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Abstract

In this project, we analyze the structure of non spherically-symmetric Ten-
sor Gravitational perturbations in the Transverse Traceless(TT) gauge be-
yond the linearized order on Anti-de Sitter(AdS) background in a generic
dimension. The spherical symmetry of the background is used to simplify
the perturbation equations. We start with introducing AdS and it’s causal
structure, and then review some work on scalar field perturbations which
lead to instability in that spacetime in the first chapter. Additionally, we
present the calculation for higher order equations for this system. In the
second chapter, we derive the dynamical equations of gravitational perturba-
tions in TT gauge upto second order for the given background. After that, a
formalism developed in [1] is introduced and applied to simplify the dynam-
ical equations at linear and nonlinear order. Finally, we conclude with the
analysis of the structure of second order equations, and its results.
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Chapter 1

Introduction

The issue of stability of spacetimes has always been an important topic of
study in the field of General Relativity. At first, a lot of effort was given in
the study of linearized stability of Schwarzschild and other asymptotically
flat spacetimes containing a black-hole[2],[3][4]. Later, the linearized pertur-
bations on de sitter spacetime were studied[5]. According to the results of
these extensive studies, these spacetimes are stable under linear perturba-
tions.
In contrast to previous studies, the issue of stability of Minkowski spacetime
has been studied upto full non-linear formalism in great detail[6]. The results
of this study establish that Minkowski are stable under small perturbations.
For Minkowski spacetime, the mechanism for stability is the dispersion of
perturbation towards infinity. This leads to the inital perturbations slowly
decaying to zero with time, a phenomenon referred to as Asymptotic stability.

In recent years, Anti-de Sitter spacetime has been subject to much analysis
and research due to the AdS-CFT correspondence [7]. A lot of effort has gone
into developing dynamical theories which contain various matter fields, con-
sidering AdS as a background. In order to to make such a consistent theory,
it needs to be checked apriori that AdS is stable under such perturbations or
not, i.e. do small perturbations grow indefinetly in time or not. In the past
few years, the issue of stability of Anti de-Sitter spacetime has become very
important[8],[9]. In general, full non-linear analytical treatment of this prob-
lem is very complicated as finding the complete set of solutions for the partial
differential equations is very hard, in general. Hence, most of the progress
is made by using numerical techniques. Only under certain simplifying ap-
proximations can anything conclusive be said about the issue. A number of
numerical and analytic studies have found that under certain class of scalar
field perturbations, for a given set of boundary conditions and initial con-
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ditions, AdS is unstable, i.e. indefinitely small perturbations grow linearly
in time[10],[11]. On the other hand, a few studies have also suggested that
there are a class of perturbations for Asymptotically AdS spacetimes which
do not result in unstable modes.[12]. Hence, it important to study when such
instabilities are generated, and what’s the reason.
We begin by describing the basic properties of Anti-de Sitter spacetime, and
why studying the stability of AdS is more difficult.

1.1 Introduction to AdS
Anti-de Sitter spacetime is the unique maximally symmetric Lorentzian man-
ifold with constant negative scalar curvature[13]. In n+ 2 dimensions, it can
be represented as

X2
1 +X2

2 + ...+X2
d − U2 − V 2 = −`2 (1.1)

embedded in a a flat n+ 3 dimensional space with metric:

ds2 = dX2
1 + ...+ dX2

d − dU2 − dV 2. (1.2)

Here, ` represents the radius of Anti deSitter spacetime. After a series of
coordinate transformations, the metric can be written in a form where the
causal structure is apparent, which is

ds2 =
`2

cosx2
(−dt2 + dx2 + sinx2dΩ2); (1.3)

where dΩ2 is the metric on a n dimensional sphere and (t, x) ∈ R×[0, π
2
). This

metric solves the Einstein Equations with a negative cosmological constant
Λ = −n(n+1)

2`2
. Using this form of the metric, we can study the causal

structure of this spacetime.
The conformal infinity I(x = π/2) is the timelike cylinder R× Sn. From

the figure [1] on the next page, it is apparent that AdS can be conformally
matched to half of the Einstein static universe .

1.2 Initial and Boundary Conditions
The time taken by null geodesics to reach the origin from the boundary is
finite, and this can be seen by the following calculation.
Consider null geodesics in the metric:

ds2 =
`2

cosx2
(−dt2 + dx2 + sinx2dΩ2);
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Figure 1.1: The causal diagram of AdS, where the spherical dimensions have
been represented as a circle. As we can see, the region shaded with green
corresponds to Anti-de Sitter spacetime, and the full cylinder is the whole
Einstein Static Universe. The surface of the cylinder is the boundary of
AdS. The two green disks are the null geodesics, and timelike geodesics are
contained within the disks. (Image Curtsey: Wikipedia)

The equation for a null geodesic with constant spherical coordinates is dt =
±dx. To get the time interval for light rays to reach the origin, we need
to solve ∆t =

∫
dt =

∫ 0

π/2
dx. Since the limits on the integral is finite, this

expression has a finite value.

To be able to define dynamics for a system, we need to prescribe initial
conditions at t = 0. But, in the case of AdS, since information from the
boundary takes only finite time to reach inside, that information could effect
the dynamics that have been defined by intitial conditions prescribed by us.
Hence, in addition to Initial Conditions, we also need to prescribe Boundary
conditions for the system such that the mathematical problem of defining
dynamics is well posed,[14],[15]. This makes the study of AdS instability
more interesting and complicated.

————————————————————————————————
-
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Chapter 2

AdS Instability by a Scalar field

In this chapter, we will present an example of an analytic study,[11] where,
for a certain class of scalar field perturbations; given a specific set of initial
conditions and reflecting boundary conditions, an instability is found for AdS
in more than three dimensions.

2.1 The Scalar field model

A simple model of a scalar field as the perturbation on the vacuum solution
is considered, where the field is spherically symmetric. Although in this
section, we are working in a four dimensional metric, the procedure is easily
extendable to higher dimensions[16]. We are trying to solve the Einstein-
Scalar system governed by the following equations:

Gab + Λgab = 8πG(∂aφ∂bφ−
1

2
gab(∂φ)2) (2.1)

where Λ = −3/`2 .
The scalar field obeys the equation of motion: gab∇a∇bφ = 0.

The perturbation is assumed to be of a special kind, where the metric
components g00 and g11 are perturbed, and the perturbation is assumed to
have a form:

ds2 =
`2

cos2 x
(−A exp−2δ dt2 + A−1dx2 + sin2 xdΩ2) (2.2)

The perturbation coefficients A, δ, and Φ are functions of (t,x). For pure AdS
case A=1; δ = 0, φ = 0. This ansatz corresponds to a spherically symmetric
perturbation by a spherically symmetric field.
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The equations governing the dynamics of the system are :

Π̇ =
1

tan2 x
(tan2 xAe−δΦ)′ (2.3)

This is the scalar wave equation in AdS background, where Π := A−1eδφ̇ and
Φ := φ′. Einstein’s equations yield two constraints, which are:

A′ =
1 + 2 sin2 x

sinx cosx
(1− A)− sinx cosxA(Φ2 + Π2) (2.4)

δ′ = − sinx cosx(Φ2 + Π2) (2.5)

Note that the AdS length scale ` drops out of the equations.
To find a solution of the above equations, a perturbative expansions of the
unknown variables is assumed. The expansion is :

φ(t, x) =
∞∑
j=0

φ2j+1(t, x)ε2j+1;A(t, x) = 1−
∞∑
j=1

A2j(t, x)ε2j; δ(t, x) =
∞∑
j=1

δ2j(t, x)ε2j

(2.6)
The justification of this expansion is that at first order, there is no back-
reaction to the metric. So, at linear order, the system corresponds to a
massless scalar field in the AdS background with no back-reaction to the
metric. The back-reaction comes at the second order. And hence, the metric
perturbation coefficients start from second order. Also, the reason why the
field is only at odd orders is that having a coefficient of the scalar field to the
even order parameter will give us nothing new in the system as that equation
will be identical to the equation corresponding to one order lower than that.

2.1.1 Equations at Linear Order

Inserting this expansion into the set of dynamical equations, and collecting
terms of the same order, we get, to the lowest order:

φ̈1 + Lφ1 = 0;L = − 1

tan2 x
∂x(tan2 x∂x) (2.7)

This Sturm-Liouville operator is self adjoint on L2([0, π/2], tan2 xdx). Eigen-
values of this operator are: ω2

j = (3 + 2j)2; j ∈ (0, 1, 2..). Since the eigen
values are real, this implies that the spacetime is linearly stable. The eigen-
functions of this self-adjoint operator are ej(x) = dj cos3 x 2F1(−j, 3+j, 3/2; sin2 x),
where dj is the normalization constant. These eigenfunctions are hyperge-
ometric functions, which in our case simplify, and are Jacobi Polynomials.
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Since these functions are eigen-functions of a self adjoint operator, they form
a complete set of functions, i.e. any function can be written as a linear
combination of the set of jacobi polynomials. The fact that the linear order
operator is Self Adjoint, will be of great use in the next section and the sub-
sequent chapters.
The full solution can now be written as: φ1(t, x) =

∑inf
j=0 aj cos (ωjt+ bj)ej(x),

where a’s and b’s are determined by initial conditions prescribed by us.

2.1.2 Back reaction to the metric

The back reaction to the metric appears at the second order, and the expres-
sion can be determined from the two constrained equations by taking the
lowest order non-trivial terms. Integrating the equations, we get

A2(t, x) =
cos3 x

sinx

∫ x

0

(φ̇1(t, y)2 + φ′1(t, y)2) tan2 ydy, (2.8)

δ2(t, x) = −
∫ x

0

(φ̇1(t, y)2 + φ′1(t, y)2) sin y cos ydy (2.9)

These equations have now given us a relation between the metric perturbation
coefficients at second order and the scalar field perturbation at first order.
Now we take the third order terms from the scalar wave equation. This is an
inhomogeneous differential equation with the same differential operator on
left hand side. The right hand side can be thought of as the source at third
order. It consists of both second and first order terms. The exact equation
is:

φ̈3 + Lφ3 = S(A2, δ2, φ1), (2.10)

where S := −2(δ2 + A2)φ̈1 − (Ȧ2 + δ̇2)φ̇1 − (A′2 + δ′2)φ
′
1

Substituting the expressions for A2 and δ2, we see that the whole source term
can be written sum over as products of terms of the form aj cosωjt+ bjej(x).
After projecting the third order equation on the eigen-basis, we get an in-
finite set of decoupled forced harmonic oscillator equations for the Fourier
coefficients (φ3, ej),

c̈j + ω2
j cj = Sj := (S, ej). (2.11)

This equation has the structure of a forced harmonic oscillator. On the
right hand side, by combination of ωj’s in the source terms, if the resonant
frequency can be produced, then due to secular terms the scalar field pertur-
bation will grow linearly in time indefinitely.
Writing down the full expression of the (s, ej), we get that for a given ωl, the
secular terms can arise for ωl = ωi + ωj − ωk, 2ωi − ωk. For one mode initial
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data, the resonant term is removable through some techniques, but for two
or higher mode initial data, the resonant term is non-removable.
Also, from this calculation, we can see how the energy shifts to higher scales.
Let us take an example to see this. Let’s consider that the resonance is due
to a two mode initial data cosω5 + cosω3. Then the secular terms arise for
2ωi−ωk, which are 2(3 + 2× 5)− (3 + 2× 3) = 3 + 2× 7, hence due to initial
data of i = 5 and j = 3, the resonance happens at l = 7, which is a higher
frequency.

This last calculation suggests that energy is transferred from the low fre-
quency modes to high frequency modes. This can also be interpreted as
concentration of energy into smaller scales. This process of concentration of
an excessive amount of energy can lead to formation of a black-hole. Further
numerical calculations from similar studies show this phenomenon in detail.

2.2 Higher order structure

After doing perturbative analysis of the system, it was found that the system
has a set of natural frequencies at the third order. But this is a restricted
statement, i.e. doesn’t apply to the full problem. To say something about
the full problem, even perturbatively, we have to see if the same structure
arises at every order. Hence, we need to go beyond the previous study to
higher orders, where we can see the frequency spectrum of the full problem.
The natural frequencies of the full system will be given as an expansion in
the parameter ε with the coefficients being the spectrum of frequencies at
each order.
In order to further explore that, we performed the fourth and fifth order
calculations. Demanding the perturbative expansion(1.8) for the variables,
we find that the fourth order equations are :

A4 =
cos3 x

sinx

∫ x

0

(φ̇1(t, y)2(A2(t, y) + 2δ2(t, y))− A2(t, y)φ′1(t, y)2) tan2 ydy

(2.12)

δ4 = −
∫ x

0

(2(φ̇1)
2(A2 + δ2) + φ′1φ

′
3) sin y cos ydy (2.13)

These equations have been derived from expanding the Einstein equations
and writing them as an integral. The fifth order equation comes from ex-
panding the scalar wave equation, which is

φ̈5 + Lφ5 = T (A4, δ4, A2, δ2, φ3, φ1) (2.14)
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where T := −2φ̈3(A2 + δ2) − φ̇3(Ȧ2 + δ̇2) − 2φ̈1(A4 + δ4) − φ̈1A
2
2 − φ̇1(δ̇4 +

Ȧ4 + 2A2Ȧ2 + δ2Ȧ2 + A2δ̇2)− φ′3(A′2 + δ′2)− φ′1(A′4 + δ′4 − A2δ
′
2 − δ2A′2).

This equation is of the same form as the one at third order. The difference
comes because of the source which is more complicated at higher orders,
as combining the various order components of the metric perturbations has
more possibilities. The common forced harmonic oscillator structure comes
because of the scalar wave equation which ensures the exact combination
occurs on the left hand side.
So we see that the same harmonic oscillator structure arises here as well. And
looking at the structure of initial Einstein Equations (2.4) and (2.5) and the
wave equation (2.3), we can say that this structure will continue to appear at
every odd order, with the source terms getting more and more complicated.
And it is those source terms that determine what will be the spectrum of
resonant frequencies at that order.

2.3 Results and Limitations of this approach
We can see that the structure of equations for all the variables remains es-
sentially the same at each order. It seems obvious now, as they are just
expansions of the same equation which is true to all orders. Also, in this
model, the ansatz for the metric was chosen so as to get a specific form of
equations.
But, as we will see in the later chapters, this is a generic feature of dynamical
equations for a wide class of perturbations, and follows fundamentally from
the structure of Einstein’s Equations .

Till now we have an example of scalar field perturbations that lead to an
instability in the metric. This is a very special class of perturbations for
AdS, where the scalar field only perturbs specific components of the metric.
We need to study a larger class of perturbations that include gravitational
perturbations. In order to do this, we need to use the General Relativity
formalism for deriving perturbations equations. We start with the most
general class, and then simplify it further using properties of the background
spacetime, in the next chapter.
————————————————————————————————-
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Chapter 3

Gravitational Perturbation
Equations

As we saw in the previous chapters, that there are a certain class of per-
turbations, under which, for specific initial and boundary conditions, AdS is
unstable. The reason for this instability is the presence of a forced harmonic
oscillator structure where the source terms can have secular terms at the
resonant frequencies. We now study the gravitational perturbations on AdS
in the TT gauge.

We would now like to consider a wider class of perturbations, and see if
such a structure arises. In order to do that, we have to first derive the basic
dynamical equations for the most general perturbations on Anti-de Sitter
spacetime. As we will see, these equations are almost impossible to solve
without using simplifying measures. Before doing that, we would first like to
classify different kinds of perturbations. To simplify these equations, we use
a method described in Wald and Ishibashi,[1] where they take advantage of
the spherical symmetry of the metric.

3.1 Formalism in GR
Anti-de Sitter spacetime is the maximally symmetric solution to the vacuum
Einstein equations with a negative cosmological constant. Assuming that as
the background spacetime, we wish to analyze the structure of dynamical
equations for perturbations at first and second order. We are working with
a n+ 2 dimensional spacetime, whose metric can be written as

ds2n+2 =
`2

sin2 x
(−dt2 + dx2 + cos2 xγijdz

idzj)

13



The range of x is (0, π
2
] and the conformal boundary is located at x = 0.

This coordinate system is slightly in contrast with the one mentioned in the
previous chapter as here, the coordinate x has been transformed to π

2
− x.

Therefore, in this coordinate system, the boundary is at x = 0, and the origin
of the coordinates is at x = π

2
. This choice of coordinates makes the spherical

symmetry explicit in the problem. Due to this structure, we can bring this
metric in a useful form by a simple coordinate transformation, which we will
see in the next chapter. So, for the rest of the document, we will refer to the
above expression as the reference metric for pure AdS.

We are trying to solve the equation

Gµν + Λgµν = 0 (3.1)

This equation further translates to Rµν = 2
n
Λgµν . After inserting the value

of Λ = −n(n+1)
2`2

, the equation simplifies to

Rµν +
n+ 1

`2
gµν = 0 (3.2)

where ` is the radius of AdS.

3.1.1 Background Derivative Procedure

The dynamical equation (3.2) obtained above is for a metric different from the
pure AdS solution, i.e. the derivatives and the connections in (3.2) correspond
to the full metric, and not the maximally symmetric one. We want to write
the equations in orders of pertubation around the background spacetime,
so as to make use of it’s symmetry properties. To do so, we would like to
express the derivative corresponding to the full metric,λ∇µ in terms of the
derivative corresponding to the background metric,∇̄µ. Such a procedure is
given in [17], Chapter 2, where the difference between the two derivatives
can be expressed by a three index object which depends on both the metrics.
So, the expression can be written as :

λ∇µων = ∇̄µων − Cρ
µνωρ (3.3)

and when acting on rank two tensors, the expression is:
λ∇µtαβ = ∇̄µtαβ − Cν

µαtβν − Cν
µβtαν (3.4)

where C can be expressed as :

Cρ
µν(λ) =

1

2
gρβ(λ)(∇̄µgνβ(λ) + ∇̄νgµβ(λ)− ∇̄βgµν(λ)) (3.5)

Note that this object is symmetric in the two bottom indices. Also, if the
background is flat, this reduces to the expression of the Christoffel Symbol.
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3.1.2 Manipulation of Riemann Tensor

We have an expression for the Riemann tensor in terms of the full derivative.
We would like to write it in terms of the background derivative. The Riemann
tensor for a given metric is defined as:

(∇µ∇ν −∇ν∇µ)ωα = Rρ
µναωρ (3.6)

Substituting equation (3.3) and (3.4) in (3.6), we get

(∇̄µ∇̄ν − ∇̄ν∇̄µ)ωα − ∇̄µ(Cρ
ναωρ) + ∇̄ν(C

ρ
µαωρ)

−Cρ
µα∇̄νωρ + Cρ

να∇̄µωρ + Cβ
µαC

ρ
νβωρ − C

β
ναC

ρ
µβωρ (3.7)

The first term is just the Riemann tensor of the background metric. Now, us-
ing the Leibnitz rule for Covariant derivatives, we can simplify this expression
such that the full Riemann tensor can be written as:

Rρ
µβν(λ) = R̄ρ

µβν − 2∇̄[µC
ρ
β]ν + 2Cα

ν[µC
ρ
β]α (3.8)

Thus, the Ricci tensor is given by:

Rµν(λ) = R̄µν − 2∇̄[µC
ρ
ρ]ν + 2Cα

ν[µC
ρ
ρ]α (3.9)

Finally, the dynamical equation, (3.2) that we have to solve, takes the form:

R̄µν − ∇̄µC
ρ
ρν + ∇̄ρC

ρ
µν + Cα

νµCρρα − Cα
νρC

ρ
µα +

n+ 1

`2
gµν = 0 (3.10)

. This is a most general expression where the Ricci tensor of a given metric
is written in terms of derivatives corresponding to another metric. Apriori
in the above expression, there need not be a connection between the two
metrics. Now we’ll analyze this equation, assuming that the two metrics
correspond to the full and the background metric.

3.2 Expansion around the AdS background

After obtaining the general dynamical equation application to any system
where there are two derivatives involved, we specialize to the case where one
of the derivatives is the zeroth order approximation to the full derivative,
corresponding to pure AdS spacetime, relevant to the problem. We remove
the bar from the derivatives, as now, there is only one derivative in the prob-
lem. Inserting the expression for Cρ

µν(λ), we expand the previous equation

15



to get:

R̄µν +
1

2
[ − ∇µg

ρβ∇ρgνβ − gρβ∇µ∇ρgνβ −∇µg
ρβ∇νgρβ − gρβ∇µ∇νgρβ

+ ∇µg
ρβ∇βgνρ + gρβ∇µ∇βgνρ +∇ρg

ρβ∇µgνβ + gρβ∇ρ∇µgνβ

+ ∇ρg
ρβ∇νgµβ + gρβ∇ρ∇νgµβ −∇ρg

ρβ∇βgµν − gρβ∇ρ∇βgµν ]

+
1

4
gαγgρδ[(∇νgµγ +∇µgνγ −∇γgµν)(∇ρgαδ +∇αgρδ −∇δgρα)

− (∇νgργ +∇ρgνγ −∇γgρν)(∇µgαδ +∇αgµδ −∇δgµα)]

+
n+ 1

`2
gµν = 0 (3.11)

Please note that all the gµν ’s mentioned in the above equation are gµν(λ).
Now, we can insert the perturbative expansions for gµν and gµν in the equa-
tion, and retain terms upto second order. The expansions are:

gµν(λ) = ḡµν + λhµν +
λ2

2
fµν + ... (3.12)

gµν(λ) = ḡµν − λhµν − λ2

2
(fµν − hµβh

νβ) (3.13)

In the above expansion, the ḡµν corresponds to the background piece.
The derivative we are using now is defined w.r.t. that piece. The hµν is
the first variation of the metric and hµν = dgµν(λ)

dλ
|λ=0. At second order in

the perturbation parameter λ, we get the second variation in the metricfµν ,
which can be obtained by d2gµν(λ)

dλ2
|λ=0.

The first and second variation in gµν(λ) is obtained by demanding that
gµα(λ)gαν(λ) = δνµ + O(h3). As we will see, the non-linear terms in gµν(λ)
are not important in the analysis if we are restricting ourselves to second
order. From now on, we drop the zeroth order term R̄µν in the equation; as
at that order, the equations are trivially satisfied. Now, substituting these
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expansions, (3.11) and (3.12) in (3.7), we get:

∇µh
ρβ∇ρhνβ + hρβ∇µ∇ρhνβ − ḡρβ∇µ∇ρhνβ − ḡρβ∇µ∇ρfνβ

+∇µh
ρβ∇νhρβ + hρβ∇µ∇νhρβ − ḡρβ∇µ∇νhρβ − ḡρβ∇µ∇νfρβ

−∇µh
ρβ∇βhνρ − hρβ∇µ∇βhνρ + ḡρβ∇µ∇βhνρ + ḡρβ∇µ∇βfνρ

−∇ρh
ρβ∇µhνβ − hρβ∇ρ∇µhνβ + ḡρβ∇ρ∇µhνβ + ḡρβ∇ρ∇µfνβ

−∇ρh
ρβ∇νhµβ − hρβ∇ρ∇νhµβ + ḡρβ∇ρ∇νhµβ + ḡρβ∇ρ∇νfµβ

+∇ρh
ρβ∇βhµν + hρβ∇ρ∇βhµν − ḡρβ∇ρ∇βhµν − gρβ∇ρ∇βfµν

+
1

2
ḡαγ ḡρδ[(∇νhµγ +∇µhνγ −∇γhµν)(∇ρhαδ +∇αhρδ −∇δhρα)

−(∇νhργ +∇ρhνγ −∇γhρν)(∇µhαδ +∇αhµδ −∇δhµα)]

+
2(n+ 1)

`2
(hµν + fµν) = 0 (3.14)

We have made use of the fact that ∇β ḡµν = 0, as the derivative ∇ is defined
w.r.t. the background metric. The reason we don’t need the non-linear terms
of gµν(λ) is that if we use fµν or hµβh

νβ, then inside the derivative, there can
only be ḡµν , if we are restricting ourselves to second order; and that term
will be equal to zero as ∇β ḡµν = 0.

This equation can also be derived by taking the first and second variation of
the Ricci tensor around the pure AdS background. The derivation is a simple
one, and one can use it to perform a check on the above calculation. We
consider the full Ricci tensor as a functional in the perturbation parameter
λ, so the full Ricci tensor is Rµν [g(λ)]. We can write this as a taylor expansion
in λ, and consider it’s variations.

Rµν [g(λ)] = Rµν [ḡ] + δRµν +
δ2

2
Rµν + .. (3.15)

where the two variations can be derived as

δRµν =
∂Rµν

∂g

dg

dλ
|λ=0dλ (3.16)

δ2R = {(∂R
∂g

)2(
dg

dλ
)2 +

∂R

∂g

d2g

dλ2
}|λ=0dλ

2 (3.17)

. from the above expressions, we can point out a correlation between the
terms here and the terms we get from the full derivation done earlier. Using
the definitions of the first and second variations of the metric, we can see that
terms like −∇ρh

ρβ∇νhµβ correspond to (∂R
∂g

)2( dg
dλ

)2 in the taylor expansion.
Terms involving fµν correspond to ∂R

∂g
d2g
dλ2

here. This correspondence gives an
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identification to the derived terms in the previous equation for the full Ricci
tensor.
Having derived the equations, we can now simplify them.

What we derived is the full equation which we get from standard gravita-
tional perturbation theory, without any assumption made about the pertur-
bation or the background metric. Looking at the structure of the equations,
we can now answer the point raised in the previous chapter. The reason that
the Self-Adjoint operator was the same for the homogenous and non homoge-
nous equations, can be attributed to the basic structure of Einstein equations
themselves, as is apparent from the equation where the same derivative op-
erators are acting on the linear hµν terms and the quadratic fµν . Till now,
we haven’t said anything about the operator, as we haven’t analyzed it in
detail. So, we cannot say it is self-adjoint yet; but, we can say that it will be
the same operator acting on the variation at every order.
Now, the first thing is to separate the first and the second order terms, as
the equations have to be satisfied at every order. Then, we will impose the
TT gauge conditions, which are: h, f = 0 ; ∇µh

µν = 0. This simplifies the
equations a lot. In the calculations, we use the background metric to raise
or lower indices on the perturbations and on the derivatives.
Also, here we can simplify the operator that acts on hµν at linear order, and
on fµν at second order.

3.3 Linearized Equations for TT perturbations
We know take the linear order terms from the equation, and try to simplify
them using the Transverse Traceless(TT) gauge conditions and symmetry of
the background metric.

The linear order equation is:

1

2
ḡρβ[(∇ρ∇µ−∇µ∇ρ)hνβ +∇ρ∇νhµβ −∇µ∇νhρβ − ∇ρ∇βhµν +∇µ∇βhνρ]

+
2(n+ 1)

`2
hµν = 0(3.18)

Using the identity (∇ρ∇ν − ∇ν∇ρ)hµβ = Rα
ρνµhαβ + Rα

ρνβhµα, we can write
the above equation as:

−∆hµν +
1

2
ḡρβ[Rα

ρµνhαβ +Rα
ρνµhαβ +Rα

ρµβhαν +Rα
ρνβhαµ]

− ∇µ∇νh +∇ν∇βh
β
µ +∇µ∇βh

β
ν +

2(n+ 1)

`2
hµν = 0 (3.19)
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This is the standard linearized Einstein Equation without imposing any gauge
conditions. This equation is identical to the ones derived in [18]. The dif-
ference from the cited reference being that we are dealing with a spacetime
with a cosmological constant. Now, using the Lorentz gauge conditions,
∇νh

µν = 0 and the traceless-ness condition h = hµµ = 0, we can eliminate
three terms from the above equation to get

−∆hµν +
1

2
ḡρβ[Rα

ρµνhαβ +Rα
ρνµhαβ +Rα

ρµβhαν +Rα
ρνβhαµ]

+
2(n+ 1)

`2
hµν = 0 (3.20)

To further simplify this equation, we need to use the maximally symmetric
property of the AdS Riemann tensor, i.e.

Rρµνα =
−1

`2
(gρνgµα − gραgµν) (3.21)

which translates to
Rα
ρµν =

−1

`2
(gρνg

α
µ − gαρ gµν)

Substituting these expressions in (3.15), we get
1

2
∆hµν +

1

`2
hµν = 0 (3.22)

This is as far as we can come in simplifying the linear equations using general
techniques. In the next chapter, we will decompose the derivatives into the
AdS type derivatives and the derivatives on the sphere, and then bring this
equation into a more solvable wave equation form.

3.4 Second order Equations in TT gauge
Keeping only the quadratic order terms in (3.14), we get

∇µh
ρβ∇ρhνβ + hρβ∇µ∇ρhνβ − ḡρβ∇µ∇ρfνβ +∇µh

ρβ∇νhρβ

+hρβ∇µ∇νhρβ − ḡρβ∇µ∇νfρβ −∇µh
ρβ∇βhνρ − hρβ∇µ∇βhνρ

+ḡρβ∇µ∇βfνρ −∇ρh
ρβ∇µhνβ − hρβ∇ρ∇µhνβ + ḡρβ∇ρ∇µfνβ

−∇ρh
ρβ∇νhµβ − hρβ∇ρ∇νhµβ + ḡρβ∇ρ∇νfµβ +∇ρh

ρβ∇βhµν

+hρβ∇ρ∇βhµν − gρβ∇ρ∇βfµν

+
1

2
ḡαγ ḡρδ[(∇νhµγ +∇µhνγ −∇γhµν)(∇ρhαδ +∇αhρδ −∇δhρα)

−(∇νhργ +∇ρhνγ −∇γhρν)(∇µhαδ +∇αhµδ −∇δhµα)]

+
2(n+ 1)

`2
fµν = 0 (3.23)
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We can now impose the gauge conditions on the equations, to simplify them
and get them in a form where the structure is apparent. After gauging away
the terms, we get:

∇µh
ρβ∇ρhνβ + hρβ∇µ∇ρhνβ +∇µh

ρβ∇νhρβ + hρβ∇µ∇νhρβ

−∇µh
ρβ∇βhνρ − hρβ∇µ∇βhνρ − hρβ∇ρ∇µhνβ + ḡρβ∇ρ∇µfνβ

−hρβ∇ρ∇νhµβ + ḡρβ∇ρ∇νfµβ + hρβ∇ρ∇βhµν − gρβ∇ρ∇βfµν

−1

2
ḡαγ ḡρδ(∇νhργ +∇ρhνγ −∇γhρν)(∇µhαδ +∇αhµδ −∇δhµα)

+
2(n+ 1)

`2
fµν = 0 (3.24)

As the first order calculation, we can now separate the terms and write
them as the Lichnerowicz operator acting on the second perturbations, with
the source terms on the right hand side.

−∆fµν + ḡρβ∇ρ∇µfνβ + ḡρβ∇ρ∇νfµβ +
2(n+ 1)

`2
fµν = ∇µh

ρβ∇βhνρ

−∇µh
ρβ∇ρhνβ − hρβ∇µ∇ρhνβ −∇µh

ρβ∇νhρβ − hρβ∇µ∇νhρβ

+hρβ∇µ∇βhνρ + hρβ∇ρ∇µhνβ + hρβ∇ρ∇νhµβ − hρβ∇ρ∇βhµν

+
1

2
ḡαγ ḡρδ(∇νhργ +∇ρhνγ −∇γhρν)(∇µhαδ +∇αhµδ −∇δhµα) (3.25)

This equation has the form of an inhomogenous second order differential
equation, with the source terms comprising of products of first order pertur-
bations. After simplifying the Lichnerowicz operator, we get:

− ∆fµν −
1

`2
fµν = ∇µh

ρβ∇βhνρ −∇µh
ρβ∇ρhνβ − hρβ∇µ∇ρhνβ

− ∇µh
ρβ∇νhρβ − hρβ∇µ∇νhρβ + hρβ∇µ∇βhνρ + hρβ∇ρ∇µhνβ

+ hρβ∇ρ∇νhµβ − hρβ∇ρ∇βhµν

+
1

2
ḡαγ ḡρδ(∇νhργ +∇ρhνγ −∇γhρν)(∇µhαδ +∇αhµδ −∇δhµα)(3.26)

At the end of this chapter, we have got the general perurbation equa-
tion(3.11) as well as the order by order dynamical equations for the TT
perturbations. The full problem of study of stability of this spacetime under
this whole set of gravitational perturbations. But since, in the current form,
these equations are not analytically solvable, we will have to use simplifying
measures. In order to do that, we will proceed towards introducing the gen-
eral formalism of classification of second rank tensors on a spacetime with
spherical symmetry. This analysis will help us determine the class of pertur-
bations on such spacetimes, and what are the mathematical tools that can
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be used w.r.t. each of them. They will also tell us what is a consistent set of
perturbations on this class of spacetimes, i.e. a subset of these perturbations
that can be studied independently of others, if such a class exists. We will
see that such decoupling happens, but only upto first order.
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Chapter 4

Decomposition of Derivatives and
Dynamical Equations

Till now, we have gotten the Einstein equations for TT perturbations in
the AdS background in the most general form. Now, we try to classify the
perturbations into three types of perturbations. This simplifies the linear
order equation a lot, and gives an ordinary differential equation with a self
adjoint operator for the perturbation at linear and quadratic order.

4.1 Decomposition w.r.t Sn

To remind ourselves, we consider a system of spacetime dimension n+2, where
n is dimension of the sphere. This formalism, as developed in [1] and [19] is
applicable to maximally symmetric spaces whose line element can be written
as

ds2(n+2) = gµνdx
µdxν = gab(y)dyadyb + r2(y)γij(z)dzidzj, (4.1)

where γij(z)dzidzj is the metric on the unite sphere Sn and r ≡ ` cosx
sinx

. Using
the spherical symmetry, metric perturbations can be decomposed into scalar,
vector or tensor perturbations w.r.t action of a rotation group on the n-
Sphere.

Notation We would like to clarify the notation used in this section and
following part of the article. To denote the coordinates on the full manifold,
”x” will be used. For the coordinates ranging t and r(x), ”y” will be used and
the spherical coordinates will be represented by ”z”. Greek indices on the
derivatives refer to the full spacetime indices, i.e. ν, µ, α.. ∈ (0, 1, 2...., n+ 2).
Indices a - h range over the t and r(x) variables and hence a, b..h ∈ (0, 1)
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and indices i-p range over the coordinates of the sphere in the system, so
i, j, k, l ∈ (2, 3, 4, ..., n+ 2).

4.1.1 Decomposition of Tensors on Compact Manifolds

We now quote two very important mathematical propositions that help us in
characterizing the tensors on a compact manifold, which for our case, is an n-
Sphere. The results have been cited here and their proofs are contained in [1].

1. Let(M,γij) be a compact Riemannian Manifold, then any dual vector
vi can be written as

vi = Vi +DiS (4.2)

, where DiVi = 0. We refer to Vi and S as the vector and scalar com-
ponents of vi

2. Let (M,γij) be a compact Riemannian Einstein Space, i.e Rij = cγij
for any constant c, then we can write any second rank tensor field on
M as

tij = Tij +D(iVj) + (DiDj −
γijD

mDm

n
)S +

γijt
m
m

n
; (4.3)

DiTij = 0, T ii = 0, DiVi = 0

We refer to Tij, Vj and (S, tmm) as the tensor, vector and scalar compo-
nents of tij.

The uniqueness of this decomposition follows from the orthogonality of all
the terms in (4.3), under the defined inner product of square integrable
functions(L2) on the compact manifold. It is important to note that the
compactness of the sphere has been used extensively in this argument, espe-
cially in concluding that the operator is self-adjoint and that the spectrum
of a self adjoint symmetric operator is discrete. This decomposition is very
useful because, for any rotationally invariant operator on this compact man-
ifold, no "mixing" is possible, i.e. scalar, vector and tensor cannot transform
into each other by the action of any rotationally invariant operator. Since, at
the first order the differential operator is invariant under rotations, the three
kinds of perturbations decouple. Hence, the coupling between scalar, vector
and tensor perturbations only starts at second order and at first order, we
can study each kind of perturbation independently.
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4.2 The System

We have seen that general tensorial TT perturbation can be decmomposed
into three orthogonal components, i.e. terms of type hij. Additionally, we
have seen that any rotationally invariant operator on the compact manifold
can’t couple these components at linear order. The full problem of stability
of Anti-de Sitter spacetime reduces to the study of these three classes of per-
turbations. These perturbations can be studied separately at linear order.
We now specialize to a one of these three classes and derive the dynamical
equations.
In this project, we consider only the tensor component of metric perturba-
tions. They provide a simplification of equations, and also provide a gauge
independent model to work with, since the gauge freedom in General Rela-
tivity is gµν → gµν−∇(µξν). This renders the equations of tensor components
of perturbations unchanged in any gauge.
Tensor components can be written as a product of tensor spherical harmonics
and scalar functions of the non spherical coordinates of the metric. The lin-
earized Einstein equations then reduce to uncoupled wave equations for the
scalar functions. So, this implies that we will be working with the follwing
expressions of the perturbations at the linear level.

hij = S(t, r)TKT ij

hai = 0;hab = 0

This choice implies that in our system, there are only tensor perturbations
present. And hence, there will be no coupling even at higher orders due to
absence of vector and scalar components.

4.2.1 Tensor Spherical Harmonics

The rotation group acts naturally on the Hilbert space of square-integrable
rank-two symmetric tensor fields on Sn. Tensor Harmonics, TKT ij are defined
to be an orthonormal basis of eigenvectors of DiDi in L2

T , i.e. they satisfy

(DmDm + k2T )TKT ij = 0;DjT
j
KT i

= 0;Ti
KT i

= 0 (4.4)

k2T = l(l + n− 1)− 2; l = 2, 3, ....

The number of independent components of TKT ij is (n−2)(n+1)
2

; so tensor
spherical harmonics are only non trivial for a sphere of dimension 3 or higher.
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4.2.2 Metric

For the specific section we are dealing with, we write the metric in form (4.1),
where r ≡ ` cosx

sinx
, where ` is the radius of AdS. In the coordinates (t, r), the

metric of non-sphere part takes the form:

gab(y)dyadyb = −V 2`2dt2 +
dr2

V 2
;V 2 = 1 +

r2

`2
(4.5)

4.3 Wave Equations at linear order for Tensor
Perturbations

The perturbed line element can be written as

hµνdx
µdxν = habdy

adyb + 2haidy
adzi + hijdz

idzj (4.6)

We use the prescription given earlier to decompose rank two tensors, and
apply it to hij

hij = h
(2)
ij + 2D(ih

(1)
T j) + hLγij + (DiDj −

γijD
mDm

n
)h0T (4.7)

The purely tensorial component is h(2)ij , and it can be written as h(2)ij =∑
H

(2)
TK
.TKij; where the summation is over all the possible K values. Substi-

tuting H(2)
T = r

n+2
2 φT , the linearized equations are:

∇a∇aφT − (
n(n+ 2)

4`2
+ [

n(n− 2)

4
+ l(l + n− 1)]

1

r2
)φT = 0 (4.8)

Here, ∇a represents the derivative w.r.t the non sphere part of the metric,
i.e. a ∈ (t, r)
Expanding the derivative of the AdS part, we get a differential equation of
the form:

∂2

∂t2
φT = (

∂2

∂x2
− ν2 − 1/4

sin2 x
− σ2 − 1/4

cos2 x
)φT (4.9)

; which is defined on the interval(0, π
2
), where x = π

2
corresponds to the origin

of AdS and x = 0 is the boundary. In this particular case of tensor pertur-
bations, non-trivial only in spacetime dimensions five or higher; σ = l + n−1

2

and ν = n+1
2
. This equation can also be derived by first decomposing the non

gauged equation into the sphere and non-sphere type derivatives, and then
inserting the special case of tensorial perturbations,[20],[19]. This equation
is also similar to the one derived for maximally symmteric backgrounds in
[21]. We get one such equation for each K in the summation. We now look
for the solutions of these equations
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4.4 Solutions to the Eigenvalue Problem
We now plan to analyze the solutions to above equation. We demand the
solution of type φT = eiωtφ(r), thus obtaining the eigenvalue equation

ω2φ(r) = (− ∂2

∂x2
+
ν2 − 1/4

sin2 x
+
σ2 − 1/4

cos2 x
)φ(r) (4.10)

We denote the differential operator on the right hand side, acting on φ(r) , as
L. We will be dealing with this operator in this and the next few sections. It
can be shown that this is a self adjoint operator on the hilbert space of square
integrable functions. Given that ν ≥ 1 in our case, if we demand regularity of
solutions at the origin and the boundary, then we get the discrete spectrum
of frequencies that can be allowed, which are:

ω2 = (2m+ 1 + ν + σ)2;m = 0, 1, 2, .... (4.11)

The eigenfunctions are :

φ(x) = C.Gν(x)
Γ(1 + σ)Γ(−ν)

Γ(ζω−ν,σ)Γ(ζ−ω−ν,σ)
.(sinx)2ν .F (Γ(ζων,σ),Γ(ζ−ων,σ ), 1 + ν; sin2 x);

= −C.Gν(x)
Γ(1 + σ)(−1)ν)

Γ(ζω−ν,σ)Γ(ζ−ω−ν,σ)
.(sinx)2ν .

∞∑
k=0

(ζω−ν,σ)k(ζ
ω
−ν,σ)k

k!(ν + k)!
. (4.12)

(sinx)2k(log sin2 x− ψ(k + 1)− ψ(k + ν + 1) + ψ(ζων,σ + k) + ψ(ζ−ων,σ + k))

The first equation corresponds to even dimensional spacetime, and second
one corresponds to odd dimensional spacetime. Here

ζων,σ ≡
ω + ν + σ + 1

2

(ζ)k ≡
Γ(ζ + k)

Γ(ζ)

ψ(z) ≡ d

dz
log(Γ(z))

Gν(x) ≡ (cosx)σ+1/2.(sinx)1/2−ν

So, we have the full solution of the linear order equation for tensorial com-
ponent of TT perturbations. This solution is regular near the origin and
the boundary. The positivity of the eigenvalue of the self adjoint operator
guarantees that AdS is linearly stable. Also, sice the operator is self-adjoint,
the eigenfunctions form a complete basis. This property will be put to much
use, when we deal with the source terms in the second order equation.
To find any instability in the metric, we need to go beyond the first order
and study that inhomogenous equation.

26



4.5 Decomposition of Second order Tensor Equa-
tions

Recall the second order dynamical equation

− ∆fµν −
1

`2
fµν = ∇µh

ρβ∇βhνρ −∇µh
ρβ∇ρhνβ − hρβ∇µ∇ρhνβ

− ∇µh
ρβ∇νhρβ − hρβ∇µ∇νhρβ + hρβ∇µ∇βhνρ + hρβ∇ρ∇µhνβ

+ hρβ∇ρ∇νhµβ − hρβ∇ρ∇βhµν

+
1

2
ḡαγ ḡρδ(∇νhργ +∇ρhνγ −∇γhρν)(∇µhαδ +∇αhµδ −∇δhµα)

.
Expanding these derivatives into the spherical and the non spherical co-

ordinates, i.e. ρβ → ab, al, kb, kl,, we get the full expansion which also
contains the scalar and vector components. After performing this decom-
position, since we are dealing with tensorial components, and we know that
those components don’t couple and can be studied separately, we now put
the scalar and the vector components to zero in the calculations. So, only
terms like hi,j in the expansion will remain. Alongside this exercise, we also
have to put this equation in the form of the previous equation. Substituting
f
(2)
ij =

∑
F

(2)
TK
.TKij and then F

(2)
T = r

n+2
2 χT; where the summation is over

all the K values, we get the second order equation, which is

∑
KT

{ − ∇a∇aχT + (
n(n+ 2)

4`2
+ [

n(n− 2)

4
+ l(l + n− 1)]

1

r2
)χT}TKij = ∇ih

kl(∇lhjk

− ∇khjl −∇jhkl) + hkl((∇k∇i −∇i∇k)hjl −∇i∇jhkl +∇i∇lhjk (4.13)

+ ∇k∇jhil +∇k∇lhij) +
1

2
{∇lh

k
j (∇ih

l
k +∇kh

l
i −∇lhik)

+ ∇khlj(∇lhik −∇kh
l
i −∇ih

l
k) +∇jh

k
l (∇ih

l
k +∇kh

l
i −∇lhik)−∇bh

k
j∇bhik}.

Translating the above equation, and writing this as an ODE, we get:

∑
KT

{ ∂
2

∂t2
χT + LχT}TKij = ∇ih

kl(∇lhjk −∇khjl −∇jhkl) (4.14)

+ hkl((∇k∇i −∇i∇k)hjl −∇i∇jhkl +∇i∇lhjk +∇k∇jhil +∇k∇lhij)

+
1

2
{∇lh

k
j (∇ih

l
k +∇kh

l
i −∇lhik) +∇khlj(∇lhik −∇kh

l
i −∇ih

l
k)

+ ∇jh
k
l (∇ih

l
k +∇kh

l
i −∇lhik)−∇bh

k
j∇bhik};
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where L is the differential operator identical to the first order equation. We
can now expand χ in terms of the basis functions em(x). So

χT =
∑
m

cm(t)em(x) (4.15)

so that the ODE can be written as∑
KT

∑
m

{d
2

t2
cm(t)em(x) + Lcm(t)em(x)}TKij = ∇ih

kl(∇lhjk −∇khjl −∇jhkl)

+ hkl((∇k∇i −∇i∇k)hjl −∇i∇jhkl +∇i∇lhjk +∇k∇jhil +∇k∇lhij)

+
1

2
{∇lh

k
j (∇ih

l
k +∇kh

l
i −∇lhik) +∇khlj(∇lhik −∇kh

l
i −∇ih

l
k)

+ ∇jh
k
l (∇ih

l
k +∇kh

l
i −∇lhik)−∇bh

k
j∇bhik};

We will use the relation Lem = ω2
mem, which was established in the previous

section, to get the system into forced harmonic oscillator form. In the next
chapter, we will analyze this equation further, projecting the source term
onto the eigenbasis, and then we will get the equations in the forced harmonic
oscillator form. We will then describe the spectrum of resonant frequencies
in this model.

————————————————————————————————
-
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Chapter 5

Results and Conclusions

Till now we have seen the structure of equations at first order. At second
order, we have source terms which can cause an instability in the metric,
for specific initial conditions. To study that, we will now derive the Forced
Harmonic Oscillator structure at second order.

5.1 Forced Harmonic Oscillator Structure

Now we need to take the projection w.r.t. the inner product defined on this
space. As has been pointed out, L is a self adjoint operator on the Hilbert
space of square intergrable functions L2([0, π

2
], dx). The measure factor comes

out to be 1 in our case as a result of a simple calculation. So, the inner
product between two first order perturbation terms is

(ψ, φ) =

∫ π
2

0

ψ∗φdx (5.1)

To get the projection, we need to perform this integral on the left hand side
of the equation;

{
∑
j

(c̈j(t) + ω2
j )

∫ π
2

0

ej(x)em(x)} ×
∑
KT

{
∫
dnΩTKijT

ij
K′} = S(h,∇h) (5.2)

Due to orthogonality of ej’s, i.e. (ej, em) = δjm; and of tensor spherical
harmonics,[22], which says (TKij,T

ij
K′) = c; where c is a constant depending

on the values of K and K′, we get the following equation.

¨cm(t) + ω2
mcm(t) = S(h,∇h) (5.3)
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Here S(h,∇h) is the projection of the source term onto the eigenbasis. Let
us concentrate on the source term in the second order equation. It can be
written as

ḡkoḡlp{∇ihop(∇lhjk −∇khjl −∇jhkl)

+ hop{(∇k∇i −∇i∇k)hjl −∇i∇jhkl +∇i∇lhjk +∇k∇jhil +∇k∇lhij}

+
1

2
(∇ihpk +∇khip −∇phik)(∇jhjo +∇jhlo −∇ohlj)}

− 1

2
ḡkoḡab∇bhoj∇ahik (5.4)

We substitute the form of the solution we got for the first order perturbation.

hij =
∑
KT

r2−
n
2 φ(x)eiωtTKij

where r ≡ ` cosx
sinx

and φ(x) =
∑

m am(t)em(x); am being the normalization
constant. The time dependence of the first order solution comes from the eiωt
factor where the spectrum of frequencies allowed is discrete, and is given by
(4.11). Since we know the full form of the eigenstates of the linear operator,
and know that they form a complete basis set, we can expand the source
terms into the eigenstates by using the inner product defined on the hilbert
space.

Let us now take a generic term on the right hand side of the second order
equation. We see that with the exception of the last term all the derivatives
involved are w.r.t. coordinates on the sphere. Since the hypergeometric part
and the time dependent part are independent of those coordinates, we can
take them out of the derivatives. Finally, the structure of each term that we
get is

eiωm1teiωm2tφm1(x)φm2(x)f(x)Y (z1, z2, ..., zn) (5.5)

. As an example, if we consider the first source term, ḡkoḡlp∇ihop∇lhjk, then
each of the terms prescribed above correspond to

1. eiωm1t is the time component of hop, and eiωm2t is for the second h factor.

2. φm1(x) is the space component of hop, and similarly φm2(x) is for the
second part.

3. f(x)≡ ḡkoḡlp × r4−n, one from each first order term.

4. Y (z1, z2, ..., zn) ≡ ∇iTK1op∇lTK2jkT
ij
K′ .
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A generic term in it’s expression can be written explicitly as

(
∑
K1

∑
K2

∫
dnΩ∇iTK1op∇lTK2jkT

ij
K′)×(

∫ π
2

0

em1(x)em2(x)em(x)f(x)dx)×eiωm1teiωm2t

(5.6)
Now we have an infinite set of harmonic oscillators, each labeled by a

value m from the discrete frequency spectrum. We will calculate the secular
terms on the right hand, and determine the resonant frequency spectrum.

5.2 Resonant Frequency Spectrum

Given that we have the forced harmonic oscillator equation, we need to de-
termine if the expression of the source contains secular terms, and we also
need to find the resonant frequency spectrum. We start by recalling that the
frequency spectrum at linear order looks like:

ωm = ±(2m+ 1 + ν + σ) (5.7)

where m is a non-negative integer. Substituting for ν and σ, we get

ωm = ±(2m+ 1 + l + n) (5.8)

To recall, l refers to the harmonic in the expression of the tensor spherical
harmonic.

The term eiωm1teiωm2t is present for all source terms on the right hand side
of the second order equation, (4.14). We need to find out that for given val-
ues of m1 and m2, what value of m will the resonant frequency correspond
to. A simple calculation shows that assuming the same value of l, i.e. con-
sidering coupling between same harmonics, we get, for this resonant term
+ωm1 + ωm2, that the resonant frequency occurs at m = (m1 +m2 + l+n+1

2
),

and for +ωm1 − ωm2, the resonant frequency is m = (m1−m2− l+n+1
2

). By
±ωm, we mean the positive/negative frequency mode corresponding to that
integer.
Of course the resonance will only be reached when the argument m is an
integer. But, nevertheless, we can see that there are modes at which reso-
nance will occur, and we can always produce such terms by taking different
combinations of l1 and l2.
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5.3 Conclusion
We have analytically studied the structure of tensor gravitaional perturba-
tions in TT gauge upto second order. The AdS background and it’s symme-
try properties have allowed us to simplify the equations, and observe some
patterns that emerge in the first and second order terms. The simplifying
assumptions have allowed us to tackle this problem without numerical cal-
culations. We see that these perturbations five or more dimensional AdS
spacetime can cause an instability in the metric. The more interesting ques-
tion is what will be the end point of this instability? A possibility of the
end point is that a black hole is formed in the bulk. These topics need to
studied as they will provide us with a greater understanding of dynamics in
AdS, and the role it’s conformal boundary plays in the evolution of matter
fields in various theories.
————————————————————————————————-
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