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Abstract

Ultracold quantum gases have thrived as an interdisciplinary field of condensed matter
physics, quantum optics, atomic and molecular physics. It boasts set-ups with precisely
controllable and highly tuneable interaction parameters. Research in this area has sparked
after the realisation of Bose-Einstein condensation in alkali atoms in 1995. The goal is
to continuously seek quantum gas systems where more and more complex interactions
may be embedded. Bose-Einstein condensation were, later, achieved in atoms like Cr,
Er, and Dy which have significant dipole moments, bringing anisotropic interactions to
the quantum gas systems. In the last 15 years, dipolar Bose-Einstein condensates have
consistently been found at the forefront of ultracold atomic research.

Our goal is to explore the tunability of the dipole-dipole interaction. The simplest
way is via an external field which can easily tune the polarisation direction of the dipole
moment. Effectively it tunes the dipole-dipole interaction between the atoms, potentially
from repulsive to attractive. The effect of this on the collective behaviour of dipolar Bose-
Einstein condensates are dramatic. Below our findings have been outlined for reference.

We begin by reviewing the advent of the theory of Bose gas and the general short-range
two-body interactions in Chapter 1. We introduce dipolar interactions and prescribe the
available methods for tuning these interactions. Theoretically these systems are addressed
using mean-field theory. We list the conditions under which mean-field theory is applicable
and show a glimpse of beyond the mean-field theory, which becomes crucial in the final
chapter.

In Chapter 2, we review the stability of both homogeneous and trapped Bose-Einstein
condensates by studying the elementary excitations in the system. The theoretical method-
ologies for calculating Bogoliubov excitations and the low-lying modes of the condensates
have been explained along with important discoveries from the experimental counterpart.
The last section in Chapter 2 contains the theory of parametric modulation, a technique
that has become widely popular in ultracold systems due to availability of precise tuning
of interactions parameters.

In Chapter 3, the effect of tilting of dipole moment have been explored in dipolar
Bose-Einstein condensates in the quasi-2D. We emphasize on the effect of trapping geom-
etry on the stability followed by characterizing various stable and unstable domains with
the help of phase diagrams in experimentally relevant parameter space. Post instability

viii
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dynamics under different instabilities reveal markedly different features, capturing the
essence of anisotropic nature of dipole-dipole interactions. Anisotropic solitons, new kind
of self-trapped solutions and their respective stabilities have been analysed in detail and
succinctly put as a phase diagram. In the end, we propose experimental preparation of
the so far elusive quasi-2D soliton via adiabatic tuning of tilting of dipole moment.

Chapter 4 consists of an ongoing work on dipolar Bose-Einstein condensation in quasi-
1D. We consider multiple cigar-shaped condensates under parametric modulation. Con-
sequently, some non-intuitive yet interesting phenomena have come to light. In homoge-
neous systems, we show emergence and transfer of Faraday patterns from layer to layer
when only one layer is modulated. The selection of pattern relies on the Bogoliubov spec-
trum, which can be changed dramatically by tuning the dipole moment. We also show the
transfer of mode-locking phenomenon in trapped bilayer condensates. Interestingly, this
excitation transfer may be enhanced or suppressed again by tuning the dipole moment
polarisation direction. We also find that the center of mass motion and the widths oscil-
lations in multilayer dipolar systems are coupled, giving rise to energy transfer between
them as well.

In the final chapter, we introduce doubly-dipolar BECs with purely 3D calculations.
The system has magnetic and electric dipole-dipole interaction and the polarisation an-
gle between the two dipole moments is now the most important tuneable parameter. In
the context of beyond-mean-field effects, we show the presence of self-bound droplet so-
lutions in doubly-dipolar BECs. Most interestingly, the droplet is shown to undergo a
shape transition from the traditional cigar-shaped to a new pancake-shape by tuning the
polarisation angle. Further we prove that not only a structural transition, but also it is
a dimensional crossover instigated purely by internal interactions in the absence of any
external trapping geometry.

This thesis is a detailed work on the effects of tilting angle of the dipole moment in
dipolar BECs in quasi-2D, quasi-1D and 3D geometries. We present the stability analysis
and instability dynamics and consequent emergence of some novel solutions. Recent
experimental results in tuning the strength of dipole-dipole interaction as well as the
polarisation angle will provide a much necessary boost for future explorations of this
topic.
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Chapter 1

Bose-Einstein Condensation

Quantum physics has established itself as the backbone of modern science for decades
now. It has become an indispensable tool in the fundamental understanding of condensed
matter physics, atomic and molecular physics, nuclear and particle physics, chemistry
and information science at microscopic scales. Researchers are in pursuit of pushing the
boundaries of these fields whose potential applications span from computers to sensors,
metrology, electronics, and cryptography etc. But the behaviour of matters in quantum
realm are fundamentally different from their classical counterparts, especially in presence
of many particles who interact with each other. The most popular manifestations of such
quantum many-body effects are superconductivity and superfluidity. They emerge as a
macroscopic collective phenomena from the constituent microscopic entities. Understand-
ing or capturing the accurate description of quantum many-body systems has proven to
be a challenge, both theoretically and in a lab. Theoretically, one of the apparent prob-
lems stems from difficulty in modeling the huge number of degrees of freedom. Another
difficulty pertains to the inherent nonlinearities in the systems which is a byproduct of
interparticle interactions. Experimental complexities include lack of precise control mech-
anisms and constructing idealized systems for fundamental analysis.

A triumph came in the form of dramatic developments in cooling and trapping of
atoms in the 1980s. While it is next to impossible to address atoms individually in solids
and liquids, in ultracold temperature regime, people were able to observe single atomic
energy transitions for the first time. Halting the thermal motion of atoms ultimately
enabled ultracold atoms as the ’quantum simulators’ of many-body physics. At ultracold
temperature the atoms and their mutual interactions can be controlled as never before.
It was possible to mimic systems from solid state physics or even cosmology because they
all have the common factor i.e. interacting bodies.

Ultracold quantum gases have come up as the fundamental testing bed for studying
quantum matter. At nanokelvin temperatures precise tunability of interatomic interaction
can be achieved. After experimental realisation of long predicted Bose-Einstein conden-
sation, the fifth state of matter, the field has come a long way in last couple of decades
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Figure 1.1: Average occupancy under three different statistics. As µ → ε the Bose-
Einstein statistics shows that the occupancy blows up while Fermi-Dirac statistics shows
a maximum occupancy of 1 owing to the Pauli’s exclusion principle.

and found its niche at the intersection of condensed matter physics, quantum optics,
atomic and molecular physics. Here, we expand upon the fundamentals of Bose-Einstein
condensation, starting from the ideal bose gas.

1.1 Ideal Bose gas

Transition of ice to water and then to steam are the common occurrences of phase transi-
tions that all of us witness in our daily lives. These are typical thermodynamic transitions
between the widely known states of matter. In rare occasions a transition to plasma can
also be observed. Still, there exists a fifth state of matter, first proposed in an ensem-
ble of non-interacting particles. A phase transition to the fifth state of matter was first
theorized by Einstein [1] using the Bose statistics for indistinguishable bosons, proposed
by S.N. Bose, in 1924 [2]. It predicts the condensation of a non-interacting Bose gas
to a single quantum state under extremely cold temperatures. Multiple bosons, unlike
fermions that follow Fermi-Dirac statistics, can occupy a single quantum state and the
average occupation number of bosons with energy ε is [3, 4],

〈n〉 = f(εp) = 1
e
ε−µ
kBT
−1

(1.1)

where µ is the chemical potential, the energy required to add one particle to system. It
should be noted that for (1.1) to be physically meaningful µ must take negative values
with zero being the maximum if εmin = 0. The total number of particle is N = ∑

ε〈n〉.
But in thermodynamic limit N →∞ and volume V →∞ such that N/V = constant, we



CHAPTER 1. BOSE-EINSTEIN CONDENSATION 3

convert the sum to an integral as follows,

n = N

V
= 1
V

∑
ε

f(ε) =
∫ ∞

0
dεf(ε)g(ε) (1.2)

where ε = p2

2m and g(ε) is the density of states of a 3D homogeneous distribution g(ε) =
V

4π2

(
2m
~2

) 3
2 √ε. Replacing appropriately we obtain the following expression for the constant

density,

n = 1
4π2

(2m
~2

) 3
2
∫ ∞

0
dε

√
ε

e
ε−µ
kBT − 1

(1.3)

The way to increase n would be to increase the chemical potential, but the chemical
potential has an upper bound as already mentioned. In the limit µ → 0(εmin = 0), we
have,

nµ→0 = nc = 1
4π2

(2m
~2

) 3
2
∫ ∞

0
dε

√
ε

e
ε

kBT − 1

= 1
4π2

(
2mkBT

~2

) 3
2

ζ
(3

2

)
Γ
(3

2

)
(1.4)

where, ζ(3
2) = ∑∞

n=1 n
− 3

2 , Γ(3
2) =

∫∞
0 dxe−x

√
x. The interpretation is, at constant tem-

perature the density continues to remain constant even if more number of bosons are
added to the system. This conundrum is a result of the conversion of discrete sum to a
continuous integral without addressing the singular case of εmin = 0 individually, in which
case the integrand blows up. This is easily fixed by separating the lowest energy state
before taking the limit µ→ 0.

n = n0 + nexc

=⇒ nµ→0 = lim
µ→0

1
V

1
e
− µ
kBT − 1

+ nc (1.5)

The first term accommodates infinite number of bosons even though nc is capped or
in other words all the extra bosons added will accumulate in the ground state. Such a
macroscopic occupation of bosons in a single state is called the Bose-Einstein conden-
sation(BEC). For a fixed density, the critical temperature may be obtained by further
simplifying (1.4),

nc ≈ 2.612 1
λ3
Tc

(1.6)

where, λTc =
√

2π~2

mkBTc
. For temperature T << Tc almost all particles are in the ground

state i.e. N0 >> Nexcited and theoretically at T = 0, N = N0. Following (1.5) this relation
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can be captured in the following equation,

N0

N
= 1−

(
T

Tc

)3/2
(1.7)

Until many-body theory was understood, Einstein’s prediction survived only as a
beautiful academic model. It was a challenge also to find a substance which doesn’t
liquefy/solidify as temperature decreases in its ground state. This is the reason why
BEC was initially probed in Hydrogen atoms [5] for a long time which remained weakly
interacting during cooling processes. After rapid development in cooling techniques [6]
in the 70s and 80s, it became possible to cool the atoms too fast for them to reach the
true ground state(a solid state) and instead simply slow them down to a meta-stable
condensate state. Using dilute gas (∼ 1014 cm−3), which is much less than both solid
(∼ 1023 cm−3) or air (∼ 1019 cm−3) density, life times achieved are up to the order of
seconds. In 1995 dilute gases of the alkali elements rubidium [7], sodium [8], and lithium
[9] were condensed in lab for the first time for which 2001 Nobel prize was awarded.

1.2 Two-body interactions

While a thermal gas can be often well approximated to an ideal gas, in conditions of high
pressure or low temperature the interaction between particles can no more be neglected.
Under ultracold temperature condition, the ideal gas picture of BEC falls short and it
becomes important to understand the interactions inherent in the system, which govern
the fundamental properties of a BEC [10, 11]. The interaction properties are understood
from the scattering of two atoms, specifically the corresponding scattering length for low
energy scattering processes. Generally, the inter particle separation is much larger than
the scattering length which determines the strength of the interaction. The diluteness
ensures that the relevant scattering processes are always two-body in nature and a theo-
retical study using scattering theory is feasible. Below a brief introduction has been given
to the two types of interactions: short-range interactions and long-range interactions. The
short-range interaction can be replaced by a zero-range potential and the long-range part
is separately dealt with.

1.2.1 Contact interaction

We shall first review the short-range interaction case where the interaction potential is
U(r) ∼ 1

rn
for any n > 3. Consider the simple case of elastic collision of two particles

[11–13]. In relative mass coordinate, the wave function in far-field may be written as,

ψ(r) = eik·z + eik·r

r
fk(θ) (1.8)
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Figure 1.2: Typical shape of the interaction potential between two atoms, as function
of the inter-atomic distance r. When r → 0 the coulomb repulsion dominates and as r
increases it becomes attractive due to presence of exchange interaction and supports bound
states as its global ground state. Farther away, weak attraction prevails due to van-der
Waals interaction ∝ −1/r6. But the diluteness condition and strategic cooling prevents
formation of molecular ground state and ensures the gas is in a long-lived metastable
BEC state [4]. a represents the scattering length, which is obtained by extrapolating the
asymptotic wave function backwards which can be either positive (a) or negative(b).

It is assumed that the interaction potential is spherically symmetric with finite range, the
internal degrees of freedom of the particle are frozen and only a single scattering channel
is available. The first term is the incoming plane wave along the z direction. The second
term represents an outgoing spherical wave with wave vector k. fk(θ) is the scattering
amplitude independent of r,

fk(θ) = −mred

2π~2

∫
d3r′e−ikn.rU(r′)ψ(r′) (1.9)

where mred is the reduced mass and n is the direction of scattering. The actual form
of the potential U(r) consists of the van der Waals potential and considers the details
of the structure of the atom. This makes solving for ψ(r) extremely nontrivial. In fact
the most relevant information on U(r) is obtained by measuring the scattering length in
laboratory in ultracold temperature. This complex potential cannot be treated using Born
approximation either as it supports many bound states. Instead it is ideal to use a model
potential which reproduces the same scattering amplitude for the sparsely dense BEC.
Such a model potential is known as pseudo-potential. Owing to low energy scattering
we can work in the limit k → 0 and only the s-wave scattering term contributes. Using
intuitive calculations, we can write the relative velocity v of colliding particles in terms
of de-Broglie wavelength λ of the individual atoms. Following this the angular momenta
involved in the collision, ~l = mredvr = hr

λ
. Since r/λ is quite small i.e. the atomic

wave lengths are spread much wider than inter-atomic separation and also the quantum
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number l must take integer values, logically we obtain, l(< 2πr
λ

) = 0. Implementation
in calculation simplifies the scattering amplitude to a constant value −a and the wave
function becomes,

ψ = 1− a

r
(1.10)

a is the scattering length which is determined by the form of the interaction potential.
But once a is known, the details of the interaction potential becomes irrelevant. It is easier
to use a form of pseudo-potential which gives the same value of scattering length at low
energy and can be treated using Born approximation. The simplest potential satisfying
the above requirements [14],

U(r)ψ(r) = gδ(r) ∂
∂r

[rψ(r)] (1.11)

where the short-range coupling strength or the contact interaction strength (m = 2mred),

g = 4π~2a

m
(1.12)

The pseudo-potential has a Dirac delta function and a regularization operator. The
regularization operator has no effect when r → 0 and the pseudopotential merely becomes
gδ(r). However, if the wave function has a form with 1/r divergence the regularization
operator removes this divergence ∂

∂r

(
r · A

r

)
= 0. This kind of divergence is a result of

zero-range pseudopotential. Replacing (1.11) in (1.8) we may now obtain,

ψ(r) = eik·z − a

1 + ika

eik·r

r
(1.13)

From here, it is clear that we must always satisfy the condition |ka| << 1 for the Dirac
delta pseudo-potential to faithfully explain the physical observations in the system. This
approach is a valuable asset when mean-field approximation is used to describe the system
later in this thesis.

1.2.2 Tuning contact interaction

One of the biggest cause of the success of ultracold atomic research lies in the extraordinary
amount of control the systems have to offer. In case of atomic BEC, it is the ability to
tune the atom-atom interaction with great precision and steer the system into desired
parametric regimes. This includes even flipping the interactions from strongly repulsive
to strongly attractive and it has allowed the ultracold systems to be testing beds for many
condensed matter phenomena as well. Below we briefly go through the procedure to tune
the contact interaction.
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Controlling the strength of the short-range contact interaction is done via an experi-
mental tool called the Feshbach resonance which was first theoretically predicted in 1976
[15] and experimentally verified later in 1998 [16, 17]. A Feshbach resonance occurs when
a bound state in the closed channel is coupled to the scattering state in the open channel
in a scattering process as shown in Fig. 1.4(a). This coupling alters the scattering in the
open channel significantly and the scattering length. This in turn changes the strength of
short-range interaction ranging from positive(repulsive) to negative(attractive) values.

A scattering channel is connection between the initial and final internal states in a
scattering process. An open channel is energetically favored while closed channels are
those that are not. Considering two molecular potentials of two atom collision as shown
in Fig. 1.4(a). If two atoms in an open channel can resonantly couple with a bound state
of a closed channel, given that the energy of the bound state is close to the energy of
the incident energy. An externally applied magnetic field is used to tune the energy of
the bound state if the channels have different magnetic moments. Since the asymptotic
behaviour of the collision is quite sensitive to this resonance the scattering length thus
become a function of the applied magnetic field. The relation for such magnetic resonance
is [18],

a(B) = abg

(
1− ∆

B −B0

)
(1.14)

where, abg is the background scattering length, ∆ is the resonance width and B0 is the
magnetic field when the energies of the bound state and the incident energy match. In
Fig. 1.4(b) the behaviour of the above relation is shown.

The magnetic Feshbach resonances are distinct for each species, thus it is limited
by their spatial modulation. However, there have been alternate proposals for couplings
other than magnetic in nature for modification of scattering lengths. The coupling schemes
include external radio-frequency fields [19], static electric fields [20] and optical fields [21,
22]. Recently optical Feshbach resonance has been realised via intercombination transition
[23], and stimulated Raman coupling [24] etc. Collapse and expansion of Strontium atom
BEC has also been achieved using optical Feshbach resonance [25].

1.2.3 Dipole-dipole interaction

Unlike short-range interaction, the long-range dipole-dipole interaction(DDI), which has a
1/r3 dependence, cannot be dealt easily using scattering processes as all the partial waves
contribute to the scattering process of dipolar particles. Due to the anisotropy angular
momentum is also not conserved during the collision process. The DDI potential is given
by,

Vd(r) = gd
r3 (1− 3 cos2 θ) (1.15)
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Repulsive

Attractive

Anisotropy Long-range

Figure 1.3: The anisotropic and long-range interaction of dipolar atoms. (a) A head-
to-tail configuration leads to attractive interaction while side-by-side configuration gives
repulsive interaction. In 1.2.4 it is shown that effective strength of interaction can undergo
a sign change followed by a flipping of nature of interactions in the above configurations.
(b) The 1/rn for n = 3 character ensures a long-range nature while in general n > 3 is
considered short-range in nature.

where the strength of the dipole-dipole interaction gd = µ0d2
m

4π ( d2
e

4πε0 ) for magnetic(electric)
DDI with dm(de) being the magnetic(electric) dipole moment. θ is the angle between the
dipole moment and the inter-particle separation r. While the bare short-range potential
consists of multiple complicated potentials, the DDI bare potential is simple and the same
expression is used for the pseudo-potential of the long-range interaction [26, 27].

At r = 0 the DDI potential blows up but in a condensate the likelihood of approaching
this regime is small not only because of the diluteness factor but also due to the existence
of a strong repulsive Coulomb interaction at extremely short distances, a detail which
is accounted for with the help of scattering length described in the previous section. To
overcome the issue during theoretical calculations, DDI term is often treated in momentum
space with truncation at sufficiently large momenta. Although no scattering length may
be attributed to the DDI, a characteristic length maybe associated with it as a method
for comparison with its short-range counterpart.

ad = mgd
3~2 (1.16)

This quantity is chosen such that a 3D homogeneous dipolar condensate becomes unstable
when ad > a i.e. the DDI becomes dominant. So, it is useful to work with the ratio
between the interaction strengths,

β = gd
g

= 4πad
3a (1.17)

The two most important features of the DDI are 1) Anisotropy and the 2) Long-range
nature. Due to this, the dipolar condensates have shown remarkably different and novel
features in contrast to a non-dipolar condensate governed by short-range interaction. Not
all particles have (sufficient) dipole moment for DDI to be significant. Below we itemize



CHAPTER 1. BOSE-EINSTEIN CONDENSATION 9

some relevant ultracold gases with strong dipole moment [28].
BEC was first achieved in alkali atoms and the maximum value of dipole moment in

them are 1µB which is too weak to observe any dipolar effect, although some effect has
been observed in spinor 87Rb condensate with extremely small scattering lengths [29–31].
Strong dipolar effects were observed 2005 onward after the condensation of Chromium
atom [32] which has the magnetic dipole-moment of 6µB. Since the DDI is proportional
to the square of the dipole moment, Cr has 36 times stronger dipolar effect than alkali
atoms. Later Er [33] and Dy [34] with magnetic dipole moments 7µb and 10µB were Bose
condensed in the year 2012 and 2011 respectively. So far, study of DDI in dipolar atomic
BECs are the most successful.

Polar hetero-nuclear molecules in their low rovibrational states offer extremely strong
dipole moments of the order of 1 Debye. A BEC of such molecules would be dominated by
DDI. Despite the progress in cooling polar molecules [35, 36], its falls short in comparison
with the atomic counterpart. A quantum degenerate state of polar molecules are yet to
be achieved as requisite temperature and density still remain a challenge in the lab [37].

A Rydberg atom is an atom with at least one electron excited to very high principal
quantum number n.Rydberg excited atoms are another strongly dipolar candidate as
the dipole moment scales as n4. The lifetime of a single Rydberg atom scales as n−3.
But a dense cloud of moving Rydberg atoms have a much shorter lifetime than any
hydrodynamic timescales. This has resulted in studies such as excitation of Rydberg
atoms in BEC and ion-atom interactions [38, 39].

Observation of both magnetic and electric dipole moments simultaneously [40, 41]
has been a subject of intense research in recent years. A pair of quasi-degenerate energy
levels of opposite parity states available in Dysprosium makes it an ideal candidate [42].
In presence of magnetic field the two energy levels split into their respective Zeeman
sub-levels and the atom maybe prepared in the ground state of the lowest Zeeman sub-
level. Now in presence of an external electric field, the sub-levels of opposite parities get
coupled and an induced electric dipole moment results. The theoretical outcome of such
a doubly-dipolar degenerate Bose gas has been probed in detail later.

1.2.4 Tuning the DDI

In case of magnetic atoms, the desired tuning of DDI can also be achieved such that
the effective strength of the interaction changes sign from positive to negative values.
This is achieved by using a fast rotating external field along with a static polarising field
component and taking the time averaged dipole-dipole interaction [44, 45]. We start with
a time dependent magnetic field B(t) = B cosφk̂ + B sinφ[cos Ωt̂i + sin Ωtĵ] where the
rotating frequency Ω satisfies the condition, ωtrap < Ω < µB/~ where µB/~ represents
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Figure 1.4: (a) A two channel model showing the coupling between an entrance channel of
collision energy E and bound state supporting closed channel of energy Ec. This coupling
is done with the help of external magnetic field by bringing Ec close to E, which tends to
zero in ultracold regime [43]. (b) Observation of a magnetically tuned Feshbach resonance
in an optically trapped BEC of Na atoms. It the dispersive shape of the scattering length
a near the resonance, as determined from measurements of the mean-field interaction
by expansion of the condensate after release from the trap. a is scaled with respect to
abg. (c) Tunability of the magnetic dipole interaction. Using time-varying magnetic fields
B(t), the dipoles are rapidly rotated around the z axis. The angle φ between the dipole
orientation and the z axis determines the strength and sign of the effective interaction.
Images taken from [43] and [44].

the Larmor frequency. The time average DDI over the relevant period of 2π/Ω is,

〈Vd(r)〉 = gd
r3 (1− 3 cos2 ν)

[
3 cos2 φ− 1

2

]
(1.18)

where ν is the angle between inter-atomic separation and the static field. The factor
within the square brackets may be tuned by changing the angle φ and it changes the
value from 1 to −1/2. This allows tuning the DDI from repulsive to attractive or vice
versa. At φ = θm = 54.7o known as the magic angle, the DDI completely vanishes.

In the above section we saw that using an external orienting field the polarisation
direction and effectively the strength of the DDI may be changed. Although in 3D it has
no effect, in quasi-2D this has the effect of tuning the degree of anisotropy and in quasi-1D
it can be used to tune the strength of the DDI as will be discussed in detail. Tilting of
dipoles introduces a previously unexplored parameter regime which has been extensively
studied in this thesis.

One specific case deals with tuning the induced electric dipole moment following in-
troduction of doubly-dipolar interaction in Dy atoms in previous section. This may be
achieved by controlling the strength of the applied electric field and the angle between
the electric and magnetic field [42]. The relevant quasi-degenerate energy levels (angular
moment J = 10 and 9) of opposite parity of Dy atom, when placed in external magnetic
and electric field, splits into Zeeman sublevels and gets coupled. The coupling, which



CHAPTER 1. BOSE-EINSTEIN CONDENSATION 11

(a) (b)

Figure 1.5: The crossed line(blue) is the state of interest in which the Dysprosium atom
is prepared. (a) For angle between the external magnetic and electric field θ = 0o the
electric dipole moment remains zero. Once θ 6= 0o, electric field affects the magnitude of
the electric dipole moment. (b) Shows how the electric dipole moment varies with θ for a
fixed magnitude of magnetic and electric field strength. Image taken from [42].

induces the electric dipole moment, is controlled by the electric field strength. When the
electric field and magnetic field are aligned along the same axis, the particular Zeeman
sublevel (|M = −10〉) where the atom is prepared is unaffected and doesn’t get coupled
to any other state since it lacks an opposite parity sublevel counterpart. This is because
the number of sublevels for both parities are different. However, when the electric field
is tilted, the Zeeman sublevels are no longer the good quantum numbers and all the sub-
levels get mixed. The mixing induces electric dipole moment and reaches a maximum at
angle 90o. This is demonstrated in the Fig. 1.5.

1.3 Dipolar Bose gas

Dipolar Bose gas owe their success to the added richness in the interaction potential
due to anisotropy and long-range effects of the DDI, in contrast to a contact interacting
BEC. The very first change noticed due to additional DDI is the change in critical tem-
perature of condensation [46, 47]. However, the most exciting effects are visible in the
post-condensation period. In Chromium BEC [48], the anisotropic effect was shown to
manifest in the collapse and following explosion of the cloud. In rotating condensates, the
vortex lattice ground state undergoes several symmetry configurations, e.g. triangular,
square, stripe, and bubble phase, as DDI strength is increased compared to the contact
strength g [49]. This tuning is achieved by decreasing g via Feshbach resonance.

However, in spinor condensates, where atoms occupy multiple Zeeman states, energy
associated with the spin-changing collisions are already very small as it is proportional
to difference between scattering lengths in different spin channels [50]. This allows for
the dipolar energy of even alkali atoms to have comparable strengths and evidence of
dipolar effects in spinor condensates. The spin-1 BEC phase diagram with weak magnetic
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field in presence of DDI presents three distinct ground state spin textures a) polar-core
vortex phase, b)flower phase, and c) chiral spin-vortex phase [51]. The dipolar nature
of Rubidium was experimentally probed in [52] where spontaneous decay of helical spin
textures leads to formation of spatial domains of spin structures. In Cr BEC also spinor
dynamics is influenced by the strong DDI, which does not preserve the spin projection
along the quantization axis, unlike the contact interaction. This mean DDI facilitates spin
transfer between Zeeman sublevels. In cylindrically symmetric system from an initial state
with all atoms in −F state, where F is the total spin, DDI violate spin projection. It leads
to transfer of angular momentum to center of mass and generation of dynamic vorticity
[53, 54]. This is similar to Einstein-de Haas effect. This experiment requires extremely
weak magnetic field less than 1 mG where system shows regularized DDI.

Some of the highest rewarding systems in ultracold gases consist of optical lattices
which can easily mimic traditional condensed matter and solid state physics and beyond.
Placing atoms in such periodic potential allows for almost lossless control of the idealistic
systems. [55] was one of the first experiments to show the effect of DDI in alkali atoms
in 1D optical lattice. It was shown that interaction induced decoherence can be reduced
by manipulating the competition between DDI and contact interaction. In 2D lattices,
novel phases such as chekerboard phase and supersolid phase has been studied [56, 57].
Haldance Bose insulator phase with similarities to famous Haldance gapped phase is found
in 1D optical lattices with long-range DDI [58]. Insulating states [59] and self-assembled
structures [60–62] are also predicted in lattices in presence of long-range interactions.

1.3.1 Mean-field description

The study of N -atoms in BEC consists of multitude of two-body interactions and a many-
body Hamiltonian is used to include all the terms. However, it is difficult to solve for the
N -body problem and usually it is dealt by converting it to a single body problem with the
help of mean-field approach. This is also known as the Hartree-Fock approximation where
the total wave function Φ is a product of single particle states ψ of N bosons. In other
words, instead of considering individual interaction of a single atom with all the rest in the
gas, it is prudent to approximate the particle being in a potential which is averaged over
all two-body interactions. The pseudo-potential interaction terms are compatible with
such a picture. In addition to simplifying the problem considerably, mean-field approach
makes it easy to understand the underlying physics in terms of a set of parameters. The
mean-field approximation requires a large number of atoms in the condensate, N >> 1 at
ultracold temperatures to be valid [11, 63]. The condition k|a| << 1 must also be satisfied
to ensure the interactions should be from low-energy scattering processes. N interacting
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bosons can be described using the following many-body Hamiltonian, [4, 12, 10],

Ĥ =
∫
drΨ̂†(r)

[
− ~2

2m∇
2
]

Ψ̂(r) + 1
2

∫
dr
∫
dr′Ψ̂†(r)Ψ̂†(r′)V (r − r′)Ψ̂(r′)Ψ̂(r) (1.19)

where Ψ̂(r) and Ψ̂†(r) are the bosonic field operators annihilating and creating particles
at position r and V (r − r′) is the two-body inter-atomic potential. The first term is
the kinetic energy and the second term is a two-body term. The bosonic operators obey
the usual bosonic commutation relations and are related to the creation and annihilation
operators as,

Ψ̂†(r) =
∑
k

φk(r)â†k and Ψ̂(r) =
∑
k

φk(r)âk (1.20)

where φk(r) is the single particle states. Assuming N is large in the single particle state
φ0, then N + 1 ≈ N and the creation and annihilation operators can be replaced by
numbers as â0 = â†0 =

√
N . The field operator,

Ψ̂(r) =
√
Nφ0(r) +

∑
k>0

φk(r)âk = ψ(r) + δΨ̂(r) (1.21)

where ψ(r) is a complex valued function defined as the expectation value of the field
operator, 〈Ψ̂(r)〉 = ψ(r) = |ψ(r)|eiS(r) where S(r) determines the coherence. ψ(r) acts as
the order parameter in Bose-Einstein condensation transition as it has a fixed phase factor
associated with broken gauge symmetry. In this context, the gauge symmetry refers to
the idea that one should be able to multiply any phase factor eiα without changing any
physical property. But in BEC phase transition the condensate, by making an explicit
choice for the value of order parameter, spontaneously chooses a particular phase S(r),
thereby breaks the gauge symmetry. The modulus of this classical field ψ(r) gives the
square root of the density of the condensate where for a uniform gas this density becomes
a constant ≈ N/V . The off-diagonal long range order(ODLRO) of the BEC is also
characterised by ψ(r), which is also known as the wave function of the condensate, as
follows. Consider the one particle density matrix,

ρ(r′ − r) = 〈Ψ̂†(r)Ψ̂(r′)〉 (1.22)

In the limit r′ − r→ 0 if the density matrix ρ(r′ − r) 6= 0, the system is said to possess
ODLRO. Using (1.21),

lim
(r′−r)→0

ρ(r′ − r) = 〈Ψ̂†(r)〉〈Ψ̂(r)〉 = ψ∗(r)ψ(r) ≈ N

V
(1.23)

The wave function is also applicable to non-equilibrium states of the condensate.
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1.3.2 Gross-Pitaevskii equation

We shall now derive the equation for the wave function using the Heisenberg equation
with many-body Hamiltonian for the time evolution of the field operator. Considering N
atoms now in an external confinement potential Vext(r),

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂(r, t), Ĥ]

=
[
−~2∇2

2m + Vext(r) +
∫
dr′Ψ̂†(r′, t)V (r′ − r)Ψ̂(r′, t)

]
Ψ̂(r, t) (1.24)

As introduced previously the field operators needs to be replaced by their classical coun-
terparts. Under diluteness condition correlations between particles can be ignored, and
the many-body wave function can be factorised to single particle basis, Φ(r1, ..., rN) ∝
ψ(r1)...ψ(rN), a.k.a. Hartree-Fock approximation. ψ is the order parameter. The two-
body interaction is replaced by the effective pseudo-potential encompassing both the
short-range and long-range interactions as shown in section 1.2. Please note that the true
short range potential is not a delta function, rather in pseudo-potential treatment the re-
placement by delta function effectively captures the physics and eases the mathematical
complications.

V (r′ − r) = gδ(r′ − r) + gd
|r′ − r|3

(1− 3 cos2 θ) (1.25)

Neglecting the fluctuation term δΨ̂(r, t), we obtain a nonlinear schrödinger’s equation
describing N atoms in trap,

i~
∂

∂t
ψ(r, t) =

[
−~2∇2

2m + Vext(r) + g|ψ(r, t)|2

+gd
∫
dr′ψ∗(r′, t)1− 3 cos2 θ

|r′ − r|3
ψ(r′, t)

]
ψ(r, t) (1.26)

This is known as the time dependent Gross-Pitaevskii equation(GPE) for the dipolar BEC.
The interaction terms make the equation nonlinear and the final term adds a non-local
character to the condensate wave function. Assuming ψ(r, t) = ψ(r)e− iµt~ , a stationary
counterpart of the above equation maybe obtained,

µψ(r) =
[
−~2∇2

2m + Vext(r) + g|ψ(r)|2 + gd

∫
dr′ψ∗(r′)1− 3 cos2 θ

|r′ − r|3
ψ(r′)

]
ψ(r) (1.27)

where µ is the chemical potential. The GPE describes the macroscopic behavior of the
condensate where the variations in the wave functions are much larger than the mean inter-
atomic distances at low energy limits. Other validity conditions include N being much
larger than 1, the de-Broglie wavelength being much larger than the range of the short-
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range interactions, the system energy should be small compared to the dipolar energy
ED = ~6

m3
red

g4
d
[64], and the diluteness parameter n̄a3 must be very small compared to 1. n̄

is the mean density and mred = m/2 is the reduced mass. For Chromium BEC Monte-
Carlo simulations have shown the validity of dipolar mean-field equation [65]. The dipole
length ad ∝ ~2/mEd should be smaller than short-range interaction radius to ensure
absence of bound states in the dipolar states [66] but this condition is expected to be
violated in strongly magnetic Dysprosium BEC. But still the GPE remains valid because
the dipolar effects on the s-wave scattering length is included in the contact interaction
term.

For numerical purposes it is prudent to scale out the dimensions from the GPE. This
allows seamless calculations without worrying too much about physical details. In pres-
ence of strong confinements, usually the GPE is scaled with the trap energy ~ω, where
ω is the tight trap frequency. In absence of traps, GPE can be scaled with energy scales
associated with healing length ξ, chemical potential µm or the DDI, Ed.

1.3.3 Low-dimensional GPE

The properties of the condensate offer surprisingly different dynamics in lower dimensions
than in 3D that have been studied both theoretically [67–70] and experimentally [71–74].
So it becomes imperative to understand the conditions under which a system becomes
low-dimensional and understand dimension-specific properties. The key idea is, when
a system is lower-dimensional the dynamics of the system along constrained direction
is frozen such that it can be ignored. In theoretical calculations, the GPE also can be
reduced to fewer coordinates for simplification. This is usually done by having a tight
trap along the constrained direction. We shall compare the characteristic length scales of
the system to gain further intuition. Consider a cylindrically symmetric trap of the form,

Vext(r) = 1
2mω

2
ρρ

2 + 1
2mω

2
zz

2 (1.28)

where ρ2 = x2 + y2 and ωρ, ωz are the harmonic oscillator frequencies. The lengths asso-
ciated with this confinement potential are lρ =

√
~/mωρ and lz =

√
~/mωz. We also have

interaction-dependent length scales healing length, ξ, and condensate radii Rx, Ry and
Rz. In the simple case where the dipoles are also orientated adhering to the confinement
symmetry, we may write Rx = Ry ∝ Rρ. The healing length is defined as the distance
over which the system smooths over any defects. Mathematically, ξ =

√
4πna. When

Rρ, Rz >> ξ >> a, we are in the 3D regime.
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Quasi-2D Quasi-1D

(a) (b)

Figure 1.6: (a) To achieve a the quasi-2D BEC, the confinement frequency ωz >> ωρ.
This gives the condensate a pancake shape. (b) A cigar-shaped BEC is achieved by having
strong radial trap frequency compared to the axial one i.e. ωρ >> ωz.

Quasi-2D BEC

This happens when lρ >> ξ >> lz or in other words when the trap frequency ωz >> ωρ.
Under this condition, the condensate lacks energy to rise out of the ground state of the
confinement along z-direction. Using single mode approximation, the wave function can
be factorized as ψ(r, t) = ψ(ρ, t)φ(z) where φ(z) is the ground state of the harmonic
potential confinement φ(z) = exp(−z2/2l2z)

π1/4√lz
. Inserting this in (1.26) we obtain a quasi-2D

GPE:

i~
∂ψ(ρ, t)
∂t

=
[
−
~2∇2

ρ

2m + 1
2mω

2
ρρ

2 + g√
2πlz
|ψ(ρ, t)|2

+
∫
dz|φ(z)|2

∫
dr′ψ∗(r′, t)Vd(r′ − r)ψ(r′, t)

]
ψ(ρ, t) (1.29)

where Vd(r′−r) is the DDI potential. The quasi-2D GPE maybe used when the associated
chemical potential µ << ~ωz at all times. Violation of this condition results in a non-
Gaussian distribution of the wave function along z and a full 3D treatment becomes
necessary. In quasi-2D regime the condensate is pancake-shaped. Also while working with
dipolar BEC the stabilizing effect of the finite-sized tightly confined direction cannot be
ignored when the dipoles are oriented along the trap axis.

The two-body scattering of dipolar atoms in two-dimension have been studied in [75,
76]. When anisoropy of the interaction is present in quasi-2D configuration, it translates
to anisotropy in the superfluidity [77], which is also a signature of existence of roton [78].
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Quasi-1D BEC

Following in similar footsteps as the previous paragraph the validity conditions for a quasi-
1D BEC are, lz >> ξ >> lρ where ωz << ωρ. The dynamics along radial ρ-direction is
frozen and it allows the separation of degrees of freedom as ψ(r, t) = φ(ρ)ψ(z, t). The
chemical potential must satisfy µ << ~ωρ. For φ(ρ) = exp[−ρ2/2l2ρ]√

πlρ
the quasi-1D GPE can

be written as,

i~
∂ψ(z, t)
∂t

=
[
−~2∇2

z

2m + 1
2mω

2
zz

2 + g

2πl2z
|ψ(z, t)|2

+
∫
dρ|φ(ρ)|2

∫
dr′ψ∗(r′, t)Vd(r′ − r)ψ(r′, t)

]
ψ(z, t) (1.30)

The simplified form of the DDI term in reduced dimensions has been introduced in later
parts of the thesis. It has been shown that the effect of DDI, even when small compared
to contact interaction, can significantly alter the confinement induced resonances due to
the transverse traps [79, 80]. Quasi-1D geometries may also give rise to weakly localized
states [81] and possible regimes of realisation of super-Tonks-Girardeau gas [82]. The
theoretical calculations for the lower dimensional GPE have been provided in detail in
appendix E.1.

1.3.4 Ground state solutions

Despite the mean-field GPE being much simpler to handle N body system, it is still quite
nontrivial to solve. In certain regimes, the GPE can be further simplified and ground
state solutions may be obtained. Below we look at some general and exotic solutions of
the GPE. In a regime where the kinetic energy is dominant we recover the trivial case
of a quantum harmonic oscillator with a Gaussian ground state solution. The interesting
solutions crop up when interaction term(s) dominate.

Thomas-Fermi solution

If we consider BEC in harmonic confinement and the inter-particle interaction dominates
such that kinetic energy term maybe neglected, it is called Thomas-Fermi(TF) regime.
In case of a non-dipolar BEC we have a stationary GPE (1.27),

µψ(r) =
[
Vext(r) + g|ψ(r)|2

]
ψ(r) (1.31)
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Figure 1.7: Thomas-Fermi density profile of Chromium cloud with N = 20000 atoms
displays the anisotropic TF profile in a spherical trap ω/2π = 500 Hz. With just contact
interaction the isotropic profile is plotted for comparison and without any interaction the
Gaussian profile in a simple harmonic trap is recovered. Image taken from [85].

A solution for the density maybe obtained with Rx,y,z defined as TF-radius in respective
directions [4],

n(r) = |ψ(r)|2 =


µ− Vext(r)

g
µ ≥ Vext(r)

0 otherwise
(1.32)

= 15N
8πRxRyRz

max
[(

1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, 0
]

(1.33)

For harmonic confinement Vext(r) = 1
2mω

2r2, the shape of such a solution is similar to an

inverted parabola Fig. 1.7. The quantity RTF =
√

2µ/m
ω

is known as the TF radius which
estimates the size of the condensate. Using normalization condition, it can be shown
RTF ∝ N1/5, unlike the case for an ideal BEC where the size is set by the confinement
alone. Clearly a large number of atoms are going to affect the condensate by increasing
the size if the atoms are mutually repulsive. It is possible to smooth out the edges of the
solution using a correction to the kinetic energy term [83, 84].

The solution for a dipole dominant condensate in TF regime involves more detailed
calculation than the short-range case. Below only the cases where symmetry axis of a
cylindrical trap coincides with the polarisation of the dipoles is shown for simplification.
The TF solution for the dipolar case also takes the shape of an inverted parabola because
the dipolar term only contains either constant or quadratic terms [86, 87]. But the aspect
ratio is influenced by magnetostriction/electrostriction [86], or in other words by the
anisotropy of the dipolar interactions. If the condensate aspect ratio is Rρ/Rz = κ and
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trap aspect ratio ωρ/ωz = 1/λ,

Rρ =
[

15gNκ
4πmω2

ρ

{
1 + ad

a

(
3κ2f(κ)

2(1− κ2) − 1
)}]1/5

(1.34)

where ad is the characteristic dipolar length (1.16) and

f(κ) = 1 + 2κ2

1− κ2 −
3κ2 tan−1√1− κ2

(1− κ2)3/2 (1.35)

This functional value is obtained from a detailed derivation using Green’s function ap-
proach while recasting the dipole-dipole interaction term as a parabolic dipole potential
for ease of calculation of the Thomas-Fermi radii [87]. The value for κ is solved using the
following transcendental equation,

κ2

λ2

[
3adf(κ)
a(1− κ2)

(
λ2

2 + 1
)
− 2ad

a
− 1

]
= ad

a
− 1 (1.36)

The dipolar interaction also affects the validity of TF approximation due to anisotropy
depending on the trap geometry [88]. While the shape of the condensate profile remains
unchanged the DDI affects the TF radii by elongating the cloud along the direction of
polarisation. This aspect ratio ultimately affects the chemical potential of the condensate
µ = gnpeak(1− adf(κ)/a).

The expansion dynamics of the condensate is studied by releasing the gas from trap.
In such situations the interaction energy is converted to kinetic energy and for accurate
calculation it is prudent not to ignore the kinetic energy even in TF approximation.
Instead the two kinetic terms are considered separately: the zero-point energy in trap
and the kinetic energy post release of the trap. A detailed discussion may be found in
[11, 89, 86, 90].

Solitons

A soliton or a solitary wave is a self-confined, non-dispersive, integrable and a non-singular
solution seen in nonlinear systems. The self-focusing non-linearity can compensate the
dispersion in the system leading to a stable shape-preserving wave. Solitons were first
observed by John Scott Russel in 1845 in water. Extensive studies in solitons have been
carried out in diverse fields such as plasma physics, meteorology, fiber optics, laser physics
etc. The two main types of solitons of interest in the BEC are bright [91] and dark solitons
[92].

Bright solitons:
A bright soliton has a central peak density with a zero background density. Due to
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Figure 1.8: General 1D (a) bright and (b) dark soliton density profiles.

energetically unfavourable conditions, with only short-range interactions a stable bright
soliton is not possible in 3D or in quasi-2D condensates. In quasi-1D condensate the kinetic
energy and an attractive short-range interaction can be balanced to obtain a self-bound
soliton solution in absence of traps. Experimental observations of bright solitons were
done in non-dipolar quasi-1D BECs with attractive nonlinearity [93, 94]. In presence
of DDI, stable solitons are also possible in quasi-2D condensates [95, 96]. Assuming a
Gaussian ansatz these claims can be easily verified by minimizing energy with respect
to the variational Gaussian widths in different dimensions. The important distinction
between bright solitons in non-dipolar and dipolar BECs can be identified from soliton-
soliton collision which is elastic in 1D non-dipolar BECs while in dipolar BECs it is
inelastic due to the lack of integrability [97]. Transfer of center-of-mass energy into internal
vibrational modes can lead to soliton fusion in dipolar BECs [95].
Dark solitons:
Dark solitons(DS) are density dips with a phase shift and able to propagate without
distortion on an uniform background. This is also a byproduct of competition between
dispersion and nonlinearity. Unlike bright solitons, here a quasi-1D GPE allows for a DS
solution when short-range interaction g > 0 [98–100]. The width of such a soliton is fixed
by the healing length. If the transverse size of DS exceeds the healing length, it undergoes
snake instability before breaking into vortices [101].

Blood cell solution

Interestingly, the Bohn group [102] found that for certain regimes with cylindrical sym-
metry the ground state density resembles a red blood cell, with the maximum density
occurring on a ring in the radial plane. The polarising field is aligned along the pancake
trap’s tight direction and, ‘pushing’ the region DDIs of high density radially outward, the
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peak density and the repulsive side-by-side DDIs are reduced. This type of solution may
undergo shape deformation to dumbbell shape or multipeak structures under engineered
confinements that break the cylindrical symmetry.

1.4 Beyond mean-field calculations

After the condensation of atoms with stronger magnetic moments [34] and cooling of
polar molecules with high electric dipole moments the validity of mean-field has been
pushed beyond its limit. Stronger interactions, accompanied by higher density and large
number of atoms, demand inclusion of first-order corrections to the mean-field equation.
We shall start with the full many-body Hamiltonian and calculate the correction term
to the energy know as Lee-Huang-Yang (LHY) correction [103]. The beyond mean-field
effects have been studied in optical lattices where their effect is enhanced [104], in non-
dipolar bosonic [105] and fermionic systems [106] and recently in dipolar Erbium [107]
and Dysprosium [108] condensates.

1.4.1 LHY correction

For N interacting bosons with homogeneous density the field operators (1.20) can be
written in terms of plane wave [4],

Ψ̂(r) = 1√
V

∑
k

âke
ik.r and Ψ̂†(r) = 1√

V

∑
k

â†ke
−ik.r (1.37)

Replacing it in (1.19),

H =
∑
k

~2k2

2m â†kâk + 1
2V

∑
p1,p2,k

Vkâ
†
p1+kâ

†
p2−kâp1 âp2 (1.38)

where, Vk =
∫
drV (r′ − r)e−ik.(r′−r). When almost all atoms are in the condensate at

T ∼ 0 i.e. N0 ≈ N we are only interested in terms where p1, p2, k → 0. In this limit,
using â†0 = â0 =

√
N , the ground state energy can be easily shown to be,

E0 = V0N
2

2V (1.39)

Extending to include the k 6= 0 cases, we shall only consider the cases where collision
may happen between a particle with k = 0 and another k 6= 0 which is account for
the first order correction. Separating the ground state and excited parts the many-body
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Hamiltonian becomes,

H = V0

2V â
†
0â
†
0â0â0 +

∑
k 6=0

~2k2

2m â†kâk + 1
2V

∑
k 6=0

[V0â
†
0â
†
kâ0âk + V0â

†
kâ
†
0âkâ0 + Vkâ

†
kâ
†
−kâ0â0

+Vkâ†kâ
†
0â0âk + Vkâ

†
0â
†
−kâ−kâ0 + Vkâ

†
0â
†
0âkâ−k]

In the first term we use the accurate condition â†0â†0â0â0 = N2 − 2N ∑
k 6=0 â

†
kâk while for

the rest we use the approximation â†0 = â0 =
√
N for further simplification.

H = V0N
2

2V +
∑
k

~2k2

2m â†kâk + N

2V
∑
k

Vk[â†kâk + â†−kâ−k + â†kâ
†
−k + âkâ−k] (1.40)

The third term consists of energy of the excited states due to interaction and simultaneous
creation or annihilation of particles with momentum ~k and −~k. In order to diagonalize
this Hamiltonian we take help of Bogoliubov transformation,

âk = ukb̂k + v̂∗−kb̂
†
−k

â†k = u∗kb̂
†
k + v̂−kb̂−k

The new operators also follow the bosonic commutation relation and the parameters are
uniquely determined by the normalization condition u2

k − v2
−k = 1 in order to cancel the

off-diagonal terms of the Hamiltonian.

uk, v−k =

√√√√~2k2/2m+ nVk
2ε(k) ± 1

2 where, ε(k) =

√√√√~2k2

2m

(
~2k2

2m + 2nVk
)
(1.41)

The diagonalized Hamiltonian is given by,

H = N2V0

2V + V

2

∫ d3k

(2π)3

[
ε(k)− ~2k2

2m − nVk
]

+
∑
k

ε(k)b̂†kb̂k = E0 +
∑
k

ε(k)b̂†kb̂k (1.42)

The integral term is also ultraviolet divergent [109] up to first order of potential. Hence
it is necessary to consider at least up to second order in scattering potential. Then
the potential is Vk = Vk=0 − 1

2
∫ d3k

(2π)3
V 2
k

~2k2/2m + .... The first term is the ground state
energy same as (1.39). The second term includes the fluctuations. At the end of these
calculations we find, the system of interacting particles is reduced to the Hamiltonian for
non-interacting quasi-particles (collective excitation) having a dispersion relation ε(k).
With the first order correction, also known as the Lee-Huang-Yang correction the energy
may be written as

E0 = N2V0

2V + V

2

∫ d3k

(2π)3

[
ε(k)− ~2k2

2m − nVk + n2V 2
k

2~2k2/2m

]
(1.43)
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So the energy correction term is ∆E = V

2
∫ d3k

(2π)3

[
ε(k)− ~2k2

2m − nVk + n2V 2
k

2~2k2/2m

]
and

correction to the chemical potential is given by

∆µ = ∂∆E
∂N

(1.44)

Although it has been referred to as the ground state energy, it is not true. In fact the
ground state with interacting with inter-atomic potentials corresponds to a solid. The gas
phase actually represents a metastable state described by the Bogoliubov theory discussed
above. The theory ignores three-body collisions which, in actual systems, will eventually
drive the system into the solid configuration. However, experimental verification have
proved the existence of the quantum gas phase and its long lifetime for systematic mea-
surements of many relevant physical quantities.

1.4.2 Extended Gross-Pitaevskii equation

The correction to the chemical potential due to the quantum fluctuation can be added to
the GPE under the local density approximation n→ n(r, t). In presence of DDI,

Vk =
∫
dr
(
gδ(r′ − r) + gd

|r′ − r|3
(1− 3 cos2 θ)

)
e−ik.(r

′−r)

= g + 4πgd
3 (3(d̂ · k̂)2 − 1) = gd(β + F [θk, φk, α)] (1.45)

where β = gd/g and F [θk, φk, α) = 4π(3(d̂ · k̂)2− 1)/3. Using this expression in (1.44) the
correction to the chemical potential can be shown to be,

∆µ(r, t) = (m/~2)3/2

3π3 g
5/2
d n(r, t)3/2

∫
dΩk[β + F(θk, φk, α)]5/2 (1.46)

Adding this to the GPE (1.26) we obtain the extended Gross-Pitaevskii equation(eGPE),

i~
∂

∂t
ψ(r, t) =

[
−~2∇2

2m + Vext(r) + g|ψ(r, t)|2

+gd
∫
dr′ψ∗(r′, t)1− 3 cos2 θ

|r′ − r|3
ψ(r′, t) + ∆µ(r, t)

]
ψ(r, t)(1.47)

This beyond mean-field equation has been able to confirm the very important role quan-
tum fluctuations play in stabilizing a 3D BEC against collapse by formation of self-bound
droplet solutions [110]. The LHY correction term has a repulsive effect in 3D, while in
1D it can become attractive by nature [111].



Chapter 2

Stability Analysis

2.1 Elementary excitations in uniform condensate

Previously, we have seen how the excitation in a system of interacting particles may be
reduced to a system of non-interacting quasi-particles given by the excitation spectrum
in Eq. (1.41). The study of these elementary excitations is fundamental in nature to
all many-body systems in general. A lot of pioneering work related to excitations in
superfluid liquid Helium was done by Landau, Bogoliubov and Feynman. The principal
motive of this chapter is to understand the stability and instability of the Bose gas with
the help of this dispersion relation. Both the inter-atomic interaction and the condensate
dimensionality play huge role. It has to be noted that these excitations, taking place in
low temperature regime, are not thermal in nature and the excited states are found from
classical frequencies ωk of the linearized GPE.

In a homogeneous gas small density perturbation is added to a constant density such
that ψ =

√
n+u(r)eiωkt+v∗(r)e−iωkt where, u(r), v∗(r) are complex plane wave excitation

[112] and n is uniform density. Replacing this in the GPE (1.26), one may obtain the
dispersion relation which gives surprising intuitions regarding whether the condensate is
stable against the small density fluctuations. The instability is manifested by emergence
of un-physical solutions eventually breaking down the considered model. Below we look
in details about phonon and roton type excitation. Let us analyse the dispersion relation
(1.41) in homogenous 3D cloud [28],

ε(k) =

√√√√~2k2

2m

[
~2k2

2m + 2nVk
]

(2.1)

where, Vk = g + 4πgd
3 (3 cos2 Θ − 1) is a factor with contributions from both short-range

and long-range interactions in Fourier space. Θ is the angle between the dipole axis and
the momentum k. In the limit where we may deem the kinetic energy much stronger
than the interaction term, we obtain a free particle behaviour ε(k) ≈ ~2k2

2m . In the small

24
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Figure 2.1: The transition between phonon and free-particle is shown in Bogoliubov
dispersion relation of elementary excitations. This takes place at k ∼ 1/ξ, where ξ is the
healing length. The dashed curve shows the free particle dispersion for contrast.

momentum limit, we can obtain again a simpler expression ε(k) = ~k nVk→0
m

. This is a
phonon-like form with nVk→0

m
representing sound speed. In non-dipolar BEC the speed

acquires the popular expression v = gn/m. This case has been summarized well in [113].
A more detailed derivation of excitation spectrum is in Appendix B.

2.1.1 Phonons

It is clear that if Vk is negative then for low momentum values the dispersion relation
gives imaginary values and the condensate becomes unstable against collapse. In absence
of DDI, g < 0 for this to happen [4]. In presence of DDI at low momentum regimes we
exactly have ε(k) ∝

√
g − 4πgd

3 for Θ = π/2. It can be easily derived by replacing Θ = π/2
in the expression of Vk and then calculating (2.1). This expression becomes imaginary if
β > 3

4π which is defined in Eq. (1.17). This is the result of dipole anisotropy which allows
for a stable condensate parallel to the dipole orientation while density modulations take
place in the direction perpendicular to the same. This is known as the phonon instability.
Although homogeneous condensates are technically impossible to achieve thanks to their
infinite extension condition, their simplicity describes trapped condensates if the change in
density is small within the wavelength of the excitation under local density approximation.

Experimentally [48] collapse instability was studied in Chromium in expectation of
manifestation of dipolar anisotropy. After preparation of BEC, the scattering length was
quenched below the critical value such that phonon instability condition was satisfied. The
system was allowed to evolve for an adjustable time thold before the trap was switched
off and the cloud was then imaged. Initially the shape was elongated along z i.e. dipole
orientation but soon it is shown to develop an expanding torus-shaped part in x − y di-
rection. Interestingly, it is found that this shape is reminiscent of the d-wave symmetry
of the DDI. The collapse is restricted to the transverse direction while the condensate
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Figure 2.2: (a) A phonon with momentum perpendicular to the direction of dipoles
creates planes of higher density (light gray), in which the dipoles are in the plane, cor-
responding to an instability. (b) For momentum parallel to the direction of dipoles the
dipoles point out of the planes of high density; such a perturbation is thus stable. Image
from [28].

prefers to form extremely elongated axial clouds. Once the density is extremely high,
the quantum pressure tries to eject the atoms outward, resulting in an exploding conden-
sate with anisotropic shapes. Years later, similar experiments with other dipolar atomic
gases such as Erbium and Dysprosium produced strangely different results which will be
discussed later.

Unlike non-dipolar case, clearly phonon instability becomes direction dependent with
DDI. Potential to manipulate the anisotropy by trap geometry and changing the dipole
orientation will also affect the phonon instability condition. These will be calculated and
analysed in detail later in the thesis.

2.1.2 Roton and Maxon

Landau showed on the theory of superfluidity that phonons and rotons are elementary
excitations of the superfluid phase. The rotons formed a local minimum of the dispersion
relation ε = ∆+~2(k−k0)2/2µ, where ∆ is the height of the local minima, k0 is the roton
wave number and µ determines curvature for Helium superfluid. Rotons were suspected
to be the origin of vortices which is how they got their name but experiments have not
confirmed anything conclusive [114]. The local maximum shown is known as maxon and
the dispersion relation is known as the roton-maxon spectrum.

Roton originates from the nontrivial momentum dependency of the inter-particle in-
teractions and is limited to long-range interactions. In search of rotons in DBEC, we
present the example of quasi-2D dipolar BEC system by confining it tightly along the
transverse direction i.e. perpendicular to the 2D plane of the condensate. Assuming a
Gaussian distribution along the transverse direction, the modified dispersion relation will
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Figure 2.3: Excitations in a 2D homogeneous dipolar BEC: (a) Function H2D(klz/
√

2)
captures the momentum dependence of dipolar interaction (DI) in quasi-2D. For k below
l−1
z DDI is effectively repulsive and vice versa. (b) Excitation spectrum of the quasi-2D
dipolar BEC for three different values of scattering lengths displaying roton (dotted). The
spectra are calculated for Chromium. Image taken from [115].

be,

ε(k)2D =

√√√√~2k2

2m

(
~2k2

2m + 2n2D

[
g + 8πgd

3 H2D

(
klz√

2

)])
(2.2)

where, k is limited to the transverse direction and lz is the Gaussian widths determined by
the confining trap frequency. The function H2D(x) = 1− 3

√
π

2 |x| exp[x2]erfc[x]. Although
structurally this equation is similar to the 3D dispersion relation, an important difference
can be seen in the DDI term regarding its dependence on the momentum. Due to a
competition between a decreasing value of H2D(klz/2) and an increasing value of the free
particle behaviour, a local minimum becomes plausible at an intermediate value of the
momentum.

In analogy with the superfluid Helium dispersion relation, this local minima is known
as roton [116] and the spectrum is a roton-maxon spectrum for a DBEC [78] Fig. 2.3.
For this particular case of dipole orientation, if the quasi-2D condition is strictly obeyed
i.e. µ << ~ωz, then the system continues to remain stable. But, at the boundary of this
condition when µ ∼ ~ωz the system undergoes roton instability at a wave number k > l−1

z

or in other words the dispersion relation acquires imaginary component at k. Under roton
instability the unstable momentum does not necessarily include zero momentum, unlike
phonon instability where the zero momentum becomes unstable. The above scenario is
changed if the contact interaction is attractive. With g < 0, roton instability arises
even under well satisfied quasi-2D condition at k < l−1

z . Here the DDI has an effectively
stabilizing effect and the attraction from the local interaction induces roton [117].
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The roton instability may arise in quasi-1D conditions as well which has been theo-
retically studied in [118]. Presence of roton can be revealed in lowering of the superfluid
critical velocity [78] in the calculation of Landau criterion and also with the help of Fara-
day patterns [119]. Please note that although the calculations were done for homogeneous
condensates, they give a qualitative understanding for trapped condensates as well.

In some other important studies, a roton-like dispersion of the excitations was found
in an oblate dipolar BEC in numerical studies [120, 65] where angular and radial rotons
were found with the BEC obtaining a biconcave density profile. Interestingly, stable mod-
ulations have been shown to exist under certain trapped conditions where the distance
between the density maxima is proportional to the inverse of characteristic roton momen-
tum [121]. Post-roton instability dynamics has been researched widely in search of novel
supersolid phase, i.e. self-assembled density modulations because the instability occurs
at a specific value of the momentum. Driving a stable DBEC into the roton unstable
regime fragments the system into a multi-peak structure [122], which is in analogy with
the classical rosenweig instability phenomena. In [123] it is shown numerically that in the
mean-field theory supersolid states of dipolar BEC are unstable.

2.2 Low lying excitations in trapped condensates

In trapped condensates, low-lying excitations are another indicator of stability, but the
situation is vastly different. The trapped gas can demonstrate single-particle type ex-
citations in contrast to the uniform Bose gas which has no single-particle like states at
energy lower than the chemical potential [28]. In the limit when the trapping domi-
nates the interactions the excitation spectrum recovers the harmonic oscillator excitation
ω = nxωx + nyωy + nzωz, where ωx,y,z are harmonic trap frequencies along x, y and z

direction. In case, the interaction energy dominates (for simplicity, say, the short range
interaction) the trap energy a different sort of dispersion relation is obtained which are
analogous of phonons [10].

One of the important oscillations that needs to be mentioned early on is the motion
of the center of mass of the cloud. The motion of the center of mass is exactly decoupled
from the internal degrees of freedom of the system in the presence of harmonic trapping
and it oscillates with the frequency of the harmonic trap. This is a general property
of interacting gas in harmonic confinements and is readily used to verify the numerical
accuracy of theoretical studies as well as to test the harmonicity of the confinements
during experiments [124, 125]. Here we mention that an interesting deviation from this
behaviour is observed in our study consisting of multilayer dipolar BECs, a detailed
analysis of which is shown in Chapter 4. While we shall limit our studies to the low
energy excitations, it should be mentioned that high energy states are important tools to
study the thermodynamic behaviour of the cloud.
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2.2.1 Width modes

In the interaction dominated regime these excitations technically should be studied using
nonlocal Bogoliubov-de Gennes equations but easier approximations have been made [26,
27] to tackle this problem. The most popular method is the dynamic variational principle,
which was initially developed for a contact interacting BEC [126, 127] and extended to
the case of DBEC [128]. For a start a variational ansatz is introduced,

ψ(x, y, z, t) = A(t)
∏

η=x,y,z
e
−

η2

2ωη(t)
−iη2βn(t)

(2.3)

where dynamic variational parameters are the normalization factor A(t), the Gaussian
widths ωη(t) and the phases βη(t). The variational parameters give equations of motion
and their stationary solutions providing the BEC ground state. Small oscillations away
from the ground state are the lowest lying modes, which can be indicative of the collapse
and expansion instabilities. In non-dipolar BEC, the relevant modes at low energies
are the two quadrupole-like modes [Fig. 2.4(Mode 1 and 3)] and a monopole mode or
breathing mode (Mode 2). The latter one becomes unstable at the advent of collapse
brought on by the change in sign of the scattering length. The frequency of the breathing
mode goes to zero proportional to |γ − γc|1/4 when γ approaches γc from below. Here γ
denotes the ratio of the non-linear energy to the trap energy, and γc is correspondingly
its critical value [129, 130].

The character of the modes also give an insight towards the dimensionality of the
condensate. In lower dimensions, the degrees of freedom in confining directions become
independent of the rest and the corresponding mode also reflects this e.g. in quasi-2D case,
the axial and radial modes get independent of each other completely. Such decoupling
can also be a result of strong anisotropic deformations of the cloud.

For dominantly dipolar gases the situation is similar to contact BEC case only for
strongly cylindrical traps with dipoles oriented along the axis. In this situation the lowest
mode is a breathing mode, and its frequency tends to zero as |γ − γc|β, with β ∼ 1/4.
But, numerical analysis indicates that the geometry of the zero frequency mode becomes
a superposition of the two quadrupole-like modes. Close to γc, β grows up to the value
∼ 2. These results imply a completely different character of the collapse dynamics for a
dipolar BEC. In later parts of the thesis, the richness in the physics of excitations shall
be discussed due to the breaking of axial symmetry in dipolar BECs due to the tilting of
dipoles.

In [65], an efficient method has been developed to solve the BdG equations for cylin-
drically symmetric DBEC. It allowed the study of excitations in both cigar and pancake-
shaped traps along with condensate depletion.
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Mode 1 Mode 2 Mode 3 Mode 4

Figure 2.4: Modes 1 and 3 are ‘quadrupole’-like, mode 2 is the breathing ‘monopole’
mode. Excitation of scissors mode (mode 4) by rotating the eigen-axis of an anisotropical
trap suddenly. Image taken from [28, 131].

2.2.2 Angular mode

Aside from width oscillations, angular oscillations[Fig. 2.4(d)] also emerge in BECs which
is closely linked with superfluidity as manifestations of superfluidity are associated with
rotational phenomena [132, 133, 131]. This is known as the scissors mode, which is
borrowed from nuclear physics where it corresponds to the out-of-phase rotation of the
neutron and proton clouds [134]. For deformed potentials, the restoring force associated
with the rotation of the cloud in the x − y plane goes as ε2 where ε is the deformation
parameter of the trap and the mass parameter is the moment of inertia. For a superfluid
system this is given by the irrotational value and is hence proportional to ε2. So, although
the confinement anisotropy vanishes the frequency of the oscillation approaches a non-zero
value [12].

2.3 Parametrically induced excitation

Apart from natural instabilities or small perturbations in the system, excitations can also
be induced via external force, often in the form of periodic driving. This allows a study of
controlled excitation and manipulation to meet our desired goal. A variety of tuning pa-
rameters associated with BEC ensures experimental feasibility of parametrically induced
excitation [135–139]. Depending on the geometry and the applied force the excitation
maybe of local nature inducing surface modulations or may induce single particle modes
or a mixture of both. Usually, small driving amplitudes have been shown to produce
complicated Faraday waves in different geometries and systems while strong amplitude
drive leads to chaotic and turbulent behaviour [140, 141].
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2.3.1 Faraday patterns

Faraday waves are standing wave patterns on the interface of a fluid subjected to transverse
oscillations. After a critical frequency of vibrations a flat hydro-static surface becomes
unstable which was first described by Michael Faraday in 1831 [142]. These patterns os-
cillate at half the driving frequency and can take complicated structures such as stripes,
hexagons and quasi-periodic patterns etc . In case of Bose gas, the transverse oscillations
may be imitated by parametric modulation which results in surface patterns. Faraday
patterns have been theoretical investigated in both non-dipolar [143] and dipolar homo-
geneous BEC [119] and have shown the resonant behaviour of the emerging patterns with
the dispersion curve. Experimental probe includes liquid Helium system in which a ves-
sel is vertically shaken in a way similar to the classical fluid case [144] and Rubidium
BEC system in which Faraday waves were excited by modulation of the transverse trap
frequency of a cigar-shaped BEC [145].

In the BEC experiments, which includes trap, the density is not homogeneous. Ex-
ternal driving excites the transverse breathing mode at a frequency of 2ω where ω is
the transverse trap frequency. This mode strongly couples to the density, thereby to the
nonlinear interactions of the condensate resulting in the longitudinal sound waves. These
sound waves create Faraday waves. Effect of both the driving frequency and amplitude
has been quantitatively studied in [144]. Besides modulation of trap, modulation of scat-
tering length with the help of Feshbach resonance allows a different method to incorporate
external driving. This was done in a quasi-2D Cs BEC with both large amplitude and
frequency of driving resulting in the stimulated emission of matter-wave jets [146]. In
contrast, for lower modulation frequencies no resonances are found, but with strong mod-
ulation amplitude an irregular granulated distribution occurs instead of Faraday waves,
which is outside the scope of a mean-field approach [147]. Instead, the granulated con-
densate is shown to affected by large quantum fluctuations and correlations.

2.3.2 Mode-locking

In the 17th century the Dutch physicist Christian Huygens noted synchronized motion of
two clocks hanging back-to-back on the wall. Dissipative systems with competing frequen-
cies, originating inherently or externally due to forcing, often show this kind of locking.
However, if a non-dissipative trapped BEC is subjected to an external frequency sweep
of quasi-periodic driving of the form sin γt2, interestingly the system develops breathing
mode excitation whose frequency is equal to the natural frequency of the system. The
system is locked to this frequency for a long time despite the changing frequency of the
external driving. In [148] the frequency locking takes places both for the ground state and
excited states of the condensate. Solitons are also expected to get excited into breather
states by the driving field. Mode-locking ensures that the amplitude of the resulting ex-
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Figure 2.5: (a) In-trap absorption images of Faraday waves in a BEC. Frequency labels
for each image represent the driving frequency at which the transverse trap confinement is
modulated [145] (b) The dynamics of the width of the condensate: The condensate starts
to respond periodically approximately τ ∼ 111s but there are additional superharmonic
nonlinear resonances [148].

citation is controlled and the system does not get destroyed due to heating for a long
time.

Similar chirped frequency modulation has also been theoretically studied [149] in an
anharmonically trapped BEC. Depending on the interplay of parameters involved, two
very different kinds of excitations exist: the quantum energy ladder climbing and semi-
classical autoresonance. Mode-locking is the result of a bounded phase-mismatch between
the driving frequency and the self-adjusting nonlinear frequency of the system. Both the
interaction of the particles and the anharmonic trap have a profound effect on the dy-
namics of the condensate because harmonic trap does not allow for either ladder climbing
or autoresonance. The interaction affects the details of the driven-chirped excitation with
applications in quantum state control. Note that for vanishing nonlinear interaction the
autoresonance effect also vanishes.

In case of ladder climbing, the population is transferred from the ground quantum
state to the first excited state, from first to second and so on such that only two en-
ergy eigenstates are resonantly coupled at any time. The classical counterpart of this
effect is autoresonance where the energy transfer is gradual and the excitation amplitude
grows continuously. Here the two level approximation breaks down and several levels
can simultaneously resonate with the driving. Autoresonance has found applications in
hydrodynamics [150, 151], nonlinear optic [152], plasma [153], molecular physics [154] etc.

In chapter 4, we study the quantum energy ladder climbing of two layers of non-
overlapping quasi-1D BEC in harmonic trap and transfer of mode-locking between them.



Chapter 3

Dipolar Bose-Einstein condensates in
Pancake-shaped Confinement

Current chapter is an adaptation of the research articles "Two-dimensional bright solitons
in dipolar Bose-Einstein condensates with tilted dipoles" [155] and "Dipolar condensates
with tilted dipoles in a pancake-shaped confinement" [156]. We exploit the anisotropic
nature of dipole-dipole interaction in a quasi-2D dipolar BEC by tuning the polarisation
angle. Its effect on stability-instability conditions, post-instability dynamics have been
explored. Our results show that the roton momentum may be tuned by the tilting angle.
We discover a new type of instability and a new class of solution emerging due to tunable
tilting angle.

3.1 Introduction

The anisotropic nature of dipolar Bose-Einstein condensate has led to the discovery of
extremely rich phenomena that are otherwise absent in a traditional short-range inter-
acting BEC. In this chapter we focus on dipolar BEC in a pancake-shaped confinement
geometry. We have already seen that the attractive component of dipolar BEC can lead
to collapse instability in mean-field regime if it is dominant over the repulsive interactions
present in the system [48]. Hence it is of a fundamental importance to understand the
stability and instability properties and how it is influenced by the trapping geometry[157].
Our work aims to generalise the study by introducing the polarisation angle of the dipole
moment as a tunable parameter. The tilting angle brings in new phases [158, 159] and
its unique anisotropic characteristics to system properties [160, 161].

The tilting angle is defined with respect to the axis of the condensate. We study
the stability and properties shown by the condensate under the effect of this tunable
polarisation angle. We begin by emphasizing the fundamental difference between a quasi-
2D condensate and a purely 2D-condensate. Later, the domains of various instabilities,

33
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Figure 3.1: The schematic setup of dipolar BEC confined in the x−y plane with a strong
harmonic confinement along the z axis. (b) The dipoles are polarized in the x− z plane
with tilting angle α with respect to the z axis and θ is the angle between the dipole vector
and the radial vector r.

including a new one, are identified, followed by their post-instability dynamics. The effect
of tilting angle on Bogoliubov spectrum brings into light the fact that roton minimum
can, in fact, be varied, in contrast to the belief that it is fixed by the trapping geometry.
We discuss the emergence of solitons from post-instability dynamics of phonon unstable
regime followed by characterising anisotropic soliton solutions thoroughly. A new class of
solution is found where a quasi-2D dipolar BEC was found to self-trap along one direction.
Under sufficiently low dipolar strengths, it is found possible to have stable solitons even
with attractive contact interactions.

3.2 Setup

Consider a BEC of N atoms with dipole moment d under the effect of a sufficiently large
external field [Fig. 3.1(a)]. The orientation of the dipole vector is restricted in the x− z
plane forming an angle α with the z-axis. The DDI is described by

Vd(r) = gd(1− 3 cos2 θ)/r3

where θ is the angle between the dipole vector d ≡ d(sinα x̂ + cosα ẑ) and the radial
vector r, gd = µ0d

2/4π is the strength of the DDI. These equations are equally valid
for polar molecules as well, except the strength of the DDI changes to gd = d2/4πε0.
At ultracold temperatures the system can be described by a non-local Gross-Pitaevskii
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equation (NLGPE):

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m∇
2 + Vt(r) + g|Ψ(r, t)|2+∫

dr′Vd(r− r′)|Ψ(r′, t)|2
]

Ψ(r, t),
(3.1)

The total number of particles is
∫
dr|Ψ(r, t)|2 = N , g = 4π~2a/m is the two-body short-

range contact interactions strength and a is the s-wave scattering length. The system
is confined in a pancake-shaped trap of the form Vt(r) = m(ω2

ρρ
2 + ω2

zz
2)/2 such that

ωz > ωρ. If the 2D system chemical potential, µ2D << ~ωz, quasi-2D condition is
achieved. In the absence of a radial trap ωρ = 0, the condensate wave function can be
written as Ψ(r, t) = √n2Dψ(z)e−iµt/~ where n2D is a constant homogeneous density. The
radial and axial components becomes separable and we obtain an expression for ψ(z) as,

(
−~2

2m
d2

dz2 + mω2
zz

2

2 + geff |ψ(z)|2 − µ
)
ψ(z) = 0, (3.2)

where geff = g+ 4πgd
3 (3 cos2 α− 1). This derivation is shown in detail in Appendix E.1.1.

This incorporates α directly in the equation. Two different regimes maybe accessed by
changing geff [88]: (i) three-dimensional (3D) or Thomas-Fermi (TF) if geff is large and
(ii) Q2D if geff is small.

3.2.1 2D vs quasi-2D

Quasi-2D regime restricts any dynamics along z direction and the condensate is assumed
to remain in the ground state of the tight harmonic confinement. Under single mode
approximation and when µ2D << ~ωz, we may assume φ(z) ∝ exp[−z2/2l2z ] where lz =√
~/mωz is the characteristic length associated with ωz. The 3D wave function may be

separated as Ψ = φ(z)ψ(x, y) and an effective 2D NLGPE is obtained after integrating∫
dz,

i~
∂

∂t
ψ(x, y, t) =

[
− ~2

2m∇
2
x,y +

mω2
ρρ

2

2 + g√
2πlz
|ψ(x, y, t)|2+

2gd
3lz

∫ dkxdky
(2π)2 e

i(kxx+kyy)f(kx, ky)ñ(kx, ky)
]
ψ(x, y, t) (3.3)

where ñ(kx, ky) Fourier transform of |ψ(x, y)|2 and the final term is calculated after Fourier
transforming the 3D DDI using convolution theorem,
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2D

Q2D

Figure 3.2: (a) The dipoles are oriented in the xz plane forming an angle α with the
z-axis. (b) For αm < α < π/2 a purely Q2D dipolar condensate is unstable against
collapse, indicated by smaller (yellow) shaded region, but an ideal 2D layer of dipoles is
unstable when π/2− αm < α < π/2, indicated by the larger (gray) shaded region. Here,
g = 0.

Vd(k) = 4πgd
3

[
3(k2

x sin2 α + kxkz sin 2α + k2
z cos2 α)

k2
x + k2

y + k2
z

− 1
]

(3.4)

to obtain,

f(k, θk) =
√

2π
(
3 cos2 α− 1

)
+ 3π ek2/2k erfc

(
k√
2

)
×
(
sin2 α cos2 θk − cos2 α

)
, (3.5)

where we have used the dimensionless polar coordinates
(
k ≡ lz

√
k2
x + k2

y and θk
)
, and

erfc(x) is the complimentary error function.
Let us consider a quasi-2D homogeneous case (ωρ = 0). In experimental scenario,

this usually corresponds to the central regions of a Thomas-Fermi condensate density in
a shallow radial trap. However, instead of using a Thomas-Fermi wave function in our
theoretical approach the wave function maybe written as ψ(x, y, t) = √n2De

−iµ2Dt/~ where
µ2D = geffn2D/

√
2πlz under local density approximation. µ2D can be easily calculated by

replacing the expression for ψ(x, y, t) in Eq. (3.3) and following the procedure as done in
Appendix E.1.1. Note that the kinetic energy term vanishes due to uniform density and
it also introduces delta functions in the final term ñ(kx, ky) ∝ δ(kx)δ(ky). For g = 0, the
only relevant factor in DDI term is f(kx = 0, ky = 0) =

√
2π(3 cos2 α− 1). For a negative

chemical potential it has been shown that the homogeneous density is unstable against
collapse. This may also lead to the dynamic formation of bright solitons [162]. When
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g = 0, the instability condition is satisfied whenever µ2D < 0 i.e. α > αm = cos−1(1/
√

3),
where αm is called the magic angle. Interestingly one would expect this angle to be at
α > π/2 − αm at first glance. In fact, this is indeed the case for a purely ideal 2D
condensate where lz → 0. It is easily seen that instability starts at α = π/2 − αm when
we consider a Vd(x, y, z = 0) = (1 − 3x2/ρ2) for a ρ =

√
x2 + y2 [159] as shown in Fig.

3.2. From this we conclude that the transverse extension of the cloud is a key factor in
reducing the instability window, especially when we consider the generalised case of a
tilted dipoles. This remains true for fermionic systems as well [163].

In Fig. 3.2 we show the instability region(gray area) for an ideal 2D setup and a
quasi-2D set-up (overlapping yellow area). Angle αm > π/2−αm and clearly the effect of
a nonzero spatial extension along z axis helps stabilize against the collapse of the system
due to attractive interaction by the DDI. Mathematically this difference arises because
for quasi-2D setup the instability condition is calculated after the

∫
dz integration while

in an ideal 2D setup it’s not necessary as there’s no transverse spatial extension.

3.3 Bogoliubov Excitations

To get a better picture of the stability of the quasi-2D homogeneous system we turn
to calculation of Bogoliubov excitation spectrum. The details of the calculations are
portrayed in Appendix B. The low-lying excitations on the homogeneous density are of
the form ∼ f±(z) exp[iq · ρ − iεt/~], where q is the quasi-momentum in the 2D surface,
ε is the excitation energy and f± = u± v with {u, v} are the Bogoliubov functions. The
Bogoliubov-deGennes (BdG) equations are obtained by replacing it in the full NLGPE
and then linearizing f±(z) at ψ(z),

εf−(z) =
[
−~2

2m

(
∂2

∂z2 − q
2
)
− µ+ 1

2mω
2
zz

2 + 3n2Dgeff |ψ(z)|2
]
f+(z)

+4πgdn2Dψ(z)
∫ ∞
−∞

dz′ψ(z′)e−qρ|z′−z|
[
q2
x

qρ
sin2 α−

qρ cos2 α− iqx sin(2α)sgn(z′ − z)
]
f+(z′) (3.6)

εf+(z) =
[
−~2

2m

(
∂2

∂z2 − q
2
)
− µ+ 1

2mω
2
zz

2 + n2Dgeff |ψ(z)|2
]
f−(z). (3.7)

Diagonalization of the corresponding Hamiltonian matrix of the Bogoliubov equations
gives the necessary excitation spectrum. The lowest eigenvalue corresponds to the lowest
lying excitations in q. One can notice that the momentum dependence stems from only
the dipolar term i.e. the final term in Eq. (3.6). Subsequently for certain parameters
this term also leads to emergence of roton-maxon dispersion relation [78]. In a quasi-2D
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Figure 3.3: (a) For the parameters (g̃, g̃d) = (0, 0.05) and different values of α, the
Bogoliubov dispersion relation has been plotted along the qy axis i.e. ε(qx = 0, qy). With
these parameters the system satisfies the quasi-2D criteria µ2D << ~ωz. Comparative
curves from purely 3D calculations (red dashed curve) from (??) and analytic quasi-2D
calculations (solid blue curve) from (3.8) show excellent agreement. At α = αm the LWI
instability, at α = 0.92 rad the roton instability (RI) and at a lesser α = 0.91 rad stable
roton (R) is shown. The unstable imaginary component of ε(qx = 0, qy) is represented in
the negative y-axis. (b) We define roton momentum qr as the

regime the spectrum equations reduce to a simpler form, [161],

ε(q) =

√√√√Eq
{
Eq + 2gn2D√

2πlz

[
1 + 2

√
2π

3 βf(q, θq)
]}
, (3.8)

The derivations are shown in detail in Appendix B. When α = 0, there is no attractive
component of the DDI across the 2D plane. The final term in Eq. 3.6 is negligibly small
for α = 0 when qL << 1 and a linear phonon spectrum can be obtained with a slope
of
√
gn2D + 8πgdn2D/3. The condition qL << 1 ensures we are in the long wavelength

region where L is the width of ψ(z). When we’re in quasi-2D regime, L ≈ lz. In contrast,
this slope changes when we are at α = αm. At this magic angle if g is taken to be zero,
we instead get (Eq = 0, α = αm)

ε(q→ 0) ∝
√
f(q→ 0)

∝
√
gdq(q2

x sin2 αm − q2 cos2 αm)

∝
√
gdq(q2

x(sin2 αm − cos2 αm)− q2
y cos2 αm)

∝
√
gdq(q2

x − q2
y)

We have used the relation sin2 αm − cos2 αm = cos2 αm. Clearly, these are not standard
phonon like excitations! Such excitations are characteristic to the anisotropic excitation
of the DDI and can only be explored by tilting the angle to the magic angle. When
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gd > 0 these excitations become unstable for qy > qx and we name it as long-wavelength
instability (LWI) due to their emergence at low momenta and their nonlinear dependence
on qx and qy with vanishing chemical potential, µ2D(g = 0, α = αm) = 0. If gd is increased
keeping g = 0 and α = αm, the region of LWI increases. However, when the tilting angle
is decreased, this region is reduced such that unstable region is confined to only non-
zero finite momenta. It is called roton unstable (RI) region. The maximum instability
lies along the qy axis. The system completely stabilizes upon further decrease of α and
we obtain a stable roton-maxon spectrum along qy axis. This behaviour is portrayed
in Fig. 3.3 where new dimensionless parameters have been defined as g̃ = gn2D/~ωzlz
and g̃d = gdn2D/~ωzlz. A comparative study between 3D calculations and quasi-2D
calculation of Bogoliubov dispersion relation co-incides confirming that the parameters
are in quasi-2D regime i.e. µ2D << ~ωz.

It is already established that the rotons are anisotropic since they’re confined along
qy axis. But more importantly it is shown that quasi-2D rotons are possible even with
g = 0 or g > 0 too while previously quasi-2D rotons have been explored only in the
isotropic region(α = 0) with g < 0 [119]. It is clear that quasi-2D anisotropic rotons are
purely a product of DDI. For α = 0, it is possible to obtain rotons as well but the system
doesn’t remain in quasi-2D region any more as the required g̃d value is much higher and
the criteria µ2D << ~ωz is not well satisfied [164].

Another interesting consequence of tilting angle is the roton momentum qr. It’s gen-
erally found that qr ∼ 1/lz where lz corresponds to the transverse length of the confining
trap along z. However, previous studies were limited to α = 0 case. Here, we show the
continuous variation of qr with respect to system parameters in Fig. 3.3(b). For each data
point α has been adjusted until no such qr can be found for 0 ≤ α ≤ π/2 as the system
doesn’t have stable roton any longer. The results are from a purely 3D calculation and
the qr varies from much lower values to ∼ 1/lz.

3.3.1 Phase diagram

All the findings have been succintly put together in the phase digrams discussed below.
Our first goal is to identify the region of phonon instability(PI) for both g < 0 and g > 0.
This is easily calculated by the condition µ2D < 0. Defining β = gd/|g| in Fig. 3.4 we
show the PI regions in the α− β parameters space. For g < 0 the BEC usually collapses
in the PI region (an exception is discussed later in the chapter) while post instability
dynamics for g > 0 leads interesting solutions that will be discussed in the following
sections. Henceforth we focus on only g ≥ 0 cases. In Fig. 3.4(a) we observe two islands
of PI region separated by the magic angle such that no continuous transition between
the regions are possible. The bottom left region corresponds to gd < 0 which is obtained
with the help of rotating fields [44, 45] and the top right region corresponds to the usual
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Figure 3.4: Phonon instability region of a homogeneous quasi-2D dipolar BEC shown
in α− β parameter space for (a)g > 0 and (b)g < 0. The dashed line corresponds to the
magic angle αm.

gd > 0. The later island has high anisotropy compared to the former as the tilting angle
is quite high and reaches the maximum value of π/2 there.

Upon finding the PI region, we now probe more thoroughly to also characterize the
roton instability(RI), stable roton (R) and stable without roton(S) regions for gd > 0
cases. This is done by fixing the value of g̃ = 0 and a small positive value 0.1. For g̃ = 0
in Fig. 3.5 The solid gray vertical line at αm corresponds to the previously discussed
LWI. This instability is changed to PI if α > αm for any positive value of g̃d. Similarly
for α < αm LWI shifts to RI. For g̃d less than approximately 0.48, just by changing the
tilting angle one may go from S → R → RI → LWI → PI. The lower the value of g̃d
the narrower the stable roton region becomes. This is because for small values of g̃d, qr
arises at very small momenta and the system quickly goes to RI. LWI does not exist once
g̃ 6= 0. For g̃ > 0, the PI region is modified as well such that it is possible to obtain
stable dispersion relation even for α = π/2 as long as g̃d is small enough. Introduction
of a repulsive contact interaction slightly enlarges the S domain overall. While crossing
from RI to PI, the nonzero finite unstable momentum region gradually increases until the
zero momentum also is unstable and it’s PI. The instabilities are a result of the attractive
component present in the anisotropic DDI. Different types of instabilities arise due to the
momentum dependence of the DDI, which is a result of its nonlocal nature. We have
shown the unstable regions for the experimentally relevant dipolar atoms Chromium,
Erbium and Dysprosium as well. In that case the g̃d is fixed by the dipole moment of the
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Figure 3.5: Stability and various instability regions have been shown for a dipolar BEC
tightly trapped along the z direction and homogeneous in the x−y plane in the parameter
space of α− g̃d. In left (g̃ = 0) and in the right (g̃ = 0.1) the stable (D), roton (R), roton
unstable (RI) and phonon unstable (PI) and long-wavelength unstable (LWI) regions have
been characterised. The phase diagrams have been obtained from a purely 3D Bogoliubov
calculation.

atoms and the domains are plotted with respect to s-wave scattering length(a) and the
tilting angle α for a homogeneous pancake-shaped condensate. The phase diagram spans
over both negative and positive scattering lengths. Although the behaviour of the domain
boundaries remain similar for all three atoms, the range s-wave scattering length scales
to much larger magnitude for strongly dipolar Dy compared to weakly dipolar Cr. Highly
negative a gives rise to PI and as it is reduced one may go from PI → RI → R → S for
fixed α. For α > αm the R region becomes extremely negligible. It is easily noticeable
that as α increases the instability boundaries move up. This can be explained using the
fact that DDI gradually acquires an attractive component in the x − y plane leading to
stronger instability.

3.4 Post-instability Dynamics

Having discussed the various instabilities, we move on to post-instability dynamics. It
was discussed for the first time that phonon instability may lead to dynamic formation
of transient bright solitons [162] for α = 0 or α = π/2 case. This is in contrast to the
collapse observed in phonon unstable regions in other systems such as non-dipolar BECs.
For low density condensate, these solitons m ay survive for long time if they’re also big
enough. Such solitons also have inelastic collision properties where they merge to give
larger solitons. Larger solitons can survive longer as they’re more robust against atomic
losses.
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Figure 3.6: For a fixed value of ωz = 2π × 800 Hz and a low homogeneous density
n2D/lz =

√
2π× 1020m−3 the stability and instability regions have been identified for (a)

Cr, (b) Er, and (c) Dy atom BECs. The parameter space is α − a and the boundaries
have been obtained from a purely 3D Bogoliubov calculation.

The idea behind the formation of bright solitons is that in the nonlinear dipolar BEC
system there is a balance between the repulsion and attraction which allows for the self-
bound solutions. The repulsive part is obtained from the the kinetic energy, the contact
interaction and the repulsive component of the long-range DDI (when α 6= 0). The
attractive part stems only from the DDI. The balance between them is in analogy with the
dispersion and self-focusing nonlinearity of optical soliton in a nonlinear media. Without
the DDI such a balance is not possible in quasi-2D BEC.

Here, the low density criteria also helps in maintaining the quasi-2D criterion. The
phase diagram shown in Fig. 3.4 gives a first estimation of the region in which 2D solitons
may be obtained.

3.4.1 Solitons formation

We simulate the NLGPE introduced in Eq. (3.3) in the PI parameter regime in real
time. The real time evolution reveals the dynamic formation of transient soliton gas. The
gas is metastable as these are excitations of the system and they eventually collapse in
the long time scale, especially when the anisotropy is large. The metastable solutions
indicate the potential existence of solitonic ground state solutions. The stability of such
ground state solutions will be analysed in the next section. The real time dynamics is
primarily influenced by the tilting angle and it has been shown in Fig. 3.7. We begin with
homogeneous density with random local perturbations, two or three orders of magnitude
less than the condensate density to characterise the Bogoliubov excitations. In real time
evolution we initially observe the formation of stripe-like patterns with dislocation defects.
At these defects two stripes merge into one. The density patterns in Fig. 3.7(a)-(b) is
for α > αm generate for parameters in the top right island of Fig. 3.4(a). In this
region the DDI is primarily attractive along x direction and repulsive along y. Hence
the instability primarily occurs along y and the continuous symmetry is broken along y.
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Figure 3.7: Transient stripe-like density patterns in post-PI dynamics shown for quasi-2D
dipolar condensates. The top two plots have parameters (g̃, β, α) = (12/sqrt2π, 0.28, 1.35)
at (a) t = 13.5/ωz and (b) t = 27/ωz. The bottom two plots have parameters (g̃, β, α) =
(40/sqrt2π,−0.20, 0.6) at (c) t = 31/ωz and (d) t = 90/ωz. The dislocation defects have
been emphasized within the ellipses.

This leads to stripe-like patterns parallel to the x-axis. In a contrasting case, for α < αm

and parameters lying in the bottom left island of Fig. 3.4(a), the DDI is isotropically
attractive for α = 0 as β is negative. In this island for nonzero tilting angle, DDI is more
attractive along y and less attractive along x. Here the stripes appear parallel to y as
shown in Fig. 3.7(c)-(d). Fig. 3.7(a) and (c) depict the initial time stripe patterns which
evolve into individual anisotropic solitons shown in (b) and (d) respectively at a later
time scale. These anisotropic solitons may fuse into one another to form bigger solitons,
however their lifetime depends on their density as already mentioned. Due to broken
isotropy for any α 6= 0 the movement of atoms are restricted and it results in a slower
dynamics compared to the isotropically attractive DDI at α = 0 case. Also, the stability
of anisotropic soliton decreases as the minor axis of the soliton grows thinner.

3.4.2 Phonon vs roton instability

Here we first study the dynamics observed in RI regime and then compare it with previ-
ously shown PI dynamics. The real time evolution has been done in the RI region of Fig.
3.6(a) for a Cr atom BEC. We again evolve the Eq. 3.3 and 3.1 in real time and observe
the formation of perfect stripe patterns in the post-instability dynamics. The stripes are
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Figure 3.8: (a) The post-PI transient stripe-like density pattern with dislocation defects
in a quasi-2D condensate and (b) the perfect stripe pattern without any dislocation defects
in post-RI dynamics has been shown. The roton instability occurs in the qy axis which is
why the stripes are parallel to x axis. Defect-free stripes can be taken as a signature of RI.
A Cr BEC has been considered with density n2D/lz = 5

√
2π×1019m−3, ωz = 2π×800Hz.

For (a) a = 0 and α = αm+0.14 at t = 100ms while (b) a = 5a0 with α = αm at t = 16ms.

parallel to the direction of attractive component of the dipole vector i.e. x-axis. The
continuous translational symmetry is broken along y-direction.

The key difference between the PI and RI dynamics is the dislocation defect which is
present (absent) in PI (RI) dynamics. The origin of this can be traced to the origin of the
instability in Bogoliubov dispersion relation. In case RI, the most unstable momentum
lies purely on the qy axis and its qx component is zero when DDI is attractive along x
direction. This is not true for PI. Consider PI for α > αm where DDI is attractive along
x-direction, similar to the RI case. However, the PI is inherently 2D in nature. The most
unstable momentum has both qx and qy component although qy > qx. This results in
dislocation defects. In fact, dislocation defects are good identifiers of whether the stripes
are a results of PI or RI. Please note that for the isotropic case of PI and RI qx = qy. But
once α 6= 0, the most unstable momentum for RI only has qy component.

The stripes due to RI are also transient. However they can be sustained for a longer
time by adiabatically driving the system into stable roton (R) regime. The sysem, hence,
takes a long time to come back to homogeneous density state by atomic losses. We
also observe hopping of atoms between stripes as the background density is not zero
duing intitial time evolution showing signatures of a metastable stripe supersolid state.
The numerical results have been verified by both 3D and quasi-2D calculations. The
time taken for the emergence of the stripes are dependent on the inverse of the unstable
energy magnitude and the size of the stripes are dependent on the inverse of the unstable
momentum.



CHAPTER 3. DBEC IN PANCAKE-SHAPED CONFINEMENT 45

(a) (b)

Figure 3.9: The figures (a) and (b) show the schematics of an equilibrium soliton for (a)
β < 0 (0 < α < αm) and (b) β > 0 (αm < α ≤ π/2). Dipole polarisation is along the
red arrow in the x− z plane. (a) The soliton is more elongated along the y axis and the
aspect ratio is taken as γ = Lminx /Lminy while for (b) the soliton major axis lies along x
and aspect ratio is redefined to γ = Lminy /Lminx .

3.5 Stability and Properties of a Soliton

In this section we focus on the formation and stability of a single soliton in a quasi-2D
scenario. We shall use fully 3D variational calculation for this purpose. We already
know that solitons are stable in quasi-1D nondipolar BECs with attractive short-range
interactions [93, 94, 165]. However, this is not true in higher dimensions. But for dipolar
BECs for α = 0 [162] and α = π/2 stable solitons have been theoretically verified for
repulsive contact interaction. Here, we shall study and seek stable solitons in a larger
parameter space due to additional tuning parameter α. This allows us to discover newer
soliton regime and solutions.

3.5.1 Energy minimization

We begin by considering a Gaussian ansatz to approximate a soliton solution in 2D.

Ψ0(r) = 1
π3/4l

3/2
z

√
LxLyLz

exp
[
− 1

2l2z

(
x2

L2
x

+ y2

L2
y

+ z2

L2
z

)]
, (3.9)

Using this the energy functional maybe evaluated,

E =
∫
d3r

[
~2

2m |∇Ψ0(r)|2 + Vt(x, y, z)|Ψ0(r)|2 + g

2 |Ψ0(r)|4+ 1
2
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]
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where Vt = m
2 (ω2

xx
2 + ω2

yy
2 + ω2

zz
2) is the 3D harmonic trap. The final expression for

energy after substitution is,

E

~ωz
= 1

4L2
x

+ 1
4L2

y

+ 1
4L2

z

+ L2
z

4 + λ2
xL

2
x

4 +
λ2
yL

2
y

4 + ḡ
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where λx,y = ωx,y/ωz, ḡ = gN/
√

2π~ωzl3z and ḡd = gdN/
√

2π~ωzl3z . Minimization of the
expression gives us the ground state energy of a soliton Emin[Lminx , Lminy , Lminz ] and its
corresponding equilibrium widths. For a 2D soliton the λx = λy = 0. If the soliton is
unstable against collapse or expansion instability we will not expect to have any equilib-
rium widths. This translates to non-existing finite minima for the energy functional. If
the repulsive interaction dominates the soliton is unstable against an expansion and if the
attractive interaction dominates it undergoes a collapse instability.

For α = 0, stable isotropic solitons are possible only if [162],

2ḡd
3
√

2π
< 1 + ḡ

(2π)3/2 <
−4ḡd
3
√

2π
, (3.11)

The condition necessitates g̃d < 0. For large values of g, the condition becomes β <

−3/8π. Once α > 0 istropy is lost, and Lminx 6= Lminy . We characterise the effect of the
anisotropy on the 2D solitons by introducing the ratio γ = Lmini /Lminj where {i, j} ∈
{x, y}.

Let us first consider the β < 0 cases from Fig. 3.10(a) and (c). The soliton aspect
ratio is 1 at α = 0 due to isotropic DDI. Once α > 0, γ decreases because DDI is more
attractive along y compared to x. This schematically shown in Fig. 3.9(a). As the
total attractive interaction lessens in the system the size of the soliton gets bigger. The
aspect ratio γ = Lminx /Lminy , however, shows a non-monotonous behaviour with respect
to increasing tilting angle. The curve has been plotted until the soliton melts due to
expansion instability. The reason there is a slight recovery in the anisotropy is because
close to expansion instability the interaction energies are pretty low while the system size
is pretty big. A more relevant contribution from kinetic energy helps reduce the anisotropy
and hence the existence of a nonmonotonic character of the aspect ratio. Next, for β > 0
maximum anisotropy is obtained for α = π/2 and then anisotropy can only be reduced
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Figure 3.10: γ vs α plot shows the variation of soliton ansiotropy for different parameter
regimes. Plot (a) and (c) are for β < 0 belonging to the bottom left island of Fig. 3.4
while (b) and (d) are for β > 0 from top right island of Fig. 3.4. The red dots at the
end of each curve marks the stability boundaries for each curve beyond which expansion
instability is met. The solid curves have been obtained from Gaussian calculations while
the dashed curves are from numerics by solving Eq. (3.3).

by decreasing α. A schematic representation is shown in Fig. 3.9(b). The aspect ratio
is defined as γ = Lminy /Lminx for this case. This is depicted in Fig. 3.10(b) and (d). The
curves gradually decreases until they meet with expansion instability. Also an increased
anisotropy is related to larger values of ḡd while anisotropy decreased for larger values of
ḡ.

In all subfigures in Fig. 3.10 we fix either ḡ (ḡd) and have plotted for different values
of ḡd(ḡ) with respect to α. The calculations are done both via Gaussian variational
method (done by Meghana Raghunandan) and by solving Eq. 3.3 and found to have
good agreement. The small deviations are obtained in regions where the actual solutions
are less Gaussian in nature. However, the qualitative behaviours are retained by the
variational method. Inclusion of α allows us to explore stable solitons with parameters
where solitons were found to be unstable [95, 96]. This provides a larger parameter domain
and ensures a more flexible experimentally realizable regime.
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Figure 3.11: (a) The energy E[Lx, Ly, Lz = 1] contours are depicted with respect to Lx
and Ly showing the existence of a minimum for λx = 0 and 0 < λy < 1. The parameter
values are (N,α, ḡ, ωz, ωy) = (1000, αm, 0, 2π × 800Hz, 2π × 80Hz). (b) The ground state
density |ψ(x, y)|2 for the same parameter regime showing self-trapping along x.

3.5.2 A new class of self-trapping

In the previous section we studied the standard quasi-2D soliton in a x − y trapless
condensate. We find a new class of solutions where the quasi-2D condensate is self-
trapped only along one direction while it is trapped along the other. This solution is
neither a traditional quasi-2D soliton because it is trapped along one direction, nor is it a
quasi-1D soliton due to its 2D shape. It cannot be described by a quasi-1D GPE either.
We consider trap along y and z direction and minimize the energy functional i.e. λx = 0
but 0 < λy < 1. In Fig. 3.11(a), it is evident that there exists a minimum value even in
the absence of any trap along x. The solution is quasi-2D in nature and in Fig. 3.11(b)
we show the probability density of the same solution.

The origin of such solution can be explained by the anisotropic property of the Bo-
goliubov instabilities. This behaviour is further characterized by the calculation of modes
of the solutions.

3.5.3 Lagrangian calculations

Here, we calculate the lowest-lying modes (ω) of the 1D self-trapped solutions using a
variational method [126, 27]. The Gaussian ansatz now has time-dependent variational
parameters:

ψ(x, y, z, t) = A(t)
∏

η=x,y,z
e
− (η−η0(t))2

2w2
η(t) eiηαη(t)eiη

2βη(t), (3.12)

where η0, wη, αη and βη are the variational parameters and A(t) = π−3/4/
√
wxwywz is

the normalization constant. Applying this ansatz one needs to calculate the following
Lagrangian density,
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The Lagrangian can be obtained by integrating the Lagrangian density as L =
∫
d3rL.

Following this the Euler-Lagrange equations for the variational parameters can be ob-
tained. Eliminating αη and βη can be done to obtain the relevant equations of motion for
the widths alone. We obtain the Lagrangian:
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where
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with Ṽd(k) the Fourier transform the dipole-dipole potential. Then, the equations of
motion for α(t) and β(t) are:

αη = m

~

(
η̇0 −

ẇηη0

wη

)
(3.16)

βη = mẇη
2~wη

(3.17)

with η ∈ {x, y, z} and the same for the condensate widths are
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The above equations describe the motion of a particle with coordinates wη in an effective
potential

U(Wη) = ~2

2m
∑
η
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η

+ 1
2mω

2
zw

2
z + g

(2π)3/2wxwywz
+ V (wη).

(3.21)
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Figure 3.12: The two lowest-lying decoupled modes with respect (a)α and (b)N are
depicted. The parameter values are same as Fig. 3.11.

The equilibrium widths of the condensate can also be obtained by minimizing the effective
potential besides the energy functional. The low lying modes are found from diagonal-
ization of the Hessian matrix of U . The centre of mass motion of the soliton along the z
axis is de-coupled from the width modes:

z̈0 = −ω2
zz0. (3.22)

and
ÿ0 = −ω2

yy0. (3.23)

For the parameters in Fig. 3.11, we calculate the two lowest lying modes with respect
to α and N . The results are shown in Fig. 3.12. Due to strong anisotropy of the solution
the width modes get decoupled into x and y modes i.e. they depict the oscillations along
x and y respectively without affecting each other. The larger width corresponds to lower
energy mode. Hence the lowest lying mode here corresponds to oscillations of wx while the
next higher mode corresponds to wy oscillations. In Fig. 3.12(a) for lower values of α, the
lowest lying mode is seen to become soft and tend to zero. This behaviour represents the
onset of expansion instability. Decrease in α results in lessened attraction and hence the
emergence of expansion instability. The value at which the expansion instability sets in is
independent of the number of atoms, rather it depends only on the ratio gd/g. Similarly,
in Fig. 3.12(b) we show the two lowest lying modes with respect to number of atoms N .
Here two different kinds of instabilities are apparent at extreme ends of the modes. When
N is decreased the interaction strengths decrease and self-trapping is lost which is shown
by the mode softening to zero. The solution is lost against expansion instability. At the
other end, when N is quite high a stronger attractive interaction ensues and drives the
system into collapse instability. Our system is focused on Chromium atoms because it is
weakly dipolar. The 1D self-trapping is not seen for strongly dipolar atoms like Er and
Dy from our calculations as they’re unstable against collapse. However, in such systems
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Figure 3.13: Two different kinds of self-trapped regions in quasi-2D Cr BEC in the
parameter space of α−a. The fixed parameters are ωz = 2π×800 Hz and ωy = 0.1ωz with
(a)N = 1000 and (b)N = 5000. EI and CI stand for expansion instability and collapse
instability respectively while 1D and 2D stand for 1D and 2D self-trapped solitons in a
quasi-2D scenario.

quantum fluctuations may play a bigger role [166, 110, 167] and it is beyond the scope
of the current chapter. In Chromium atoms the quantum fluctuations may be neglected
due to its weak dipolar nature.

All our new findings have been summarized in form of a phase diagram for Cr atomic
BEC with N = 1000 and N = 5000 atoms in Fig. 3.13(a) and (b) respectively. We show
the 1D self-trapping regions, the 2D soliton region bounded by expansion and collapse
instabilities on both sides. It is evident that 1D self-trapping is a prominent feature which
is obtained either in weak effective dipolar strength or with few number of atoms in the
condensate. Comparing Fig. 3.13(a) and (b), one can note that for higher N values the
stability region is narrowed as it effectively increases the dipolar interaction strength. For
a fixed α value closer to π/2 by varying the scattering length one may go from expansion
instability (EI)→ 1D self-trapped solution to → quasi-2D anisotropic soliton → collapse
instability (CI). Another important detail that comes out of the phase diagram is the
existence of stable 2D solitons even for a < 0. For negative contact interaction it is only
when the density as well as dipolar strength are sufficiently low.

3.5.4 Adiabatic preparation of solitons

Despite considerable theoretical advancements in studying the properties of quasi-2D
solitons [95, 96, 162], there has been no success in finding quasi-2D solitons in laboratory.
In this section we propose an experimental procedure to prepare quasi-2D solitons with
advantage of the tilting angle α in real time. Below we describe the procedure.
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Figure 3.14: Adiabatic preparation of soliton starting from weakly confined solution to
finally self-trapped soliton is shown in Cr BEC with N = 6000 and a = 9a0. The initial
weak confinement has ωx,y = 2π × 10Hz. Initial tilting angle αi = 1.22 and final tilting
angle αf = 1.32 rad and this tuning is done in 0.3s followed by the removal of trap in
0.5s in a linar fashion. In (a)-(c) density is shown for different time scales and in (d) the
width oscillations are shown with respect to time. After t > 0.8s self-trapping nature of
soliton is observed due to stable oscillations.

We consider an external shallow trap on the x − y plane with trapping frequencies
ωx,y = 2π× 10 Hz and ωz = 2π× 1 kHz. A Cr BEC of N = 6000 atoms is an ideal setup.
The condensate is initially prepared with αi = 1.22 radians and a = 9a0, such that the
condensate is in the S region of the phase diagram and there is no PI. The condensate
requires the x − y traps without which the cloud is unstable against expansion. In the
next step, keeping everything else fixed, the tilting angle α is adiabatically tuned to a
final value of αf = 1.32 radian. This brings the system into the PI region where a quasi-
2D soliton is stable, although we still have the traps. From Fig. 3.4(a) it can be easily
identified that αi and αf correspond to stable and PI regions respectively. Next, the trap
on the xy plane are removed adiabatically. It is essential that all the tuning of parameters
be done adiabatically so as to avoid any unnecessary excitations in the condensate. This
exact procedure was followed numerically and we present the widths of the final solution
with respect to time in Fig. 3.14(d). We observe stable oscillations of the condensate
widths even after removing the confinement. This signifies self-trapping in x − y plane.
The oscillations are a result of slight excitation of breathing mode as the wx and wy

oscillations are in-phase. The oscillations are stronger or suppressed depending on the
adiabaticity condition. A slower tuning results in a smaller amplitude of oscillation.
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The condition of adiabaticity in a system depends on the various time scales inherent
to the system dynamics [168]. We ensure the following condition,

Tω � T � Tµ (3.24)

where, Tω = max{1/ωB(α(t))} and Tµ = max{1/|µ2D(α(t))|} which are both instanta-
neous time dependent. Tω is the quantum mechanical linear adiabatic time scale. Our
adabatic time scale should be larger than this to avoid excitations of the breathing modes
of frequency ωB [169]. The Tµ is defined as the nonlinear time scale proportional to the
inverse of chemical potential of the system. However, in our case while α changes from
αi to αf the chemical potential also goes from a positive value to negative value respec-
tively. This means that the µ2D = 0 in between and hence Tµ → ∞. This reduces our
adiabaticity condition to simply Tω � T . In our case considered here, Tω ∼ 0.05s. The
soliton preparation involves two time scales, (i) for tuning α (ii) tuning ωx,y to zero, both
done linearly in time. We varied α in 0.3s from αi to αf and the trap is then removed in
a duration of 0.5s.

3.6 Conclusion

The substantial effect of tilting angle (α) on the physics on quasi-2D dipolar BEC is
studied in detail. We have characterized most of the relevant parameter space and shown
that inclusion of the tunable parameter α ensures a larger parameter regime for the
experimental exploration of the so far elusive quasi-2D solitons. The effect of tilting angle
results in solitons with controllable anisotropy. Moreover, we propose an experimental
sequence which allows for adiabatic preparation of anisotropic soliton without changing
interactions strengths, rather by simply tilting the polarisation direction in dipolar BEC
by an external polarising field. We study the stability of the solitons against collapse and
expansion instabilities. We discover a new class of solutions in quasi-2D scenario which
are self-trapped along only one direction. It was also found that stable quasi-2D solitons
are a possibility even with negative scattering lengths as long as the number of atoms are
small and the atoms are weakly dipolar. α also leads to anisotropic instability dynamics
resulting in stripe patterns in phonon and roton unstable regions. Whether the patterns
sport dislocation defects or not can be a signature of roton instability. The patterns due
to phonon instability eventually merge into forming ansiotropic solitons. Patterns due to
roton instability are transient stripes which may be sustained for longer if the system can
be driven back into stable roton regions.

Our study has been in the mean-field regime and most of them are realizable in weakly
dipolar systems like Cr. Recent developments in strongly dipolar Er and Dy atoms have
immense potential for exploring new physics in quasi-2D scenario.



Chapter 4

Periodically Driven Quasi-1D
Dipolar Bose-Einstein Condensates

Current chapter is adapted from an ongoing project. We primarily study the transfer of
excitation between multiple quasi-1D layers of BECs both for homogeneous and trapped
condensates. The layers are coupled via interlayer DDI. The nonlocal character of DDI
gives rise to transfer of excitation between different modes of the multi-layer system.
Additionally, the tilting angle of the dipole can change the nature of this interaction from
repulsive to attractive. We consider both homogeneous and trapped cases. In the former
case, Faraday pattern excitations are studied while in the later, we study the collective
excitations and mode-locking phenomena.

4.1 Introduction

Periodically driven systems have been at the forefront of research in wide areas of con-
densed matter systems, atomic and molecular, optical and classical nonlinear systems.
Applications of parametric oscillations have been successful in noise squeezing [170], gen-
erating squeezed light [171], enhanced detector sensitivity [172], and quantum information
[173, 174]. In case of BEC, periodic driving has been implemented both experimentally
[175–177] and theoretically by modulation of trap [178, 179], s-wave scattering [180–182]
or the dipolar strength [183]. Under homogeneous conditions, the focus is usually on the
formation self-bound structures [182, 184], stabilization [185], and generation of Faraday
waves [183, 186, 187], standing waves which were initially discovered in liquid enclosed
in a vibrating container. The broad motivation behind this is to study different pattern
formation in nonlinear systems and also to understand the stability or instabilities of a
system under periodic perturbation.

In trapped systems, the stability and nonlinearity is studied with the help of collective
excitations. Controlled development of the collective excitations and manipulation of

54



CHAPTER 4. PERIODICALLY DRIVEN Q1D DBEC 55

their amplitudes [175, 176, 188] may be achieved with parametric periodic driving and
they have been studied for simple BECs without dipolar interactions. Under certain
conditions mode-locking can be engineered in BECs which provides tremendous control
of the collective excitations or their de-excitation as well [148, 149].

We start by presenting the generalised governing equations for a multilayer quasi-1D
dipolar condensates, although we restrict our studies to bilayer systems. Using Bogoli-
ubov spectrum we identify various stability and instability regimes for a trapless bilayer
system. At this point periodic driving is introduced which induces Faraday patterns.
We briefly review and add to the previously studied Faraday patterns in a bilayer case
where both layers are parametrically modulated [189]. But our main focus is on the study
of a singly-modulated layer which shows intriguing dynamics. We observe emergence of
Faraday patterns even in unmodulated layer due to the interlayer DDI and under certain
modulation frequencies, interesting phenomena such as out of phase revival of Faraday
patterns are demonstrated in contrast to simultaneous appearance of patterns in both
layers. A complete analytic calculation has been formulated which well approximates the
linear regime of excitation. These studies have been made in the stable spectrum regions.
In the later half of the chapter we move on to trapped cases. Our goal is to capture
the transfer of mode-locking between layers facilitated purely due to DDI and the effect
of polarisation angle on the excitations transfer. As a surprising side-effect we detect
coupling between width and center of mass modes in multilayer configuration and study
the subsequent dynamics as well.

4.2 GPE for multilayer cigar-shaped BEC

Our study is generally focused on non-overlapping bilayer dipolar BECs in individual
cigar-shaped confinements. But we present a generalised theoretical equation for a multi-
layer system. The inter-layer separation ∆/l⊥ ≥ 5 at any time to avoid any overlapping or
atom exchange where l⊥ =

√
~/Mω⊥, ω⊥ is the trap frequency in the transverse direction

and M is the atomic mass. We have kept the interlayer distance at least 5
√

2 times larger
than the standard deviation of the condensate in each layer along the direction of the
separation. For comparison, three standard deviations along both sides from the mean of
the condensate contains 99.7% of the total density. The interlayer separation limit has
been determined keeping in mind a transverse Gaussian density width i.e. ∆ >> l⊥. This
can be modeled using the following nonlinear Gross-Pitaevskii equation(NLGPE). For a
jth layer:
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i~
∂

∂t
Ψj(r, t) =

[
− ~2

2M∇
2 + Mω2

⊥
2 (x2 + y2

j ) + g|Ψj(r, t)|2

+
N∑
m=1

∫
d3r′Ψ∗m(r′)Vd(r− r′)Ψm(r′)

]
Ψj(r, t) (4.1)

where g = 4π~2a/M is the short-range interaction parameter proportional to s-wave
scattering length a and Vd(r) is the dipole-dipole interaction(DDI), Vd(r) = gd(1 −
3 cos2 θ)/r3 where gd = µ0µ

2/4π for atomic BEC with dipole moment µ and θ is the
angle between dipole orientation and the interatomic distance. Under axially untrapped
condition we restrict ourselves to satisfy the quasi-1D(Q1D) condition where the reduced
chemical potential µ1D is much smaller than the transverse confinement energy ~ω⊥. Un-
der single mode approximation we obtain a reduced dimensional Q1D NLGPE for a jth

layer:

i~
∂

∂t
ψj(z, t) =

[
− ~2

2M
d2

dz2 + g

2πl2⊥
|ψj(z, t)|2

+ gd
3l2⊥

N∑
m=1

∫ dkz
2π e

izkznm(kz)Fm−j(kz)
]
ψj(z, t) (4.2)

nm(kz) is the Fourier transform of the probability density and N is the total number
of layers. The layers are separated along the y direction and the dipole vectors are
restricted to the x − y plane as shown in Fig. 4.1. Hence, the intralayer DDI forever
remains repulsive while the interlayer interaction becomes tunable from repulsive (α = 0)
to attractive (α = π/2) where α is the angle between the dipole vector and x axis. Below
we show the calculations for Fm−j(kz). First we rewrite Eq. (4.1) with the DDI Fourier
transformed,

i~
∂

∂t
Ψj(r, t) =

[
− ~2

2M∇
2 + Mω2

⊥
2 (x2 + y2) + g|Ψj(r, t)|2

+
N∑
m=1

∫ d3k

(2π)3 e
ir·knm(k)Vd(k)

]
Ψj(r, t) (4.3)

In the transverse direction we assume a Gaussian wave function owing to the tight har-

monic confinement of the form φj(x, y) = 1√
πl⊥

e
− x2

2l2⊥
−

y2
j

2l2⊥ such that Ψ(r) = φj(x, y)ψ(z, t)

and |ym− yj| = |m− j|δ. We multiply both sides of Eq. (4.3) with φ∗j(x, y) and integrate
over

∫
dx
∫
dy to obtain Eq. 4.2.

The general form of Fm−j(kz) is

Fm−j(kz) = 3l2⊥
gd

∫ k⊥dk⊥dθk
(2π)2 Vd(k)e−

k2
⊥l

2
⊥

2 −ik⊥ sin θk(m−j)δ
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Figure 4.1: Schematics a bilayer quasi-1D dipolar BEC along z direction. The movement
of dipole vector is restricted to the x − y plane and the layers are separated along y
direction by δ. The atoms in the layers are shown for angle α which is the angle between
dipole vector and x̂-axis.

where, kx = k⊥ cos θk and ky = k⊥ sin θk have been converted to cylindrical coordinates.
Vd(k) is the Fourier transform of Vd(r). Thus,

Vd(k) =
(4πgd

3

)(3k2
x cos2 α + 3kxky sin 2α + 3k2

y sin2 α

k2
x + k2

y + k2
z

− 1
)

Fm−j(kz) =
∫
dk⊥

k⊥l
2
⊥e
−
k2
⊥l

2
⊥

2

(k2
⊥ + k2

z)
[J0(|m− j|δ k⊥)(k2

⊥ − 2k2
z)

+3k2
⊥J2(|m− j|δ k⊥) cos 2α] (4.4)

=⇒ F0(kz) = 1− 3
2e
k2
z l

2
⊥

2 k2
z l

2
⊥Γ

[
0, k

2
z l

2
⊥

2

]

=⇒ F1(kz) =
∫
dk⊥

k⊥l
2
⊥e
−
k2
⊥l

2
⊥

2

(k2
⊥ + k2

z)
[J0(δ k⊥)(k2

⊥ − 2k2
z) + 3k2

⊥J2(δ k⊥) cos 2α]

It is easily noticeable that F0(kz), which represents intralayer DDI, is independent of α
as it should be. Only F1(kz) remains α dependent.

4.3 Bogoliubov dispersion relation

In this section we calculate the Bogoliubov excitation spectrum in order to identify the
stability and instabilities of the system. Consider an infinitely long homogeneous distribu-
tion with plane-wave like excitations ψj(z, t) = [

√
n+ uje

−i(zq−ωqt) + v∗j e
i(zq−ωqt)]e−iµ1Dt/~.

n is a constant homogeneous density, uj and v∗j are the Bogoliubov functions. Replac-
ing this solution in Eq. 4.2 the chemical potential is found out to be µ1D = gn/2πl2⊥ +
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Figure 4.2: (a) Bogoliubov excitations branches for a bilayer Q1D dipolar BEC repre-
senting stable (S), roton (R) and roton instability (RI) for g̃ = −0.09,−0.106 and −0.116
respectively at g̃d = 0.1, α = 1.2 rad and δ = 6l⊥. The solid curves represent the sym-
metric lower energy branch and the dashed curves stand for the asymmetric branch. (b)
S, R, RI and phonon instability (PI) domains have been identified in the α − g̃ domain
for g̃d = 0.1 and δ/l⊥ = 6.

gdn[F0(0) + F1(0)]/3l⊥. Applying standard Bogoliubov analysis [189] multiple branches
of excitation emerge owing to the coupling between the layers. The dispersion relation
can be obtained by solving the following set of equations emerging from the calculations,

−~ωquj = ~2q2

2M uj + gn

2πl2⊥
(uj + vj) + gdn

3l2⊥
∑N
m=1 Fm−j(q)(um + vm) (4.5)

~ωqvj = ~2q2

2M vj + gn

2πl2⊥
(uj + vj) + gdn

3l2⊥
∑N
m=1 Fm−j(q)(um + vm) (4.6)

For the simplest case of a bilayer system we have [189],

ε(q)± = ~ωq,± =

√√√√~2q2

2M

[
~2q2

2M + 2 gn

2πl2⊥
+ 2gdn

3l2⊥
(F0(q)± F1(q))

]
(4.7)

corresponding to the symmetric and anti-symmetric excitation branches. Along with the
usual short range parameter g and dipolar parameter gd, in a bilayer system we have
two additional meaningful quantities α, the tilting angle of the dipole vector and δ, the
interlayer separation. Due to anisotropic nature of the DDI, at α = π/2, the interlayer
interaction achieves the maximum magnitude for a fixed δ. Here, the dipoles are oriented
along y, hence the interlayer interaction is attractive. As α is decreased, the magnitude
and attractive nature of this interaction is reduced gradually. After a minimum value,
the magnitude of the interaction increases again, however the nature of the interaction
becomes repulsive. At α = 0 the layers obtain maximum repulsion.
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The phonon modes for each branch can be obtained when ε(q → 0)± = ~q√µ±/M ,
where µ± = gn/2πl2⊥+ gdn[F0(0)±F1(0)]/3l⊥. When µ± becomes negative, the spectrum
acquires imaginary component and the phonon modes become unstable. Hence µ± < 0
gives the phonon instability (PI) condition. The simplified expressions for F0(0) = 1 and
F1(0) is,

F1(0) = e
−
δ2

2

1 + cos 2α
δ2

6

e
δ2

2 − 1

− 3δ2


 (4.8)

which is purely δ and α dependent only.
Strictly under Q1D condition we plot the dispersion relation of Eq. 4.7 in Fig. 4.2(a).

For a set certain parameters there exists two branches corresponding to the symmetric
and anti-symmetric component. When both the branch curves are purely real and mono-
tonically increasing with respect to momentum it is stable (S) spectrum. If at least one of
the branches show a purely real and non-monotonic behaviour such that the curve attains
a minimum for a nonzero-finite value of q, we have a roton(R) spectrum. The rotonic
branch may become soft and for a non-zero finite momentum the spectrum may become
purely imaginary. This is called roton instability (RI). If such an instability occurs at
zero momentum instead, the spectrum becomes phonon unstable (PI). When the inter-
layer coupling is attractive, as is the case in Fig. 4.2(a) at α = π/2, the symmetric branch
(solid curves) of the dispersion relation has the lowest energy and is the deciding factor of
system stability. Changes in the parameters barely affect the asymmetric branch (dashed
curves), especially in low momentum regime. The stable curves have been obtained for
small magnitude of negative g. Once g becomes more negative, the symmetric branch
acquires a rotonic character and eventually becomes roton unstable for fixed gd, α and
δ. Further increment in magnitude of attractive contact interaction results in phonon
instability (not shown).

These four domains have been characterized together in the α − g̃ parameter space
for a fixed value of g̃d = 0.1 and δ/l⊥ = 6 in Fig. 4.2(b) where dimensionless quantities
g̃(g̃d) = gn/2π~ω⊥l2⊥(gdn/2π~ω⊥l2⊥) have been defined. Keeping α fixed one may go from
S → R → RI → PI simply by making g̃ more and more negative. For g̃ >≈ −0.1
the system is always stable and for g̃ <≈ −0.21 the system is always phonon unstable.
The intermediate regions are R and RI. The RI is substantially large compared to R.
Interestingly, the PI-RI and RI-R boundaries show non-monotonic behaviour with respect
to α. The reason is due to anisotropic nature of the interlayer DDI. When α is close to π/2
the symmetric branch is the lowest branch and characterizes the stability and instability
criteria. However, when α is close to 0 the asymmetric branch has lower energy due to
interlayer repulsion and instability criteria is mediated by it. Hence, in the intermediate
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region for a range of α values a crossing between the two branches occur where the
interlayer interaction also becomes weak. This behaviour is reflected in the necessity of a
stronger attractive contact interaction for inducing RI or PI.

To satisfy non-overlapping condition δ/l⊥ must be greater than equal to 5. For δ/l⊥ >
6 the DDI starts to become weak for our study. While it is possible to observe R and
RI domains for higher magnitudes of g and gd it drives the system out of Q1D and out
of scope of our current study. From now on while applying external modulation we shall
restrict the system to the purely stable regimes (S or R) only.

4.4 Faraday Patterns in Homogeneous Gas

In this section we introduce parametric driving and the resulting Faraday patterns in
a homogeneous multilayer Q1D dipolar BEC. Faraday waves were briefly discussed in
2.3.1. In classical fluids external driving can lead to formation of standing waves on the
fluid interface and coupling between the nonlinear waves generates patterns with different
symmetries e.g. stripes, squares, hexagonal etc [141, 190–192]. Hence, Faraday patterns
have proven to be a tool to explore nonlinear properties of the system. This motivates
the study of Faraday patterns in a controllable nonlinear system like dipolar BEC. Here,
we shall study the Faraday pattern in a bilayer system and the phenomenon of transfer of
patterns formation. We look at the resonant momentum associated with these patterns
and discover interesting dynamics when the parametric modulation is restricted to only
one layer.

4.4.1 Doubly modulated bilayer system

We first consider the simple case of a bilayer system (N = 2) where both layers are para-
metrically modulated under the periodic driving of the s-wave scattering length. This can
be done exploiting the Feshbach resonance [43] where periodically varying the external
magnetic field will change the scattering length. The short-range interaction is modulated
as g(t) = ḡ[1 + 2γ cos(2ωt)] where ḡ is the mean value. We consider a temporally modu-

lated solution to Eq. 4.2 of the form ψj(z, t) =
√
ne
− iµ1D

~ (t+ γḡn

2πl2⊥µ1D
) sin 2ωt

ω [1 +Wj(t) cos(z ·
kz)] where γ is the strength of modulation, ω is the modulation frequency and Wj(t) =
uj(t)+ ivj(t) is the complex perturbation amplitude and µ1D = ḡn

2πl2⊥
+ gd

3l2⊥
[F0(0)+F1(0)].

This can be replaced in the Eq. (4.2) and then we segregate the real and imaginary com-
ponents. Note that we always neglect higher order terms in W (t). Real and imaginary
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components give,

~
duj
dt

= ~2k2
z

2m vj

−~dvj
dt

= ~2k2
z

2m uj + 2ḡn
2πl2⊥

uj + 2γḡn
πl2⊥

cos(2ωt)uj + 2gd
3l2⊥

∑
m

Fm−j(kz)um

Eliminating vj for each layer and adding/subtracting the second order differential equa-
tions we reduce to a symmetric and antisymmetric Matheiu equation format.

d2u±
dt2

+ 1
~2

[
ε(kz)2

± + ~2k2
z

2m
2γḡn
πl2⊥

cos 2ωt
]
u± = 0 (4.9)

where, u± = u1 ± u2. Let us define b(ω, γ) = ~2k2
z

2m
γḡn

πl2⊥(~ω)2 . By working with weak
driving, we are able to linearize and obtain the Mathieu equation.

Floquet theory

Floquet theory is a powerful technique to handle periodically varying systems. The Flo-
quet theorem can be applied to first order differential equations of the type ẏ = A(t)y
where A(t+T ) = A(t). In our case, solutions to Matheiu equations have the form eiσ±tf(t)
where f(t + π/ω) = f(t) according to Floquet theorem. We are interested in whether
the solution is bounded or not. If the Floquet exponent σ has negative(positive) imagi-
nary component, the solution is unstable and grows(decays) exponentially. This leads to
emergence of Faraday patterns. The analytic expression for σ is given by,

σ± = i

π
cos−1

[(
1− b4π2

32q2(1− q2)2

)
cos qπ

+
(
− b2π

4q(1− q2) + 15q4 − 35q2 + 8
64q3(1− q2)3(4− q2)b

4π

)
sin qπ

]
(4.10)

where q = ε(kz)2
±/(~ω)2. Mostly the studies are restricted to the lowest resonance

ε(kz)± = ~ω, thereby we’re interested in σ1
±. However, for rotonic dispersion relation

we shall need to consider the higher resonances i.e. ε(kz)± = n~ω i.e at least the second
band of quasi-energy level σ2

±,where n is an integer. The need for consideration of higher
resonances occur solely because of the nonlocal nature of the DDI which introduces non-
trivial kz dependence in σ±. The selection of the resonant momentum will correspond to
the maximization of Im(σ±) for instability.

Results

In our system due to the existence of two branches, for any modulation frequency ω, there
will be potentially two resonant momenta kaz and ksz in the S region, where kaz corresponds
to the asymmetric branch and ks to the symmetric branch. By solving Eq. (4.9) for the
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Figure 4.3: The Bogoliubov branches and most unstable mode(red) under external pertur-
bation. (a)-(c) correspond to g modulation and (d)-(f) correspond to gd modulation. (a)
In S region for g̃ = −0.09, the symmetric branch is the most unstable mode (b)-(c) In R
region for g̃ = −0.106 and −0.108 respectively, due to existence of roton the most unstable
mode has discontinuities. (d) A switch between the most unstable modes is demonstrated
for g̃ = −0.09 at critical frequency ωc. (e)-(f) The ωc > ωmaxon here for g̃ = −0.106
and −0.108 respectively. When ω < ωc the most unstable mode shows complex selection
rules due to existence of roton. However, the behaviour is markedly different for g and gd
modulation. The system parameters are (g̃d, α, δ/lρ, γ) = (0.1, π/2, 6, 0.04).

Floquet exponent, the most unstable momentum is found to correspond to the Bogoliubov
branch which has larger imaginary component of σ±. Evidently, when symmetric branch
has lower energy i.e. the interlayer interaction is attractive Im[σ(ksz)+] > Im[σ(kaz )−] and
vice versa. This behaviour is shown in Fig. 4.3(a) where, α = π/2, ¯̃g = −0.09, g̃d = 0.1
and δ = 6l⊥.

In contrast, in the ’R’ region for ¯̃g = −0.106 with all other parameters being the
same, where the symmetric branch acquires a rotonic character, potentially there are
four resonant momenta(kaz < ksz,1 < ksz,2 < ksz,3) if the modulation frequency satisfies
ωroton < ω < ωmaxon. ωroton/maxon has been identified in Fig. 4.3(b). ka corresponds to
momentum resonant with the anti-symmetric branch and ksz,i(i ∈ (1, 2, 3)) corresponds to
the three resonant momenta from the symmetric branch. Again with the help of Eq. (4.9)
we solve for the most unstable momentum for different modulation frequencies when g̃

is being modulated. The resulting picture is depicted in Fig 4.3(b) and (c). We observe
that the most unstable momentum corresponds to ε(kz)+ = n~ω for some integer value
of n for which ε(kz)+ > ωroton.

The dynamics becomes nontrivial when gd(t) = ḡd[1 + 2γ cos(2ωt)] is modulated in-
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stead. The Mathieu equation is modified as,

d2u±
dt2

+ 1
~2

[
ε(kz)2

± + ~2k2
z

2m
2γḡdn

3l2⊥
[F0(kz) + F1(kz)] cos 2ωt

]
u± = 0 (4.11)

In S region a switch between the symmetric and anti-symmetric branch selection is ob-
served at a critical modulation frequency [189] as shown in Fig. 4.3(d) with all other
parameters remaining constant as (a). It gives rise to correlated and anti-correlated pat-
terns depending on the modulation frequency. This behaviour is shown irrespective of
whether the interlayer interaction is attractive or repulsive i.e. such a behaviour is also
obtained when interlayer DDI is repulsive at α = 0 with all other parameters unchanged.
In Fig. 4.3(d) when the ksz is selected from symmetric branch for lower ω values, corre-
lated patterns of size ∼ 2π/ksz is observed in both layers. Beyond a critical modulation
frequency when kaz becomes the resonant momentum, the patterns in the two layers also
become anti-symmetric and the size of the patterns are ∼ 2π/ka.

In R region, similar to the S region, we observe a switch between the branches at a
critical modulation frequency. This is observed to lie above ωmaxon seen in Fig. 4.3(e)(f).
When modulation frequency ωroton < ω < ωmaxon, the most unstable momenta is found
to be the middle ksz,2. For ω < ωroton, generally the resonances occur for some min(n),
where n > 1 is an integer, such that n~ω > ~ωroton while k2

s continues to remain the most
unstable mode corresponding to n~ω. However a small exception to this is observed in
shallow rotonic spectra where n = 1 and the most unstable momentum is k1

s as can be
seen in Fig. 4.3(e). Basically, the most unstable momentum does not have a monotonic
increment with increment in modulation frequency. A discontinuity in most unstable
momentum with respect to ω is translated to a discontinuity in pattern sizes when ω is
varied as pattern sizes are inversely proportional to the resonant momentum. In other
words, the size of patterns do not continuously vary for different values of modulation
frequency, rather at certain frequency we see a sudden jump in the pattern sizes [119].
This is an excellent visual signature of roton in a system. For extremely small modulation
frequencies the patterns often correspond to small resonant momenta and hence are large
in size. The patterns also take longer time to emerge in low modulation frequency regime.

4.4.2 Singly modulated bilayer system: An analytic study

Parametric modulation of a single layer (shown schematically in Fig. 4.4(a)) is fundamen-
tally different from modulation of both layers. In the absence of DDI, the two layers behave
independently. However, presence of interlayer DDI ensures modulation of a single layer
influences the second layer. In fact, real-time dynamics reveal a transfer of the Faraday
patterns from the modulated layer to the unmodulated layer with a time lag dependent on
the interlayer separation. We begin with two different ansatz to describe the system where
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g(t) = ḡ[1 + 2γ cos(2ωt)] is parametrically modulated in one layer which requires submi-
cron control of interatomic interaction [193]. For the modulated and unmodulated layer

we consider solutions of the form, ψ1(z, t) =
√
ne
− iµ1D

~ (t+ γḡn

2πl2⊥µ1D
) sin 2ωt

ω [1+W1(t) cos(z ·kz)]
and ψ2(z, t) =

√
ne−

iµ1Dt
~ [1 + W2(t) cos(z · kz)] respectively. Replacing them in Eq. 4.2

and simplifying we obtain a set of coupled equations,

~2d
2u1

dt2
+ ε(kz)2u1 + 2gdn

3l2⊥
~2k2

z

2m F1(kz)u2 + 2γḡn
πl2⊥

~2k2
z

2m cos(2ωt)u1 = 0 (4.12)

~2d
2u2

dt2
+ ε(kz)2u2 + 2gdn

3l2⊥
~2k2

z

2m F1(kz)u1 = 0 (4.13)

where ε(kz) = ε(kz)±|F1(kz)→0| is the single layer dispersion relation. Unlike the doubly
modulated bilayer case, the equations cannot be decoupled into the form of Mathieu
equations. Instead we reformulate the equations in the form of forced harmonic oscillators.

We, first, scale the set of equations with the tight transverse trap parameter such
that t̃ = ω⊥t, ε̃(kz) = ε(kz)/~ω⊥ and g̃(g̃d) = gn/2π~ω⊥l2⊥(gdn/2π~ω⊥l2⊥). We introduce
post-scaling variables P(kz) = 2πg̃dk2

z

3 F1(kz) representing the coupling, F(kz) = −2γ|˜̄g|k2
z ,

the driving and define ωD = 2ω, ω2
+ = ε(kz)2 + P(kz) and ω2

− = ε(kz)2 − P(kz) for
mathematical simplification. Removing the tilde and after simple algebra from Eq. 4.12
and 4.13 we get,

ü+ + ω2
+u+ = F

2 cos(ωDt)(u+ + u−) (4.14)

ü− + ω2
−u− = F

2 cos(ωDt)(u+ + u−) (4.15)

where u± = u1 ± u2. This set of differential equation has solutions of the form,
 u+

u−

 =
∑
n

ei(nωD+σ)

 H+
n

H−n

 (4.16)

Replacing Eq. 4.16 in Eq. 4.14 & 4.15 leads to two recursion relations which can be
written together as [194],

DnHn +M(Hn−1 +Hn+1) = 0 (4.17)

where,

Dn =
 ω2

+ − (nωD + σ)2 0
0 ω2

− − (nωD + σ)2


M =

 −F/4 −F/4
−F/4 −F/4
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Figure 4.4: (a) Schematic diagram of a bilayer singly modulated system. The separation
between the layers is δ and the dipole orientation is restricted to the x − y plane while
the quasi-1D axis is along z-axis. Here, only Layer 1 is modulated. (b) The spectrum
in ’S’ region shown for a set of parameters (g̃, g̃d, α, δ/l⊥) = (−0.09, 0.1, π/2, 6). The
dots indicate the most unstable resonant momenta found by solving Eq. 4.21 when g̃d is
modulated in Layer 1. In the gray region, a resonance is observed for momentum kzl⊥
corresponding to (ω+ + ω−)/2ω⊥, unseen in doubly modulated bilayer system.

The Eq. (4.17) can be written in an infinite dimensional matrix form. Since the
parametric drive only couples the nearest neighbour Fourier components i.e. between
Hn and Hn±1, without loss of generality we can focus on n = 0 case. This reduces the
infinite dimensional matrix to a 4×4 minor whose 8 roots for σ can be found by imposing
the condition that its determinant must vanish. From Eq. 4.16 it is clear to see that
the stability criteria rests on whether σ is real or complex. We expect stable oscillatory
solution if σ takes real values only and exponentially growing/decaying solution if σ has
imaginary component.

∣∣∣∣∣∣∣∣∣∣∣∣

ω2
+ − (σ − ωD)2 0 −F/4 −F/4

0 ω2
− − (σ − ωD)2 −F/4 −F/4

−F/4 −F/4 ω2
+ − σ2 0

−F/4 −F/4 0 ω2
− − σ2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.18)

The relevant resonances occur at ω = ω+, (ω+ +ω−)/2, |ω+−ω−|/2 and ω− where Faraday
instabilities arise for our system. Numerically solving for σ allows us to identify the most
unstable resonance point and the corresponding momentum associated with the size of
the Faraday patterns. It is found that the most unstable momentum corresponds to ω+

i.e. the symmetric branch as long as g is modulated.
However, the situation is quite different when gd(t) = ḡd[1+2γ cos(2ωt)] is modulated.
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Figure 4.5: Linear instability regions in the kz−γ plane have been shown for three different
modulation frequencies; each with most unstable momenta lying in different excitation
branches. The density shows the magnitude of Im(σ). (a) It has three unstable tongues
corresponding to ω−, (ω+ + ω−)/2 and ω+ branches from left to right respectively out of
which the last one contains the most unstable momentum for each γ. (b) The left unstable
tongue correspond to ω− and the most unstable tongue(right) belongs to the (ω+ +ω−)/2
branch. (c) The most unstable tongue here corresponds to ω− branch. The unstable
tongues for other branches lie beyond kzl⊥ = 0.5, not shown in plot. The parameter
values are same as used in Fig. 4.4(b).

We start by probing the existence of any sudden jumps in the most unstable resonant
conditions with respect to modulation frequency, an effect reminiscent of the doubly
modulated bilayer case in the ’S’ region [189]. Surprisingly, we observe two jumps for the
singly modulated bilayer system in contrast to only one observed for a doubly modulated
bilayer system. A first switch occurs when ω− changes to (ω+ + ω−)/2 mode and a
subsequent one between (ω+ + ω−)/2 and ω+. This new resonance at (ω+ + ω−)/2 gives
rise to distinctly different oscillation dynamics between the layers than when only the two
natural modes(ω+orω−) are selected. The modified coupled equations with gd takes the
form,

ü+ + ω2
+u+ = cos(ωDt)

(F+

2 u+ + F−2 u−

)
(4.19)

ü− + ω2
−u− = cos(ωDt)

(F+

2 u+ + F−2 u−

)
(4.20)

where, F± = −4πgd
3 γk2

z(F0(kz)±F1(kz)). The analogous expression for Eq. 4.18 becomes,

∣∣∣∣∣∣∣∣∣∣∣∣

ω2
+ − (σ − ωD)2 0 −F+/4 −F−/4

0 ω2
− − (σ − ωD)2 −F+/4 −F−/4

−F+/4 −F−/4 ω2
+ − σ2 0

−F+/4 −F−/4 0 ω2
− − σ2

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.21)
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Figure 4.6: (a) Faraday patterns emerging in the unmodulated layer 2(top) spatially
symmetric to layer 1(bottom), modulated with ω/ω⊥ = 0.06 at tω⊥ = 4400. (b) The
most unstable momentum peaks for both layers at kzl⊥ ≈ 0.33. (c) The dynamic standard
deviation σs shows in-phase growth. The periodicity of σs is locked to ω/ω⊥ = Re(σ) =
0.06. γ = 0.04 for all subfigures.

4.4.3 Singly modulated bilayer system: A numerical study

In this section we simulate the singly modulated bilayer system using real time evolution
and go through the different types of dynamics categorically. From Fig. 4.4(b) we pick
three modulation frequencies ω = 0.06, 0.09 and 0.12 such that their resonant momenta
potentially covers ω+, (ω+ + ω−)/2 and ω− branches.

For modulation frequency ω = 0.06 we obtain spatially symmetric Faraday pat-
terns(correlated) in both layers demonstrated in 4.6(a). The most unstable resonant
momenta is ≈ 0.24 (4.6(b)) corresponding to the symmetric branch demonstrated in Fig.
4.5(a). At this point the only relevant root σ = 0.06 ± 0.0018i for a γ = 0.04 signifies
that both u+ and u− have the same rate of parametric amplification with an oscillating
frequency same as the modulation frequency ω. This behaviour is manifested in the lay-
ers such that they have in-phase dynamic oscillation and equal growth rate. It has been
captured by calculating the dynamic standard deviation σs(t) =

√
〈|ψ|4〉 − 〈|ψ|2〉2 for

both layers shown in Fig. 4.6(c). Therefore the Faraday patterns in both layers undergo
periodic revivals mimicking a transient time-crystal until the pattern is destroyed due to
heating.

Faraday patterns emerging at modulation frequency ω = 0.12(Fig. 4.7) have also
similar properties except the spatial patterns in both layers have spatially anti-symmetric
(or, anti-correlated) pattern owing to unstable momenta selected from ω− branch of the
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Figure 4.7: (a) Anti-symmetric patterns arising at modulation frequency ω/ω⊥ = 0.12 at
tω⊥ = 4604. (b) The most unstable momentum for both layers at the same time as (a)
resonant at kzl⊥ ≈ 0.55. (c) The periodicity of σs is ω/ω⊥ = Re(σ) = 0.12 and both layers
are found to oscillate and grow in-phase similar to 4.6(c). γ = 0.04 for all subfigures.

spectrum in Fig. 4.4(b). The amplitude growth occurs at a rate Im(σ) = 0.0016 in Fig.
4.7(c). The size of the patterns are evidently smallers for ω/ω⊥ = 0.12 (Fig. 4.7(a))
compared to ω/ω⊥ = 0.06. Our calculations are suitable for oscillations lying in the linear
regime. For longer time scales when σs/l⊥ > 0.14, continuous driving gives rise to high
amplitude growth driving the system into nonlinear regime. Nontrivial high density waves
arise due to emergence of multiple unstable momenta in this region which leads to a quick
death of the patterns.

The most interesting characteristics are displayed by the intermediate range of modu-
lation frequencies shown in Fig. 4.4(b). Numerical evidence presents that at a fixed time,
density patterns in one layer is dominant while it is dormant in the other. This excita-
tion is periodically transferred between the layers back and forth. Temporal snapshots
are presented in 4.8(a)-(b). At tω⊥ ≈ 2316, the patterns are dominant in the unmod-
ulated layer (Fig. 4.8(b)). The frequency space response at the same time, shown in
Fig. 4.8(c). In fact, the Fourier space of the spatial patterns in Fig. 4.8(a) reveal that
the most unstable momenta corresponds to the mode (ω+ + ω−)/2 and not with the Bo-
goliubov modes(ω+ or ω−) of the bilayer system, as is the case with doubly-modulated
case. However, weak contributions from Bogoliubov modes are also observed under this
conditions, even in smaller timescales visible in Fig. 4.8(c). The opposite is observed at a
slightly later time tω⊥ ≈ 2788 in Fig. 4.8(b). In the dormant layer we observe a messier
but a much weaker pattern due to the existence of multiple contributing frequencies e.g.



CHAPTER 4. PERIODICALLY DRIVEN Q1D DBEC 69

-150 -100 -50  0  50  100  150 -150 -100 -50  0  50  100  150
 0.92

 1

 1.06

 0.85

 1

 1.2

 0

 3

 6

 9

-1 -0.5  0  0.5  1
 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0  8  16  24  32

Layer 1

Layer 2

Layer 1

Layer 2

(a) (b)

(c) (d)

Figure 4.8: Dominant Faraday patterns in the unmodulated (a) and the modulated (b)
layers shown at different temporal snapshots at tω⊥ ≈ 2316 and 2788 respectively. (b)
Most unstable momentum peak is at kzl⊥ ≈ 0.45 shown at tω⊥ ≈ 2316. (c) Out-of-phase
oscillations of the standard deviations of the amplitudes are shown for both the layers. It
signifies dynamic energy transfer where interestingly the two relevant roots σ1 and σ2 of
Eq. (4.21) have the property Re(σ1) 6= Re(σ2) 6= ω/ω⊥.

at tω⊥ ≈ 2316 multiple modes are weakly populated in as shown in Fig. 4.8(c). The
periodic exchange of excitation, a product of interlayer dipole-dipole interaction, is best
captured by the time-dependent standard deviation of amplitudes of both layers (Fig.
4.8(d)). Solving Eq. 4.21 gives two, in contrast to one, relevant roots for ω/ω⊥ = 0.09
at σ1 ≈ 0.067 ± 0.0018i and σ2 ≈ 0.11 ± 0.0018i. The most important fact to be noted
here is Re(σ1) 6= Re(σ2) 6= ω/ω⊥. This is remarkable because the difference in Re(σ1)
and Re(σ2) negates possibility of dynamically in-phase oscillations, unlike what is shown
in the previous two cases. This leads to alternate revival of the patterns in the two layers
or in other words, exchange of energy back and forth. However, equal magnitude of the
imaginary components of the two roots signify that the rate of amplitude growth is same
(Fig. 4.8(d)) but early contributions from multiple unstable frequencies drives the system
into nonlinear regime faster in such a scenario.

In Fig.4.9, we have shown the dynamics of the layers close to the switching boundary
values. (a)-(b) depict dynamics just below and above the switching boundaries respec-
tively between ω+ and (ω+ + ω−)/2 and (c)-(d) for the boundary between (ω+ + ω−)/2
and ω−. A clear difference can be seen in terms of whether both layers show simultaneous
pattern or if there is collapse and revival behaviour showing pattern is active in only one
layer at a time.
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Figure 4.9: (a) and (b) show σs plot with respect to time just below and above the
switching boundary between ω+ and (ω+ + ω−)/2 modes. (c) and (d) show the dynamics
just below and above the switching boundary between (ω+ +ω−)/2 and ω− modes. While
(a) and (d) show in-phase growth in amplitude, (b) and (c), corresponding to (ω+ +ω−)/2
mode, show amplitude transfer between the layers. Parameters are same as Fig. 4.4 with
γ = 0.04.

4.4.4 Effect of tilting angle

Our results so far have been for an α = π/2. In this subsection we show the effect of the
tilting angle. The tuning of the polarisation angle α brings a change in the Bogoliubov
spectrum as the interlayer interaction can be changed from attractive (α = π/2) to
repulsive (α = 0). The interlayer interaction F1(kz) is plotted in Fig. 4.10(b) inset with
respect to kz for contrasting α = 0 (purple, top), α = 0.5 (orange, middle) and α = π/2
(yellow, bottom). For α = 0 rad, F1 is purely positive and the interaction is repulsive
between the layers. For α = π/2, interlayer interaction is purely negative and is reflected
in the negative values of F1(kz) for any kz. For the intermediate α = 0.5 rad, F1(kz)
becomes zero for some value of kz ≈ 0.45 and its overall magnitude remains close to zero
for most kz values. From this we can conclude that around α = 0.5, interlayer interaction
changes sign and its nature of interaction.

At α = 0 rad, due to strong repulsive interlayer interaction the anti-symmetric branch
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Figure 4.10: Solid curves in (a)-(c) depicts the Bogoliubov spectrum for α = 0, 0.6
and π/2 rad respectively. The dots obtained by solving Eq. (4.21) represent the
most unstable modes under gd modulation. The common parameters are (g̃, g̃d, δ, γ) =
(−0.05, 0.1, 4, 0.04). In (b) the function F1(kzl⊥) has been plotted for the above three α.
The gray area shows the region where the most unstable mode corresponds to (ω+ +ω−)/2
mode.

of the Bogoliubov spectrum acquires a lower energy than the symmetric branch. In Fig.
4.10(a) we observe the two switches in the most unstable mode (green dots). This is similar
to what has been described so far except the symmetric and anti-symmetric branches are
flipped. Also since branches are close to each other, the region in which (ω+ + ω−)/2
becomes the most unstable mode is quite thin, shown in gray area in the figure. As
polarisation angle changes from 0 rad, the interlayer repulsion gradually decreases. The
magnitude of the interlayer interaction is also weakened. At α = 0.5 rad, the two branches
become quasi-degenerate, a trait which is also observed when interlayer separation δ/l⊥
is large. At kzl⊥ ≈ 0.45 the two branches cross each other or in other words, they’re
exactly degenerate, shown in Fig. 4.10(b). This point exactly coincides with when F1(kz)
is exactly zero for α = 0.6 shown in the inset. Hence, the degeneracy is a consequence of
vanishing interlayer interaction. The most unstable mode lies in the asymmetric branch
for any modulation frequency and no switches are observed. If frequency modulation
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is done for ω ≈ 0.095ω⊥ which corresponds to resonant momentum kz ≈ 0.45, due to
vanishing interlayer interaction the excitation transfer is weak and the unmodulated layer
has lesser growth amplitude than the modulated layer at any given time. The transfer will
not be completely halted as the system parameters are modulated around the mean value
of the parameter for which the particular dispersion relation is valid. Next, for attractive
interlayer interaction as is the case in Fig. 4.10(c) the symmetric branch acquires lower
energy. This spectrum has been already discussed previously and shown here for contrast.

Keeping α = π/2 if we change the value of g̃ to more negative, we enter the R region
[Fig. 4.10(d)]. Here the behaviour of most unstable mode is different than what was
obtained for a doubly-modulated bilayer case. For example, when ω < ωroton the most
unstable mode for doubly-modulated system correspond to nω such that ωroton < nω <

ωmaxon and the most unstable momenta is ksz,2 corresponding to the symmetric branch.
This means n > 1. In contrast, for a singly modulated case, n = 1 or in other words
for a modulation frequency ω < ωroton, most unstable mode remains unaffected by the
existence of rotonic character. For modulation frequency ω > ωmaxon the usual switches
are retrieved from ω+ to (ω+ + ω−)/2 and then to ω−. However, for the intermediate
values of modulation frequency in the gray region (ωroton < ω < ωmaxon), ksz,2 are selected
as the most unstable momenta, similar to the doubly-modulated scenario.

So far our studies have focused on bilayer systems. Study of more than two layers
is also bound to make the dynamical transfer of excitations a more interesting process.
Concluding the basic understanding of a homogeneous bilayer system, we now move on
to a trapped system.

4.5 Trapped BEC: Lagrangian Equations of Motion

A different aspect of external perturbation to the system can be observed in trapped
condensates. The system under weak external forcing develops collective excitations and
we aim to study the controlled excitations of these frequencies and their manipulation.
With the addition of a harmonic confinement of frequency ωz = λω⊥ along the z direction,
Eq. (4.2) for jth layer is,

i~
∂

∂t
ψj(z, t) =

[
− ~2

2M
d2

dz2 + M

2 λ2z2 + g

2πl2⊥
|ψj(z, t)|2

+ gd
3l2⊥

N∑
m=1

∫ dkz
2π e

izkznm(kz)Fm−j(kz)
]
ψj(z, t) (4.22)

Unlike the homogeneous case, the parametric modulation considered here is with a chirped
frequency. Chirping introduces mode-locking in the system [148, 149] which remains
unexplored for the case of dipolar BEC. An analytic study of quasi 1D BEC layers under
chirped modulation is carried out. We write the Lagrangian density for describing the
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system assuming we have Gaussian wave functions where the widths and their center of
masses are some of the variational parameters. We solve for the Euler-Lagrange equations
of motion for the variational parameters after obtaining the Lagrangian L =

∫
dzL. These

dynamic equations allow further study regarding mode-locking under chirped condition
as we discuss below in details. For the jth layer:

Lj = i~
2

(
ψj
∂ψ∗j
∂t
− ψ∗j

∂ψj
∂t

)
+ ~2

2M |∂zψj|
2 + Mλ2z2

2 |ψj|2 + g

4πl2⊥
|ψj|4

+
∑
m

gd
6l2⊥
|ψj|2

∫ dkz
2π e

izkznm(kz)Fm−j(kz) (4.23)

where the Gaussian variational ansatz is,

ψj = 1
π

1
4

√
Wj(t)

exp
[
−(z − zj(t))2

2Wj(t)2 + izαj(t) + iz2βj(t)2
]

(4.24)

where the variational parameters are Wj, zj, αj and βj. zj(t) is the time-dependent center
of mass of the solution. Please note that to faithfully describe the dynamics of the
system using this variational ansatz under periodic perturbation, there should not be
local excitations or density modulations arising in the condensate i.e. the macroscopic
shape of should adhere to that of a Gaussian ansatz qualitatively. After integration, we
obtain a simplified Lagrangian,

Lj =
[
~
2(W 2

j β̇j + 2z2
j β̇j + 2zjα̇j)

]
+
[
~2

2M

(
1

2W 2
j

+ 2W 2
j β

2
j + α2

j + 4zjαjβj + 4z2
jβ

2
j

)]

+Mλ2

4 (W 2
j + 2z2

j ) + g

4πl2⊥
1√

2πWj

+ gd
6l2⊥

∑
m

∫ dkz
2π nm(kz)nj(kz)Fm−j(kz) (4.25)

The variational parameters αj and βj may be eliminated by transformation Lj → Lj−
dGj
dt

.
Solving the equations of motion for αj and βj simultaneously gives,

αj = M

~

(
żj −

zjẆj

Wj

)

βj = M

~
Ẇj

2Wj

For a Gj =
~βjW 2

j

2 + ~(αjzj + βjz
2
j ) the transformed Lagrangian becomes,
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Lj = M

2

(
~2

2M2W 2
j

−
Ẇ 2
j

2

)
−
Mż2

j

2 + Mλ2

4 (W 2
j + 2z2

j ) + g√
2π4πl2⊥Wj

+ V (Wj, zj,Wm, zm)

(4.26)

where V (Wj, zj,Wm, zm) = gd
6l2⊥

∑
m

∫ dkz
2π nm(kz)nj(kz)Fm−j(kz). We obtain the Euler-

Lagrange equations for the width and the center of mass,

MẄj = ~2

MW 3
j

+ 2g
4πl2⊥

(
1√

2πW 2
j

)
−Mλ2Wj − 2∂V (Wj, zj,Wm, zm)

∂Wj

(4.27)

Mz̈j = −Mλ2zj −
∂V (Wj, zj,Wm, zm)

∂zj
(4.28)

An interesting result comes into light in the form of coupling between the center of
mass and width dynamics of multi-layer dipolar BECs. This is not seen for a single layer
as the center of mass term gets eliminated. The last terms in Eq. (4.27) and (4.28) are
the dipolar coupling terms and we expect to see new dynamics as a result which will be
studied in later sections.

4.6 Mode-locking

We have come across mode-locking already in 2.3.2 in introductory chapter. A BEC,
parametrically modulated with chirped frequency, gets collectively excited at a steep rate
when the modulation frequency equals its natural mode frequency. Once mode-locked, the
system continues to oscillate at the natural frequency even after the modulation frequency
has crossed the resonance window. Below we aim to capture the physics analytically. We
start from the equation of motion we calculated in the previous section. We eventually are
able to construct a Hamiltonian which mimics a particle in an effective potential whose
ground state corresponds to the condition for mode-locking.

4.6.1 Single Layer: An analytic study

We study the simplistic case of a single layer of quasi-1D dipolar BEC parametrically
modulated with a chirped frequency as g(t) = g(1 +γ sin ∆t2/2). The equation of motion
in Eq. (4.27) is modified as,

MẄ = ~2

MW 3 + 2g(t)
4πl2⊥

(
1√

2πW 2

)
−Mλ2W − 2∂V (W )

∂Wj

(4.29)
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Linearization under the assumption that the width oscillates around equilibrium value
W̄ by a small amount ε gives the following equations,

Mε̈+
[

3~2

MW̄ 4
+ g

π
√

2πl2⊥W̄ 3
+Mλ2 + V ′(W̄ )

]
ε = 2gγ

4πl2⊥
1√

2πW̄ 2
sin ∆t2/2

=⇒ ε̈+ ω2
0ε = 2gγ

4πml2⊥
1√

2πW̄ 2
sin ∆t2/2(4.30)

where,

V ′(W ) = gd
6l2⊥

∫ dkz
2π k

2
zW̄n(kz)2Fm−j(kz)

ω0 =
[

3~2

M2W̄ 4
+ g

πM
√

2πl2⊥W̄ 3
+ λ2 + V ′(W̄ )

M

]1/2

(4.31)

Here, ω0 is clearly the system’s natural frequency. And the right hand side of Eq. (4.30)
refers to the external forcing. For the following calculations we follow the procedure in
[148] which is solved for the case of a forced non-dipolar BEC and [195] which is for classical
nonlinear systems. We assume a solution of the type ε = a(t) sinφ(t) = a(t)Im[eiφ(t)] where
a(t)2 = I can be defined as the action variable. At resonance φ̇(t) = ω0 and we assume
φ̈(t) ≈ 0. We shall restrict our study near the resonance which captures the essential
physics. Replacing the guess solution in Eq. (4.30),

2iȧφ̇+ iaφ̈− aφ̇2 + ω2
0a = 2gγ

4πml2⊥
1√

2πW̄ 2
e
i

(
∆t2
2 −φ(t)

)

Separating real and imaginary parts,

ω0 − φ̇ = 2gγ
4πMl2⊥

1
a(t)
√

2πW̄ 2
cos

(
∆t2
2 − φ

)
(4.32)

d(a2φ̇)
dt

= 2gγ
4πMl2⊥

a(t)√
2πW̄ 2

sin
(

∆t2
2 − φ

)
(4.33)

The phase mismatch Φ(t) = ∆t2
2 − φ can be defined as the angle variable. The above

equations can be recast in form of action-angle variables as,

Φ̇(t) = ∆t− ω0 + 2gγ
4πMl2⊥

1√
2πI(t)W̄ 2

cos Φ (4.34)

İ(t) = 2gγ
4πMl2⊥

√
I(t)

√
2πW̄ 2

sin Φ (4.35)
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To uphold the mode-locking condition at resonance(t = ω0/∆) there should not be any
change in the phase mismatch i.e. Φ̇ = 0. This is possible when Φ = 0 or π. To obtain
an intuitive picture we can formulate an effective Hamiltonian from the perturbations of
the action-angle variables. If the energy for the Hamiltonian is minimised for the specific
values of Φ = π the system will prefer to stay mode-locked (We ignore Φ = 0 case because
eventually it can be seen that energy is maximised in this case). Let I = I0 + δI and
Φ = Φ0 + δΦ. Under mode-locked condition we would expect δΦ = 0 as the modulation
frequency and . Replacing in the above equations we get,

˙δΦ = δI S

δ̇I = −A sin δΦ + ∆
S

where, S = 2gγ
4πMl2⊥

1
I3/2
√

2πW̄ 2 and A = 2gγ
4πMl2⊥

√
I(t)√

2πW̄ 2 . The corresponding Hamiltonian be-
comes,

H = SδI2

2 − A cos δΦ− ∆
S
δΦ (4.36)

depicting a particle of mass 1/S moving in a pseudo-potential −A cos δΦ − ∆
S
δΦ. This

potential has a minimum for δΦ = 0 and this corresponds to the condition for mode-
locking as we predicted. An extensive calculations for multi-layer systems is a future goal
which is nontrivial as it involves multiple coupled equations and needs appropriate guess
solutions.

4.6.2 Single Layer: Numerical results

Before we show the transfer of mode-locked excitation between layers, we briefly review
results showing mode-locking in a single layer in order to understand and characterize
its properties. Mode-locking is an excellent technique to identify and excite natural fre-
quencies of the system in a controlled fashion. This can be achieved in either trapped
condensates or self-bound soliton solutions. Solitons are stable only for very weak modu-
lation strength, so we focus on stable trapped cases. However note that extremely strong
modulations may give rise to local density patterns, eventually breaking the BEC even
for trapped cases. We strive for a balanced perturbation where we observe mode-locking
without inducing local density fluctuations. Mode-locking in BEC is a long time dynam-
ics, surviving without heating up. This is a result of the system not absorbing more energy
from the modulation once mode-locking has been achieved. The amplitude of oscillations
remain constant after resonance condition is achieved and the BEC undergoes a breath-
ing mode. In case of higher dimensional condensates, where there are multiple natural
frequencies (breathing mode, quadrupole mode etc), it is possible to excite each mode
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Figure 4.11: Mode-locking in a single quasi-1D dipolar BEC layer is shown. (a) We vary
∆ and plot σs(width) with respect to time. It is observed that for a lower value of ∆ the
system takes longer to mode-lock for a fixed γ = 0.2. Interestingly, a slower chirping is also
accompanied by a larger mode-locked amplitude. This is because the system is allowed
to spend more time around the resonance. (b) For a constant ∆ = 0.0025, we vary the
strength of modulation. Clearly a stronger modulation results in higher energy transfer
and higher amplitude. (c) We plot the standard deviation of σs(t), which gives us the
averaged maximum amplitude. As already mentioned, a slower chirping rate shows higher
amplitude for any γ. All plots have been obtained for (g̃, g̃d, α, λ) = (0.05, 0.1, π/2, 0.3).

one by one when the external frequency is adiabatically swept through the spectrum via
chirping. For instance, in a quasi-2D dipolar BEC where the condensate is anisotropic in
the 2D plane due to a tilted dipole vector as discussed thoroughly in previous chapter,
one can easily observe excitation of quadrupole mode via mode-locking.

In Fig. 4.11, we characterize the basic properties shown by a mode-locked BEC. A
dynamic variation in Fig. 4.11(a) shows the width of the condensate with respect to
time for two different value of the parameter ∆, the chirping rate. When ∆t2/2 < ω0,
both the natural and driving frequencies exist in the system with comparable strength.
However in the resonance window ∆t2/2 ≈ ω0, massive energy transfer occurs from the
driving to the natural frequency such that ω0 becomes dominant in the post-resonance
period. The system is less affected by frequencies ∆t2/2 >> ω0. This is reflected in
the small fluctuations in σs in small time period after mode-locking has been achieved,
while the fluctuations are suppressed in long time period. The energy transfer mechanism
is strongly dependent on the time spent in the small resonance window. To achieve a
larger energy transfer it is vital that ∆ must be small. Fig. 4.11(b) characterizes the
comparative effect of different driving strengths on the mode-locking. It is easy to see
that a stronger driving will be able to pump more energy into the system which in turn
results in a higher amplitude of collective mode oscillation for the condensate. A very
strong amplitude, however, may result in an ineffective mode-locking and inevitable loss
of the condensate.
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4.6.3 Bilayer: Numerical Results

Expansion and propagation of collective modes in multilayer condensates are one of the
least explored topics in dipolar BEC. Although there have been many studies regarding
the anisotropic effect of DDI, impact of its long-range nature has been undervalued [196–
198]. In this section we study the resonant energy transfer between two quasi-1D dipolar
BEC layers where we show the transfer of mode-locked wave back and forth, possible due
to long-range dipolar interaction between them.
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Figure 4.12: Mode-locking in a singly-modulated(Layer 1) bilayer quasi-1D dipolar BEC
layer. Layer 1 gets mode-locked to its natural frequency (which is verified by a simple
Fourier transform of the σs(t)) first. However due to interlayer coupling this energy is
slowly transferred to the unmodulated Layer 2 which also gets mode-locked to natural
frequency. As the separation between the layers increase, the interlayer DDI lessens.
The resulting rate of energy transfer decreases as shown in (a)-(b). All plots have been
obtained for (g̃, g̃d, α, λ, γ,∆) = (0.05, 0.1, π/2, 0.3, 0.2, 0.002).

We again restrict our dipole vector to the x − y plane as done for the homogeneous
case. We first consider the case where α = π/2 and the interlayer interaction is attractive.
This provides a stronger interaction than α = 0 case due to the inherent anisotropy of
the DDI term.

After the onset of frequency chirping, mode-locking takes place at the natural fre-
quency. Once mode-locking has been achieved, a smooth and continuous energy transfer
takes place between the two layers while the maximum amplitude remains equal and fixed
between the layers. Changing the separation between the layers manifests in the change
in rate of energy transfer demonstrated in Fig. 4.12. The closer the layers, the faster is
the energy transfer between the layers and vice versa. Usually a faster energy transfer
between the layers also means an inefficient energy transfer. However for δ/l⊥ > 5 the
rate of transfer is already quite slow. Please note that, although higher harmonics maybe
excited when both layers are modulated, it is usually suppressed when only one layer is
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Figure 4.13: Mode-locking in a singly-modulated(Layer 1) bilayer quasi-1D dipolar BEC
layer. From (a)-(c), we have shown the energy transfer from Layer 1 to Layer 2 for
various α. At α = 0 the interlayer interaction is repulsive and at α = π/2 the interlayer
interaction is attractive. The interaction changes from positive to negative as α goes from
0 to π/2. (d) The frequency response of (c) showing the mode-locked frequency for both
layers. All plots have been obtained for (g̃, g̃d, δ/l⊥, λ, γ,∆) = (0.05, 0.1, 6, 0.3, 0.2, 0.002).

pumped.

4.6.4 Effect of tilting angle

The angle α is another tunable parameter in the system. Fig. 4.13(a)-(d) shows transfer of
mode-locking between two layers for a series of tilting angle α = 0, 0.6 and π/2 rad. This
changes the interlayer interaction from repulsive (positive value) to attractive (negative
value) gradually. In the intermediate region when interlayer DDI is close to zero, the layers
interact only weakly even if the interlayer separation is not large. Under this condition the
transfer of mode-locking is suppressed as seen in Fig. 4.13(b). A representative frequency
space plot in Fig. 4.13(d) confirms that both layers are oscillating locked to a single
frequency giving a sustainable energy transfer process.

If interlayer interaction is purely attractive for α = π/2, the mode-locking maybe
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destroyed easily compared to the purely repulsive α = 0 case when δ is small even though
the condensates are non-overlapping. In the later case mode-locking can be lost if the
driving amplitude is very high, similar to the single layer case. In that case, the condensate
starts to develop density patterns due to excitation of multiple frequencies. Mode-locking
allows us to excite the low lying modes in a controllable fashion as we have multiple
tunable parameters such as the strength of modulations, chirping rate, δ etc.

4.7 Center of Mass Oscillations

So far we have covered the collective excitation of width modes. We observed transfer of
mode-locking phenomenon due to DDI. Here, we briefly take up the study of excitation
of the center of mass. Propagation of center of mass mode has been previously studied
regarding multilayer dipolar condensates [198]. However, here we not only study the
propagation of the excitation between the layers but also between different modes.

In case of a single layer BEC, the width and center of mass modes decouple from each
other. However, a coupling between the modes is retained once multilayer configuration
is considered as already calculated in section 4.5 Eq. (4.27) and Eq. (4.28). It was
hinted earlier that it leads to interesting dynamics; here, we discuss and demonstrate
the behaviour of these excitations under external modulation. Strikingly, we observe the
transfer of energy between center of mass and width modes due to the existing coupling
between the modes arising due to dipole-dipole interaction. The modulation is now done
with a constant frequency instead of a chirped frequency.

Unlike the interlayer coupling of width modes, coupling between width and center of
mass (c.o.m.) mode is extremely weak. Modulation of the usual parameters g or gd as it
has been done so far fails to amplify the transfer of excitation. Modulating g, gd or even
trap frequency ωz leads to emergence of width modes such as breathing mode and the
center of mass remains negligibly affected. Instead of expecting to observe any substantial
transfer of energy from width modes to c.o.m. mode, we try to modulate the trap center
in order to first excite the center of mass and expect energy transfer from c.o.m. mode
to width modes. This turns out to be a successful endeavor. We consider periodically
modulated trap 1

2mω
2
z(z − z0(t))2, where the center z0(t) = γ cosωt is time-dependent.

This results in the vibration of the potential minimum for the condensate, hence the
periodic shift in the c.o.m. of the condensate. The natural mode of c.o.m. is ≈ ωz when
ωz is strong compared to contact and dipolar interactions.

4.7.1 Excitation transfer between c.o.m. and width modes

Numerical analysis of the bilayer case with modulation of trap center reveals excitation
of width modes along with the usual c.o.m. excitation thanks to the nontrivial DDI
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Figure 4.14: We modulated Layer 1 by periodically changing the trap center and ob-
serve the dynamics of excited modes. (a) Center of mass oscillations of both layers with
respect to time. The amplitude gradually increases as we modulated at ω = ωz. (b)
The width of the layers described by σs shows a collapse and revival behaviour with
time signifying energy exchange between center of mass and width modes. The width
oscillations are in-phase here. We compare various temporal snapshots of the density
distributions of the two layers with their tω⊥ = 0 state in (c)-(d). We observe clear
change in center of mass in (c)-(d). At large time scales due to continuous pumping, the
system starts to develop density defects. So we have shown the dynamics till tω⊥ < 600.
Here (g̃, g̃d, α, δ/l⊥, λ, γ,∆) = (0.05, 0.1, π/2, 6, 0.3, 0.1, 0.3). In (e) and (f) we show the
center of mass and width oscillations respectively for only the unmodulated Layer 2.
Here (g̃, g̃d, δ/l⊥, λ, γ,∆) = (0.05, 0.1, 6, 0.3, 0.1, 0.3). At α = 0.6 the transfer is heavily
suppressed because of extremely weak interlayer DDI.
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coupling. The width mode excitations are induced by transfer of excitation energy from
c.o.m. mode. The energy transfer is very weak such that the interlayer separation has to
be quite less to see significant energy transfer. To maximize the interlayer interaction, we
fix α = π/2. We modulate only one layer (Layer 1) as done previously. The parametric
values are such that the unmodulated system is in stable region.

In Fig. 4.14 we depict the c.o.m. and width dynamics of both modulated and unmod-
ulated layer. The c.o.m. of the unmodulated layer starts oscillating almost immediately
and the excitation of Layer 1 and 2 are shown in Fig. 4.14(a). In Fig. 4.14(b) the
width oscillations are gradually seen to grow and show a collapse-revival pattern which
is a signature of energy transfer between the c.o.m. modes and width modes. The width
oscillations in both layers have similar growth rate and they oscillate in-phase. The
condensate densities at initial time tω⊥ = 0 and at a later time are compared in Fig.
4.14(c)-(d). At large time scales, the condensate densities develop local patterns and the
oscillations are no more purely collective so the dynamics shown here are restricted to
tω⊥ < 600.

The major difference in c.o.m. oscillations and the width oscillations are in their
amplitude. The c.o.m. oscillations show an almost monotonic growth with time when
modulation frequency ω = ωz [Fig. 4.14(a)]. The c.o.m. amplitude of Layer 1 is much
larger compared to the c.o.m. amplitude of Layer 2 due to weak transfer of energy. The
amplitude of width oscillations are even weaker. For lower values of δ/l⊥ this can be
substantially improved.

4.8 Conclusion

Periodic modulation of various systems has been at the forefront of research for decades
now. Nonlinear systems often do not behave predictably under periodic modulations,
providing key insight into the system’s properties. Bose-Einstein condensates provide a
coherent system to analyse such nonlinear properties and acts as a simulator for many
classical and quantum systems of interest. Morever, dipolar BEC with tunable polariza-
tion angle provides extreme controllability. In the first part of the chapter, a homogeneous
condensate develops Faraday patterns and we present a detailed analysis in a bilayer sys-
tem where the pattern shows nontrivial dynamics. In the second half, the concept of
mode-locking has been introduced for a trapped condensate and the transfer of excita-
tions between two layers is shown. We characterize the effect of polarization angle as
it may change the nature of interlayer interaction from repulsive to attractive and af-
fect the transfer of excitation. We demonstrate numerically the energy transfer between
the center of mass and width modes in a bilayer system due to interlayer DDI. Ongoing
work includes further analytic calculation to characterise the behaviour of bilayer trapped
systems when only a single layer is modulated.



Chapter 5

Self-bound Doubly-Dipolar
Bose-Einstein Condensates

Current chapter is an adaptation of the research article "Self-Bound Doubly Dipolar Bose-
Einstein Condensates" [199]. In this article, a doubly-dipolar BEC is explored for the first
time along with the necessary LHY correction. For Dysprosium atom, droplet solutions
have been shown to undergo a dimensional crossover in tune with the angle between the
two dipole moments i.e. the magnetic dipole moment and the induced electric dipole
moment.

5.1 Introduction

Despite the success of Bose-Einstein condensates in magnetic dipolar atoms, it cannot be
ignored that BEC of electric dipolar polar molecules are yet to be achieved although ultra-
cold polar molecules have been established as promising systems for exploring quantum
chemistry [200] and many-body physics [201]. This has encouraged search for magnetic
dipole moment in ultracold polar molecules giving rise to a complex doubly dipolar system
[202, 203] for studying trapping, collision and chemical reactions. Recently a long-lived
fermionic polar molecule with magnetic dipole moment has been observed to sustain for
a long time of 4.6 sec [203]. The exact opposite scenario i.e. inducing electric dipole
moment in traditional magnetic dipolar Dysprosium atoms is a newer proposal by [42].
Since atomic setups are traditionally more feasible for realization of dipolar BEC, it can be
potentially extrapolated to doubly dipolar atoms as well. The doubly dipolar interaction
enriches the anisotropy and parametric control of the system and opens up potentially
new research paths.

In this chapter we begin by briefly reviewing how a doubly dipolar Dy atom maybe
engineered followed by a thorough analysis of the resulting in doubly dipole-dipole in-
teraction (DDDI). This potential displays rich, yet highly controllable, anisotropy that is

83
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Figure 5.1: Relevant electronic structure of Dy atom. We work with quasi-degenerate
|a〉 and |b〉 levels. One may reach |a〉 by spontaneous transition from a high-lying even
parity state which can be initially reached via two-photon transition from the ground
state |G〉. It’s also possible to Raman transition from |G〉 to |b〉 via 4f 106s6p(J = 9) or
4f 95d26s(J = 8) states.

drastically different than that of a single DDI. The effect of DDDI on the currently relevant
topic of quantum droplets is probed next. After introducing quantum droplets, which are
traditionally cigar-shaped in singly dipolar BECs, we discover a transition to pancake-
shaped droplets in presence of doubly dipolar BEC. This structural transformation can
be carried out by tuning the angle (α) between the magnetic and electric dipole moments
which are individually controlled by a magnetic and an electric field respectively. Further
we prove that not only a structural transition, but also it is a dimensional crossover. We
determine the dimensions of the droplet by showing that a cigar-shaped droplet changes
only axially on a linear scale, a feature characteristic to quasi-1D solutions, with respect
to the number of atoms in the droplet while a pancake-shaped droplet changes radially
with square root dependence which is of quasi-2D nature.

Typically a dimensional crossover of a condensate can be facilitated by changing the
confinement geometry [204]. In lower dimensions, the tightly trapped direction remains
in the ground state of the confinement and the degrees of freedom decouple from other
direction(s). However, in the absence of trap this is a completely different and remarkable
scenario. Here, a self-bound solution undergoes dimensional crossover purely enabled by
internal interactions alone. We conclude the chapter with a brief note on trapped solutions
of DDDI BEC with the extended GPE.
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Figure 5.2: The probability of finding state |S〉 in states other than |Ma = −10〉 is
found to be quite small such that the maximum ∑′

i |ci|2/|c0|2 ≈ 0.0116. The plot is for
B = 100G and electric field E = 2.68kV/cm with respect to the angle, α, between the
magnetic and electric dipoles. In the right side we show a schematic displaying the angles
involved in calculations.

5.1.1 Doubly-dipolar Dysprosium Atoms

We discuss the preparation of a doubly-dipolar Dy atom [42] and lay down a suitable
parameter regime for further studies which is also experimentally viable. Dy atom has
a permanent magnetic dipole moment (≈ 10µB) [34] which is approximately an order of
magnitude higher than alkali atoms. Among other strongly magnetic atoms where BEC
has been achieved, Dy continues to have the strongest magnetic dipolar interaction. In
[42], it has been calculated that Dy is a candidate for inducing electric dipole moment
as well. This is done by considering a pair of opposite parity states |a〉, |b〉 with energies
Ea, Eb very close to each other respectively. In presence of magnetic field, the two energy
levels Ea and Eb divide into Zeeman sub-levels and on application of external electric
field, these sub-levels of opposite parities are allowed to couple which induces an electric
dipole moment via the transition dipole moment.

The energy levels considered are Ea = 17513.33cm−1 and Eb = 17514.5cm−1 for |a〉 =
[Xe]4f 106s6p and |b〉 = [Xe]4f 105d6s with total angular momentum Ja = 10 and Jb = 9
respectively shown in Fig. 5.1. This pair of states have a high transition dipole moment
of 8.16D. A uniform magnetic field Bẑ is considered to be the quantization axis and it
splits |a〉 into 2Ja + 1(= 21) states |Ma = −Ja〉, ..., |Ma = Ja〉 and |b〉 into 2Jb + 1(= 19)
states |Mb = −Jb〉, ..., |Mb = Jb〉. Now an external electric field is applied E û such that
ẑ.û = cosα. This mixes the Zeeman sublevels of |a〉 and |b〉 among each other. For α = 0,
only |Ma = −9〉, ..., |Ma = 9〉 states can get mixed with |Mb = −9〉, ..., |Mb = 9〉 due to
selection rule. However, once the quantization axis symmetry is broken by introducing
nonzero angle between the external fields, the state |Ma〉 = −10 is weakly coupled to
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Figure 5.3: (a) Eigenvalues of the atom-field Hamiltonian with respect to magnetic
field and zero electric field. At B = 0, we observe two quasi-degenerate energy levels Ea
and Eb. In presence of magnetic field their Zeeman sublevels are split. For very high
magnetic fields, the energy levels overlap but due to opposite parity any interaction is
impossible. (b) The lowest 21 energy levels have been shown with respect to the angle
between the magnetic(B = 100G) and electric field(E = 2.68kV/cm). (c) The electric
dipole moment of all sublevels have been plotted with respect to electric field strengths
for B = 100G and α = 0. The relevant |Ma〉 = −10 state doesn’t have induced electric
dipole moment(EDM) in this case. (d) But once α is varied (for the same parameters
as (b)), we observe induced EDM gradually increases and reaches a maximum when the
external fields are perpendicular to each other for the lowest energy state. The dashed
curve represents the lowest energy state |Ma〉 = −10 in all subfigures.

other states such that the lowest eigenstate becomes |S〉 = c0|Ma = −10〉+∑′
i ci|i〉. This

provides us with an ideal scenario of exploring induced electric dipole moment (EDM)
in our systems as long as ∑′i |ci|2/|c0|2 � 1 where the sum is over all the remaining 39
sub-levels. The Hamiltonian is,

Ĥ = Ea
Ja∑

Ma=−Ja
|Ma〉〈Ma|+ Eb

Jb∑
Mb=−Jb

|Mb〉〈Mb|+ µBB(gaMa + gbMb) + Ĥstark (5.1)

where, ga = 1.3 and gb = 1.32 are the Landé g factors. The last term represents the
Stark Hamiltonian which captures the electric field-atom interaction,
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〈Ma|Ĥstark|Mb〉 = −
√

4π
3(2Ja + 1)〈a||d̂||b〉E × Y

∗
1,Ma−Mb

(α, 0)CJaMa
JbMb,1,Ma−Mb

(5.2)

where, 〈a||d̂||b〉 is the reduced transition dipole moment with a value 8.16D, Yl,m(θ, φ)
are the spherical harmonics and the Cs are Clebsch-Gordan coefficients. The eigenvalues
of the Hamiltonian has been plotted in Fig. 5.3(a-b) with respect to magnetic field and the
angle α respectively for the experimentally viable [205, 206] fields B = 100 G and E = 2.68
kV/cm. The contributions to the state |S〉 from the |Mb〉 predominantly determines the
lifetime which is calculated as

τ =
∑
i=a,b

Γi
Ji∑

Mi=−Ji
|cMi
|2
−1

(5.3)

as the natural linewidths are Γa ≈ 0 and Γb = 2.98× 104s−1. The lifetime is shown in the
inset of 5.5(a) which is found to be a function of angle α as well.

The magnetic and electric dipole moments of Dy atom in |S〉 is calculated as,

dm = −µB

ga Ja∑
Ma=−Ja

|cMa|2Ma + gb

Jb∑
Mb=−Jb

|cMb
|2Mb

 (5.4)

de = − 1
E

∑
Ma,Mb

c∗Ma
cMb
〈Ma|Ĥstark|Mb〉+ c.c. (5.5)

The permanent magnetic dipole moment (MDM) of an atom in |S〉 is dm = dmẑ

(dm ≈ 13µB), and the induced EDM is de = deû. Note that d̂m is even higher than the
current value of 10µB for Dy. In Fig. 5.3(c) and (d), we show the dipole moments as a
function of electric field and α respectively. The field values are taken same as Fig. 5.3(a)
and (b).

5.1.2 Doubly dipole potential

Having understood how to engineer a doubly dipolar Dy atom, we shall probe the resulting
DDDI which is rich in its anisotropic profile. For a Dy atoms we assume the MDM (d̂m)
is always aligned along ẑ and the EDM (d̂e) is along û which is a unit vector lying in the
x− z plane. In this scenario the DDDI, Vd(r), is always repulsive along ŷ.

Vd(r) = gm
r3 (1− 3 cos2 θm) + ge

r3 (1− 3 cos2 θe) (5.6)

where gm = µ0d
2
m/4π and ge = d2

e/4πε0 are the magnetic and electric dipolar interaction
strengths respectively. r is the inter-atomic distance and θm(θe) are the angle between the
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dipole vector and r. We define γ = ge/gm. Fig. 5.4 show the 2D xz potential [V y=0
d (r)] as a

function of α and γ. It becomes purely attractive [Figs. 5.4(d),(g),(h)& (l)] when α > αa

but remains anisotropic except when α = π/2 and γ = 1 [Fig. 5.4(h)]. The angle αa
separates the regime of the purely attractive xz potential (α > αa) and an anisotropic xz
potential exhibiting both repulsive and attractive lobes. The attractive and repulsive lobes
in the potential are separated by two intersecting straight lines satisfying V y=0

d (r, θ) = 0,
see Fig. 5.4(a)-(c). Writing the equation for these straight lines as z = m±x, where the
slopes m± can be found from the condition V y=0

d (r, θ) = 0 as,

m± = −
3γ sin 2α±

√
2(4− γ + 4γ2 + 9γ cos 2α)

4 + γ + 3γ cos 2α

When the xz potential becomes purely attractive the two lines merges into one, i.e.,
m+ = m−, and we obtain

αa = 1
2 cos−1

[
γ − 4(1 + γ2)

9γ

]
(5.7)

For the previously discussed fixed magnetic field (B = 100G) and electric field (E =
2.68kV/cm) values we show the magnetic and electric dipole moments and the ratio
between the strengths of the interactions (γ = ge/gm) with respect to α in Fig. 5.5(a).
The lifetime of such a state decreases with increase in α due to higher level of mixing
between previously discussed |a〉 and |b〉 states. We identify an effective polarization axis,
depicted by grey arrows [Fig. 5.4], along the direction in which the atoms are maximally
attractive and is determined by an angle

θp(α, γ) = cos−1
[

1√
2

√
1 + 1 + γ cos 2α√

1 + γ2 + 2γ cos 2α

]
, (5.8)

with the +ve z-axis. It is obtained by minimizing V y=0
d (r, θ) w.r.t. θ and exhibits a

monotonous behaviour as a function of α for γ ≥ 1. For γ < 1, θp obtains a maximum,
θmaxp = cos−1

√
1
2 [1 +

√
1− γ2], at α = 1

2 cos−1(−γ) before decreasing back to zero at
α = π/2. A linear relation, θp = α/2 holds for γ = 1 [see Fig. 5.5(b)]. When α = π/2
and γ = 1, we have isotropic interaction, V y=0

d (r) = −1/r3 and θp is not uniquely defined
due to the radial symmetry in the xz-plane. As a consequence, θp changes abruptly from
zero to π/2 across γ = 1 for α = π/2 [Fig. 5.5(b)].

5.2 Homogeneous DDBEC

We consider a gas of N bosons of massM with both electric and magnetic dipole moment,
which are polarized, respectively, by an external electric and magnetic field, which form
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Figure 5.4: Shown here are the anisotropic interactions V y=0
d (r) for two dipoles in the

x − z plane for various {α, γ} combinations. In (d) and (l) we show the cases when
m+ = m− and the dashed lines correspond to the vanishing of the repulsive lobe i.e.
αa = π/2 for γ = 0.5 and γ = 1. For γ < 1, (a)-(d) shows θp attaining a maximum
before falling back to zero again while for γ > 1,(i)-(l) shows a nonlinear and monotonous
increase in θp.

an angle α between them. At very low temperatures, the system is described in mean
field, by a nonlocal Gross-Pitaevskii equation (NLGPE): i~ψ̇(r, t) = Hψ(r, t), where

H = −~
2∇2

2M +
∫
d3r′ψ(r′, t)V (r − r′)ψ(r′, t) (5.9)

where V (r) = gδ(r) + Vd(r) is the interaction potential. The parameter g = 4π~2asN/M

determines the contact interaction strength, with as being the s-wave scattering length.
Here, gm = Nµ0d

2
m/4π and ge = Nd2

e/4πε0 as we are now dealing with N atoms.
The dispersion law of elementary excitations of a uniform DDBEC with density n0 is

εk =

√√√√~2k2

2M

(
~2k2

2M + 2gmn0 [β + F(θk, φk, α)]
)

(5.10)
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(g) (h)

Figure 5.5: (a) The dipole moments dm and de of a Dy atom in the stretched state
|S〉 as a function of α for B = 100 G and E = 2.68 kV/cm. With these field strengths
the maximum values of dm and de attained are 13µB and 0.12 Debye respectively. The
solid line shows the ratio γ = ge/gm. The inset shows the lifetime (in s) of the state
|S〉. The 2D potential, V y=0

d (r) (in arbitrary units), taking dm and de from (a) for (b)
α = 0, (c) α = 1 rad, α = 1.3 rad and α = π/2 rad. For α > αa = 1.239 rad, V y=0

d (r)
is purely attractive, see (d) and (e). The thick arrow shows the effective polarization
direction. (f) Polarization angle θp vs α for different γ; the inset shows θp as a function
of γ for α = π/2. (g) Orientation of the electric and magnetic dipoles and an effective
polarization have been shown. The cones display the volume of attractive DDI. Both type
of DDIs are equally strong with an angle α between them. (h) Here α = π/2 and the
effective polarization axis lies along the axis (z-axis) of the strongest dipole strength. In
case of equally strong polarization, such an axis is undefined.
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(a) (b)

Figure 5.6: (a) and (b) depict regions in momentum space where ε2
k < 0 for γ = 1 and

β = 4π/3.

where β = g/gm and

F(θk, φk, α) = 4πγ
3

[
3 (cosα cos θk + sinα sin θk cosφk)2 − 1

]
+4π

3 (3 cos2 θk − 1). (5.11)

with θk and φk the angular coordinates in momentum space. The long-wavelength exci-
tations (phonons) are: εk→0 = c(θk, φk)~k with the angle-dependent sound velocity (Fig.
5.7)

c(θk, φk) = [gmn0 (β + F(θk, φk, α)) /M ]1/2 . (5.12)

The hard phonons propagate along the effective polarization axis whereas the softer ones
propagate in a perpendicular direction. The phonons along the y-axis are always softer
which sets the stability criteria for the condensate c2(π/2, π/2) = gmn0

M

[
β − 4π

3 (1 + γ)
]
>

0. Thus, a homogeneous DDBEC becomes unstable against local collapses if β < 4π
3 (1+γ).

Though, the instability criteria is independent of α, the unstable modes and the post-
instability dynamics depends significantly on it as evident from Fig. 5.6(a)-(b). The
dominant contribution of unstable momenta changes drastically from kx − ky plane for
α = 0 to only ky in α = π/2 case. This remarkable transition in anisotropic direction
dependence manifests in the post-instability dynamics of the condensate as shown later
in the paper.

5.2.1 Quantum fluctuations

The above discussion regarding instabilities is insufficient unless one considered the newly
discovered effects of beyond mean-field effects. Although there had been a theoretical
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Figure 5.7: The sound velocity function c(θ, φ) plotted for arbitrary value of β = 20
with respect to θ and φ for various (α, γ) combinations. Always the minimum lies along
θ = π/2 while the function varies along φ depending on the configuration. If there exists
a minimum along φ axis, it is found at π/2 and 3π/2 symmetrically. So the stability
condition c(π/2, π/2)2 > 0 is a logical conclusion.

framework of beyond mean-field calculations(or, LHY correction) for decades now, there
effects in dipolar Bose-Einstein condensates had gone unobserved for a long time. A
detailed derivation of such work corresponding to singly dipolar BECs have been carried
out by Lima and Pelster [109] which has been discussed previously in section 1.4. In 2016
it was experimentally discovered that a repulsive Lee-Huang-Yang(LHY) correction has
been shown to arrest this post-instability collapse of an unstable condensate which then
stabilize into an array of quantum droplets in a 3D trap [108]. Using the dispersion (5.10),
we obtain the beyond mean field LHY correction to the chemical potential (∆µ):

∆µ = 1
3π3N

(
M

~2

)3/2
n

3/2
0 g5/2

m

∫
dΩk [β + F(θk, φk, α)]

5
2 (5.13)

where
∫
dΩk =

∫ 2π
0 dφk

∫ π
0 dθk sin θk. The current expression for correction to the chemi-

cal potential is modified to incorporate a doubly dipolar potential and it brings further
nuances into the quantum fluctuations. Due to the n3/2

0 dependence, the repulsive LHY
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Figure 5.8: (a) The ratio Im[∆µ]/Re[∆µ] for a homogeneous condensate in the as − α
parameter space for a Dysprosium atom BEC. (b) The ratio Im[∆µc]/Re[∆µc] shows a
significant reduction in the ignored imaginary component.

correction becomes significant at high densities, and halts the condensate collapse, sta-
bilizing it into a quantum droplet [110, 167, 207, 208]. The LHY correction can be
incorporated to the NLGPE using local density approximation [n0 → n(r, t)] [110, 167,
207, 208, 166], leading to the generalized equation:

i~ψ̇(r, t) = (H + ∆µ [n(r, t)])ψ(r, t). (5.14)

It is easy to notice that due to the Bogoliubov instabilities, the LHY correction terms
will acquire imaginary components. Usually the imaginary part is small enough to be
ignored when the we’re close to the boundary of instability. We shall be working within
this region so that our beyond-mean-field calculations and the local density approximation
is valid. Additionally, finite size effects are shown to diminish the effect of this imaginary
component while weakly affecting the real part of the quantum fluctuation term[167].
This happens as in reality we do not work with infinitely large systems. By assuming a
finite size for the condensate, we need to exclude a small region around the momentum
space origin in the integration in Eq. (5.13). The limits change from [0,∞] to [kc,∞],
where kc(θk, φk) is a cut-off momentum. This cut-off region is an ellipsoid in our case with
the following expression,

kc(θk, φk) =
[

(sin θk cosφk cos θp − cos θk sin θp)2

C2
x

+ sin2 θk sin2 φk
C2
y

+(cos θk cos θp + sin θk cosφk sin θp)2

C2
z

]− 1
2

(5.15)
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where, Cx, Cy and Cz are the cut-offs along the axes of the ellipsoid. Replacing this cutoff
in the integral of Eq. (5.13), the LHY correction is obtained as,

∆µc = 1
3π3N

(
M

~2

)3/2
g5/2
m n

3/2
0 ×[

1
16
√

2

∫ 2π

0
dφk

∫ π

0
sin θkdθk

{
2[β + F(θk, φk, α)]kc(θk, φk)2{5kc(θk, φk)

−2
√

2[β + F(θk, φk, α)] + kc(θk, φk)2}+ 6kc(θk, φk)4{kc(θk, φk)

−
√

2(β + F(θk, φk, α)) + kc(θk, φk)2}

+[β + F(θk, φk, α)]2{16
√

2[β + F(θk, φk, α)] + kc(θk, φk)2 − 15kc(θk, φk)}
}]

(5.16)

This complex expression, although gives a lower value of imaginary component, the qual-
itative results remain unaffected. Hence we proceed with the much simpler and widely
accepted expression in Eq. (5.13).

5.2.2 Quantum droplets in DBEC

At this point we introduce the quantum droplets which are a unique ground state solu-
tions of the extended-GPE beyond the mean-field approximation. In 2016, Tilman Pfau’s
group from Stuttgart [209] discovered that strongly dipolar Dy atoms form metastable
crystal structures inside a pancake shaped trap when the scattering length of the BEC
is quenched to very small values compared to characteristic dipolar length scales. This
spontaneous breaking of translational symmetry to a crystalline phase is a remarkable
phenomenon in superfluid where the symmetry of phase invariance is also broken. The
individual crystal filaments are droplet solutions which occurs due to a balance between
the effective attractive interactions present in the system and the quantum fluctuations
represented by the LHY correction [207, 167]. Realization of crystal states in a superfluid
leads to the inevitable probe of the elusive supersolid state, a counter-intuitive phenomena
where global phase coherence is maintained despite the breaking of translational symme-
try. Quantum droplets turn out to be excellent candidates for exploring supersolidity as
there has been substantial progress in last couple of years both theoretically [210] and
experimentally [211–215].

In absence of a confinement geometry the situation is quite different. The BEC is
found to form a single giant droplet when the scattering length is adiabatically lowered
below a threshold [216, 107]. These self-bound structures are ideal to study properties
such as quantum depletion, collective oscillations and expansion dynamics etc. We are
interested in analogous studies for the case of doubly dipolar BEC. Naturally we begin
by probing in a self-bound droplet scenario without any confinement.
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5.3 Lagrangian and equation of motion

A time-dependent variational Gaussian ansatz is used to predict the key properties of
doubly-dipolar droplets:

ψ(r, t) = 1
π3/4

√
LxLyLz

exp
[
− x′2

2L2
x

− y2

2L2
y

− z′2

2L2
z

+ ix′2βx + iy2βy + iz′2βz + ix′z′βxz

]

(5.17)

where x′ = x cos θ − z sin θ, z′ = x sin θ + z cos θ. We take such a generalized ansatz
because the condensate is expected to tilt away from z-axis as α is varied. We show how
the major axis of the condensate changes with α for B = 100G and E = 2.68kV/cm in
Fig. 5.9. Inputting the ansatz into the Lagrangian density describing a DDBEC,

L = i~
2
(
ψψ̇∗ − ψ̇ψ∗

)
+ ~2

2m |∇ψ|
2 + g

2 |ψ|
4 + 1

2 |ψ|
2
∫
d3r′Vd(r − r′)|ψ(r′)|2

+ 2M3/2

15π3~3N
g5/2
m |ψ|5

∫
dΩk[β + F(θk, φk, α)]5/2 (5.18)

We obtain the Lagrangian L =
∫
d3rL. After the transformation L→ L− d

dt

(
~
2
∑
i βiL

2
i

)

the equations of motion, d
dt

(
∂L

∂Q̇

)
− ∂L

∂Q
= 0 with Q ∈ {Lx, Ly, Lz, θ} are

ML̈x = ~2

ML3
x

+ MLxθ̇
2

(L2
x + L2

z)2 (L4
x + 2L2

xL
2
z − 3L4

z) + g

(2π)3/2L2
xLyLz

−gm
∂

∂Lx

∫ d3k

(2π)3F(θk, φk, α)n2(k)

+
(2

5

)5/2 (M/~)3/2

Nπ21/4
g5/2
m

∫
dΩk[β + F(θk, φk, α)]5/2
Lx(LxLyLz)3/2 (5.19)

ML̈y = ~2

ML3
y

+ g

(2π)3/2LxL2
yLz
− gm

∂

∂Ly

∫ d3k

(2π)3F(θk, φk, α)n2(k)

+
(2gm

5

)5/2 (M/~)3/2

Nπ21/4

∫
dΩk[β + F(θk, φk, α)]5/2

Ly(LxLyLz)3/2 (5.20)
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Figure 5.9: The effective polarization angle θp vs α for B = 100G and E = 2.68kV/cm.
For α = 0, θp is also 0. For maximum α = π/2, θp increases nonlinearly and reaches a
maximum value π/4.

ML̈z = ~2

ML3
z

+ MLz θ̇
2

(L2
x + L2

z)2 (L4
z + 2L2

xL
2
z − 3L4

x) + g

(2π)3/2LxLyL2
z

−gm
∂

∂Lz

∫ d3k

(2π)3F(θk, φk, α)n2(k)

+
(2

5

)5/2 (M/~)3/2

Nπ21/4
g5/2
m

∫
dΩk[β + F(θk, φk, α)]5/2
Lz(LxLyLz)3/2 (5.21)

(L2
x − L2

z)2

L2
x + L2

z

Mθ̈ = − ∂

∂θ

(
gm

∫ d3k

(2π)3F(θk, φk, α)n2(k)
)

−2Mθ̇
(L2

x − L2
z)

(L2
x + L2

z)2 [LxL̇x(3L2
z + L2

x)− LzL̇z(3L2
x + L2

z)]

(5.22)

At the equilibrium the first derivatives vanishes. Thus, for the vicinity of the equilibrium
point we can approximately write the equations of motion as d2Q′/dt2 = −∂Veff/∂Q′

with Q′ ∈ {x′, y, z′, θ′} and θ′ =
(
[(L0

x)2 − (L0
z)2]/

√
(L0

x)2 + (L0
z)2
)
θ, where,

Veff = ~2

2M
∑
i

1
L2
i

+ g

(2π)3/2LxLyLz
+ gm

∫ d3k

(2π)3F(θk, φk, α)n2(k)

+2
(2

5

)5/2 (M/~)3/2

3Nπ21/4
g5/2
m

∫
dΩk[β + F(k, α)]5/2
(LxLyLz)3/2 (5.23)

The effective potential can be minimized to evaluate the equilibrium widths (L0
i ) and

the orientation (θ0) where θ0 = θp as predicted. Fig. 5.9 shows the minimized θp vs
α value for B = 100 G and E = 2.68 kV/cm. In absence of LHY correction the L0

i in
unstable region tends to zero post-minimization as minimum energy tends to negative
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Figure 5.10: For different atom numbersN = 103, 104 and 105 , we show phase boundaries
for negative energy regime in which stable self-bound droplets are possible. (a) Keeping
β = 1 we find γ for which E/E0 = 0 and (b) keeping γ = 1 we find the same boundary
by varying β for 0 < α < π/2. For the former(later) case, E/E0 < 0 above(below) the
boundary lines.

infinity monotonically. Once a nontrivial density dependent n3/2 in the LHY correction
is added, we observe that energy now tends to positive infinity as Li → 0. However, a
minima for finite unique values of Li is only observed under a certain threshold value of
as(acr) which lies below the standard phonon instability curve at as = am(1 + γ). This
represents a stable droplet solution. Above this threshold, in presence of LHY only stable
BEC exists equivalent of expansion instability corresponding to a self-bound structure. In
Fig. 5.10 and Fig. 5.11(a) this stable/unstable region has been depicted for a self-bound
droplet in a Dy DDBEC. In the former we show the boundaries for parameter domains
of γ and β vs α while in the later it is plotted as a function of as and α, for number of
atoms N = 2000 and the dipole moments corresponding to Fig. 5.5(a). These are results
from a variational calculation with a Gaussian ansatz, obtained by minimizing Eq. (5.23).
It is clear to see that a large-enough as results in a stable BEC as it can dominate the
attractive DDDI with the help of a repulsive quantum fluctuation term. But if as < acr

then the effective interaction in the system becomes attractive in nature. This attractive
part is then balanced by the repulsive LHY term to result in a self bound droplet. As we
increase α, we also introduce gradually a stronger electric dipole moment thereby raising
the acr as α varies. It is also reflected in the Fig. 5.5(b)-(e) where the total attractive
region due to the DDDI is shown to increase with α. acr is also a function of number
of atoms. A larger number of atoms leads to a larger acr as the total attractive part of
DDDI becomes stronger for large number of atoms. We show the curves of acr keeping
γ = 1 or β = 1 with respect to α for different number of atoms.
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Figure 5.11: (a) Stable/unstable region for a self-bound (Gaussian) droplet of Dy atoms
in the state |S〉, for B = 100 G, E = 2.68 kV/cm and N = 2000, as function of the
scattering length a and α. The stable regime is partitioned using L0

y/L
0
x. (b) Equilibrium

widths as a function of α for a = 110a0 where a0 is the Bohr radius and other parameters
as in (a). The inset shows the peak density of the droplet as a function of α. The solid
lines are from the Gaussian calculations, and filled circles are from the full 3D numerical
simulations of Eq. (5.14). The angle αa is shown by a dashed vertical line. The widths
are scaled by the length am = µ0md

2
m/12π~2 ' 222a0. (c)-(e) show the density plots

for the droplet ground state from the 3D numerics for different α, indicating a structural
crossover from cigar to pancake-shaped droplet.

5.3.1 Dimensional crossover

Below we shall consider only cases where the magnetic field and electric field are fixed at
B = 100G and E = 2.68kV/cm respectively. This effectively fixes the γ for each tilting
angle α as shown in 5.5(a). The most important concepts of self-bound droplets discussed
below are captured by the tunable parameter α. The traditional case is when α = 0 and
γ = 0. In presence of only magnetic field, the droplets are cigar shaped along the ẑ axis
such that L + x0 = L0

y << L0
z. The widths are shown in 5.11(b) and the density profile

is is plotted in 5.11(c). The θp lies along ẑ coinciding with α. Once α is non-zero, the
effective polarization is no longer aligned with α accompanied by the breaking of radial
symmetry of the droplets. The L0

y and L0
z, both decrease by almost an order of magnitude

each monotonically while L0
x slowly increases until L0

x = L0
z at α = π/2 as shown in Fig.
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5.11(b) and (e). An intermediate density profile is shown in Fig. 5.11(d). The droplet
doesn’t have any structural symmetry in the intermediate region and it is tilted along
the effective polarization direction θp. The Fig. 5.11(c)-(e) demonstrate the structural
crossover from a cigar-shaped droplet to pancake-shaped droplet clearly and this change
is accompanied by a change in the peak density of the droplet shown in the inset of Fig.
5.11(b). Although the droplet density profiles are not Gaussian, an approximation with
Gaussian variational calculation gives suitable predictions and maybe used for qualitative
understanding. The structural transition is summed up for all parameters in the phase
diagram Fig. 5.11(a) where we plot the ratio L0

y/L
0
x which can attain a maximum value

1 at α = 0 while it tends to a small value (≈ 0.1) for a perfectly pancake-shaped droplet
at α = π/2. The color density shows this structural crossover. The solid black curve
separates the droplet region from the BEC region of expanding gas. This also corresponds
to 〈H〉 = 0 curve which means the self-bound droplets start to appear when the chemical
potential corrected for quantum fluctuation goes negative.

Below we study this structural transition more rigorously. Although finding collective
excitations remains a standard procedure, it is an extremely valuable tool to check for
the stability and other properties of a solution.

5.4 Collective Excitations

The collective excitation frequencies can be obtained from the Lagrangian equations of
motion that we have already calculated in (5.19)-(5.22). This is done by linearizing the
equations around the equilibrium values of the variational parameters. This allows us to
impose Li(θ) = L0

i (θp) + δi(δθ) where i ∈ x, y, z where derivatives of equilibrium values
vanish and so does product terms such as θ̇L̇i. In the end we may express the resulting four
equations in form a matrix and solve for its eigenvalues and eigenvectors. The eigenvalues
give us the four lowest lying frequencies and the eigenvectors represent the nature of
oscillations. Out of the four modes we obtain, one corresponds to the scissors mode
oscillation and is effectively decoupled from the rest three eigenvectors corresponding
to width oscillations. The scissor mode oscillations are angular oscillations around the
polarization axis along θp. A detailed analysis regarding scissor mode is experimentally
done by the Stuttgart group [217] and we discuss this more in the following subsection.
First we shall focus on the rest three eigenmodes which are plotted in Fig. 5.12(a). The
chemical potential (µ) is plotted for reference as well. This will become an important
factor when we study the dimensions of a droplet solution. It is important to realise that
cigar-shaped(pancake-shaped) solutions need not be quasi-1D(quasi-2D) in general.

For a cigar-shaped droplet we observe that the lowest eigenvalue corresponds to the
axial mode along the elongated direction for α ≈ 0 region. There are two quasi-degenrate
transverse modes ω1(breathing mode) and ω2 (quadrupole mode) where ω1 being slightly
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Figure 5.12: (a) Excitation frequencies of the Dy droplet obtained from the Gaussian
variational calculations as a function of α for the same parameters as in Fig. 5.11(b). The
inset shows ω2/|µ| as a function of α. (b) The eigenvector ∑j=x′,y,z′ bj~ej corresponding to
ω1 as a function of α. It changes from being a breathing mode on the xy-plane for α = 0
to a pure y-oscillation as α approaches π/2.

higher than ω2. These modes are restricted to x−y plane. The important thing to notice
is µ < ω2 by a factor of ≈ 2.5. At this point we draw an analogy with a condensate in
a cigar-shaped trap where µ << ωradial imposes quasi1D condition. In such a trap the
transverse oscillations are close to the transverse trap frequencies ωradial. Similarly we
see that our droplet solutions for α ≈ 0 has µ < ω2 (inset of Fig. 5.12(a)) which proves
that they are in a quasi-1D regime. In contrast, for α ≈ π/2 we have a pancake-shaped
droplet which we prove is quasi-2D. The lowest two frequencies ω2 and ω3 correspond to
breathing and quadrupole modes respectively in the x−z plane while ω1 is the transverse
mode along y and strongly decoupled from the radial modes. We see that µ < ω1 by a
factor of 2.8 which proves its two dimensional character. The eigenvector character of
the ω1 for all α has been demonstrated in Fig. 5.12(b). At α ≈ 0, it has only radial
component in the x − y plane and it completely decoupled from the axial component
while at α ≈ π/2, the highest eigenvalue acquires a transverse character along y and is
completely decoupled from the x− z component as predicted.

It reveals that we observe not only a structural crossover of droplets from a cigar-
shape to pancake-shape but also it undergoes a dimensional crossover from quasi-1D to
quasi-2D. Another method to obtain the dimensional crossover is by keeping α = π/2
and varying γ instead. This can be done by changing the electric field strength. When
γ ≈ 0 we have an elongated quasi-1D along z. When γ approaches unity, we obtain back
the current quasi-2D droplet. Please note that if γ > 1, the droplet again starts to break
the radial symmetry and starts to elongate along x. However a stronger γ may increase
experimental difficulty by introducing strong coupling between the Zeeman sublevel and
reducing the lifetime of the doubly dipolar Dy atoms.
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Figure 5.13: (a) We show |µ|/ω2 ratio for α = 0 rad and (b) ω1/µ for α = π/2 in the
as vs N parameter space. The white region corresponds to expansion instability for a
droplet i.e. stable homogenous BEC exists.

5.4.1 Scissors mode

In a traditional trapped BEC, scissors mode corresponds to a shape-preserving oscillation
around a principal axis of the trap. We had introduced it in 2.2.2. Its origin lies in
interactions and it vanishes in presence of symmetric traps. In doubly-dipolar self-bound
droplets scissors mode is a natural occurrence due to the inherently rich anisotropy of the
DDDI even though we do not have any trap. We observe scissors mode with respect to
the polarization direction in the x− z plane for any α ∈ [0, π/2). This is obvious because
at α = π/2 the droplets obtain symmetry in x− z plane negating the concept of scissors
mode.

The scissors mode frequency is obtained from the Gaussian variational calculation and
found to be decoupled from the width modes for any value of alpha under linear response
theory. The magnitude of the frequency increases with α, however this behaviour is not
trivially explained due to the variation of the underlying variable γ.

5.5 N-dependence

In this section, we solidify our claim that the droplet undergoes a dimensional crossover
by analyzing the dependence of droplets widths with respect to number of atoms N . Any
solution which is quasi-1D(quasi-2D) have their dynamics frozen in the tightly trapped
radial (transverse) direction. Addition to number of atoms to the solution results in
expansion of the solution along the axial (radial) direction while the tightly trapped width
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Figure 5.14: Scissors mode frequency with respect to α for as/a0 = 110, obtained from
the Gaussian variational calculation. At α = π/2 it is not defined.

remains independent of N . In analogy, we consider the Q1D and Q2D solutions at α = 0
and α = π/2 respectively. Numerically we show that for Q1D droplets the axial width
increases with N while the radial widths (Lx = Ly ≈

√
2~/mω1) remain independent of

it. The relation of Lz with N is found to be linear. These results are summarized in Fig.
5.15(a). Similarly, for α = π/2, the transverse width remains independent of N as shown
in Fig. 5.15(b). Unlike the Q1D case, the radial widths depend on

√
N instead.

We perform analytic calculation to confirm the N dependence of the widths by em-
ploying a hybrid Gaussian-TF density profile. Considering the α = 0 case first, we assume
a Gaussian profile in x− y plane while a TF profile along the z-axis.

n(ρ, z, t) = 3
4πL2

ρRz

(
1− z2

R2
z

)
exp

(
− ρ

2

L2
ρ

)
e−iµt, (5.24)

where Rz is the TF radius and Lρ = Lx = Ly are the Gaussian widths. Using this
ansatz in Eq. (5.14), we can ignoring the kinetic energy along the z-direction due to TF
approximation. Integrating in the x− y plane we arrive at,

µ = ~2

2ML2
ρ

+ 3g
8πL2

ρRz

(
1− z2

R2
z

)

+
√

3g5/2
m

20Nπ9/2

(
m

RzL2
ρ~2

)3/2 ∫
dΩk[β + F(θk, φk, 0)]5/2

(
1− z2

R2
z

)3/2

+
(
πgm
R3
z

)∫ dkz
2π

∫ dkx
2π

∫ dky
2π

(
3k2

z

k2
x + k2

y + k2
z

− 1
)

×e−k2
ρL

2
ρ/2 4(sin kzRz − kzRz cos kzRz)

k3
z

eizkz . (5.25)

Next, we expand around z = 0 and equate the coefficients of the z0 and z2 terms. For z0
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Figure 5.15: The N -dependence of the droplet widths at α = 0 and α = π/2
is shown in (a) and (b) respectively. We have defined σρ =

√∫
d3r(x2 + y2)|ψ(r)|2,

σy =
√∫

d3ry2|ψ(r)|2 and Ly =
√

2σy.

we get,

µ = ~2

2ML2
ρ

+ 3
8πL2

ρRz

(
g − 4πgm

3

)

+
√

3g5/2
m

20Nπ9/2

(
M

RzL2
ρ~2
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dΩk[β + F(θk, φk, 0)]5/2

− 6gm
4R2

zLρ

(√
2πeR2
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Rz√
2Lρ
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− πLρ
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2Lρ
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+Rz

Lρ
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(
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2 , 2
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2
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2L2
ρ
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(5.26)

and for z2 we have,

1
2πL2

ρRz

(
β − 4π

3

)
+
√

3N
10π3L3

ρ

(3am
πRz

)3/2 ∫
dΩk[β + F(θk, φk, 0)]5/2

+

 2
RzL2

ρ

−
√

2π
L3
ρ

e

R2
z

2L2
ρ erfc

[
Rz√
2Lρ

]

− 1
πR3

z

∫
dx e

x2L2
ρ

2R2
z Γ

[
0,
x2L2

ρ

2R2
z

]
x2 cosx = 0 (5.27)

where erfi and erfc are the imaginary and complimentary error functions respectively,
pFq () is the generalized hypergeometric function and Γ[] is the incomplete gamma func-
tion. Eq. (5.27) is the important equation which gives us the N -dependence. The first
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term corresponds to the effective short-range interactions coming from both the s-wave
scattering and from the DDI, the second term is from the LHY correction. The last two
terms come from the non-local character of the DDI. Here we impose the limit Rz � Lρ.
Under this condition the last two terms may be neglected which simplifies our equation
to,

Rz '
81a3

mN

25π7L2
ρ (4π/3− β)2

[∫
dΩk [β + F(θk, φk, 0)]5/2

]2
. (5.28)

Similarly, for α = π/2, in the Q2D regime, we use an ansatz where the radial density
profile is TF while the transverse profile is assumed to be Gaussian.

n(ρ, z, t) = 3
4
√
πR2
⊥Ly

(
1− ρ2

R2
⊥

)
e−y

2/L2
ye−iµt, (5.29)

Following the same procedure as above we get,

R⊥ '
9a3/2

m

2π13/4

√
N

5Ly

∫
dΩk[β + F(θk, φk, π/2)]5/2

(8π/3− β) . (5.30)

5.6 Trapped Droplets

We briefly show the trapped doubly dipolar droplets. The situation is different as trap
allows for formation of droplet crystals. In singly dipolar case, this has recently proved
to be an excellent candidate to study the supersolid phase. We have studied the droplets
by keeping γ = 1 and varying α. Please note that the electric field strength needs to be
different for different α to satisfy the condition. For α = 0, this is impossible, however
the situation can be easily mimicked by magnetic dipole moment alone easily. We begin
by finding the ground state using imaginary time evolution in a stable BEC region where
as/am > (1+γ). In real time we quench into sufficiently deep unstable region by decreasing
as, a procedure which is similar to the experimental sequence for a singly dipolar BEC.

Expectedly, we observe gradual formation of droplet crystals. However, the above
discussed structural transformation with respect to α is manifested here as well. An
interesting consequence of this is that a 2D crystal structure of the droplets gets transi-
tioned to a 1D crystal structure from α = 0 to α = π/2 respectively. This is well depicted
in Fig. 5.16. In (a), z is the tightly trapped axis, allowing small movement of droplets
in the x− y plane while in (d), the droplet movements are restricted along y-axis alone.
Unlike self-bound droplets, trap-bound droplet structures are surrounded by a dilute gas.
The size and number of droplets forming in the post-quench dynamics are additionally
trap dependent along with their usual dependence on β and N .



CHAPTER 5. SELF-BOUND DDBEC 105

Figure 5.16: Formation of droplets in the post-instability dynamics of a Dy 3D DDBEC.
(a)-(d) show the isosurfaces for the density in the post instability dynamics with γ = 1
and N = 15000. The instability is induced by quenching the s-wave scattering from
ais = 262.9a0 to afs over a period of t = 3ms where ais > afs . For (a) and (b) afs = 137.4a0
and the trap frequencies (ωx, ωy, ωz) = 2π×(44, 44, 133) Hz, for (c) and (d) afs = 161.75a0
and (ωx, ωy, ωz) = 2π × (133, 44, 133) Hz. The angle α is (a) 0, (b) 0.6 rad, (c) 1.3 rad
and (d) π/2 rad.

5.7 Conclusions

In this chapter we explore the rich and nontrivial anisotropic properties of the DDBEC
which features new kind of self-bound droplet structures. We discover a structural
crossover from cigar to pancake shaped droplets with respect to the changing angle be-
tween the electric and magnetic dipole moments of the Dy atom BEC. We prove that
this transition is in fact a dimensional crossover where the traditionally known Q1D self-
bound droplet can transition to a new Q2D droplet structure. The dimensional crossover
has been verified with the help of calculation of collective excitations and N -dependence
of the widths of the droplets. This is interesting because, dimensional crossover has been
usually observed in presence of confining geometries. Here a purely interaction induced
dimensional crossover is shown which opens up possibilities of new quantum phenomena
both in continuous and discrete ultracold medium. Future outlooks include studying the
roton excitations, sound velocity, and vortex lattices etc under such rich anisotropy. The
trapped case scenario can be extremely potent field for the study of super-solid proper-
ties.



Chapter 6

Summary and Outlook

The wealth of physics born out of dipolar Bose-Einstein condensates is enormous. The
experimental and theoretical efforts in this field have, so far, proceeded collaboratively.
This has resulted in a thriving research community where theoretical predictions are ver-
ified in the lab and models are continuously being updated to explain novel experimental
observations. So it is imperative to understand the fundamentals of the system from each
and every aspect. A small fraction of it has been uncovered in this thesis. While a large
amount of literature exists regarding the long-range and anisotropic nature of the dipolar
interaction in dipolar BEC, our focus is on the potential effects of tuning the anisotropy.
Our work pertains to understanding the effect of tunable anisotropy, achieved by con-
trolling the polarisation direction of the dipole moment of atoms. Effect of anisotropy
varies dramatically depending on the trapping geometry. We have probed the effect in
various geometries e.g. i) quasi-2D ii) quasi-1D and in iii) 3D with suitable variations. We
employ theoretical techniques such as ’imaginary time evolution’, ’real time evolution’,
’variational methods’ to capture the system under the mean-field approximation and in
the last chapter, beyond mean-field approximation as well.

Tunability of polarisation direction of dipole moment adds another dimension to the
parameter space. The first course of action is to scope out this dimension thoroughly and
summarize the results in suitable and experimentally relevant phase diagrams. This is
done using the Bogoliubov analysis by formulating the dispersion relation for a uniformly
dense condensate. Uniform density approximation allows a first qualitative understand-
ing of a realistic system. A purely real excitation spectrum with respect to momentum
indicates a stable system while imaginary components in the spectrum makes the system
unstable. We analyse the stability and instability regions using the dispersion spectrum
in the new parameter space. The stable region is largely comprised of non-rotonic sta-
ble region and rotonic stable region. The distinction between them lies in whether the
dispersion curve is monotonic or not respectively. In a quasi-2D non-monotonic roton
spectrum the momentum corresponding to the roton minima is considered fixed by the
transverse trap. However, we show that it can be varied by changing the dipole polarisa-
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tion angle from lower values upto the inverse of characteristic trap length. The unstable
regions can be segregated into roton instability, phonon instability or long-wavelength
instability. Phonon instability occurs when the low momentum phonon modes acquire
imaginary values and roton instability arises when the spectrum goes soft at non-zero
finite momentum. These two instabilities have been observed previously in other systems
with non-local interactions as well. However, the long-wavelength instability is a new kind
of instability which is found in quasi-2D geometry by tilting the dipole orientation to a
fixed angle i.e. the magic angle when there is no short-range interaction in the system.
The post-instability dynamics have been studied and the visual cues were identified to
distinguish between roton instability and phonon instability in the form of dislocation
defects. In phonon unstable region in quasi-2D dynamic formation of anisotropic bright
solitons is observed. We characterise the anisotropy and stability of a single soliton as
well with the help of variational methods. The low-lying excitations are studied as well
as an adiabatic experimental procedure was prescribed for the formation of the elusive
quasi-2D soliton in the lab.

Response of a system to a continuous external driving is another fundamental study
that helps understand the inherent nonlinearity, nonlocality and anisotropy of the system.
For this we choose a multilayer quasi-1D dipolar BEC. The polarisation angle allows us
to tune the long-range interlayer dipolar interaction from attractive to repulsive. First
we study the surface waves on the uniform condensate, known as Faraday patterns, gen-
erated by periodically varying either the short-range contact interaction or by varying
the dipolar coupling strength. Both symmetric and anti-symmetric spatial patterns are
observed depending on the tunable interlayer DDI and external modulation frequency. In
a simplistic bilayer case, when both the layers are modulated, it is apparent that Fara-
day waves appear in both layers. Interestingly in a singly-modulated bilayer system the
unmodulated layer can also develop Faraday patterns as the interlayer DDI couples the
layers and energy transfer can take place. Different pattern dynamics are found for dif-
ferent modulation frequencies compared to the doubly-modulated case. We have probed
the system in both non-rotonic and rotonic regions. Next, under trapped conditions, the
collective excitations in a bilayer system show coupling between the center of mass and
the width modes, absent in a single layer BEC. We periodically perturb a trapped bilayer
system in order to exploit this unique feature. Due to the coupling, an energy transfer
takes place from the center of mass mode to the width modes even when only a single
layer is being modulated. If the bilayer system is modulated with a chirped frequency
instead, the mode-locking phenomenon kicks in and it is shown to propagate between the
layers back and forth. Tuning the dipole moments is found to enhance or suppress this
excitation transfer.

Keeping pace with current progress we also include beyond-mean-field effects in our
final study. Here we introduce a doubly-dipolar BEC for the first time in the community,
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following a recent proposal to induce electric dipole moment in the Dysprosium atom
which already has a permanent magnetic dipole moment. This opens up a whole new
avenue of research. Our goal is to capture of effect of beyond mean-field approximation
in a doubly-dipolar BEC. In 3D dipolar BECs, beyond mean-field quantum fluctuations
have led to formation of droplet solutions, found both experimentally and theoretically.
In absence of confinement, the traditional droplets acquire quasi-1D cigar-like shapes. In
doubly dipolar BEC, by tuning the polarisation angle we show a structural transition
from cigar to pancake-shaped droplets. In fact we prove that this not simply a structural
transition but a dimensional crossover from quasi-1D to quasi-2D. The uniqueness of this
dimensional crossover lies in the fact that it is purely mediated by internal interactions,
not by any external potential which is usually the case otherwise. We identify the phase
boundary between the BEC and droplet phases in doubly-dipolar case with respect to
the tunable polarisation angle between the two dipole vectors. The widths of the droplets
are then plotted with respect to the number of atoms in the droplet. This dependence
characterizes the dimensionality of the droplets.

We have studied the doubly-dipolar interaction in 3D. However the rich anisotropy is
bound to give rise to new physics in lower-dimensions as well. A thorough analysis of it can
be done in quasi-1D and quasi-2D geometries. The Dysprosium atoms are strongly dipolar,
hence it would necessitate the calculations to include beyond mean-field effects. Gaussian
variational methods, at this point, can give only very qualitative understanding on the
system. It becomes imperative to improve upon the theoretical methodologies of local
density approximation and extended-Gross-Pitaevskii equation with the help of involved
quantum Monte-Carlo simulations. Another direction of study could include probing
the dispersion relation in elongated non-axissymmetric traps. The rotonic momentum is
associated with the characteristic trap length scales. Under two different dipole moments,
the roton momentum is expected to show peculiar behaviour.

The study of supersolidity has taken over the dipolar BEC community after the discov-
ery of droplets. The quasi-2D droplets, due to their one-dimensional degree of freedom in
a cigar-shaped confinement, can prove to be excellent candidates for a supersolid. Further
expansion would be the study of vortex lattices as quasi-2D droplets have an extended
surface, unlike the traditional quasi-1D droplets.



Appendix A

Efficiency Boosting Techniques

A.1 Fourier transform of DDI

The DDI term has a 1/r3 factor which diverges as r → 0. To avoid this DDI is usually
dealt with in momentum space. Below the Fourier transform of DDI is briefly outlined.
We start by expressing the DDI in terms of spherical harmonics,

Vd(r) = gd
r3

(
−4
√
π

5

)
Y20(θ) (A.1)

where Ylm are the spherical harmonics. Before moving on to Fourier transform, the plane
wave expansion is introduced first,

e−ik·r = 4π
∞∑
l=0

iljl(kr)
l∑

m=−l
Y ∗lm(θ, φ)Ylm(θk, φk) (A.2)

where, k is the polar axis in momentum space. Incorporating orthogonality condi-
tion of spherical harmonic functions

∫
sin θdθ

∫
dφY ∗lmYl′,m′ = δll′δmm

′ and the relation∫
drj2(kr)/r = 1/3, the Fourier transform of DDI becomes,

Vd(k) =
∫
drVd(r)e−ik·r = 4πgd

3 (3 cos2 θk − 1) (A.3)

where θk represents the angle between k and the dipole orientation. In contrast to contact
interaction, DDI not only has a momentum dependence, but also it shall vary according
to the system’s dimensionality as will be discussed later. This momentum dependence
plays a key role in the origin of rotonic dispersion relation 2.1.2. Assuming the dipole
moment is restricted to x−z plane such that it makes an angle α with z, then the general
DDI expression in cartesian coordinates is,

Vd(k) = 4πgd
3

(
3k2

z cos2 α + 3kxkz sin 2α + 3k2
x sin2 α

k2 − 1
)

(A.4)
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While working with lower dimension (0 < D < 3) where the tightly confined region
has a Gaussian distribution of the wave function, we may obtain explicit form of a low-
dimensional DDI expression,

V D
d (k) =

∫ dk3−D

(2π)3−DVd(k)n3−D(k)2 (A.5)

A.2 Cut-off for DDI

While the divergence in real space is eliminated, this Fourier transformed DDI has a
discontinuity at the origin where it reaches its maximum value. This discontinuity is
a result of the anisotropic nature of the DDI. Below a technique is proposed to tackle
this in numerical simulations to improve accuracy and speed of convergence. The cut-off
introduces a finite radius R for the DDI in 3D such that outside this range Vd(r > R) ≈ 0
in the spherical region. This approximation holds well as long as R >system size. The
truncated form becomes,

Vd(k)cut R = 4πgd
3

(
1 + 3cosRk

R2k2 −
sin kR
k3R3

)
(3 cos2 θk − 1) (A.6)

For pancake-shaped traps with axis along z, the truncation region also has to be of similar
shape. Although not an exact, but a partially helpful solution for DDI in cylindrical trap
is,

Vd(k)cut z = 4πgd
3 (3 cos2 θk − 1) + 4πe−Zkρ [sin2 θk cosZkz − sin θk cos θk sinZkz] (A.7)

The Z value can now be small enough to only cover the condensate.



Appendix B

Bogoliubov Dispersion Relation

B.1 Uniform gas confined along one direction

We begin with an ansatz of the form mentioned in 2.1 where spatial dependence remains
only along the trapped direction,

ψ(r, t) = √
n2D[ψ0(z) + χ(r, t)] exp−iµt/~

= √
n2D[ψ0(z) + u(z) exp(i(ρ · qρ − εt/~)) + v(z)∗ exp(−i(ρ · qρ − εt/~))]e−iµt/~

where ρ =
√
x2 + y2 and r =

√
x2 + y2 + z2 and replace it in the relevant 3D GPE,

i~
∂

∂t
ψ(r, t) =

{
− ~2

2m∆ + m

2 ω
2z2 + g|ψ(r, t)|2 +

∫
dr′Vd(r − r′)|ψ(r′, t)|2

}
ψ(r, t) (B.1)

While dealing with the rest of the terms are straight forward, the DDI term has been
explicitly calculated below,

∫
dr′Vd(r − r′)|ψ(r′, t)|2

=
∫
dr′Vd(r − r′)n2D

[
ψ2

0(z′) + ψ0(z′) {u(z′) + v(z′)} ei(qρ·ρ′−ωt)

+ψ0(z′) {u∗(z′) + v∗(z′)} e−i(qρ·ρ′−ωt)
]

(B.2)

Expanding term by term, the first term is

∫
dr′Vd(r − r′)ψ2

0(r′) =
∫ d3k

(2π)3Vd(k)n(k)eik·r

=
∫ dkz

2π Vd(kz, 0, 0)n(kz)eizkz

= 4πgd
3 (3 cos2 α− 1)ψ2

0(z)

111
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Second term,

∫
dr′ψ0(z′){u(z′) + v(z′)}Vd(r − r′)ei(qρ·ρ

′−ωt) =
∫ d3k

(2π)3Vd(k)f(k)eik·r

where,

f(k) =
∫
d3r′ exp(−i~k · ~r′)ψ0(z′){u(z′) + v(z′)} exp(i(qρ.ρ′ − ωt))

= 4π2δ(kx − qx)δ(ky − qy)
∫
dz′ e−i(kzz

′)ψ0(z′){u(z′) + v(z′)}e−iωt

Replacing f(k) in the above equation and simplifying gives us,

∫ d3k

2π δ(kx − qx)δ(ky − qy)
∫
dz′ψ0(z′){u(z′) + v(z′)}e−ikzz′Vd(kx, ky, kz)ei

~k·~r−iωt

= 2gd
3

∫
dz′ψ0(z′){u(z′) + v(z′)}eiρqρ−iωt

[
3π
qρ

(q2
x sin2 α− q2

ρ cos2 α)e−qρ|z′−z|

−i3πqx sin 2α sign(z′ − z)e−qρ|z′−z|
]

+ 2gd
3 ψ0(z){u(z) + v(z)}(3 cos2 α− 1)ei(ρkρ−ωt)

Similarly third term can be calculated and the full dipolar term can be written together
as:

4πgdn2D

3 (3 cos2 α− 1)ψ2
0(z) + 2gdn2D

3 ψ0(z){u(z) + v(z)}(3 cos2 α− 1)ei(ρqρ−ωt)

+2gdn2D

3

∫
dz′ψ0(z′){u(z′) + v(z′)}eiρqρ−iωt

×
[

3π
qρ

(q2
x sin2 α− q2

ρ cos2 α)e−qρ|z′−z| − i3πqx sin(2α) sign(z′ − z)e−qρ|z′−z|
]

+2gdn2D

3 ψ0(z){u(z)∗ + v(z)∗}(3 cos2 α− 1)e−i(ρqρ−ωt)

+2gdn2D

3

∫
dz′ψ0(z′){u∗(z′) + v∗(z′)}e−iρqρ+iωt

×
[

3π
qρ

(q2
x sin2 α− q2

ρ cos2 α)e−qρ|z′−z| + i3πqx sin(2α) sign(z′ − z)e−qρ|z′−z|
]

Taking the zeroth order term from both left and right hand sides of the simplified
GPE we obtain:

µψ0(z) = − ~2

2m∆ + 1
2mω

2z2 + gn2D|ψ0(z)|2ψ0(z)

+4πgdn2D

3 (3 cos2 α− 1)ψ0(z)2ψ0(z) (B.3)

Collecting coefficients of e−iωt and eiωt followed by simple algebra gives us dispersion
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relations:

εf−(z) = − ~2

2m

(
∂2

∂z2 − q
2
)
f+(z)− µf+(z) + 1

2mω
2z2f+(z)

+3
{
gn2D + 4πgdn2D

3 (3 cos2 α− 1)
}
|ψ0(z)|2f+(z)

+4πgdn2Dψ0(z)
∫ ∞
−∞

dz′ψ0(z′)e−qρ|z′−z|

×
{
q2
x

qρ
sin2 α− qρ cos2 α− iqx sin(2α) sign(z′ − z)

}
f+(z) (B.4)

εf+(z) = − ~2

2m

(
∂2

∂z2 − q
2
)
f−(z)− µf−(z) + 1

2mω
2z2f−(z)

+
{
gn2D + 4πgdn2D

3 (3 cos2 α− 1)
}
|ψ0(z)|2f−(z) (B.5)

B.2 Uniform gas confined along two directions

We begin with an ansatz where spatial dependence remains along the radially trapped
direction,

ψj(r, t) = √
n1D

[
ψj(x, y) + uj(x, y)ei(zkz−ωt) + v∗j (x, y)e−i(zkz−ωt)

]
e−iµjt/~

= √
n1D

[
ψj(ρ) + uj(ρ)ei(zkz−ωt) + v∗j (ρ)e−i(zkz−ωt)

]
e−iµjt/~

where ρ =
√
x2 + y2, r =

√
x2 + y2 + z2 and the index j ∈ [1, N ] where N is the

number of layers. For a single layer j = 1. Replacing it in the 3D NLGPE,

i~
∂ψj(r, t)

∂t
=

[
− ~2

2m∇
2 + 1

2mω
2ρ2 + g|ψj(r, t)|2 +

∫
d3r′Vd(r − r′)|ψm(r′, t)|2

]
ψj(r, t)(B.6)

We show calculations only for the DDI term below.

∑
m

∫
d3r′Vd(r − r′)|ψm(r′)|2ψj(r, t)

=
∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′)2 + ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}e−i(z′kz−ωt)

+ψm(ρ′){um(ρ′) + vm(ρ′)}ei(z′kz−ωt)
]
ψj(r, t)
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=
∑
m

∫
d3r′Vd(r − r′)n1Dψm(ρ′)2ψj(r, t)

+
∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}e−i(z′kz−ωt)

]
ψj(r, t)

+
∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′){um(ρ′) + vm(ρ′)}ei(z′kz−ωt)

]
ψj(r, t) (B.7)

Let us look at the three terms one by one,

a

∑
m

∫
d3r′Vd(r − r′)n1Dψm(ρ′)2ψj(r, t)

=
∑
m

∫ d3k

(2π)3 e
ik.rVd(k)n1D2πδ(kz)nm(kρ)ψj(r, t)

=
∑
m

∫ d2k

(2π)2 e
ik.ρVd(kρ, 0)nm(kρ)n1D

√
n1D

×
[
ψj(ρ) + uj(ρ)ei(zkz−ωt) + v∗j (ρ)e−i(zkz−ωt)

]
e−iµjt/~ (B.8)

b

∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}e−i(z′kz−ωt)

]√
n1D

×
[
ψj(ρ) + uj(ρ)ei(zkz−ωt) + v∗j (ρ)e−i(zkz−ωt)

]
e−iµjt/~

= n1D
√
n1D

∑
m

∫
d3r′Vd(r − r′)

[
ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}e−i(z′kz−ωt)

]
ψj(ρ)

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}]

∫
dz′e−i(z

′kz−ωt)Vd(ρ− ρ′, z − z′)ψj(ρ)

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}]

∫
dz′e−i(z

′kz−ωt)
∫ dqz

2π e
i(z−z′)qzVd(ρ− ρ′, qz)ψj(ρ)

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}]

∫ dqz
2π e

i(zkz+ωt)Vd(ρ− ρ′, qz)
∫
dz′eiz

′(qz+kz)ψj(ρ)

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}]

∫ dqz
2π e

i(zkz+ωt)Vd(ρ− ρ′, qz)2πδ(kz + qz)ψj(ρ)

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}] e−i(zkz−ωt)Vd(ρ− ρ′,−kz)ψj(ρ)

Similarly,
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c

∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′){um(ρ′) + vm(ρ′)}ei(z′kz−ωt)

]√
n1D

×
[
ψj(ρ) + uj(ρ)ei(zkz−ωt) + v∗j (ρ)e−i(zkz−ωt)

]
e−iµjt/~

= n1D
√
n1D

∑
m

∫
d3r′Vd(r − r′)

[
ψm(ρ′){um(ρ′) + vm(ρ′)}ei(z′kz−ωt)

]
ψj(ρ)

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){um(ρ′) + vm(ρ′)}] ei(zkz−ωt)Vd(ρ− ρ′, kz)ψj(ρ)

Vd(ρ− ρ′, qz) :

We shall start with the full 3D dipolar term.

Vd(r1 − r2) = gd
(r1 − r2)3 (1− 3(d̂ · (r̂1 − r̂2))2)

= gd
r3 (1− 3(d̂ · r̂)2)

= gd

(x2 + y2 + z2) 3
2

[
1− 3{(cosαx̂+ sinαẑ) · (xx̂+ yŷ + zẑ)}2

x2 + y2 + z2

]

= gd

(x2 + y2 + z2) 3
2

[
1− 3{x cosα + z sinα}2

x2 + y2 + z2

]

= gd

(x2 + y2 + z2) 3
2

[
1− 3

(
x2 cos2 α + xz sin 2α + z2 sin2 α

x2 + y2 + z2

)]

Now we shall take the Fourier transform only along the z direction.

Vd(x, y, kz) =
∫
dze−izkzVd(r)

=
∫
dze−izkz

gd

(x2 + y2 + z2) 3
2

[
1− 3

(
x2 cos2 α + xz sin 2α + z2 sin2 α

x2 + y2 + z2

)]

= gd

∫
dze−izkz

[
1

(x2 + y2 + z2) 3
2
− 3

(
x2 cos2 α + xz sin 2α + z2 sin2 α

(x2 + y2 + z2) 5
2

)]

= gd

[
2|kz|(3 cos2 α− 2)K1(

√
x2 + y2|kz|)√

x2 + y2 + 2ixkz|kz| sin 2αK1(
√
x2 + y2|kz|)√
x2 + y2

+2k2
z{(x2 + y2) sin2 α− x2 cos2 α}K2(

√
x2 + y2|kz|)

x2 + y2

]
(B.9)
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B.2.1 Alternately:

b

∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}e−i(z′kz−ωt)

]√
n1D

×
[
ψj(ρ) + uj(ρ)ei(zkz−ωt) + v∗j (ρ)e−i(zkz−ωt)

]
e−iµjt/~

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){u∗m(ρ′) + v∗m(ρ′)}] e−i(zkz−ωt)

∫ d2q

(2π)2 e
iq(ρ−ρ′)Vd(qρ,−kz)ψj(ρ)

Similarly,

c

∑
m

∫
d3r′Vd(r − r′)n1D

[
ψm(ρ′){um(ρ′) + vm(ρ′)}ei(z′kz−ωt)

]√
n1D

×
[
ψj(ρ) + uj(ρ)ei(zkz−ωt) + v∗j (ρ)e−i(zkz−ωt)

]
e−iµjt/~

= n1D
√
n1D

∑
m

∫
d2ρ′ [ψm(ρ′){um(ρ′) + vm(ρ′)}] ei(zkz−ωt)

∫ d2q

(2π)2 e
iq(ρ−ρ′)Vd(qρ, kz)ψj(ρ)

Taking the zeroth order term from both left and right hand sides of the simplified
GPE we obtain:

µjψ(ρ) = − ~2

2m∇
2
ρψj(ρ) + 1

2mω
2ρ2ψj(ρ) + gn|ψj(ρ)|2ψj(ρ)

+
∑
m

∫ d2k

(2π)2 e
ik.ρVd(kρ, 0)nm(kρ)n1Dψj(ρ) (B.10)

Collecting coefficients of eiωt,

(µj − ~ω)vj = − ~2

2m(∇2
x +∇2

y − k2
z)vj + 1

2mω
2ρ2vj + 2gn|ψj|2vj + gn|ψj|2uj

+
∑
m

∫ d2k

(2π)2 e
−ik.ρVd(kρ, 0)n∗m(kρ)n1Dvj(ρ)

+n1D
∑
m

∫
d2ρ′ [ψm(ρ′){um(ρ′) + vm(ρ′)}]

∫ d2q

(2π)2 e
−iq(ρ−ρ′)Vd(qρ,−kz)ψj(ρ)

(B.11)

Taking a conjugate over the whole equation to convert v∗ to v adds a negative sign to
eiq(ρ−ρ

′) of the last term.



APPENDIX B. BOGOLIUBOV DISPERSION RELATION 117

And coefficients of e−iωt,

(µj + ~ω)uj = − ~2

2m(∇2
x +∇2

y − k2
z)uj + 1

2mω
2ρ2uj + 2gn|ψj|2uj + gn|ψj|2vj

+
∑
m

∫ d2k

(2π)2 e
ik.ρVd(kρ, 0)n∗m(kρ)n1Duj(ρ)

+n1D
∑
m

∫
d2ρ′ [ψm(ρ′){um(ρ′) + vm(ρ′)}]

∫ d2q

(2π)2 e
iq(ρ−ρ′)Vd(qρ, kz)ψj(ρ)

(B.12)

Adding and subtracting Eq. (B.11) and (B.12) for one layer(j = 1) gives:

~ωf−(x, y) = − ~2

2m(∇2
x +∇2

y − k2
z)f+(x, y) +

(1
2mω

2ρ2 − µj
)
f+(x, y)

+3gn|ψj|2f+(x, y) +
∑
m

∫ d2k

(2π)2 e
−ik.ρVd(kρ, 0)n∗m(kρ)n1Df+(ρ)

+2n1D
∑
m

∫
d2ρ′ψm(ρ′)f+(ρ′)

∫ d2q

(2π)2 e
iq(ρ−ρ′)Vd(qρ, kz)ψj(ρ)

~ωf+(x, y) = − ~2

2m(∇2
x +∇2

y − k2
z)f−(x, y) +

(1
2mω

2ρ2 − µj
)
f−(x, y)

+gn|ψj|2f−(x, y) +
∑
m

∫ d2k

(2π)2 e
−ik.ρVd(kρ, 0)n∗m(kρ)n1Df−(ρ)

Dispersion relation for quasi-2D, quasi-1D and purely uniform 3D condensates starting
from quasi-2D and quasi-1D and 3D GPE have been discussed inside the chapters 3, 4,
and 5 respectively.



Appendix C

Calculation of Modes

The lagrangian density for a trapped 3D gas is,

L = i~
2

(
ψ
dψ∗

dt
− ψ∗dψ

dt

)
+ ~2

2m |∇ψ|
2 + g

2 |ψ|
4 + 1

2 |ψ(r)|2
∫
d3r′Vd(r − r′)|ψ(r′)|2

+2(m/~2)3/2

15π3N
g5/2
m |ψ|5

∫
dΩk[β + F(θk, φk, α)]5/2

(C.1)

We use an ansatz normalized to 1. It is general expression to mix the x and z coordi-
nates using the rotation angle θ,

ψ(x, y, z) = 1
π3/4

√
LxLyLz

exp
[
− x′2

2L2
x

− z′2

2L2
z

− y2

2L2
y

+ ix′2βx + iy2βy + iz′2βz + ix′z′βxz

]

where, 
cos θp 0 −sinθp

0 1 0
sin θp 0 cos θp



x

y

z

 =


x′

y′

z′

 (C.2)

Replacing the ansatz in the Lagrangian and simplifying,

L = ~
2(L2

xβ̇x + L2
yβ̇y + L2

zβ̇z) + ~
2(L2

x − L2
z)βxz θ̇p

+ ~2

4m

(
1
L2
x

+ 1
L2
y

+ 1
L2
z

+ (4β2
x + β2

xz)L2
x + 4β2

yL
2
y + (4β2

z + β2
xz)L2

z

)

+m8 [2ω2
yL

2
y + (L2

x + L2
z)(ω2

x + ω2
z) + (L2

x − L2
z)(ω2

x − ω2
z) cos 2θp]

+ g

2(2π)3/2LxLyLz
+ VDDI

2 +
(2

5

)5/2 (m/~)3/2

3Nπ21/4
g5/2
m

∫
dΩk[β + F(k, α)]5/2
(LxLyLz)3/2

118
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The Euler-Lagrange equations for variational parameter β becomes,

d

dt

(
∂L

∂β̇i

)
− ∂L

∂βi
= 0

=⇒ βi = m

2~
L̇i
Li

(C.3)

And,

βxz = m

~

(
L2
z − L2

x

L2
z + L2

x

)
θ̇p (C.4)

We do the transformation L′ = L− dG
dt

where G = ~
2
∑
i βiL

2
i . Replacing the expressions

for βi’s, the new Lagrangian becomes,

L = ~2

4m

(
1
L2
x

+ 1
L2
y

+ 1
L2
z

)
− m

4 (L̇x
2 + L̇y

2 + L̇z
2) + g

2(2π)3/2LxLyLz
+ VDDI

2

+m4 [ω2
yL

2
y + ω2

x(L2
x cos2 θp + L2

z sin2 θp) + ω2
z(L2

z cos2 θp + L2
x sin2 θp)] + γQFg

5/2
m Q5

(LxLyLz)3/2

−m4
(L2

x − L2
z)2

(L2
x + L2

z)
θ̇p

2 (C.5)

Next we obtain the Euler-Lagrange Equations of Li and θp,

mL̈x = ~2

mL3
x

−mLx(ω2
x cos2 θp + ω2

z sin2 θp) + mLxθ̇p
2

(L2
x + L2

z)2 (L4
x + 2L2

xL
2
z − 3L4

z)

+ g

(2π)3/2L2
xLyLz

− ∂VDDI
∂Lx

+ 3γQFg5/2
m Q5

Lx(LxLyLz)3/2 (C.6)

mL̈y = ~2

mL3
y

−mLyω2
y + g

(2π)3/2LxL2
yLz
− ∂VDDI

∂Ly
+ 3γQFg5/2

m Q5

Ly(LxLyLz)3/2 (C.7)

mL̈z = ~2

mL3
z

−mLz(ω2
z cos2 θp + ω2

x sin2 θp) + mLz θ̇p
2

(L2
x + L2

z)2 (L4
z + 2L2

xL
2
z − 3L4

x)

+ g

(2π)3/2LxLyL2
z

− ∂VDDI
∂Lz

+ 3γQFg5/2
m Q5

Lz(LxLyLz)3/2 (C.8)

(L2
x − L2

z)2

L2
x + L2

z

mθ̈p = m

2 (ω2
x − ω2

z)(L2
x − L2

z) sin 2θp −
∂VDDI
∂θp

−2mθ̇p
(L2

x − L2
z)

(L2
x + L2

z)2 [LxL̇x(3L2
z + L2

x)− LzL̇z(3L2
x + L2

z)] (C.9)



Appendix D

Energy Functional

The 3D energy functional for a doubly-dipolar BEC has the following expression:

E =
∫
d3r

~2

2m |∇ψ|
2 + g

2

∫
d3r|ψ|4 + 1

2

∫
d3r|ψ(r)|2

∫
d3r′Vd(r − r′)|ψ(r′)|2

+2(m/~2)3/2

15π3N
g5/2
m

∫
d3r|ψ|5

∫
dΩk[β + F(θk, φk, α)]5/2 (D.1)

Ansatz

We use a general Gaussian expression with tilted major axis in the x− z coordinates by
an angle θp. This angle mixes the x and z components.

ψ(x, y, z) = 1
π3/4

√
LxLyLz

exp
[
−(x cos θp − z sin θp)2

2L2
x

− (x sin θp + z cos θp)2

2L2
z

− y2

2L2
y

]

(D.2)

We have used the following rotating matrix for the argument in the ansatz.
cos θp 0 −sinθp

0 1 0
sin θp 0 cos θp



x

y

z

 =


x′

y′

z′

 (D.3)

Non-dipolar Energies

Ekin = ~2

4m

(
1
L2
x

+ 1
L2
y

+ 1
L2
z

)
(D.4)

Etrap = m

8 [2ω2
yL

2
y + (L2

x + L2
z)(ω2

x + ω2
z) + (L2

x − L2
z)(ω2

x − ω2
z) cos 2θp] (D.5)
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Ec = g

2(2π)3/2LxLyLz
(D.6)

Dipolar Energy

EDDI = = 1
2

∫ d3k

(2π)3Vd(k)n(k)2

= gm
(2π)3/2

∫ 2π

0
dθ

[
− 1 + γ

3LyB(θ, θp)
+ cos2 θ + γ cos(α− θ)2

(B(θ, θp)− L2
y)

×


tan−1


√
B(θ, θp)− L2

y

Ly


√
B(θ, θp)− L2

y

− Ly
B(θ, θp)




(D.7)

= VDDI
2

where,

B(θ, θp) = sin2 θ(L2
z sin2 θp+L2

x cos2 θp)+cos2 θ(L2
z cos2 θp+L2

x sin2 θp)+sin θ cos θ(L2
z−L2

x) sin 2θp

LHY Energy

ELHY =
(2

5

)5/2 (m/~)3/2

3Nπ21/4
g5/2
m

∫
dΩk[β + F(k, α)]5/2
(LxLyLz)3/2 (D.8)

Total Energy

E = ~2

4m

(
1
L2
x

+ 1
L2
y

+ 1
L2
z

)
+ m

8 [2ω2
yL

2
y + (L2

x + L2
z)(ω2

x + ω2
z) + (L2

x − L2
z)(ω2

x − ω2
z) cos 2θp]

+ g

2(2π)3/2LxLyLz
+ VDDI

2 +
(2

5

)5/2 (m/~)3/2

3Nπ21/4
g5/2
m

∫
dΩk[β + F(k, α)]5/2
(LxLyLz)3/2

(D.9)



Appendix E

Miscellaneous

E.1 Dimensional Reduction of GPE with Tilted Dipoles

E.1.1 From 3D to Quasi-2D

Below we demonstrate the procedure to reduce a 3D GPE to a quasi-2D GPE where
in z direction the condensate is tightly trappedso that the motion is effectively frozen.
We employ the factorisation, ψ(r) = ψ(x, y, t)φ0(z) where φ0(z) = 1√

lzπ1/4 e
−z2/2l2z is the

Gaussian ground state solution of 1D harmonic trap with frequency ωz and lz =
√
~/mωz.

We replace it in the 3D GPE,

i~
∂

∂t
(ψ(x, y, t)φ0(z)) =

[
−~2

2m (∇2
x,y +∇2

z) + 1
2mω

2
zz

2 + g|ψ(x, y, t)|2|φ0(z)|2

+
∫
dr′Vd(r − r′)|ψ(x′, y′, t)|2|φ0(z′)|2

]
ψ(x, y, t)φ0(z)(E.1)

Now [
∂2

∂z2 + 1
2mω

2
zz

2
]
φ0(z) = 1

2~ωzφ0(z) (E.2)

Multiplying both sides of the equation by φ∗0(z) and taking integral over dz we obtain,

i~
∂

∂t
ψ(x, y, t) = − ~2

2m∇
2
xyψ(x, y, t) + 1

2~ωz + g|ψ(x, y, t)|2
∫
|φ0(z)|4dz

+
∫
dr′Vd(r − r′)|ψ(x′, y′, t)|2|φ0(z′)|2

∫
|φ0(z)|2dz

We shall only explicitly calculate the dipole-dipole interaction,
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∫ [∫
dr′Vd(r − r′)|ψ(x′, y′, t)|2|φ0(z′)|2

]
|φ0(z)|2dz

=
∫ [∫ d3k

(2π)3Vd(k)n(kx, ky)n(kz)ei(xkx+yky+zkz)
]
|φ0(z)|2dz (E.3)

=
∫ dkxdkydkz

(2π)3 Vd(k)n(kx, ky)n2(kz)ei(xkx+yky)

= 1
(2π)2

2gd
3

∫
dkxdkydkz

[
3(k2

x sin2 α + kxkz sin 2α + kz cos2 α)
k2
x + k2

y + k2
z

− 1
]

×n(kx, ky)e−
k2
zl

2
z

2 ei(xkx+yky)

Now taking the dkz integral and converting to cylindrical coordinates,

f(kx, ky) =
∫ [

3(k2
x sin2 α + kxkz sin 2α + kz cos2 α)

k2
x + k2

y + k2
z

− 1
]
e−

k2
zl

2
z

2 dkz

=
∫ [

3(k2
ρ cos2 θk sin2 α + kρkz cos θk sin 2α + k2

z cos2 α)
k2
ρ + k2

z

− 1
]
e−

k2
zl

2
z

2 dkz

=
√

2π(3 cos2 α− 1) + 3πke k
2
2 Erfc

[
k√
2

]
(sin2 α cos2 θk − cos2 α)

where k = kρlz and kρ =
√
k2
x + k2

y. So the nonlinear GPE is reduced to,

i~
∂ψ(x, y, t)

∂t
=

[
−~2

2m ∇
2
x,y + g√

2πlz
|ψ(x, y, t)|2

+2gd
3lz

∫ d2k

(2π)2 e
i(xkx+yky)f(kx, ky)ñ(kx, ky)

]
ψ(x, y, t)

(E.4)

GPE along z-axis

For a condensate uniform in x − y plane and trapped tightly along z the wave function
gets separated as Ψ(r) =

√
nψ(z)e−iµt/~. Note that we do not assume a Gaussian ansatz



APPENDIX E. MISCELLANEOUS 124

along z-axis, rather we are interested in the true density profile of ψ(z).

i~
∂

∂t
Ψ(r, t) =

[
− ~2

2m∇
2 + Vt(r) + g|Ψ(r, t)|2 +

∫
dr′Vd(r− r′)|Ψ(r′, t)|2

]
Ψ(r, t)

=⇒ µψ(z) =
[
−~2∂2

z

2m + Vt(z) + gn|ψ(z)|2 +
∫ d3k

(2π)3 e
ik.rVd(k)(2π)2nδ(kx)δ(ky)n(kz)

]
ψ(z)

=⇒ µψ(z) =
[
−~2∂2

z

2m + Vt(z) + gn|ψ(z)|2 + n
∫ dkz

2π e
izkzVd(kx = 0, ky = 0, kz)n(kz)

]
ψ(z)

=⇒ µψ(z) =
[
−~2∂2

z

2m + Vt(z) + gn|ψ(z)|2 + 4πgdn
3 (3 cos2 α− 1)

∫ dkz
2π e

izkzn(kz)
]
ψ(z)

=⇒ µψ(z) =
[
−~2∂2

z

2m + Vt(z) + gn|ψ(z)|2 + 4πgdn
3 (3 cos2 α− 1)|ψ(z)|2

]
ψ(z)

0 =
[
−~2∂2

z

2m + Vt(z) + geffn|ψ(z)|2 − µ
]
ψ(z) (E.5)

where, geff = g + 4πgd
3 (3 cos2 α− 1).

E.1.2 From 3D to Quasi-1D

The procedure to reduce a 3D GPE to a quasi-1D GPE is similar to the calculations
in previous section. Here the factorisation, ψ(r) = ψ(z, t)φ0(x, y) where φ0(x, y) =

1
l
√
π
e−(x2+y2)/2l2ρ

i~
∂

∂t
(ψ(z, t)φ0(x, y)) =

[
−~2

2m (∇2
x,y +∇2

z) + 1
2mω

2
ρ(x2 + y2) + g|ψ(z, t)|2|φ0(x, y)|2

+2gd
3

∫
dr′Vd(r − r′)|ψ(z, t)|2|φ0(x, y)|2

]
ψ(z, t)φ0(x, y) (E.6)

Multiplying both sides of the equation by φ∗0(x, y) and taking integral over dx dy we
obtain,

i~
∂

∂t
ψ(z, t) = − ~2

2m∇
2
zψ(z, t) + ~ωρ + g|ψ(z, t)|2

∫ ∫
|φ0(x, y)|4dx dy

+
∫
dr′Vd(r − r′)|ψ(z′, t)|2|φ0(x′, y′)|2

∫ ∫
|φ0(x, y)|2dx dy

We shall only explicitly calculate the dipole-dipole interaction,
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∫
dr′Vd(r − r′)|ψ(z′, t)|2|φ0(x′, y′)|2

∫ ∫
|φ0(x, y)|2dx dy

=
∫ [∫ d3k

(2π)3Vd(k)n(kz)n(kx, ky)ei(xKx+yky+zkz)
]
|φ0(x, y)|2dz

=
∫ dkxdkydkz

(2π)3 Vd(k)n(kz)n2(kx, ky)ei(zkz)

= 1
2π

gd
3π

∫
dkxdkydkz

[
3(k2

x sin2 α + kxkz sin 2α + kz cos2 α)
k2
x + k2

y + k2
z

− 1
]

×n(kz)e−
k2
ρl

2
ρ

2 ei(zkz)

Now taking the dkz integral and converting to cylindrical coordinates,

f(kz) =
∫ ∫ [

3(k2
x sin2 α + kxkz sin 2α + kz cos2 α)

k2
x + k2

y + k2
z

− 1
]
e−

(k2
x+k2

y)l2ρ
2 dkxdky

=
∫ ∫

kρ

[
3(k2

ρ cos2 θk sin2 α + kρkz cos θk sin 2α + k2
z cos2 α)

k2
ρ + k2

z

− 1
]
e−

k2
ρl

2
ρ

2 dkρdθk

= π(1 + 3 cos 2α)
2

(
3
2e

k2
z/2k2

zΓ
[
0, k

2
z

2

]
− 1

)
(E.7)

where kz = kzlρ.
So the nonlinear GPE is reduced to,

i~
∂ψ(z, t)
∂t

=
[
−~2

2m ∇
2
z + g

2πl2ρ
|ψ(z, t)|2 + gd

3π

∫ dkz
2π e

izkzf(kz)ñ(kz)
]
ψ(z, t)

(E.8)
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E.2 Scaling the Quasi-2D GPE w.r.t. Chemical Po-
tential

The 2D chemical potential→

µ = gn√
2πlz

[
1 + 4πβ

3 (3 cos2 α− 1)
]

= ~2

2mξ2 (E.9)

where ξ is the healing length and β = gd/g. Now to make the 2D NLGPE dimensionless
w.r.t. µ, let us first consider the L.H.S. of the Eq. (E.4)

i~
µ

∂

∂t
ψ = i

∂ψ

∂t̃
(E.10)

Now let us consider the R.H.S.,
The first term→

~2k2

2mµ = ~2

2m
2mξ2

~2 k2 = (kξ)2 = k̃2 (E.11)

The second term →

g[1 + 2αs cos(2ωt)]|ψ|2√
2πlzµ

= g|ψ|2√
2πlz

[1 + 2αs cos(2ωt)]
gn√
2πlz

[
1 + 4πβ

3 (3 cos2 α− 1)
]

= |ψ̃|2[1 + 2αs cos(2ωt)]

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
] (E.12)

The third term→

2gd
3lzµ

∫ d2k

(2π)2 e
i(xkx+yky)f(kx, ky)ñ(kx, ky)

= 2gd
3
√

2πlz

∫ d2k

(2π)2 e
i(xkx+yky)√2πf(kx, ky)ñ(kx, ky)

gn√
2πlz

[
1 + 4πβ

3 (3 cos2 α− 1)
]

= 2β
3

∫ d2k

(2π)2 e
i(xkx+yky)√2πf(kx, ky)ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
] (E.13)

We expand f(kx, ky) = f0 + f1(kx, ky) into a momentum independent and dependent

part respectively, where f0 =
√

2π(3 cos2 α−1) and f1(kx, ky) = 3πke k
2
2 Erfc

[
k√
2

]
(sin2 α cos2 θk−

cos2 α).
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= 2β
3

∫ d2k

(2π)2 e
i(xkx+yky)√2π(f0 + f1(kx, ky))ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
]

= 2β
3

∫ d2k

(2π)2 e
i(xkx+yky)√2π[

√
2π(3 cos2 α− 1) + f1(kx, ky)]ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
]

= 4πβ
3

(3 cos2 α− 1)
∫ d2k

(2π)2 e
i(xkx+yky)ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
] + 2β

3

∫ d2k

(2π)2 e
i(xkx+yky)√2πf1(kx, ky)ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
]

= 4πβ
3

(3 cos2 α− 1)|ψ|2

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
] + 2β

3

∫ d2k

(2π)2 e
i(xkx+yky)√2πf1(kx, ky)ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
] (E.14)

Now writing second and third terms together after simplifying we will obtain,

|ψ̃|2[1 + 2αs cos(2ωt) + 4πβ
3 (3 cos2 α− 1)]

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
] + 2β

3

∫ d2k

(2π)2 e
i(xkx+yky)√2πf1(kx, ky)ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
]

(E.15)

Hence, the dimensionless 2D NLGPE becomes,

i
∂ψ̃

∂t̃
=

k̃2 +
|ψ̃|2[1 + 2αs cos(2ωt) + 4πβ

3 (3 cos2 α− 1)]

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
]

+2β
3

∫ d2k

(2π)2 e
i(xkx+yky)√2πf1(kx, ky)ñ(kx, ky)

ñ

[
1 + 4πβ

3 (3 cos2 α− 1)
]

 ψ̃ (E.16)
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