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Abstract
Let F be a number field. Let G =GL(2) over F . Let A and A f denote the ring of adeles

and finite adeles of F respectively. Let K∞ denote the maximal compact subgroup of

G∞ = ∏
ν

G(Fν) thickened by the center, where the product runs over all archimedean

places ν of F and Fν denotes the completion of F at ν. For a fixed open compact subgroup

K f ⊂G(A f ), let SG
K f

=G(F )\G(A)/K f K∞ be a locally symmetric space attached to G . Let

r [d ] be an irreducible representation of G of highest weight d , and let Fd denote the

corresponding sheaf on SG
K f

. The goal of this project is to understand the cohomology

H•(SG
K f

,Fd ) via its relation to the theory of automorphic forms on G . This relation

arises due to the isomorphism H•(SG
K f

,Fd ) ' H•(g∞,K∞;C∞(GF \GA/K f )⊗R[d ]∨). A

specific problem is to understand the inner cohomology denoted H•
! (SG

K f
,Fd ), which by

definition is the image of compactly supported cohomology in full cohomology:

H•
! (SG

K f
,Fd ) := Im

(
H•

c (SG
K f

,Fd ) −−−−→ H•(SG
K f

,Fd )
)

.

It is known that inner cohomology contains cuspidal cohomology, which is genered by

cusp forms on G . The problem is to classify inner cohomology classes which are not

cuspidal. In this thesis, we deal with F = Q and F = Q(
p−n) where n is a square free

positive integer. We give a description of the inner cohomology mentioned above in these

two cases.
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Chapter 1

Introduction

We start by mentioning a theorem in Eberhard Freitag’s Hilbert Modular Forms ([8],

Chapter III, Theorem 6.3). It gives a description of the Betti numbers bq for an arbitrary

congruence subgroup Γ of SL(2,R)n . These are the numbers that give the dimensions of

the sheaf cohomology groups H q (Γ) = H q (Hn/Γ,C) corresponding to the constant sheaf

given by C, considered as vector spaces over C.

bq = dimCH q (Γ). (1.0.1)

If we denote the set of archimedean places of F by S, the completion of F at a place ν

by Fν, the adele ring of F byA, the finite adele ring byA f , the direct product
∏
ν∈S

GL(2,Fν)

by GL(2)∞, and its maximal compact subgroup thickened by the center of GL(2)∞ by K∞,

the objects H q (Γ) are exactly isomorphic to certain sheaf cohomology groups H q (SG
K f

,Fd )

for certain open compact subgroups K f of GL(2,A f ) depending on Γ. To be precise, for an

open compact subgroup K f ⊆GL(2,A f ), the space SG
K f

mentioned above, is actually the

locally symmetric space GL(2,F )\GL(2,A)/K f K∞ attached to G =GL(2), and Fd denotes

the sheaf on SG
K f

derived from a highest weight irreducible representation of GL(2)∞,

denoted (r [d ],R[d ]), with highest weight d = (dν)ν∈S .

The theorem also gives the dimensions of various different subspaces of H q (Γ),

namely the Eisenstien cohomology, square integrable cohomology, inner cohomology,

cuspidal cohomology and universal cohomology. We know from Chapter III, Theorem 6.3

of [8], that for all degrees other than zero, the full cohomology breaks up as a direct sum

of Eisenstein cohomology and square integrable cohomology; and the square integrable

cohomology is the same as inner cohomology, which by definition is the image of com-
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2 CHAPTER 1. INTRODUCTION

pactly supported cohomology in full cohomology, for all these degrees. Moreover, inner

cohomology at any degree q is the direct sum of universal and cuspidal cohomologies.

We are interested particularly in the inner cohomology classes that are not cuspidal,

i.e., the universal cohomology. In this thesis, we have tried to understand this universal

part of the cohomology for some special cases of number fields F , namely, F =Q and

F =Q(
p−n),n ≥ 0. We take the approach of Waldspurger [12] using automorphic forms

on GL(2), making use of the following isomorphism of the sheaf cohomology group to a

certain relative lie algebra cohomology, as explained in [5].

H•(SG
K f

,Fd ) ' H•(g∞,K∞;C∞(GF \GA)K f ⊗R[d ]∨). (1.0.2)

Let (π,E) be an irreducible automorphic representation of GL(2) over F . We first find

out when E has non-trivial Lie algebra cohomology. Propositon I.4 of [12] gives us a

classification of irreducible cohomological representations for GL(2,R) and GL(2,C) and

describes the cohomology groups as well. We also use Theorem I.5.1 of [12] that captures

all the possible automorphic representations of GL(2) over F , that could contribute to

inner cohomology. This set includes only cuspidal and one-dimensional representations

with infinity type isomorphic to one of a finite set of representations depending on the

weight d . Further, cuspidals contribute to cuspidal cohomology, and hence we try to find

the one-dimensional representations that contribute to inner cohomology. These exactly

correspond to universal cohomology classes.

We start by stating the classification of irreducible admissible representations of

GL(2,R) and GL(2,C), and then define Lie Algebra cohomology, also called (g,K ) co-

homology, and talk about irreducible admissible cohomological representations and

their cohomology groups in Chapter 2. This is basically a summary of certain results

following [7], [11], [4]. In Chapter 3, we set up the basic notations to talk about the sheaf

cohomology groups H•(SG
K f

,Fd ) and state their relation to the relative lie algebra coho-

mology groups given in 1.0.2. We also introduce the inner cohomology groups, define

the spectrum and describe the set of irreducible automorphic representations that are

candidates to contributing to inner cohomology, following [5], [10] and [12]. We discuss

Theorem I.5.1 of [12] and also give an outline of the proof of it given there. In Chapter 4,

we give a summary of results given in [8] that we mentioned in the beginning. Then, we

go on to calculate the inner cohomology using our approach involving the language of

automorphic forms for the case of F =Q. In Chapter 5, we do the same for the case of an

imaginary quadratic field.



Chapter 2

Cohomological Representations of

Archimedean GL (2)

2.1 Classification of irreducible admissible
(
g,K

)
modules

We follow [7] and [11] in this section for classifying irreducible admissible representations

of GL(2,R) and GL(2,C) respectively. The classification is up to infinitesimal equivalence

as
(
g l

(
2,R

)
,O (2)

)
and respectively

(
g l

(
2,C

)
,U (2)

)
modules.

Let G = GL
(
2,R

)
. Let K denote the maximal compact subgroup O (2) of G , K 0 = SO (2)

and g denote the Lie algebra g l
(
2,R

)
of G . Let

Z =
1 0

0 1

 , H =−i

 0 1

−1 0

 , L = 1

2

 1 −i

−i −1

 , R = 1

2

1 i

i −1

 . (2.1.1)

be elements of the complexification gC of the Lie algebra g. These form a basis of gC as

a complex vector space. Let U
(
gC

)
denote the universal enveloping algebra of gC. The

elements ∆= −1
4

(
H 2 +2RL+2LR

)
and Z lie in the center of U

(
gC

)
. Since the irreducible

unitary representations of K 0 are one dimensional and are parametrized by the integers,

with k ∈ Z denoting the character σk
(
kθ

) = e i kθ, where kθ =
 cosθ sinθ

−sinθ cosθ

, we may

denote the σk -isotypic component V
(
σk

)
of a representation

(
π,V

)
simply by V

(
k
)
. The

set of all integers k such that V
(
k
) 6= 0 is called the set of K 0-types of V . With notations

as in [12], the irreducible admissible
(
g,K

)
modules for G are then classified based on the

K 0-types and the action of Z and ∆.

3



4 CHAPTER 2. COHOMOLOGICAL REPRESENTATIONS OF ARCHIMEDEAN GL (2)

1. The finite dimensional representations π, obtained by twisting the symmetric

powers of the standard representation of GL
(
2,R

)
on C2, by the characters of the

form χ◦det, where χ is a character of R×.

π = Symh−2
(
C2

)
⊗

(
det1+ a−h

2 sgn(det)ε
)
, where a,h ∈ Z, h ≥ 2, a ≡ h (mod 2) and

ε ∈ {
0,1

}
. A representation of this type will be denoted (r [d ],R[d ]), with d = (h, a,ε)

as above. For d as above, we let d ′ = (h, a,ε′) where ε′ = ε−1 and ď = (h,−a,ε). The

representation r [ď ] is in fact isomorphic to the dual r [d ]∨ of the representation r [d ].

The representation r [d ] is of K 0-type Σ0
(
h
)= {

l ∈Z | l ≡ h (mod 2),−h < l < h
}

. Z

acts by the scalar a, while the Casimir element ∆ acts by the scalar h
2

(
1− h

2

)
.

2. Let χ1,χ2 be characters of R× defined as χi
(
y
)= sgn

(
y
)εi

∣∣y
∣∣si for i = 1,2. Let χ be

the character of the Borel subgroup B (R) defined as

χ

y1 x

0 y2

=χ1
(
y1

)
χ2

(
y2

)
. (2.1.2)

If χ1χ
−1
2 6= sgnε|·|k−1 where ε ∈ {

0,1
}

and k is an integer of the same parity as ε,

then the K -finite vectors of the induced representation IndG
B(R)

(
χ1,χ2

)
of G form an

irreducible admissible
(
g,K

)
-module denoted π

(
χ1,χ2

)
. If ε= ε1 +ε2 (mod 2),µ=

s1 + s2 and λ = 1
4

(
s1 − s2 +1

)(
s2 − s1 +1

)
, then the set of K 0-types of π

(
χ1,χ2

)
is{

k ∈Z | k ≡ ε (mod 2)
}
, Z acts by µ and ∆ by λ. These are called principal series

representations and are denoted Pµ

(
λ,ε

)
. If µ = 0, they are denoted simply as

P
(
λ,ε

)
.

3. Let χ1,χ2 be characters of R× defined as

χ1(y) = y
a+h

2 −1
∣∣y

∣∣ 1
2 sgn(y)ε,

χ2(y) = y
a−h

2 +1
∣∣y

∣∣−1
2 sgn(y)ε.

(2.1.3)

for h ≥ 1, a ≡ h (mod 2) and ε ∈ {
0,1

}
. Then, χ1χ

−1
2 = sgnε

′ |·|h−1 where ε′ ≡ h

(mod 2). Let χ be defined as in Equation 2.1.2. Let H denote the
(
g,K

)
-module of

K -finite vectors in IndG
B(R)

(
χ1,χ2

)
, then H has an irreducible invariant subspace

H0 with set of K 0-types equal to Σ± (
h
)= {

l ∈Z | l ≡ h (mod 2), l ≥ h or l ≤−h
}

. We

see that Z acts on this space by a and ∆ by λ= h
2

(
1− h

2

)
. These are called discrete

series representations if h ≥ 2 and limits of discrete series if h = 1 and are denoted
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π[d ] where d = (h, a,ε). It is to be noted that π[d ] ' π[d ′]. Further, the quotient

H/H0 is an irreducible admissible
(
g,K

)
-module isomorphic to r [d ], i.e., we have

an exact sequence of (g,K ) modules:

0 −−−−→H0 −−−−→H−−−−→ r [d ] −−−−→ 0. (2.1.4)

Now, let G = GL
(
2,C

)
. Then, G is the product of its center denoted Z

(
C

) ' C× and

SL2
(
C

)
. This product is not direct and the two subgroups intersect in {±I }, which is the

center of SL2
(
C

)
.

Suppose π is an irreducible admissible representation of SL2
(
C

)
, and let ε be the

character through which {±I } acts. Let χ be an extension of ε to a quasi-character of

Z
(
C

)
. Then there is a unique extension of π to a representation of GL2

(
C

)
, on which

Z
(
C

)
acts via the character χ. Conversely, given an irreducible admissible representation

of GL
(
2,C

)
with central character χ, we can consider the restriction to SL

(
2,C

)
, which

is also irreducible. Further, the original representation of GL
(
2,C

)
is got back from this

representation of SL
(
2,C

)
, by such a construction using the character χ. Hence, it is

enough to classify irreducible admissible representations of SL
(
2,C

)
.

Let K denote the maximal compact subgroup U
(
2,C

)
of unitary matrices in G and g

denote the real Lie algebra g l
(
2,C

)
of G . Let us denote the complexification of g by gC.

We may identify gC with g
⊕

g by the mapping

X ⊗1+Y ⊗ i 7−→ (X + i Y )⊕ (X̄ + i Ȳ ).

This also identifies the universal enveloping algebra U (gC) with U (g)
⊗

U (g). Let ∆ and Z

be elements in the center of U (g l (2,C)) defined above. Let∆1 =∆⊗1,∆2 = 1⊗∆, Z1 = Z⊗1

and Z2 = 1⊗ Z be elements of U (g)
⊗

U (g) 'U (gC). Then, they are in fact elements in

the center of U (gC). A representation of G is said to be admissible if its restriction to

the group SU (2,C) of unitary matrices of determinant 1, breaks up into a direct sum of

irreducible representations of SU (2,C) each occuring with finite multiplicity.

Let n ≥ 0. Let Vn be the vector space of complex homogeneous polynomials in two

variables of degree n. Consider SU (2,C) acting on this space as follows.

ρn


a b

c d


P


z1

z2


= P


a b

c d

−1 z1

z2


 . (2.1.5)
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where

a b

c d

 ∈ SU (2,C). Then, (ρn ,Vn) is an irreducible representation of SU (2,C) of

dimension n +1. In fact, any irreducible representation of SU (2,C) is equivalent to ρn for

some n ≥ 0.

We classify all irreducible admissible representations of GL(2,C) using the above

classification of irreducible representations of SU (2,C). Let

µi (z) = zsi+ 1
2 (ai−bi )z̄si− 1

2 (ai−bi ). (2.1.6)

be quasi-characters of C×, where si ∈ C, ai and bi are non-negative integers with a1 ≥
a2, b1 ≥ b2 and ai bi = 0 for i = 1,2. Let µ(z) = µ1µ

−1
2 (z) = zs+ 1

2 (a−b)z̄s− 1
2 (a−b) with s =

s1 − s2, a = a1 − a2,b = b1 −b2 such that ab = 0. This implies that either a1 = a2 = 0 or

b1 = b2 = 0. The quasi-characters µ1 and µ2 together define a quasi-character of the Borel

subgroup B(C) of upper triangular matrices.α β

0 γ

 7−→ µ1(α)µ2(γ).

Let us denote the induced representation of G obtained from the above character by

B(µ1,µ2). The action of elements ∆1,∆2, Z1 and Z2 of Z (U (gC)) on B(µ1,µ2) is given by

scalars as described below.

ρ(∆1) ≡ 1

2

(
s + a −b

2

)2

−1

 ; ρ(Z1) ≡ s1 + s2 + 1

2
(a1 −b1 +a2 −b2).

ρ(∆2) ≡ 1

2

(
s + b −a

2

)2

−1

 ; ρ(Z2) ≡ s1 + s2 + 1

2
(b1 −a1 +b2 −a2).

(2.1.7)

Further, B(µ1,µ2) is admissible and contains the representations ρn of SU (2,C) if and

only if n ≥ a+b and n ≡ a+b (mod 2). Moreover, ρn occurs with multiplicity exactly 1 in

B(µ1,µ2) in this case. We will denote the unique subspace of B(µ1,µ2) that is isomorphic

to the representation ρn of SU (2,C) by B(µ1,µ2,ρn).

1. If µ(z) is not of the form zp z̄q with p, q ∈Z and p, q ≥ 1 or p, q ≤ 1, then B(µ1,µ2)

is irreducible as a representation of G .
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2. If µ(z) = zp z̄q with p, q ∈Z, p, q ≥ 1, there is a unique proper invariant subspace

V = ∑
n≥p+q

n≡p+q (mod 2)

B(µ1,µ2,ρn).

We will denote the representation of G on V by σ(µ1,µ2) and the representation

of G on the quotient space B(µ1,µ2)/V by π(µ1,µ2). σ(µ1,µ2) is in fact equivalent

to the representation B(ν1,ν2) of 1, for characters ν1,ν2 such that ν1ν2 = µ1µ2,

ν1ν
−1
2 (z) = zp z̄−q . On the other hand, π(µ1,µ2) is an irreducible admissible finite

dimensional representation of G .

3. If µ(z) = zp z̄q with p, q ∈Z, p, q ≤−1, there is a unique proper invariant subspace

V = ∑
|p−q|≤n<p+q

n≡p+q (mod 2)

B(µ1,µ2,ρn).

We will denote the representation of G on V by π(µ1,µ2) and the representation

of G on the quotient space B(µ1,µ2)/V by σ(µ1,µ2). The representations π(µ1,µ2)

and σ(µ1,µ2) are in fact isomorphic to the representations π(µ2,µ1) and σ(µ2,µ1)

of 2.

Any irreducible admissible representation of GL(2,C) is isomorphic to a representa-

tion π(µ1,µ2) for some characters µ1,µ2 of C× as in Equation 2.1.6. Further, the finite

dimensional irreducible admissible representations given above may also be realised as

Symh1−1(C2)Sym
h2−1

(C2)⊗ (det1+ a1−h1
2 det

1+ a2−h2
2 ) (2.1.8)

for integers hi , ai such that hi ≥ 2, ai ≡ hi (mod 2). We will denote this representation by

r [d ] and its space by R[d ], where d = (h1,h2, a1, a2).

2.2 Relative Lie algebra cohomology or (g,K )-cohomology

Let us consider the reductive Lie group G =GL(2,R) or GL(2,C). Let g= g l (2,R) or g l (2,C)

denote its corresponding Lie algebra of all 2x2 matrices with real and respectively complex

entries. Let K 0 =O(2,R) or U (2,C) be a maximal compact subgroup of G , depending on

the two cases. Let Z denote the center of G and K = K 0Z . Let k denote the Lie algebra
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of K . As a real vector space, k is two dimensional if G =GL(2,R) and five dimensional if

G =GL(2,C).

We know that the adjoint action of K on g given by

Ad(k)X = k X k−1 ∀k ∈ K , X ∈ g (2.2.1)

leaves the sub-algebra k invariant. Thus, it induces an action on the quotient g/k. We

complexify this space to get a representation of K on
(
g/k

)
C
= g/k⊗C. For convenience,

we will omit the C altogether and just denote the space as g/k in the future. Note that,

g/k is now a two or three dimensional complex Lie algebra, according to whether we are

working with GL(2,R) or GL(2,C). We will work with the following basis of the complex

vector space g/k for GL(2,R) and GL(2,C).

For G =GL(2,R), we will work with the basis

z1 = i ⊗X −1⊗Y , z2 = i ⊗X +1⊗Y . (2.2.2)

where X =
1

−1

 and Y =
 1

1

. The action of SO(2,R) on g/k decomposes into

a direct sum of characters Θ2 ⊕Θ−2 with respect to this basis, where Θn denotes the

character kθ 7→ e−i nθ. In other words, kθ · z1 = Ad(kθ)z1 = e−2iθz1 =Θ2(kθ)z1 and kθ · z2 =

Ad(kθ)z2 = e2iθz2 = Θ−2(kθ)z2. Further, if we let w =
1

−1

 ∈ O(2,R), then w · z1 =

Ad(w)z1 = z2 and w · z2 = Ad(w)z2 = z1. Moreover, it is obvious that the adjoint action by

elements of Z (R) is trivial. Thus, we know explicitly the action of K =O(2,R)Z (R) on g/k.

For G =GL(2,C), we will work with the following basis of g/k:

w1 =
1

−1

 , w2 =
 1

1

 , w3 =
 i

−i

 . (2.2.3)

In both cases, the action of K on g/k induces an action of K on
∧q g/k. Let (π,V ) be a

(g,K ) module. Let C q (g,K ;V ) = HomK (
∧q g/k,V ), where K acts on

∧q g/k as described
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above. Let us define cochain maps d : C q (g,K ;V ) −→C q+1(g,K ;V ) as

dη
(

X0 ∧X1 ∧·· ·∧Xq

)
=

q∑
i=0

(−1)i Xi ·η
(

X0 ∧·· · X̂i · · ·∧Xq

)
+ ∑

0≤i< j≤q
(−1)i+ jη

(
[Xi , X j ]∧X0 ∧·· · X̂i · · · X̂ j · · ·∧Xq

)
.

(2.2.4)

for η ∈ C q (g,K ;V ), where ˆ over an argument means it should be excluded. It can be

verified that the maps d are well defined and further that d 2 = 0, i.e., the composite map

C q (g,K ;V ) −→C q+1(g,K ;V ) −→C q+2(g,K ;V ) is zero for every q . So, this indeed defines

a cochain complex which we will denote by C •(g,K ;V ).

Now, the q th relative Lie algebra cohomology or (g,K ) cohomology group H q (g,K ;V )

is defined to be the q th cohomology group of this cochain complex,

H q (g,K ;V ) = H q (
C •(g,K ;V )

)
.

Let us try to compute H 0(g,K ;V ). By definition, it is the kernel of the map d :

C 0(g,K ;V ) −→C 1(g,K ;V ). So, let η ∈C 0(g,K ;V ) be such that dη= 0. So, for all X ∈ g/k,

dη(X ) = 0 i.e., X · η(1) = 0. So, η is in fact a (g,K ) module homomorphism. Thus,

H 0(g,K ;V ) = Hom(g,K )(C,V ). For q ≥ 0, we know that H q (g,K ;V ) = Extq
(g,K )(C,V ), where

C denotes the trivial (g,K ) module with g acting as zero and K acting as identity. This is

shown in Chapter I, Section 2 of [4] by taking a special projective resolution of C, which

we sketch here.

Let V be a K module. Then we get an action of k on V by differentiating. Let L = g⊗kV

for q ≥ 0 thinking of g as a k module by right translation. Then L affords a representation

of g by left translation on the first component g of L. The action of k on L obtained by

restriction gives the usual tensor product representation g⊗kV with k acting on g by the

adjoint action. This is true because

Y · (X ⊗ v) = [Y , X ]⊗ v +X ⊗Y · v = Y .X ⊗ v −X .Y ⊗ v +X ⊗Y · v = Y .X ⊗ v

for Y ∈ k, X ∈ g and v ∈V .

Let Lq = g⊗k
∧q (g/k). Then, by the above construction, we get that Lq is a represen-

tation of g, and hence a (g,K ) module. It is actually known ([4], Chapter I, Section 2.4,

Lemma) that Lq ’s are projective objects in the category of (g,K ) modules. Define for q > 0,
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∂q : Lq −→ Lq−1 by

∂q (X ⊗X1 ∧·· ·∧Xq ) =
q∑

i=1
(−1)i−1Xi ·X ⊗X1 ∧·· · X̂i · · ·∧Xq

+ ∑
1≤i< j≤q

(−1)i+ j X ⊗ [Xi , X j ]∧X1 ∧·· · X̂i · · · X̂ j · · ·∧Xq .
(2.2.5)

Moreover, let ε : L0 = g−→C be the augmentation map. Then the chain complex

· · · −−−−→ Lq
∂q−−−−→ Lq−1

∂q−1−−−−→ ·· · ∂1−−−−→ L0
ε−−−−→C−−−−→ 0

is exact and hence is the desired projective resolution of C. Now, applying the functor

Homg(_,V ), we get the complex

Homg(C,V )
ε−−−−→ Homg(L0,V )

∂1−−−−→ ·· ·Homg(Lq−1,V )
∂q−−−−→ Homg(Lq ,V ) −−−−→ ·· ·

Now, observing that Homg(Lq ,V ) ' Homk(
∧q (g/k),V ) ' HomK (

∧q (g/k),V ) tells us that

the last complex is exactly the complex C •(g,K ;V ) together with the maps d , that was

used in defining the relative lie algebra cohomology. Thus, we get that

H q (g,K ;V ) = Extq
(g,K )(C,V ). (2.2.6)

2.3 Cohomological Representations of GL(2,R) and GL(2,C)

An irreducible admissible (g,K ) module V of GL(2,R) or GL(2,C) is said to be of coho-

mological type or a cohomological representation if H•(g,K ;V ⊗F ) 6= 0 for some finite

dimensional irreducible representation F of GL(2,R) or respectively GL(2,C).

We would like to have an explicit classification of all irreducible cohomological repre-

sentations of GL(2,R) and GL(2,C). We will need a Lemma to help prove this classification

result, which we state below. This is due to D. Wigner and is popularly known as Wigner’s

Lemma.

Lemma 1.

Let U ,V be two (g,K ) modules. Let the center Z
(
U (g)

)
of the universal enveloping alge-

bra U (g) act on U and V by the infinitesimal characters χU and χV . If χU 6= χV , then

Extq
(g,K )(U ,V ) = 0 for all q ≥ 0.
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Proof. The proof we give here is from Chapter 1, Section 4 of [4]. It is trivial to see that

Ext0
(g,K )(U ,V ) = Hom(g,K )(U ,V ) = 0 if the infinitesimal characters χU and χV are different.

We know that for q ≥ 1, the group Extq
(g,K )(U ,V ) is canonically isomorphic to the group of

all q length exact sequences with first term V and last term U upto an equivalence under

the Baer sum. Since the infinitesimal characters are not equal, we may find an element

z ∈ Z
(
U (g)

)
such that χU (z) = 0 and χV (z) = 1. Now, for any S ∈ Extq

(g,K )(U ,V ) given by an

exact sequence:

S ≡ 0 −→V −→ Xq −→ Xq−1 −→ ·· · −→ X1 −→U −→ 0,

the element z defines an endomorphism of S given by the action of z on each of the Xi ’s,

U and V . So, the exact sequence χV (z) ·S, which is the pushout of S by the map V
z−→V

is equivalent to the pullback S ·χU (z) of S by the map U
z−→U . Since z was chosen such

that χU (z) = 0,χV (z) = 1, we get that 1.S ' S.0, which implies that S ' 0. Thus, we have

shown that Extq
(g,K )(U ,V ) = 0.

Let d = (h, a,ε) or d = (h1, a1,h2, a2) and let (r [d ],R[d ]) denote the finite dimensional

irreducible representation of GL(2,R) or GL(2,C) as defined in Section 2.1. The follow-

ing theorem determines all the irreducible admissible representations of GL(2,R) and

respectively GL(2,C) that are of cohomological type.

Theorem 1.

Let (π,V ) be an irreducible (g,K ) module for GL(2,R) or respectively GL(2,C) such that

H•(g,K ;V ⊗R[d ]∨) 6= 0. Then, π' r [d ],r [d ′] or π[d ] for GL(2,R) and π' r [d ] or π[d ] for

GL(2,C).

Proof. We already know from Section 2.2 that H q (g,K ;V ⊗R[d ]∨) = Extq
(g,K )(C,V ⊗R[d ]∨).

Since R[d ] is finite dimensional, V ⊗R[d ]∨ ' Hom
(
R[d ],V

)
. Further, since Hom(X ,_) is

right adjoint to _⊗X , we get that

H q (g,K ;V ⊗R[d ]∨) ' Extq
(g,K )

(
C,Hom(R[d ],V )

)' Extq
(g,K )

(
C⊗R[d ],V

)
' Extq

(g,K )

(
R[d ],V

)
.

(2.3.1)

Thus, by Wigner’s Lemma, we get that for this cohomology to be non-zero, we want the

infinitesimal characters χR[d ] and χV to be equal, which tells us that Z and the Casimir

element ∆ act by the scalars a and h
2

(
1− h

2

)
respectively. This proves the theorem since

r [d ],r [d ′] and π[d ], and respectively r [d ] and π[d ] are the only irreducible admissible
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(g,K ) modules for GL(2,R) and respectively GL(2,C) with the desired action of Z
(
U (g)

)
.

It may be noted that the only infinite dimensional cohomological representations for

GL(2,R) are the discrete series representations.

Next, we state a well known proposition (Proposition I.4, [12]) that describes the

cohomology groups H q (g,K ;V ⊗R[d ]∨) for different (g,K ) modules (π,V ). We note by

Theorem 1 that H q (g,K ;V ⊗R[d ]∨) = 0 for π 6' r [d ],r [d ′] or π[d ] for GL(2,R) and π 6' r [d ]

or π[d ] for GL(2,C).

Let (π,V ) be a (g,K ) module for GL(2,R) or GL(2,C). In the following proposition,

we will denote C n(g,K ;V ⊗R[d ]∨) simply by C n and H n(g,K ;V ⊗R[d ]∨) by H n for n ≥ 0,

exactly as in [12].

Proposition 1.

1. Let G =GL(2,R).

(a) If π is not isomorphic to r [d ], r [d ′] or π[d ], then H n = {0} for all n.

(b) If π' r [d ], H 0 'C and H n = {0} for all n 6= 0.

(c) If π' r [d ′], H 2 'C and H n = {0} for all n 6= 2.

(d) If π'π[d ], C 1 = H 1 'C and C n = H n = {0} for all n 6= 1.

2. Let G =GL(2,C).

(a) If π is not isomorphic to r [d ] or π[d ], then H n = {0} for all n.

(b) If π' r [d ], H 0 ' H 3 'C and H n = {0} for all n 6= 0,3.

(c) If π'π[d ], C 1 = H 1 'C, C 2 = H 2 'C and C n = H n = {0} for all n 6= 1,2.



Chapter 3

Cohomology of GL(2)

3.1 Basics

Let F be a number field. LetA denote its ring of adeles,A f the ring of finite adeles,A×

the group of ideles. Further, for all places ν of F , let Fν denote the completion of F at ν.

Let S1, S2 denote the set of all real and respectively complex places of F . Let S = S1 ∪S2

denote the set of all archimedean places of F and S̄ denote the set of all embeddings of F

in C. Let us fix a section from S to S̄ so that ν represents an embedding corresponding to

the place ν. Let ν̄ represent the conjugate of the embedding ν for ν ∈ S2.

For any algebraic group H defined over F , let HF = H (F ), HA = H (A), H f = H (A f ), Hν =
H(Fν) for all places ν of F and H∞ = ∏

ν∈S
Hν. Let G =GL(2)/F , Z its center and B the sub-

group of upper triangular matrices. Let gν denote the lie algebra of Gν for every ν ∈ S

and g∞ = ⊕
ν∈S gν. Let Kν = O(2,R)Z (R) for a real place ν and Kν = U (2,C)Z (C) for a

complex place ν. Let K∞ = ∏
ν∈S

Kν. Let kν denote the Lie algebra of Kν and k∞ =⊕
ν∈S kν.

Let us denote the Hecke algebra of G by H , and let HF ,HA,H f ,Hν and H∞ denote

the respective Hecke algebras of GF ,GA,G f ,Gν and G∞. Now, given any open compact

subgroup K f ⊆G f , we attach a locally symmetric space

SG
K f

=G(F )\G(A)/K∞K f . (3.1.1)

Let d = (
(hν)ν∈S̄ , (aν)ν∈S̄ , (εν)ν∈S1

)
be such that hν, aν ∈Z, hν ≥ 2, aν ≡ hν (mod 2) for

all ν and εν ∈
{
0,1

}
for all ν ∈ S1. Let dν = (hν, aν,εν) if ν ∈ S1 and (hν, aν,hν̄, aν̄) if ν ∈ S2.

Then for each ν ∈ S, r [dν] denotes an irreducible finite dimensional representation as in

13
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Section 2.1. Consider the following representation of G∞, denoted by r [d ].

r [d ] =⊗
ν∈S

r [dν]. (3.1.2)

It is an irreducible finite dimensional representation of G∞ since each of the r [dν] are

irreducible and finite dimensional. We will denote the space of this representation

by R[d ]. The quantity d is said to be a dominant integral weight corresponding to the

representation (r [d ],R[d ]). The contragredient (r [d ]∨,R[d ]∨) is isomorphic to
⊗

ν∈S r [ďν].

We will work with the contragredient representation for convenience.

The representation r [d ]∨ of G∞ defines a sheaf Fd of vector spaces on the space SG
K f

by

Fd (U ) =
{

s : p−1(U ) −→ R[d ]∨
∣∣ s(g x) = r [d ]∨(g )s(x) ∀g ∈GF , x ∈GA

}
, (3.1.3)

where p : GA/K∞K f −−−−→ SG
K f

is the projection map. The objects of interest to us are the

sheaf cohomology groups H•(SG
K f

,Fd ). The sheaf cohomology groups H•(SG
K f

,_) are by

definition, the right derived functors of the left exact functor H 0(SG
K f

,_). This is called the

global sections functor and is defined as

H 0(X ,_)(G ) = H 0(X ,G ) =G (X )

for any topological space X and a sheaf G on X . The cohomology of SG
K f

with coefficients

in the sheaf Fd , denoted H•(SG
K f

,Fd ) are calculated by taking any injective resolution,

say 0 −−−−→ Fd
ε−−−−→ I 0 d0−−−−→ I 1 d1−−−−→ ·· · of the sheaf Fd , applying the global sec-

tions functor, dropping the first term of the resulting cochain complex and computing

cohomology. We get the following cochain complex after applying the global sections

functor to the injective resolution 0 −−−−→Fd
ε−−−−→I • mentioned above.

0 −−−−→ H 0(SG
K f

,Fd )
ε−−−−→ H 0(SG

K f
,I 0)

d0−−−−→ ·· · dq−1−−−−→ H 0(SG
K f

,I q )
dq−−−−→ H 0(SG

K f
,I q+1) · · ·

After dropping the first term, we get

H 0(SG
K f

,I 0)
d0−−−−→ H 0(SG

K f
,I 1)

d1−−−−→ ·· · dq−1−−−−→ H 0(SG
K f

,I q )
dq−−−−→ H 0(SG

K f
,I q+1) · · ·
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So, the q th cohomology group of SG
K f

with coefficients in Fd is given by

H q (SG
K f

,Fd ) = H q (H 0(SG
K f

,I •)) = kerdq /Imdq−1.

Though the definition a priori involves a choice of an injective resolution of Fd , it can be

shown H q (SG
K f

,Fd ) is independent of this choice ([13], Chapter III, Theorem 1.1A ).

3.2 Relation to Lie algebra cohomology

It is a basic proposition in the theory of Sheaf Cohomology that we may use any acyclic

resolution of Fd to compute the cohomology groups, instead of the injective resolution

0 −−−−→ Fd
ε−−−−→ I • used in the definition in previous section. In particular, we may

use the de-Rham complex. It is the following resolution [9] of the constant sheaf RM on a

manifold M , using the sheaves Ωk
M of smooth k-forms, that assign to any open set U of

M , the set Ωk
M (U ) of smooth k-forms on U .

0 −−−−→RM
i−−−−→Ω0

M
d0−−−−→Ω1

M
d1−−−−→ ·· · (3.2.1)

Tensoring the above resolution by a sheaf G gives an acyclic resolution of G . If we use such

a resolution of the sheaf Fd defined in Equation 3.1.3, the resulting cochain complex,

obtained after applying the global sections functor and discarding the first term, can be

reinterpreted in terms of the complex computing relative Lie algebra cohomologies. This

yields us the following isomorphism

H•(SG
K f

,Fd ) ' H•(g∞,K∞;C∞(GF \GA)K f ⊗R[d ]∨), (3.2.2)

where C∞(GF \GA) represents the space of all smooth functions on GA that are left in-

variant under GF and C∞(GF \GA)K f represents the subspace of functions that are right

invariant under K f . The space C∞(GF \GA) contains the space C∞
cusp(GF \GA) of all cusp

forms on GA. The inclusion C∞
cusp(GF \GA) ,−→C∞(GF \GA) induces an injection in coho-

mology [3]. This defines cuspidal cohomology H•
cusp(SG

K f
,Fd ). We have the following
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commutative diagram

H•(SG
K f

,Fd ) ' // H•(g∞,K∞;C∞(GF \GA)K f ⊗R[d ]∨)

H•
cusp(SG

K f
,Fd )

?�

OO

' // H•(g∞,K∞;C∞
cusp(GF \GA)K f ⊗R[d ]∨)

?�

OO

We know by multiplicity one theorem ([7], Chapter III, Theorem 3.3.6) for the action

of GA on the space of cusp forms C∞
cusp(GF \GA), that any cuspidal automorphic represen-

tation of GA appears in the direct sum decomposition of C∞
cusp(GF \GA) with multiplicity

one. Using this direct sum decomposition, we get that

H•
cusp(SG

K f
,Fd ) ' ⊕

π=⊗′
νπν

H•(g∞,K∞;π∞⊗R[d ]∨)⊗π f , (3.2.3)

where the direct sum is over all irreducible cuspidal automorphic representations π, with

π∞ and π f denoting the respective spaces of the representations π∞ = ⊗
ν∈S πν of G∞

and π f =
⊗′

ν6∈S πν of G f . We say that an irreducible cuspidal automorphic representation

π contributes to the cuspidal cohomology H•(SG
K f

,Fd ) if H•(g∞,K∞;π∞⊗R[d ]∨) 6= 0.

3.3 Inner Cohomology

Let X be a locally compact topological space and F be a sheaf of abelian groups on X . Let

U be an open subset of X and s be a section of F over U i.e., s ∈F (U ). We denote the set

of all points x ∈U such that s|x 6= 0 in the stalk Fx by Supp(s) = |s|. It is clear that |s| is a

closed subset of U . We may work with the functor H 0
c (X ,_) of taking global sections with

compact support, which is again left exact. Now, cohomology with compact supports

is defined to be the right derived functors of H 0
c (X ,_). Clearly H 0

c (X ,G ) is a subgroup of

H 0(X ,G ) for every sheaf G on X . Thus, we get a map from H q
c (X ,F ) −→ H q (X ,F ) for

every q ≥ 0. This map is in general not injective and the image of this map is called the

inner cohomology and denoted H q
! (X ,F ).

H•
! (X ,F ) = Im

(
H•

c (X ,F ) −−−−→ H•(X ,F )
)

. (3.3.1)

We are particularly interested in the inner cohomology groups H•
! (SG

K f
,Fd ) which by
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definition are Im

(
H•

c (SG
K f

,Fd ) −−−−→ H•(SG
K f

,Fd )

)
. It is known ([12], Section I.5, Theorem

I.5.1 (2)) that inner cohomology contains cuspidal cohomology.

H q
cusp(SG

K f
,Fd ) ⊆ H q

! (SG
K f

,Fd ) ∀q ≥ 0. (3.3.2)

Futher we have the following commutative diagram which tells us that the inner cohomol-

ogy H•
! (SG

K f
,Fd ) is isomorphic to the image H̃• of the map H•(g∞,K∞;C∞

c (GF \GA)K f ⊗
R[d ]∨) −→ H•(g∞,K∞;C∞(GF \GA)K f ⊗ R[d ]∨) induced by the inclusion of the space

C∞
c (GF \GA) of smooth functions on GF \GA that are compactly supported in ZAGF \GA,

inside C∞(GF \GA).

H•(SG
K f

,Fd ) ' // H•(g∞,K∞;C∞(GF \GA)K f ⊗R[d ]∨)

H•
c (SG

K f
,Fd )

OO

' // H•(g∞,K∞;C∞
c (GF \GA)K f ⊗R[d ]∨)

OO

In the above diagram, the vertical arrows are in general not injective. We have a decom-

position of H•
! (SG

K f
,Fd ) similar to 3.2.3.

H•
! (SG

K f
,Fd ) ' ⊕

π∈Coh(G ,K f ,d)

H•
! (SG

K f
,Fd )(π). (3.3.3)

The set of isomorphism classes of representations π which occur in the above decom-

position is called the spectrum and denoted Coh(G ,K f ,d) [10]. All cuspidal automor-

phic representations that contribute to cuspidal cohomology belong to the spectrum

Coh(G ,K f ,d) because of 3.3.2. Hence we will be concerned with those π ∈ Coh(G ,K f ,d)

that are not cuspidal. A theorem of Waldspurger [12] gives us a class of representa-

tions A1(ω,d) that contains the spectrum Coh(G ,K f ,d). We will shortly define this class

A1(ω,d) of representations. So, our task of finding the non-cuspidal part of the spectrum

is reduced to finding out which of the representations in the class A1(ω,d) are non-

cuspidal and belong to Coh(G ,K f ,d), in other words, contribute to the inner cohomology

H•
! (SG

K f
,Fd ).

We will introduce the class A1(ω,d) and state the relevant theorem of Waldspurger in

the next few pages. We follow [12] and give a sketch of the proof of Theorem 3. The full

proof can be found in [12].

Let ω be a continuous quasi-character of F×∖
A× such that ων is equal to the central
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quasi-character of r [dν], where d is as in Section 3.1 and ων denotes the local character

of ω at the place ν, i.e.,

ων(z) = zaν , if ν ∈ S1,

ων(z) = zaνzaν , if ν ∈ S2.

for z ∈ F×
ν . There exists such a ω if and only if the following conditions hold ([12], Section

I.5).

• If S1 6= ;, aν = a for all ν ∈ S.

• If S1 =;, aσ◦ν+aσ◦ν is constant for all σ ∈ Aut(C),ν ∈ S.

We assume that the above conditions are satisfied. Let A (ω) be the space of automorphic

forms on GF
∖

GA, with central character ω, and let A0(ω) be the subspace of cuspidal

automorphic forms. The Hecke algebra HA acts on the two spaces by right translation.

Let A1(ω) be the direct sum of A0(ω) and the one dimensional invariant subspaces of

A (ω). Let A0(ω) and A1(ω) be respectively the sets of irreducible subspaces of A0(ω)

and A1(ω). We can think of A0(ω) and A1(ω) as sets of irreducible non-isomorphic

automorphic representations, as a result of multiplicity one theorem.

Let (π,V ) ∈ A1(ω). Then it is a simple admissible module or alternatively called as an

irreducible admissible representation of HA. We have the following well known theorem

([7], Chapter III, Theorem 3.3.3) that gives us an easier way to look at such representations.

Theorem 2.

Tensor Product Theorem: Let (π,V ) be an irreducible admissible representation of HA.

Then, for each place ν of F , we have an irreducible admissible representation (πν,Vν) of

Hν, and Vν contains a non-zero GL(2,oν) fixed vector v0
ν for almost all non-Archimedean

places ν, such that π is isomorphic to the restricted tensor product of the representations

πν with respect to the v0
ν. It is denoted π'⊗′πν.

Thus (π,V ) ∈ A1(ω) can be written as a restricted tensor product of representations

πν. For d as in Section 3.1, let A0(ω,d) and A1(ω,d) be the set of all representations (π,V )

in A0(ω) and respectively in A1(ω) such that πν ' r [dν],r [d ′
ν] or π[dν] for all ν ∈ S1 and

πν ' r [dν] or π[dν] for all ν ∈ S2. It should be noted that A0(ω,d) = A1(ω,d) unless hν = 2

for all ν ∈ S̄.

Let us denote by C (ω,K f ) the space of smooth functions φ on GF \GA/K f such that

φ(zg ) =ω(z)φ(g ) for all z ∈ ZA, g ∈GA. Let CB (ω,K f ) be the space of smooth functions



3.3. INNER COHOMOLOGY 19

on BF \GA/K f satisfying the same property, where B denotes the group of upper trian-

gular matrices. Clearly C (ω,K f ) ⊆ CB (ω,K f ). Moreover, the sub-algebra H
K f

A
of K f

bi-invariant elements in HA acts on the spaces C (ω,K f ) and CB (ω,K f ).

Let C ′
B (ω,K f ) be the quotient of CB (ω,K f ) by the subspace of elements that vanish

on some Siegel domain for GF \GA/K∞K f . We will denote H q (g∞,K∞;Cc (ω,K f )⊗R[d ]∨)

by H q
c , H q (g∞,K∞;C (ω,K f )⊗R[d ]∨) by H q , H q (g∞,K∞;CB (ω,K f )⊗R[d ]∨) by H q

B and

H q (g∞,K∞;C ′
B (ω,K f )⊗R[d ]∨) by H q

B ′ . Then, it is known ([14], Lemma 2.3) that the

following sequence

0 −−−−→Cc (ω,K f ) −−−−→C (ω,K f ) −−−−→C ′
B (ω,K f ) −−−−→ 0 (3.3.4)

is exact and gives the following long exact sequence

H 0
c −−−−→ H 0 −−−−→ H 0

B ′ −−−−→ ·· · −−−−→ H q
c −−−−→ H q −−−−→ H q

B ′ −−−−→ H q+1
c −−−−→ ·· ·

(3.3.5)

in cohomology. The maps H q −−−−→ H q
B ′ are called restriction maps. Thus, the inner

cohomology H̃ q can also be defined as kernel of this restriction map. It is also known

that this is the same as ker(H q −→ H q
B ).

Now, let (π,E) ∈ A1(ω). Let π= ⊗′πν and let Eν represent the space of πν for every

place ν. Let E f =
⊗′

ν6∈S Eν. Let E K f and E
K f

f denote respectively the subspaces of elements

that are fixed by K f . The inclusion E K f ,−→C (ω,K f ) defines by functoriality a map from

H q (g∞,K∞;E K f ⊗R[d ]∨) −−−−→ H q . We let H q (E) denote the image of this map. We are

now ready to state the theorem of Waldspurger [12].

Theorem 3.

1. There exists a set Ξ⊆ A1(ω,d) such that

• if E ∈Ξ, then E
K f

f 6= 0 and the H
K f

f module H q (E) is isomorphic to m ·E
K f

f =
E

K f

f ⊕E
K f

f ⊕·· ·⊕E
K f

f for some integer m ≥ 1.

• there is a direct sum decomposition

H̃ = ⊕
E∈Ξ

H q (E). (3.3.6)

2. If E ∈ A0(ω,d) and E
K f

f 6= 0, then E ∈Ξ and H q (E) ' E
K f

f .
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Proof. We give only a sketch of the proof. It involves looking at a similar direct sum de-

composition of the square integrable cohomology H q
(2) = H q (g∞,K∞;C2(ω,K f )⊗R[d ]∨),

where C2(ω,K f ) denotes the subspace consisting of those φ ∈C (ω,K f ) such that for any

finite sequence X1, X2, · · ·Xi in g∞, X1 · X2 · . . . · Xi ·φ is square integrable on GF ZA\GA.

Since Cc (ω,K f ) ⊆C2(ω,K f ), this decomposition directly provides a direct sum decompo-

sition similar to 3.3.6. Further, writing E =⊗′ Eν, E∞ =⊗
ν∈S Eν and E f =

⊗′
ν∈S Eν, we get

that E K f = E∞⊗E
K f

f and

H q (g∞,K∞;E K f ⊗R[d ]∨) = E
K f

f ⊗H q (g∞,K∞;E∞⊗R[d ]∨).

Using Künneth’s theorem, we get that

H q (g∞,K∞;E K f ⊗R[d ]∨) = E
K f

f ⊗
 ⊕

∑
ν∈S qν=q

⊗νH qν(gν,Kν;Eν⊗R[d ]∨)

 . (3.3.7)

Now, Proposition 1 tells us that if π 6∈ A1(ω,d), the right side of the above equation

vanishes and hence H q (g∞,K∞;E K f ⊗R[d ]∨) = 0, which implies H q (E ) = 0. This justifies

Ξ⊆ A1(ω,d) and the isomorphism H q (E) ' m ·E
K f

f .

If (π,E ) is a cuspidal automorphic representation, the map E K f −−−−→C (ω,K f ) −−−−→
CB (ω,K f ) actually factors through C 0

B (ω,K f ) where C 0
B (ω,K f ) denotes the subspace

consisting of φ ∈CB (ω,K f ) such that

∫
F \A

φ


1 x

0 1

g

d x = 0, for all g ∈GA.

Hence the map H q (E ) −−−−→ H q −−−−→ H q
B factors through H q (g∞,K∞;C 0

B (ω,K f )⊗R[d ]∨),

which is zero for all q ≥ 0 by [14].

We deduce from the above theorem that the only representations π appearing in the

spectrum Coh(G ,K f ,d) are either cuspidal or one-dimensional. Furthermore, all such

representations belong to the set A1(ω,d). Thus, we can deduce that unless hν = 2 for

all ν ∈ S̄, where hν’s are as in Section 3.1, the inner cohomology is exactly equal to the

cuspidal cohomology. This is because A1(ω,d) = A0(ω,d) unless hν = 2 for all ν ∈ S̄. Since

we are only interested in the non-cuspidal part of the spectrum, we will assume from

here onward that hν = 2 for all ν ∈ S̄, i.e., that r [d ] is a one-dimensional representation.



Chapter 4

Inner cohomology of GL(2) over a totally

real field

4.1 A summary of known results

This section is a summary of results in [8], concerning the inner cohomology H̃• =
Im(H•

c −−−−→ H•) = ker(H• −−−−→ H•
B ) of Section 3.3 for a totally real number field F with

degree of the extension [F :Q] = n. The dimension of the underlying manifold SG
K f

is 2n.

We state the theorem of Poincaré duality for the manifold SG
K f

.

Theorem 4.

Poincaré Duality: Let F be a sheaf defined on SG
K f

and let F∨ denote its dual sheaf. Then,

there exists a non-degenerate bilinear pairing

H q (SG
K f

,F )×H 2n−q
c (SG

K f
,F∨) −−−−→ C (4.1.1)

for any integer q, which tells us that H 2n−q
c (SG

K f
,F∨) ' (H q (SG

K f
,F ))*. In particular if they

are finite dimensional, dim H q (SG
K f

,F ) = dim H 2n−q
c (SG

K f
,F∨).

Since the cohomology groups for negative degrees are defined to be zero, this in

particular tells us that the cohomology groups H q (SG
K f

,F ) are zero for q ≥ 2n.

There is a subspace called the Eisenstein cohomology H q
Eis(SG

K f
,F ) ⊆ H q (SG

K f
,F )

for every q ≥ 0 such that after the identification 3.2.2, it maps isomorphically onto the

image of the map H q (g∞,K∞;C (ω,K f )⊗R[d ]∨) −−−−→ H q (g∞,K∞;CB (ω,K f )⊗R[d ]∨).

Further for q > 0, there is another subspace called the square integrable cohomology

21
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H q
squ(SG

K f
,F ) ⊆ H q (SG

K f
,F ) such that

H q (SG
K f

,F ) = H q
Eis(SG

K f
,F ) ⊕ H q

squ(SG
K f

,F ). (4.1.2)

It is known that H 0(SG
K f

,F ) = H 0
Eis(SG

K f
,F ) = H 0

squ(SG
K f

,F ) ' C. Further, using the

short exact sequence

0 −−−−→Cc (ω,K f ) −−−−→C (ω,K f ) −−−−→C ′
B (ω,K f ) −−−−→ 0

of Langlands [14], we get the long exact sequence 3.3.5. Together with 4.1.2, this tells

us that for q > 0, H q
squ(SG

K f
,F ) is indeed the image of the map H q

c −−−−→ H q . That is,

H q
squ(SG

K f
,F ) = H q

! (SG
K f

,F ) for all q > 0. Further, using the method of Matsushima and

Shimura ([8], Chapter III, Section 1), we get a decomposition

H q
squ(SG

K f
,F ) = H q

univ(SG
K f

,F ) ⊕ H q
cusp(SG

K f
,F ) (4.1.3)

of the square integrable cohomology into a direct sum of its universal and cuspidal parts.

Using Poincaré duality and the surjectivity of the restriction map for degrees q

from n to 2n − 2, the following result ([8], Chapter III, Section 6, Theorem 6.3) for

the dimensions of the different cohomologies is obtained. The dimensions of the co-

homologies H q (SG
K f

,F ), H q
Eis(SG

K f
,F ), H q

squ(SG
K f

,F ), H q
inn(SG

K f
,F ), H q

univ(SG
K f

,F )

and H q
cusp(SG

K f
,F ) are denoted by bq ,bq

Eis,bq
squ,bq

inn,bq
univ and bq

cusp respectively.

Theorem 5.

1. b0 = b0
Eis = b0

squ = 1; b0
inn = b0

univ = b0
cusp = 0.

2. b2n = b2n
Eis = b2n

squ = b2n
inn = b2n

univ = b2n
cusp = 0.

3. For 0 < q < 2n, bq = bq
Eis +bq

squ, bq
squ = bq

inn = bq
univ +bq

cusp where

(a) bq
Eis =


0, if 0 < q < n

h · (n−1
q−n

)
, if n ≤ q < 2n −1

h −1, if q = 2n −1

(b) bq
univ =


( n

q/2

)
if q is even

0, if q is odd
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(c) bq
cusp =


0, if q 6= n∑
k+l=q

hk,l
cusp, if q = n

where h denotes the number of cusp classes of Γ and

hk,l
cusp = ∑

b⊆{1,2,...,n}
|b|6=k

dim
[
Γb , (2,2, . . . ,2)

]
0

A cusp class is an orbit of a point in Pn(R), whose stabilizer in Γ contains a non-trivial

unipotent matrix.

4.2 The case F =Q
The results stated in the previous section are obtained by geometric means. In this section,

we wish to reproduce them in the specific case F =Q by a direct approach using only

algebraic and analytical considerations. We make use of Theorem 3. This tells us that the

only non-cuspidal representations π in the spectrum Coh(G ,K f ,d) are one dimensional

automorphic representations and belong to the set A1(ω,d). So, we check which of these

representations contribute to inner cohomology.

Let (π,E) be an one dimensional automorphic representation of G(F ) with central

character ω. So, E = Cξ where ξ is a continuous quasi-character of G(F )
∖

G(A) which

agrees with ω on Z (A). Any such quasi-character factors through the determinant map.

So, we may let ξ=χ◦det where χ : F×∖
A× −→C× is a continuous quasi-character of the

group of ideles. It is easily checked that the action π of G(A) on the space E by right

translation, gives rise to the same character ξ. Let π be the restricted tensor product over

all places ν of F , of the representations πν. Then, πν ' ξν for all ν, where ξν denotes the

restriction of ξ to Gν. Let us denote the only archimedean place of F by ∞. Then, since

we are concerned with only those (π,E) in A1(ω,d), we get that π∞ ' r [d ] or r [d ′], i.e.,

ξ∞ ' r [d ] or r [d ′]. Moreover, for an open compact subgroup K f ⊆G(A f ), E K f 6= 0 if and

only if ξ is right invariant under K f , in which case, E K f = E .

Using Equation 3.3.7 and Proposition 1, we obtain that the cohomology groups

H q (g∞,K∞;E K f ⊗R[d ]∨) of all degrees other than q = 0 and q = 2 are trivial. Further,

if π∞ ' r [d ], then H 2(g∞,K∞;E K f ⊗R[d ]∨) = 0 and H 0(g∞,K∞;E K f ⊗R[d ]∨) ' E
K f

f as

H
K f

f modules and if π∞ ' r [d ′], then H 0(g∞,K∞;E K f ⊗R[d ]∨) = 0 and H 2(g∞,K∞;E K f ⊗
R[d ]∨) ' E

K f

f as H
K f

f modules.
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Thus, we need to check if H q (E ) maps to 0 in H q (g∞,K∞;CB (ω,K f )⊗R[d ]∨), only for

degrees q = 0,2. By definition,

H 0(g∞,K∞;V ) = ker
(
C 0 (

g∞,K∞;V
)−→C 1 (

g∞,K∞;V
))

⊆C 0 (
g∞,K∞;V

) (4.2.1)

Hence the induced map

H 0(g∞,K∞;E K f ⊗R[d ]∨) −→ H 0(g∞,K∞;C (ω,K f )⊗R[d ]∨)

−→ H 0(g∞,K∞;CB (ω,K f )⊗R[d ]∨) (4.2.2)

obtained from the inclusions E K f ,−→ C (ω,K f ) ,−→ CB (ω,K f ) is injective. Thus, if π∞ '
r [d ], H 0(E) 6= 0 does not map to zero in H 0(g∞,K∞;CB (ω,K f )⊗R[d ]∨), i.e, π doesn’t

contribute to inner cohomology at degree 0. So, none of the one dimensional irreducible

automorphic representations of G(A) contribute to inner cohomology at degree 0.

Now, suppose πν ' r [d ′]. Since g∞/k∞ is a two dimensional complex Lie algebra,∧2(g∞/k∞) is one dimensional and z1∧z2 is a basis. Therefore, C 2(g∞,K∞;E K f ⊗R[d ]∨) is

also a one dimensional space. In fact, it can be easily seen that C 2(g∞,K∞;E K f ⊗R[d ]∨) =
CΨ where Ψ(αz1 ∧ z2) =αξ⊗1 is a K∞ module homomorphism. Further, since we know

H 2(E) 6= 0, we get that H 2(g∞,K∞;E K f ⊗R[d ]∨) = C 2(g∞,K∞;E K f ⊗R[d ]∨). Now, the

question is when does H 2(E) map to 0 in H 2(g∞,K∞;CB (ω,K f )⊗R[d ]∨). This translates

to the question of existence of a φ ∈C 1(g∞,K∞;CB (ω,K f )⊗R[d ]∨) such that dφ=Ψ.

Since φ is a K∞ module homomorphism, it is completely determined by its value

on either z1 or z2. Let φ(z1) = η⊗1 for some η ∈ CB (ω,K f ). Let kθ =
 cosθ sinθ

−sinθ cosθ

 ∈

SO(2) ⊆ K∞, w =
1 0

0 −1

 ∈ K∞ and cx =
x 0

0 x

 ∈ K∞ for x ∈ R×. Then, φ(kθ · z1) =

kθ ·φ(z1) if and only if ρ(kθ)η= e−2iθη, andφ(cx ·z1) = cx ·φ(z1) if and only if ρ(cx )η= xaη.

Further, φ(z2) =φ(w · z1) = w ·φ(z1) = ρ(w)η⊗ (−1)ε−
a
2 . Then,

φ
(
kθ · (pz1 +qz2)

)=φ(e−2iθpz1 +e2iθqz2) = e−2iθpη⊗1+e2iθq(−1)ε−
a
2 ρ(w)η⊗1
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kθ ·φ(pz1 +qz2) = kθ ·
(
pη⊗1+qρ(w)η⊗ (−1)ε−

a
2

)
= pρ(kθ)η⊗1+q(−1)ε−

a
2 ρ(kθw)η⊗1

= pe−2iθη⊗1+q(−1)ε−
a
2 ρ(wk−θ)η⊗1

= pe−2iθη⊗1+q(−1)ε−
a
2 e2iθρ(w)η⊗1

cx ·φ(pz1 +qz2) = pρ(cx)η⊗x−a +qρ(cx w)η⊗ (−1)ε−
a
2 x−a

= pxaη⊗x−a +qρ(w)ρ(cx)η⊗ (−1)ε−
a
2 x−a

=φ(pz1 +qz2) =φ(
cx · (pz1 +qz2)

)
which shows thatφ as defined above, does indeed belong to C 1(g∞,K∞;CB (ω,K f )⊗R[d ]∨)

when η satisfies

ρ(kθ)η= e−2iθη for all kθ ∈ SO(2)

ρ(cx)η= xaη for all x ∈R× (4.2.3)

Now, the question of when there exists a φ such that dφ=Ψ can be formulated in

terms of η.

dφ(z1 ∧ z2) =Ψ(z1 ∧ z2) = ξ⊗1 ⇐⇒ z1 ·φ(z2)− z2 ·φ(z1) = ξ⊗1
(
∵ [z1, z2] = 0

)
⇐⇒ z1 ·

(
ρ(w)η⊗ (−1)ε−

a
2

)
− z2 ·η⊗1 = ξ⊗1

⇐⇒ (−1)ε−
a
2 z1 ·ρ(w)η− z2 ·η= ξ

We may take η to be a function of the form
n∑

i=1
ηi , where for each i , ηi is a function on

GL(2,A) defined as

ηi
(
(gν)ν

)= ηi ,∞(g∞)
∏
p
ηi ,p (gp )

where the product runs over primes p and ηi ,∞ is a function on GL(2,R) and ηi ,p is a

function on GL(2,Qp ) for every prime p. Now, in the equation

(−1)ε−
a
2 z1 ·ρ(w)η− z2 ·η= ξ (4.2.4)

the action on η only affects the infinite components. Further, ξ being a quasi-character

can be written as ξ∞
∏
p
ξp , where ξ∞ is a quasi-character of GL(2,R) and ξp is a quasi-
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character of GL(2,Qp ) for every prime p. Hence, without loss of generality we may take

η
(
(gν)ν

)= η∞(g∞)
∏
p
ξp (gp ) (4.2.5)

Let b =
α β

0 γ

 ∈ B(Q). Since we want η ∈CB (ω,K f ), η(bg ) = η(g ) for all g ∈GA, which

implies

η∞(b∞g∞) ·∏
p
ξp (bp )ξp (gp ) = η(bg ) =⇒ ∏

p
ξp (bp )η∞(b∞g∞) = η∞(g∞)

Since ξ is a function on GL(2,Q)
∖

GL(2,A), ξ is invariant under left action by elements of

GL(2,Q) and hence B(Q) in particular. This gives ξ∞(b∞)
∏
p
ξp (bp ) = 1. Hence, we get

η∞(b∞g∞) = ξ∞(b∞)η∞(g∞) ∀g∞ ∈GR

We know moreover that ξ∞ = det1+ a−h
2 sgn(det)ε−1 since we have assumed that πν ' r [d ′]

at the archimedean place ν. Thus, we get

η∞(b∞g∞) = (αγ)1+ a−h
2 sgn(αγ)ε−1η∞(g∞) = (αγ)

a
2 sgn(αγ)ε−1η∞(g∞) (4.2.6)

Further, since we require η∞ to be a smooth function, the above equation holds even for

b∞ =
α β

0 γ

 ∈ B(R). We know that every element of G has a representation in one of the

following forms depending on the sign of its determinant.

g =
u

u

y1/2 x y−1/2

y−1/2

kθ (4.2.7)

g =
u

u

y1/2 x y−1/2

y−1/2

kθ

1

−1

 , kθ =
 cosθ sinθ

−sinθ cosθ

 (4.2.8)
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where x, y,u,θ ∈R and u, y > 0. Thus, using Equations 4.2.3 and 4.2.5, we get

η∞(g ) =



uae−2iθη∞(I ), if g =

u

u


y1/2 x y−1/2

y−1/2

kθ

(−1)ε−1− a
2 uae2iθη∞(I ), if g =

u

u


y1/2 x y−1/2

y−1/2

kθ

1

−1


(4.2.9)

Thus, we also have

ρ(w)η∞(g ) =



(−1)ε−1− a
2 uae2iθη∞(I ), if g =

u

u


y1/2 x y−1/2

y−1/2

kθ

uae−2iθη∞(I ), if g =

u

u


y1/2 x y−1/2

y−1/2

kθ

1

−1


(4.2.10)

Let X =
1

−1

 and Y =
 1

1

 be elements of g. Let us note the following identities.

exp(t X ) =
e t

e−t

 , exp(tY ) =
p(t ) q(t )

q(t ) p(t )

 , where p(t ) = e t +e−t

2
, q(t ) = e t −e−t

2

kθ exp(t X ) =
y1/2

t xt y−1/2
t

y−1/2
t

kθt (4.2.11)

where

yt =
(
sin2θe2t +cos2θe−2t

)−1
, xt = yt −e2t

tanθe2t
,θt = tan−1(tanθe2t )

kθ exp(tY ) =
u1/2

t vt u−1/2
t

u−1/2
t

kφt (4.2.12)
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where

ut =
(
p(2t )− sin2θq(2t )

)−1, vt =
cos2θ

(
cosθ(p(3t )−p(t ))− sinθ(q(3t )−q(t ))

)
2(−sinθp(t )+cosθq(t ))

φt = tan−1

(
sinθp(t )−cosθq(t )

cosθp(t )− sinθq(t )

)
.

Then, if we use the above identities 4.2.11 and 4.2.12, we have for g as in 4.2.7,

(X ·η∞)(g ) = d

d t

∣∣∣∣∣
t=0

ρ
(
exp(t X )

)
η∞(g ) = d

d t

∣∣∣∣∣
t=0

η∞
(
g exp(t X )

)
= d

d t

∣∣∣∣∣
t=0

uae−2iθtη∞(I )

=−2i sin2θe−2iθuaη∞(I )

(4.2.13)

(Y ·η∞)(g ) = d

d t

∣∣∣∣∣
t=0

ρ
(
exp(tY )

)
η∞(g ) = d

d t

∣∣∣∣∣
t=0

η∞(g exp(tY ))

= d

d t

∣∣∣∣∣
t=0

uae−2iφtη∞(I )

= 2i cos2θe−2iθuaη∞(I )

(4.2.14)

Similarly, for g as in 4.2.8, we get

(X ·η∞)(g ) = (−1)ε−
a
2 −12i sin2θe2iθuaη∞(I ) (4.2.15)

(Y ·η∞)(g ) = (−1)ε−
a
2 −12i cos2θe2iθuaη∞(I ) (4.2.16)

Since z1 = i ⊗X −1⊗Y and z2 = i ⊗X +1⊗Y , we get that

z1 ·η∞(g ) =

−2i uaη∞(I ), if g is as in 4.2.7

(−1)ε−
a
2 2i uaη∞(I ), if g is as in 4.2.8

(4.2.17)
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z2 ·η∞(g ) =

2i e−4iθuaη∞(I ), if g is as in 4.2.7

(−1)ε−
a
2 −12i e4iθuaη∞(I ), if g is as in 4.2.8

(4.2.18)

Let us now call the left side of the differential equation 4.2.4 as ζ. By the form of η assumed

in 4.2.5, we get that ζ
(
(gν)ν

)= ζ∞(g∞)
∏
p
ξp (gp ), where

ζ∞(g∞) =
(
(−1)ε−

a
2 z1 ·ρ(w)η∞− z2 ·η∞

)
(g∞)

=
(
(−1)ε−

a
2 ρ(w)

(
z2 ·η∞

)− z2 ·η∞
)

(g∞)

= (−1)ε−
a
2
(
z2 ·η∞

)
(g w)− (

z2 ·η∞
)

(g∞)

which means that

ζ∞(g∞) =

−2i
(
e4iθ+e−4iθ

)
uaη∞(I ), if g∞ is as in 4.2.7

(−1)ε−
a
2 2i

(
e4iθ+e−4iθ

)
uaη∞(I ), if g∞ is as in 4.2.8

(4.2.19)

On the other hand, ξ∞ being a quasi-character of GL(2,R) factors through the determi-

nant map. In fact, ξ∞ ' r [d ′], i.e., ξ∞ = det
a
2 sgn(det)ε−1. Since ζ∞ is clearly not invariant

under elements of SL(2,R), for example, ζ∞(kθ) =−2i
(
e4iθ+e−4iθ

)
η∞(I ) 6= −4iη∞(I ) =

ζ∞(I ) for kθ ∈ SO(2,R) ⊂ SL(2,R), we can conclude that ζ∞ 6= ξ∞ and hence ζ 6= ξ. This

means that Equation 4.2.4 is not satisfied for any suitable η, which shows that there does

not exist any φ ∈C 1(g∞,K∞;CB (ω,K f )⊗R[d ]∨) such that dφ=Ψ, which means that Ψ

does not map to zero in H 2(g∞,K∞;CB (ω,K f )⊗R[d ]∨). This shows that H 2(E) does not

map to zero in H 2(g∞,K∞;CB (ω,K f )⊗R[d ]∨).

So, (π,E ) does not contribute to inner cohomology at degree 2 as well. So, none of the

one dimensional irreducible automorphic representations of G(A) contribute to inner

cohomology at degree 2.

Further, we have already mentioned that H q (g∞,K∞;E K f ⊗ R[d ]∨) = 0 for a one-

dimensional automorphic representations (π,E) of G(A), for all degrees q 6= 0,2. Putting

all these facts together, we get that for the case F =Q, inner cohomology is the same as

cuspidal cohomology in all degrees.
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Chapter 5

The case of Imaginary Quadratic Fields

Let F = Q[
p−n] for a positive square free integer n. Let (π,E) be an one dimensional

automorphic representation of G(F ) with central character ω. So, E = Cξ where ξ is

a continuous quasi-character of G(F )
∖

G(A) which agrees with ω on Z (A). Any such

quasi-character factors through the determinant map. So, we may let ξ=χ◦det where

χ : F×∖
A× −→ C× is a continuous quasi-character of the group of ideles. It is easily

checked that the action π of G(A) on the space E by right translation, gives rise to the

same character ξ.

Let ∞ denote the only archimedean place of F , corresponding to the two conjugate

embeddings µ, µ̄ : F ,−→C,µ(a+b
p−n) = a+b

p
ni , µ̄(a+b

p−n) = a−b
p

ni . Let π be the

restricted tensor product over all places ν of F , of the representations πν. Then, πν ' ξν
for all ν, where ξν denotes the restriction of ξ to Gν. Then, since we are concerned with

only those (π,E ) in A1(ω,d), we get that π∞ ' r [d ], i.e., ξ∞ ' r [d ]. Moreover, for an open

compact subgroup K f ⊆ G(A f ), E K f 6= 0 if and only if ξ is right invariant under K f , in

which case, E K f = E .

By Equation 3.3.7 and Proposition 1, we get that if π∞ 6' r [d ] or π[d ], all the co-

homology groups H q (g∞,K∞;E K f ⊗R[d ]∨) are trivial. Further, since (π,E) is a finite

dimensional representation, π∞ has to be finite dimensional and hence π∞ 6'π[d ]. Thus

for nontrivial cohomology we require π∞ ' r [d ] and in this case, the two cohomology

groups H 0(g∞,K∞;E K f ⊗R[d ]∨) and H 3(g∞,K∞;E K f ⊗R[d ]∨) are equivalent to E
K f

f as

H
K f

f modules, while the cohomology groups at other degrees are zero.

So, we need to check if H q (E) maps to 0 in H q (g∞,K∞;CB (ω,K f )⊗R[d ]∨) only for

31
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degrees q = 0,3. Since H 0(g∞,K∞;V ) ⊆C 0
(
g∞,K∞;V

)
, we still have that the maps

H 0(g∞,K∞;E K f ⊗R[d ]∨) −→ H 0(g∞,K∞;C (ω,K f )⊗R[d ]∨)

−→ H 0(g∞,K∞;CB (ω,K f )⊗R[d ]∨) (5.0.1)

obtained from the inclusions E K f ,−→C (ω,K f ) ,−→CB (ω,K f ) are all injective. Thus, H 0(E ) 6=
0 does not map to zero in H 0(g∞,K∞;CB (ω,K f )⊗R[d ]∨), i.e, π doesn’t contribute to inner

cohomology at degree 0. Thus, none of the one dimensional irreducible automorphic

representations of G(A) contribute to inner cohomology at degree 0. Furthermore, it is

known that cuspidal cohomology does not occur in degree 0. Hence, we get

H 0
! (SG

K f
,Fd ) = 0 (5.0.2)

In order to consider the case q = 3, we will make use of Poincaré duality and a long

exact sequence similar to 3.3.5. The manifold SG
K f

can be compactified using Borel Serre

compactification [10]. Let us denote the resulting smooth manifold by S̄G
K f

. It is of the

same dimension as SG
K f

. Further it has a boundary ∂S̄G
K f

. Then, S̄G
K f

= SG
K f

∪∂S̄G
K f

. The

boundary has a differentiable structure of corners and is a manifold of one less dimension.

It is stratified into boundary components, that are indexed by each proper rational

parabolic subgroup P ⊂G . The sheaf Fd defined in 3.1.3 naturally extends to a sheaf of

vector spaces on the compact manifold S̄G
K f

. We also have that H•(S̄G
K f

,Fd ) ' H•(SG
K f

,Fd ),

the isomorphism being obtained by the natural restriction S̄G
K f

−→ SG
K f

. We also have the

following long exact sequence of sheaf cohomology groups

· · ·H i
c (SG

K f
,Fd )

i∗−−−−→ H i (S̄G
K f

,Fd )
r∗

−−−−→ H i (∂S̄G
K f

,Fd )
δ∗−−−−→ H i+1

c (SG
K f

,Fd ) −−−−→ ·· ·
(5.0.3)

We will denote the cohomology groups H i
c (SG

K f
,Fd ), H i (S̄G

K f
,Fd ), H i (∂S̄G

K f
,Fd ) from now

onward by H i
c , H i and H i (∂) respectively.

In our case of G = GL(2) over an imaginary quadratic field F , the manifold SG
K f

is

of dimension 3 and hence its boundary ∂S̄G
K f

is of dimension 2. Hence, we know that

H i (SG
K f

,Fd ) = H i (S̄G
K f

,Fd ) = 0 for all i > 3, and H i (∂S̄G
K f

,Fd ) = 0 for all i > 2. Conse-
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quently the long exact sequence 5.0.3 becomes

H 0
c

i∗−−−−→ H 0 r∗
−−−−→ H 0(∂)

δ∗−−−−→ H 1
c

i∗−−−−→ H 1 r∗
−−−−→ H 1(∂)

δ∗−−−−→ H 2
c

i∗−−−−→ H 2 r∗
−−−−→ H 2(∂)

δ∗−−−−→ H 3
c

i∗−−−−→ H 3 r∗
−−−−→ 0

(5.0.4)

The exactness of the above sequence tells us that the inner cohomology H 3
! (SG

K f
,Fd ) =

Im(H 3
c

i∗−−−−→ H 3) is equal to all of H 3.

Further, the map H 0
c

i∗−−−−→ H 0 is also known to be injective. This is because the

sheaves Ωk
c of smooth compactly supported k-forms on SG

K f
inject into the sheaves Ωk

of smooth k-forms on SG
K f

. We have already seen that the cohomology groups may be

computed by using a resolution of the sheaf Fd as in 3.2.1 and computing cohomology of

the cochain complex obtained after applying the global sections functor and discarding

the first term. Since H 0 of a cochain complex C 0 d 0

−−−−→C 1 d 1

−−−−→ ·· · is simply the kernel of

the map d 0, we know that H 0 is a subspace of C 0. Using this together with the injectivity

of Ω0
c ,−→Ω0, we get the desired result that the map i∗ : H 0

c (SG
K f

,Fd ) −−−−→ H 0(SG
K f

,Fd ) is

injective.

Since we have already shown that H 0
! (SG

K f
,Fd ) = 0 (Equation 5.0.2), we conclude that

H 0
c (SG

K f
,Fd ) = 0.

Now, we know by Poincaré duality that there exists a non-degenerate bilinear pairing

H 0
c (SG

K f
,Fd )×H 3(SG

K f
,Fd ) −−−−→C

Since we know that H 0
c (SG

K f
,Fd ) = 0, we get that H 3(SG

K f
,Fd ) = 0.

We had already noted that H 3
! (SG

K f
,Fd ) = H 3(SG

K f
,Fd ) using the long exact sequence

5.0.4. Thus, we get that H 3
! (SG

K f
,Fd ) = 0.

We dilineate below the different steps of the proof.

1. i∗ : H 0
c (SG

K f
,Fd ) −−−−→ H 0(SG

K f
,Fd ) is injective.

2. H 0
! (SG

K f
,Fd ) = Im i∗ = 0.

3. From 1 and 2, we get H 0
c (SG

K f
,Fd ) = 0.

4. From 3, using Poincaré duality, we get H 3(SG
K f

,Fd ) = 0.

5. From 4, we get that H 3
! (SG

K f
,Fd ) = 0.
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We would like to point out that though H 3
! (SG

K f
,Fd ) = H 3(SG

K f
,Fd ) = 0, the cohomol-

ogy with compact supports H 3
c (SG

K f
,Fd ) 6= 0 and one dimensional automorphic repre-

sentations contribute to this cohomology. This can be seen as follows. We know that

H 3
c (SG

K f
,Fd ) ' H 0(SG

K f
,Fd ) by Poincaré duality. Hence, it is sufficient to show the exis-

tence of one dimensional automorphic representations, i.e., quasi-characters ξ of GF \GA,

that contribute to H 0(SG
K f

,Fd ) ' H 0(g∞,K∞;C (ω,K f )⊗R[d ]∨). C 0(g∞,K∞;C (ω,K f )⊗
R[d ]∨) consists of all K∞ module homomorphisms from C−−−−→C (ω,K f )⊗R[d ]∨. For

any quasi-character ξ such that ξ∞ ' r [d ], we get such a K∞ module homomorphism that

takes 1 to ξ⊗1. Further, since ξ factors through the determinant, and exp(w1),exp(w2) and

exp(w3) are all in SL(2), we get that w1·ξ= w2·ξ= w3·ξ= 0, which imply that any such K∞
module homomorphism is mapped to the zero homomorphism in C 1(g∞,K∞;C (ω,K f )⊗
R[d ]∨). This tells us that all one dimensional automorphic representations π of G with

π∞ ' r [d ] contribute to H 0(SG
K f

,Fd ) and hence to H 3
c (SG

K f
,Fd ).

We have already mentioned that H q (g∞,K∞;E K f ⊗R[d ]∨) = 0 for degree q 6= 0,3. Thus,

we get that in degrees 1 and 2, inner cohomology is the same as cuspidal cohomology.



Chapter 6

Results

A summary of results concerning the inner cohomology groups for G =GL(2) overQ is

given below.

• H 0
! (SG

K f
,Fd ) = 0.

• H 1
! (SG

K f
,Fd ) = H 1

cusp(SG
K f

,Fd ).

• H 2
! (SG

K f
,Fd ) = 0.

• H q (SG
K f

,Fd ) = 0 and hence, H q
! (SG

K f
,Fd ) = 0 for q > 2.

A summary of results concerning the inner cohomology groups for G =GL(2) over an

imaginary quadratic field is given below.

• H 0
! (SG

K f
,Fd ) = 0.

• H q
! (SG

K f
,Fd ) = H q

cusp(SG
K f

,Fd ) for q = 1,2.

• H 3
! (SG

K f
,Fd ) = 0.

• H q (SG
K f

,Fd ) = 0 and hence, H q
! (SG

K f
,Fd ) = 0 for q > 3.

In both cases that we considered, viz., the field of rational numbers and imaginary

quadratic fields, we have obtained that there is no universal cohomology, and hence

inner cohomology is equal to cuspidal cohomology. This is not true for a general number

field. For example, if we consider a real quadratic field, i.e., F =Q(
p

n) for a square-free

integer n ≥ 1, statement 3b of Theorem 5 tells us that inner cohomology at degree 2 is
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two dimensional. In particular, it is non-trivial. I hope to study the inner cohomology for

any totally imaginary field F using similar methods, and compute expressions similar to

those in Theorem 5 for the dimensions of the universal cohomology for different degrees.
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