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Thesis Synopsis 

Surface ligands are ubiquitous in colloidal nanoscience. They provide the colloidal stability to 

nanoparticles (NPs) as well as dictate most of their physicochemical properties. However in the 

area of catalysis, the ligands have a bad reputation of poisoning the catalyst, either by hindering 

the surface accessibility (due to steric effect) or by creating an insulating barrier for the movement 

of electron and holes. So, how to overcome this challenge of' “ligand poisoning”? Traditional 

strategies include the deposition of NPs onto a support or use ‘ligand free’ NPs for catalysis. 

However, the available surface area and stability of NPs are compromised during the course of 

catalysis. Thus, nanoparticles and ligands are two inseparable entities and strategies have to be 

developed to accomplish catalysis by retaining as well as utilizing the ligands on the NP surface. 

In this direction, the present thesis focuses on introducing a new strategy based on NP-reactant 

interaction (emanated from surface ligands) to address the so called “ligand poisoning” effect in 

the area of metal NP catalysis.  

The thesis starts with a brief introduction on metal NP catalysis where, the intriguing role of 

surface-to-volume ratio and the localized surface plasmon property have been discussed in detail 

to highlight the potency of metal NPs as efficient catalysts. Despite of having a great potential, the 

broad application of metal NP catalysts, in general, are impeded by their poor catalytic efficiency. 

One of the primary reasons attributed to this is “ligand poisoning”. The present thesis is focused 

on addressing this challenge in metal NP catalysis. Therefore, the later section of Chapter -1 

introduces the ligand poisoning effect in NP catalysis, and discusses about different existing 

strategies to overcome this challenge. Finally, the introduction Chapter ends by providing a brief 

outline about our interaction based strategy to circumvent this challenge.  

The second Chapter summarizes our efforts towards establishing the decisive role of surface 

ligands in improving as well as dictating the catalytic property of NPs in traditional gold 

nanoparticle (AuNP) catalysed reduction of nitro arenes to amines. The interactions between the 

reactant molecules and AuNP surface was made favourable (attractive) or unfavourable (repulsive) 

by fine tuning the NP surface potential, through judicious choice of ligands. An electrostatically 

assisted channelling of reactant molecules due to the attraction between oppositely charged 

reactants and AuNP catalysts was responsible for the dominance of [+] AuNP catalysts over other 

NP systems. The catalyst amount was brought down to a picomolar level through a favourable NP-
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reactant interaction. No measurable catalysis was observed when unfavourable conditions for 

reactant binding were created using [-] AuNP as the catalyst (even up to ~ 1 mol %). At least an 

order of magnitude higher concentration of [-] AuNP was required to compete with the catalytic 

activity of [+] AuNP. Remarkably, the catalysis by [+] AuNP was superior to even citrate stabilized 

AuNP; the latter being often considered as a benchmark catalyst as it provides ~ 100 % of its 

surface for catalysis. Thus by tuning the NP-reactant interaction we were not only able to achieve 

efficient catalysis at low NP concentration, but also regulate the catalytic property between 

completely “on” and “off” states - rendering the same NP core as a catalyst and a non-catalyst. 

 

Schematic representation of electrostatically dictated AuNP catalysed reduction of nitro 

arenes to amines. 

 

The third Chapter is focused on employing our idea of interaction to address the “ligand 

poisoning” effect in a more challenging photocatalytic reaction with plasmonic metal NPs. The 

photocatalytic activity of metal NPs predominantly depends on the rate of hot electron/hole 

transfer (within ~10-100 fs), which oftentimes is hindered by the insulating nature of the surface 

ligands resulting in a poor photocatalytic efficiency. In a model photocatalytic one electron 

reduction of ferricyanide to ferrocyanide, we have successfully demonstrated that a favourable 

NP-reactant interaction can indeed improve the rate of hot electron transfer, and hence the 

photocatalytic activity. For instance, the rate constant increased from ~ 8 x 10-4 min-1 to ~ 4 x 10-

3 min-1 (~ 5 fold increment in reaction rate!), when the NP-reactant interaction was made 

favourable, along with an appreciable increase in the ferricyanide conversion yield (from ~ 10% 

for [-] AuNP to ~ 60% for [+] AuNP). A detailed mechanistic analysis based on Marcus theory 

revealed that a higher local concentration of reactant molecules close to the NP surface is the 

deciding factor for the enhanced rate of photocatalysis. 
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Schematic representation of surface ligand “gated” AuNP photocatalyzed reduction of 

ferricyanide to ferrocyanide. 

 

The fourth Chapter of the thesis summarizes our efforts towards demonstrating the prodigious 

role of precise NP-reactant interaction in driving kinetically sluggish photocatalytic multielectron 

reaction, without the aid of any co-catalysts or electron mediators. Harvesting multiple electron-

hole pairs in an efficient manner is one of the holy grails in the area of photocatalysis. The 

efficiency of a multielectron reaction relies on surplus generation and efficient transfer of multiple 

charge carriers from a photocatalyst to the reactant molecules. While the generation of multiple 

charge carriers depends on the intrinsic property of the photocatalyst, the transfer of these short 

lifetime multiple carriers relies on the interaction between the photocatalyst and the reactant 

molecules. A poor catalyst-reactant interaction oftentimes demands for the need of additional co-

catalysts or charge mediators to facilitate the charge transfer process, and thereby increasing the 

complexity of the photocatalytic system. Thus, strategies to develop sole photocatalysts for 

multielectron reactions are highly desirable, but not yet widely accomplished. Here we introduce 

the idea of ‘creating precise NP-reactant interaction’ as a potent strategy to perform a challenging 

multielectron photocatalytic regeneration of the reduced form of Nicotinamide Adenine 

Dinucleotide (NADH) cofactor, by AuNP as a sole photocatalyst. Our studies reveal that the 

positive surface potential on AuNP regulates the channeling and local concentration of [-] NAD+ 

reactant molecule, and thereby facilitating the direct multielectron (2e-) transfer from [+] AuNP to 

[-] NAD+ molecules. This favorable interaction rendered an efficient generation of NADH cofactor 

(TON ~ 12 × 103 / NP) with [+] AuNPs as the sole photocatalyst, without the aid of any co-catalysts 

or electron mediators. A ~10 times increase in the NADH formation, while switching from 

unfavorable to favorable interaction, proves the necessity of catalyst-reactant interaction in driving 
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challenging photocatalytic multielectron reactions. The most interesting feature of the present idea 

of interaction is its flexibility to be coupled with other existing strategies, to boost the overall 

catalytic performances. The photocatalytic parameters presented here are comparable or greater 

than most of the catalytic systems reported based on plasmonic NP, with the added advantage of 

being structurally less complex. 

 

Schematic representation of electrostatically driven photocatalytic regeneration of NADH 

by AuNP. 

 

In summary, the present thesis focuses on salvaging the bad reputation of surface ligands in metal 

NP catalysis, and introduces a promising strategy of “ligand directed catalysis” for addressing the 

long standing challenge of “ligand poisoning” in the area of NP catalysis. 
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Introduction on Metal Nanoparticle Catalysis and  

Ligand Poisoning 
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1.1. Introduction 

Catalysis with nanoparticles (NPs) is undoubtedly one of the widely studied areas in the modern 

materials research.1,2 Nanocatalysts are often considered as a bridge between homogeneous and 

heterogeneous catalysts, encompassing the advantages from both the approaches.3–9 Nanoparticles 

can offer most of its surface active sites for catalysis (similar to the homogeneous catalysis) and at 

the same time remains insoluble (dispersed) in the solution providing the advantages of easy 

separation, product purification and reusability (similar to heterogeneous catalysis).3-9 Moreover a 

tunability in size, shape, composition and crystallinity, tuneable optical and chemical properties, 

make NPs a promising candidate for catalysis.6,9–13 Among several NP catalysts, the metal based 

nanocatalysts have gained special attention because of their high absorption cross section and the 

localized surface plasmon resonance (LSPR), and thus, have been explored both in the areas of 

nanocatalysis and photocatalysis.14-18 The present thesis is focused on the catalytic and 

photocatalytic properties of metal NPs. Especially, we have addressed a long standing challenge 

of ligand poisoning in the area of metal nanoparticle catalysis, by developing an interaction based 

strategy to circumvent this issue. In this direction, the first section of the introduction Chapter 

presents a brief overview of the metal NP based catalysis in the context of two aforementioned 

properties. The follow up sections introduces the concept of ligand poisoning and also discuss 

about the pros and cons of different existing strategies to address this issue. Finally, the 

introduction Chapter ends by giving a brief objective of the present thesis. 

1.2. Key Parameters Dictating the Catalytic Properties of Metal NP 

1.2.1. High Surface-to-Volume Ratio: 

Surface-to-volume ratio is one of the key parameters that makes NPs, in general, a promising 

catalyst for various chemical transformations.14–19 Specifically, the surface-to-volume ratio 

represents the percentage of atoms on the surface of a NP, in a given volume. This ratio increases 

with decrease in the size of a NP, which essentially means that more number of active atoms are 

available for catalysis.14–19 Moreover, a reduction in size increases the surface free energy by 

introducing unsaturated co-ordination to the surface atoms which makes the metal sites more 

reactive towards interaction with the surroundings (Figure 1.1 a).14–19 Hence, the size of the 

particles play a crucial role in dictating the catalytic activity of metal NPs. Plethora of studies have 

been performed to explore the size dependent catalytic activity of metal NPs. Figure 1.1 b shows 

a compilation of a large number of reports on the size dependent CO oxidation activity of gold 
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nanoparticle (AuNP) on supported catalysts.18 As evident from the Figure1.1 b, most of the reports 

reveal a dramatic increase in the catalytic activity below a size regime of ~ 5 nm. For instance the 

catalytic activity of 2 nm particles are almost 100 times higher compare to that of a 20 nm 

particle.18 Studies with other NP systems too have exhibited similar size dependent catalytic 

activity. 

 

Figure 1.1. NP size effect on the catalytic activity of metal NPs. a) Schematic illustration of the 

change in surface free energy and specific activity per metal atom as a function of NP size. Adapted 

with permission from reference 14. Copyright 2013, American Chemical Society. b) Catalytic CO 

oxidation activity of different gold based catalysts as a function NP size. Adapted with permission 

from reference 18. Copyright 2007, Springer Nature. c) Rate of Catalytic reduction of HCOOH 

over Pd catalysts with varying sizes. Adapted with permission from reference 20. Copyright 2017, 

Elsevier. d) CO conversion yield for Rh NP as a function of varying sizes. Adapted with permission 

from reference 12. Copyright 2017, Chemical Society of Japan. 

Lu and co-workers have studied the effect of NP size on the catalytic hydrogen generation from 

formic acid on a carbon supported Pd NP catalyst (Figure 1.1 c).20 The studies show that the 

efficiency of hydrogen generation was boosted on going down to a size regime of 2-4 nm. The 

Turn-Over-Frequency (TOF) for 2 nm particle was 835/h which was among the highest values for 

monometallic Pd catalysts.20 Detailed spectroscopic analysis revealed that a higher proportion of 
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both low and high co-ordination Pd atoms in smaller sized particles are responsible for the higher 

catalytic activity of these particles.20 In another seminal work, Nagaoka and co-workers 

investigated the size dependent CO conversion activity of Rh NPs (Figure 1.1 d).12 As per the 

study, the size of the NPs not only affect the catalytic activity but also have a prominent effect in 

controlling the temperature at which the reaction occurs. In consistent with other reports, the 

catalytic activity of the Rh NPs increased with decrease in the size of the particles, and the catalytic 

activity of the 3 nm particles was the highest (Figure 1.1 d).12 Interestingly, a temperature 

dependent analysis showed that, apart from the catalytic activity, there was a steady decrease in 

the reaction temperature with decrease in the size of the particles. For instance, for a 3 nm particle, 

a 100 % conversion was achieved at a temperature of ~ 130 0C, whereas, > 160 0C temperature 

was required to achieve the same conversion efficiency with a 10 nm particle (Figure 1.1 d).12 

Thus, all the above reports demonstrate an increase in the catalytic activity with decrease in the 

size of the NPs. However, this is not true for all kind of reactions. The effect of NP size on the 

catalytic active strongly depends on the choice of reactions as well. Depending on the relation 

between the NP size and catalytic activity, the NP catalyzed reactions can be classified into three 

classes: (Figure 1.2)21,22  

i) Positive size sensitive reactions: The catalytic activity of NPs for these reactions increases with 

decrease in the size of the NPs.21 All the reactions discussed above fall under this category. 

ii) Negative size sensitive reactions: The turn over frequency (TOF) for these kind of reactions 

decreases with decrease in the size of the NPs.21 Typical example of this category is the 

dissociation of CO2, N2, O2 or NO which requires unique step-edge sites or co-ordination with 

multiple atoms on the surface of NPs. These kind of sites always do not exist in very small NPs. 

For instance, the dissociation of N2 or NO require active B5 sites on the surface of NPs which 

oftentimes do not exist in very small NPs.21  

iii) Size insensitive reactions: The TOF for these type of reactions are independent of size of the 

NPs. Hydrocarbon hydrogenation on transition metal catalyst is an example of this category.21,22 
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Figure 1.2. Variation in catalytic activity as a function of NP diameter for 1) size insensitive 2) 

negative size sensitive and 3) positive size sensitive reactions. Adapted with permission from 

reference 21. Copyright 2009, American Chemical Society. 

1.2.2. Localized Surface Plasmon Resonance (LSPR):  

Surface plasmon resonance is another important parameter which introduces light harvesting 

capability in metal NP catalysts.23–26 Strong interaction of plasmonic metal NPs with visible light 

induces a resonant and collective oscillation of free electrons on the surface of the NPs giving rise 

to the surface plasmon resonance (Figure 1.3). In case of a NP, the surface plasmon is confined in 

a nano regime of 1-100 nm, which is comparable or less than the wavelength of the incoming light 

and thus called localized surface plasmon resonance (LSPR). Because of this collective oscillation 

of sea of electrons, the optical cross section due to LSPR can extend up to ten times of  the 

geometrical cross section of metal NPs.27 Thus, plasmonic metal NPs, through LSPR can 

efficiently harvest the visible light energy and store in the form of hot charge carriers.23–26 

 

Figure 1.3. Schematic representation of the oscillation of surface electrons in metals under the 

influence of an electromagnetic radiation, leading to the generation of Surface Plasmon 
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Resonance. Adapted with permission from reference 30. Copyright 1999, American Chemical 

Society 

1.2.3. Plasmonic and Non-Plasmonic Metal NPs: 

Plasmon excitation involves a collective oscillation of sea of electrons on the surface of NPs and 

thus it offers a large optical extinction cross section at the resonant frequency.28–30 According to 

the Mie theory of dipole approximation, the extinction coefficient (𝑘) for N number of spherical 

particles with volume V is given by the following equation 30–32 

𝑘 =  
18𝜋𝑁𝑉𝜖𝑚

 
1.5

𝜆
 

𝜖2
[𝜖1 + 2𝜖𝑚]2 + 𝜖2

2 

Where, λ is the absorbing light wavelength, ϵm is the dielectric constant of the surrounding 

medium (frequency independent), ϵ1 and ϵ2 are the real and imaginary part of the material’s 

dielectric constant 30–32 

𝜖(𝜔) =  𝜖1(𝜔) + 𝑖𝜖2(𝜔) 

where 𝜔 is the frequency of light. As per the above equation, the extinction coefficient for the 

plasmon excitation will be maximum when 𝜖1 = −2𝜖𝑚  and 𝜖2 is small, and weakly dependent 

on the frequency of light. 𝜖1 is the real part of the material dielectric function and is related to the 

polarizability of metals at different wavelengths.
30–32

 As shown in Figure 1.4 a, a wide range of 

metals display a negative 𝜀1 value (throughout the visible wavelength) and therefore, satisfy the 

first (or primery) condition to exhibit surface plasmon property. However, 𝜀2 is the imaginary part 

of the dielectric function and it’s value depends on the probability of electronic excitation.32 Two 

types of electronic excitations are possible in metals: i) intraband s –s transition, where the 

electrons can be excited from the filled ‘s’ state below the fermi level to the empty ‘s’ state above 

the fermi level (Figure 1.4 c,d). The second type is  the interband d-s transition where the 

excitation can happen from the filled ‘d’ state below the fermi level to the empty ‘s’ state above 

the fermi level (Figure 1.4 c,d).
32

 The rate constant for the indirect intraband s-s transitions are 

typically small (1013 s-1)
33

due to its electronically forbidden nature and requirement of change in 

momentum for the charge carriers. Whereas the direct interband transitions are electronically 

allowed and have a higher rate constant of 1015 s-1.
33

 Thus, the ϵ2 value is essentially dictated by 
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the probability of interband and intraband transitions in metals. Generally for noble metals (Au, 

Ag, and Cu), the filled‘d’ band lies well 

 

Figure 1.4. Variation in a) real and b) imaginary part of the dielectric function vs wavelength for 

noble and non-noble transition metals. c,d) Schematic representations of density of states for 

plasmonic noble metals and non-noble transition metals, respectively. Adapted with permission 

from reference 32. Copyright 2018, Springer Nature. 

below the fermi level and hence the probability of interband transitions in visible region is 

relatively lower (Figure 1.4 c).
23,32

 For instance, in Ag, the d-s transition is accessible only in the 

UV region.
23,32

 For Au and Cu, however, the energy of the ‘d’ band is higher in energy compared 

to Ag and the interband transition however, the energy of the ‘d’ band is higher in energy compared 

to Ag and the interband transition is accessible above a threshold frequency of light in the visible 

region (Figure 1.4 c).
23,32

 On the contrary, for non-noble metals (Pd, Pt, Ni) the ‘d’ band intersects 

the fermi level and hence the interband transitions are accessible throughout the visible regions 

and dominate over the intraband transition (Figure 1.4 d).
23,32

 Because of a high probability of 

interband transition (with a higher rate constant) throughout the visible region, the ϵ2 value for the 

non-noble metals are typically higher compared to the noble metals (Figure 1.4 b).25,30 Therefore, 
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the noble metals (Au, Ag, Cu) with a smaller value of ϵ2 (Figure 1.4 b) in the visible region are 

usually considered as plasmonic metals.25,30  

1.2.4. Plasmon Excitation and Generation of Hot Carriers:  

Visible light excitation of plasmonic metal NPs induces a collective and coherent oscillation of 

free electrons on the surface of NPs. Thus, the light energy is confined on the surface of NPs in 

the form an elevated electric field.28–30 The energy stored in this elevated LSPR then undergoes 

two decay pathways: i) radiative pathway through the re-emission of a photon (scattering), or ii) 

non-radiative pathway through the generation of hot carriers.26,34–37 The radiative photon emission 

is the dominant pathway for larger particle ( > 50 nm for Ag), and have numerous applications in 

the area of Surface Enhanced Raman Spectroscopy, chemical sensing and so on; however they are 

not suitable for light harvesting.38 Whereas the non-radiative pathway is dominant for smaller size 

particles and leads to the generation of hot electrons and holes.39 As discussed earlier, electronic 

excitation in metals can happen either through interband or intraband pathway. The plasmon decay 

via d to s interband transition would be the prominent pathway whenever accessible.  

Recently, Atwater and co-workers performed a first principle calculation to understand the effect 

of particle size on the non-radiative decay pathways for excited plasmon.35 The authors concluded 

that, the interband decay pathways for plasmonic AuNPs dominate at energies where its 

energetically accessible, irrespective of the size of the NPs.35 On the other hand, the contribution 

from the intraband decay pathway is size dependent and becomes prominent only when the 

interband transition is not energetically accessible (Figure 1.5 a).35 However, in case of AgNP, 

the interband decay is not energetically accessible in the visible region and thus the decay of 

plasmon predominantly proceeds through the intraband electronic transition.35 Further, the energy 

distribution of the hot carriers is primarily governed by the decay pathway of the surface plasmon. 

Intraband transition generates a hot electron in the ‘s’ band above the fermi level and a hot hole in 

the same band below the fermi level.35 Similar energies of the electrons and holes yields a flat 

charge carrier distribution function, which is usually seen for Al and Ag NPs, (Figure 1.5 b).35 

Whereas, in interband transition, the high energy hot holes in the ‘d’ band and low energy hot 

electrons in the ‘s’ band creates an asymmetric charge carrier distribution near the fermi level, as 

seen in Au and Cu NPs (Figure 1.5 b).35 After the creation of the hot carriers, either through 

interband or intraband plasmon decay, they undergo a relaxation pathway. These hot carriers first 

redistribute their energy via electron-electron scattering in a time scale of 10-100 fs leading to a 
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secondary excitation, followed by a hot fermi distribution of electrons and holes close to the fermi 

level.26,34–37 Subsequently, these hot carriers dissipate their energy via electron-phonon relaxation 

 

Figure 1.5. a) Contributions of geometry, phonon, resistive assisted, and direct excitations to 

absorption in a semi-infinite gold surface and spherical gold nanoparticles of various sizes as a 

function of plasmon energy. b) Energy distributions of initially excited hot carriers in Al, Ag, Au 

and Cu as a function of plasmon frequency and carrier energy. Adapted with permission from 

reference 35. Copyright 2016, American Chemical Society. 

(~1 ps timescale) and releases heat to the NP lattice (plasmonic heating). Finally in a timescale of 

~100 ps the NP lattice reaches a thermal equilibrium with the surroundings via phonon-phonon 

relaxation.26,34–37 Thus the hot electrons and holes generated through the plasmon decay can be 

used to trigger different oxidative or reductive transformations on the surface of NPs. This aspect 

has been discussed in the next section. 

1.2.5. Photocatalysis with Plasmonic Metal Nanoparticles: 

Efficient light absorption through LSPR and generation of hot charge carriers rendered the use of 

plasmonic metal NPs as an efficient photocatalyst.
26,34–37,40–49 The initial photocatalytic studies 

were predominantly motivated by the use of metal NPs as a plasmonic antenna to improve the light 

absorption as well as charge separation efficiency of a metal/semiconductor hybrid photocatalytic 

systems.
40–49 In this direction, one of the initial photocatalytic studies of metal@semiconductor 

composite materials were reported by Kamat and co-workers in Ag@TiO2 core shell 

nanostructures (Figure 1.6).
43

 The selective photoexcitation of TiO2 shell with UV light resulted 

in the migration of electrons from semiconductor to the Ag metal core, which was accompanied 

by a shift in the surface plasmon band from 460 to 420 nm (Figure 1.6 a,b).
43

 The stored electrons 
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were discharged using electron acceptors like O2, thionine, or C60 was introduced into the system 

(Figure 1.6 c).41 Charge equilibration with redox couple such as C60/C60
•- confirmed the 

 

Figure 1.6. a) Schematic representation of electron-hole pair generation and migration of electrons 

from semiconductor to the metal. b) Spectral shift in the absorption of Ag@TiO2 colloidal 

suspension in ethanol during UV-irradiation. The difference spectrum corresponding to the 

absorption changes is shown in the inset. c) Transfer of stored electrons from Ag@TiO2 to a known 

amount of thionine dye. Inset shows the change in plasmon peak position as a function of 

concentration of thionine. Adapted with permission from reference 43. Copyright 2005, American 

Chemical Society. 

ability of these structures to perform photocatalytic reduction reactions.41 The negative shift in the 

fermi level because of the charge equilibration between metal and semiconductor was found to be 

responsible for the higher photocatalytic activity of the hybrid system.41 Although, this was one of 

the very first experimental evidences for an efficient electron transfer between metal and 

semiconductor, the plasmon property of metal NPs was unexplored. The area of plasmon enhanced 

photocatalysis was largely invigorated by the seminal work from Tatsuma and co-workers, who 

for the first time investigated the effect of LSPR in improving the light absorption of 

semiconductor in an Au/TiO2 nanohybrid system (Figure 1.7 a,b).
49

 The photoexcitation of AuNP 

with visible light, resulted in an efficient injection of hot charge carriers from the NP to TiO2 

semiconductor (Figure 1.7 a).47 The efficient electron transfer was accompanied by an increase in 

TiO2 absorption at 600 nm. A 12 % Incident Photon to Current conversion efficiency (IPCE) was 

achieved by using Fe2+/ Fe3+ as a redox mediator (Figure 1.7 b).47 This was followed by numerous 

number of reports investigating the effect of LSPR in the photocatalytic activity of different 

semiconductor photocatalysts.43-52 A series of investigations to understand the mechanism of 

enhanced charge separation have shown that a close contact between the metal and semiconductor 

creates a space charge region (i.e. Schottky junction) resulting in an upward or downward band 
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bending at the metal-semiconductor interface (depending on the n-type or p-type semiconductor, 

Figure 1.7 c).
47

  This band bending at the interface induce a unidirectional movement to the 

electrons and holes reducing the rate of recombination (Figure 1.7 c).
47

 Thus, the incorporation of 

plasmonic metals improve the light absorption capability as well as the charge separation 

efficiency in a metal/semiconductor hybrid photocatalytic system, which in turn improves the 

overall photocatalytic activity of the composite materials. 

 

Figure 1.7. Plasmon enhanced photocatalysis in metal-semiconductor nanohybrid systems. a) 

Schematic illustration of the electron-hole pair generation and migration process from the metal to 

the semiconductor. The metal NP catalyst is usually regenerated by using a sacrificial electron 

donor. b) Action spectra for the changes in IPCE in Au/TiO2 film. The IPCE values perfectly 

overlay with the absorption of the AuNPs. Adapted with permission from reference 49. Copyright 

2005, American Chemical Society. c) Schematic illustration of the energy diagram of plasmonic 

metal-semiconductor nanohybrid systems before and after contact. Adapted with permission from 

reference 47. Copyright 2013, IOP Publishing. 

Although, metal NPs have extensively been used as photosensitizers with semiconductor 

photocatalysts, their sole photocatalytic activity was only explored in recent years, where the hot 

carriers generated through the plasmon decay are being directly used to drive several reactions on 
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the surface of NPs.
34,36,46,50–64

 The hot electron chemistry was largely triggered by the seminal 

work from Linic and co-workers, who demonstrated the plasmonically driven epoxidation reaction 

with AgNPs. The oxidation of industrially relevant molecules like ethylene or propylene usually 

requires higher temperature and pressure. The plasmonic excitation of AgNPs under continuous 

wave (CW) visible light irradiation triggered the dissociation of the adsorbed O2 molecule and lead 

to the oxidation of these molecules at room temperature and under ambient pressure. (Figure 1.8 

a,b,c).61 A negligible rate of bond dissociation or oxidation in the absence of light, indicated that 

the plasmon excitation can trigger a chemical reaction on the surface of NPs.59  In another study, 

Halas and co-workers demonstrated the H2 dissociation reaction on plasmonic AuNPs (Figure 1.9 

a,b,c).55 Dissociation of H2 is an extremely energy consuming reaction with a bond dissociation 

enthalpy of 435 kJ/mol.53 The hot electrons generated through the plasmon decay were able to 

induce the dissociation of H2 and D2 molecule on the NP surface at room temperature. 

 

Figure 1.8. Plasmon driven photocatalytic ethylene epoxidation with AgNP as the catalyst. a) 

Ethylene epoxidation reaction at 450 K under dark and visible light irradiation. b) The 

enhancement in the photothermal rate (left axis) as a function of temperature. Rate enhancement 

factor was calculated by dividing the photothermal rate with that of thermal rate. The rate of the 

reaction (right axis) under photothermal and thermal condition as a function of temperature. c) 

Rate of ethylene epoxidation as a function of irradiation intensity. Adapted with permission from 

reference 61. Copyright 2011, Springer Nature. 

A linear increase in the photocatalytic rate with the laser intensity confirmed the role of hot 

electrons in triggering the reaction (Figure 1.9 c).53 A detailed first principle density functional 

theory calculation revealed that, the plasmonically excited NPs were able to deposit energy into 

the antibonding 1σu* state of the adsorbed H2 molecule, and thereby induced the dissociation of 

the molecule (Figure 1.9 a).53 Recently, the multielectron transfer capability of plasmonic AuNP 

has been demonstrated by Jain and co-workers, where, plasmonic AuNPs photocatalyzed the 
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multielectron reduction of CO2 to CH4 and C2H6, under visible light irradiation  

 

Figure 1.9. Photocatalytic H2 dissociation on plasmonic AuNP. a,b) schematic illustration of the 

processes involved in  photocatalytic H2 dissociation on plasmonic AuNP surface. c) Rate of 

formation of HD on AuNP as a function irradiation intensity. Adapted with permission from 

reference 55. Copyright 2013, American Chemical Society. 

(Figure 1.10 a,b,c).53,65 The reduction of CO2 to CH4 involves a 8e--8H+ transfer whereas the 

production of C2H6 requires a 12e--12H+ transfer step.53,65 A higher photon flux (to increase the 

rate of electron excitation) and the presence of a suitable hole scavenger (to suppress the rate of 

recombination) were found to be crucial for the accumulation and transfer of multiple charge 

carriers on the surface of NPs.53,65 Moreover, a control over the formation of CH4 and C2H6 was 

achieved by tuning the intensity of the light irradiation, which in turn controls the generation of 

hot electrons and holes (Figure 1.10 b,c).51 In another study, Xiong and co-workers designed an 

Au/Ru plasmonic antenna reactor hybrid system for the photocatalytic reduction of N2 to NH3.
57 

N2 is an extremely stable and inert molecule with a high bond energy of 941 kJ/mole. Industrial 

production of NH3 relies on the reduction of N2 with Haber Bosch process, which requires a high 

temperature and pressure of 3000C and 100 atm, respectively.57 The plasmonic properties of AuNP 

as well as the strong interaction between Ru and N2 molecules were utilized for the photocatalytic 

reduction of N2 to NH3, in water under ambient condition.57 Plethora of other studies have been 

performed to utilize the hot carriers in triggering different important chemical transformations like 

O2 dissociation,61,62 water splitting,64 NH3 decomposition,58 nitroaromatic reduction,59,60 metal ion 

reduction,56 organic transformation50 and so on.  

Despite of being a great potential, the broad application of metal NP catalysts are in general 

impeded by their poor catalytic efficiency.66–73 One of the primary reasons attributed to the 

inertness of the metal NPs is the insulating surface ligands, which are essential to impart stability 
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to the NPs.66–73 Usually, the surface ligands inhibit the catalytic property of metal NPs and this is 

commonly known as “ligand poisoning” in the area of NP catalysis.66–73 The current theses is  

 

Figure 1.10. Photocatalytic CO2 reduction on plasmonic AuNP. a) Schematic illustration for the 

photocatalytic multielectron reduction of CO2 on plasmonic AuNP. b) Time dependent CH4 and 

C2H6 formation under the irradiation of CW visible light (> 400 nm). c) Intensity dependent CH4 

and C2H6 formation under CW 488nm laser irradiation. Adapted with permission from reference 

53. Copyright 2018, American Chemical Society. 

focused on developing an interaction based strategy to address this long standing fundamental 

challenge. The next section gives a brief description about the ligand poisoning effect, and 

provides a summary of different existing strategies to overcome this challenge.  

1.3. Ligand Poisoning 

In general, the metal NP catalysed reactions can be divided broadly into two categories. In certain 

reactions the metal NP helps to overcome the kinetic barrier for the reaction process by offering 

its surface for adsorption and mediating the transfer of electron between the reactant molecules. 

Here, the role of NPs is passive in nature.74–77 Reduction of nitro aromatics with borohydride16 and 

reduction of ferricyanide with borohydride16 are some of the classical examples of this category. 

On the contrary, in case of photocatalysis, the hot charge carriers generated through the 

photoexcitation of NPs are involved in the reaction process, and the NPs actively takes part in the 

reaction.39 For both these types, a close proximity between NP catalyst and reactant molecules is 

required for the adsorption of reactant molecules on the NP surface.74–77 Oftentimes, during the 

process of adsorption, the reactant molecules have to encounter the insulating organic ligands on 

the surface of NPs which essentially hinders the diffusion of the molecules towards the NP surface. 

In general, surface ligands are ubiquitous in colloidal nanoscience. It stabilizes the NPs as well as 

dictates most of its physicochemical properties. However in catalysis, these surface ligands 

oftentimes play an inadvertent role by hindering the (i) accessibility of NP surface to the reactant 
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molecules (steric effect)67,70,72,78 and (ii) movement of hot carriers from the photoexcited NPs to 

the reactant molecules (due to insulating nature).66,73 This is commonly referred to as “ligand 

poisoning” in the area of NP catalysis. 

Jain and co-workers, in their recent study have demonstrated the poisoning role of mercaptothiol 

ligands with different chain lengths in blocking the surface, and hence impeding the kinetics of 

galvanic exchange on individual AgNP (Figure 1.11 a,b,c).70 Their study also proved that the 

ligand effect overpowered the role of NP size, shape and crystallinity on reaction kinetics. Longer 

chain mercaptothiols formed a thicker, and hence difficult to penetrate ligand shell resulting in 

poorer kinetics of galvanic exchange. Citrate capped AgNP, on the other hand, form loose ligand 

shells, and hence outperformed the mercaptothiol coated AgNP (Figure 1.11 a,b,c). In another 

study, Kitchens and co-workers investigated the effect of thiolated polyethylene glycol ligands 

(SH-PEG) on the catalytic reduction of 4-nitrophenol with AuNP as the catalyst (Figure 1.11 

d,e,f).78 The study revealed that the catalytic activity of the NPs are directly related to the ligand 

packing density as well as the chain length of the ligands. The low molecular weight ligands (1 

kDa) with a higher surface coverage completely inhibited the reaction, whereas, there was a steady 

increase in the rate of the reaction with increase in the molecular weight of the polymer (Figure 

1.11 e,f). Their study showed that low molecular weight PEG thiols, with a higher ligand packing 

density, were more prone towards poisoning the catalyst by blocking the surface accessibility; 

whereas the larger molecular weight PEG thiols were more suitable for catalytic reactions with 

colloidal AuNP. Recent work by Berlinguette and co-workers also demonstrated the poisoning 

effect of surface ligands on the adsorption and desorption equilibrium of H2 molecule on Pd NP 

surface (Figure 1.11 g,h,i).67 In situ X-ray monitoring experiments revealed a 10 times faster rate 

of H2 adsorption and desorption process in pristine Pd NPs compare to that of ligated samples. The 

ligands were found to affect the phase transformation of the catalyst upon H2 adsorption or 

desorption, and hence affecting the adsorption/desorption equilibrium. Thus, all these above 

representative studies show the inadvertent role played by the surface ligands to poison the 

catalytic activity of metal NPs. This ligand poisoning effect has been a long standing challenge in 

the area of NP catalysis, which needs to be addressed for further improvement of the catalytic 

property metal NPs.  
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Figure 1.11. Ligand poisoning effect in metal NP catalysis. a) Kinetics of the galvanic exchange 

reaction. The ensemble trajectory generated through all single NP trajectories for three ligand 

coatings. The kinetics of the citrate capped NPs is faster compared to the thiolated NPs. b) The 

rate of the reaction as a function of chain length of ligands. The rate of galvanic exchange reaction 

decreased with increase in the chain length. c) Relative barrier height in terms of kT as a function 

of chain length. Adapted with permission from reference 70. Copyright 2016, American Chemical 

Society. d) Schematic illustration of ligand poisoning effect in the reduction of 4-nitro phenol with 

thiolated PEG capped AuNP. e) Progress of PNP reduction and f) corresponding linearized data 

for the first order analysis by tracking the absorption changes of PNP peak at 400 nm in the 

presence of AuNP capped with thiolated PEG ligands of varying molecular weights. The PEG 

ligands with highest molecular weight and lowest surface coverage value exhibited the highest rate 

of reaction. Adapted with permission from reference 78. Copyright 2016, American Chemical 

Society. g) Schematic representation of the ligand poisoning effect in H2 adsorption and desorption 

reaction on the Pd NP surface. Comparison of h) H2 adsorption kinetics and i) H2 desorption 

kinetics on Pd NP surface with and without PVP ligands. Adapted with permission from reference 

67. Copyright 2019, American Chemical Society  
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1.4. Strategies to Overcome Ligand Poisoning Effect 

Two commonplace strategies to address the ligand poisoning effect are the (i) use of ligand free 

NPs66,73,79–81 or (ii) depositing NPs onto a solid support.82 The advantages and the limitations of 

these two strategies are discussed below. 

Ligand Free NPs:  

Synthesis of ligand free NPs is one of the attractive strategies to outweigh the poisoning effect of 

insulating organic ligands in catalytic and optoelectronic applications of colloidal NPs. Usually 

different small ions (instead of long chain organic molecules) like S2-, BH4
-, SH-, NH4

+, Se2-, HSe- 

etc. are used to attain the colloidal stability of the NPs.66,73,79–81 These ligand free particles have 

already paved their way in numerous sensing, optoelectronic and device level applications with 

enhanced activity compared to that of ligated NPs.66,73,79–81 In catalysis too, these particles usually 

offer a higher surface area leading to a better catalytic activity.79 However, there are two major 

limitations which restrict their use as a suitable alternate to outplay the ligand poisoning effect. 

Oftentimes, due to the absence of strongly bound surface ligands, the NPs get precipitated out of 

the solution during the first cycle of reaction, and thus the recyclability aspect of these particles 

are always questionable.79 Secondly, a limited scope of surface chemistry forces their use to be 

solvent specific, which is not desirable for general catalysis. Thus, the ligand free NPs despite 

being a promising alternative in the area of optoelectronic devices, the catalytic property of these 

particles have not received much attention. 

Heterogeneous Catalysis: 

Another promising strategy to address the ligand poisoning effect is to stabilize the NPs by 

depositing them onto a solid support.82 This has been an attractive strategy to remove the surface 

ligands while keeping the activity of the particles intact. Several catalytic as well as photocatalytic 

reactions have been performed by depositing different metal NPs onto oxide based semiconductor 

supports (TiO2, ZnO, ZrO2 etc.),46,55,83 carbon based solid supports,84,85 polymer supports86,87 and 

so on. Some of the major advantages of these heterogeneous catalysts are mentioned below. 

(i) High recyclability: Because of the heterogeneous nature and stability, multiple cycles of 

reactions can be performed with the same catalyst particles, which is highly desirable for any 

catalytic applications.82 

(ii) Comparable catalytic activity: Successful deposition of the particles with the removal of 

surface ligands oftentimes improve the catalytic activity of these deposited metal NPs catalysts.82 
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(iii) Easy separation of catalysts: Removal of catalyst particles from the reaction system is one of 

the major challenges in homogeneous catalysis. The heterogeneous nature of the deposited metal 

NPs allow an easy separation of the catalyst particles after the completion of the reaction.  

Thus heterogeneous catalysts have evolved as a promising alternative in the area of metal NP 

catalysis.60 However, from the fundamental point of view there are certain limitations associated 

with these catalytic systems.  

(i) Heterogeneity on the catalyst surface: Synthesis of these heterogeneous catalysts commonly 

rely on the co-precipitation methods resulting in a heterogeneous and random distribution of metal 

NPs on the solid supports, which is not desirable for an in depth understanding of the mechanism 

of a particular reaction.88 

(ii) Reduced surface area of NPs: Oftentimes the NPs undergo aggregation during the synthesis 

of the catalyst resulting in the loss of active surface area. Moreover, because of deposition, a part 

of the active surface of the catalyst remains embedded into the solid support and the full potential 

of the catalyst remains unrealized.61 

(iii) Complexity of the system: Involvement of more than one material oftentimes increase the 

complexity of the system and makes it difficult to unravel the individual contribution from each 

material, which is required to understand the full capability of the metal NP catalyst. Sometimes 

the semiconductor or the solid support can strongly interfere in the process of the reaction. 

Especially, in case of photocatalysis, several photophysical processes (charge separation, hot 

electron injection, nearfield enhancement, plasmon induced resonance energy transfer and so on) 

can take place at the interface,89 which makes it extremely complex to understand the actual 

mechanism of the reaction. For instance, in case of plasmonic photocatalysis, the reaction on the 

surface of NPs can be triggered either by plasmon heating or by the hot electrons generated through 

the plasmon decay.90 Oftentimes in heterogeneous plasmonic catalysts, the complex heat transport 

and inhomogeneous temperature distribution makes it difficult to disentangle the relative 

contribution and hence, leads to improper assumptions regarding the mechanism of the reaction.90    

Therefore, the colloidal photocatalytic systems with a constant heat flow from the NP surface to 

the bulk solution are usually considered to be the ideal system for addressing this fundamental 

question.90 In short, the heterogeneous catalysis, although extremely relevant in terms of industrial 

applicability but not suitable for a fundamental in-depth understanding, and hence alternate design 

principles have to be developed. Specifically, systematic investigations with colloidal catalysis can 
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lead to new design principles, which will be beneficial for the advancement in heterogeneous 

catalysis. An ideal way will be to perform catalysis with dispersed NPs, for which the colloidal 

stability of the NPs is essential. Thus nanoparticles and ligands are two inseparable entities, and 

strategies have to be developed to perform efficient colloidal catalysis with ligands intact on the 

surface of the NPs. Moreover, an ideal strategy should be to use the surface ligands as a tool to 

improve as well as dictate the catalytic activity of metal NPs. Further, such strategies can be easily 

incorporated in heterogeneous catalysis, in order to realize the industrial prospects as well.   

1.5. Ligand Directed Catalysis  

 A limited number of efforts have been invested so far to develop strategies for utilizing the surface 

ligands to improve the catalytic activity of NPs. In this direction, one of the very first reports were 

published by Medlin and co-workers who used the monolayer coating of n-alkenathiol ligands for 

the selective hydrogenation of 1-epoxy-3-butene (EpB) to 1-epoxybutane on Pd catalyst (Figure 

1.12 a,b).91 Generally, the hydrogenation of EpB on Pd involves the formation of a series of 

undesirable by-products with a very poor selectivity towards the formation of 1-epoxybutane 

Figure 1.12 a). The reaction proceeds through an epoxy ring opening step for the formation of an 

aldehyde intermediate, which further leads to the formation of undesired by-products. A strong 

interaction of EpB through the epoxy oxygen is responsible for this ring opening step. The authors 

observed a dramatic increase in the product selectivity from 11 % to 94 % upon coating the catalyst 

surface with a monolayer of n-alkane thiol ligands (Figure 1.12 b). A detailed investigation 

revealed that the poisoning effect of sulphur was responsible behind this improved selectivity. The 

co-ordination of sulphur on the Pd surface induce a change in the surface structure of Pd catalyst 

and some of the (111) crystal faces change their orientation into (100). The (100) face is less active 

compared to (111) crystal face, and thus the activity of Pd was reduced upon binding with sulphur. 

Because of this reduced activity the epoxy ring opening step was disfavoured and the reaction was 

stopped at the desired step. Thus, the catalyst poisoning effect of sulphur was cleverly utilized by 

the authors to induce selectivity into the Pd catalysed reaction. In another study, Zheng and co-

workers demonstrated the ability of electron donating ethylenediamine (EDA) ligands to vary the 

electronic structure of ultrathin platinum nanowires, and studied their effects on the ability of 

hydrogenation of nitroaromatics (Figure 1.12 c,d).92 Commercial Pt catalyst efficiently reduces 

nitrobenzene to aniline or its derivatives. EDA coating on the platinum nanowires, due to its 

electron donating nature, made the nanowire surface electron rich resulting in the adsorption of 
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electron poor reactant, but not the electron rich N-hydroxylamine. 

 

 

Figure 1.12. Ligand directed metal NP catalysis. a) Pathway for different product formation in the 

hydrogenation of epoxybutene on Pd NP catalyst. b) Bar diagram showing the selectivity (left axis) 

and the Turnover Number (TON) for the formation of epoxybutane after coating the catalyst 

surface with monolayer of n-alkane thiols of varying ligand chain length. Adapted with permission 

from reference 91. Copyright 2010, Springer Nature. c) Model of Pt nanowire with corresponding 

Bader Charge analysis in presence and absence of EDA ligands. d) 1H NMR spectrum of the 

product before and after the reaction. Adapted with permission from reference 92. Copyright 2016, 

Springer Nature.   

This led to the turning-off of the reaction selectively at commercially valuable N-hydroxylamine 

(Figure 1.12 c,d). The knowledge gained was crucial in imparting selectivity to a commercially 

available Pt black catalyst for the production of N-hydroxylamine. Thus, the above two examples 

clearly demonstrate that the surface ligands, if utilized cleverly, can play a crucial role in not only 

improving the catalytic activity but also dictating the product selectivity.  
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1.6. Objective of the Thesis:  

The present thesis focuses on circumventing the “ligand poisoning” effect by developing an 

interaction based strategy, where the surface ligands would be utilized to create a precise 

interaction between NP catalysts and reactant molecules to improve the catalytic property of NPs 

(Figure 1.13). We envision that, creating a precise interaction through judicious choice of surface 

ligands would help in channelling the reactant molecules towards the NP surface. This is expected 

to increase the local concentration of reactant molecules, which in turn will increase the probability 

of the reaction. Thus, the ligands on the surface of NPs, rather than blocking the surface 

accessibility would control the gating of the reactant molecules towards the NP surface. For a 

favourable surface chemistry, it would facilitate the diffusion of the reactant molecules towards 

the NP surface, which will improve the catalytic activity; whereas in case of unfavourable surface 

chemistry, the ligands would block the diffusion of the reactant molecules impeding the catalytic 

activity of NPs. Thus, a precise tuning of surface chemistry would not only improve the catalytic 

activity but also impart a control over the catalytic property of metal NPs. Furthermore, one of the 

major challenges in the area of hot electron catalysis is to improve the efficiency of the 

photocatalytic reaction, which most of the time rely on an efficient transfer of hot carriers from 

the NPs to the reactant molecules. We hypothesize that, creating a precise NP-reactant interaction 

would improve the efficiency of hot electron transfer, and hence the photocatalytic efficiency of 

metal NPs. Thus, a successful accomplishment of these objectives will introduce a new strategy of 

ligand directed catalysis for addressing a long standing challenge of “ligand poisoning” in the 

area of NP catalysis. 



Chapter 1                                                                                   Nanoparticle Catalysis & Ligand Poisoning 

21 
 

 

Figure 1.13: Schematic representation showing the main objective of the thesis. 
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2.1. Abstract 

The present Chapter focuses on establishing the decisive role of electrostatic interaction, 

emanating from surface ligands, in AuNP catalyzed reduction. Regulation of interparticle forces 

is an important approach to explore various nanoparticle (NP) functionalities. Establishing the 

decisive role played by these forces in NP catalysis is one such fascinating phenomenon. In this 

regard, the current venture shows the potency of electrostatic effects ‘arising from NP surface’ in 

AuNP catalyzed reduction of charged molecules. The electrostatic potential around AuNP is 

controlled by varying the nature of ligands and ionic strength of the medium. The favorable 

interactions arising from the attraction between oppositely charged AuNP and reactant molecules 

results in the channeling of the reactants to the NP surface. This increases the local concentration 

of the substrates close to the NP surface, which in turn enhances the catalytic performance. The 

positively charged ([+]) AuNP outperformed other NP systems despite having comparable or even 

lower surface area for adsorption, proving the exclusivity of electrostatics in catalysis. At least an 

order of higher concentration of negatively charged ([-]) AuNP is required to compete with the 

catalytic activity of [+] AuNP. The long range electrostatic forces extending up to ~ 4 nm from the 

surface of NP helps in lowering the catalyst amount to picomolar level. The existence of 

electrostatic effects is successfully translated into the catalytic reduction of a Fe (III) complex, 

confirming the generality of our hypothesis. This interaction (emanated from surface ligands) 

driven control on the catalytic property of metal NPs can have far reaching impact in the emerging 

area of ‘ligand directed product formation’ in NP catalysis. 

2.2. Introduction 

The ‘high surface-to-volume ratio’ and ‘sea of electrons’ contained on the surface of metal NPs 

have been actively used for various catalytic processes.1-10 In general, the metal NP catalysed 

reactions can be divided into two categories (Figure 2.1). In certain reactions the metal NPs help 

to overcome the kinetic barrier for the reaction process by offering its surface for adsorption and 

mediating transfer of electron between the reactant molecules.10 Here the role of NPs is passive in 

nature (Figure 2.1 a). Whereas, in the case of photocatalysis, the hot carriers generated through 

the photoexcitation of NPs are involved in the reaction, and the NPs actively take part in the 

reaction (Figure 2.1 b).7-9 The present Chapter deals with nanocatalysis (passive participation), 

and specifically focuses on investigating the potent role of interaction in controlling such kind of 

reactions on the surface of NPs. 



 Chapter 2                                                                                                       Electrostatics in Nanocatalysis 

32 
 

 

Figure 2.1. Schematic representation of a) passive participation (nanocatalysis) and b) active 

participation (photocatalysis) of AuNPs in two different classes of AuNP catalyzed reactions. 

The metal NP catalysed reduction of nitro phenols to amino phenols by borohydride ions is a 

classic example in the area of nanocatalysis.10-12 Some of characteristic features of this reaction 

includes single product formation without any side reactions, mild reaction condition, visible 

colour change upon reduction (yellow to colourless), and the possibility of temperature dependent 

kinetic analysis. This makes nitro to amine reduction an ideal reaction to assess the catalytic 

property of metal NPs as well as establishing different fundamental hypotheses regarding metal 

NP catalysis.10-12 As per literature, the nitro to amine reduction on the surface of NPs proceed either 

through the Langmuir-Hinshelwood (LH) mechanism10-14 or through Eley-Rideal mechanism 

(ER)15 (Figure 2.2). In LH mechanism, the reaction proceeds through the adsorption of both the 

reactant molecules (nitrophenol and borohydride ions) on the surface of NPs, followed by hydride 

ion transfer mediated by the NPs (Figure 2.2 a).14 Whereas, in ER mechanism, the adsorption of 

the hydride ion on the surface of NPs is the rate determining step (Figure 2.2 b).15,16 Thus, the 

adsorption of reactant molecules on the NP catalyst surface is the key step for an efficient catalysis, 

in both the models. From a fundamental point, one of the challenges here is to identify and 

precisely control the factors influencing the diffusion of reactants to the NP surface. Factors such 

as NP crystallinity, ligand packing density, hydrophobicity and available NP surface area have all 

been well studied and documented in the literature.17-24 Equally or even more important is the role 

of forces/and interactions between the NP surface and reactants on diffusion mediated catalysis, 

which is scarcely studied. In this direction, this chapter focuses on utilizing the ligands on the NP 

surface to tune the NP-reactant interaction and investigate how far it can control the adsorption of 

the reactant molecules and hence the catalytic properties of NPs. The negative charges on both the 
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Figure 2.2. Schematic representation of a) LH mechanism and b) ER mechanism for the reduction 

of nitrophenol with borohydride on the surface of metal NPs. Adapted with permission from 

reference 11. Copyright 2015, The Royal Society of Chemistry.  

reactant molecules (phenolate and borohydride ions) allowed us to use the electrostatic interactions 

as a tool to tune the interaction between NP catalysts and reactant molecules. The long range 

forces, mainly electrostatics, have already been proved to play a pivotal role in a wide range of NP 

applications like self-assembly,25-29 sensing,30,31 light harvesting,32,33 nanobiotechnology34,35 etc. In 

catalysis too the electrostatic forces, in principle, should be able to channelize the oppositely 

charged reactant molecules onto the NP surface, thereby improving the catalytic efficiency and 

selectivity. In this regard, a complete and conclusive evidence – in terms of both attractive 

(favourable) and repulsive (unfavourable) forces – is required to ascertain the existence of 

electrostatic effect in metal NP catalyzed reactions. The successful demonstration of such an effect 

will be a conceptual breakthrough that can be adapted to other NP catalyzed reactions as well.  

Attempts have been made previously to study the effect of electrostatics on metal NP catalyzed 

reductions either in the presence of loosely bound charged surfactants or polymers.36-40 For 

instance, Pal and co-workers studied the effect of charged surfactants in the PdNP catalysed 

reduction of Rose Bengal dye (negatively charged) with borohydride ion (Figure 2.3 a,b,c).36 An 

enhanced rate of reduction was observed in presence of positively charged CTAB surfactant 
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compare to that with negatively charged SDS surfactant. In another study, Xu and co-workers 

observed a higher rate of Methylene Blue (MB) reduction with polydopamine (PDA) supported 

AuNPs as the catalyst, compare to that with freely dispersed AuNPs (Figure 2.3 d,e,f). The 

electrostatic attraction between the positively charged MB and negatively charged PDA was 

reported to be the main reason behind the enhanced rate of MB reduction with PDA-AuNP as the 

catalyst. Interestingly, the PDA-Au NPs exhibited a lower catalytic activity for the negatively 

charged p-nitrophenol reduction because of an electrostatic repulsion.  

 

Figure 2.3. Progress of catalytic reduction of rose bengal dye with PdNPs in a) water b) presence 

of cationic CTAB surfactant and c) presence of anionic SDS surfactant. Adapted with permission 

from reference 36. Copyright 2000, American Chemical Society. d) Synthesis protocol and the 

corresponding TEM images of free and poludopamine (PDA) supported AuNP catalysts. e) 

Progress of methylene blue reduction by tracking the absorption change at 657 nm with free and 

PDA-AuNP catalysts. f) Progress of p-nitrophenol reduction by tracking the absorption change at 

420 nm with free and PDA-AuNP catalysts. Adapted with permission from reference 39. 

Copyright 2015, The Royal Society of Chemistry.  

Although the above representative examples reported about the effect of electrostatic interaction, 

the surface area available for the reactant adsorption was high in such NP systems, which will 

strongly assist the catalysis under both favorable and unfavorable conditions.18 Thus, the observed 

catalytic properties will be an outcome of the combined effects from surface area and electrostatics. 

A better approach to study the sole effect of electrostatics in AuNP catalysis will be to use charged 

small molecules that are tightly bound on the NP surface. Recently, we have employed AuNP 
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functionalized with charged thiolates to demonstrate the power of electrostatics in achieving an 

unprecedented phenomenon of controlled aggregation.30 Similar sets of AuNP have been used in 

the present work to provide the much awaited conclusive proof for the existence of electrostatic 

effect in AuNP catalyzed reduction of charged substrates.  

Specifically, we have studied the effect of electrostatics on catalysis via the control over surface 

potential (Ψ) and screening length (-1) around the NPs by varying the ligands and ionic strengths, 

respectively (Figure 2.4). The range up to which the electrostatic field will be experienced by the 

reactant molecules (in terms of -1) will vary as a function of ionic strength of the solution.41 We 

have estimated that the surface potential (both favourable and unfavourable) arising from charged 

AuNPs of both polarities can spread up to ~ 3 nm from the surface of ligands (-1 ~ 3 nm), in the 

presence of 10 mM BH4
- ions. The magnitude of the surface potential around [+] and [-] AuNPs 

decays exponentially away from the surface as reported previously.41 Now, the concentration of 

negatively charged reactant molecules (here BH4
-
 and phenolate anions) around the AuNP surface 

can be controlled by varying the surface potential, and this precisely forms the basis for our current 

work (Figure 2.4). The favourable electrostatic interaction between [+] AuNP and [-] reactant 

molecules helped in the channelling of the reactant molecules towards the NP surface (Figure 2.4). 

Consequently, the local concentration of the reactants increased around the ligand surface, which 

in turn enhances the reactant adsorption on NP surface. This resulted in the catalytic reduction of 

nitro arenes by [+] AuNP within 20 min, even when the catalyst concentration was as low as 0.1 

mol % (~ 25 pM). Interestingly, no measurable catalysis was observed when unfavorable 

conditions for reactant binding were created using [-] AuNP as the catalyst (even up to ~ 1.2 mol 

%). At least an order of higher concentration of [-] AuNP was required to compete with the 

catalytic activity of [+] AuNP. Similarly, the [+] AuNP outperformed other NP systems despite 

having comparable or even lower surface area for adsorption, proving the exclusivity of 

electrostatics in AuNP catalysis. The effects of favourable and unfavourable interactions were 

successfully extended to the catalytic reduction of ferricyanides, ascertaining the scope of 

electrostatic effects beyond organic reactant molecules. The assistance of electrostatics helped in 

lowering the use of AuNP catalysts to picomolar level. Thus, we were successful to utilize the 

surface ligands as “gatekeepers” in controlling the diffusion of the reactant molecules towards the 

NP surface through electrostatic interaction. 
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Figure 2.4. Electrostatically assisted channeling of reactants. a) Schematics of different AuNP 

systems under study with varying surface charges. b) The graph on the left shows the exponential 

decay of the surface potential around AuNPs of both polarities. Blue and red colors indicate 

positive and negative surface potentials arising from [+] and [-] AuNPs, respectively. The 

potentials of both polarities extend in the range of ~ 3.0 – 0.5 nm from the ligand surface, 

depending on the ionic strengths. The favorable interactions between [+] AuNP and [-] reactants 

assist in the channeling and adsorption of reactant molecules onto the NP surface (top right), which 

is responsible for the dominance of [+] AuNP over [-] AuNP (bottom right) in the catalytic 

reductions.   

 2.3. Experimental Details 

2.3.1. Materials and Reagents: 

Tetrachloroaurate trihydrate (HAuCl4.3H2O), tetramethylammonium hydroxide (TMAOH) 25 % 

wt. in water, 11-mercaptoundecanoic acid (MUA), hydrazine monohydrate (N2H4.H2O 50-60%), 

sodium citrate tribasic dihydrate, tetrabutylammonium borohydride (TBAB),  4-nitrophenol (PNP), 

4-nitroaniline (PNA), sodium borohydride (NaBH4), potassium ferricyanide, tannic acid, dodecane 

thiol (DDT) and 2-{2-[2-(2-mercaptoethoxy)ethoxy]ethoxy}ethanol (EG3SH) were purchased from 
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Sigma-Aldrich. (Di-n-dodecyl) dimethyl ammonium bromide (DDAB) and dodecylamine (DDA), 

were purchased from Alfa Aesar. All the reagents were used as received without any further 

purification. The positively charged N,N,N-trimethyl(11- mercaptoundecyl) ammonium ion (TMA) 

was synthesized according to the reported procedure.42 

2.3.2. Synthesis of [+], [-], EG3SH and [+/DDT] 1.5 AuNPs (Place Exchange Reaction):  

All the nanoparticles were synthesized following a place exchange reaction method. First, 

dodecylamine (DDA)-capped AuNPs in toluene were synthesized by following a modified reported 

procedure.30,43 HAuCl4.3H2O instead of AuCl3 was used as the gold precursor. Hydrazine 

monohydrate (N2H4.H2O) was used as the reducing agent. In a typical experiment, HAuCl4.3H2O 

(24 mg), DDA (222 mg), and DDAB (277 mg) were mixed together in toluene (7 mL) and sonicated 

for ~10 min for complete stabilization of Gold (III) ions. This was followed by a rapid injection of 

another toluene solution containing 58 mg of TBAB and 111 mg of DDAB. The resulting solution 

(seed solution) was left stirring overnight for ensuring the complete reduction of Gold (III). The 

seed particles were then grown to ~ 5 nm DDA-Au NPs. A growth solution was prepared by adding 

1 g of DDAB, 2.6 g of DDA, 224 mg of HAuCl4.3H2O and 10 mL of seed solution in 60 mL toluene. 

The growth solution was further reduced with a dropwise addition of another toluene solution 

containing 300 μL of N2H4.H2O and 2 g of DDAB. The solution was stirred overnight for complete 

growth of the particles yielding monodisperse 5.4 ± 0.7 nm of DDA-Au NPs. 20 mL of DDA-Au 

NPs were then purified by precipitating them in 50 mL methanol, yielding a black precipitate. The 

supernatant was carefully removed and the precipitate was then re-dispersed in 20 mL toluene. A 

ligand solution in 10 mL dichloromethane (DCM) was added. A ~ 40 fold molar excess of ligand 

was added during the place exchange (Figure 2.5). The solution was left overnight to ensure a 

complete ligand exchange. Next, the supernatant was decanted and the precipitate was washed with 

DCM (3 × 50 mL) and acetone (50 mL). The precipitate was then dried and redispersed in milliQ 

water. The [-] and EG3SH AuNPs were synthesized by adding MUA and EG3SH ligands during the 

place exchange reaction, respectively. A mixture of [+] and DDT ligands (in molar ratio 3:2) were 

used for synthesizing [+/DDT]1.5 AuNPs. All the AuNPs exhibited a surface plasmon band ~520 

nm confirming the similarity in size. The similarity in size is necessary to compare the sole effect 

of surface chemistry in the catalytic property of metal NPs.  
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Figure 2.5. Schematic illustration of place exchange of DDA capped AuNPs. DDA capped AuNPs 

were place exchanged with [+], [-], EG3SH and a mixture of [+] and DDT ligands to systematically 

vary the surface potential of AuNP catalysts. 

2.3.3. Synthesis of Citrate Stabilized AuNPs: 

Citrate stabilized AuNPs were synthesized following a reported procedure (Figure 2.6).44 Briefly, 

150 mL of freshly prepared sodium citrate solution (2.2 mM) was mixed with 0.1 mL of tannic 

acid solution (2.5 mM), and the pH of the solution was adjusted to ~ 10 by adding 1 mL of 

potassium carbonate (150 mM). The resulting solution was then heated to ~ 70 °C with vigorous 

stirring. When the temperature reached at ~ 70 °C, a rapid injection of 1 mL HAuCl4.3H2O (25 

mM) was performed. The color of the solution instantly transformed from black-gray to orange-

red indicating the formation of seed particles. The solution was kept at ~ 70 °C for 10 min to ensure 
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a complete reduction. The seed solution was then diluted by removing 55 mL of solution and the 

same amount of freshly prepared sodium citrate solution (2.2 mM) was added, followed by heating 

again at ~ 70 °C. Next, two subsequent additions of 0.5 mL of HAuCl4.3H2O (25 mM) were 

performed with a time interval of 10 min. This procedure was repeated until a surface plasmon 

band at ~ 520 nm was achieved. 

 

Figure 2.6. Schematic illustration for the synthesis of citrate stabilized AuNP. 

 2.3.4. Transmission Electron Microscopy (TEM) Studies: 

A drop of AuNP solution was drop casted on 400 mesh carbon coated copper grid (Tedpella Inc.) 

and dried under vacuum. The High-Resolution Transmission Electron Microscopic (HRTEM) 

imaging was performed on TECNAI G2 20 TWIN at 200 kV. 

2.3.5. Zeta Potential studies:  

The zeta potential (ζ) of charged AuNPs were measured in milliQ water (pH ~ 7) on Nano ZS90 

(Malvern) Zetasizer instrument. The optical density of the nanoparticle solution was maintained 

~0.2 during all the measurements. The error was calculated from three different experiments. ζ was 

determined by measuring the electrophoretic mobility and using Henry’s equation. 

UE =
2𝜀𝜁𝑓(𝑘𝑎)

3𝜂
 

UE: Electrophoretic mobility 

 ζ: Zeta potential 

 ε : Dielectric constant 

 η : Viscosity 

 ƒ(Ka): Henry’s Function 
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2.3.6. Thermo Gravimetric Analysis (TGA): 

Thermogravimetry analysis was carried out on NETSZCH TGA-DSC system. The TGAs were 

done under N2 gas flow (20 mL/min) (purge + protective), and samples were heated from RT to 

600 °C at 2 K/min.   

2.3.7. ICP-MS Analysis:  

AuNP samples ([+] and [-]) were digested by adding 1 mL of aqua regia (3:1 v/v HCl: HNO3) 

followed by gentle heating at ~ 45 0C. The amounts of Au and S in the digested samples were 

quantified using ICP-MS analysis performed on ELEMENT XR™ ICP-MS (Thermo Scientific) 

instrument. 

2.3.8. Catalytic Reduction: 

All the reduction kinetics was performed in a 3 mL quartz cell using SHIMADZU UV-3600 plus 

UV-Vis-NIR spectrophotometer. In a typical absorption experiment, AuNP solution, reactant, and 

NaBH4 were mixed in a 3 mL quartz cell, and the absorption spectra were collected with a 2 min 

time interval. The time dependent kinetic experiments were performed by monitoring the 

absorbance of the reactant at its λmax with time. Temperature dependent kinetic measurements were 

performed with a temperature controller equipped with the UV-Vis-NIR spectrophotometer. All the 

catalysis experiments were performed under ambient conditions, unless specifically mentioned. 

2.3.9. 4-Nitrophenol (PNP) Reduction:  

Reduction of 4-nitrophenol (PNP) was performed by adding 60 μL of PNP (5 mM), 300 μL of 

NaBH4 (0.1 M), 15 μL of AuNP solution (10 nM) and 2.625 mL of milliQ water in a 3 mL quartz 

cell. Absorbance at 400 nm was monitored for the time dependent absorption measurements. All 

the AuNP concentrations are expressed in terms of nanoparticles by using 5.4 x 107 M-1cm-1 as the 

extinction coefficient.45 However, the mol % is expressed in terms of Au atoms. 

2.3.10. 4-Nitroaniline (PNA) Reduction:   

Reduction of 4-nitroaniline was performed by adding 60 μL of PNA (5 mM), 300 μL of NaBH4 

(0.1 M), 10 μL of AuNP solution (10 nM) and 2.63 mL of milliQ water in a 3 mL quartz cell. 

Absorbance at 410 nm was monitored for time dependent absorption measurement. All the AuNP 

concentrations are expressed in terms of nanoparticles by using 5.4 x 107 M-1cm-1 as the extinction 

coefficient.45 However, the mol % is expressed in terms of Au atoms.  
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2.3.11. Potassium Ferricyanide K3[Fe(CN)6] Reduction: 

Reduction of ferricyanide was performed by adding 60 μL of [Fe(CN)6]
3- (5 mM), 30 μL of NaBH4 

(0.1 M), 15 μL of  AuNP solution (10 nM) and 2.895 mL of milliQ water in a 3 mL quartz cell. The 

time dependent kinetic measurements were performed by monitoring the absorbance at 420 nm. 

The NaBH4 concentration was 10 times higher than that of the substrate. The BH4
-
 ions were able 

to partially reduce ferricyanides by itself; however a complete reduction was only observed in the 

presence of [+] AuNP catalyst. All the AuNP concentrations are expressed in terms of nanoparticles 

by using 5.4 x 107 M-1cm-1 as the extinction coefficient.45 However, the mol % is expressed in terms 

of Au atoms. 

2.3.12. Product Characterization: 

The products were thoroughly characterized by HRMS,  GC-MS and 1H NMR techniques. After a 

complete reduction, the reaction mixture was first passed through a celite column to separate AuNPs 

and excess NaBH4, followed by extraction with ethyl acetate. Finally, the product was dried with 

Na2SO4 and the solvent was evaporated yielding solid product. The NMR spectra were collected in 

deuterated DMSO (JEOL 400 MHz) and the GC-MS spectra were obtained using GC 2014, 

Shimadzu instrument.  

2.3.13. Calculation of Screening Length: 

Here, the concentrations of counter ions and residual base are considered to be negligible in   

comparison to the amount of NaBH4 (10 mM) used in the reaction. The variation of electric 

potential (ψ) from the outer Helmholtz plane around a particle in such an environment is well 

approximated by the Poisson equation as given below.41,46 

 ∇2𝜓 =  −
𝜌

𝜀0𝜀
 (2.1) 

where,  is the charge density outside the particle (in C/m3),  is the dielectric constant of the 

medium (80 for water) and 
0
 is the permittivity of the free space. 

The charge density outside the particle, which follows Boltzmann distribution, is given as27,41 

 
𝜌 =  ∑ 𝑧𝑖𝑒

𝑖

𝑛𝑖
∞𝑒𝑥𝑝 (−

𝑧𝑖𝑒𝜓

𝑘𝑏𝑇
) (1.2) 
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where, zi is the valency of the ith ion, e is the electron charge and ni
∞ is the number of ions of type 

i per unit volume in the bulk solution. zi eψ is the work done in bringing the ith ion from infinity 

to the point where the potential is ψ. kb is Boltzmann’s constant and T is the temperature (in K).  

Substituting (2.2) in (2.1), we get, 

 
∇2𝜓 =  −

𝑒

𝜀0𝜀
∑ 𝑧𝑖𝑒

𝑖

𝑛𝑖
∞𝑒𝑥𝑝 (−

𝑧𝑖𝑒𝜓

𝑘𝑏𝑇
)   (2.3) 

On simplification, (2.3) can be re-written as,27,44  

 
∇2𝜓 =  

𝑁𝑎𝑒2

𝜀0𝜀𝑘𝑏𝑇
∑ 𝑧𝑖

2

𝑖

𝑐𝑖
∞𝜓   (2.4) 

Here, ci
∞ is the concentration of ions of type i (in mol./m3), Na is Avogadro’s number.  

The Debye-Hückel parameter (κ) is defined as46,47 

 
κ2 =  

𝑁𝑎𝑒2

𝜀0𝜀𝑘𝑏𝑇
∑ 𝑧𝑖

2𝑐𝑖
∞

𝑖

 
             

(2.5) 

The Debye-Hückel parameter has the units of m-1 and can be used to get the value of Debye length 

(screening lengths, κ -1) from the following equation27,41,46 

 

κ−1 =  [
𝑁𝑎𝑒2

𝜀0𝜀𝑘𝑏𝑇
∑ 𝑧𝑖

2𝑐𝑖
∞

𝑖

]

−1/2

  (2.2) 

Using equation (2.6), the screening lengths for the reactions at different ionic strengths have been 

estimated and sumarized in the table below. 

 Table 2.1. Variation of screening length with ionic strength of the reaction medium.  

a 
The equation (6) which results from Debye-Hückel theory is not applicable at high ionic strengths (where 

Debye length becomes comparable to molecular dimensions); however it qualitatively shows that the Debye 

length (screening length)  is vanishingly small.45 

2.3.14. Calculation of Surface Potential:   

The surface charge density can be calculated from the zeta potential and the screening lengths 

using the following equation48 

 

 

Reaction in 

Water 

Reaction in 1X 

PBS 

Reaction in 2X 

PBSa 

Screening length ( κ-1) 3.04 nm 0.71 nm 0.51 nma 
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𝜌 =  

𝜀0𝜀𝜁(1 + 𝜅𝑟)

𝑟
 (2.7) 

Using the above equation, the surface charge density of nanoparticles with different surface 

chemistries in water was estimated and summarized in the table below 

Table 2.2. Variation of surface charge density with zeta potential.  

 

 

 

 

                                       

 

 

2.3.15. Determination of mol % of Au atoms in AuNP Catalyst: 

The average no. of gold atoms in each nanoparticle sphere can be calculated as per previously 

reported equation47 

N = 30.89602 × D3 

where ‘N’ is the average number of gold atoms per nanoparticle and ‘D’ is the average diameter 

of the particles. 

The average diameter of the particles is 5.4 ± 0.7 nm as calculated from TEM analysis. So the 

average number of gold atoms per nanoparticle is estimated to be 

N = 30.89602 × (5.4)3 

= 4865 

The concentration of AuNP used in the catalytic experiment is 50 pM (in terms of gold 

nanoparticle). So the concentration in terms of gold atoms will be 

50 × 4865 = 243250 pM (in terms of gold atoms) 

Thus, the mol % of Au atoms for 50 pM AuNP will be 0.2. 

  

 Zeta potential (mV) Surface charge density (C/m2) 

[+] AuNP 23.7 0.0117 

[+/DDT]1.5 AuNP 12.3 0.00609 

Neutral EG3SH 

AuNP 

-1.26 -0.000624 

[-] AuNP -22 -0.0109 

Citrate AuNP -37 -0.0183 
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2.3.16. Estimation of Ligand Packing Density or Surface Coverage on [+] and [-] 

AuNPs: 

Thermo Gravimetric Analysis (TGA): 

The packing density was calculated using the following formula as reported previously18 

SCnm2 = mNP × wl ×NAV / wNP × MWl × SANP 

Where ‘mNP’ is the mass of each nanoparticle (1.59×10-18, as the average size of the particles is 5.4 

nm). ‘wl’ is the weight fraction of the [+] and [-] ligands, which is ~ 12 % and ~ 9 % respectively, 

as calculated from the TGA experiment. ‘wNP’ is the weight fraction of nanoparticle which is ~ 88 

% and ~ 91 % for [+] and [-] AuNPs, respectively. The surface area (SANP) of individual 

nanoparticle is 91.60 nm2 by assuming each nanoparticle as a solid sphere with radius (r = 2.7 nm). 

Thus, the nominal packing density estimated was 5.05 and 4.73 molecule/nm2 for [+] and [-] 

ligands on nanoparticle surface, respectively. 

ICP-MS: 

The amount of Au and S measured from ICP-MS analysis is mentioned below. 

Sample 
Au 

(ppm) 
S 

(ppm) 

[+] Au NP 240.4 4.1 

[-] Au NP 510.7 8.4 

 

The surface coverage (ligand/nm2) for individual nanoparticle was calculated by the following 

formula. 

       SCnm2 = total no. of ligands per nanoparticle / surface area of each nanoparticle 

Total number of ligands per nanoparticle calculated from the ICP-MS data is 518 and 497 for [+] 

and [-] AuNPs, respectively. The surface area (SANP) of individual nanoparticle is 91.60 nm2 by 

assuming each nanoparticle as a solid sphere with radius (r = 2.7 nm). So the surface coverage for 

individual nanoparticle will be 5.6 and 5.4 molecule/nm2 for [+] and [-] AuNPs, respectively. 
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2.4. Results and Discussion 

2.4.1. Design and Characterization of AuNP Catalysts: 

AuNPs with varying surface charges were used as catalysts for the reduction of PNP by BH4
-
, to 

demonstrate the role of electrostatics in NP catalysis. Accordingly, N,N,N-trimethyl(11-

mercaptoundecyl)ammonium chloride (TMA, [+]) and 11-mercaptoundecanoic acid (MUA, [−]) 

ligands were functionalized to render positive and negative surface potentials around AuNPs, 

respectively (Figure 2.7 a,b. Details on the synthesis are provided in the Experimental Section 

2.3.2).30,42 Further fine tuning in the surface potential was achieved by diluting the [+] surface 

potential with dodecanethiol (DDT) ligands or decorating the surface with a neutral 2-{2-[2-(2-

mercaptoethoxy)ethoxy]ethoxy}ethanol (EG3SH) ligand (Figure 2.7 a,b). A decrease in the 

positive zeta potential from +24.2 ± 1 mV to +12 ± 1.2 mV was observed upon dilution of [+] 

ligands with ~ 40 % of DDT ligands, which further decreased to -2.0 ± 0.5 mV with the 

functionalization of neutral EG3SH ligands (Figure 2.7 a,b). To compare the effect of surface area, 

citrate functionalized AuNPs were also synthesized. Spectroscopic (UV-Vis absorption) and 

Microscopy (Transmission Electron Microscopy, TEM) studies confirm negligible changes in the 

stability and average size of AuNP upon various surface functionalization (Figure 2.7 c-e). Thus, 

similar sized AuNPs (5.4 ± 0.7 nm from TEM) with varying surface potentials were successfully 

prepared, which is crucial for comparing their catalytic performances. 
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Figure 2.7. Spectroscopic, microscopic and surface characterization of AuNPs. a) Typical zeta 

potential plots for different sets of AuNPs with varying ligands. b) A bar diagram showing the 

variation of zeta potential as a function of ligands on the surface of AuNPs. The error bars 

correspond to standard deviations based on three different sets of experiment. c) UV-Vis 

absorption showing negligible changes in the stability and average size of AuNPs upon various 

surface functionalization. e) A representative TEM image of [+] AuNPs with e) their size 

distribution histogram (from ~ 300 NPs). 

 

2.4.2. Reduction of Nitrophenol (PNP) to Aminophenol with Different AuNP 

Catalysts: 

The reduction of PNP with BH4
-
 was selected as a model reaction to establish the decisive role of 

electrostatics in AuNP catalysis. No noticeable reduction of PNP (100 M) by BH4
-
 (10 mM) in 

the absence of catalyst (Figure 2.8 a) confirms the necessity of NPs in driving the reaction. AuNPs 

provide its surface for the adsorption of both the reactant molecules, and thus overcoming the 

kinetic barrier of the reaction. A rapid reduction of PNP by BH4
-
 was observed within ~ 20 min 

when 0.2 mol% of [+] AuNP (50 pM) was used as the catalyst (Figure 2.8 a). The reduction 

process was accompanied by a decrease in the absorption of 4-nitrophenolate ion with a 

concomitant formation of a new band around ~ 300 nm (Figure 2.8 b). The presence of two 

isosbestic points around ~ 320 and ~ 280 nm confirm the formation of only one product, namely 

4-amino phenol,10 which was well characterized using various analytical techniques (Figures 2.18, 

2.19 in the Appendix). The absence of a plasmon band around ~ 20 nm signifies the low amount 

of AuNP in catalytic reduction, which will boost its role in industrial applications. Interestingly, 

no appreciable catalytic reduction by BH4
- was observed up to 2 days in the presence of 0.2 mol 

% of [-] AuNP (Figures 2.8 a). The initial results clearly indicated that the favourable and 

unfavourable interactions arising from the electrostatics between the reactant molecules and 

catalysts were crucial, which demands for a detailed investigation. Accordingly, time-dependent 

absorption experiments were performed to study the progress of PNP reduction. An induction time 

of 0.7 - 1.5 min with a rate constant of 0.27 min-1 was observed for the PNP reduction in the 

presence 0.2 mol% [+] AuNPs, which improved upon increasing the mol % of [+] AuNP catalyst 

(Figure 2.8 c,d). For instance, the induction time was lowered from 1.3 min to 0.4 min, and the 

rate constant increased from 0.27 min-1 to 0.71 min-1 as the [+] AuNP concentration was increased 

from 0.2 mol % to 1 mol%, respectively (Figure 2.8 c,d). On the other hand, even 1 mol % of  
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Figure 2.8. AuNP catalyzed PNP reduction. a) A complete dampening of PNP absorption peak at 

~ 400 nm was observed in the presence of 10 mM BH4
-
 and 0.2 mol% [+] AuNP. No appreciable 

spectral changes were observed up to ~ 2 days in the presence of BH4
-
alone or BH4

-
and 0.2 mol % 

[-] AuNP. b) A gradual decrease in the 4-nitrophenolate absorption with a concomitant formation 

of a new band ~ 300 nm was observed in the presence of 0.2 mol% [+] AuNP. c) Progress of PNP 

reduction, and d) corresponding linearized data for the first order analysis by tracking the 

absorption changes of PNP peak at ~ 400 nm in the presence of varying concentrations of AuNPs.  

[-] AuNP failed to catalyze the PNP reduction for up to 8 h (Figure 2.9 a). Appreciable catalysis 

with [-] AuNP was observed only when the concentration was increased to 1.2 mol % (with an 

induction time ~ 30 min and rate constant = 0.1 min-1; Figure 2.9 b,c). At least an order of 

magnitude higher concentration of [-] AuNP was required to compete with catalytic performance 

of [+] AuNP. For e.g., an induction time of ~ 4 min was observed in the presence of 12 mol% of 

[-] AuNP (3 nM), whereas the reaction was spontaneous even with 1.2 mol % of [+] AuNP (300 

pM; Figure 2.9 b-d). 
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Figure 2.9. Catalytic reduction of PNP with varying concentrations of [-] AuNPs. a) Progress of 

PNP reduction by tracking the absorption changes of PNP peak at 400 nm with time in the presence 

of 1 mol % (250 pM) of [+] and [-] AuNPs. b) Progress of PNP reduction, and c) corresponding 

linearized data for first order analysis by tracking the absorption changes of PNP peak at 400 nm 

with time in the presence of varying concentration of [-] AuNPs. d) The comparison of catalytic 

performance between [+] and [-] AuNPs at 2.6 mol % (650 pM) of AuNPs. 

2.4.3. Validation of Langmuir-Hinshelwood Mechanism:  

Motivated with the result, our next objective was to understand the mechanism of the reaction. As 

mentioned in the introduction section, the reduction of p-nitrophenol with borohydride can proceed 

either through the Langmuir-Hinshelwood (LH) mechanism10-14 or through the Eley-Rideal (ER) 

mechanism.15 According to the Langmuir-Hinshelwood mechanism, nitrophenol and the hydride 

ion derived from the borohydride adsorbed on the surface of NPs. This step is rapid, reversible and 

can be described in terms of Langmuir Isotherm.13 Next, the reduction of PNP to 4-amino phenol 

takes place on the surface of NP through the transfer of electrons between the surface adsorbed 

hydride ions and PNP. This is followed by desorption of 4-amino phenol, which generates a vacant 

active site on the NP surface and the next cycle of reduction will start. Ballauff and co-workers 
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have demonstrated that a conclusive proof of Langmuir-Hinshelwood mechanism can be obtained 

by performing catalytic reductions as a function of PNP concentration.13 There should be a 

decrease in the catalytic activity with increase in the concentration of PNP. This is because, as per 

the Langmuir-Hinshelwood mechanism both the reactants have to be adsorbed on the surface of 

NPs. At a higher PNP concentration most of the active sites on the NP surface will be occupied by 

PNP, since it has a higher adsorption constant than BH4
-
. As a result, the reaction between NP and 

BH4
- 
will slow down, which will ultimately lower the catalytic activity.

 
These reactant dependent 

catalytic studies have been well accepted as the model experiments to prove that the reaction 

kinetic for AuNP catalyzed reduction of PNP follows the Langmuir-Hinshelwood mechanism.10-

14 We too followed similar experiments as reported by Ballauff and co-workers to elucidate the 

Langmuir-Hinshelwood mechanism in our system. In our experiments too, a decrease in the 

catalytic activity of [+] AuNP (with lower rate constant and higher induction time) was observed 

with an increase in the PNP concentration (Figure 2.10 a,b). Furthermore, a nonlinear correlation 

of rate constants as a function of PNP concentration as depicted from the Langmuir-Hinshelwood 

model, again confirms that, the PNP reduction by AuNPs follows the Langmuir-Hinshelwood 

mechanism (Figure 2.10 c).  
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Figure 2.10. Validation of Langmuir-Hinshelwood mechanism for the reaction kinetics of PNP 

reduction with [+] AuNP. a) Variation in the kinetic traces for the PNP reduction by 10 mM BH4
-

in the presence of 0.2 mol% of [+] AuNP as a function of PNP concentration. b) The corresponding 

linearized data for the first order analysis assuming that the reduction follows a Langmuir–

Hinshelwood mechanism. A decrease in the rate constant was obtained upon increasing the PNP 

concertation. c) Correlation of rate constant as a function of PNP concentration.  

The plot of rate constant vs PNP concertation was fitted with the following Langmuir-

Hinshelwood model.13 A perfect fit again confirms that the AuNP catalysed reduction of PNP is 

following the Langmuir–Hinshelwood mechanism. 

 

 
 

where k is molar rate constant per sq. meter. S is surface area. K BH4
- and KPNP are the adsorption 

coefficient of borohydride and p-nitrophenol, respectively. C BH4
- and CPNP are the concentration 

of borohydride and p-nitrophenol, respectively. N and m are the Freundlich constants.  

2.4.4. Effect of Surface Area: 

Our next idea was to overrule the effect of surface area. Since the reduction of nitrophenol 

predominantly depends on the adsorption of the reactant molecules on the surface of NPs, the 

surface area can be a prudent factor behind the dominance of [+] AuNP. To overrule the effect of 

surface area, we first estimated the ligand packing density for both the NP systems based on two 

independent techniques, namely Thermo Gravimetric Analysis (TGA; Figure 2.11 a,b) and 

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). As shown in Figure 2.11 c, both 

these experiments confirmed similar ligand packing density on [+] and [-] AuNPs (Detailed 

calculation for ligand packing density is provided in Experimental Section 2.3.16). Next we 

compared the catalytic activity of [+] AuNPs to that of citrate stabilized AuNPs of similar size. 

Remarkably, the catalysis by [+] AuNP was superior to even citrate stabilized Au NP (Figure 2.12 

a,b). The latter being often considered as a benchmark catalyst as it provides ~100 % of its surface 

for catalysis.18 Thus, the [+] AuNP exhibited the highest catalytic activity among other NP systems 

despite having comparable or even lower surface area available for adsorption, confirming the 

exclusivity of electrostatics in the present studies. 
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Figure 2.11. TGA curves of a) positively and b) negatively charged ligands and AuNPs. c) Table 

summarizing the estimation of surface coverage for both [+] and [-] AuNPs using two independent 

experiments.  

 

Figure 2.12. Comparison of catalytic activity of [+] and citrate stabilized AuNPs. a) The progress 

of PNP reduction by tracking the absorption changes of PNP peak at 400 nm with time in water 

by BH4
-
 in the presence of 0.2 mol % [+], [-] and citrate stabilized AuNPs. b) The corresponding 

linearized data for the first order analysis assuming that the reduction follows a Langmuir–

Hinshelwood mechanism. 
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2.4.5. Effect of Dissolved Oxygen: 

The reduction of nitrophenol with borohydride in presence of metal NP is always associated with 

a typical time delay which is commonly known as induction time. Various hypotheses have been 

suggested to explain the reason behind the appearance of an induction time. Recently, Neretina 

and co-workers have demonstrated that the dissolved oxygen play a crucial role in the appearance 

of the induction time.49 As per the study, the dissolved oxygen in the solution can initiate the 

oxidation of aminophenol back to nitrophenol and can inhibit the forward reaction (appearance of 

induction time). Thus the effect of dissolved oxygen should be taken into account before 

confirming the effect of electrostatics in dictating the catalytic property of AuNPs.  Accordingly, 

detailed catalytic studies were performed by removing oxygen from the reaction medium to 

validate the effect of electrostatics under different experimental conditions. This was achieved by 

purging the reactant solution and NP catalysts separately with argon, followed by monitoring the 

reduction under argon atmosphere as reported previously.49 The catalysis with 50 pM [+] AuNPs 

proceeded without any induction time under inert condition (Figure 2.13 a,b),  

 

Figure 2.13. AuNP catalyzed reduction of PNP in the absence of oxygen (by purging the reactant 

solution and NP catalysts separately with argon for 15 min, and then monitoring the catalysis under 

argon atmosphere). Kinetic traces for the reduction of 100 M PNP by 10 mM BH4
-
in the presence 
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of a) 0.2 mol % and c) 1.2 mol % of AuNPs of both polarities. The corresponding linearized data 

for the first order analysis assuming that the reduction follows a Langmuir–Hinshelwood 

mechanism is shown in b) and d).  

as reported for BH4
- stabilized AuNPs. Interestingly, no noticeable reduction of PNP was observed 

for even up to ~1 day when 50 pM [-] AuNP was used as the catalyst, under the same conditions 

(Figure 2.13 a,b). A clear dominance of [+] AuNP over [-] AuNP was even observed for higher 

catalyst concentrations (300 pM, 1.2 mol%), where NPs of both polarities are capable of catalyzing 

the PNP reduction (Figure 2.13 c,d). Thus, the effect of electrostatics on AuNP catalyzed 

reduction of PNP is consistently observed both in the presence and absence of dissolved oxygen. 

Consequently, all the further experiments were performed under ambient conditions that are most 

likely to be followed for practical applications. 

2.4.6. Interaction Driven Catalysis: 

The presence of charges on AuNP as well as on the reactant molecules (phenolate ion and BH4
-
) 

point towards the involvement of electrostatic forces in dictating the NP-reactant interactions, and 

hence their catalytic performances. To ascertain this, a series of catalytic experiments were 

performed by systematically varying the electrostatic potential around AuNPs through precise 

ligand functionalization. Our hypothesis is based on the favourable interactions arising from the 

electrostatic attraction between [+] AuNP and [-] reactant molecules. A reduction in this 

favourable interaction, in principle, should lower the catalytic efficiency of [+] AuNPs. 

Accordingly, the favourable interactions were lowered by diluting the [+] charges on AuNPs with 

neutral ligands (Figures 2.14 and 2.7 a,b). In one instance, the dilution was achieved by 

introducing dodecanethiol (DDT) onto the NP surface. This resulted in the formation of [+/DDT]1.5 

AuNP having ~ 70 % TMA and ~ 30 % DDT ligands on AuNPs (as calculated from previous NMR 

studies).30,50 The decrease in the zeta potential of [+/DDT]1.5 AuNP to +12.3 ± 1.2 mV confirmed 

the reduction in the magnitude of surface potential (Figure 2.7 a,b). The induction time was 

increased to ~ 4 min and the rate constant was lowered to 0.16 min-1, when [DDT/+]1.5 AuNP was 

used as the catalyst (Figure 2.14 a,b). Similarly, the use of neutral EG3SH functionalized AuNP 

as the catalyst further decreased the favourable interactions (= -2 mV ± 0.5 mV; Figure 2.7 a,b). 

This was evident from the increase in the induction time to ~18 min and lowering of rate constant 

to 0.10 min-1 (Figure 2.14 a,b). Secondly, we decreased the favourable interactions through 

screening of the charges on [+] AuNP surface by performing the reaction in high ionic 
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concentrations (like Phosphate Buffered Saline, PBS). An increase of induction time from ~ 0.7 

min to ~ 3 min, and lowering of rate constants from 0.25 min-1 to 0.14 min-1 was observed when 

the reaction medium was changed from water to 1X PBS (Figure 2.14 c,d). The favourable 

interactions declined further when the salt concentration was increased by changing the reaction 

medium to 2X PBS, and no noticeable catalysis was observed for ~ 2 days (Figure 2.14 c,d).  

 

Figure 2.14. Proof for electrostatic effects in AuNP catalyzed PNP reduction. a) Progress of PNP 

reduction by 10 mM BH4
-
 in presence of 0.2 mol % [+] (blue), [+/DDT]1.5 (red) and neutral EG3SH 

(green) AuNPs in water. b) The corresponding linearized data for the first order analysis assuming 

that the reduction follows the Langmuir–Hinshelwood mechanism. c) Kinetic traces for PNP 

reduction by 10 mM BH4
-
 in presence of 0.2 mol % of [+] AuNP in a) water (blue), 1X PBS (green) 

and 2X PBS (black) reaction medium. d) The corresponding linearized data for the first order 

analysis assuming that the reduction follows the Langmuir–Hinshelwood mechanism. 

The effect of ions on the screening of charges was supported by screening length calculations. The 

screening length decreased from ~ 3.0 nm to ~ 0.7 nm, and further to ~ 0.5 nm as the medium was 
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changed from water to 1X PBS to 2X PBS (correlation of ionic strength and screening length with 

reaction kinetics is given in Table 2.3). The ionic strength of solution is expected to change the 

outcome of the reaction due to its strong influence on the electrostatic potential arising from the 

NP surface (both favourable and unfavourable). For instance, an increase in the ionic strength 

lowers the magnitude as well as the extent of the electrostatic field arising from charged NP 

surfaces. This reduced charge density affects the reaction kinetics as summarized in Table 2.3 

(Detailed calculation for screening length and surface potential is provided in Experimental 

Section 2.3.13 and 2.3.14 respectively). Specifically, the catalytic activity of [+] AuNP for PNP 

reduction decreased as the ionic strength of the medium was increased. 

Catalyst 

(0.2 

mol%) 

Zeta 

potential 

(mV) 

Reaction 

medium 

Ionic 

strength 

(mM) a   

 

Range of 

electrostatic 

fieldb 

Rate 

constant  

(min-1) 

Induction 

time 

(min) 

[+] Au 

NP 

+ 24.2± 

0.1 

DI H2O 10 3.04 nm ~ 0.27 0.7-1.5 

1X PBS 181.5 0.71 nm ~ 0.14 ~ 3.0 

2X PBS 353 0.51 nm No 

catalysis 

No 

catalysis 

 

Table 2.3: Correlation between surface potential and ionic strengths with reaction kinetics for the 

reduction of 100 M PNP by 10 mM BH4
-
 in the presence of 0.2 mol % of [+] AuNP, under 

ambient conditions.    

 
a Estimated using the equation 
b Calculated from equation (2.6). 

 

2.4.7. Temperature Dependent Catalytic Study: 

Next, we performed a detailed temperature dependent catalytic study to further prove the 

exclusivity of the electrostatics in dictating the catalytic property AuNPs. Temperature dependent 

catalytic studies too proved the dominance of [+] AuNP over [+/DDT]1.5 and [-] AuNPs in the 

PNP reduction (Figure 2.15 a-d ). Interestingly, 0.2 mol % of [-] AuNP was unable to catalyze 

the reduction even at 45 oC. The raw spectra for the temperature dependent analysis are provided 

in the Appendix of this Chapter. Further, we investigated the effect of electrostatics in the 

activation energy of the reaction. For this, 300 pM (1.2 mol %) of AuNPs were used, since [-] 

AuNP failed to catalyze the reaction for ~ 8 h below this concentration. The distinction in the rate  
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Figure 2.15. Temperature dependent catalytic reduction of PNP by different sets of AuNPs. The 

progress of PNP reduction by tracking the absorption changes of PNP peak at 400 nm in the 

presence of 0.2 mol %  of [+], [-], and [+/DDT]1.5 AuNPs at a) 25 0C, b) 35 0C, c) 45 0C. d) Plot 

showing the variation in the rate constant of PNP reduction by 10 mM BH4
-
in the presence of 

different AuNP catalysts at different temperatures. 

constant and induction time was maintained between [+] and [-] AuNPs even at 1.2 mol % and at 

higher temperatures (Figure 2.16 a-c). The apparent activation energy for PNP reduction was 

lower in the presence of [+] AuNP compared to [-] AuNP (Ea[+]AuNP
 ~ 30 kJ/mol and Ea[-] AuNP

 ~ 

45 kJ/mol). The raw spectra for the activation energy calculation are provided in the Appendix of 

this Chapter. 
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Figure 2.16. Temperature dependent catalytic reduction of PNP by 1.2 mol % of [+] and [-] 

AuNPs. The progress of PNP reduction by tracking the absorption changes of PNP peak at 400 nm 

in the presence of 1.2 mol %  of a) [+] and b) [-] AuNPs. c) Plot of lnk vs 1/T for the PNP reduction 

by 10 mM BH4
-
 in the presence of 1.2 mol % of [+] and [-] AuNPs. 

2.4.8. Generality of Hypothesis: 

Next we discuss about the generality of our hypothesis in other molecular systems. The catalytic 

dominance of [+] AuNP over [-] AuNP was clearly observed in the reduction of 4-nitro aniline 

(PNA) by BH4
-
. The PNA reduction was completed within ~ 20 min in the presence of ~ 0.1 mol% 

[+] AuNP, with an induction time of ~ 4 min and rate constant of 0.25 min-1 (Figure 2.17 a,b). On 

the other hand, [-] AuNP failed to catalyze the PNA reduction even up to ~ 2 days. A similar trend 

was observed in the reduction of ferricyanides by BH4
-
 in the presence of AuNPs (Figure 2.17 

c,d). Here too, the effect of favorable interaction between [+] AuNP and [-] reactants ([Fe (CN)6
3-

] complex and BH4
- 
) was evident. A complete reduction of ferricyanide absorption at ~ 420 nm 

was observed in presence of 0.2 mol % AuNP within 5 min, confirming the reduction of Fe(III) to 

Fe(II) complex46 (rate constant of 0.59 min-1). However, the reduction of Fe(III) was not complete 
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by BH4
-
 even up to ~ 12 h using 0.2 mol% of [-] AuNP (Figure 2.17 d). Thus, the last example 

expands the scope of electrostatics in the catalytic reduction of inorganic complexes as well. 

 

Figure 2.17. Role of electrostatics in AuNP catalyzed reduction of PNA and ferricyanides. a) A 

complete reduction of PNA absorption peak at ~ 420 nm was observed in the presence of 10 mM 

BH4
-
 and 0.1 mol% [+] AuNP. No appreciable spectral changes were observed up to 2 days when 

0.1 mol% [-] AuNP was used as the catalyst. b) Kinetic traces for PNA reduction in presence of 

0.1 mol% [+] and [-] AuNPs. Inset show the corresponding linearized data for the first order 

analysis. c) Spectral changes confirming the reduction of ferricyanides by 10 mM BH4
-
 in presence 

of 0.2 mol % [+] AuNP. d) Kinetic traces of absorbance at 420 nm during the reduction of 

ferricyanide using 0.2 mol% [+] and [-] AuNPs. The inset shows the linearized data for the first 

order analysis for ferricyanide reduction by [+] AuNPs. 
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2.5. Conclusion 

In summary, the effects of electrostatics in terms of both attractive (favorable) and repulsive 

(unfavorable) interactions on AuNP catalyzed reduction of charged reactants was successfully 

demonstrated. The interactions between the reactants and AuNP surface was made favorable or 

unfavorable by fine tuning the NP surface potential. An electrostatically assisted channeling of 

substrates due to the attraction between oppositely charged substrates and AuNP surface was 

responsible for the dominance of [+] AuNP over other NP systems. A series of experiments with 

AuNPs having varying surface charges confirmed the exclusivity of electrostatics in catalytic 

reductions. The potency of electrostatics was established in [+] AuNP despite having a lower or 

comparable surface area for catalysis. The assistance of electrostatics helped in lowering the use 

of AuNP catalyst to picomolar level, which can boost its use in industrial applications. The concept 

of electrostatic effects was extended towards the catalytic reduction of ferricyanides, validating 

our hypothesis beyond organic substrates.  

A plausible future direction could be to extend this idea of interaction in the area of plasmonic 

photocatalysis. The photocatalytic activity of metal NPs predominantly depends on the rate of hot 

electron/hole transfer (within ~10-100 fs), which oftentimes is hindered by the insulating nature 

of the surface ligands. The idea of precise NP-reactant interaction, through judicious surface 

chemistry, could be an effective strategy to circumvent the “ligand poisoning” effect in metal NP 

photocatalysis. The next Chapter focuses on this particular aspect and investigates the role of 

precise NP-reactant interaction in dictating the photocatalytic activity of metal NPs.   
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2.7. Appendix 

 

Figure 2.18. GC-MS spectra of p-aminophenol that was produced by the catalytic reduction of PNP 

by 0.2 mol % [+] AuNPs. 

 

 

Figure 2.19. 1H NMR spectra of p-aminophenol that was produced by the catalytic reduction of 

PNP by 0.2 mol % [+] AuNPs.  

 



 Chapter 2                                                                                                       Electrostatics in Nanocatalysis 

65 
 

 

Figure 2.20. Temperature dependent catalytic reduction of PNP by different sets of AuNPs. 

Linearized data for first order analysis obtained by tracking the absorption changes of PNP peak 

at 400 nm with time in the presence of 0.2 mol %  of [+], [-], and [+/DDT]1.5 Au NPs at a) 15 0C,  

b) 25 0C, (c) 35 0C, and d) 45 0C. 
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Figure 2.21. Temperature dependent catalytic reduction of PNP by 1.2 mol % of [+] and [-] 

AuNPs. a,c) The progress of PNP reduction and b, d) corresponding linearized data for first order 

analysis obtained by tracking the absorption changes of PNP peak at 400 nm with time in the 

presence of 1.2 mol % of a,b) [+] and c,d) [-] AuNPs at different temperatures. The rate constants 

from this plot were used for the calculation of apparent activation energies shown in Figure 2.14.  
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3.1. Abstract 

Metal nanoparticles (NPs) and ligands are two inseparable entities. However, ligands present on 

the NP surface can ‘poison’ a photocatalyst by hindering the NP accessibility to the reactants and 

movement of charge carriers. In this Chapter, we present an elegant strategy to accomplish efficient 

photocatalysis by taking the advantage of ligands on the NP surface. Our approach of introducing 

favourable interactions between NP catalyst and substrate is tested in the model photocatalytic 

reduction of ferricyanide by plasmonic gold-nanoparticles (AuNP). Favourable interaction arising 

from the precise tuning of electrostatic potential results in the localization of reactant molecules 

around the AuNP catalyst. Close proximity between AuNP and ferricyanide improves the NP 

accessibility and electron transfer rate, thereby suppressing the ligand poisoning effect. Catalytic 

activities presented here are four-five folds better than the best reported values. Such interaction 

driven enhancement in photocatalytic performances can be prominent in the emerging area of 

‘ligand directed product formation’ in NP catalysis.  

3.2. Introduction 

The ability to move electrons under the influence of light in an efficient manner is one of the most 

fundamental challenges in photocatalysis.1-3 A diverse pool of systems ranging from molecular to 

organic to inorganic materials have been explored for harvesting photons to drive different 

chemical reactions.3-7 Among them, plasmonic metal nanoparticles (Au, Ag, Cu NPs) have gained 

special attention because of their high absorption cross-section in the visible region and the 

generation of hot charge carriers (electron/hole) through plasmon decay.7-12 In general, after visible 

light excitation of Localized Surface Plasmon Resonance (LSPR) , the excited plasmon undergoes 

two decay pathways: i) radiative pathway through the re-emission of a photon (scattering) 10-12 or 

ii) non-radiative pathway through electron-electron or electron-phonon coupling (Landau 

Damping).10,11 The radiative photon emission is the dominant pathway for larger particle size (> 

50 nm for Ag)13 and have numerous applications in the area of Surface Enhanced Raman 

Spectroscopy; however not suitable for light harvesting. Whereas the non-radiative pathway is 

dominant for smaller sized particles and leads to the generation of hot electrons and holes, which 

are useful in driving different chemical transformations on the surface of NPs.10-12 Typically, in 

non-radiative decay pathways, the excited plasmon first redistribute their energy via electron-

electron scattering (10-100 fs timescale) leading to the electronic excitation either through 

intraband (s to sp) or through interband (d to sp) transition. These hot carriers subsequently 
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dissipate their energy via electron-phonon relaxation (~1 ps timescale) and releases heat to the NP 

lattice (plasmonic heating). Finally in a timescale of 100 ps the NP lattice reaches a thermal 

equilibrium with the surroundings via phonon-phonon relaxation (Figure 3.1).10,12,14 

 

Figure 3.1. Plasmon decay process and generation of hot carriers in photoexcited plasmonic metal 

NPs. 1) Plasmon excitation of metal NPs. 2) The decay of plasmon, followed by the generation of 

hot electrons and hot holes through interband and intraband electronic transition. 3) Relaxation of 

hot carriers via electron-electron scattering. 4) Dissipation of heat to the NP lattice through 

electron-phonon coupling. Adapted with permission from reference 14. Copyright 2017, American 

Chemical Society.  

Thus the hot electrons and holes generated through the plasmon decay can be used to trigger 

different oxidative or reductive transformation on the surface of NPs. The area of hot electron 

driven chemistry was largely triggered by the seminal work from Linic and co-workers who 

demonstrated that the plasmonic excitation of AgNP under continuous wave (CW) visible light 

irradiation can trigger the dissociation of the adsorbed O2 molecule and lead to the oxidation of 
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industrially relevant molecules like ethylene or propylene, which otherwise happens at higher 

temperature and pressure (Figure 3.2).15  

 

Figure 3.2. Plasmon driven photocatalytic ethylene epoxidation with AgNP as the catalyst. a) 

Ethylene epoxidation reaction at 450 K under dark and visible light irradiation. b) The 

enhancement in the photothermal rate (left axis) as a function of temperature. Rate enhancement 

factor was calculated by dividing the photothermal rate with that of thermal rate. The rate of the 

reaction (right axis) under photothermal and thermal condition as a function of temperature. 

Adapted with permission from reference 15. Copyright 2011, Springer Nature.   

 A negligible rate of bond dissociation or oxidation in absence of light indicated that the plasmon 

excitation can enhance the rate of a chemical reaction (Figure 3.2). Thereafter, a plethora of studies 

have been performed to utilize the hot carriers in triggering different important chemical 

transformations like propylene epoxidation,16 O2 dissociation,17 water splitting,18 H2 

dissociation,19 NH3 decompoaition,20 CO2 reduction,21,22 nitroaromatic reduction,23 metal ion 

reduction,24 and so on. Despite a great advancement in this area, some of the major challenges are 

centered on poor efficiency and selectivity in the product formation.8 The efficiency of a 

photocatalytic reaction largely relies on an efficient transfer of hot carriers (within their very short 

lifetime of 10-100 fs) from the NPs to the reactant molecules. During this process of charge 

transfer, the electrons and holes, oftentimes, have to encounter the ‘insulating’ organic ligands 

capped on the NPs, which restricts the efficient transfer of hot carriers.26,27 This is a long standing 

challenge in the area of nanoparticle photocatalysis and commonly attributed as “ligand 

poisoning”. Generally, the surface ligand plays a crucial role in stabilizing the NP as well as 

dictating its physicochemical properties. Judicious choice of ligands and fine tuning of surface 

chemistry has often rendered numerous exciting applications of NPs in sensing,28 light 
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harvesting,29 bio-targeting,30 and so on. However, for applications in photocatalysis - where the 

stability as well as the surface accessibility of NPs is desirable - the role of surface ligands is 

conflicting. In principle, the surface ligands can ‘poison’ the photocatalysts by hindering the (i) 

movement of electrons/holes (due to its insulating nature)26 and (ii) accessibility of the NP surface 

to the reactant molecules (due to steric effect).27,31 The alternative is to deposit NPs onto a substrate 

or use ‘ligand free’ NPs (like stabilized with borohydride)32,33 for catalysis. However, the available 

surface area (for deposited NPs) and long term stability of plasmonic property (for ‘ligand free’ 

NPs) are compromised during the course of catalysis.33 Thus, metal NPs and surface ligands are 

two inseparable entities, and strategies have to be developed to accomplish photocatalysis by 

retaining and taking advantage of the stabilizing ligands on the NP surface. The present Chapter 

deals with this challenge by creating precise NP- reactant interaction through judicious choice of 

surface ligands. We envisage that a precise NP-reactant interaction (through precise surface 

chemistry) would help us in two ways. i) improve the rate of hot electron transfer by facilitating 

the adsorption of the reactant molecules on the surface of NPs and ii) induce selectivity through 

direct charge transfer mechanism, which depends on the hybridization of adsorbate state with the 

metal electronic state through strong metal-adsorbate interaction (Figure 3.3).8,34 As shown in 

Figure 3.3, the hot electron transfer from the NPs to the reactant molecules can follow two 

pathways. In the indirect pathway, hot carrier transfer happens after the decay of plasmon through 

the creation of a hot Fermi-Dirac distribution of electrons and holes close to the fermi level of the 

metal. Whereas, in direct charge transfer, a strong adsorption of the reactant molecules on the 

metal surface leads to the generation of ground metal-adsorbate hybridized state. Upon LSPR 

excitation, there can be a direct transfer of electrons to some of these unoccupied hybridized states. 

Thus, in direct mechanism, modulation of plasmonic property or fine-tuning of catalyst-reactant 

interaction can lead to the rate enhancement of targeted electronic excitation and therefore the rate 

of chemical processes which proceeds through only those electronic excitations. Therefore, we 

envisage that, a precise NP-reactant interaction can induce selectivity to the reaction via direct 

charge transfer pathway. Moreover, to the best of our knowledge, the hypothesis of studying the 

influence of NP catalyst-reactant interactions on photocatalytic activities of metal NPs is scarcely 

discussed in literature.  

Our hypothesis was tested in the model photocatalytic reaction of ferricyanide reduction by 

plasmonic AuNPs. Photocatalytic one electron reduction of ferricyanide to ferrocyanide is often 
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Figure 3.3. Schematic illustration of hot carrier transfer mechanism in plasmonic photocatalysis. 

a) Direct charge transfer: direct transfer of hot electrons to the unoccupied hybridized metal-

adsorbate states. b) Indirect charge transfer: generation of a hot Fermi-Dirac distribution of 

electrons and holes close to the fermi level followed by transfer of electrons to the unoccupied 

state of the adsorbates. Adapted from the reference 34 (open access). 

considered as a model reaction to establish different fundamental hypotheses regarding plasmonic 

photocatalysis. The photostability of ferricyanide as well as its negligible absorption at LSPR of 

AuNPs (~ 520 nm) makes it an ideal reaction to test the photocatalytic activity of AuNPs. 

Furthermore, the negative charge on the ferricyanide ions allowed us to tune the electrostatic 

interaction between the AuNPs and the reactant molecules through precise surface engineering. 

A favourable interaction between NP catalyst and ferricyanide was created through precise surface 

engineering, which resulted in the enhancement of photocatalytic activities (both in terms of hot 

electron transfer rate constant and conversion yield). Cationic ([+]) and anionic ([-]) organic 

ligands were functionalized on AuNP surface to generate favourable and unfavourable interactions 

with [-] ferricyanide, respectively. Our studies show that the favourable interaction, arising from 

the strong electrostatic attraction, increases the local concentration of [-] ferricyanide around the 

[+] AuNP catalyst. Consequently, the NP accessibility and probability of hot electron injection 

from [+] AuNP to [-] ferricyanide was enhanced. On the other hand, the local concentration of the 

reactant molecules and catalytic activities were lower when standard [-] AuNP was used as the 

catalyst. For instance, the rate constant increased from ~ 8 x 10-4 min-1 to ~ 4 x 10-3 min-1 (~ 5 fold 
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increment in reaction rate!) when the NP-reactant interaction was made favourable, along with an 

appreciable increase in the ferricyanide conversion yield (from ~ 10 % for [-] AuNP to ~ 60 % for 

[+] AuNP). Further, the dependence of catalytic activities on the NP surface potential ascertained 

the potency of electrostatics in enhancing the photocatalytic activity. The thermodynamic analysis 

based on Marcus model of outer sphere electron transfer revealed a higher pre-exponential factor 

() for [+] AuNP catalyst, a parameter directly related to the local concentration of reactants. Thus, 

the introduction of favourable interaction between the NP and reactants helped in outplaying the 

‘poisoning’ effect of the ‘insulating’ organic ligands, by increasing the NP accessibility to the 

reactants and the probability of hot electron transfer.   

3.3. Experimental Details 

3.3.1. Materials and Reagents: 

Tetrachloroaurate trihydrate (HAuCl4.3H2O), tetramethylammonium hydroxide (TMAOH) 25 % 

wt. in water, 11-mercaptoundecanoic acid (MUA), hydrazine monohydrate (N2H4.H2O 50-60%), 

tetrabutylammonium borohydride (TBAB) and potassium ferricyanide were purchased from 

Sigma-Aldrich. (Di-n-dodecyl) dimethyl ammonium bromide (DDAB) and dodecylamine (DDA) 

were purchased from Alfa Aesar. All the reagents were used as received without any further 

purification. The positively charged N,N,N-trimethyl(11- mercaptoundecyl) ammonium ion (TMA) 

was synthesized according to the reported procedure.35 

3.3.2. Synthesis of AuNPs:  

All the nanoparticles were synthesized following a modified literature procedure.28 Hydrazine 

monohydrate (N2H4.H2O) was used as the reducing agent. In a typical experiment, HAuCl4.3H2O 

(6 mg), DDA (70 mg), and DDAB (70 mg) were mixed together in toluene (2 mL) and sonicated 

for ~10 min for complete stabilization of Gold (III) ions. This was followed by a rapid injection of 

another toluene solution containing 15 mg of TBAB and 28 mg of DDAB. The resulting solution 

was left stirring overnight to ensure the complete reduction of Gold (III). The seed particles were 

then grown to 5.5 ± 0.7 nm DDA-Au NPs. A growth solution was prepared by adding 280 mg of 

DDAB, 700 mg of DDA, 60 mg of HAuCl4.3H2O and seed solution in 15 mL toluene. The growth 

solution was further reduced with a dropwise addition of another toluene solution containing 80 μL 

of N2H4.H2O and 280 mg of DDAB. The solution was stirred overnight for complete growth of the 

particles yielding monodisperse 5.5 ± 0.7nm of DDA-Au NPs. The particles were further grown to 
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~ 11 nm DDA-Au NPs. A growth solution was prepared by adding 4 g of DDAB, 6.5 g of DDA, 

595 mg of HAuCl4.3H2O and seed solution in 100 mL toluene. The growth solution was further 

reduced with a dropwise addition of another toluene solution containing 650 μL of N2H4.H2O and 

4.4 g of DDAB. The solution was stirred overnight for complete growth of the particles yielding 

monodisperse 11 ± 1.3 nm of DDA-AuNPs as confirmed through TEM analysis. The detail 

procedure for the place exchange of DDA-AuNP with different charged ligands (Figure 3.4) is 

described below. 

3.3.3. Place Exchange of AuNPs: 

 In a typical synthesis of [+] AuNPs, DDA-Au NPs (20 mL) were first precipitated by adding 50 

mL of methanol which yielded a black precipitate. The supernatant was carefully removed and the 

precipitate was then re-dispersed in 20 mL toluene.  [+] TMA ligand (equal to the moles of Au(III) 

in solution) dissolved in 10 mL dichloromethane (DCM)) was added. The solution was left 

overnight to ensure a complete ligand exchange. Next, the supernatant was decanted and the 

precipitate was washed with DCM (3 × 50 mL) and acetone (50 mL). The precipitate was then 

dried and redispersed in miliQ water for further studies. A similar place exchange protocol was 

adopted for the preparation of [-] AuNPs, where, only MUA ligands were fed during the place 

exchange reaction. The [-] AuNPs were finally redispersed in miliQ water by adding ~ 20 μL of 

TMAOH (25 % wt. in water) base to deprotonate the carboxylic acid group. [+/-]4 and [+/-]9 

AuNPs were synthesized by adding TMA and MUA ligands in a molar ratio of 1:4 and 1:9, 

respectively. 
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Figure 3.4. Schematic illustration of place exchange of DDA capped AuNPs. DDA capped AuNPs 

were place exchanged with either [+], [-] or a mixture of [+] and [-] to synthesize positively, 

negatively or heterogeneously charged AuNPs, respectively. 

3.3.4. Microscopy Studies: 

Microscopy studies were performed to characterize the AuNPs as well as to understand the 

interaction between AuNP and reactant (ferricyanide ions). The TEM sample for the individual 

nanoparticles was prepared by drop casting AuNP solution on a 400 mesh carbon coated copper 

grid (Tedpella Inc.), and dried under vacuum. The AFM sample for [+] and [-] AuNP with 

ferricyanide solution was prepared carefully to minimize the drying effect. ~ 20 μL of [+] and [-] 

AuNP – ferricyanide solution was drop casted on a mica substrate and subsequently the drop was 

removed with a tissue paper after 10 min (to minimize the drying effect), and allowed the particles 

to sediment. The sample was then dried at room temperature. The High-Resolution Transmission 

Electron Microscopic (HRTEM) imaging was performed on FEI Tecnai G2 F20 (200 kV) HR-

TEM. The AFM imaging was performed on Key Sight 5500 instrument (Agilent Technology) 

under tapping mode with silicon nitride tip. 

3.3.5. Zeta Potential Studies: 

The zeta potential (ζ) of charged AuNPs were measured in Nano ZS90 (Malvern) Zetasizer 

instrument. The optical density of the nanoparticle solution was maintained ~0.2 during all the 

measurements. The error bar was calculated from three different experiments. ζ was determined 

by measuring the electrophoretic mobility and using Henry’s equation. 

UE =
2𝜀𝜁𝑓(𝑘𝑎)

3𝜂
 

UE: Electrophoretic mobility 

ζ: Zeta potential 

 ε : Dielectric constant 

η : Viscosity 

ƒ(Ka): Henry’s Function 
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3.3.6. Photocatalytic Reduction:  

All the photocatalytic reduction experiments were performed in a 3 mL quartz cuvette under the 

irradiation with two Blue LEDs (3W each, light intensity measured at the cuvette wall is ~ 65 

mW/cm2). All the kinetic measurements were performed using Shimadzu UV-3600 plus 

spectrophotometer. Temperature of the reaction mixture was maintained with a temperature 

controller equipped with the spectrophotometer. The difference between the actual temperature at 

the reaction mixture and set temperature was ~ 2 0C under experimental conditions.  In a typical 

experiment, AuNP (absorbance was set to ~1 for all the NP systems), 880 μL of 5M EtOH and 

500 μM potassium ferricyanide were mixed in a 3 mL quartz cuvette and purged with Ar for 15 

min. The cuvette was then sealed with Teflon and kept at a particular temperature for 15 min for 

temperature equilibration, prior to the irradiation. Photoreduction of ferricyanide was monitored 

by measuring the absorbance of the solution at a fast scan mode, at 15 min interval for 2 h. 

Photograph of the entire experimental set-up is shown below (Figure 3.5). Light intensity 

dependent experiments were performed by varying the power of the LED. The intensity of the 

incident irradiation was measured by using an optical power meter from Newport (Model 842.PE).  

 

Figure 3.5. Photograph of the experimental set-up used for the photocatalytic reduction of 

ferricyanide by AuNPs. Inset shows the cuvette with the reaction mixture, at the start of the 

reaction. 
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3.3.7. Kinetic Analysis: 

Construction of Corrected Spectra: 

The corrected spectra have been constructed by following a reported procedure to subtract the 

effect of AuNP in rate constant calculation.36,37 

Spectrum corrected = spectrum sample – (peak absorbance sample/peak absorbance AuNP) × 

spectrum AuNP 

Peak absorbance sample is the difference between the absorbance at λmax AuNP and at 800 nm for 

reaction mixture. Peak absorbance AuNP is the difference between the absorbance at λmax AuNP and 

at 800 nm for only AuNP (without ferricyanide) with the same NP concentration as in the reaction 

mixture.  

Determination of Rate Constant: 

The rate constant for the photoreduction reaction was calculated in two different approaches. The 

photocatalytic reduction of ferricyanide was monitored by following the decrease in the 

absorbance peak at ~ 420 nm.  

Approach #1: 

In the first approach, we calculated the photoconversion of ferricyanide (in units of M) from the 

corrected spectra, as a function of time. The photoconversion was calculated following a recently 

reported procedure as described below.36,37 

                                Conversion (t) = − (A420nm (t) − A420nm (t=0)) / 1050  

                               Conversion (t) = (A240nm (t) − A240nm (t=0)) / 6250 

The extinction coefficient of ferricyanide and ferrocyanide are 1050 M-1 cm-1 and 6250 M-1 cm-1 

respectively.37 The photoconversion vs time spectra was plotted by taking an average of the two 

aforementioned conversion and then fitted with a first order rate equation of the type 

𝑐 = 𝑐0 (1−𝑒−𝑘𝑡) 

   Where C0 is the initial concentration of ferricyanide and k is the first order rate constant. 

The rate at t = 0 is given as  

k' = C0 × k 

k= k'/0.0005  

[The initial concentration of ferricyanide was 500 μM] 

The conversion vs time plot for [+] AuNP at two different temperatures is shown below (Figure 

3.6 a). 



Chapter 3                                                                                                       Electrostatics in Photocatalysis 

78 
 

Approach #2:  

The second approach involved the calculation of rate constant from first order rate equation (-ln 

Ct/C0 vs time) as reported previously.38 Here the decrease in absorbance at ~ 420 nm was plotted 

against time to calculate the rate constant (Figure 3.6 b). The rate constant values calculated from 

both the approaches were comparable. We have followed approach #2 to calculate the rate 

constants in our further studies, since both the approaches were giving similar results (Figure 3.6 

b). 

 

Figure 3.6. Determination of rate constant. a) Plot of photoconversion vs time with [+] AuNP, 880 

μL of 5 M EtOH and 500 μM of ferricyanide at two different temperatures. The rate constant value 

was calculated by fitting the plot with first order exponential equation of the type C= C0 × (1- e –

kt) (approach #1). b) Linearized fit for the first order analysis by tracking the absorption changes 

of [Fe(CN)6]
3- at 420 nm, and calculating the rate constants from the slope (approach #2).  

Calculation of Conversion Yield (%): 

Conversion yield was calculated by monitoring the percentage of decrease in the ferricyanide 

absorption at ~ 420 nm (from corrected spectra) after ~ 2 h of irradiation. 

3.3.8. Quantum Yield (QY) Calculation: 

The quantum yield was calculated by using the following equation:36 

 

 

Where, A is the absorbance of the nanoparticle solution, which was maintained at ~1 for all the 

experiments. 

The photon flux or the number of photons incident per second was calculated using the following 

equation: 



Chapter 3                                                                                                       Electrostatics in Photocatalysis 

79 
 

 
 

The incident power on the cuvette is 65 mW/cm2 and the area of the cuvette is 4 cm2. So the 

excitation energy is  

Excitation Energy = Incident Power  Area of the Cuvette 

= 65 mW/cm2  4 cm2 = 260 mW 

 

Upon substituting the value of excitation energy, 

 

 

 

3.3.9. Theoretical Calculation for the Concentration of Ferricyanide Ion Close to the 

AuNP Surface: 

The concentrations of [Fe(CN)6]
3- and K+ in the diffused layer, follows the Boltzmann distribution, 

and is given by the following equation39,40 

Here, 

c+ and c- are the concentrations of K+ and [Fe(CN)6]
3- respectively, 

c0 is the concentration of salt K3[Fe(CN)6] in the bulk, ~ 0.5 mM, 

z is the valency of the ions, 

φ is the surface potential at a given point, 

kbT is the thermal energy 

In order to get the variation in c+ and c-, we need the variation in φ as a function of distance (in the 

present case, from the Stern layer, as shown in Figure 3.7). 

The variation in φ as a function of distance (x) in the diffused layer is given by the Poisson 

Boltzmann equation39,40 

 

Here, 

ρ is the charge density, and 

ε is the dielectric constant of the medium 

𝑐± = 𝑐0𝑒𝑥𝑝 (∓
𝑧𝑒𝜑

𝑘𝑏𝑇
) 

 (3.1) 

∇2𝜑 = −
𝜌

𝜀
 

 (3.2) 
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       Figure 3.7. Schematic illustration of distribution of ions from a positively charged surface. 

Considering a surface infinitely long in y and z direction, the variation of φ in x direction can be 

expressed as39,40 

 

Here, 

F = Faraday Constant  

Substituting the value of c+ and c- from (3.1) in (3.3)- 

 

Applying the necessary boundary condition,18,19 

φ (x=0) = 𝜁, and φ (x=∞) = 0 

Here, 

𝜁 is the zeta potential (~30.0 mV in our case) 

We know for dilute solutions (Debye-Huckel approximation), 
𝑧𝑒𝜑

𝑘𝑏𝑇
≪ 1, equation (3.4) becomes 

𝑑2𝜑

𝑑𝑥2
=

𝑐0𝑧𝐹

𝜀
[(1 +

𝑧𝑒𝜑

𝑘𝑏𝑇
) − (1 −

𝑧𝑒𝜑

𝑘𝑏𝑇
)] 

=
𝑐0𝑧𝐹

𝜀
[
2𝑧𝑒𝜑

𝑘𝑏𝑇
] 

𝑑2𝜑

𝑑𝑥2
= −

𝜌

𝜀
= −

𝑧𝐹(𝑐+ − 𝑐−)

𝜀
 

 (3.3) 

𝑑2𝜑

𝑑𝑥2
=

𝑐0𝑧𝐹

𝜀
[exp (

𝑧𝑒𝜑

𝑘𝑏𝑇
) − exp (−

𝑧𝑒𝜑

𝑘𝑏𝑇
)] 

=
2𝑐0𝑧𝐹

𝜀
sinh (

𝑧𝑒𝜑

𝑘𝑏𝑇
) 

   (3.4) 
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=
2(𝑧𝑒)2𝑁𝑎𝑐0𝜑

𝜀𝑘𝑏𝑇
 

Here, 

𝜅 = √
𝜀𝑘𝑏𝑇

2(𝑧𝑒)2𝑁𝑎𝑐0
 

κ is the Debye length. 

Na is Avogadro’s number 

e is the charge on an electron  

Solving equation (5) for φ, we get39 

 

Using (3.1) and (3.6), we can get the concentrations of [Fe(CN)6]
3- and K+ as a function of distance. 

The computed graphs are shown below: 

 

𝑑2𝜑

𝑑𝑥2
=

𝜑

𝜅2
 

 (3.5) 

𝜑 = ζ 𝑒𝑥𝑝 (−
𝑥

𝜅
) 

 (3. 6) 
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Figure 3.8. Variation in the surface potential as a function of distance from the surface of a) [+] 

AuNP and b) [-] AuNP. Variation in the concentrations of [Fe (CN)6]
3- and K+ as a function of 

distance from the surface of c) [+] AuNP and d) [-] AuNP. 

3.3.10. Calculation of Free Energy of Activation (ΔG#), Reorganization Energy (λ) 

and Electronic Coupling Term (ɸ|𝚮𝒂𝒃|𝟐): 

The rate constant of hot electron transfer was estimated by following a Marcus theory for outer 

sphere electron transfer, which can be written as41 

𝑘 =  ɸ √
𝜋

ℏ2𝜆𝑘𝐵𝑇
 |Η𝑎𝑏|2𝑒−∆𝐺#/𝑘𝐵𝑇  

Taking log on both side 

ln k√T = ln (ϕ√
𝜋

ℏ2𝜆𝑘𝐵
 |Η𝑎𝑏|2) −  

∆𝐺#

𝑘𝐵𝑇
 
 
 

Plot of ln  k√T  vs 1/T can be fitted to a linear function with slope −
∆𝐺#

𝑘𝐵
 and intercept 

ln (ϕ√
𝜋

ℏ2𝜆𝑘𝐵
 |Η𝑎𝑏|2). The free energy of activation can be calculated as ΔG# = - (slope/1000 × 

R) in kJ/mol, where the value of R= 8.314 J K-1 mol-1.The reorganization energy (λ) was calculated 

by solving the following quadratic equation.  

ΔG# = 
(𝛥𝐺0 +  𝜆)2

4𝜆
 

The ΔG0 value was taken as -77.5 kJ/mol as per previous report for ferricyanide to ferrocyanide 

reduction.41 Solving the quadratic equation will provide two roots. The root with λ < ΔG0 

(normal Marcus region) was considered as per previous report.41 The (ɸ|Η𝑎𝑏|2) value was 

calculated from the intercept of the ln k√T vs 1/T plot as follow 

ɸ|Η𝑎𝑏|2 =  𝑒𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  . √ℏ2𝜆𝑘𝐵/𝜋
 
 

3.4. Results and Discussion 

3.4.1. Design and Characterization of Plasmonic AuNP Catalysts: 

The hypothesis of the present work was to investigate the role of interaction between AuNP 

catalyst and ferricyanide ion on the NP accessibility and efficiency of hot electron transfer. The 

presence of negative charge on ferricyanide allowed the use of electrostatic forces as a handle to 

tune the catalyst-reactant interactions. The electrostatic field experienced by [-] ferricyanide ion 

can be controlled by precise tuning of the surface ligands on AuNPs. Accordingly, N,N,N-
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trimethyl (11-mercaptoundecyl)ammonium chloride (TMA, [+]) and 11-mercaptoundecanoic acid 

(MUA, [−]) ligands were functionalized to render positive and negative surface potential around 

AuNPs, respectively (Figure 3.9 a,b).28,30 Further fine tuning in the surface potential was achieved 

by functionalizing a mixture of [+] and [-] ligands on the AuNP surface through a place exchange 

reaction (Figure 3.9 a,b. Details on the synthesis are provided in the Experimental Section 

3.3.2).22,37 A decrease in the negative zeta potential from -30.0 ± 1.4 mV to -24.0 ± 2.0 mV was 

observed upon dilution of [-] ligands with ~ 10% of [+] ligands, which further decreased to -16.0 

± 2.0 mV with ~ 20% of [+] ligands (Figure 3.9 a,b). Spectroscopic (UV-Vis absorption and 

Dynamic Light Scattering, DLS) and Microscopy (Transmission Electron Microscopy, TEM) 

studies confirm negligible changes in the stability and average size of AuNPs upon various surface 

functionalizations (Figure 3.9 c-e). Thus, similar sized AuNPs (15.0 ± 0.5 nm from DLS and 11.0 

± 1.3 nm from TEM) with varying surface potentials were successfully prepared, which is crucial 

for comparing their photocatalytic performances. 

 

Figure 3.9. Spectroscopic, microscopic and surface characterization of AuNPs. a) Typical zeta 

potential plots for different sets of AuNPs with varying ligands. b) A bar diagram showing the 

variation of zeta potential as a function of ligands on the surface of AuNPs. The error bars 

correspond to standard deviations based on three different sets of experiment. c) UV-Vis 

absorption and d) DLS data of AuNP catalysts, showing negligible changes in the stability and 

average size of AuNPs upon various surface functionalization. e) A representative TEM image of 

[+] AuNPs with their size distribution histogram (from ~ 300 NPs) shown in the inset.  
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3.4.2. Photocatalytic Reduction of Ferricyanide to Ferrocyanide: 

The photocatalytic one electron reduction of ferricyanide to ferrocyanide was selected as the model 

reaction due to its negligible interference with the AuNP plasmon band and high photostability 

under visible light.36-38,41 The first step in the catalytic reduction is the photoexcitation of AuNPs 

resulting in the generation of hot charge carriers (hole and electron). This is followed by the 

transfer of hot electrons to ferricyanide ions causing the reduction, which can be visualized through 

a decrease in the ferricyanide absorption at ~ 420 nm.36 Finally, the holes generated in AuNP 

photocatalysts are scavenged by the hole scavenger (ethanol) used in the reaction. The 

photocatalytic reduction of ferricyanide was performed as per standard protocol in ethanol under 

inert condition at ~ 45 oC (see experimental section 3.3.6 for detailed procedure).36 The 

absorbance of AuNP catalyst was maintained at ~ 1 (~ 20 nM in term of AuNPs) and two 3W blue 

light emitting diodes (LEDs) were used as the irradiation source (Figure 3.5). The progress of 

photocatalytic reduction was followed by monitoring the changes in the absorption of ferricyanide 

at ~ 420 nm. No noticeable decrease in ferricyanide absorption was observed in the absence of 

AuNPs under continuous irradiation for ~2 h, which confirms the photostability of ferricyanide 

ion (Figure 3.10 a). No change in the AuNP absorption under continuous irradiation also confirms 

the stability of the catalyst under the experimental condition (Figure 3.10 b). 

 

Figure 3.10. Control reactions with [+] AuNP and ferricyanide. Absorbance of a) Ferricyanide 

and b) [+] AuNP under continuous light irradiation with blue LEDs at 45 0C. Negligible changes 

in absorbance of both AuNP and ferricyanide confirm their photostability under the experimental 

condition. 

A slight decrease (~ 10 %) in the ferricyanide absorption was observed in the presence of 

commonly used   [-] AuNP catalyst, which is in accordance with the literature reports   
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(Figure 3.11 a).41 The marginal reduction of ferricyanide by [-] AuNP can be attributed to the 

poisoning of the NP catalyst by the insulating MUA ligand by hindering the NP surface 

accessibility to [-] ferricyanide,41 and thereby lowering the rate of electron transfer. As mentioned 

in previous sections, we decided to use catalyst – reactant interaction as a tool to outplay the 

poisoning effect of ligands. First signs of encouraging results were obtained when the 

photocatalysis of ferricyanide reduction was performed in the presence of [+] AuNP (Figure 3.11 

b).  

 

Figure 3.11. Photocatalytic reduction of ferricyanide with [+] and [-] AuNPs. Progress of 

photocatalytic reduction of ferricyanide in the presence of a) [+] AuNP and b) [-] AuNP at 45 0C 

by tracking the absorption changes at 15 min interval. Inset of a) shows the absorbance decrease 

in ferricyanide peak with [-] AuNP catalyst. Inset of b) shows the photographs of vials 

corresponding to different stages of reduction in the presence of [+] AuNP catalyst. c) Time-

dependent spectral changes in the ferricyanide absorption in the presence of ~ 20 nM [+] AuNPs, 

under irradiation with 3W blue LED at ~ 45 0C. Inset of c) shows the isosbestic point as well as 

the increase in the ferricyanide absorption with time. d) The linearized first order fits following 

the spectral changes at 420 nm band for the photocatalytic reduction of ferricyanide by various 

AuNP systems at ~ 45 0C. 
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A considerable decrease in the ferricyanide absorption (~ 60 %) was observed in the presence of 

[+] AuNP catalyst, indicating the reduction of ferricyanide to ferrocyanide. Having obtained a 

drastic difference in the activities of [-] and [+] AuNPs, systematic time-dependent UV-Vis studies 

were performed. Figure 3.11 c is the corrected spectra (to remove the contribution from AuNP 

plasmon band36) showing the progress of ferricyanide reduction by [+] AuNP over a period of ~ 2 

h. A gradual decrease in the absorption at ~ 420 nm  (corresponding to ferricyanide) was observed 

as a function of time, with a concomitant increase in the peak at ~ 240 nm (corresponding to 

ferrocyanide) through a clear isosbestic point at ~ 280 nm. The first order kinetic analysis 

performed on the spectral changes at 420 nm revealed a rate constant of ~ 4 × 10-3 min-1, which is 

at least five folds greater than the rate constant obtained with standard [-] AuNP as the 

photocatalyst ( ~ 8 × 10-4 min-1, Figure 3.11 d. Experimental section 3.3.7). Both linearized and 

exponential fits of first order decay curve gave similar values for rate of electron transfer. The 

formation of Prussian blue colour upon the addition of FeCl3 to the reduced solution confirms the 

formation of the product ferrocyanide (inset of Figure 3.11 b). Control experiments performed by 

incubating ferricyanide with [+] AuNPs under dark resulted in a negligible reduction, which 

ensures the necessity of light irradiation (Figure 3.11 d).  

3.4.3. Hot Electron vs Photothermal Heating: 

Motivated with our desired result, the next task was to ascertain the role of hot electrons in driving 

the photocatalytic reduction of ferricyanide. Photochemical transformations on metal 

nanoparticles can be induced either through the hot electrons or holes (created through non-

radiative decay of energetic charge carriers) or through the photothermal heating (due to electron-

phonon coupling).7,10,42 The elevated temperature on the NP surface can play a crucial role in 

catalysing the reaction on the NP surface. One of the important aspects in metal nanoparticle driven 

photocatalysis is to assess the contribution from hot charge carriers and photothermal heating 

towards the observed photocatalytic rate. 

The involvement of hot charge carriers in driving chemical transformation can be understood 

experimentally by investigating the catalytic rate dependence on illumination intensity.7,11,12,15,36 

Usually a linear relationship indicates the participation of hot charge carriers in driving the reaction 

and it implies that, each reaction is induced by a single photon absorption event followed by the 

interaction between the charge carriers and the reactants.7,11,12,15,36  Whereas if the reaction is 
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induced via photothermal heating then the rate of the reaction should increase exponentially as per 

the following equation.7,15  

∆𝑇𝑝𝑙𝑎𝑠𝑚𝑜𝑛 = 𝑐 × 𝐼   ………(3.7) 

𝑅𝑎𝑡𝑒 = 𝐴 × 𝑒−𝐸𝑎/𝑅𝑇 ………..(3.8) 

𝑅𝑎𝑡𝑒(𝐼) = 𝐴 × 𝑒−𝐸𝑎/𝑅 (𝑇+ 𝑐𝐼)…….(3.9) 

Where ΔTplasmon is the temperature increase due to the plasmon damping. As per previous report, 

the temperature increase due to plasmon damping has a linear relationship with the intensity of 

irradiation (I).43 Now, when a reaction is catalysed purely through photothermal heating then in 

principle it should follow the Arrhenius rate law and there should be an exponential increase in the 

rate of the reaction with increase in the intensity of irradiation. 

 A detailed intensity dependent analysis was performed to understand the involvement of hot 

electrons in driving the photocatalytic reduction of ferricyanide. A linear relationship between the 

observed catalytic rates with illumination intensity (Figure 3.12) confirms the participation of hot 

electrons in driving the photocatalytic reduction of ferricyanide ions under our experimental 

condition.  

 

Figure 3.12. Intensity dependent photocatalytic reduction of ferricyanide with [+] AuNP and 

under irradiation from blue LED. Progress of photocatalytic reduction of ferricyanide by tracking 

the absorption changes at 15 min interval at an irradiation intensity of a) 135 mW/cm2, b) 62 



Chapter 3                                                                                                       Electrostatics in Photocatalysis 

88 
 

mW/cm2, c) 45 mW/cm2, d) 35 mW/cm2, e) 24 mW/cm2, and f) Plot of observed photocatalytic 

rate constant with [+] AuNP catalyst as a function of illumination intensity.  

Next, to further confirm the contribution of the hot electrons we performed a control experiment 

under dark at an elevated temperature of 50 0C, which was measured to be the bulk temperature 

during the irradiation process (Figure 3.13 a). Considering the higher thermal conductivity of 

water and our present experimental condition which consists of well dispersed colloidal NP 

catalyst and a CW light irradiation, the difference between bulk temperature and that on the surface 

of NP (ΔT) will be negligible and can be expressed as22,42 

∆𝑇 = 𝑇𝑠 − 𝑇𝑏𝑢𝑙𝑘 =
𝜎𝐼

4𝜋𝑘𝑟
 

Where, ‘r’ is the radius of the AuNP which is ~6 nm in the present study, ′σ′ is the absorption cross 

section at the maxima of LSPR and reported to be 50 nm2 for ~12 nm AuNPs,22 ‘I’ is the intensity 

of light and ‘k’ is the thermal conductivity of water (0.6 w m-1 K-1). With all these values, the 

temperature difference at an intensity as high as 1 kW/cm2 would be in the order of 10-2 K. So 

under our experimental condition the bulk temperature (50 0C) can be considered as a proxy for 

the surface temperature of AuNPs. 

A negligible reduction under dark condition at 50 0C (Figure 3.13 a,b) further confirms the 

involvement of hot electrons in the reduction process. Finally a wavelength dependent study 

revealed a lower photocatalytic rate constant at 530 nm irradiation compared to that of 465 nm 

(Figure 3.13 c,d). This can be explained in terms of intraband vs interband transition.22,36,37 The 

higher energy 465 nm excitation generates hot carriers predominantly through interband ‘d’ – ‘sp’ 

transition. Whereas, the 530 nm excitation generates hot carriers through intraband ‘s’ to ‘s’ or ‘s’ 

to ‘p’ transition.36,37 The ‘d’ band hole created through interband transition is typically 1.9 eV more 

energetic than a ‘sp’ band hole created through intraband transition.44 The more oxidizing power 

of the ‘d’ band hole is beneficial to complete the oxidation half cycle in a photoredox reaction. 

Moreover the lifetime of the hot carriers generated through the interband transition is higher 

compared to that in intraband transition, leading to a higher photocatalytic efficiency. All these 

above experiments clearly confirms the prodigious contribution of the hot electrons in the 

photocatalytic reduction of ferricyanide to ferrocyanide. However, the effect of photothermal 

heating cannot be completely ruled out it requires separate elaborate study to disentangle the 

relative effect of hot electrons and the photothermal heating.  
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Figure 3.13. a) Progress of photocatalytic reduction of ferricyanide in the presence of [+] AuNP 

at 50 0C under dark. b) Linearized fit for the first order analysis by tracking the absorbance at 420 

nm under light irradiation and dark. c) Progress of photocatalytic reduction of ferricyanide in the 

presence of [+] AuNP under green light (λirr = 530nm) irradiation. d) Linearized fit for the first 

order analysis by tracking the absorbance at 420 nm under blue light (λirr = 465nm) and green light 

(λirr = 530nm) irradiations. 

3.4.4. Effect of Hole Scavenger (Ethanol) on Photocatalysis: 

Another indirect way to assess the contribution of hot carriers is to investigate the role of hole 

scavenger in the photocatalytic reaction. In general, the efficiency of a photoredox reaction on the 

NP surface relies on the higher lifetime or low recombination rate of hot carriers generated through 

the photoexcitation of the NPs. It is already known in literature that the high e- - h+ recombination 

rate often adversely affect the quantum yield of AuNP catalyzed photo-redox reactions.44 To 

address this, a common practice is to use an additional hole scavenger or sacrificial electron donor 

(typically alcohols and amines) to suppress the e- - h+ recombination rate, and complete the full 

redox cycle through the oxidation of hole scavenger.36,44 In our present study, we have used 1 M 
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ethanol as the sacrificial electron donor. Our next idea was to understand the role of hole scavenger 

in facilitating the reduction of ferricyanide. In the absence of ethanol, water assumes the role of a 

sacrificial electron donor.36 The oxidation of water is a slow process due to the large potential 

required for water oxidation (ESHE = 1.23 eV)36 and the charge recombination process 

predominates over the one electron reduction, resulting in a poor reaction quantum yield. For 

instance, the quantum yield (QY) of ferricyanide reduction by [+] AuNP photocatalysts in water 

was estimated to be 1.90  10-5 (corresponding to ~ 40 M of conversion, see Figure 3.14 b and 

experimental Section 3.3.8 for the QY calculation), which is in agreement with the value reported 

by Jain and Coworkers.36 Ethanol, unlike water, can be readily oxidized to acetaldehyde (ESHE = 

0.22 eV)5 and can serve as an effective hole scavenger. Therefore the addition of ethanol increases 

the quantum yield (1.10  10-4) as well as the ferricyanide conversion by a factor of ~ 6 (230 M 

of conversion), as shown in Figure 3.14 a,c. The complete redox cycle in the presence of ethanol 

can therefore be summarized into the following two half reactions.36  

 

    [Fe (CN)6]
3- + e- (hot electrons)  [Fe (CN)6]

4- …(Reduction) 

CH3CH2OH + 2h+ (hot holes)  CH3CHO + 2H+ 

 

…(Oxidation) 

 

 

Figure 3.14. Progress of photocatalytic reduction of ferricyanide with [+] AuNP a) in presence of 

hole scavenger ethanol, and b) in absence of hole scavenger ethanol. c) Plot of photoconversion of 

ferricyanide as a function of time with [+] AuNPs at 45 0C in the presence (red points) and absence 

(blue points) of the hole scavenger ethanol. 

3.4.5. Interaction between AuNP Catalyst and Ferricyanide Ions: 

After ascertaining the role of hot charge carriers in driving the reduction, our next idea was to 

understand the interaction between the charged NPs and the ferricyanide ions. The dominance of 

[+] AuNP over [-] AuNP clearly shows the potency of favourable NP-reactant interaction and 
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motivated us to investigate the interactions in detail. The surface plasmon band is highly sensitive 

to the local environment of NPs and thus, monitoring the variation in the plasmon band 

position/intensity is an effective strategy to study the interaction of AuNPs with ferricyanide 

ions.28 The addition of ferricyanide resulted in a spontaneous bathochromic shift (~ 8 nm) in the 

plasmon band of [+] AuNP, which further shifted to longer wavelengths during the course of 

photocatalytic reduction (~ 14 nm shift; the max shifted from ~ 522 nm to ~ 536 nm by the end of 

the reaction, Figure 3.15 a). The bathochromic shift can be attributed to the strong and favourable 

interaction between oppositely charged [+] AuNP and [-] ferricyanide, resulting in the screening 

of positive charges28,46 on NPs and triggering the NP aggregation. The interaction and process of 

NP aggregation was followed by Dynamic Light Scattering (DLS) and Atomic Force Microscopic 

(AFM) studies (Figures 3.15 c,e and 3.23 in the Appendix). The gradual increase in the size of 

NPs from ~ 15 nm to ~ 380 nm during the course of photocatalytic reduction of ferricyanide 

confirms the process of aggregation in [+] AuNP. On the other hand, the addition of ferricyanide 

to [-] AuNP failed to generate noticeable changes in the plasmon band and NP aggregation, 

confirming the negligible interaction between [-] AuNP and [-] ferricyanide ions (Figures 3 b,d,f 

and 3.24 in the Appendix).   

 

Figure 3.15. Investigation of favourable and unfavourable AuNP catalyst–ferricyanide 

interactions. Monitoring the surface plasmon band of a) [+] AuNP and b) [-] AuNP during the 
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progress of photocatalytic reduction of ferricyanide. The corresponding DLS and AFM images are 

shown in c,d), and e,f), respectively. A bathochromic shift in the surface plasmon band of [+] 

AuNPs, along with an increase in the size, confirms the aggregation of [+] AuNP during the 

progress of photocatalysis. However, no noticeable changes were observed for [-] AuNP 

confirming a weak interaction between [-] AuNP and ferricyanide. 

3.4.6. Interaction Driven Photocatalysis: 

The presence of charges on AuNP as well as ferricyanide points towards the involvement of 

electrostatic forces in dictating the NP-reactant interactions, and hence their catalytic 

performances. To ascertain this, a series of photocatalytic experiments were performed by 

systematically varying the electrostatic potential around AuNPs through precise ligand 

functionalization (Figure 3.16). The lower activity of [-] AuNP is attributed to the strong 

electrostatic repulsion between the catalyst and ferricyanide ions. Thus, a lowering of the negative 

surface potential around [-] AuNPs can, in principle, improve the photocatalytic performances. 

Accordingly, the [-] MUA ligands on AuNPs was diluted with ~ 10 % and ~ 20 % of [+] TMA 

ligands to yield heterogeneously charged [-/+]9 and [-/+]4 AuNPs, respectively. The on-NP ratio 

of [+] TMA ligands was estimated from NMR studies, as reported previously, to be ~ 12% and ~2 

3 % in [-/+]9 and [-/+]4 AuNPs, respectively.28,46 Time-dependent UV-Vis studies were performed 

to investigate the effect of NP surface potential on the photocatalytic reduction of ferricyanide. 

Figure 3.16 a,b,c summarize the linearized fits for the first order kinetic analysis performed on 

the spectral changes recorded at 420 nm, upon addition of AuNP catalysts of varying surface 

potentials (all the raw spectra are provided in the Appendix). Both the rate constant and conversion 

yields increased as the negative surface potential (unfavourable interaction) around AuNPs was 

lowered. For instance, the rate constant increased from ~ 8 × 10-4 min-1 (~ 10% conversion) to ~ 

1.5 × 10-3 min-1 (~ 25 % conversion) and further to ~ 3 × 10-3 min-1 (~ 40% conversion) as [-] 

AuNP was replaced with [-/+]9 and [-/+]4 AuNPs, respectively. The highest photocatalytic 

performance was achieved when [+] AuNPs was used as the catalyst and the trend was retained at 

different temperatures as well (Figure 3.16 d). A steady increase in the rate constant and 

conversion yield on moving from [-] to [+] surface potential, at all the four temperatures, shows 

the power of electrostatic forces in dictating the interaction and efficiency of hot electron transfer 

between AuNP and ferricyanide. The favourable interaction arising from the strong electrostatic 

attraction between NP catalyst and ferricyanide ion is hypothesized to increase the local 

concertation of the reactants around the AuNPs. Thus, the accessibility of the NP surface to the 
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ferricyanide ions as well as the probability of electron transfer is increased (thereby lowering the 

“ligand poisoning” effect), which is responsible for the enhancement in the photocatalytic 

performances. 

 

Fig. 3.16. Linearized first order fits following the spectral changes at 420 nm band for the 

photocatalytic reduction of ferricyanide by AuNP of varying surface potentials, under irradiation 

with 3W blue LED at a) 45 0C. b) 40 0C. c) 35 0C. All the raw spectra have been provided in the 

appendix. d) Variation in the hot electron rate constant as a function of NP surface potential and 

temperature. 

3.4.7. Mechanism of Hot Electron Transfer: 

The next target was to understand the underlying mechanism of the photocatalytic reduction of 

ferricyanide by AuNPs. Recent studies by Jain and co-workers have reported that the transfer of 

hot electrons from [-] AuNP to ferricyanide follows a Marcus model for outer-sphere electron 

transfer mechanism.41 The dependence of rate constant on the donor-acceptor distance proved that 

the hot electrons reach the ferricyanide ions through a multiple incoherent hopping mechanism. 

Our NP catalytic systems are close to the above reported ones, and similar distance dependent 
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photocatalytic studies were performed by varying the chain length of [+] ligands. The electron 

transfer rate constant at ~ 40 oC increased from ~ 2.9 × 10-3 min-1  to ~ 3.7 × 10-3 min-1 as the 

ligand chain length was reduced from ~ 19 Å (C11 [+]) to ~ 14 Å (C8 [+], Figure 3.17). The 

variation of rate constant as a function of spacer length (here, C11-TMA and C8 –TMA) allowed 

us to model the photocatalytic reduction of ferricyanide by [+] AuNP using the Marcus theory for 

outer-sphere electron transfer. 

 

Figure 3.17. Distance dependent variation in rate constant for the catalytic reduction of 

ferricyanide with [+] AuNP of variable chain lengths of TMA ligands. a) Schemes of TMA ligands 

with C8 and C11 chain lengths. b) Plots of photoconversion vs time using [+] AuNP catalyst of C8 

and C11 chain lengths at 40 0C.The rate constants were calculated by fitting the plot with first order 

exponential equation of the type C= C0 × (1- e –kt). c) Comparison of rate constants using [+] 

AuNP catalysts of C8 and C11 chain lengths 

According to the Marcus model, the rate of electron transfer is depicted by the following 

equation:41,47 

𝑘 =  ɸ √
𝜋

ℏ2𝜆𝑘𝐵𝑇
 |Η𝑎𝑏|2𝑒−∆𝐺#/𝑘𝐵𝑇 

Where kB is the Boltzmann constant, λ is the reorganization energy, ΔG# is the free energy of 

activation, |Η𝑎𝑏| is the electronic coupling term between the donor and the acceptor, and ɸ is the 

pre-exponential factor. In the present system, the free energy of activation and ɸ|Η𝑎𝑏|2 term are 

the two key parameters that will dictate the rate of hot electron transfer from AuNP catalyst to 
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ferricyanide ion. The free energy of activation, as a function of NP surface potential, was calculated 

from the slope of the plot of ln (kT1/2) vs 1/T as shown in Figure 3.18 a. (See experimental section 

3.3.10 for detailed calculation). The free energy of activation for [+] and [-] AuNP was estimated 

to be ~23 kJ/mol and ~20 kJ/mol respectively, which is in close agreement with the reported values 

for [-] AuNP (Figure 3.18 a).41 Even though there was an appreciable difference in the rate 

constant values at all the different temperatures, surprisingly, the free energy of activation for all 

the AuNP catalysts was comparable. This led us to focus on the second important factor, ɸ|Η𝑎𝑏|2 

term, which was calculated from the intercept of the ln (kT1/2) vs 1/T plot. Interestingly, the 

ɸ|Η𝑎𝑏|2 value for [+] AuNP was ~ 30 times higher than that of [-] AuNPs (Figure 3.18 b,c). A 

steady increase in ɸ|Η𝑎𝑏|2 value was observed as the NP surface potential was varied from [-] to 

[+] (Figure 3.18 b).  

 

Figure 3.18. a) Variation in the plot of ln (kT1/2) vs 1/T as a function of varying surface potential 

of AuNP catalysts. b) Variation of ɸ|Ηab|
2 as a function of varying surface potential of AuNP 

catalysts. c) Table summarizing various thermodynamic parameters for the photocatalytic 

reduction of ferricyanide by AuNP of varying surface potentials, based on Marcus model of outer- 

sphere electron transfer. aThe standard error of mean (SEM) was calculated from three independent 
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experiments. bThe conversion yield was calculated by monitoring the percentage of decrease in 

the ferricyanide absorption at 420 nm (from corrected spectra) after ~ 2 h of irradiation. cDetails 

on the quantum yield calculation are given in experimental section. 

Hab is the electronic matrix element which dictates the electronic coupling between the donor and 

acceptor electronic states, and often decreases exponentially with increasing the donor-acceptor 

distance.41 In the present study, the |Η𝑎𝑏|2 values for [+] and [-] AuNP catalytic systems are 

comparable as the length of [+] and [-] ligands on AuNPs are similar. Thus, the pre-exponential 

term (ɸ) will be the predominant factor responsible for the observed difference in the ɸ|Η𝑎𝑏|2 

values for [+] and [-] AuNP systems. It has been reported that the pre-exponential factor is directly 

dependent on the number of reactant molecules close to the catalyst surface.41 So, a higher 

concentration of ferricyanide ions around [+] AuNP surface will increase the pre-exponential 

factor, thereby justifying the corresponding increase in the ɸ|Η𝑎𝑏|2 value. Thus, the detailed 

analysis with Marcus model indicates that a higher local concentration of ferricyanide ion close to 

the [+] AuNP surface (through electrostatic attraction) can be the limiting factor to dictate the rate 

of hot electron transfer as well as the photocatalytic activity of the AuNP systems.  

3.4.8. Experimental and Theoretical Estimation of Ferricyanide Ions Close to NP 

Surface: 

The Detailed thermodynamic analysis using Marcus model for outer-sphere electron transfer 

revealed that the local concentration of ferricyanide close to the NP surface can be the limiting 

factor. Our next task was to estimate or compare the concentration of ferricyanide ion close to both 

[+] and [-] AuNPs for further validation of this hypothesis. The direct measurement of 

concentration of counter-ions and co-ions surrounding charged nanoparticles, to the best of our 

knowledge, is highly nontrivial.48 Researchers, therefore, heavily rely on theoretical models that 

have been developed to understand electrostatic interactions in charged nanoparticle systems.48 

The mean field Poisson- Boltzmann theory is one of such models which has been extensively used 

in the literature to understand how the presence of dissolved ions influence the electrostatic 

potential surrounding the charged nanoparticles.48 A similar model has been used in the present 

study (for detailed calculations, see Section 3.3.9 in experimental section) to calculate the 

concentration of the ferricyanide ions surrounding [+] and [-] charged AuNPs. Figures 3.19 and 

3.7 show the variation in the concentration of ferricyanide ions as a function of distance from the 
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surface of [+] and [-] AuNPs. A higher concentration of ferricyanide ion was estimated close to 

[+] AuNP as compared to [-] AuNP, which then exponentially decays to its bulk concentration 

moving away from the NP surface. For instance, the concentration of ferricyanide was estimated 

to be ~ 5 mM and ~ 0.05 mM at a distance of ~ 2 nm from the surface of [+] and [-] AuNPs, 

respectively. A close proximity of the ferricyanide ion on [+] AuNP helps in improving the NP 

accessibility and probability of electron transfer, thereby suppressing the ligand poisoning effect.  

 

Figure 3.19. Variation in the concentration of ferricyanide, estimated theoretically, as a function 

of distance from the surface of [+] and [-] AuNPs. 

Although a direct estimation of the ferricyanide ions at the surface of [+] and the [-] AuNP systems 

is nontrivial, we have used three independent experimental techniques (UV-Vis absorption, ICP-

MS and cyclic voltammetry) for an indirect estimation. These techniques were used to estimate 

the amount of ferricyanide adsorbed to the charged AuNPs to prove the role of electrostatics in 

dictating the distribution of ferricyanide ions. 

UV-Vis absorption and ICP-MS method: 

In a typical experiment, equal concentrations (~ 20 nM) of [+] and [-] AuNPs were mixed with ~ 

500 M of ferricyanide in 1M ethanol/water mixture and kept under dark for ~ 2 h for equilibration. 

In order to separate the adsorbed ferricyanide on AuNP from un-adsorbed ferricyanide, the 
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solution was centrifuged at 12,000 rpm for 10 min using a 100 kDa molecular weight cut off 

(MWCO) filter. The AuNP did not pass through the filter, and the filtrate was analyzed with UV-

Vis absorption to find out the concentration of un-adsorbed ferricyanide. From this, the adsorbed 

ferricyanide concentration was then calculated using the following equation, with the help of Beer-

Lambert’s law.  

[Ferricyanide] adsorbed = [Ferricyanide] initial – [Ferricyanide] filtrate 

Here, 

[Ferricyanide]initial = concentration of ferricyanide estimated from its absorbance value at 420 nm 

and Beer-Lambert’s law (Molar extinction coefficient of Ferricyanide at 420 nm = 1050 M-1 cm-1  

The concentration of adsorbed ferricyanide ions on [+] and [-] AuNPs was estimated to be ~ 45 

M and ~ 10 M, respectively (Table 3.1). This higher amount (~ 4.5 times) of ferricyanide on 

the surface of [+] AuNP is attributed to the favorable electrostatic attraction between [+] AuNP 

and ferricyanide. 

In order to directly estimate the concentration of ferricyanide adsorbed on the surface of charged 

AuNPs, we digested the residue in the filter (AuNPs with adsorbed ferricyanide ions) with aqua 

regia, and estimated the concentrations of Au and Fe using Inductively Coupled Plasma-Mass 

Spectrometry (Table 3.1). Similar to the UV-Vis absorption studies, ~ 4 times higher concertation 

of ferricyanide was estimated for [+] AuNP when compared to [-] AuNP. We would like to 

emphasis here that the step of centrifuging the solution will disturb the equilibrium distribution of 

ferricyanide ions around the charged AuNP, and can lead to the physical adsorption as well. 

Nevertheless, a significantly higher amount of ferricyanide (4 - 4.5 times higher) is observed 

around [+] AuNP, emphasizing the role of electrostatics in dictating the local concentration of 

negatively charged ferricyanide around the NP catalyst.  

 

Table 3.1. Table summarizing the estimation of ferricyanide concentration around the surface of 

[+] and [-] AuNPs using two independent experiments. 

  



Chapter 3                                                                                                       Electrostatics in Photocatalysis 

99 
 

Cyclic Voltammetry method:  

The redox behavior of ferricyanide can be used as a tool to estimate its concentration on the surface 

of [+] and [-] AuNPs using electrochemistry. Accordingly, Cyclic Voltammetry (CV) experiments 

were performed to study the redox behavior of ferricyanide/ferrocyanide couple in the presence of 

[+] and [-] AuNPs, adsorbed on the glassy carbon electrode (GCE). Specifically, we estimated the 

concentrations of ferricyanide adsorbed to the charged AuNPs from the peak current densities in 

the cyclic voltammogram.   

In a typical experiment, equal concentrations of [+] and [-] AuNPs (~ 20 nM) were drop casted on 

the active area of the GC electrode and then dried overnight under vacuum. Prior to drop casting, 

the GC electrode was first polished with alumina polishing powder and then cleaned 

electrochemically. The cyclic voltammetry experiments of 5 mM ferricyanide in 100 mM KCl 

(supporting electrolyte) were then performed with AuNP coated GC electrode as the working 

electrode, Pt mesh as the counter electrode and Ag/AgCl(s)/(satd. KCl) as the reference electrode. 

The electrochemically active surface area was measured by the scan rate dependent cyclic 

voltammetry of AuNP coated GC electrode in 100 mM KCl. The double layer capacitance (Cdl) 

was extracted from the plot of capacitance current as a function of scan rate. The obtained Cdl was 

divided by the theoretically expected value of capacitance for a flat electrode to get the 

electrochemically active surface area.49 A Nernstian behavior with a peak to peak separation (ΔEp) 

of ~ 70 mV (which is close to the theoretical value of 59 mV for the one electron transfer49) is 

observed for [+] AuNP. Whereas a clear blocking effect with increased peak to peak separation (~ 

343 mV) and suppressed peak currents were observed for [-] AuNP (Figure 3.20). This is due to 

a strong electrostatic repulsion between the [-] AuNP and negatively charged ferricyanide ions in 

the solution. 

We estimated the concentration of ferricyanide by integrating the area under the reduction peak. 

Detailed calculations are shown below: 

𝑄𝑟𝑒𝑑. =
𝐼𝑛𝑡𝑒𝑔𝑟𝑎𝑡𝑒𝑑 𝑎𝑟𝑒𝑎 𝑢𝑛𝑑𝑒𝑟 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑝𝑒𝑎𝑘 (𝑚𝐴. 𝑉)

𝑆𝑐𝑎𝑛 𝑟𝑎𝑡𝑒 (𝑉𝑠−1)
 

Where, Qred. = Total charge related to the reduction peak current. 

The number of moles of ferricyanide was then estimated using the following equation: 

𝑁𝑜. 𝑜𝑓 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑓𝑒𝑟𝑟𝑖𝑐𝑦𝑎𝑛𝑖𝑑𝑒 =  
𝑄𝑟𝑒𝑑.

𝑛𝐹
 

Where, n = no. of electrons involved in the reduction 
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Figure 3.20. Cyclic voltammograms of 5 mM ferricyanide (0.1M KCl as supporting electrolyte) 

with a) [+] AuNP and b) [-] AuNP coated GC electrodes at different scan rates. Currents are 

normalized to the geometric surface area. c) Comparative Cyclic voltammograms with [+] AuNP 

and [-] AuNP coated GC electrodes at a scan rate of 20 mV/s. The current is normalized with 

respect to the electrochemically active surface area of the electrodes. d) Bar diagram showing the 

difference in concentration of ferricyanide for [+] and [-] AuNP coated GC electrodes.   

F = Faraday constant, 96485 C mol-1 

Using the above calculations, the number of moles of ferricyanide was estimated to be ~ 40 nmol 

and ~10 nmol for the GC electrode coated with [+] and [-] AuNPs, respectively. This observation 

of ~ 4 times higher concentration of ferricyanide on the surface of [+] AuNP corroborates the 

presence of favorable electrostatic interactions between AuNP and ferricyanide. Thus, both the 

theoretical as well as the experimental data clearly confirms the higher concentration of 

ferricyanide ions close to the [+] AuNP surface compared to that of [-] AuNP, and this in turn is 

dictated by a precise electrostatic interaction between the charged AuNP and the ferricyanide ions.  
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3.5. Recyclability aspect 

The recyclability aspect of the [+] AuNPs was tested for the photocatalytic reduction of 

ferricyanide ions. In a typical experiment, after the completion of first cycle of ferricyanide 

reduction, a fresh ferricyanide solution (500 was added to the [+] AuNP aggregates and 

further irradiated with visible light to carry out the 2nd cycle of reduction. As shown In Figure 

3.21, only ~ 25% catalytic activity of [+] AuNP was retained in the 2nd cycle (conversion yields of 

[+] AuNP in 1st and 2nd cycles were estimated to be ~ 58% and ~ 15%, respectively). The lower 

catalytic activity of the AuNP aggregates can be attributed to the reorganization of the ligand shell 

(thus affecting the electrostatics), destabilization of the NP system and the reduction in the active 

surface area available for catalysis: commonly observed factors in homogeneous catalysis with 

AuNPs.33 Thus, the process of aggregation can be considered as a poisoning as it reduces the 

catalytic performance.  

 

 

Figure 3.21. a) Time-dependent spectral changes in the ferricyanide absorption in the presence of 

aggregated [+] AuNPs, under irradiation with 3W blue LED at ~450C (All the spectra were 

corrected to remove the NP absorption). The aggregated [+] AuNPs obtained after the 1st cycle of 

photoreduction was used as the catalyst. The inset shows the increase in the ferrocyanide 

absorption along with an isosbestic point at ~ 280 nm. b) The linearized first order fits following 

the spectral changes at 420 nm band for the 1st (blue points) and 2nd (red points) cycles of 

ferricyanide reduction by [+] AuNPs. 

 

Having said that, the present catalyst design has the flexibility of reducing the extent of NP 

aggregation by fine tuning the electrostatic interactions. For instance, significantly lower 

aggregation was observed for [+/-]4 AuNP (λmax shift = ~5 nm) in the presence of ferricyanide as 
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compared to [+] AuNP (λmax shift = ~14 nm). As a result, ~60% of the catalytic activity was 

retained by [+/-]4 AuNP in the 2nd cycle of reduction (conversion yields of [+/-]4 AuNP in 1st and 

2nd cycles were estimated to be ~40% and ~25%, respectively. Figure 3.22). Thus, the present 

catalyst design has the flexibility to achieve either high catalytic efficiency or high catalytic 

recyclability, as per the demand. 

 

Figure 3.22. a) Time-dependent spectral changes during the 2nd cycle of ferricyanide reduction 

by [+/-]4 AuNPs (All the spectra were corrected to remove the NP absorption). The inset shows 

the increase in the ferrocyanide absorption along with an isosbestic point at ~ 280 nm. b) The 

linearized first order fits following the spectral changes at 420 nm band for the 1st (blue points) 

and 2nd (red points) cycles of ferricyanide reduction by [+/-]4 AuNPs. 

 

3.6. Conclusion 

In conclusion, the potency of favourable interaction between NP catalyst and reactant molecules 

in suppressing the ligand poisoning effect is demonstrated in the model photocatalytic reaction of 

ferricyanide reduction. The dependence of catalytic activities on the AuNP surface potential 

revealed the role of electrostatics in enhancing the photocatalytic performances. The favourable 

interaction arising from electrostatic forces was tuned by varying the surface potential around 

AuNP catalysts through precise ligand functionalization. The strong electrostatic attraction 

between [+] AuNP and [-] ferricyanide resulted in an increase in the local concentration of 

ferricyanide around the NP surface. A close proximity of ferricyanide ions on [+] AuNPs improves 

the accessibility of NP to substrates, and the probability of hot electron transfer. The catalytic 

performance of [+] AuNP catalyst was four-five folds better than the commonly used [-] AuNP 
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catalyst. The thermodynamic analysis based on Marcus model of outer-sphere electron transfer 

proved that the dominance of [+] AuNP is due to the higher pre-exponential factor (), which is 

directly related to the local concentration of reactants. Thus, the introduction of favourable 

interactions through precise surface functionalization helped in achieving an efficient 

photocatalysis with plasmonic AuNP capped with insulating ligands. 

 Such strategies of tuning the catalytic activities through favourable – unfavourable interactions 

can be conveniently adapted to a broader class of reactions, especially in case of multielectron 

conversions, where a strong NP-reactant interaction is crucial for the transfer of multiple charge 

carriers within a very short lifetime. The next Chapter focuses on this particular aspect and 

investigates the role of NP-reactant interaction in more challenging photocatalytic multielectron 

reactions.  
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3.8. Appendix 

 

Figure 3.23. Tapping mode AFM images of [+] AuNP catalyst with ferricyanide ion. a-d) 2D and e) 

3D AFM height images of [+] AuNP after the completion of photocatalysis. A clear aggregation of 

[+] AuNP was observed, which confirms a strong electrostatic attraction (favorable interaction) 

between [+] AuNP catalyst and [-] ferricyanide ion. 
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Figure 3.24. Tapping mode AFM images of [-] AuNP catalyst with ferricyanide ion. a-c) 2D and d) 

3D AFM height images of [-] AuNPs after the completion of photocatalysis. Negligible changes in 

the size and morphology of [-] AuNPs were observed. This confirms a strong electrostatic repulsion 

(unfavorable interaction) between [-] AuNP catalyst and [-] ferricyanide ion.  
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Figure 3.25. Temperature dependent catalytic reduction of ferricyanide with [+] AuNP. The progress 

of ferricyanide reduction by tracking the absorption changes at 420 nm in the presence of [+] AuNPs 

at a) 45 0C, b) 40 0C, c) 35 0C and d) 25 0C. Inset shows the corresponding corrected spectra.  

 

Figure 3.26. Effect of temperature on the rate constant of photocatalytic reduction of ferricyanide 

with [+] AuNP. a) Linearized fit for the first order analysis by tracking the absorbance at 420 nm 

at four different temperatures. b) Comparison of the rate constants calculated from the 
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corresponding linearized fits at four different temperatures. The error bars correspond to standard 

deviations based on three independent sets of experiments. 

 

Figure 3.27. Temperature dependent catalytic reduction of ferricyanide with [+/-]4 AuNPs. The 

progress of ferricyanide reduction by tracking the absorption changes of ferricyanide peak at 420 nm 

in the presence of [+/-]4 AuNP at a) 45 0C, b) 40 0C, c) 35 0C and d) 25 0C. Inset shows the 

corresponding corrected spectra.  

 

Figure 3.28. Effect of temperature on the rate constant of photocatalytic reduction of ferricyanide 

with [+/-]4 AuNPs. a) Linearized fit for the first order analysis by tracking the absorbance at 420 

nm at four different temperatures. b) Comparison of the rate constants calculated from the 
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corresponding linearized fits at four different temperatures. The error bars correspond to standard 

deviations based on three independent sets of experiments. 

 

Figure 3.29. Temperature dependent catalytic reduction of ferricyanide with [+/-]9 AuNPs. The 

progress of ferricyanide reduction by tracking the absorption changes of ferricyanide peak at 420 nm 

in the presence of [+/-]9 AuNPs at a) 45 0C, b) 40 0C, c) 35 0C and d) 25 0C. Inset shows the 

corresponding corrected spectra.  
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Figure 3.30. Effect of temperature on the rate constant of photocatalytic reduction of ferricyanide 

with [+/-]9 AuNPs. a) Linearized fit for the first order analysis by tracking the absorbance at 420 

nm at four different temperatures. b) Comparison of the rate constants calculated from the 

corresponding linearized fits at four different temperatures. The error bars correspond to standard 

deviations based on three independent sets of experiments. 

 

Figure 3.31. Temperature dependent catalytic reduction of ferricyanide with [-] AuNPs. The progress 

of ferricyanide reduction by tracking the absorption changes of ferricyanide peak at 420 nm in the 

presence of [-] AuNPs at a) 45 0C, b) 40 0C, c) 35 0C and d) 25 0C. Inset shows the corresponding 

corrected spectra.  
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Figure 3.32. Effect of temperature on the rate constant of photocatalytic reduction of ferricyanide 

with [-] AuNPs. a) Linearized fit for the first order analysis by tracking the absorbance at ~420 nm 

at four different temperatures. b) Comparison of the rate constants calculated from the 

corresponding linearized fits at four different temperatures. The error bars correspond to standard 

deviations based on three independent sets of experiments. 

 

Figure 3.33. Variation in the hot electron transfer rate constant for the photocatalytic reduction of 

ferricyanide with AuNPs of varying surface charges at different temperatures. Bar diagrams 

showing the variation in rate constant values (calculated from the corresponding linearized fits) as 

a function of AuNP surface potential at a) 45 0C, b) 40 0C, c) 35 0C and d) 25 0C. 
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Chapter 4 
Electrostatically Driven Multielectron Transfer for the 

Photocatalytic Regeneration of Nicotinamide Cofactor 

 

 

 

  
 

This Chapter is adapted with permission from the following paper. Copyright 

2020, American Chemical Society. 

Roy, S.; Jain, V.; Kashyap, R. K.; Rao, A.; Pillai. P. P.* Electrostatically Driven 

Multielectron Transfer for the Photocatalytic Regeneration of Nicotinamide 

Cofactor. ACS Catal. 2020, 10, 5522-5528. 
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4.1. Abstract 

Developing generic strategies, capable of driving multielectron processes, are essential to realize 

important photocatalytic conversions. Existing strategies often rely on complex catalytic systems, 

containing electron mediators and co-catalysts, for performing important multielectron 

photocatalytic transformations. We present here the idea of introducing favorable catalyst-reactant 

interaction in achieving efficient photocatalytic regeneration of Nicotinamide (NADH) cofactor, 

by gold nanoparticles (AuNPs). The electrostatic attraction emanating from the ligands on the 

surface of NP increases the channeling and local concentration of NAD+ reactants around AuNP 

photocatalysts, thereby enhancing the probability of electron transfer process. Detailed kinetic and 

intensity dependent studies confirm the involvement of multiple electron transfer from AuNP 

photocatalyst to NAD+ reactant. A ~10 times increase in the NADH formation, while switching 

from unfavorable to favorable interaction, proves the necessity of catalyst-reactant interaction in 

driving challenging photocatalytic multielectron reactions. The most interesting feature of the 

present idea of interaction is its flexibility to be coupled with other existing strategies, to boost the 

overall catalytic performances. The photocatalytic performances of AuNP presented here are in 

comparable or greater than most of the catalytic systems reported based on plasmonic NP, with 

the added advantage of being structurally less complex. The idea of electrostatically assisted 

photocatalysis can act as a generic approach for other important multielectron photocatalytic 

conversions as well. 

4.2. Introduction 

Driving multielectron redox reactions with visible light is one of the holy grails in the area of 

artificial photosynthesis. Improving the kinetics of multielectron processes is necessary to realize 

most of the important photocatalytic conversions like CO2 to CH4, N2 to NH3, H2O to O2 and so 

on.1-3 This requires (i) high rate of electron excitation with accumulation of multiple charge 

carriers,4-7 and (ii) a fast funneling of charge carriers from the photocatalyst to the reactant 

molecules.4-7 The high molar extinction coefficient and photostability of metal and semiconductor 

nanoparticles have rendered its use as efficient photocatalysts in generating and storing multiple 

charge carriers.8-18 However, the subsequent transfer of the multiple charge carriers to reactants is 

still challenging due to its short lifetime and ligand poisoning effect in nanomaterials.18-21 As a 

result, charge mediators or co-catalysts are oftentimes used to facilitate the charge transfer process, 

thereby increasing the complexity of the photocatalytic system.22-24 For instance, in z-scheme 
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water splitting, electron mediators or co-catalysts are commonly used to facilitate the rate of 

forward electron transfer and improve the photocatalytic efficiency of the reaction (Figure 4.1).24 

These electron mediators oftentimes involve in several undesirable backward reactions, which 

affect the overall photocatalytic efficiency.  

 

Figure 4.1. Schematics of photocatalytic water splitting in a Z-scheme water splitting system. 

Adapted with permission from reference 24. Copyright 2013, American Chemical Society. 

Therefore, strategies to develop sole photocatalysts for multielectron reactions are highly desirable 

but yet not widely achieved. The idea of introducing favourable catalyst-reactant interaction is 

emerging as a promising strategy not only to improve the funnelling of charge carriers, but also to 

dictate the product selectivity.18,25-34 The exclusivity of such favorable catalyst-reactant 

interactions in multielectron photochemical reactions has been scarcely studied, which forms the 

basis of this Chapter. In this direction, we have chosen the task of photocatalytic regeneration of 

nicotinamide cofactor (NADH) by plasmonic gold nanoparticles (AuNPs), without the aid of any 

electron mediators or co-catalysts. NADH is a key cofactor molecule consumed by different 

oxidoreductase enzymes in various biocatalytic reactions, and hence the regeneration of NADH 

from NAD+ is an active area in photo-redox biocatalysis.35-36 Most of the previous photocatalytic 

studies involves electron mediators or co-catalysts for the efficient regeneration of NADH 

cofactor.37-49 For instance, Baeg and co-workers developed a graphene based visible light active 

photocatalytic system for the regeneration of NADH (Figure 4.2 a,b). A porphyrin chromophore 

was covalently attached with the chemically converted graphene for efficient light harvesting, and 

an Rh based electron mediator complex was used for an efficient electron transfer from the 

photocatalyst to the NAD+ molecules.41 A ~ 45 % yield of NADH regeneration was achieved under 

visible light irradiation of ~ 2 h. In another study, Park and co-workers synthesized a polydopamine 



 Chapter 4                                                                            Electrostatically Driven Cofactor Regeneration 

118 
 

/ AuNP / Eosin Y (PDA-Au-EY) based nanohybrid system for the photocatalytic regeneration of 

NADH (Figure 4.2 c,d).38 The LSPR of AuNPs was utilized to enhance the light absorbing 

property of the photosensitizer, and a similar Rh based electron mediator complex was used to 

facilitate the electron transfer from the photocatalyst to the NAD+ molecules. A ~ 15 % NADH 

regeneration yield was achieved under 3 h of visible light irradiation. Thus, majority of the 

previous photocatalytic studies used an electron mediators or co-catalysts for an efficient 

multielectron transfer. Dedicated synthesis procedures or advanced fabrication protocols are 

oftentimes required to integrate such electron mediators/co-catalysts into the catalytic systems.37-

49 On the contrary, the present study aims to develop an interaction based strategy for direct 

multielectron transfer from the photoexcited AuNPs to the NAD+ molecule without the aid of any 

electron mediators or co-catalysts.  

 

Figure 4.2. a) Schematic representation of the photocatalytic regeneration of NADH coupled with 

enzymatic reduction of CO2 to formic acid with graphene based photocatalyst. b) Activity of 

graphene based photocatalysts in the photoctalytic regeneration of NADH. Adapted with 

permission from reference 41. Copyright 2012, American Chemical Society. c) Energy level 

diagram and the electron transfer pathway for the plasmon enhanced photocatalytic regeneration of 

NADH with PDA-Au-EY based core-shell photocatalyst. d) Photogeneration of NADH with PDA-

Au, PDA-EY and PDA-Au-EY photocatalysts. The inset shows the generation of L-glutamate in 

an enzymatic reduction of α-ketoglutarate coupled with the generation of NADH. Adapted with 

permission from reference 38. Copyright 2014, John Wiley and Sons.  
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The net negative charges on NAD+, due to two phosphate groups, allowed us to use electrostatic 

forces as the tool to impart favorable catalyst-reactant interaction (Figure 4.3). The ligands on the 

surface of AuNP regulates the channeling and local concentration of negatively charged NAD+, 

thereby controlling the charge transfer distance between the photocatalyst and reactant. 

 

Figure 4.3. Schematics of electrostatically assisted photocatalytic multielectron reduction of 

NAD+ to NADH by AuNP, without the aid of charge mediators or co-catalysts. 

Accordingly, an efficient photocatalytic regeneration of NADH (60 M; TON ~ 12 ×103 / NP) 

was achieved using [+] AuNP as the sole photocatalyst, without the aid of any electron mediator 

or co-catalyst. Interestingly, [-] AuNP exhibited negligible catalytic activity even in the presence 

of an electron mediator, reemphasizing the necessity of favorable catalyst-reactant interaction to 

drive challenging multielectron photocatalytic transformations. Systematic studies by varying the 

surface potential of AuNPs proved the exclusivity of electrostatic interactions in the photocatalytic 

regeneration of NADH. Further, electrostatics was used to bind [+] AuNP with a negatively 

charged electron mediator, to show the flexibility in coupling the present idea of interaction driven 

photocatalysis with existing strategies to boost the regeneration of NADH. Strikingly, only ~1 h 

of irradiation was sufficient to produce twice the amount of NADH cofactor, as compared to that 

in the absence of an electron mediator. Thus, the present study demonstrates the prodigious role 

of favorable catalyst-reactant interaction in dictating multi-electron photocatalytic reactions, 

which can serve as a generic approach for other important reactions as well.  
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4.3. Experimental Details: 

4.3.1. Materials and Reagents:  

Tetrachloroaurate trihydrate (HAuCl4.3H2O), tetramethylammonium hydroxide (TMAOH) 25 % 

wt. in water, 11-mercaptoundecanoic acid (MUA), hydrazine monohydrate (N2H4.H2O 50-60%), 

tetrabutylammonium borohydride (TBAB), potassium ferricyanide, polyvinylpyrrolidone, β-

nicotinamide adenine dinucleotide sodium salt (NAD+), β-nicotinamide adenine dinucleotide 

reduced disodium salt (NADH), albumine from bovine serum (BSA), ethylenediaminetetraacetic 

acid tetrasodium salt hydrate (EDTA), and diaphorase from Clostridium kluyveri (100-UN) were 

purchased from Sigma-Aldrich. (Di-n-dodecyl) dimethyl ammonium bromide (DDAB) and 

dodecylamine (DDA) were purchased from Alfa Aesar. DL-6,8-thioctic acid amide (DL-

lipoamide) was purchased from Maaspharmachemicals. Triethanolamine (TEOA) was purchased 

from Avra Chemicals. All the reagents were used as received without any further purification. The 

positively charged N,N,N-trimethyl (11- mercaptoundecyl) ammonium ion (TMA) was 

synthesized according to the reported procedure.50  

4.3.2. Synthesis of AuNPs:  

All the nanoparticles were synthesized following a modified literature procedure.51,52 Hydrazine 

monohydrate (N2H4.H2O) was used as the reducing agent. In a typical experiment, HAuCL4.3H2O 

(12 mg), DDA (140 mg), and DDAB (140 mg) were mixed together in toluene (4 mL) and 

sonicated for ~10 min for complete stabilization of Gold (III) ions. This was followed by a rapid 

injection of another toluene solution containing 30 mg of TBAB and 45 mg of DDAB. The 

resulting solution was left stirring overnight to ensure the complete reduction of gold (III). The 

seed particles were then grown to 5.5 ± 0.7 nm DDA-Au NPs. A growth solution was prepared by 

adding 460 mg of DDAB, 1.4 g of DDA, 120 mg of HAuCl4.3H2O and seed solution in 30 mL 

toluene. The growth solution was further reduced with a dropwise addition of another toluene 

solution containing 160 μL of N2H4.H2O and 560 mg of DDAB. The solution was stirred overnight 

for complete growth of the particles yielding monodisperse 5.5 ± 0.7 nm of DDA-Au NPs. The 

particles were further grown to ~11 nm DDA-Au NPs. A growth solution was prepared by adding 

8 g of DDAB, 13.0 g of DDA, and 1.1 g of HAuCl4.3H2O and seed solution in 200 mL toluene. 

The growth solution was further reduced with a dropwise addition of another toluene solution 

containing 650 μL of N2H4.H2O and 4.4 g of DDAB. The solution was stirred overnight for 
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complete growth of the particles yielding monodisperse 11 ± 1.3 nm of DDA-Au NPs as confirmed 

through TEM analysis. The detail procedure for the place exchange of DDA-AuNP with different 

charged ligands (as per Figure 4.4) is described below. 

4.3.3. Place Exchange of AuNPs:  

In a typical synthesis of [+] AuNPs, DDA-Au NPs (15 mL) were first precipitated by adding 50 

mL of methanol which yielded a black precipitate. The supernatant was carefully removed and the 

precipitate was then re-dispersed in 20 mL toluene.  [+] TMA ligand (equal to the moles of Au(III) 

in solution) dissolved in 10 mL dichloromethane (DCM)) was added. The solution was left 

overnight to ensure a complete ligand exchange. Next, the supernatant was decanted and the 

precipitate was washed with DCM (3 × 50 mL) and acetone (50 mL) respectively. The precipitate 

was then dried and redispersed in miliQ water for further studies. The [-] AuNPs were redispersed 

in miliQ water by adding ~20 μL of TMAOH (25 % wt. in water) base to deprotonate the carboxylic 

acid group. [+/-]4, [+/-]1 and [-/+]4  AuNPs were synthesized by adding TMA and MUA ligands in 

a molar ratio of 4:1, 1:1 and 1:4 respectively. The on-NP ratio was estimated to be [+/-]4.8 [+/-]1.2 

and [-/+]3.3, using NMR studies as reported in the previous works.53,54  
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Figure 4.4. Schematic illustration of place exchange of DDA capped AuNP. DDA capped AuNPs 

were place exchanged with either [+], [-] or a mixture of [+] and [-] to synthesize positively, 

negatively or heterogeneously charged AuNPs, respectively. 

4.3.4. Synthesis of Polyvinylpyrrolidone (PVP) AuNPs: 

PVP AuNPs were synthesized following a citrate reduction method.55 In a typical synthesis, 10 

mg of HAuCl4. 3H2O was dissolved in 100 mL water and the solution was heated to boiling. Next 

0.6 mL of trisodium citrate solution (100 mg in 2 mL of water) was rapidly injected to the 

preheated gold solution under vigorous stirring. The solution was kept at the same temperature for 

~30 min till a wine-red color was persistent. Subsequently, the solution was cooled to room 

temperature and 250 mg of PVP (Mw = 40000) was added to 15 mL of citrate AuNPs. The solution 

was then sonicated for 45 min followed by two cycles of centrifugation at 10000 rpm for 10 min. 

The supernatant was carefully removed and the NPs were finally redispersed in water. 

4.3.5. Transmission Electron Microscopy (TEM) Study: 

TEM studies were performed to characterize the AuNPs. The TEM sample for the nanoparticles 

was prepared by drop casting AuNP solution on a 400 mesh carbon coated copper grid (Tedpella 

Inc.) and dried under vacuum. The High-Resolution Transmission Electron Microscopic (HRTEM) 

imaging was performed on Jeol JEM2200FS (200 kV) HRTEM instrument. 

4.3.6. Zeta Potential: 

The zeta potential (ζ) of charged AuNPs were measured in Nano ZS90 (Malvern) Zetasizer 

instrument. The optical density of the nanoparticle solution was maintained ~0.2 during all the 

measurements. The error bar was calculated from three different experiments. ζ was determined by 

measuring the electrophoretic mobility and using Henry’s equation. 

UE =
2𝜀𝜁𝑓(𝑘𝑎)

3𝜂
 

UE: Electrophoretic mobility 

ζ: Zeta potential 

 ε : Dielectric constant 

η : Viscosity 

ƒ(Ka): Henry’s Function 
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4.3.7. Photocatalytic Reduction of Ferricyanide to Ferrocyanide: 

All the photocatalytic reduction experiments were performed in a 3 mL quartz cuvette under 

continuous irradiation from a power tunable 532 nm continuous wave (CW) diode laser. The beam 

diameter was set to be 1.1 cm and the light intensity on the cuvette wall was measured by using an 

optical power meter from Newport (Model 842.PE). All the kinetic measurements were performed 

using SHIMADZU UV-3600 plus UV-Vis-NIR spectrophotometer and the temperature of the 

reaction mixture was maintained using a temperature controller equipped with the UV-Vis-NIR 

spectrophotometer. In a typical experiment, AuNP (absorbance was set to ~1 for all the NP 

systems), EtOH (1.5 M) and potassium ferricyanide (500 μM) were mixed in a 3 mL quartz cuvette 

and purged with Ar for 15 min. The cuvette was then sealed with Teflon and kept at   for 15 min 

for temperature equilibration, prior to the irradiation. Photoreduction of ferricyanide was 

monitored by measuring the absorbance of the solution at a fast scan mode, at 15 min interval for 

2 h. 

4.3.8. Photocatalytic Reduction of NAD+ to NADH: 

The photocatalytic reduction of NAD+ was performed in a 3 mL quartz cuvette under continuous 

irradiation from a power tunable 450 nm continuous wave (CW) diode laser. The beam diameter 

was set to be 1.1 cm and the light intensity on the cuvette wall was measured by using an optical 

power meter from Newport (Model 842.PE). In a typical experiment, AuNP (absorbance was set 

to ~1.3 for all the NP systems), triethanolamine (TEOA) (1 M) and NAD+ (1 mM) were mixed in 

phosphate buffer (50 mM) and the pH of the solution was maintained at ~8. TEOA acts as a hole 

scavenger, as well as a source of proton in the presence of appropriate photocatalysts.56 Next the 

solution was purged with Ar for 30 min under continuous stirring. The cuvette was then sealed 

with Teflon and subjected to the irradiation for 13 h. After 13 h of irradiation, the AuNPs were 

first separated by centrifuging the solution with a 100000 MWCO centrifuge filters and finally the 

quantitative analysis of NADH was performed through Lipoamide Dehydrogenase Assay (LDH). 

For the photocatalytic reduction in presence of Eosin Y, the AuNP and Eosin Y were first stirred 

for 30 min to ensure the complexation followed by the similar procedure as mentioned above. 

4.3.9. Lipoamide Dehydrogenase (LDH) Assay  

Lipoamide dehydrogenase assay was performed based on Sigma Quality Control Test Procedure 

(EC 1.8.1.4).57,58 The assay was performed at 25 0C and all the reagents were prepared fresh before 

the assay. Phosphate buffer (PB) (50 mM, pH = 7) was prepared by mixing Na2HPO4 and NaH2PO4 



 Chapter 4                                                                            Electrostatically Driven Cofactor Regeneration 

124 
 

in miliQ water. Lipoamide solution (28 mM) was prepared by adding 20 mg of lipoamide in 2 mL 

of ethanol and 1.5 mL of PB, and sonicating the solution for 3 min. EDTA (600 mM) with 2% 

(w/v) BSA was prepared by dissolving 605 mg of EDTA and 100 mg of BSA in 5 mL water and 

the pH of the solution was maintained at 7. An enzyme (diaphorase from Clostridium kluyveri) 

stock solution was prepared by adding 2 mg of enzyme (5.2 units / mg of protein) in 2 mL of cold 

PB solution. In a typical enzymatic assay, 100 L of lipoamide solution, 100 L of EDTA solution 

and 100 L of enzyme were added to the reaction mixture (after separating the catalyst) and the 

decrease in absorption at 340 nm was monitored till the absorption decrease got saturated. In 

presence of enzyme, NADH will be consumed by the enzyme as per the following reaction 

resulting in a decrease in the absorbance at 340 nm. 

 

 A positive control experiment with the addition of equal amount of NADH (by making the 

absorption at 340 nm same to that of the reaction mixture) was always performed during analyzing 

the sample from the reaction mixture.  

4.3.10. Calculation of Turnover Number (TON) & Turnover Frequency (TOF):  

TON for the reaction was defined as the total number of NADH molecules generated per AuNP 

for a given time of irradiation. The total number of AuNPs was calculated using the Beers-

Lambert’s law. The absorbance of the AuNPs was set to be ~1.3 for all the experiments and the 

extinction coefficient of the NPs was considered to be 2.7 ×108 M-1 cm-1 for ~12 nm particles.93 

Thus, the total no. of AuNPs in 3 mL of reaction volume was calculated to be 8.03×1012. The 

Turnover Frequency (TOF) for the photocatalytic reaction is defined as the number of NADH 

molecules formed per AuNP per unit illumination time. Thus, the TOF value was calculated from 

the slope of a linear fit to the TON vs time plot.  

4.3.11. Kinetic Analysis for the Photocatalytic Reduction of Ferricyanide: 

Construction of Corrected Spectra: 

All the rate constant analysis were performed after constructing a corrected spectra to subtract the 

contribution from the AuNP absorption. The corrected spectra were constructed as follow.6  

Spectrum corrected = spectrum sample – (peak absorbance sample/peak absorbance AuNP) × 

spectrum AuNP 
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Peak absorbance sample is the difference between the absorbance at λmax AuNP and at 800 nm in 

sample spectra. Peak absorbance AuNP is the difference between the absorbance at λmax AuNP and 

at 800 nm for only AuNP (without ferricyanide) with the same NP concentration as in the reaction 

mixture.  

Determination of Reaction Rate: 

The reaction rate was calculated by plotting photoconversion (in units of M) as a function of time 

(min). The photoconversion was calculated from the corrected spectra as per the following 

equations.  

                                Conversion (t) = − (A420nm (t) − A420nm (t=0)) / 1050  

                               Conversion (t) = (A240nm (t) − A240nm (t=0)) / 6250 

The extinction coefficient of ferricyanide and ferrocyanide are 1050 M-1 cm-1 and 6250 M-1 cm-1, 

respectively.6 The final conversion was calculated by taking an average of the two conversions. 

The photoconversion vs time plot was fitted with a straight line and the slope of which is the 

reaction rate in units of M min-1. 

Determination of Number of Photons Absorbed / NP /s (Np): 

The number of photons absorbed by each NPs at a particular intensity was calculated as per the 

following equation6  

 

Where A is the absorbance of AuNPs at the irradiation wavelength. The number of AuNPs was 

calculated from the absorption maxima (at 525nm) using the extinction co-efficient of 2.7 ×108 

M-1 cm-1 6 for 12 nm AuNPs. 

Quantum Yield (QY) calculation: 

The quantum yield for the photocatalytic reduction of NAD+ was calculated by using the 

following equation6 

 

𝑄𝑌 =  
6.023 × 1023 × 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑁𝐴𝐷𝐻 𝑓𝑜𝑟𝑚𝑒𝑑 𝑎𝑓𝑡𝑒𝑟 13 ℎ 𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛)

𝑁𝑜. 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝𝑒𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 (𝑝ℎ𝑜𝑡𝑜𝑛 𝑓𝑙𝑢𝑥) × (1 − 10−𝐴) × 60 × 60 × 13
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Where, A is the absorbance of the nanoparticle solution, at the irradiation wavelength.  

The photon flux or the no. of photons incident per second was calculated using the following 

equation: 

𝑃ℎ𝑜𝑡𝑜𝑛 𝑓𝑙𝑢𝑥 =  
𝐸𝑥𝑐𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑛𝑒𝑟𝑔𝑦

𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑒𝑟 𝑝ℎ𝑜𝑡𝑜𝑛
  

The excitation energy for the photocatalytic reactions was 800 mW 

Energy of each photon at λ = 450 nm would be 4.41 ×10-19 J. 

So the photon flux will be  

𝑝ℎ𝑜𝑡𝑜𝑛 𝑓𝑙𝑢𝑥 =  
0.8 𝐽/𝑠

4.41 × 10−19 𝐽
= 1.81 × 1018/𝑠 

 

4.4. Results and Discussion 

4.4.1. Design and Characterization of Plasmonic AuNP Catalysts: 

The hypothesis of the present work was to investigate the role of interaction between AuNP 

catalyst and the reactant molecules to drive a multielectron reduction of NAD+ to NADH. The 

presence of two negative charges (due to two phosphate groups) allowed the use of electrostatic 

forces as a handle to tune the catalyst-reactant interactions. The electrostatic field experienced by 

[-] NAD+ molecule can be controlled by precise tuning of the surface ligands on AuNPs. 

Accordingly, N,N,N-trimethyl(11-mercaptoundecyl)ammonium chloride (TMA, [+]) and 11-

mercaptoundecanoic acid (MUA, [−]) ligands were functionalized to render positive and negative 

surface potential around AuNPs, respectively (Figure 4.5 a,b).52 Further fine tuning in the surface 

potential was achieved by functionalizing a mixture of [+] and [-] ligands on the AuNP surface 

through a place exchange reaction (Figure 4.5 a,b. Details on the synthesis are provided in the 

Experimental Section 4.3.2).52,53 A decrease in the positive zeta potential from +32.1 ± 1.6 mV 

to +27.0 ± 0.5 mV was observed upon dilution of [+] ligands with ~ 20 % of [-] ligands, which 

further decreased to +10.0 ± 0.4 mV with ~ 50 % of [-] ligands (Figure 4.5 d,e). Similarly, a 

decrease in the negative zeta potential from -35 ± 1.02 to -25 ± 1.3 was observed upon dilution of 

[-] ligands with ~ 20 % of [+] ligands on the surface. The spectroscopic (UV-Vis absorption) and 

Microscopy (Transmission Electron Microscopy, TEM) studies confirm negligible changes in the 

stability and average size of AuNPs upon various surface functionalizations (Figure 4.5). Thus, 
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similar sized AuNPs (12.0 ±0.5 nm from TEM) with varying surface potentials were successfully 

prepared, which is crucial for comparing their photocatalytic performances. 

 

Figure 4.5. Spectroscopic, microscopic and surface characterization of AuNPs. a) UV-Vis 

absorption spectra of all AuNP systems under study. b) Representative TEM image of [+] AuNP 

and c) size distribution histogram generated from ~ 300 particle analysis (d) Typical zeta potential 

plots for different sets of AuNPs with varying surface charges. e) A bar diagram showing the 

variation of zeta potential as a function of ligands on the surface of AuNPs. The error bars 

correspond to standard deviations based on three different sets of experiment. 

4.4.2. Photocatalytic Reduction of Ferricyanide to Ferrocyanide: 

A model intensity dependent study was developed by Jain and coworkers to test the ability of 

AuNPs to participate in multielectron photocatalytic reactions.6 Specifically, a superlinear increase 

in the rate of ferricyanide reduction as a function of irradiation intensity (or photon flux) is a typical 

signature for a multielectron transfer process.6 A similar intensity dependent photocatalytic studies 

on ferricyanide reduction by AuNPs was first performed to test the power of NP-reactant 

interaction in driving multielectron reactions. Our group has previously shown the potency of NP 

catalyst-reactant interaction in the photocatalytic reduction of ferrocyanide;18 whereas its 

exclusivity in driving multielectron photocatalytic reactions is still unexplored. The electrostatic 

forces were used as the means for controlling the interaction between AuNP photocatalyst and 

negatively charged ferricyanide reactant. The NP-ferricyanide interaction was made favorable or 

unfavorable by introducing positive ([+]) and negative ([-]) surface potentials on AuNP 
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photocatalysts, respectively. No noticeable reduction of ferricyanide was achieved with [-] AuNP 

even at higher light intensity, which is attributed to the dominant ligand poisoning effect (Figure 

4.6 c and Figure 4.19 in Appendix).18 As anticipated, [+] AuNPs not only photocatalyzed the 

reduction of ferricyanide but also showed an increase in the rate of reduction as a function of 

irradiation intensity. A strong favorable electrostatic attraction between [+] AuNP and [-] 

ferricyanide revealed a superlinear increase in the rate of reduction as a function of photon flux, 

which is a typical signature for multielectron transfer process ((Figure 4.6 a,c,d and Figure 4.17 

in Appendix Section).6 The linear regime at lower photon flux is dominated by 1e- transfer 

process, whereas the non-linear regime at higher photon flux is characteristics of a 2e- transfer 

process.6 The ability of [+] AuNP to transfer multielectrons was compared with standard 

polyvinylpyrrolidone (PVP) functionalized AuNPs, where a precise NP catalyst-reactant 

interaction was absent. To our delight, the rate constant for [+] AuNP was estimated to be ~ 9 × 

10-7 M min-1, which is at least two times higher than for the standard PVP- AuNPs (~ 4 × 10-7 M 

min-1) (Figure 4.6 b-d, Figures 4.16 & 4.18 in Appendix). A clear dominance of [+] AuNP 

confirms that the idea of NP-reactant interaction can play a decisive role in driving photocatalytic 

multielectron transfer reactions by plasmonic NPs. 
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Figure 4.6. Intensity dependent photocatalytic reduction of ferricyanide with different sets of 

AuNPs. Linearized fit for the first order analysis by tracking the absorbance at 420 nm at seven 

different intensities with a) [+] and b) PVP AuNPs as the photocatalysts. c) Linearized first-order 

fits following the spectral changes at 420 nm during the photocatalytic reduction of ferricyanide by 

various AuNP systems at 40 0C, under CW 532 nm laser irradiation for ~ 2 h (intensity 1000 mW). 

d) The corresponding variation in the rate constant values as a function of light intensity (or photon 

flux), in the presence of different AuNP photocatalysts. The dashed lines are for guiding the eye to 

show the superlinear increase in the rate constant.  

4.4.3. Photocatalytic Reduction of NAD+ to NADH: 

Our next focus was to check whether the idea of electrostatics assisted catalysis was potent enough 

to drive an important and challenging photocatalytic multielectron reaction. For this, the two 

electrons – 1 proton (2e- – 1H+) photocatalytic reduction of NAD+ to NADH was selected, which 

has gained recent attention due to its significance in the area of redox biocatalysis.35,36 NADH is 

an important co-factor molecule which acts as a hydride ion currency for numerous biological 

transformations catalyzed by different oxidoreductase enzymes like dehydorgenases, peroxidases, 

oxidases etc (Figure 4.7).35,36  
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Figure 4.7. Schematic representation of an oxidoreductive enzymatic cycle using NADH as a 

cofactor. a) NADH is consumed in the oxidoreductase biotransformation. b) Regeneration pathway 

of NADH from NAD+ 

Most of the previously reported photocatalysts require additional co-catalyst (Pt), photosensitizer 

(Eosin Y) or an electron mediator (Rh or Ir based metal chelating agents) for the efficient transfer 

of multiple electrons to NAD+.35-49  Therefore, performing efficient photocatalytic regeneration of 

NADH by AuNPs, without the aid of any co-catalyst or electron mediator, will prove the 

exclusivity of NP catalyst-reactant interaction in facilitating multielectron reactions. 

The reduction of NAD+ to NADH essentially involves the transfer of a hydride ion (2e-- 1H+), and 

the progress of the reaction can be monitored using UV-Vis spectroscopy (Figure 4.8 ).35,36 NAD+ 

exhibits a characteristic absorption maxima at ~ 260 nm due to π-π* transitions in nicotinamide 

and adenine moieties; whereas the absorption of NADH is centered at ~ 340 nm (Figure 4.8 ).35 

The reduction of NAD+ to the desired product 1,4-NADH is oftentimes contaminated with by-

products like NAD2 dimer and 1,6-NADH, both of which have absorption peaks at ~ 340 nm 

(Figure 4.20 in the Appendix).35 Interestingly, only 1,4-NADH is enzymatically active among 

other by-products for further bio-transformations.35 Accordingly, an enzymatic assay with 

lipoamide dehydrogenase (LDH) based on Sigma Quality Control Test Procedure (EC 1.8.1.4) has 

been conventionally used for the identification and quantification of NADH (see experimental 

section 4.3.8 for more details).56,57 During the assay, only the enzymatically active NADH will 

be converted to NAD+, as per the following reaction.56,57 
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Thus, the subsequent decrease in the absorbance at ~ 340 nm can be used to estimate the amount 

of 1,4 NADH formed through the photocatalytic reduction of NAD+ (𝜀 NADH = 6220 M-1cm-1) 

(Figures 4.8 and 4.21 in Appendix ).   

 

Figure 4.8: a) Schematic representation of AuNP photocatalyzed regeneration of NADH, and the 

lipoamide dehydrogenase assay adopted for quantifying the formation of NADH. b) Protocol for 

monitoring the reduction process with UV-Vis spectroscopy, and the quantitative detection of the 

NADH through lipoamide dehydrogenase assay. 

The photocatalytic reduction of NAD+ with AuNPs was performed in the presence of 

triethanolamine (TEOA) as a hole scavenger, under the continuous irradiation with a 450 nm laser 

(800 mw cm-2). The photoexcitation of AuNP leads to the generation of e- - h+ pairs, and the 

electrons will participate in the reduction of NAD+, whereas the holes will be scavenged by TEOA 

to regenerate the photocatalyst.35 In a typical photocatalytic experiment, a mixture of NAD+ 

(1mM), TEOA (1 M) and AuNP (absorbance ~1.3) in phosphate buffer (50 mM, pH ~8) was 
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continuously irradiated for 13 h (see Experimental Section 4.3.7 for more details). The AuNP 

photocatalyst was separated before performing the LDH assay for the quantification of the desired 

product NADH. Irradiation experiments in the absence of a photocatalyst, and the presence of [-] 

AuNP photocatalyst showed a noticeable increase in the absorbance peak at ~ 340 nm (Figures 

4.9 a and 4.22 a,b in the Appendix). Whereas, a strong and prominent peak was observed at ~ 

340 nm when [+] AuNP was used as the photocatalyst, indicating the formation of NADH in a 

decent yield (Figures 4.9 a, and 4.23 in the Appendix). Remarkably, the enzymatic LDH assay 

revealed that the amount of NADH formed with [+] AuNP photocatalyst was at least ~ 10 times 

higher than with [-] AuNPs (~ 60 M vs ~ 5 M, respectively) (Figures 4.9 b, 4.22 c,d, and 4.23 

b in the Appendix). The formation of NADH with [+] AuNPs was further corroborated with 

detailed NMR analysis (Figure 4.24 in the Appendix). The higher catalytic activity of [+] AuNPs 

is attributed to a strong electrostatic attraction between [+] AuNP catalyst and NAD+ reactant. As 

a result, the channelling and local concertation of NAD+ increases around [+] AuNP, thereby 

enhancing the probability of photocatalytic multielectron transfer. 

 

Figure 4.9. a) UV-Vis spectral change of the reaction mixture (NAD+ and TEOA) before and after 

irradiation (~ 13 h) in the presence and absence of different AuNPs (~ 5 nM). b) Bar diagram 

showing the difference in concentration of NADH (as calculated from the LDH assay) produced 

during the photocatalytic reaction in presence and absence of different AuNP catalysts. 

4.4.4. Role of Electrostatic Interaction:  

The exclusivity of favorable electrostatic interaction was confirmed by controlling the positive 

surface potential around the AuNP photocatalyst. For this, the [+] TMA ligand on AuNP surface 

was systematically diluted with 20 %, 50 % and 80 % [-] MUA ligands to yield heterogeneously 

charged [+/-]4 , [+/-]1 and [-/+]4 AuNPs, respectively (Figures 4.10 a and 4.5 d,e).52,53 The on-NP 
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ratio was estimated to be [+/-]4.8, [+/-]1.2 and [-/+]3.3, using NMR studies as reported in the previous 

works.52,53 A steady rise in the NADH formation was obtained as the percentage of positive charges 

increased on the surface of AuNP photocatalysts (Figures 4.10 b and 4.25, 4.26 in Appendix). 

Similarly, the catalytic performance of [+] AuNP was superior to AuNP functionalized with 

neutral EG3SH ligand. Thus, a clear dominance of [+] AuNP, without any co-catalyst or electron 

mediator, demonstrates the decisive role of favorable NP-reactant interaction in driving the direct 

multielectron transfer from photocatalyst to NAD+ reactant.  

 

Figure 4.10. Proof for electrostatically assisted multielectron transfer in the photocatalytic 

regeneration of NADH. a) Different AuNP catalysts with varying surface potential have been used 

in the photocatalytic regeneration of NADH. b) Bar diagram showing the variation in NADH 

formation as a function of AuNP surface charge. 

4.4.5. Determination of NAD+ to NADH Reduction Pathway: 

As per recent literature, there is a possibility for this reaction to undergo either through a light 

dependent or through a light independent pathway (Figure 4.11 a,b). In the light dependent 

pathway the hot electrons are involved in the reduction of NAD+, whereas the hot holes are 

scavenged by TEOA to complete the other half of the redox cycle (Figure 4.11 a). However, in 

light independent pathway, the hot holes first oxidize the TEOA to glycoaldehyde followed by the 

reduction of NAD+ by the as formed glycoaldehyde (Figure 4.11 b).58 Here the reduction step of 

NAD+ with glycoaldehyde is independent of light irradiation and can proceed under dark 

condition. To test this hypothesis, mixture of TEOA (1M) and [+] AuNPs were irradiated for 13 h 

under our experimental condition, and then NAD+ (1mM) was added to the solution and kept under 

dark for another 13 h. The rationale is, if the reduction follows the light independent pathway then 
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there should be a reduction of NAD+ under dark condition by glycoaldehyde formed in the light 

reaction. No reduction of NAD+ under dark condition (Figure 4.11 c) clearly confirmed that, under 

our experimental condition, the reduction of NAD+ follows a light dependent pathway where the 

hot electrons are responsible for the reduction process and the hot holes are scavenged by TEOA 

to complete the full redox cycle. 

 

Figure 4.11. Reaction mechanism for the photogeneration of NADH using TEOA. a) Schematic 

illustration of light dependent pathway with a simultaneous TEOA oxidation and NAD+ reduction. 

b) Schematic illustration of light independent pathway which involves the oxidation of TEOA to 

glycoaldehyde, followed by reduction of NAD+ with glycoaldehyde in absence of light. c) Progress 

of NADH generation under dark by adding NAD+ to pre-irradiated solution of [+] AuNP and 

TEOA. Appearance of no peak at 340 nm under dark confirms the light dependent pathway to be 

the dominant mechanism under the present experimental condition. 

4.4.6. Intensity Dependent Study: 

Next, we discuss on the active participation of hot electrons, and the kinetics of multielectron 

transfer process. A detailed intensity dependent kinetic analysis was performed to confirm the 

involvement of multielectron transfer in the photocatalytic reduction of NAD+. As shown in 

Figure 4.12 a, the formation of NADH product increased superlinearly with increase in the photon 

flux, which is a characteristic feature of a multielectron transfer process (see Figures 4.27 and 

4.28 in the Appendix for more detail). Recently, Jain and co-workers have proposed a heuristic 

model to explain super-linearity in photocatalytic reduction of CO2 with plasmonic AuNPs.59 As 
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per this model, the plasmon excitation is considered as a reagent, and hence the free energy 

contribution from this reagent should be included in the kinetic analysis of a photochemical 

reaction.59 Accordingly, the following rate equation has been derived to include the free energy 

contribution from plasmonic excitation:59  

𝑅𝑇 ln
𝑅𝑓
𝑅𝑏

=  −∆𝐺𝑑𝑎𝑟𝑘 +  
𝑧 𝐸ib𝜎 𝜂ib 

𝐼

ℎ𝜈𝑘nr
 

 Where, Rf and Rb is the forward and backward reaction rates respectively. z is the no. of e--h+ pairs 

involved in the reaction,  Eib is the interband energy gap, 𝜎 is the absorption cross section of NP, 

𝜂ib is the efficiency of conversion of plasmon excitation, I is the intensity of light and 𝑘𝑟 is the 

rate of recombination. The equation essentially shows that the rate (or product formation) of a 

photochemical reaction is exponentially dependent on the intensity of light. Specifically, the higher 

the intensity of light, the higher will be the free energy contribution of e- - h+ pair, and larger will 

be the product formation. This model has been proposed to be universal, and hence was validated 

in the present Chapter by extracting the data from our intensity dependent photocatalytic 

experiments. A linear dependence of RTlnCNADH on the intensity of light confirmed the 

indispensable contribution of the photoexcited e--h+ pairs in driving the multielectron reduction of 

NAD+ (Figure 4.12 b).  

 

Figure 4.12. Intensity dependent photocatalytic NADH generation with [+] AuNP as the catalyst. 

a) Variation in the formation of NADH as a function of light intensity (or photon flux), for the 

photocatalytic reduction of NAD+ by [+] AuNP photocatalyst. The dashed lines are the guide to 

the eye to show the superlinear increase in the photocatalytic regeneration of NADH cofactor. b) 

The linearized first-order fit for the variation in RTlnCNADH as a function of light intensity. All the 



 Chapter 4                                                                            Electrostatically Driven Cofactor Regeneration 

136 
 

photocatalytic experiments were performed using a 450 nm laser for ~ 13 h. The concentration of 

NADH regenerated was estimated using LDH assay in all the photocatalytic studies.   

4.4.7. Hot Electron vs Photothermal Heating: 

To consider the effect of plasmonic heating, we performed a reaction under dark condition at an 

elevated temperature of 500C, which was measured to be the bulk temperature during the 

irradiation process. Considering the higher thermal conductivity of water, and our present 

experimental condition which consists of well dispersed colloidal NP catalyst and a CW light 

irradiation, the difference between bulk temperature and that on the surface of NP (ΔT) will be 

negligible and can be expressed as59-60 

∆𝑇 = 𝑇𝑠 − 𝑇𝑏𝑢𝑙𝑘 =
𝜎𝐼

4𝜋𝑘𝑟
 

Where, ‘r’ is the radius of the AuNP which is ~ 6 nm in the present study, ′𝜎′ is the absorption cross 

section at the maxima of LSPR and reported to be 50 nm2 for 12 nm AuNPs, ‘I’ is the intensity of 

light and ‘k’ is the thermal conductivity of water (0.6 w m-1 K-1). With all these values, the 

temperature difference at an intensity as high as 1kW/cm2 would be in the order of 10-2 K.59,60 So 

under our experimental condition the bulk temperature (50 0C) can be considered as a proxy for the 

surface temperature of AuNPs. 

A negligible generation of NADH under dark condition at 500C (Figure 4.13) eliminates the effect 

of plasmonic heating. Although the above experiments confirm the contribution of hot electrons, 

the effect of photothermal heating cannot be completely ruled out. Separate detailed studies will be 

required to disentangle the relative contribution of hot electrons and the photothermal heating, 

which is beyond the scope of the present interest.   

 

Figure 4.13. Effect of photothermal heating on the reduction of NAD+. a) Progress of the reduction 

of NAD+ by tracking the absorption change with [+] AuNP, under dark at 500C. b) Lipoamide 
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dehydrogenase assay with the reaction mixture. c) Comparison between the concentrations of 

NADH produced during the reaction with [+] AuNP, under light and dark conditions. 

4.4.8. Wavelength dependent photocatalytic reduction of NAD+ (intraband vs 

interband transition): 

Wavelength dependent photocatalytic experiments were performed to ascertain the role of hot 

electrons in driving the photocatalytic reduction of NAD+. Figure 4.14 shows a comparison of 

photocatalytic NADH generation at two different excitation wavelengths (450 nm and 532 nm) 

keeping the irradiation intensity constant at 800 mW/cm2 (measured by using an optical power 

meter from Newport. Model: 842.PE). A higher generation of NADH at 450 nm excitation 

compared to that of 532 nm can be explained in terms of interband vs intraband transition. In 

plasmonic metal NPs, the nonradiative decay of surface plasmon resonance leads to the generation 

of hot charge carriers either through intraband (‘s’ to ‘sp’) or through interband (‘d’ to ‘sp’) 

transition6,8,60,61 

 

Figure 4.14. Effect of irradiation wavelength on photocatalytic NADH generation. Progress of 

the photocatalytic reduction of NAD+ with [+] AuNPs under a) 450 nm and b) 532 nm CW laser 

irradiation for 13 h. c) Bar diagram comparing the formation of NADH with [+] AuNP under 450 

nm and 532 nm of laser irradiation. The irradiation intensity was kept constant at 800 mW/cm2 for 

both the laser excitations. 

For plasmonic AuNPs, there is a strong overlap between the LSPR and the higher energy interband 

transition.6,62 This makes the interband d-sp excitation as the dominant plasmon decay pathway at 

energies where it’s energetically accessible.61 Thus, the higher energy 450 nm excitation generates 

hot charge carriers predominantly via interband ‘d’ – ‘sp’ transition, compared to the ‘s’ to ‘sp’ 

transition for 532 nm excitation. Now, the ‘d’ band hole created through interband transition is 

typically 1.9 eV more energetic than a ‘sp’ band hole created through intraband transition.62 The 

more oxidizing power of the ‘d’ band hole is beneficial to complete the oxidation half cycle for a 
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multielectron reduction process.62 Moreover, the hot electrons and holes generated through the 

interband transitions reside in two different bands (‘d’ and ‘sp’) and hence exhibits a higher lifetime 

(~1 ps) compared to that in intraband transition.6,62 Therefore, the 450 nm excitation in the region 

of strong interband absorption exhibited a higher generation of NADH compared to that at 532 nm 

excitation. Thus the wavelength dependent experiments prove that the photocatalytic reduction of 

NAD+ is driven by the hot electrons generated predominantly via ‘d’ – ‘sp’ transition. 

4.4.9. Flexibility of the Strategy: 

One of the main flexibilities of the present idea of electrostatically assisted catalysis is the ease 

with which it can be coupled with other existing strategies, to improve the overall catalytic 

performances. As a proof of concept, the catalytic properties of AuNPs were tested by 

incorporating a commonly used electron mediator Eosin Y. It is worth mentioning that, dedicated 

synthesis procedures or advanced fabrication protocols are commonly used to integrate such 

electron mediators/co-catalysts in the plasmonic catalytic system.37,38 In the present work, the 

negative charges on Eosin Y ([-] EY) paved the way for the strong complexation with [+] AuNPs 

through electrostatic attraction (Figure 4.15 a). The mixture of [+] AuNP and [-] EY was stirred 

for ~ 30 min prior to the reaction, to ensure complete complexation. A dramatic increase in the 

photocatalytic activity of [+] AuNP was witnessed in the presence of [-] EY. For instance, the 

amount of NADH produced by [+] AuNP increased from ~ 60 M to ~ 110 M, in the presence 

of [-] EY (Figure 4.15 b,c and Figure 4.29 a,c in Appendix section). The conversion yield of ~ 

10 % obtained with [+] AuNP:::[-] EY nanohybrid catalyst is comparable or greater than most of 

the catalytic systems reported based on plasmonic NP, with the added advantage of being 

structurally less complex. More strikingly, the time required for the NADH production reduced 

drastically from ~ 13 h to ~ 1 h, in the presence of [-] EY. Control experiment shows that [-] EY 

fail to photocatalyze the reduction of NAD+ by itself, thereby overruling the direct involvement of 

EY in the observed catalytic properties of [+] AuNP:::[-] EY nanohybrid catalyst (Figure 4.15 b 

and Figure 4.30 in Appendix section). Interestingly, the presence of [-] EY failed to improve the 

photocatalytic activity of [-] AuNP, due to the unfavorable electrostatic repulsion (Figure 4.15 b 

and Figure 4.29 b,d in Appendix). The turn-over-number (TON) for the [+] AuNP:::[-] EY 

nanohybrid catalyst was ~ 12 folds higher than that of [-] AuNP:::[-] EY, which further confirms 

the potent role of electrostatic interaction in photocatalytic formation of NADH cofactor (Figure 

4.15 b. Detailed procedure for the TON calculation is given in Experimental section 4.3.8). A 
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detailed time-dependent analysis further revealed a turn-over-frequency (TOF) of ~400 NP-1min-1 

for [+] AuNP:::[-] EY nanohybrid photocatalyst (Figures 4.15 c and 4.31 in the Appendix. 

Detailed procedure for the TOF calculation is given in Experimental section 4.3.8), which proves 

the importance of electrostatic interactions in completing the reduction process in a short time (1 

h).  

 

Figure 4.15. Flexibility in coupling the idea of interaction driven photocatalysis with electron 

mediator. a) Schematic representation of electrostatics assisted complexation between [+] AuNP 

and [-] EY molecule, leading to the fast funneling of hot electrons from AuNP photocatalyst to 

NAD+ reactant, via EY. b) Time dependent spectral changes in the absorbance of photocatalytically 

generated NADH, during the LDH assay. c) Bar diagram showing the Turnover Number (TON) for 

different photocatalysts. (d) Estimation of Turnover Frequency (TOF) by studying the time 

dependent variation in the TON of NADH during the photocatalytic reduction of NAD+ with [+] 

AuNP:::[-] EY hybrid catalyst, under ~ 1 h irradiation with 450 nm laser (800 mW).  

4.5. Conclusion 

In conclusion, establishing a favorable catalyst-reactant interaction paved the way for the 

photocatalytic regeneration of NADH by AuNPs, without the aid of any electron-mediator or co-

catalyst. The electrostatic forces emanating from ligands on the surface of plasmonic NPs was used 

a tool to control the catalyst-reactant interaction. A strong electrostatic attraction between [+] 

AuNP photocatalyst and [-] NAD+ reactant increased the channeling and local concertation of the 

reactants around the photocatalyst, thereby enhancing the probability of multielectron transfer. 
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Systematic studies by varying the surface potential of AuNPs proved the exclusivity of electrostatic 

interactions in the photocatalytic regeneration of NADH. A superlinear increase in the rate of 

NADH formation as a function of intensity of light proved the involvement of multiple charge 

carriers from AuNPs photocatalyst. Further, the potency of electrostatics was used to bind [+] 

AuNP with a [-] electron mediator, to show the flexibility in coupling the present idea of interaction 

driven photocatalysis with existing strategies to boost the regeneration of NADH. Strikingly, only 

~ 1 h of irradiation was sufficient to produce twice the amount of NADH cofactor, as compared to 

that in the absence of an electron mediator. The photocatalytic performances of [+] AuNP were in 

comparable or greater than most of the catalytic systems reported based on plasmonic NP, with the 

added advantage of being structurally less complex. The exclusive role of electrostatics in the 

photocatalytic regeneration of NADH presented here can serve as a generic approach for other 

useful photocatalytic multielectron reactions as well.  

Thus, the first part of the thesis reveals the prudent role of NP-reactant interaction (emanated from 

the surface ligands) in dictating the catalytic property of metal NPs. The idea of interaction 

developed in the first part was further utilized in the next Chapter to circumvent the “ligand 

poisoning” effect in metal NP photocatalysis. Finally, the knowledge gained from these two 

Chapters was employed to perform a challenging multielectron reaction without the aid of any 

electron mediators or co-catalysts. Thus, the present thesis introduces a new strategy of “ligand 

directed catalysis” for addressing the long standing challenge of “ligand poisoning” in the area of 

NP catalysis. In future, the idea of interaction can be replicated in more challenging multielectron 

reactions like CO2 reduction or N2 reduction, where the interaction between the reactant molecules 

(CO2 or N2) and the catalyst, can even play an important role in dictating the product selectivity.  
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4.7. Appendix 

Photocatalytic reduction of ferricyanide with different AuNPs: 

 

Figure 4.16. Photocatalytic reduction of ferricyanide with [+], [-] and PVP AuNPs. Progress of 

photocatalytic reduction of ferricyanide under CW 532nm laser irradiation at 400C in the presence 

of a) [-] AuNP, b) [+] AuNP and c) PVP AuNPs by tracking the absorption changes at 15 min 

interval. (d) Comparison between the rate constants of ferricyanide reduction with [+], [-] and PVP 

AuNPs. The [-] AuNPs were completely non-catalytic whereas the rate constant for the [+] AuNPs 

was ~ 2 times higher than that of PVP NPs.   
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Figure 4.17. Intensity dependent catalytic reduction of ferricyanide with [+] AuNP. Progress of 

photocatalytic reduction of ferricyanide under CW 532 nm laser irradiation with [+] AuNPs at 40 
0C  by tracking the absorption changes at 15 min interval at an irradiation intensity of a) 1000 mW, 

b) 900 mW, c) 800 mW, d) 600 mW, e) 400 mW, f) 200 mW, and  g)100 mW. 
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Figure 4.18. Intensity dependent catalytic reduction of ferricyanide with PVP AuNP. Progress of 

photocatalytic reduction of ferricyanide under CW 532 nm laser irradiation with PVP AuNPs at 40 
0C by tracking the absorption changes at 15 min interval at an irradiation intensity of a) 1000 mW, 

b) 900 mW, c) 800 mW, d) 600 mW, e) 400 mW, and f) 200 mW. 

 

Figure 4.19. Intensity dependent catalytic reduction of ferricyanide with [-] AuNP. Progress of 

photocatalytic reduction of ferricyanide under CW 532 nm laser irradiation with [-] AuNPs at 40 
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0C by tracking the absorption changes at 15 min interval at an irradiation intensity of a) 1000 mW, 

b) 800 mW, c) 600 mW, d) 400mW, e) 200 mW, and f) 100 mW. The [-] AuNPs failed to 

photocatalyze the ferricyanide reduction irrespective of irradiation intensity. 

 

Figure 4.20. Schematic representation of NAD+ reduction routes, and possible product formation. 

a) Desired pathway producing enzymatically active 1,4-NADH. b) and c) Undesired pathways 

producing inactive dimer NAD2 and isomer 1,6-NADH, respectively. The reduction process can 

be monitored with the appearance of a new peak at ~ 340 nm. 

 

Figure 4.21. Control assay with lipoamide dehydrogenase enzyme. Variarion in the NADH 

absorption at 340 nm for 2 h in a) presence and b) absence of enzyme. 
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Figure 4.22. Photocatalytic reduction of NAD+ in absence of catalyst and in the presence of [-] 

AuNP catalyst. Progress of the photocatalytic reduction of NAD+ under 450 nm CW laser 

irradiation for 13 h  a) with [-] AuNPs as the catalyst, and b) in absence of catalyst. Lipoamide 

dehydrogenase assay was performed with the reaction mixtures photoirradiated c) with [-] AuNPs 

as catalyst and d) in absence of catalyst. The amount of enzymatically active 1,4-NADH produced 

in the reaction was quantified from the decrease in absorbance at 340 nm. 

 

Figure 4.23. Photocatalytic reduction of NAD+ with [+] AuNPs. a) Progress of the photocatalytic 

reduction of NAD+ with 450 nm CW laser irradiation for 13 h using [+] AuNPs as the catalyst. b) 
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Lipoamide dehydrogenase assay with the reaction mixture after separating the catalyst. The amount 

of enzymatically active 1,4-NADH produced in the reaction was quantified from the decrease in 

absorbance at 340 nm.  

 

 

Figure 4.24. 1H NMR spectra of a) pure NAD+, b) pure NADH, and c) reaction mixture after 13 

h photoirradiation with [+] AuNP. 

 

Figure 4.25. Effect of AuNP surface charge on NADH generation. Progress of photocatalytic 

reduction of NAD+ with AuNPs of varying surface charges. 
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Figure 4.26. Lipoamide dehydrogenase assay with the reaction mixture photoirradiated with a) [+] 

AuNP, b) [+/-]4 AuNP, c) [+/-]1 AuNP, d) [-/+]4 AuNP, e) [-] AuNP, and f) EG3SH AuNP(neutral). 

 

Figure 4.27. Intensity dependent catalytic reduction of NAD+ with [+] AuNP. Progress of 

photocatalytic reduction of NAD+ with [+] AuNP at seven different intensities. 

 



 Chapter 4                                                                            Electrostatically Driven Cofactor Regeneration 

153 
 

 

Figure 4.28. Lipoamide dehydrogenase assay with the reaction mixture photoirradiated with [+] 

AuNPs at a) 800 mW, b) 775 mW, c) 750 mW, d) 715 mW, e) 665 mW, f) 615mW, and g) 500 

mW. 
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Figure 4.29. Photocatalytic reduction of NAD+ with [+] AuNPs:::[-] EY and [-] AuNPs:::[-] EY 

photocatalytic systems. Progress of the photocatalytic reduction of NAD+ under 450 nm CW laser 

irradiation for 1 h with a) [+] AuNPs:::[-] EY and b) [-] AuNPs:::[-] EY photocatalysts. Lipoamide 

dehydrogenase assay with the reaction mixtures photoirradiated with c) [+] AuNPs:::[-] EY and d) 

[-] AuNPs:::[-] EY photocatalysts.  
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Figure 4.30. Photocatalytic reduction of NAD+ with only EY. Photocatalytic reduction of NAD+ 

with only EY. a) Progress of the photocatalytic reduction of NAD+ under 450 nm CW laser 

irradiation for 1 h with only EY. b) Lipoamide dehydrogenase assay with the reaction mixture 

photoirradiated with EY. c) Bar diagram showing the concentrations of NADH produced during 

the photocatalytic reactions with [+] AuNPs:::[-] EY , [-] AuNPs::: [-] EY and only EY. 

 

 

Figure 4.31. Time dependent photocatalytic reduction of NAD+ with [+] AuNP:::EY photocatalyst. 

Lipoamide dehydrogenase assay with the reaction mixtures photoirradiated with [+] AuNP:::EY 

for a) 120 min, b) 60 min, c) 30 min, d) 15 min, and e) 5 min, under 450nm CW laser irradiation. 

f) Variation in NADH formation as a function of irradiation time.
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CCC Republication Terms and Conditions

1. Description of Service; De�ned Terms. This Republication License enables the User to obtain licenses for
republication of one or more copyrighted works as described in detail on the relevant Order Con�rmation (the
"Work(s)"). Copyright Clearance Center, Inc. ("CCC") grants licenses through the Service on behalf of the
rightsholder identi�ed on the Order Con�rmation (the "Rightsholder"). "Republication", as used herein, generally
means the inclusion of a Work, in whole or in part, in a new work or works, also as described on the Order
Con�rmation. "User", as used herein, means the person or entity making such republication.

2. The terms set forth in the relevant Order Con�rmation, and any terms set by the Rightsholder with respect to a
particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person
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duly authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User,
and (b) shall inform User of all such terms and conditions. In the event such person is a "freelancer" or other third
party independent of User and CCC, such party shall be deemed jointly a "User" for purposes of these terms and
conditions. In any event, User shall be deemed to have accepted and agreed to all such terms and conditions if
User republishes the Work in any fashion.

3. Scope of License; Limitations and Obligations.

3.1. All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the
Rightsholder. The license created by the exchange of an Order Con�rmation (and/or any invoice) and
payment by User of the full amount set forth on that document includes only those rights expressly set
forth in the Order Con�rmation and in these terms and conditions, and conveys no other rights in the
Work(s) to User. All rights not expressly granted are hereby reserved.

3.2. General Payment Terms: You may pay by credit card or through an account with us payable at the end of
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available to you for downloading). After 30 days, outstanding amounts will be subject to a service charge
of 1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise speci�cally
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use or circulation) included in the Order Con�rmation or invoice and/or in these terms and conditions.
Upon completion of the licensed use, User shall either secure a new permission for further use of the
Work(s) or immediately cease any new use of the Work(s) and shall render inaccessible (such as by
deleting or by removing or severing links or other locators) any further copies of the Work (except for
copies printed on paper in accordance with this license and still in User's stock at the end of such period).

3.4. In the event that the material for which a republication license is sought includes third party materials
(such as photographs, illustrations, graphs, inserts and similar materials) which are identi�ed in such
material as having been used by permission, User is responsible for identifying, and seeking separate
licenses (under this Service or otherwise) for, any of such third party materials; without a separate license,
such third party materials may not be used.

3.5.
Use of proper copyright notice for a Work is required as a condition of any license granted under the
Service. Unless otherwise provided in the Order Con�rmation, a proper copyright notice will read
substantially as follows: "Republished with permission of [Rightsholder's name], from [Work's title, author,
volume, edition number and year of copyright]; permission conveyed through Copyright Clearance Center,
Inc. " Such notice must be provided in a reasonably legible font size and must be placed either
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immediately adjacent to the Work as used (for example, as part of a by-line or footnote but not as a
separate electronic link) or in the place where substantially all other credits or notices for the new work
containing the republished Work are located. Failure to include the required notice results in loss to the
Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each such failure equal
to twice the use fee speci�ed in the Order Con�rmation, in addition to the use fee itself and any other fees
and charges speci�ed.

3.6. User may only make alterations to the Work if and as expressly set forth in the Order Con�rmation. No
Work may be used in any way that is defamatory, violates the rights of third parties (including such third
parties' rights of copyright, privacy, publicity, or other tangible or intangible property), or is otherwise
illegal, sexually explicit or obscene. In addition, User may not conjoin a Work with any other material that
may result in damage to the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware
of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC or the
Rightsholder in connection therewith.

4. Indemnity. User hereby indemni�es and agrees to defend the Rightsholder and CCC, and their respective
employees and directors, against all claims, liability, damages, costs and expenses, including legal fees and
expenses, arising out of any use of a Work beyond the scope of the rights granted herein, or any use of a Work
which has been altered in any unauthorized way by User, including claims of defamation or infringement of rights
of copyright, publicity, privacy or other tangible or intangible property.

5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF
BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY
TO USE A WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event,
the total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed
the total amount actually paid by User for this license. User assumes full liability for the actions and omissions of
its principals, employees, agents, a�liates, successors and assigns.

6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED "AS IS". CCC HAS THE RIGHT TO GRANT TO USER
THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL
OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS
OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER;
USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL
RIGHTS TO GRANT.

7. E�ect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope
of the license set forth in the Order Con�rmation and/or these terms and conditions, shall be a material breach of
the license created by the Order Con�rmation and these terms and conditions. Any breach not cured within 30
days of written notice thereof shall result in immediate termination of such license without further notice. Any
unauthorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated
by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is
not terminated immediately for any reason (including, for example, because materials containing the Work cannot
reasonably be recalled) will be subject to all remedies available at law or in equity, but in no event to a payment of
less than three times the Rightsholder's ordinary license price for the most closely analogous licensable use plus
Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment.

8. Miscellaneous.

8.1. User acknowledges that CCC may, from time to time, make changes or additions to the Service or to these
terms and conditions, and CCC reserves the right to send notice to the User by electronic mail or
otherwise for the purposes of notifying User of such changes or additions; provided that any such changes
or additions shall not apply to permissions already secured and paid for.

8.2. Use of User-related information collected through the Service is governed by CCC's privacy policy,
available online here: https://marketplace.copyright.com/rs-ui-web/mp/privacy-policy

8.3.
The licensing transaction described in the Order Con�rmation is personal to User. Therefore, User may
not assign or transfer to any other person (whether a natural person or an organization of any kind) the
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license created by the Order Con�rmation and these terms and conditions or any rights granted
hereunder; provided, however, that User may assign such license in its entirety on written notice to CCC in
the event of a transfer of all or substantially all of User's rights in the new material which includes the
Work(s) licensed under this Service.

8.4. No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The
Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its
principals, employees, agents or a�liates and purporting to govern or otherwise relate to the licensing
transaction described in the Order Con�rmation, which terms are in any way inconsistent with any terms
set forth in the Order Con�rmation and/or in these terms and conditions or CCC's standard operating
procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order
Con�rmation, and whether such writing appears on a copy of the Order Con�rmation or in a separate
instrument.

8.5. The licensing transaction described in the Order Con�rmation document shall be governed by and
construed under the law of the State of New York, USA, without regard to the principles thereof of con�icts
of law. Any case, controversy, suit, action, or proceeding arising out of, in connection with, or related to
such licensing transaction shall be brought, at CCC's sole discretion, in any federal or state court located in
the County of New York, State of New York, USA, or in any federal or state court whose geographical
jurisdiction covers the location of the Rightsholder set forth in the Order Con�rmation. The parties
expressly submit to the personal jurisdiction and venue of each such federal or state court.If you have any
comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-
8400 or send an e-mail to support@copyright.com.
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Material, e.g. where a licence has been purchased for print only use, separate
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2. 3. Similarly, rights for additional components such as custom editions and
derivatives require additional permission and may be subject to an additional fee.
Please apply to
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3. Duration of Licence

3. 1. A licence for is valid from the date of purchase ('Licence Date') at the end of the
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colour and/or style where the adaptation is credited as set out in Appendix 1 below. Any
other changes including but not limited to, cropping, adapting, omitting material that
affect the meaning, intention or moral rights of the author are strictly prohibited. 

5. 2. You must not use any Licensed Material as part of any design or trademark. 

5. 3. Licensed Material may be used in Open Access Publications (OAP) before
publication by Springer Nature, but any Licensed Material must be removed from OAP
sites prior to final publication.

6. Ownership of Rights 

6. 1. Licensed Material remains the property of either Licensor or the relevant third party
and any rights not explicitly granted herein are expressly reserved. 

7. Warranty 

IN NO EVENT SHALL LICENSOR BE LIABLE TO YOU OR ANY OTHER PARTY OR
ANY OTHER PERSON OR FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL
OR INDIRECT DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN
CONNECTION WITH THE DOWNLOADING, VIEWING OR USE OF THE
MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH
OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT
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8. 1. BOOKS ONLY:Where 'reuse in a dissertation/thesis' has been selected the
following terms apply: Print rights of the final author's accepted manuscript (for clarity,
NOT the published version) for up to 100 copies, electronic rights for use only on a
personal website or institutional repository as defined by the Sherpa guideline
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9. Termination and Cancellation

9. 1. Licences will expire after the period shown in Clause 3 (above).

9. 2. Licensee reserves the right to terminate the Licence in the event that payment is not
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