Properties of Steiner symmetrization :

o diam(S,(A)) < diam(A).
o If A is L™ measurable, so is Sq(A) and L"(S,(A)) = L"(A).

Proof. Part (a) :

Case 1 : If diam(A) = oo, then the first part is trivial in conclusion.

Case 2 : diam(A) < 0.

Since, the diameter is independent of the closures, we may assume that A is closed.

Fix € > 0 and let x,y € S,(A) such that by the supremum property,
diam(S,(A)) < |z —y| +e
Set
b=x— (z.a)a

c=y—(ya)a

Then, clearly,
ba=0=ca = b,ce P,

Set
r=inf{t; b+ta € A}

s=sup{t; b+ta € A}
u=1nf{t ; c+ta € A}
v=sup{t; c+tac A}

Note that all the 4 above defined quantities are finite as diam(A) < co. W.L.O.G assume
that v —r > s — u. Then,

U—TZ%(v—r)—}—%(s—u):%(s—r)—ké(v—u)>

1 1
_5%%A0Lﬁ+§H%AmL3
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The above estimate is true because

S—7r

ANLECT={b+ta; |t| <

}

— H(ANLE) < H'(D) = H ({ter s Jt] < SQT})=£1[T§8aS§r] =0

Now, b+ (z.a)a € Sq(A) and ¢+ (y.a)a € S,(A) and hence,

1
|lz.a] < 5Hl(A NLY)

1
lyal < SH'(ANLY)

Thus
1 1
v—r> 5?—[1 (AnLy) + 57—[1 (ANLY) > |z.al + |y.a| > |z.a — y.q

Therefore,
(diam(Sqa(A) —€)* < |z —y|> = |b—¢|® + |z.a — y.a|?

<b—cP4v—r?=|0b+ra) - (c+va)? < diam(A)>

This concludes that
diam(S,(A)) < diam(A)

Part (b) :

Observe that £ is rotation invariant and thus assume a = e, = (0,0,...,1) and P, =
P., =R" ! Now £! = H! on R.

A is L™ measurable implies

LA = | a
Rn

—/ </ Xa(xy, o, ... ,l‘n)d{ﬂn) dzs. . ... dx,_1
Rrr—1 \JR
:/ </ Xal(b, xn)d:cn> db
Rr—1 \JR

Notice that fixing b, z,, can be on the line joining b, e,, in A, and thus

- / LY (Xanrg)db
Rn—1

= f(b) = El(XAng) = Hl(XAmLzbz) is £~ measurable a.e.

Now,

}_{(b70) ; LgﬂA:gb}
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By the previous lemma, {(b,y) ; 7f2(b) <y< @} is L™ measurable and

{(6,0) ; L¢ N A= ¢} C R"! x {0}, which has measure 0, in £ measure. Thus S,(A)

is L™ measurable and so

—f(b)
2

L(Sa(A) = L{(b,y) 5 Iyl < = }+0_/RM (/ dy) db—/Rnlf(b)db_L (A)

Theorem 2.49. Isodiametric inequality :
For all sets A C R™,

L7(A) < a(n). <di‘”";‘(m>n

Remark 2.50. Note that A need not be contained in a ball of diameter = diam(A).
Proof. Case 1 : diam(A) = oo , then there is nothing more to be shown.

Case 2 : diam(A) < oo.
Let ey, eq,...,e, be the standard basis of R™. Define

A*=A, =S, (An-1)

Claim 1 : A* is symmetric around the origin.

Proof of the claim 1 : A; is symmetric with respect to P, . As

1
Ser(4) = U {ottes it < gH(ANL)
{b€P:, ; ANL;' #¢}

Let x = (z1,%2,...,2n) € S¢;(A) = = =0b+tey, for some b € P,) and ANL" # ¢
and |t| < H'(ANL§'). Noting that by = 0, z = (¢,ba,...,b,). Now, the reflection

of z = (x1,x9,...2,) around e; would be (—z1,x9,...2,), i.e (—t,ba,...,by). Since
t| < 3H' (AN L;') and hence (—t,bg, ..., by) € Se, (A).
Now, let 1 < k < n and suppose that A is symmetric with respect to P, ,..., P, .

It is required to show that Ay, is symmetric with respect to P, ... P, b

1
Ak+1 = Sek+1(Ak) = U {b+ t6k+1 : |t| S iHl(Ak N L§k+l)}
{bEPey | 5+ ARNL, 16}
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By the similar logic that A; is symmetric with P.,, A1 is symmetric with respect to
P Now, fix 1 < j < k. Let S; : R" — R" be the reflection around P;. Let b € Pj41.

€k+1°

By the induction hypothesis,
Si(Ag) = Ay

Here, the fact that reflection is an isometry is getting used and that hausdorff measures

are invariant under the isometries. Thus

H (AN L) = HA(S; (A N L) = H (AN LEG)

Thus
Sj(Ak—i-l) = Ap1

Thus Agyq is symmetric with respect to P;. And, hence, A* = A, is symmetric with
respect to Pe,, Pe,, ... Pe,,.

This proves the claim 1.

: o 2
Claim 2: L"(A*) < a(n) (%M)) .

Proof of the claim 2 : By the claim 1, x € A* <— —x € A*. So diam(A*) > 2|z| and
thus

A B (0’ diam(A ))

2
L(A") < L (B <o, W))

£7(A") < a(n). <dm’”’;(A*>>”

This proves the claim 2.

Claim 3 : £"(A) < a(n) (%)”
Proof of the claim 3 : Observe that if A is £ measurable, then A is also £" measurable.

The previous lemma, thus tells that

o LM((A)") =L"(4)
o diam((A)*) < diam(A)

Hence,
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< a(n) <W>n

- oy (Y’

This proves the claim 3 and hence, the isodiamteric inequality. ]

Theorem 2.51. H" = L™ on R™.

Proof. Claim 1 : For all A C R", L™"(A) < H"(A).
Proof of the claim 1 : Fix § > 0. Choose sets {C;}72; such that

e AC UCJ
e diam(Cj) < 6.

By the isodiametric inequality,

Note that § was arbitrary and hence,
L7(A) < H'(4)
This proves the claim 1.

By the definition of £” = £ X .. .4 times X L', for A C R™ and § > 0,

LM(A) =inf{> L"(Q:); Qi are cubes , AC | Qi diam(Q;) < 6}
i=1

=1

Claim 2 : H™ is absolutely continuous with repsect to L.

Proof of the claim 2 : Set

For all cubes Q C R",
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= CpL"(Q) = a(n) <W>n
Thus,
diam(QQ)n ; @; are cubes , A C U Qi , diam(Q;) < 4}
i=1

H3(A) <inf{)_ a(n) < 5
=1

= inf{z CrL™(Q;) ; Q; are cubes , A C U Qi , diam(Q;) < d}

i=1

i=1
= C,L"(A)

Let 6 — 0, to get
H"(A) < Cr L™ (A)
Thus, £7(A) =0 = H}(A) <0 = H"(A) =0.
This proves the claim 2.
Claim 3 : H"(A) < L™(A), for all A C R™.
Proof of the claim 3 : Fix d,¢ > 0 and select cubes {Q;}°; such that A C JQ; ,

diam(Q);) < ¢ and
D LMQi) < LMA) +e

i=1

By the second corollary, following the vitalli covering lemma, there is {B}}?° ,, disjoint

closed balls in Q7 such that
diam(B}) < 6
c (Qi— UB;i) =" (Q;’— Bi) =0
k=1 k=1
By the claim 2,

HE ( - U B’) =0

k=1

Thus -
HE(A) < 3 HIQ)
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Thus,
Hy(A) < L"(A) +e

Let 6 — 0 and then € — 0, we get
H"(A) < L"(A)
Along with the claim 1, we can conclude that

H" = L" on R"

Remark 2.52. Assume for the rest of the type-up, unless mentioned that 0 < s < n.

Theorem 2.53. Assume E C R", E is H® measurable and H*(E) < co. Then,

. e <B(:c, )N E>

=0 a(s) re =0

for H?— a.e x € R" — E.

Proof. Fix t > 0. Define

Ay = E: I
r={z ¢ E; i sup o)

Want to show that H*(A;) = 0, for all ¢t > 0.

Now, E is H® measurable and H*(E) < oo implies that (H*|E) is a radon measure and
finite.

So, given € > 0, there is a compact set K C E such that H¥(F—K) <e. Let U = R"— K
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be an open set. This implies that as R" = F CR" - K, Ay, CR"—-FECR"- K =U.
Fix 6 > 0 and consider

I:Z{B(w,r); B(z,r)CcU,0<r<d, W>t}

Clearly, F covers A;. Hence, by the vitali covering theorem (2.2), there is countable

disjoint family of balls {B;}3°; such that

AtCUBi

i=1
Let B; = B(zj,r;), then,

o)
i=1

5% —
< 7 HS(BZ N E)
i=1

< %HS(U NE)

55
58
< —e€
—
Noting that 6 > 0 was arbitrary,
58

Note, that if the proof was started with ¢ = 0, then the previous step would not have
been justified in this proof. Let € — 0,

— H(A) =0

Theorem 2.54. Assume E C R" and is H® measurable.
Also it is given that H*(E) < co. Then,

— < lims
25 — 1nrl_>(1)1p a(s) rs

for all H® almost every x € E.
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<1 for H?® almost every x € E.

Proof. Claim 1 : limsup,_, i (O]?(S’:)SHE)
Proof of the claim 1 : Fix ¢ > 0 and ¢t > 1. Define
H? <B(x, )N E)
B; := e bl >t
= {x i sup o) }

Now, (H*|E) is radon measure and finite. This implies there is an open set U such that

[ ] Bt cU
o H(U) <H(By) +e.

This implies that H*(U N E) < H*(U) < H*(B¢) + €. Define,
H? (B(a:, r) N E)

afs) re

>t}

F:={B(z,r); B(x,r)CcU,0<r<9d,
Clearly, F covers B;. By the corollary (2.3) to the vitali covering theorem, there are

disjoint balls {B;} in F such that for a fixed m € N,

B; — G B; C [j Bz
i=1 i=m+1
i=1 i=m+1
For B; = B(z4,7i),
Hios(Br) <D _als)ri+ > als)(5ri)°
i=m-+1

The above is true for all m and hence as H*(UB; N E) < H*(E) < oo, taking m — oo

and by the convergence of the tail of convergent sequence,to 0, we have

1 1
Hfog(Bt) § ZHS(U N E) S Z <HS(B7§) + €>
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Let 6 — 0 and then € — 0, then

H*(Bt)
t

H*(By) <

Now, noting that H*(B;) < H*(E) < oo, and if H*(B;) # 0, we have 1 < 1, which is a
contradiction.

This proves the claim 1.

#Hs_(B(z)NE
°°( ()0 ) > L for H* almost every x € E.

afs) rs = 25

Proof of the claim 2 : Fix 6 > 0 and 0 < ¢t < 1. Define

Claim 2 : limsup,_,

E(5,t) = {er; reC, CCR", diam(C)<d = H(CNE)<ta(s) (dzo%(c))S}

Therefore, if {C;}°, are subsets or R” such that diam(C;) < 6 , E(6,t) C U2, Cs ,

e}

H; (E( ZH(;C’OEcSt Z S(C;NE) i <C““mc)>

i=1 i=1

By the infimum property,
HF(E(6,1)) <t HF(E(5,1))

By the same logic as before, since H3(E(d,t)) < Hi(E) < H*(E) < oo, if HF(E(6,t)) #
0, then 1 < t, which is a contradiction.

In particular, H*(E(d,1 —0)) = 0.
#3, (B(x,r)NE)
a(s) rs

Now, if z € E and limsup,_, < 2—18, then there is a 6 > 0 such that

#s, (B(a,r)NE)

as) rs

<P forall 0 < r < 4. Thus , if 2 € C and diam(C) < 6,

HH(CNE)=HL(CNE) <H, (B(x,diam(C)) N E) < (1-96) afs) (diam(c)y

2

Thus, x € E(d,1 — ¢). But then

. He (B@nnE) C fj E 1 1 1
$€E;hmsupr_>ow<2fs j7 ]
i=1

This proves the claim 2.

Now, H* (B(x,r) N E) > HE, (B(ac,r) N E) > L H® ae.

Remark 2.55. It is possible to have limsup < 1 and liminf = 0.

Consider E = {z} and consider H' on it.
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2.3.4 Relations to lipshitz mappings
Definition 2.56. e f:R"™ — R™ is lipshitz if there is a constant C' > 0 such that

Vo,y € R" 5 [f(x) — f(y)| < C.lz -y

Lip(f) = sup {7"[(12:;(”' xF#yin R”}

e f: ACR"” — R™ is locally lipshitz if for all compact sets K C A, there is a
constant depending on K , C'(K) such that

|f@) = fy)| < C(K)|w —y| , forall z,y € K
Theorem 2.57. Let f: R™ — R™ be lipshitz. A CR". 0 < s < oo. Then,

H(f(A)) < Lip(f)*H*(A)

Proof. Fix § > 0. Choose {C;}5°; such that diam(C;) < 4§ and A C |J;2, C;. Then,

diam(f(C;)) < Lip(f) diam(C;) < Lip(f).0

Fa) c 1)
=1

Thus,
Lin(r) 6(f(A)) < Za(s) (W) < Lip(f)* ZQ(S) (dzarg(@))
=1 i=1

And hence,
Lin(p).s(f(A)) < H3(A) Lip(f)*®

Letting 6 — 0 gives that
H(f(A)) < H(A) Lip(f)*

O

Corollary 2.58. Suppose that n > k. Let P : R* — R* be the usual projection, i.e
P(xy,xa,...2n) = (x1,22,...,2k). Let ACR"™. Let 0 < s < oo. Then,

H?(P(A)) < H*(4)



149

Proof. Projection maps are lipshitz with Lip(f) < 1, that is

k
i <1
21‘:1 |xl - yz‘

The previous theorem 2.57, now concludes the corollary. ]

Definition 2.59. For f: R" — R™, A C R", define the graph of f to be the set
G(f; A) :=={(z, f(z)) x € A} CR" x R" =R""
Theorem 2.60. Assume that f: R™ — R™ and L"(A) > 0. Then,

o Haim(G(f;A4)) > n
o If f is lipshitz, then Haim(G(f;a)) = n.

Proof. e Let P:R™™ — R™ be a projection. Thus, by the corollary,
H'(G(f;A)) = H"(A) >0

= Haim(G(f; A)) = n

e Let @ be a cube of length 1 in R”. Sub-divide @ into k™ many sub-cubes each
having the length % Call these cubes by the index Q1,Q2, ... Qgn.
Observe that the diam(Q;) = % Let, for f = (f1, f2,---5 fm),

a;j = gcnggl7 fi(x)

bij := max f*(z)

TEQ;
AS f is hpShltZ, we have, for aj — (al’j,ag’j, ey anyj) and bj = (bl,j7 b2,j e ,bn,j)a
by ;| < Lip(f) diam(@Q;) = Lip( )"
Now, let
Cj = Q; x [ [(ai, biy)
i=1
Then,

{(x,f(x)) ;xeQ;NAYCC
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And

diam(Cj) < LZP(IJ;)\/H

Since, G(f; ANQ) C Uf; Cj,

j=1
_ (Lip(g)\/ﬁ>" a(n)

Now, let k — oo,
= H"(G(f;ANQ)) < o0

= Ham(G([;ANQ)) <n

Since the above is true for all cubes in R™ of side length 1 and R™ can be covered

by countable unit cubes, we have the conclusion for the theorem.

Theorem 2.61. Let f € L1 (R™) and suppose that 0 < s < n, define

loc

1
Ag :={z eR"; limsup/ |f| dy > 0}
r—0 re x,r)
Then
H'(As) =0

Proof. Assume that f € £} (R™). Thus, for all compact sets K C R™, [ |f| < oo.
Declaring the value to be 0 outside that compact set, we can assume that f € L}(R").

By the Lebesgue Besicovitch differentiation theorem (2.18),

lim - fldy=|f(x
ti Ay =17 @)

Thus,
1
lim/ ] dy =0
r—0 7S B(z,r)
The above is true for £™ almost every x.

Hence, L"(A) = 0. Now fix €,6,0 > 0, f € L} = 3n > 0 such that, for all A C R”,
L"(A) <nand [,|f] dv < o. Define

1
A ::{xER";limsup/ |f| dy > €}
r—0 e B(m,r)
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Thus A C Ay = L"(AS) = 0. Thus there is an open set U such that

e ASCU
o LMU) <n

Set

]:::{B(:C,T);:CGA;,0<T<5,B(m,r)CU,/ |f| dy > e r®}
B(z,r)

Observe that F covers AS. Thus, by the vitali covering theorem, there are disjoint balls
{B;}2, C F such that

00
i=1

Let B; = B(z4,74),

o0 58 o0 55 58
() < Doty < “ S [ i< S [y < S

Sending § — 0 and the ¢ — 0, we have

HE(AS) = 0.

2.3.5 Rademacher’s Theorem.

Theorem 2.62. Extension theorem:
Let f: ACR"™ — R™ be lipshitz. Then, there is f : R™ — R™ such that

o f=fonA

o Lip(f) < v/mLip(f)
Proof. Assume for now that m = 1. Define

f(z) = inf{f(a) + Lip(f) |z —a| ; a € A}

f(x) = sup{f(a) + Lip(f) |z —a| ; a € A}

Note that fdeﬁned as above is another extension of f, need not be same as f.
Continuing the proof for f, if b € A , then clearly, f(b) = f(b). If z,y € R", then,
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f(z) =inf{f(a) + Lip(f) |z —a| ; a € A}
<inf{f(a) + Lip(f) (ly —a| + |y —z]) ; a € A}
<inf{f(a) + Lip(f) ly —a| ; a € A} + Lip(f) |z — y|

= f(y) + Lip(f) |= —y|

Similarly,
f(y) < f(x) + Lip(f) |z -y
Thus _ _
lz—yl

In the general case, f: A CR"™ — R™, let f = (f1, fo,..., fm) with
fi: A= Rforall 1 <i<m. By the previous steps, there are f; such that f; = f on A

and Lip(f;) < Lip(f). Thus

m

[f(@) = FW)I> =Y IFi@) = Fiw)l> <D Lip(f)*e — yl> = m Lip(f)? |« — y/?
=1

i=1

= Lip(f) < v/mLip(f)

Theorem 2.63. Rademacher’s theorem :

Let f: R™ — R™ be locally lipshitz. Then f is differentiable L™ almost everywhere.

Proof. Assume that m = 1. Also, since the differentiablity is a local property, assume

the f is globally lipshitz. Fix v € R™ such that |v| = 1. Define, provided the limit exist,

D f(e) ity T 1) = @)

t—0 t } z € R

Claim 1 : D, f(x) exist for L™ almost every x € R™.

Proof of the claim 1 : Since f is continuous,

Dof(x) = limsup JET =T g o S dtn) — f(@)
t—0 t k%oo{0<|t‘<% teQ) t

is also borel measurable. Similarly,

D, f(x) = lim inf flz+ tvt> ~ /(@)
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is borel measurable. Thus
Ay ={x € R"; D,f(z) does not exist }

={z €R"; Dyf(z) # Duf(2)}

is borel measurable. For each x,v € R™ with |v| = 1, define g : R — R by
g(t) == f(x +tv) fort e R

Then g is lipshitz and thus absolutely continuous and thus differentiable £! almost

everywhere. Hence,
HY A, NL)=0

for each line L parallel to v. By the fubini’s theorem,
L'A,) =0

This proves the claim 1.

Consequently,

_(of oF  9f - n
Vi) = (8331’ FISERREE 8xn) (z) exist for L™ almost every z

Note that sometimes V f(z) is also written as D f(x).
Claim 2 : D, f(z) =v.Vf(z) L™ a.e x.
Proof of the claim 2 : Let £ € C2°(R™). Then,

[ I PR PRI CLE

Let t = %, k=1,2,.... Thus the above equality gives that

< Lip(f)|v| = Lip(f)
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= /n (v.Vf(2))¢(x)ds

The above is true as per the theorem of Fubini and the note after corollary 1.72 that says
the integration by parts holds for absolutely continuous functions. The above holds for
all £ € C°(R™). Hence by the density of the smooth functions with compact support,
we have

D,f =v.Vf for L" a.e

This proves the claim 2.
Let {v;}72, be countable dense subset of 0B(0,1). Define

A ={x € R"; D,, f(z) exist , Vf(x) exist ,D,, f(x) =v,.Vf(x)}

A= ﬁ Ak
k=1

Note that, from the claim 1 and 2, L"(R" — A) = 0.
Claim 3 : f is differentiable at each = € A.
Proof of the claim 3 : Choose and fix z € A. Choose v € 9B(0,1), t € R, t # 0. Define

flz+tv) — f(z)

Q(z,v,t) := ;

—v.Vf(x)

Then, if u € 9B(0, 1), we have

flxz+tv) — f(x+ tu)
t

Q(z,v,1) — Qx, u, t)| < + (v —u).Vf(z)
< Lip(f)lv = ul + [V f(@)|lv - ul

< (Vn+1)Lip(f)v — ul

Let € > 0 and ¢; := ———S———. Then, by the compactness of dB(0,1) and dense
2(vn+1) Lip(f)
property of {vg}, choose N such that
N
0B(0,1) C | J B(vg, 1)
k=1

Therefore, for each v € 9B(0,1), we can find k € {1,2,..., N} such that |v — v| < €.
Since, lim_,0 Q(x, vk, t) =0, Vk=1,2,..., N. Hence, choose § > 0 such that
0<|t|<d,k=1,2,...,N and

|Q(z, vg, )] <

N
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As a consequence, for each v € 0B(0,1), there is a k € {1,2,...N} such that, if
0< |t <o,
‘Q(x,’l),t)’ S |Q<Z’,Uk,t)| + \Q(a:,v,t) - Q(x,'l)k,t)’ <e€

By the compactness argument, the same § > 0 works for all v € 9B(0,1). Now, choose
y € R™ such that y # x. Declare

P "
ly -
Yy=x+tv
t=lz—y|
Then,
fy) = f(2) = Vf(2)(y —2) = f(z+tv) = fz) — 0.V f(2)
=o(t)=o(lz—y|), asy ==
Hence, f is differentiable at x with D f(x) = V f(z). O

Corollary 2.64.

o Let f:R™ — R™ be locally lipshitz and
Z:={zeR"; f(x)=0}. Then Df(xz) =0 for L™ a.e x € Z.

o Let f,g:R™ — R™ be locally lipshitz and Y := {x € R" ; go f(x) = x}. Then

Dg(f(x)) Df(x) =1 for L" a.ex €Y

Proof. Assume that m = 1. Let € Z be a point of density and D f(z) exist, that is,

lim L" (B(m, r)N Z)

r—0 E"(B(x,r)) =1

Then,
fy)=Df(x).(y —x) +o(ly —z]) asy =

Now, assume that Df(x) = b # 0 and declare
1
S:={veodB(0,1); bv> §|b|}

V(r,b):={tv; 0<t<r,veS}

Then S is open neighbourhood of % and V (r,b) is an open set with V(r,b) C B(x,r)

and
. L"(V(1,b)) _ L™ (V(1,b)) _ L(V(r,b)) -1
L£r(B(z,1))  rLr(B(z,1))  L*(B(z,7))
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For each v € S and t > 0, set y = x + tv to get
t[b]
flx +tv) = b.tv + o(|tv|) > - +o(t)ast —0
Hence, there is tg > 0 such that

flx+tv)>0,for0<t<ty, veS.

Hence, for 0 < r < tg, V(r,b) N Z = ¢.

ﬁn(ZﬂB(ZC,T)) _ £n<Zﬂ (B(l',’r‘) - V(T‘,b))) g

L (B(z,r)) L (B(z,r))

L"(B(z,r)) — L"(V(r,b))
L (B(z,r))

=l—-ax<l
Letting » — 0, to get a contradiction, as z is a point of density.
To prove the second part of the corollary, declare
S(Df) :={z; Df(x) exists}
S(Dg) :=={z; Dg(x) exists}

X:=YNnS(Df)nf! (S(Dg)>

Then,
zeY — f71(S(Dg)) = f(z) €R"—S(Dg) = x=go f(z) € g(R" — S(Dyg)

— Y -XC <R” —S(Df)) Ug<R” - S(Dg)>

By the Rademacher’s theorem,
LMY -X)=0

Thus, if z € X, then D f(z) exists , Dg(f(x)) exists and so,
Dg(f(x)) Df(z) = D(go f)(x) evist
Observing that go f = I on Y, and the previous part of this corollary tells that

D(gof)=1,L"aeonY.
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2.4 Area formula

2.4.1 Theorem and proofs.

Throughout this section (2.4) , assume that n < m.

Lemma 2.65. Suppose that L : R™ — R™ is linear, then

HM(L(A)) = [[L]L™(A) for all A C R"

Proof. Write L =00 8.

Case 1 : If [[L]] = 0. Then dim(S(R™)) <n — 1 and hence, dim(L(R")) <n — 1. Thus
as a consequence, H"(L(R™)) = 0.

Case 2 : Let [[L]] > 0, , then by the change of variables formula and the fact from the

isodiametric inequality, proved earlier that H™ = L™ on R",

C"(B(:v,r)) Ln (B(:c,r))

n <0* 000 S(B(a:,r)))
- £ (B(x.7)

H" (S((B(:c, r)))

Ln (B(w,r))

o (S((B(ac,r)))

L (B(:E,T’))

_ £1(8(B(0,1))

a(n)

= |detS)|

= [[1]]

Define v(A) := H"(L(A)) for A C R™. Then clearly,
v is a radon measure

v L
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. v(B(z,r)
Dpnv(z) = }ﬂ%m = [[Z]]

Hence, for all borel sets B C R" | by the Radon- Nikodym theorem 2.14,
H"(L(B)) = [[L]]£"(B)

Noting that v and L™ are radon measures, the same formula holds for all sets A C R". [

Henceforth, for this section, it shall be assumed that f is lipshitz mapping.

Lemma 2.66. Let A C R™ be L™ measurable. Then

o f(A) is H" measurable
o Multiplicity function : y — HO(AN f~Hy}) is H" measurable on R™

o Jm HO(AN f-Hyb)dH™ < (Lip(f))"L"(A)

Proof. W.L.O.G, assume that A is bounded,i.e L"(A) < oo. By the approximation of
sets by compact sets from the inside, there are K; C A such that, for all i € N,

1

1

LA - K;)=L"(A) - LMK;)

— LK) > LM(A) -

7

Since, f is continuous, f(K;) is compact and thus is H"™ measurable. Thus

f <U Kz) = U f(K;) is H™ measurable.
i=1 i=1

W (f(A> -1 @K» <H (f (A_Qm»

< (Lip(f)"L" (A -U K) =0
=1

Furthermore,

thus f(A) is H™ measurable and this proves the first part of the lemma.

Declare

j ci+1
7bi: Zk

Br={Q| Q= (a1,b1] x ... % (an,by] , ai:%

G €L, ie{l,2,...,n}}

Observe that R" = UQeBk Q. Now, define g; := ZQeBk Xfang)- By the first part of
this lemma, g is H" measurable. Observe that gi(y) is the number of cubes @ € By
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such that f~1(y) N (AN Q) # ¢. Thus gp(y) T HO(AN f~(y)) as k — oo, for each
y € R™. This proves the second point of this lemma.
By MCT,

HO(AN 7y} )dH™ = lim / grdH™

= lim H"(f(ANQ))
k—o0 OBy

<timsup 3 (Lip(f))"L"(AN Q)

k—oo QEBy,

= Lip(f)"L"(A)

Lemma 2.67. Let
t>1

B:={z; Df(x) exists , Jf(zx) >0}
Then, there is a countable collection {E}y}72 | of borel subsets of R"™ such that
e B=J,2, Ex

o f is injective on Ej.

e for each k € N, there are symmetric automorphisms Ty, : R — R™ such that

Lin((fle) o Tt ) <

zip(Teo (7)) <

1
ﬁ’detTk‘ < Jf‘]_:;k < t”\detTk\

Proof. Fix € > 0 such that % +e<1<t—e Let S be a countable dense subset of B
and let 7 be a countable dense set of symmetric automorphisms of R™. Then for each

se€ S, T €T, define for i € N,

(s, T, 1) i be BN B(s, 1) (1) (L + €) |Tw] < |Df(b)o] < (t — )| Tv], Yv € R? |

(2) 1f(a) = f(b) = Df(b).(a = b)| < e[T(a~b)|,Ya € B(b, ?)

Note that b — Df(b) and v — D f(b)v are Borel measurable as f is lipshitz. Further
calculations of (1), (2) lead to the fact that

ST(@ =) < 1f(@) — FO) <tT(a— )| for all b € E(s, T i).a € B, )
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Claim :
1 n
be E(s,T,i) = (t + e> |detT| < Jf(b) < (t —€)"|detT)|

Proof of the claim : Declare Df(b) = L = O o S Then,
Jf() = [[Df(b)] = |detS]

By (1), X
(t +6> |Tv| < |00 S(v)| =|Sv| < (t—¢€)|Tv|, for v e R"
= (1 -|-€> lv| <|SoT 1 (v)] < (t—€)|v|, for v e R
= SoT '(B(0,1)) C B(0,t—¢)
= |det(S oT_l)\a(n) < L"(B(0,t—¢€) =an)(t—e"

The other inequality is similar in proof. This proves the claim,

Relabel E(s,T,i) as {Ek}ren. Select any b € B and write Df(b) = O o S as above
and choose T € T such that

-1
Lip(ToS™) < <1 + e)
Lip(SoT ') <t—ce

Now select 7 € N and ¢ € S so that

1
|b—C‘§T

~

€ 2
|f(a) — f(b) — Df(b).(a —b)| < WM— bl < €|T(a— )|, for all a € B(b,;)

Then, b € E(c,T,i). This proves the first part of the lemma, i.e , B = J E.
Now, choose any Fy = E(c,T,1). Thus by the observation,

%|T(a —b)| <|f(a) — f(b)| < t.|T(a—1b)|, for all b € Ey,a € B(b, 3)

7

As, B, C B(b,2), we have

3

%|T(a —B)| < |f(a) - f(b)] < tT(a—b)|, for all a,b € Ej
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This tells the second point of the lemma,i.e f is injective on each Ej.

Finally the above inequality gives

IN

t

Lip((f\Ek) oT—l)

Lip(To (fle) ") <t
Now, for all a € B(b, %), we have
[f(a) = ()] < t[T(a —b)|
let v € R", non zero, and a = b+ sv such that |v||s| < 2, then

£ (b+sv) = f(b)] < t]s][T(v)]

and hence,
f(b+sv) — f(b)

< t|T|
s

Letting s — 0,
= [Df(b)v] < t|Tv|

ST~ (v)] =100 SoT  (v)| = |Df(b) o T™H(v)] < tf]

= (SoT71)B(0,1) C B(0,1)
— |detS||detT ™| < t"

That is
()] < t"|detT]|

Similarly, considering the other inequality , we get
1
SO 2 - ldetT)

This proves the lemma.

Theorem 2.68. Area formula :

Let f : R™ — R™ be lipshitz ,;n < m, then for each L™ measurable subset A C R",

[ asae= [ a0(anw)ovw



162

Proof. In the view of the Rademacher’s theorem, we may assume that D f(z) and J f(x)
exists on whole of A. Also, assume that £L"(A4) < co.
Case 1 :

Ac{Jf >0}

Choose and fix ¢ > 1. Now choose borel sets Ej as in the previous lemma. Make
them disjoint by the usual strategy of declaring F; = E; and for all ¢ > 1, declare
Fi=E; - U\ E;.

Define, as in one of the earlier lemmas,

C; Cz—i-l
By, iZ{Q\QE(al,bﬂX'--X(ambn]7ai:%v b =

G €L, ie{l,2,...,n}}
Now, set
FijZFjﬂQiﬂA,fOI‘ Q; € Bi,j €N
By the construction, Fj;’s are disjoint. Also,
oo
A= ] Fy
ij=1

Claim 1: -

I " f(Fy) ) = “lAn s dH"

fim 3 % (7)) = [ we(ans ) )an

Proof of the claim 1: Declare -
9k = Z Xf(Fyy)

ij=1
Observe that gi(y) is the exact number of the sets Fj; such that F;; N f~1{y} # ¢. As
the cubes gets finer as k — oo, by the MCT,

gr(y) T H° (A N f‘l{y})

This concludes the claim.

Now, by the previous lemma,

o <f(Fz)> — " <f|Ej o Tj‘1 o TJ(FU)> < Ln (TJ(Fz)>

cr (Tj(pij)> =" <T] o (flg,) " of(Fij)) < t"H" (f(&-))
o t%%” (f(Fz')> < tinﬁn (Tj(Fz'j)>
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1 n
= HldetTy|£"(Fy)

S/ Jfdx
Fyj
< 1"|detTy|L" (Fy)

— e (135 )

< (1))
Summing the above over i, j,
1 =, .
2n doH <f(Fij)> < / Jfde <t > H <f(FZ.j)>
1,7=1 A i1
By the claim 1, as k£ — oo,

1 0 -1 n 2n 0 -1 n
t?n/RmH (Amf {y})d?—[ §/Adeac§t /Rm”;'-t (Amf {y}>cm

Sending ¢t — 14, proves the theorem for the Case 1.
Case 2 :
Ac{Jf=0}

Choose and fix 0 < e < 1. Write f as f =pog , where
g:R" =5 R™ xR"; 2 — (f(z),ex)

p:R" xR" - R™; (y,2) >y

Claim 2 : There is a constant C' such that
0< Jg(x) <Ceforxe A

Proof of the claim 2 : Write g = (f1, fo, ..., fm,€x1, €2, ..., €xy,), then

Df(x)

Dg(z) = [ o

] (n+m)xn
Note that, by the Binet-Cauchy formula, the Jf?(x) is equal to the sum of the deter-
minant of all the n x n sub-matrices of Df(z). Thus Jg?(z) > €*® > 0. Furthermore,

since, |Df| < Lip(f) < oo, by the Binet-Cauchy formula, Jg?(x) = Jf?(x) + { sum of

squares of terms involving atleast one e} < C.€2, for each x € A. Since p is a projection,
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by the case 1,

H" ( f(A)) <H" <g(A)>
< /an HO <A Nng 'y, z}> dH"(y, 2)
_ /A Jo(x)dz
< e.C.LM(A)

Let € — 0 to conclude that H" (f(A)) = 0. Thus, as support (’HO (An fl{y})> C
f(A),
/ H° (A N f‘l{y}) dH"™(y) = 0

In the general case, split any set A as union of Ay = AN (B(O,k) — B(0,k — 1)),
Ay = AN B(0,1) and split Ay, as Ay 1 |J A2 where

Agr C{Jf >0}

App C{Jf =0}
Apply the case (1) and (2), to conclude the theorem. O

Theorem 2.69. Change of Variables :
Let f: R™ — R™, be lipshitz, n < m, then, for each L" integrable function g : R™ — R,

/ _g(@)J f(z)de = / < > g(@)d%”@)

zef~Hy}
Proof. 1dea is to prove it for simple functions and then use the limit. Consider g =

/n g(z)J f(x)dx = Z CiXa,J f(x)dx

R

=> C /A Jf(z)dz
=G /Rm H° <Ai N f‘l{y}> dH"(y)
-[ Yo ¥ @)

zef~{y}



165

[ (T s

zef~Hy}
Now, ¢ is integrable implies it can be approximated by simple functions which are

integrable and hence, by DCT, the theorem is proved. O

2.4.2 Applications:

e Length of a Curve.
Here n = 1,m > 1. Assume that f : R — R™ is lipshitz and one-one.
Note that if f = (f1, fo,..., fm), then

Jf=|DfI=f'| =

m
SOIAP
=1

For —co < a < b < oo, define the curve S = f([a,b]) C R™. Note that the
summand in the area formula is just one term due to the injectiveness of the f.

Then the Length of the curve S is

b
H(S) = / (1)t

e Surface area of a graph :
Here ,n > 1,m = n+ 1. Assume g : R® — R is lipshitz and define, f : R” — R"*!
by
f(x) = (z, 9(x))

Then we have the following

0
0
Df =
0 0 0o ... 1
99 09 99 99
LO0z1 Ox2 Ozz "  Ozp | (n+1)xn

And
(Jf)? =1+ |Dg|?

For each open subset of R”, define the graph of g over U

G=0G(g,U)={(z,9(x); x €U} c R""!
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Then, the surface area of the graph of g, that is surface area of G is
H(G) = / 1+ |DgPda
U

e Surface area of a parametric hypersurface.

Here n > 1,m = n+ 1. Assume that f : R” — R®*! is lipshitz and one-one. Write

f={(f1,f2,---, fag1), then

[ of1 of ]
ox1 e Oxn
Df = : ' :
Ofnt1 Ofnt1
L Oz1 e oxy
Let _ -
ofr 9f1
o1 te 0Ty
Ofk—1 Ofk—1
._ Or1 T Ozn,
T = ofeis Ofxi1
o1 T OTn
afn+1 afn+1
L Oz1 RE2E
n+1

= (Jf)? =) det(Ty)?
k=1

For each U, open subset of R™, let the hypersurface be A = f(U) C R**1. Then,

the surface area of A is,

H(A) = /U %(det(TkP)

k=1

e Submanifolds:
Let M C R™ be a lipshitz , n— dimensional embedded submanifold. Suppose that
UcCR"and f:U — M is achart . Let A C f(U), Ais borel, B= f~!(A), define,

o _9f of
g” N 61’181'3
g= det(gij)

Then,
(DF)* o (DF) = (9)
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Thus the volume of A in submanifold M is

H(A) = /B N

2.5 Co-Area Formula

2.5.1 Theorems and Proofs.

Throughout this section (2.5), it is assumed that n > m
and
f:R"™ - R™ is a lipshitz mapping.

Lemma 2.70. Suppose that L : R™ — R™ is linear, n > m and A C R™ is L™ measur-
able, then

o y— H"™(ANL y}) is L™ measurable
o Jpm M (AN LT Hy})dy = [[L]IL™(A)

Proof. Case 1 :
dim(L(R™) <m

Then,
ANL My =¢ = H" " ™(ANL *y}) =0, for L™ aeyecR™
If, L is decomposed as S o O* as in the polar decomposition, then
L(R"™) = S(R™)
Thus dim(S(R™)) < m and thus
(L] = |detS| = 0

Case 2:
L = P = orthogonal projection of R onto R™

Then for each y € R™, P~'{y} is some translated n — m dimensional subspace of R"—

a translate of P~1{0}. Thus, by the fubini’s theorem,

/ B H'™ (AN P Hy})dy = L"(A)
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and thus
y—>H" (AN P_l{y}) is L™ measurable.

Case 3 :
L:R" - R"™, dim(L(R")) =m

By the polar decomposition, L = S o O* such that [[L]] = |detS| > 0.
Claim :
O*=PoQ

where

P :R"™ —n0 R™ , orthogonal projection
Q :R" — R" | orthogonal

Proof of the claim : Choose @) : R® — R™, orthogonal such that

Q*(x) = O(x) , for all z € R™

Noting that
P*(x1,22,...,2m) = (z1,22, ..., 21n,0,0...,0) € R" | for all z € R™

Thus, we have

O=Q oP"
= O0"=PoQ

Observe that L=1{0} is a n — m dimensional subspace of R" and as before, L~ *{y} is a

translate of L=1{0}. By the fubini’s theorem,

) =) = [ (Quyn P )y

= [ H™ <A N to P_l{y}> dy
]Rm
By the area formula’s change of variables , let z = Sy, then
|detS|L™(A) = / H™ <A N toPlo Sl{y}>dy

Noting that L = S0 O0* = S0 Po(Q,

— [[L]C(A) = /

m

HT (A N L—l{z}) dz
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Thus
y—H"T™ <A N L_l{y}> is £ measurable.

Lemma 2.71. Let A C R™ be L™- measurable, n > m. Then,

o AN f~Hy) is H™™ measurable, for L™ almost every y in R™.
o y— H"™(AN f~Hy}) is L™ measurable

a(n —m)a(m)

9 (L)) e

e (A0 g7 ) Yy <
Rm

Proof. Assume A is bounded. Else, do it for AN B(0,k), k € N. For each j € N by the
definition of L£", there are closed balls {B;;}7°, such that

o ACUZ, By

[ diam(Bij) < %

o D22 LM(Bij) < L™MA) +

S

Define g;; as

gij(z) == a(n —m) (W) _ Xf(Bij)(x)

By the first part of the lemma, g;; is measurable. Now, observe that for all y € R™,
o
W™ (AN ) <D giw)
’ i=1

Note, that it is not yet clear that y — H"™™ (A N f‘l((y)) is measurable, as of now, in

this proof. Denote the upper lebesgue integral as

[ty =int{ [ @)y ois simple  (y) < 0(0)}

m

Thus,

[ an s )y

:/* lim ’H" ANy} dy
R

m J—>00

lim iid
/Rm]—)OOZg] y
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By the fatou’s lemma and since g;; is measurable,

By the isodiamteric property,

=1

a(n I 4
a(n —m)a(m) (Lip(f))"L"(A)

a(n)

And thus

* an—m (A N f—l{y})dy < a(n B m)a(m)
- a(n)

(Lip(f))"L"(A4)  (+)

Thus the idea is the prove the first point. Once the first point is proved, then Fubini and
Fatou’s lemma implies the second and the third point as per the previous calculations!
Now to show the first point of the theorem.

Case 1 :

A is compact.
Choose and fix t > 0. For each i € N, let U; consist of all ¥y € R™ such that, there are

finitely many open sets S;, say ¢ = 1,2,...,] with the property that

o ANy} Ui Si
o diam(Sg) <1 forall k=1,2,...,1

o Eé{zla(n—m)clmné(sk)) <t+1

Claim 1 :

U, is open.

Proof of the claim 1 : It is equivalent to show the following

W ={y; An f~(y) C U} is open with f to be continuous and A is compact.
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Let yo € W. It is required to show the existence of € > 0 such that B(yp,e) C W.
Suppose not, then there is sequences {yx}, {€x} such that

® yr € B(yo, ex)
oy g W
e ¢, >0ask — o0

® Y — Yo

Thus,
ANfHNy) ¢ U = Jop e ANf Nyg) 2, ¢ U, 2 € A

Note that z; — z¢ in A, because of the compactness. Also, observe that f(xr) = yx

and continuity of f implies f(z¢) = yo with xg € U°.
— 2z, e ANfl(y)CU

This is a contradiction and hence the claim 1 is true.
Claim 2 :

{y; H'"(ANf ) <t} = Ui
=1

Proof of the claim 2 : By the definiton of supremum of the ™™, if H" ™ (ANf~(y)) <
t, then for all § > 0, ’Hg_m(A N ffl(y)) < t. So, given i € N, choose ¢ € (0, %) Then,
by the definition of H"~™ , there are sets {5;}32; such that

o AN fNy) CcU, S,
o diamS; <6 < 1/i

) n—m
oz;’ila(n—m)<‘mgﬁj> <t+1

Since diam(S;) = diam(S;), we can consider S;’s to be closed and let n > 0, S, :=
{r € R"; d(z,5;) <n}. Then, S; C Sj,, Sj, is open and diam(S;,) — diam(S;) as
n — 0. Hence, by choosing n small and replacing S; by Sj,, we can assume that S;’s
are open.

Now,since, A N f~!(y) is compact, there are finite subcollection, {S;}!_, such that it

covers AN f~!(y) and hence, y € U;. This proves one way inequality, that is
{y;H"™(ANf ) <ty Ui
i=1

For the other side inequality, if y € N2, U;, then, for each ¢ € N,

Hy™(AN T (y) <t+ %
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= H"(ANfTH(y) <t

= (Ui c{y; H""(Anf(y) <t}

i=1

This proves the claim 2.

The claim 2 also tells that the mapping
y—H""(AN f_l(y)) is a borel function.

Case 2 :

A is open.

By the inner approximation by the compact sets, there are compact sets K1 C Ky C

K3 C --- C A such that
A= JK
i=1
= vyelwn,'H”—W(Amwf—%yn::,g@rﬂn—m(Kgmf—%y»
= (y = H"(AN f_l(y))> is a borel function.
Case 3 :
L"(A) < 00

By the outer regularity of L™, there are open sets V1 D V5 D V3 D --- D A such that
Lr(Vi) <oo 5 LM(NZVi—A)=0
Note that £"(V; — A) — 0 as i — oo. Hence,

H(Vin [ ) SH (AN T Y) + 1T (Vi A) 0 ()

1—00 m

= limsup /* [H ™ (Vin f (y) = H (AN £ () |dy

*

<limsup [ H (m ~A)n f1<y>) dy

1—00 R™

o) (n — m)a(m)
shmsuwp——2m)

(Lip(f))" L™ (Vi = A) =0

As a consequence,

wen(vins o) > wen(ans )
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Since, y — H" ™™ (V; N f~(y))is L™ measurable and hence,y — H" ™™ (AN f~1(y)) is
L™ measurable.
Claim 3 : AN f~1(y) is H"™™ measurable.

Proof of the claim 3 : Since L™"(V; — A) — 0 as i — oo,
== ’H"m<(VZ —A) ﬂfl(y)> —0; asi— o0, for L" aeyeR™

Let -
W .= ﬂ Vi
i=1

Then AC W and W — A C V; — A. Thus
H (W = A) N f ) <H ™ (Vi— AN (y) = 0asi— oo
Hence, for L™ a.e y € R™,
w (-0 gim) o

Therefore, for L™ a.e y € R™y — (W — A) N f~(y) is "™ measurable. Now,

AN fHy) = (Wﬁ fﬁl(y)) — <(W —A)N fl(y)> and W N f1(y) is a borel set.

Hence, for L™ a.e y € R™, AN f~1(y) is H" ™ measurable. This proves the claim 3.

Case 4 :
L"(A) = oo

Write -
A= 4
k=1
where A, = ANB(0,k) , keN

Apply case 3 to Ay to get:
AN f~Hy) = U, Ap N f~(y) and hence, it is H"~™ measurable for L™ almost every

y. Since Ay C Agy1 and H" ™ is borel regular,
W (AN S () = lim MO (A0 ()

And thus, y — H"™™ (A N f_l(y)) is L™ measurable.
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Remark 2.72. The same calculations also show that for each A C R",
k -1 1 oalk)al) Ly k+l
A dH' < —2—~(L A
/mH( nf (y))’H_a(kH)( ip(f)) H" T (A)
Lemma 2.73. Let

t>1

Assume that h : R™ — R", and set
B :={z ; Dh(x) exists , Jh(z) >0}

Then, there are countable collection of disjoint borel subsets of R™,say {Dy}32,, such
that

o LB~ U3, Di) =0

e h is injective on Dy for k € N.

e For each k € N, there exists symmetric automorphism Sy : R™ — R™, such that
~ Lip(S7 o (hlny) < ¢
— Lip((hlp,) "o Sk) <t
— |detSy| < Jh|p, < t"|detSk|

Proof. By the lemma 2.67, with h in place of f, we have existence of disjoint borel sets

{Ek}ren and symmetric automorphisms {7} : R™ — R"},cn such that

e B=J2, Ex

e h is injective on Fj.

o Lip(h|g, o T, ") <t

o Lip(Tyohlg!) <t

o Ll|detTy| < Jh|g, < t"|detTy|

Observe that the above also tells that h|Ei is lipshitz and thus by the lipshitz extension
theorem, there is lipshitz mapping hy : R™ — R™ such that, on h(E%), hy = (h|;1i)
Claim 1 : Jhy > 0 for £™ almost every point in h(Ey).

Proof of the claim 1 : Observe that on E} ,

hi o h = identity
By the corollary of the Rademacher’s theorem, we have

Dhy(h(z)) o Dh(z) = I for L™ almost every z on E},
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= Jhy(h(z))Jh(z) =1 for L™ almost every x on Ej

This tells that Jhy (h(ac)) > 0 for L™ a.e v € E}. Since the function h is lipshitz, the
claim follows.
Applying the lemma 2.67 for hy, we have the existence of disjoint borel sets {ij};’il

and symmetric automorphisms {R;j}32; such that

o (B - U ) =0
e Ny, is injective on Fjy
o Lip((hslry) o Ry) <t
o Lip(Rjrohylp,) <t
o &|detRjp| < Jhy|p,, < t"|detRg|
Declare
Djy, == Ep N h™! ()
Si = R;kl

Claim 2 :

Proof of the claim 2 : Observe that
o o0 o0
e (h(Em -U Fk) it (h(Ew -U ij) — 5~ | Dy
j=1 j=1 j=1
Thus the by the construction, we have
L (Ek -U Djk> =0
j=1

This proves the claim 2.
By the construction, clearly, h is injective on Djy.
Claim 3 : For j,k € N,

o Lip(Sj_kl o hlpjr) <t

o |detS;i| < Jh|p,, < t"|detS;k|
Proof of the claim 3 :

Lip(Sy, o hlp,,) = Lip(Rji o hlp,,) < Lip(Rjy, 0 bz} ) <t
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Similarly the other lipshitz inequality follows. Also, as noted above,
Jhi(h(z))Jh(z) =1 L™ almost everywhere on Dy,

1 1
— t—n|det5jk| = t—n|detRjk|—1 < Jh|pjr < t"|detRjx|" = t"|det S|
This proves the claim 3 and hence the lemma. ]

Theorem 2.74. Co-Area formula :

Let f : R™ — R™ be lipshitz mapping, n > m. Then for each L™ measurable set A C R"™,

/ Jfdx = HT (A N f_l(y)>dy
A R™

Proof. Again, as per the Rademacher’s theorem, we can assume that Df(z) and thus
Jf(x) exists for all z € A and also that L"(A) < co. As before, splitting the proof into
2 cases :
Case 1 :

Ac{Jf >0}

For each A € A(n,n —m) write f = q o hy, where
hy:R" 5 R"™ xR*™™ ; & — (f(z), Px(z))

g:R"xR"™™ 5 R™; (y,2) >y

Declare

Ay:={z e A; det(DhA) #0t={z € A; P\

is one-one}

(Ds@) " ©)

Now,

A= Ax

AEA
Therefore, assume for now that A is some Ay. Fix ¢ > 1 and apply the previous lemma
to hy to get disjoint borel sets {Dy} and symmetric automorphisms {S;} as in the

hypothesis of the previous lemma. Set
G = AN Dy

Claim 1 :

Ml S < I fla, < #'lfgo il
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Proof of the claim 1 : Since f = g o h, for L™ almost everywhere,
Df:quh:qoSkosk_loDh:qoSkoD(Sk_loh) =qoSpo(C

where

C:=D(S;'oh)

By the previous lemma, on Gy,

< Lip(S; ' oh) = Lip(C) < t

SN

Declare the following by the polar decomposition:

Df=S00"
qoSg=ToP*
where
S, T :R™ — R™ symmetric
O, P :R™ — R" orthogonal
Then

SoO0*=ToP*o(C

As a consequence,
S=ToP*oCo0O

By the assumption of the case Gy, C {Jf > 0} , detS # 0 = detT # 0. Hence, for
v eR™
[T~ 0 Su| = [P0 CoO(v)| < |CoO(v)| < tO(v)| = tv

Thus
T to S<B(O, 1)> C B(0,t)

= Jf =|detS| < t"|detT| = t"[[q o Sk]]
Similarly, we have the other inequality :

[[q o Sk]] = |detT| < t"|detS| =t"J f

Now,

t73n+m anm (Gk N fl(y)> dy
Rm
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= 3ntm / . H (h_l (h(Gg)) N q_l(y)> dy

< [ g (s,;l (h(G) N q—1<y>))dy
.

=t /m HET <Sk_1 o h(Gk)N (go Sk)_l(y)> dy

By the lemma 2.70,
t=2"[q o Si]|L" (Sk_l o h(Gk))

<t7"[lgo SllL™(Gr)

</ Jfdr
Gy

Similar proof shows that

/ J fdx < 3™ / H™ <ka f—l(y))dy
e m

Using the fact that A is same as the set | J Gy in £™ measure, summing on k and letting

/mH"—m <Amf—1(y)>dy_/Adex

AcC{Jf=0}

t — 14, we have

Case 2 :

Fix 0 < € < 1. Define
g:R"XR"™ - R, (x,y) = f(z) + ey

p:R"xXR™ - R™ | (z,y) >y

Then,
Dg=[Df e

mx (ntm)
Also, €™ < Jg = [[Dyg]] = [[Dg*]] < Ce.
Note that

[ (an )y

—/ H”_m<Aﬂf_1{y—ew}>dy , Yw e R"

= 1 / HTT (A Nf Yy - ew}> dydw
a(m) Jpo1) Jrm
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Claim 2 : Fix y € R™, w € R™. Set
B:=Ax B(0,1) c R"t™

Then

BngH(y)np~H(w) = { ? wE B, 1)}

(AnfHy —ew) x {w} we B(0,1)
Proof of the claim 2 :
(z,2) e BNng Yy)Np Hw) <= z€a,z€ B0,1),flx)+ez=y,z=w
< rze€Az=weB0,1),f(z)=y—ew
<« we B(0,1),(z,2) € (AN fH{y — ew}) x {w}

This proves the claim 2 .

Now, the intergral equality becomes,

[ an s )y

= L Lm0 w0 ) ay

By the remark 2.72,

aln—m) "B Aol
) /RMH (BNg™{y})dy
By the case 1,
a(n —m)

= / Jgdx dz
a(m) B

a(n —m)a(m)

() LM(A) Slép Jg

< CL"(A)e
Now € > 0 was arbitrary and hence the theorem holds for the case 2. For the general

case, split the set A as A; U Ag, where Ay C {Jf > 0} and Ay C {Jf = 0} and apply

the above 2 cases to conclude the theroem. O

Theorem 2.75. Change of Variables :
Let f: R™ — R™ be lipshitz and n > m. Then , for all g : R™ — R, integrable function,

g|f—1{y} is H™"™"™ integrable for L™ almost every y € R™

/ng(w)Jf(w)dw = /m (/f_l{y} gdH”‘"‘) dy
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Proof. Let g := > | C;X4, be a simple function. Then

Jf dx = C’,»/Jd:v
| oais o f s

7

= ;Ci /Rm HT (Ai N fl{y}> dy
= /R icz‘%nfm <Ai N fl{y}) dy

mo-,
=1

fo (o)
™ NSy}

Since this is true for simple functions, as done in the area’s change of variables, by DCT

and MCT, one can conclude the theorem for all integrable functions. O

2.5.2 Applications

e Polar Co-ordinates :

Let g : R — R be L" integrable function. Then

/ g dz :/ </ gd’H”_1>dr
n 0 dB(0,r)
() Lo 0
dr B(0,r) dB(0,r)

In particular,

Proof. Declare

f(x) = || =
Then,
x
Di(w) = s Jf(w) =1
The change of variables formula concludes the above statement. O

e Level Sets :
Let f:R™ — R be lipshitz. Then,

/Rn |Df|dx = /RH"‘l({f =t})dt

This follows form the fact that Jf = |Df].
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Let f: R™ — R be lipshitz with ess inf|Df| > 0. Assume that g : R" — R is £"

integrable. Then,
> g n—1
gdx :/ (/ ——dH >ds
/{f>t} ' {r=s} |Df|

In particular,

% {r>s} flr== /{f=s} ﬁd?{nil for £ almost every s
Proof. As before, let
Jf =I|Df|
Declare
E,:={f>s}

By the Co-Area formula,

g
gdx = Xg,——=J fdz
/{f>s} Rn |Df

g n—1
= ——Xg,dH dt
* g n—1
= —— X dH dt
/t </6E [DfFI™ >
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