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1
Introduction

A foundational theorem of Pachner, Theorem 5.5 of [35] showed that PL-triangulations
of PL homeomorphic manifolds are related by local combinatorial transformations called
bistellar moves or Pachner moves. Whitehead in Theorem 8 of [43] showed that smooth
triangulations of diffeomorphic smooth manifolds are related by smooth Pachner moves.
The same question can be asked for other classes of manifolds as well, for example the
constant curvature Riemannian manifolds with geometric triangulations.

Triangulations of a manifold are well understood structures, they have been actively
used in research for a long time. We can use them to convert topological or geometric
problems of the manifold into combinatorial ones. The books by Rourke and Sanderson
[37] and Ziegler [46] are good sources of introduction to the theory of piecewise linear
topology.

Pachner defined bistellar moves or Pachner moves in [35], which can be performed on
the triangulation of a manifold to get a new triangulation. For a dimension n manifold
there are n+ 1 such local moves. Pachner moves involve removing a certain subcomplex
and replacing it with another simplicial complex. Pachner moves were used by Tuarev
and Viro [42] to define 3-manifold invariants. To define an invariant for PL 3-manifold
it suffices to show that the quantity is unchanged by these Pachner moves. We will look
at Pachner moves in detail in Chapter 2 .

Polytopes and polytopal complexes have been an important class of topological spaces
in our research. We have extended some of the results for polytopes to star-convex poly-
hedra. We have extensively used the theory of shellability of polytopes and polyhedra.
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Shelling of a triangulated polytope, introduced in the seminal 1971 paper of Bruggesser
and Mani [5], is a way to inductively remove simplexes σi from the triangulation such that
at each stage ∂σi intersects what remains in a pure (n− 1)−dimensional complex. It is
easy to see that 2-dimensional polytopes are shellable. Higher dimensional PL polytopes
are not in general shellable. The earliest example of nonshellable topological subdivisions
of 3-polytopes were given by Newman [34] way back in 1926. Later Rudin [38] showed that
even linear subdivisions of a 3-simplex may not be shellable. For spheres, Lickorish [25]
has given several examples of unshellable triangulations. These examples illustrate that
even in the simplest of cases, the property of shellability may not hold. Recently though
Adiprasito and Benedetti [1] have shown that linear subdivisions of convex polytopes
are shellable up to subdivision. We have used shellable triangulations of polyhedra for
counting the number of Pachner moves required in changing the triangulation of these
polyhedra.

It is known that triangulations of convex polytopes are related by stellar exchanges
[32] [44], Theorem 2.2.3 in the thesis. If P is a polytope, then idea is to subdivide a tri-
angulated simplicial cobordism P × [0, 1] to a regular triangulation by stellar subdivision
and realise stellar moves as projection of upper boundary onto P ×{0} under a sequence
which inductively removes simplexes from top to bottom, where upper boundary is the
boundary visible from above. We call a triangulation regular if there is a piecewise lin-
ear function from the triangulation to R which is strictly convex across codimension one
simplexes. We have given detailed definitions and examples in Section 2.2 of regular
triangulations. We prove a result similar to Theorem 2.2.3 for star-convex flat polyhedra,
extending this result to geometric manifolds is the main aim of Chapter 2. We show
that geometric triangulations of isometric constant curvature Riemanannian manifolds
are related by geometric Pachner moves up to derived subdivisions and for low dimension
these triangulations are related directly by geometric Pachner moves. A geometric tri-
angulation of a Riemannian manifold is a finite triangulation where the interior of each
simplex is a totally geodesic disk. A totally geodesic disk is a disk where every geodesic
under the induced Riemannian metric is also a geodesic of the manifold.

The problem of determining if two given manifolds are homeomorphic has been ex-
tensively studied. Using ideas from Perelman’s proof of the geometrization of closed
irreducible three dimensional manifolds, Scott and Short [40] have built on work by
Manning, Jaco, Oertel and others to give an algorithm for the homeomorphism prob-
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lem of such manifolds. More recently, Kuperberg [23] has given a self-contained proof
using only the statement of geometrization to show that the homeomorphism problem
for 3-manifolds has computational complexity that is bounded by a bounded tower of
exponentials in the number of tetrahedra. Mijatovic in a series of papers gives such
a bound for a large class of 3-manifolds [28] [29] [30] [31]. The bounds he obtain are
also in terms of bounded towers of exponentials on the number of tetrahedra. In 1958,
Markov [26] had shown that the homeomorphism problem is unsolvable for manifolds of
dimension greater than 3. This curtailed the search for a general algorithm applicable to
manifolds of all dimension. For closed hyperbolic manifolds, the fundamental group is a
complete invariant but it is not easy to algorithmically check if two Kleinian groups are
isomorphic.

In Chapter 3 we ask the next natural question, can we get a bound on the number of
Pachner moves required to relate geometric trianguations? We answer this by showing
that any two geometric triangulations of a closed hyperbolic, spherical or Euclidean
manifold are related by a sequence of combinatorial Pachner moves and barycentric
subdivisions of bounded length. This bound is in terms of the dimension of the manifold,
the number of top dimensional simplexes and bound on the lengths of edges of the
triangulation. If we also have an upper diameter bound and lower volume bound for the
manifold, then this bound is a cubic polynomial in the number of simplexes and doubly
exponential in the upper length bound of edges. This leads to an algorithm to check if
two geometrically triangulated closed hyperbolic or low dimensional spherical manifolds
are isometric or not. We give an algorithmic solution for the homeomorphism problem
on the restricted class of geometrically triangulated constant curvature manifolds, by
obtaining a bound on the number of barycentric subdivisions and Pachner moves needed
to relate them.

A Once-punctured torus bundle is a fiber bundles over S1 with fiber as once-punctured
torus. Most of the Dehn fillings performed on once-punctured torus bundles give man-
ifolds which are not Haken or reducible. Culler, Jaco, Rubinstein in [6] studied once-
punctured torus bundles and listed all possible essential surfaces, Definition 4.1.3. Floyd
and Hatcher [11] studied essential surfaces in hyperbolic once-punctured torus bundles.
Essential surfaces.

In 1961, Wolfgang Haken introduced Haken manifolds. In 1962, Haken showed that
Haken manifolds have a set of incompressible surfaces such that cutting along them gives
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3-balls, this set of incompressible surfaces is known as a Haken hierarchy of the manifold.
William Jaco and Ulrich Oertel in [16] gave an algorithm to determine if a given 3-
manifold is Haken. Haken manifolds is a category of well studied manifolds, Thurston
proved hyperbolization conjecture for atoroidal Haken manifolds, which led him to ask
the same question for each component of prime, closed 3-manifolds when they are cut
along essential tori. An important class of manifolds we get from cutting along these tori
are Siefert fibered spaces. Mijatovic studied Siefert Fibered Spaces and gave a bound
on the number of Pachner moves required to relate two of their triangulations. Our
attempt is to prove a similar result for once punctured torus bundles using ideas inspired
by Mijatovic’s result [29].

Mijatovic’s well known result [31], Theorem 4.1.1 for knot complements gives a bound
on number of Pachner moves required to relate two of their triangulations. In Chapter
4, we attempt at generalizing Mijatovic’s result for bounds on number of Pachner moves
required to relate two triangulations of once-punctured torus bundles. Our idea is to use
a Haken hierarchy for once-punctured torus bundles given by Jaco, Culler and Rubinstein
[6] and cut along them to simplify these manifolds.

In the thesis, as the chapters have different backgrounds, we have added definitions
and theorems chapter-wise to ensure the completeness of each chapter.



2

Geometric Pachner Moves

2.1 Introduction

We know that every constant curvature manifold has a geometric triangulation. In the
converse direction, Cartan has shown that if for every point p in a Riemannian manifold
M and every subspace V of TpM there exists a totally geodesic submanifold S through
p with TpS = V , then M must have constant curvature; which seems to suggest that
the only manifolds which have many geometric triangulations are the constant curvature
ones. A common subcomplex of simplicial triangulations K1 and K2 of M is a simplicial
complex structure L on a subspace of M such that K1||L| = K2||L| = L. The content of
this chapter corresponds to our work from the paper [19]. Following is the main result
of the chapter:

Theorem 2.1.1.Let K1 and K2 be geometric simplicial triangulations of a compact
constant curvature manifold M with a (possibly empty) common subcomplex L with
|L| ⊃ ∂M . When M is spherical we assume that the diameter of the star of each simplex
is less than π. Then for some s ∈ N, the s-th derived subdivisions βsK1 and βsK2 are
related by geometric Pachner moves which keep βsL fixed.

We also have similar results for cusped hyperbolic manifolds. We call K the geomet-
ric triangulation of a cusped hyperbolic manifold M if for some subset V ′ of the set of

5



6 2.1. Introduction

vertices of K, M = |K| \ |V ′| and the interior of each simplex of K is a totally geodesic
disk in M . Cusped finite volume hyperbolic manifolds have canonical ideal polyhedral
decompositions [10]. Further decomposing this into ideal triangulations without intro-
ducing new vertices may result in degenerate flat tetrahedra. If however we allow genuine
vertices, simply taking a barycentric subdivision of this polyhedral decomposition gives
a geometric triangulation for any cusped manifold. For cusped manifolds we have the
following weaker result:

Theorem 2.1.2.Let K1 and K2 be geometric simplicial triangulations of a cusped hy-
perbolic manifold which have a common geometric subdivision. Then for some s ∈ N, the
s-th derived subdivisions βsK1 and βsK2 are related by geometric Pachner moves.

In low dimension we get a stronger result because of the fact that derived subdivisions
can be realised by geometric Pachner moves, so we get the following immediate corollary:

Corollary 2.1.3.Let K1 and K2 be geometric simplicial triangulations of a closed con-
stant curvature 3-manifold M . When M is spherical we assume that the diameter of
the star of each simplex is less than π. Then K1 is related to K2 by geometric Pachner
moves.

An abstract simplicial complex consists of a finite set K0 (the vertices) and a family
K of subsets of K0 (the simplexes) such that if B ⊂ A ∈ K then B ∈ K. A simplicial
isomorphism between simplicial complexes is a bijection between their vertices which
induces a bijection between their simplexes. A realisation of a simplicial complex K is a
subspace |K| of some RN , where K0 is represented by a finite subset of RN and vertices
of each simplex are in general position and represented by the linear simplex which is
their convex hull. Every simplicial complex has a realisation in RN where N is the size of
K0, by representing K0 as a basis of RN . Any two realisations of a simplicial complex are
simplicially isomorphic. For A a simplex of K, we denote by ∂A the boundary complex
of A. When the context is clear, we shall use the same symbol A to denote the simplex
and the simplicial complex A ∪ ∂A. We call K a simplicial triangulation of a manifold
M if there exists a homeomorphism from a realisation |K| of K to M . The simplexes of
this triangulation are the images of simplexes of |K| under this homeomorphism.

Definition 2.1.4. For A and B simplexes of a simplicial complex K, we denote their
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Figure 2.1: Join A ? ∂B.

join A ? B as the simplex A ∪ B. Let K0 = {a1, . . . , an, b1, . . . , bs} be the set of vertices
of a simplicial complex K, A = {a1, . . . , al} and B = {b1, . . . , bt}, then the join A ? B

is defined as the simplex formed by set A ∪ B = {a1, . . . , al, b1, . . . , bt}. As the join
of totally geodesic disks in a constant curvature manifold gives a totally geodesic disk,
operations involving joins are well-defined in the class of geometric triangulations of a
constant curvature manifold.

The link of a simplex A in a simplicial complex K is the simplicial complex defined
by lk(A,K) = {B ∈ K : A ? B ∈ K}. The (closed) star of A in K is the simplicial
complex defined by st(A,K) = A ? lk(A,K).

Definition 2.1.5. Let A be a non-empty simplex in a combinatorial n-manifold M such
that lk(A,K) = ∂B ? L for some non-empty simplex B such that B /∈ K but B ⊂ M

and some complex L ∈ K. Then K is related to K ′ by a stellar exchange κ(A,B), if K ′

is obtained by replacing A ? ∂B ? L with ∂A ? B ? L.

Definition 2.1.6. Let A be an r-simplex in a simplicial complexK of dimension n then a
stellar subdivision on A gives the geometric triangulation (A, a)K by replacing st(A,K)
with a ? ∂A ? lk(A,K) for a ∈ int(A). The inverse of this operation (A, a)−1K is called
a stellar weld and they both are together called stellar moves.

A Pachner move is defined as the stellar exchange K(A,B) when lk(A,K) = ∂B



8 2.1. Introduction

Figure 2.2: 2–Dimensional Pachner Moves.

for some n − r dimensional geometric simplex B /∈ K, i.e. when L = ∅, it consists of
changing K by replacing A ? ∂B with ∂A ? B. Note that the Pachner move κ(A,B) is
the composition of a stellar subdivision and a stellar weld, namely (B, a)−1(A, a). We
list the Pachner moves in dimension 2 and 3 in Figure 2.2 and Figure 2.3, where a (k− l)
move represents replacing a complex with k triangles resp. tetrahedra with a complex
with l triangles resp. tetrahedra.

The derived subdivision βK of K is obtained from K by performing a stellar subdi-
vision on all r-simplexes, and ranging r inductively from n down to 1, Figure 2.4 shows
the derived subdivision of a 2-dimensional triangulation.
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Figure 2.3: 3–Dimensional Pachner Moves

Figure 2.4: Derived subdivision of a simplicial complex.
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All stellar and Pachner moves we consider are geometric in nature. Not every combi-
natorial Pachner move in a geometric manifold can be expressed by geometric Pachner
moves (see Figure 2.5). For details of geometric Pachner moves see Santos [39], where
he has also shown that in dimension at least 5, there exist geometric triangulations of a
polyhedron that can not be related by geometric Pachner moves which do not introduce
new vertices. Among cusped hyperbolic manifolds, it is remarked in [7] that the Figure
Eight knot complement has geometric ideal triangulations which can not be related by
geometric Pachner moves which do not introduce genuine vertices.

2.1.1 Outline of the proof

It is known that linear triangulations of a convex polytope P ⊂ RN are related by stellar
exchanges [32] [44]. The idea of the proof is to take a geometrically triangulated simplicial
cobordism P×I, subdivide it to a regular triangulation with stellar subdivisions and then
realise the stellar moves as projections of the upper boundary onto P under a sequence
which inductively removes simplexes from the top to the bottom. As the supports in
RN of two triangulations of a manifold may be different so when the manifold is not a
polytope we can not take a linear cobordism between them. We observe that simplicially
triangulated constant curvature manifolds are made up of star-convex polyhedra. We
consider the cones of such polyhedra to get a cobordism connecting the cone over the
boundary of the polyhedron and the polyhedron. We show that with enough derived
subdivisions, the cone of a triangulations of the polyhedron can be made into regular.
So we get a regular cobordism connecting the subdivided cone over the boundary of
polyhedron and the subdivided polyhedron.

Given two geometric triangulations K1 and K2 of a Riemannian manifold M . We get
a common subdivision KC of K1 and K2 by intersecting simplexes of K1 and K2. Then
we show that we can go from Ki to KC using geometric Pachner moves. A subtle point
here is that even if we obtain a common geometric refinement of two geometric triangula-
tions, the refinement may not be a simplicial subdivision of the corresponding simplicial
complexes. To see a topological subdivision which is not a simplicial subdivision, observe
that there exists a simplicial triangulation K of a 3-simplex ∆ which contains in its 1-
skeleton a trefoil with just 3 edges [25]. If K were a simplicial subdivision of ∆ there
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Figure 2.5: Pachner move which is not geometric

would exist a linear embedding of ∆ in some RN which takes simplexes of K to linear
simplexes in RN . As the stick number of a trefoil is 6, there can exist no such embedding.
While there may not exist such a global embedding of a geometric triangulation K as a
simplicial complex in RN which takes geometric subdivisions to linear subdivisions, for
constant curvature manifolds there does exist such a local embedding on stars of sim-
plexes of K. So we can take the intersection of K1 and K2 to get a common subdivision.
Then we prove that we can relate some barycentric subdivision of Ki and KC .
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2.2 Star-Convex Flat Polyhedra

In this section we will prove the main Theorem 2.1.1 for star convex flat polyhedra. We
can observe that star convex flat polyhedra are building blocks of any simplicially trian-
gulated constant curvature manifold. The important property we use here is regularity
of a triangulation. Regularity gives us a way to change the triangulation of a polyhedron
to the cone over its boundary.

A Polytope is a convex hull of finitely many points in some Rn, and polyhedron is a
polytopal complex that is homeomorphic to a ball where a polytopal complex is a union
of polytopes such that the intersection of two polytopes ia a face of each of them.

Definition 2.2.1. We call a polyhedron P in Rn strictly star-convex with respect to a
point x in its interior if for any y ∈ P , the interior of the segment [x, y] lies in the interior
of P . We call the polyhedron P ⊂ Rn flat if it is n-dimensional.

We call a triangulation K of P regular if there is a function h : |K| → R that is
piecewise linear with respect to K and strictly convex across codimension one simplexes
of K. Figure 2.6 is an example of non-regular triangulation of a triangle.

Example 2.2.2.Consider a regular tetrahedron in R3, then a simplicial disk formed by
two faces of this tetrahedron is not a convex flat polyhedron.

In their proof of the weak Oda conjecture, Morelli and Wlodrczyk proved the follow-
ing:

Theorem 2.2.3. [32] [44] Any two triangulations of a convex polyhedron are related by
a sequence of stellar moves.

Our aim in this section is to show that their techniques also give a boundary relative
version for triangulations of strictly star-convex flat polyhedra, with the stronger notion
of bistellar equivalence in place of stellar equivalence. The main theorem of this section
is the following:

Theorem 2.2.4.Let P ⊂ Rn be a strictly star-convex flat polyhedron. Let K1 and K2 be
triangulations of P that agree on the boundary. Then for some s ∈ N, their s-th derived
subdivisions βsK1 and βsK2 are bistellar equivalent.



Chapter 2. Geometric Pachner Moves 13

Figure 2.6: Non regular triangulation

We use the following simple observation in the proof:

Lemma 2.2.5. [Lemma 4, Ch 1 of [45]] Let K and L denote two simplicial complexes
with |K| ⊂ |L|. Then there exists r ∈ N and a subdivision K ′ of K such that K ′ is a
subcomplex of βrL.

Proof. Proof is by induction on number of simplexes of K. When K = ∅, trivially we
have the result. Let A be a top dimensional simplex in K, then subdivision of K \ A
is subcomplex of βr−1L. Let βrL be derived subdivision of βr−1L formed by starring
each simplex B ∈ βr−1L using some point in the interior of B. This way, βrL gives a
subdivision of A formed by subdividing each B ∈ βr−1L which intersects with int(A).
Subivisions of A and K \ A gives us a subdivision of K which is a subcomplex of βrL.
Because of the induction is on number of simplexes of K, we also get that r is bounded
by number of simplexes in K

Theorem 2.2.6. [Theorem 1 of [2]] For every Pl sphere ∆, there exist a k ≥ 0 such that
sdk∆ is polytopal, i.e., it is combinatorially equivalent to the boundary complex of some
convex polytope.

Claim 3 in the proof of Theorem 2.2.6 proves that if D is PL homeomorphic to bound-
ary of some (d + 1)-simplex and βlD is derived subdivision of some regular subdivision
D′ of D, then βlD is also regular.

Lemma 2.2.7.Let K denote a triangulated flat polyhedron. Then for some s ∈ N, its
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s-th derived subdivision βsK is regular.

Proof. Let ∆ be an n-simplex with |∆| ⊃ |K|. By Lemma 2.2.5, there exists an r ∈ N

and subdivision K ′ of K which is a subcomplex of βr∆. As ∆ is trivially a regular
triangulation, so its stellar subdivision βr∆ is also regular. Restricting its regular function
to the subcomplex K ′ we get K ′ to be regular, as codimension one simplexes of K ′ are
also codimension one simplexes of βr∆. As |K| = |K ′| so applying Lemma 2.2.5 a second
time, we get s ∈ N such that βsK is a subdivision ofK ′. Finally as βsK is the subdivision
of a regular subdivision K ′ of K so by Claim 3 in the proof of Theorem 2.2.6, βsK is a
regular triangulation.

Proof of 2.2.4. The techniques in this proof are essentially those of Morelli and Wlodar-
czyk as detailed in Section 2 of [20].

Choose a ∈ Rn+1 outside K1 such that the orthogonal projection map pr : Rn+1 → Rn

takes the support of C(K1) = a ? K1 ⊂ Rn+1 onto P and takes a to the interior of an
n-simplex of K1 i.e., we can choose a such that a ∈ (a′, t) ⊂ Rn+1 where a′ is in the
complement of n− 1− skeleton of K1 in K1. By Lemma 2.2.7, there exists s ∈ N so that
K = βsC(K1) is a regular triangulation with boundary βsK1 ∪ βsC(∂K1). Choose new
vertices of the derived subdivision K such that for any simplex A ∈ K of dimension less
than n+1, pr(A) is a simplex of the same dimension as A. This can be done by choosing
vertices in the interior of each simplex.

Let h : |K| → R be a regular function for K. If a simplex σ′ has some point
above a simplex σ (in the direction of xn+1) then ∂h

∂xn+1
on σ′ is greater than ∂h

∂xn+1
on

σ. So inductively removing simplexes in non-increasing order of the vertical derivative
of h we ensure that the projection of the upper boundary onto P is always one-to-one.
That is, we get a sequence of triangulations Σ0 = K, Σ1, ... , ΣN = K1 such that
Σi+1 = Σi \ σi and the orthogonal projection pr : ∂+Σi → P from the upper boundary of
Σi onto P is one-to-one for every i. Removing an n + 1-simplex σi from K corresponds
to a bistellar move on ∂+Σi. As the projection map is linear so it also corresponds to
a bistellar move taking pr(∂+Σi) to pr(∂+Σi+1). Therefore pr(∂+Σ0) = βsC(∂K1) is
bistellar equivalent to pr(∂+ΣN) = βsK1. Consequently, βsK1 is bistellar equivalent to
βsK2 via βsC(∂K1) = βsC(∂K2).
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2.3 Geometric Manifolds

Definition 2.3.1. Let K be a geometric triangulation of a Riemannian manifold M and
let L be a subcomplex of K. We call K locally geodesically-flat relative to L if for each
simplex A of K \L, st(A,K)\(∂A?lk(st(A,K))) is simplicially isomorphic to the interior
of a star-convex flat polyhedron in Rn by a map which takes geodesics to straight lines.

Example 2.3.2.Let K be some triangulation of an unit sphere S2 in R3 such that each
set of three vertices represents a unique 2-simplex, let S = (0, 0,−1) and L = K\st(S,K)
and θ : K \L→ R2 be radial projection from the center of the ball bounded by the sphere.
It is easy to see that θ is a simplicial isomorphism between K \L to θ(K \L) and it takes
st(A\K)\ (∂A? lk(st(A,K))) to the interior of a start convex flat polyhedron in R2 with
geodesics going to straight lines.

Definition 2.3.3. Let L be a subcomplex of K containing ∂K and let αK be a sub-
division of K which agrees with K on L and A be a simplex in K. Let βαrK be the
subdivision of K such that, if A is a simplex in L or dim(A) ≤ r , then βαr A = αA.
If A is not in L and dim(A) > r then βαr A = a ? βαr ∂αA, i.e. it is subdivided as the
cone on the already defined subdivision of its boundary. Observe that βαnK is αK while
βα0K = βLK is a barycentric subdivision of K relative to L.

Lemma 2.3.4.Let K be a locally geodesically-flat simplicial complex relative to a sub-
complex L which contains ∂K. Let αK be a geometric subdivision of K which agrees with
K on L. Then there exists s ∈ N for which βsαK is related to βsK by bistellar moves
which keep βsL fixed.

Proof. For A a positive dimensional r-simplex in K \ L, st(A, βαrK) is a strictly star-
convex subset of st(A,K). As K is locally geodesically-flat relative to L, there exists a
geodesic embedding taking st(A, βαrK) to a strictly star-convex flat polyhedron of Rn. By
Theorem 2.2.4, βsst(A, βαrK) is bistellar equivalent to βsC(∂st(A, βαrK)). As A is not
in L so no interior simplex of st(A, βαrK) is in L and consequently these bistellar moves
keep βsL fixed. Taking all simplexes A in K \L of dimension r = n, we get a sequence of
bistellar moves taking βsβαrK to βsβαr−1K. Ranging r from n down to 1, we inductively
obtain a sequence of bistellar moves taking βsαK = βsβαnK to βsβLK = βsβα0K, which
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Figure 2.7: Subdivision to Barycentric Subdivision

keeps βsL fixed. And finally, arguing as above with the trivial subdivision αK = K, we
get βsβLK from βsK by bistellar moves which keep βsL fixed.

This process is illustrated in Figure 2.7. We can go from the subdivision of a tri-
angulation to its barycentric subdivision, where (1) represents a 3-simplex A = K, (2)
represents a subdivision αK = βα3K of K, (3) represents βα2K = a?βα2 ∂αA = a?∂αA, (4)
represents an intermediate step towards βα1K where st(B, βα2K) is changed to the cone
over its boundary, (5) represents an intermediate step towards βα0K where st(C, βα1K) is
changed to the cone over its boundary.

The following simple observation allows us to treat the star of a simplex in a geometric
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triangulation as the linear triangulation of a star-convex polytope in Rn and bistellar
moves in the manifold as bistellar moves of the polytope.

Lemma 2.3.5.Let K be a geometric simplicial triangulation of a spherical, hyperbolic
or Euclidean n-manifold M and let L be a subcomplex of K containing ∂K. When M

is spherical we require the star of each positive dimensional simplex of K \ L to have
diameter less than π. When M is cusped we include the ideal vertices in L. Then K is
locally geodesically-flat relative to L.

Proof. Let K be a geometric triangulation of M and let B be the interior of the star of
a simplex in K \ L. As K is simplicial, B is an open n-ball.

When M is hyperbolic, let φ : B → Hn be the lift of B to the hyperbolic space in the
Klein model. As geodesics in the Klein model are Euclidean straight lines (as sets) so φ
is the required embedding.

When M is spherical, let D be the southern hemisphere of Sn ⊂ Rn+1, let T be
the hyperplane xn+1 = −1 and let p : D → T be the radial projection map (gnomonic
projection) which takes spherical geodesics to Euclidean straight lines. As B is small
enough, lift B to D and compose with the projection p to obtain the required embedding
φ from B to T ' En.

When B is Euclidean let φ be the lift of B to Rn, which is an isometry.

Theorem 2.3.6. [Theorem 4 of [2]]

1. If d ≤ 3, then there is no k that would depend only on d such that all PL d-spheres
become polytopal after k derived subdivisions.

2. For d = 3, the number k = k(∆) of derived subdivisions needed to make a PL sphere
∆ polytopal can be bounded from above by

k(∆) ≤ a ∗ 2b∗f3(∆)∗2c∗f2
3 (∆)∗2d∗f2

3 (∆)

+ c ∗ f 2
3 (∆) ∗ 2d∗f2

3 (∆)

, where a, b, c, d ≥ 0 are constants independent of ∆.

3. If d ≥ 5, then the number of derived subdivisions that makes a PL d-sphere ∆
polytopal is not (Turing machine) computable from ∆.

where fi() denote the number of i-dimensional faces of simplicial complex.



18 2.3. Geometric Manifolds

Theorem 2.3.6 shows that for simplicial complexes of dimension at least 5 the number
of derived subdivisions required to make the link of a vertex combinatorially isomorphic
to a convex polyhedron is not (Turing machine) computable. So in particular, the stars
of simplexes of a geometric triangulation may not even be combinatorially isomorphic to
convex polyhedra, which is why we need to work with star-convex polyhedra instead.

Given a Riemannian manifold M , a geometric polytopal complex C of M is a finite
collection of geometric convex polytopes in M whose union is all of M and such that for
every P ∈ C, C contains all faces of P and the intersection of two polytopes is a face of
each of them.

Proof of 2.1.1 and 2.1.2. By Lemma 2.3.5, K1 and K2 are locally geodesically flat sim-
plicial complexes. Let C be the geometric polytopal complex obtained by intersecting
the simplexes of K1 and K2. Then K = βLC, the barycentric subdivision of C relative
to L is a common geometric subdivision of K1 and K2. When M is a cusped manifold
we assume that we are given such a common geometric subdivision K as C might have
infinitely many polytopes. By Lemma 2.3.4 then, there exists s ∈ N so that βsK1 and
βsK2 are bistellar equivalent via βsK by bistellar moves which leave βsL fixed. In the
cusped situation we can take L as the set of ideal vertices.
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Bound On Pachner Moves

3.1 Introduction

We give an algorithmic solution for the homeomorphism problem on the restricted class
of geometrically triangulated constant curvature manifolds, by obtaining a bound on
the number of barycentric subdivisions and Pachner moves needed to relate them. The
content of this chapter corresponds to our work from the paper [18]. Following is the
main result in the chapter:

Theorem 3.1.1.Let M be closed spherical, Euclidean or hyperbolic n-manifold with ge-
ometric triangulations K1 and K2. Let K1 and K2 have p and q many n-simplexes
respectively with lengths of edges bounded above by Λ and let inj(M) be the injectivity
radius of M . When M is spherical, we require Λ ≤ π/2. Then the 2n+1-th barycentric
subdivisions of K1 and K2 are related by less than 2n(n+1)!4+3m′pq(p+q) Pachner moves
which do not remove common vertices. When n ≤ 4, then K1 and K2 are directly re-
lated by 2n(n + 1)!4+3mpq(p + q) Pachner moves which do not remove common vertices.
Here m′ = max(2n+1,m) and m is an integer greater than µ ln(Λ/inj(M)) where µ is as
follows:

1. When M is Euclidean, µ = n+ 1

2. When M is Spherical, µ = 2n+ 1

19
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3. When M is Hyperbolic, µ = ncoshn−1(Λ) + 1

From Lemma 3.3.12 and Theorem 3.3.13 it follows that inj(M) > πvol(M)/δvol(Sn)
which gives the following corollary in terms of the volume and diameter of the manifold.

Corollary 3.1.2.With notations as in Theorem 3.1.1, we can take m to be an integer
greater than µ ln(Λδvol(Sn)/(πvol(M))), with δ as follows:

1. When M is Euclidean, δ = diam(M)

2. When M is Spherical, δ = sinn−1(diam(M))

3. When M is Hyperbolic, δ = sinhn−1(diam(M))

Remark 3.1.3.To express m entirely in terms of the triangulation, we therefore need
an upper diameter bound and a lower volume bound as a function of n, p and bounds
on lengths of edges. In the lower bound for m we can replace diam(M) by pΛ, because
a shortest path between two points of M has length less than a piecewise geodesic path
that intersects each simplex at most once and by Lemma 3.4.4, the diameter of a simplex
is bounded by the maximum length of its edges. We have a lower bound for vol(M) by
the volume of ∆λ, a regular tetrahedron of length λ, where λ is a lower bound on the
length of edges of the triangulation.

Remark 3.1.4.For M a closed orientable hyperbolic 3-manifold, volume is bounded
below by w = 0.9427 [12], so we can take m > (3cosh2(Λ) + 1)ln(2πpΛ2/w). For even
dimensional closed hyperbolic manifolds, Hopf’s generalised Gauss Bonnet formula gives
us vol(M) = (−1)n/2vol(Sn)χ(M)/2 where χ(M) is the Euler characteristic of M , so we
can take m > max(2n+1, (ncoshn−1(Λ) + 1) ln(2pΛ2/π)). In general for closed hyperbolic
n-manifolds, volume is universally bounded below by vol(Sn−1)/(n(n + 3)nπn(n−1)) [21].
So for n > 2 as 2vol(Sn)/(πvol(Sn−1)) ≤ 1, we can take m > max(2n+1, (ncoshn−1(Λ) +
1)ln(2pΛ2n(n+ 3)nπn(n−1))).

Theorem 3.1.5.Let M be closed spherical, Euclidean or hyperbolic n-manifold with ge-
ometric triangulations K1 and K2 having p and q many n-simplexes respectively and
lengths of edges bounded below by λ and above by Λ. When M is spherical, we require
Λ ≤ π/2. Then 2n+1-th barycentric subdivisions β2n+1

K1 and β2n+1
K2 are related by

at most f(p, q, n, λ,Λ) Pachner moves (which do not remove common vertices). When
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n ≤ 4, then K1 and K2 are directly related by f(p, q, n, λ,Λ) Pachner moves (which do
not remove common vertices), where f(p, q, n, λ,Λ) = 2n(n+ 1)!4+3mpq(p+ q) with m as
below and ∆λ a regular n-simplex of edge length λ:

1. WhenM is Hyperbolic, m > max(2n+1, (ncoshn−1(Λ)+1)ln(2pΛ2n(n+3)nπn(n−1)))

2. When M is Spherical, m > max(2n+1, (2n+ 1)ln(11Λ/vol(∆λ)))

3. When M is Euclidean, m > max(2n+1, (n+ 1)ln(11pΛ2/vol(∆λ)))

Corollary 3.1.6.For closed hyperbolic 3-manifolds, we can take

f(p, q, n,Λ) = 3 · 106 · 243(e(2Λ)+4)ln(7pΛ2)pq(p+ q)

We must point out that as Pachner moves are combinatorial in nature, the interme-
diate triangulations we obtain may not be geometric. But as they are just local combi-
natorial operations, such a bound gives a naive algorithm to check if given hyperbolic or
low dimensional spherical manifolds are isometric.

Corollary 3.1.7.Let (M,KM) and (N,KN) be geometrically triangulated closed hyper-
bolic manifolds of dimension at least 3 or closed spherical manifolds of dimension at
most 6 and edge length at most π/2. Then M is isometric to N if and only if the 2n+1-th
barycentric subdivisions of KM and KN are related by 2n(n + 1)!4+3m′pq(p + q) Pachner
moves followed by a simplicial isomorphism, with m′, p and q as defined in Theorem
3.1.1

We have shown that geometric triangulations can be related by geometric Pachner
moves (in [19] and Chapter 2) using simplicial cobordisms. We follow a different approach
in this chapter, using shellings and relating via combinatorial Pachner moves instead as
it leads to a tighter bound.

3.1.1 Outline of Proof

Given geometric triangulations K1 and K2 of M , we first take repeated barycentric
subdivisions till each simplex lies in a strongly convex ball. This is where we crucially
use the upper length bound on the edges to handle tall thin ’needle-shaped’ tetrahedra.
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The factor by which these subdivisions scale simplexes is worked out in Section 3.4.
Next we consider the geometric polyhedral complex K1∩K2 obtained by intersecting the
simplexes of K1 and K2, which we further subdivide to a common geometric subdivision
K ′. As simplexes of K1 and K2 are strongly convex they intersect at most once, which
gives a bound on the number of simplexes in K ′.

While every simplex of K ′ lies in some simplex of Ki, to see that it is in fact a
simplicial subdivision (and hence Ki are PL-equivalent) we would need an embedding of
Ki in some Rn which is linear on both simplexes of Ki and of K ′. For constant curvature
manifolds however, there do exist local embeddings in Rn which are linear on both Ki

and K ′. This allows us to treat geometric subdivisions of geometric simplexes in the
manifold as simplicial subdivisions of linear simplexes in Rn.

Theorem 3.1.8. [Theorem A of [1]] If C is any subdivision of a convex polytope, the
second derived subdivision of C is shellable. If dimC = 3, already the first derived
subdivision of C is shellable.

We first take repeated barycentric subdivisions to make the link of every simplex of
K shellable. Given a geometric subdivision αK of K, we next define partial barycentric
subdivisions βαrK by putting the given subdivision αA on simplexes A of dimension at
most r and the barycentric subdivision βA on the rest. By Theorem 3.1.8, αA is shellable
up to subdivisions and as link of A in βαrK is also shellable so we can extend shellability
to ’star neighbourhoods’ of αA in βαrK. When a polytope is shellable it is easy to see that
it is starrable, i.e., there exists a sequence of Pachner moves which takes the subdivision
of a star neighbourhood to the cone over its boundary. Using this, we get a sequence
of Pachner moves which takes a star neighbourhood of αA to a cone on its boundary
and varying A over all r simplexes of K, a sequence of moves from βαrK to βαr−1K. This
gives a sequence of moves from βαnK = αK to βα0K = βK. Taking αK as the common
geometric subdivision K ′ of K1 and K2, we get a sequence of moves from βK1 to βK2 of
controlled length as required.
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3.2 Links Of Simplexes

In this section we prove results about links of partial barycentric subdivisions of simplicial
complexes. The main result of this section is that after taking sufficiently many barycen-
tric subdivisions, the link of every simplex of a geometric triangulation is shellable. Books
by Rourke and Sanderson [37] and Ziegler [46] are good sources of introduction to the
theory of piecewise linear topology.

Definition 3.2.1. [24] Suppose that A and B are simplexes of a simplicial triangulation
of an n-manifoldM with boundary ∂M , that A?B is an n-simplex ofM , that A∩∂M =
∂A and that B ? ∂A ⊂ ∂M . Then the manifold M ′ obtained from M by elementary
shelling along B is the closure of M \ (A ?B). Closure here means adding the simplexes
of A ? ∂B. The relation between M and M ′ will be denoted by M (shB)−−−→ M ′. An n-ball
is said to be shellable if it can be reduced to an n-simplex by a sequence of elementary
shellings. An n-sphere is shellable if removing some n-simplex from it gives a shellable
n-ball.

We reproduce the proof of the statement that shellable balls are starrable from [24]
for completeness and to record the number of Pachner moves required in the starring
process.

In our proof we need the links of positive dimensional simplexes to be shellable spheres.
We show that after sufficiently many barycentric subdivisions the links of simplexes do
become shellable. As triangulated spheres of dimension at most 2 are always shellable,
so for manifold dimension n ≤ 4 the links of positive dimensional simplexes are shellable
and we do not need to take these initial subdivisions.

Lemma 3.2.2. [Lemma 5.7 of [24]] Let K be a shellable triangulation of an n-ball with
r many n-simplexes, then v ? ∂K is related to K by a sequence of r Pachner moves.

Proof. We prove this by induction on the number r of n-simplexes of K. If r = 1, then
K is a n-simplex and a single Pachner move changes K to v ? ∂K.

Suppose that the first elementary shelling of K is K (shB)−−−→ K1, where A ? B is a
n-simplex of X, A ∩ ∂K = ∂A and B ? ∂A ∈ ∂K (see Figure 3.1). By the induction on
r, K1 is simplicially isomorphic to v ? ∂K1 after at most r − 1 Pachner moves. Observe
that v ? ∂K1 ∪ A ? B is changed to v ? ∂K by the single Pachner move κ(A, v ? B).
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v

Figure 3.1: A ∩ ∂K = ∂A and B ? ∂A ∈ ∂K

Definition 3.2.3. Let αK be a geometric subdivision of K. Let βαrK be the geometric
subdivision of K such that, if A is a simplex in K and dim(A) ≤ r, then βαr A = αA

and if dim(A) > r then βαr A = a ? βαr ∂αA, i.e. it is subdivided as the geometric cone on
the already defined subdivision of its boundary. In other words, fix a point a ∈ A and
for each simplex B ∈ βr∂αA, introduce the geometric simplex a ? B by taking the union
of geodesics in A which start at a and end at some point in B. As M is of constant
curvature the geometric join of a point with a totally geodesic disk is again a totally
geodesic disk, so βαrK is a geometric triangulation of M . Observe that βαnK is αK while
βα0K = βK is the geometric barycentric subdivision of K. When αK = K, we denote
βαrK by βrK and call it a partial barycentric subdivision.

The following lemma relates the links of simplexes in a partial barycentric subdivision
with the barycentric subdivision of the links in the original simplicial complex, as can be
seen in Figure 3.2.

Lemma 3.2.4.Let A be a r-simplex in a simplicial complex K. Then lk(A, βrK) is
simplicially isomorphic to βlk(A,K).

Proof. Observe that as A is r-dimensional, βrA = A and we can take A to be a simplex
of both βrK and K.

Let B be a simplex in lk(A,K). The barycentric subdivision βB of B is given by
b?β∂B. So the vertices of βlk(A,K) are exactly such points b, one for each simplex B in



Chapter 3. Bound On Pachner Moves 25

A
 

B

 
 

b'

b
 

Figure 3.2: When K = A ∗B, βB is isomorphic to lk(A, β1K)

lk(A,K). As A ?B has dimension greater than r, so βr(A ?B) = b′ ? βr(∂(A ?B)). And
as A is unchanged by βr, so A ∈ βr(∂(A?B)) and consequently b′ ?A ∈ βr(A?B) ⊂ βrK.
So given B ∈ lk(A,K), we obtain a vertex b′ of lk(A, βrK). Conversely, given a vertex b′

of lk(A, βrK), b′ ?A is a simplex in βrK of dimension more than r. So there exists some
B ∈ lk(A,K) such that βr(A ? B) = b′ ? βr(∂(A ? B)).

Define φ as this bijection from the vertex set of βlk(A,K) to the vertex set of
lk(A, βrK) which sends the vertex b corresponding to B ∈ lk(A,K) to the vertex b′

of βr(A ? B). We claim that φ extends to a simplicial isomorphism from βlk(A,K) to
lk(A, βrK). See Figure 3.2 for the case when K = A ∗B and r = 1.

As φ is a bijection on the vertices it is a simplicial isomorphism on the 0-skeleton
of βlk(A,K). Let B ∈ lk(A,K) be m dimensional and assume that φ is a simplicial
isomorphism on the m − 1 skeleton of βlk(A,K). As βr(A ? B) = b′ ? βr∂(A ? B) =
(b′?βr(∂A?B))∪(b′?βr(A?∂B)) so each simplex of βr(A?B) lies entirely in (b′?βr(∂A?B))
or (b′ ?βr(A?∂B)) (or both). So if A?C ∈ βr(A?B) then as A belongs to b′ ?βr(A?∂B)
so C belongs to it as well, and we get lk(A, βr(A ? B)) = lk(A, b′ ? βr(A ? ∂B)). As
A ∈ βr(A ? ∂B) so lk(A, b′ ? βr(A ? ∂B)) = b′ ? lk(A, βr(A ? ∂B)). By assumption, φ
restricted to β(∂B) is simplicially isomorphic to lk(A, βr(A?∂B)). So βB = b ?β(∂B) is
simplicially isomorphic via φ to b′ ? lk(A, βr(A?∂B)) = lk(A, βr(A?B)). Varying B over
all m-simplexes, shows that φ a simplicial isomorphism on the m-skeleton of βlk(A,K).
So by induction taking m = n, we get a simplicial isomorphism from βlk(A,K) to
lk(A, βrK).
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The following result proved in [45] for simplicial complexes also works for spherical
triangulations:

Lemma 3.2.5.Let K and L be geometric triangulations of a sphere. Then for s ∈
N denoting the total number of simplexes of K, the s-th derived subdivision of L is a
subdivision of K.

Proof. |A| represents underlying topology of A. We have |K| = |L|. By Lemma 2.2.5 for
|K| ⊂ |L|, we get that some subdivision K ′ of K is subcomplex of βsL and |K ′| = |βsL|
which implies that K ′ = βsL. As K ′ is a subdivision of K, which proves our claim that
βsL is a subdivision of K.

Lemma 3.2.6.Let K be the geometric triangulation of a Riemannian n-manifold. For all
vertices v of K, βm−2lk(v,K) is simplicially isomorphic to a subdivision of the boundary
of an n-simplex, where m = 2n+1.

Proof. AsK is a geometric triangulation, |int(st(v,K))| is a neighbourhood of v. Let L ⊂
int(st(v,K)) be a geometrically triangulated sphere centered at v which is isomorphic to
lk(v,K) under radial projection. Let δ be a spherical triangulation of |L| as the boundary
of a spherical n-simplex, so in particular δ has m−2 simplexes. By Lemma 3.2.5, βm−2L

is a subdivision of δ which is isomorphic to the boundary of a simplex.

Proposition 3.2.7. [Proposition 1 of [5]] Every decomposition of an n-cell and every
decomposition of an n-sphere contains a shellable subdivision.

Theorem 3.2.8.Links of all simplexes in βmK are shellable for m = 2n+1.

Proof. We first prove that all vertex links in βmK are shellable. For v a vertex of K, by
Lemma 3.2.6 st(v, βm−2K) = v ? lk(v, βm−2K) = v ? βm−2lk(v,K) is isomorphic to the
subdivision of a simplex. By Theorem 3.1.8 , β2st(v, βm−2K) is shellable. As links of ver-
tices of shellable complexes are shellable, so lk(v, β2st(v, βm−2K)) = β2lk(v, βm−2K) =
lk(v, βmK) is shellable for any vertex v ∈ K.

As βm(v ? lk(v,K)) is the stellar subdivision of v ? βmlk(v,K) and as stellar subdi-
visions preserve shellability (see proof of Proposition 3.2.7) so βm(st(v,K)) is shellable.
For any vertex w ∈ int(βmst(v,K)), lk(w, βmK) = lk(w, βmst(v,K)) is shellable as
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it is the link of a vertex in a shellable complex. As |K| = |βmK| is covered by
|int(st(v,K))| = |int(βmst(v,K))| so the link of any vertex w of βmK is shellable.

Assume that links of all simplexes of dimension less than r > 0 are shellable. Let
A = B ∗ b be an r-simplex in βmK for b a vertex. Then lk(A, βmK) = lk(b, lk(B, βmK)).
As B is a simplex of dimension less than r, so by induction lk(B, βmK) is shellable and
as links of vertices of shellable complexes are shellable, so lk(A, βmK) is also shellable.

Theorem 3.2.9. [Theorem 5.1 of [3]] Let K be a shellable simplicial complex. Then the
barycentric subdivision sd K is shellable.

We end this section with a statement about shellability links of simplexes of partial
barycentric subdivisions.

Lemma 3.2.10.Let K be a simplicial complex such that the link of each vertex is
shellable. Let A be an r-simplex in K, then lk(A, βrK) is shellable.

Proof. For A any simplex of K, lk(A, βrK) = βlk(A,K) by Lemma 3.2.4. By argu-
ments as in Theorem 3.2.8, as vertex links of K are shellable, so lk(A,K) is shellable.
And by Theorem 3.2.9, the barycentric subdivision of a shellable complex is shellable so
lk(A, βrK) is shellable.
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3.3 Common Geometric Subdivision

Given two abstract simplicial complexes, there is no canonical notion of a common sub-
division. In this section we use the geometry of the manifold to get a common geometric
subdivision of two geometric triangulations. This allows us to relate them via a bounded
length sequence of Pachner moves through the common subdivision. We must caution
here that even though the terminal triangulations of this sequence are geometric in na-
ture, the intermediate triangulations we obtain are merely topological triangulations.

Definition 3.3.1. A subset C of a Riemannian manifold M convex, if any two points
in C are connected by a unique geodesic in C. We call it strongly convex, if any two
points in C are connected by a unique minimizing geodesic in M which also happens to
lie entirely in C.

A hyperbolic, spherical or Euclidean k-simplex in Hn, Sn or En is the convex hull of
a generic set of k + 1 points. In the spherical case, we further assume that the diameter
of the simplex is at most π/2.

Definition 3.3.2. A geometric simplicial triangulation K of a hyperbolic, spherical or
Euclidean manifold M is a simplicial triangulation of M where each simplex is isometric
to a hyperbolic, spherical or Euclidean simplex respectively. We say a geometric simplicial
triangulationK ′ ofM is a geometric subdivision ofK if each simplex ofK ′ is isometrically
embedded in some simplex of K.

WhenM is a closed spherical, Euclidean or hyperbolic manifold thenM has a geomet-
ric triangulation. See Theorem 3.3.3 where a strongly essential geometric triangulation
is obtained. We henceforth fix the notation (M,K) to refer to the geometric simplicial
triangulation K of a closed hyperbolic, spherical or Euclidean manifold M of dimension
n.

Theorem 3.3.3. [Theorem 7.3 of [14]] Suppose that M is a closed Riemannian manifold
of dimension 3 with metric with constant curvature -1, 0 or +1. In the case of curvature
+1, also assume that the diameter of the manifold is less than π. Then the cell decompo-
sition dual to the cut locus of any point x0 can be subdivided to give a strongly essential
one-vertex triangulation.
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The simple observation spelled out in Lemma 2.3.5 allows us to treat the geometric
triangulation of a convex polytope in M as the linear triangulation of a convex polytope
in En.

We have already seen the proof of Lemma 2.3.5, an outline of which is that every
geometric simplex lifts to either En, the Klein model of Hn or a hemisphere in Sn followed
by the radial/gnomonic projection. In either case we get a map from the geometric
simplex in M to a linear simplex in En which takes geodesics to straight lines. So in
particular, it takes a geometric subdivision of the simplex to a simplicial subdivision of
the corresponding linear simplex.

Lemma 3.3.4.When K has pi many i-simplexes, βK has (i+ 1)!pi many i-simplexes in
the i-skeleton of K.

Proof. To obtain the barycentric subdivision βK of K we replace each simplex of K with
the cone on its boundary, starting with vertices and inductively going up to simplexes of
dimension n.

For an i-simplex A, let ai be the number of i simplexes in βA. As there are i + 1
many codimension one faces of A so ai = (i+ 1)ai−1 and a0 = 1. This gives ai = (i+ 1)!.
So if there are pi many i-simplexes in K, there are (i+ 1)!pi many i-simplexes of βK in
the i-skeleton of K.

Lemma 3.3.5. [Lemma 4.4 of [24]] Let K be an n dimensional simplicial complex, let
αK be a simplicial subdivision of K with property that, for each simplex A in K, αA is a
stellar ball. Then αK is stellar equivalent to K.

The following is an effective version of Lemma 3.3.5 using the stronger notion of
shellability instead of starrability, to get bistellar equivalence in place of stellar equiva-
lence.

Lemma 3.3.6.Let K be a geometric triangulation where the link of every positive dimen-
sional simplex is shellable. Let αK be a geometric subdivision of K such that for each
simplex A ∈ K, αA is shellable. Let pi be the number of i-simplexes of K, with p−1 = 1.
Let si be the number of i-simplexes of αK in the i-skeleton of K. Then αK is related to
βK by ∑n

i=1(n− i)!pn−i−1si Pachner moves. Furthermore, none of these Pachner moves
remove any vertex of K.
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Proof. Our aim is to bound the number of Pachner moves needed to go from βαrK to
βαr−1K for 1 ≤ r ≤ n. This would give us a bound on the number of moves relating
βαnK = αK and βα0K = βK.

As links of simplexes in K are given to be shellable, so for any r simplex A ∈ K,
by Lemma 3.2.10, lk(A, βrK) = βlk(A,K) is shellable. As αA is given to be shellable
so S(A) = αA ? lk(A, βrK), the join of shellable complexes, is shellable as well. S(A)
should morally be thought of as the star neighbourhood of αA in βrK.

Let mA be the number of r-simplexes of αA in A. The number of (n−r−1) simplexes
in lk(A,K) is at most pn−r−1, so by Lemma 3.3.4 the number of (n− r− 1) simplexes in
βlk(A,K) is at most (n− r)!pn−r−1. By Lemma 3.2.4, βlk(A,K) = lk(A, βrK), so S(A)
has at most (n− r)!pn−r−1mA many n-simplexes.

By Lemma 3.2.2, there is a sequence of as many Pachner moves which changes S(A)
to a ? ∂S(A) = a ? ∂αA ? lk(A, βrK), for a a point in the interior of A. Making this
change for each r-simplex A of K replaces each αA with a ? ∂αA = a ? βαr−1∂αA while
higher dimensional simplexes of K remain subdivided as cones on their boundary. This
gives us βαr−1K from βαrK by at most (n − r)!srpn−r−1 Pachner moves, where sr is the
total number of r-simplexes of αK in the r-skeleton of K. So βαnK = αK is related to
βα0K = βK by ∑n

r=1(n− r)!srpn−r−1 Pachner moves. When r = n, lk(A, βrK) is empty
so we take p−1 = 1. Note that as none of these Pachner moves remove any vertices of A
so they never remove any vertex of K.

Lemma 3.3.7.Let K be a simplicial complex where link of every positive dimensional
simplex is shellable. The m-th barycentric subdivision βmK is related to K by (n +
1)!2m+2p2

n Pachner moves.

Proof. Taking αK = K in Lemma 3.3.6, for A a simplex of K, αA = A is trivially
shellable. Also si = pi, so that K is related to βK by ∑n

i=1(n− i)!pn−i−1pi many Pachner
moves. Bounding pi by

(
n+1
i+1

)
pn and (2n+ 2)! by 4(n+ 1)!3 we get:

∑n
i=1(n− i)!pipn−i−1 <

∑n
i=1(n− i)!

(
n+1
i+1

)(
n+1
n−i

)
p2
n < (n− 1)!p2

n

∑n
i=1

(
n+1
i+1

)2

< (n− 1)!p2
n

(
2n+2
n+1

)
< 4

n(n+1)(n+ 1)!2p2
n

< (n+ 1)!2p2
n
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By Lemma 3.3.4, the number of n-simplexes pn changes to (n+1)!pn on taking a barycen-
tric subdivision. So on taking m subdivisions the bound on the number of moves relating
K and βmK becomes:

p2
n[(n+ 1)!2 + (n+ 1)!4 + ...+ (n+ 1)!2m] < (n+ 1)!2(m+1)p2

n

We now use Theorem 3.1.8 to bound the number of Pachner moves needed to relate
a locally shellable geometric triangulation with its subdivision.

Theorem 3.3.8.Let K be a geometric triangulation where the link of every positive
dimensional simplex is shellable. Let K ′ be a geometric subdivision of K. Let pi be the
number of i-simplexes of K for i > 0, with p0 = 2 and p−1 = 1. Let si be the number
of i-simplexes of K ′ that lie in the i-skeleton of K. Then β2K ′ is related to βK by∑n
i=1(n− i)!(i+1)!(i+1)!pn−i−1si many Pachner moves none of which remove any vertex

of K.

Proof. By Lemma 3.3.4, βK ′ has less than (i + 1)!si many i-simplexes in the i-skeleton
of K ′ and applied a second time, β2K ′ has less than (i + 1)!(i + 1)!si many i-simplexes
in the i-skeleton of K ′.

Let αK = K ′. For each simplex A of K, by Lemma 2.3.5 there is a simplicial
isomorphism from αA to a linear subdivision of a convex polytope in En. By Theorem
3.1.8, its second barycentric subdivision β2αA is shellable and so replacing si in Lemma
3.3.6 with (i+ 1)!(i+ 1)!si we get the required bounds.

In the rest of this section, we obtain a common subdivision with a controlled number
of simplexes from a given pair of geometric triangulations.

Definition 3.3.9. Given a Riemannian manifold M , a geometric polytopal complex C
of M is a finite collection of geometric convex polytopes in M whose union is all of M
and such that for every P ∈ C, C contains all faces of P and the intersection of two
polytopes is a face of each of them.
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When each simplex of the geometric triangulations is strongly convex, any two sim-
plexes intersect at most once. We can therefore bound the number of simplexes in the
common geometric subdivision K ′ = β(K1 ∩K2).

Lemma 3.3.10.When K1 and K2 are strongly convex geometric triangulations with pi
and qi many i-simplexes respectively, then they have a common geometric subdivision K ′

with si many i-dimensional simplexes that lie in the i-skeleton of K1 where

si < (2n − 1)(n+ 1)!2piqn

Proof. Let A be a linear k-simplex and B a linear l-simplex in RN . Suppose that B
intersects A in a k-dimensional polytope P . So l ≥ k and the interiors of A and B

intersect transversely inside a subspace V (A+B) of RN spanned by vectors in A and B
(assume 0 ∈ A ∩ B). As their intersection P is k dimensional, so V (P ) = V (A) ∩ V (B)
is a k-dimensional space and by the Rank-Nullity theorem V (A + B) is l-dimensional.
Therefore any (k − 1) face of P is obtained by intersecting an (l − 1) simplex of B with
the k-simplex of A or by intersecting a (k − 1)-simplex of A with the l-simplex of B.
There are therefore at most (k + 1) + (l + 1) codimension one faces of P .

The barycentric subdivision βP of P is a simplicial complex. Observe that P has at
most k + l+ 2 codimension one faces, each of which has (k − 1) + l+ 2 codimension one
faces by above reasoning, and so on down to k = 1 which has exactly 2 codimension one
faces (the end points of the edge). So the number of k dimensional simplexes of βP is
bounded by (k+ l+ 2)((k− 1) + l+ 2)...(2 + l+ 2)(2) = 2(k+ l+ 2)!/(l+ 3)! by reasoning
similar to that of Lemma 3.3.4.

Note that strongly convex geometric triangulations are simplicial triangulations. Let
K1 ∩K2 be a geometric polytopal complex of M obtained by intersecting the geometric
simplexes of K1 and K2. Observe that as the polytopes of K1 ∩K2 are obtained by the
intersection of convex simplexes so they are convex in M and their barycentric subdivi-
sion K ′ = β(K1 ∩ K2) is a geometric simplicial complex which is a common geometric
subdivision of both K1 and K2.

Let si be the number of i-dimensional simplexes of K ′ that lie in K1. As each i-
polytope P of K1∩K2 that lies in the i-skeleton of K1 is the intersection of a i-simplex of
K1 with some j simplex ofK2 for j ≥ i, so by above arguments its barycentric subdivision
βP has 2(i+ j + 2)!/(j + 3)! many i-dimensional simplexes. As each simplex of K1 and
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K2 is strongly convex, their intersection is convex and hence connected. So there are at
most ∑n

j=i piqj many i-polytopes of K1∩K2 that lie in the i-skeleton of K1. We therefore
get si ≤

∑n
j=i

2(i+j+2)!
(j+3)! piqj.

Simplifying this by bounding qj with
(
n+1
j+1

)
qn and (2n+ 2)! with 4(n+ 1)!3 gives us:

si < pi
∑n
j=1

2(n+j+2)!
(j+3)!(n−1)!(n− 1)!

(
n+1
j+1

)
qn < 2(n− 1)!

(
2n+2
n−1

)
(2n+1 − 2)piqn

< 4(2n−1)(2n+2)!
(n+3)! piqn < 16

(n+2)(n+3)(2
n − 1)(n+ 1)!2piqn

As n ≥ 2, we get the required bound.

We now present some relations between the convexity radius and other invariants of
the manifold.

Definition 3.3.11. [9] For a Riemannian manifold M , the injectivity radius at p ∈ M
is given by inj(p) = max{R > 0 | expp|B(0,s) is injective for all 0 < s < R}, the convexity
radius at p is given by r(p) = max{R > 0 | B(p, s) is strongly convex for all 0 < s < R}
where B(0, s) ⊂ TpM denotes the Euclidean ball of radius s around the origin and
B(p, s) ⊂ M denotes the ball of radius s around p. The focal radius at p is defined as
rf (p) = min{T > 0 | ∃ a non-trivial normal Jacobi field J along a unit speed geodesic
γ with γ(0) = p, J(0) = 0, and ||J ||′(T ) = 0}. If such a Jacobi field does not exist,
then the focal radius is defined to be infinite. Globally, let inj(M) = infp∈M inj(p),
r(M) = infp∈M r(p) and let rf (M) = infp∈M rf (p) respectively be the injectivity radius,
convexity radius and focal radius of the manifold M .

Applying the results of Dibble [9] and Klingenberg [22] to constant curvature man-
ifolds, we get the following relation between convexity radius, injectivity radius and lc,
the length of smallest closed geodesic.

Lemma 3.3.12.For M a spherical, Euclidean or hyperbolic closed manifold

r(M) = 1
2inj(M) = 1

4 lc(M)

Proof. Theorem 2.6 of [9] shows that when M is compact, the convexity radius r(M)
equals min{rf (M), 1

4 lc(M)}. When M is hyperbolic or Euclidean, rf (M) = ∞. When
M is spherical rf (M) = π/2 and lc(M)/4 ≤ 2diam(M)/4 ≤ π/2. So in either case,
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r(M) = 1
4 lc(M). Klingenberg [22] has shown that inj(M) = min{rc(M), 1

2 lc(M)}. For
hyperbolic and Euclidean manifolds rc(M) = ∞ and for spherical manifolds rc(M) = π

and 1
2 lc(M) ≤ π, so in either case inj(M) = 1

2 lc(M).

Cheeger’s inequality roughly says that when we have an upper diameter bound, lower
section curvature bound and lower volume bound we get a lower injectivity radius bound.
The following is a sharper bound by Heintze and Karcher (Corollary 2.3.2 of [13]) which
we state here only for constant curvature manifolds:

Theorem 3.3.13. [13] LetM be a complete spherical, Euclidean or hyperbolic n-manifold
and let γ be a closed geodesic in M . Then l(γ) ≥ 2πvol(M)/(δvol(Sn)) where Sn is the
the round n-sphere and

δ =


diam(M) for M Euclidean

sinn−1(diam(M)) for M spherical
sinhn−1(diam(M)) for M hyperbolic

We use Lemma 3.3.12 and Theorem 3.3.13 to get a lower injectivity radius bound
which is used to derive Corollary 3.1.2 from Theorem 3.1.1. In order to prove Theorem
3.1.1, we first subdivide the given geometric triangulations sufficiently many times so
that each simplex lies in a strongly convex ball. To bound the rate at which barycentric
subdivisions scale the diameter of the simplex, we need the following theorem which we
prove in Section 3.4.

Theorem 3.3.14.Let βm∆ be the m-th geometric barycentric subdivision of an n simplex
∆ with new vertices added at the centroid of simplexes. Let Λ be an upper bound on the
length of edges of ∆. Then the diameter of simplexes of βm∆ is at most κmΛ where

κ =


n
n+1 for M Euclidean
2n

2n+1 for M spherical
ncoshn−1(Λ)
ncoshn−1(Λ)+1 for M hyperbolic

We finally prove the main Theorem of this chapter below.

Proof of Theorem 3.1.1. First assume that K1 and K2 are strongly convex geometric
triangulations where links of all simplexes are shellable. By Lemma 3.3.10, there exists
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a common geometric subdivision K ′ of K1 and K2 with si many i-simplexes in the i-
skeleton of K1. Using Lemma 3.3.8 next we get a bound on the number of Pachner moves
relating βKi and β2K ′. Vertices that are common to both K1 and K2 are not removed
by these Pachner moves.

Plugging in the bounds for si from Lemma 3.3.10 in the formula obtained in Lemma
3.3.8, and then bounding (2n + 2)! by 4(n + 1)!3, pi by

(
n+1
i+1

)
pn and qi similarly, we get

the following bound for the number of moves relating βK1 and β2K ′.

∑n
i=1(n− i)!pn−i−1si < (2n − 1)(n+ 1)!2qn

∑n
i=1(n− i)!pn−i−1pi

< (2n − 1)(n+ 1)!2(n− 1)!
(

2n+2
n+1

)
p2
nqn

< (2n − 1)(n+ 1)!4p2
nqn · 4/(n(n+ 1))

< (2n − 1)(n+ 1)!4p2
nqn

Exchanging the roles of pi and qi we get a bound on the number of moves relating
βK2 and β2K ′. Summing them up we get the total number of moves needed to go from
βK1 to βK2 as (2n− 1)(n+ 1)!4pnqn(pn + qn). To simplify notation we henceforth denote
pn by p and qn by q.

Given geometric triangulations K1 and K2 which may not be strongly convex, we
need an integer m such that βmKi is strongly convex. That is, we need m such that each
simplex in βmKi lies in a strongly convex ball or by Theorem 3.3.14, κmΛ < 2r(M) where
Λ is an upper bound on the length of edges of K1 and K2. So we take m to be any integer
greater than (ln(2r(M)) − ln(Λ))/ ln(κ), as ln(κ) < 0. For a > 0, ln(a + 1) − ln(a) =∫ a+1
a 1/x > 1/(a+1). So we get −1/ ln(κ) ≤ µ and we can takem to be an integer greater
than µ(ln(Λ) − ln(2r(M))) or by Lemma 3.3.12 we can take m to be an integer greater
than µ ln(Λ/inj(M)). To ensure that links of simplexes are shellable, by Theorem 3.2.8,
we assume that m is also greater than 2n+1. As the simplexes of the subdivision are
strongly convex, it is a simplicial geometric triangulation.

By Lemma 3.3.4, the locally shellable complexes βmK1 and βmK2 have (n + 1)!mp
and (n+1)!mq many n-simplexes which are all strongly convex. So to go between ββmKi

we need (2n − 1)(n + 1)!4+3mpq(p + q) moves. By Lemma 3.3.7, when K1 is locally
shellable, K1 and βm+1K1 are related by (n + 1)!2(m+2)p2 moves (and similarly for K2).
When n ≤ 4, the links of positive dimensional simplexes are spheres of dimension at
most 2 and are therefore shellable. This gives a bound on moves to go from K1 to K2 as
2n(n+ 1)!4+3mpq(p+ q) when n ≤ 4.
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For a general n, by Lemma 3.3.7, β2n+1
K1 and βm+1K1 are related by (n +

1)!2(m+1−2n+1+1) < (n + 1)!2(m+2)p2 moves (and similarly for K2). So by the above argu-
ments β2n+1

Ki are also related by less than 2n(n+ 1)!4+3mpq(p+ q) moves.

Proof of Corollary 3.1.7. If F : M → N is an isometry then F−1(KN) is a geometric
triangulation of M . So by Theorem 3.1.1, K1 = KM and K2 = F−1(KN) are related by
the given bounded number of Pachner moves. As F is a simplicial isomorphism from K2

to KN , we get the required result.
When M and N are complete finite volume hyperbolic manifolds of dimension at

least 3, then by Mostow-Prasad [33] [36] rigidity, every homeomorphism is isotopic to an
isometry. So if KM and KN are related by Pachner moves and simplicial isomorphisms,
then M and N are homeomorphic and hence isometric.

For dimensions up to 6, the PL and DIFF categories are isomorphic and by a theorem
of De Rham [8] diffeomorphic spherical manifolds are isometric, so the converse also holds
for spherical manifolds of dimension at most 6.

The converse is not true in the Euclidean case in any dimension as there are simpli-
cially isomorphic flat tori which are not isometric.



Chapter 3. Bound On Pachner Moves 37

3.4 Subdivisions In Constant Curvature Geometries

The aim of this section is to prove Theorem 3.3.14 which gives the scaling factor for
diameter of simplexes in the model geometries upon taking barycentric subdivisions.

Definition 3.4.1. Let ∆ = [v0, ..., vn] be a geometric n-simplex. We define medians and
centroids of faces of ∆ inductively. Each vertex vi is defined to be its own centroid. We
define the centroid of an edge of ∆ as the midpoint of the edge. Having defined centroids
of k dimensional faces of ∆, we define the medians of a k + 1 dimensional face σ as the
geodesics in σ joining a vertex of σ to the centroid of its opposing k dimensional face in
σ. We define the centroid c(σ) of σ as the common intersection of all medians of σ. We
shall show that such a common intersection exists for hyperbolic, spherical and Euclidean
tetrahedra. Given simplexes A and B such that σ = A∗B, we define the medial segment
joining A and B as the geodesic in σ that connects the centroids c(A) of A and c(B) of
B. When A or B is a vertex the medial segment is a median.

Lemma 3.4.2.Let ∆ be a Euclidean, hyperbolic or spherical n dimensional simplex. All
medial segments of ∆ intersect at a common point c(∆). Furthermore if Λ is an upper
bound for the length of the edges of ∆ (with Λ ≤ π/2 for ∆ spherical) and ∆ = a ∗B for
a vertex a and B an n − 1 dimensional face, then d(a, c(∆))/d(a, c(B)) ≤ κ where κ is
as in Theorem 3.3.14.

Proof. Case I: ∆ is Euclidean. Realise ∆ as a linear combination of basis vectors (vi) in
Rn+1. For each face σ = [vi0 , ..., vik ] of ∆, let c(σ) = (vi0 + ...+ vik)/(k+ 1). By inducting
on the dimension of σ, we shall show that c(σ) is the centroid of σ.

When σ is a vertex or an edge, c(σ) is by definition the centroid of σ. Assume
that the centroid is well defined for all faces of ∆ of dimension less than k. After
relabeling the vertices, assume that σ = [v0, ..., vk] and σ = A ∗ B with A = [v0, ..., vp]
and B = [vp+1, ..., vk]. The dimensions of A and B are p and q = k − (p + 1). We can
express c(σ) as a convex linear combination of c(A) and c(B) as below:

c(σ) =
∑k

i=0 vi

k+1

= p+1
k+1

∑p

i=0 vi

p+1 + (k+1)−(p+1)
k+1

∑k

i=p+1 vi

k−p

= p+1
k+1c(A) + q+1

k+1c(B)
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a

y
z'a'

z
x

o

B

Figure 3.3: An n-simplex ∆ = a ∗ a′ ∗ B with x = c(a ∗ a′), y = c(B), z = c(a ∗ B),
z′ = c(a′ ∗B) and o = c(∆), points on δ = [aa′y].

The point c(σ) therefore lies on the medial segment connecting the centroids of A and
B. Furthermore it divides the medial segment [c(A), c(B)] in the ratio (q + 1)/(p + 1).
Taking σ = ∆ and A as a vertex a we get d(a, c(∆))/d(c(∆), c(B)) = n, so that taking
reciprocals and adding one on both sides gives d(a, c(∆))/d(a, c(B)) = n/n+1 as required.

Case II: ∆ is hyperbolic. Let E(n,1) be the (n, 1) Minkowski space, i.e. Rn+1 with the
inner product u.v = u1v1 + ...+unvn−un+1vn+1. The n dimensional hyperbolic space Hn

has a natural embedding in E(n,1) as the component of the hyperboloid ||x||2 = −1 which
lies in the upper half space of Rn+1. Let T = {v ∈ E(n,1) : ||v|| < 0} and let (Euclidean)
line segments in T with endpoints on Hn be called the chords of Hn. Let p : T → Hn

be the radial projection x →
√
−1
||x|| x. It is easy to see that p takes chords to hyperbolic

geodesic segments in Hn. To see that p takes midpoints of chords to midpoints of the
corresponding geodesic segment take x and y in Hn and let r ∈ O+(n, 1) restrict to an
isometry of Hn that exchanges x and y. Let m = (x+ y)/2 be the midpoint of the chord
joining x and y and let z = p(m) be its image on the geodesic segment [x, y]. As there
is a unique geodesic segment between pairs of points in Hn, the isometry r reflects the
geodesic segment [x, y] fixing only the mid point of [x, y]. But as r is linear in Rn+1,
r(z) =

√
−1
||m|| r(m) =

√
−1
||m||m = z, so z is the midpoint of [x, y].

Given a hyperbolic simplex ∆ in Hn with vertices vi, let ∆0 be the Euclidean convex
linear combination of vi in Rn+1. As the homeomorphism p|∆0 : ∆0 → ∆, fixes the
vertices and takes midpoints of edges to midpoints of edges, by induction, it takes medial
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segments to medial segments and hence takes centroids to centroids. In particular, all
the medial segments of ∆ intersect at the common point c(∆) as in the Euclidean case.

For points a, x, b in ∆, define the ratio h(a, x, b) = sinh(d(a, x))/sinh(d(x, b)). By
inducting on the dimension of ∆ we shall prove that if ∆ = a ∗B with a a vertex and B
an n−1 face, then 1 ≤ h(a, c(∆), c(B)) ≤ ncoshn−1(Λ). When ∆ = a∗ b is an edge, then
h(a, c(∆), b) = 1. Let ∆ = a ∗ a′ ∗B be an n dimensional simplex. Let δ be the geodesic
triangle [a, a′, c(B)] in ∆. Let x = c(a ∗ a′), y = c(B), z = c(a ∗ B), z′ = c(a′ ∗ B) and
o = c(∆) be points of δ as in Figure 3.3. As the medial segments of ∆ all intersect at
the centroid o, the segments [a, z′], [a′, z] and [x, y] of δ have a common intersection at
o. By the hyperbolic version of van Obel’s Theorem,

h(a, o, z′) = cosh(d(a′, z′))h(a, x, a′) + cosh(d(z′, y))h(a, z, y)

As x is the midpoint of [a, a′] so h(a, x, a′) = 1 and by induction applied to the n − 1
simplex a ∗ B, 1 ≤ h(a, z, y) = h(a, c(a ∗ B), c(B)) ≤ (n − 1)coshn−2(Λ). As 1 ≤ cosh,
1 ≤ h(a, o, z′) ≤ ncoshn−1(Λ) as required.

Define f(x) = sinh(x)/x for x > 0 and f(0) = 1. Then f ′(x) = (xcosh(x) −
sinh(x))/x2 has positive numerator because it takes value 0 at 0 and it’s derivative is
positive. So f is an increasing function. For 0 < x ≤ y, sinh(x)/x ≤ sinh(y)/y, i.e,
y/x ≤ sinh(y)/sinh(x). As h(a, o, z′) ≥ 1, so sinh(d(a, o)) ≥ sinh(d(o, z′)) and as
sinh is a strictly increasing function so d(a, o) ≥ d(o, z′). By above arguments then
d(a, o)/d(o, z′) ≤ h(a, o, z′) ≤ ncoshn−1(Λ). Taking reciprocals and adding one on both
sides we get the required bound κ.

Case III: ∆ is spherical. Taking the standard embedding of Sn in Rn+1 with p :
Rn+1 \ 0→ Sn as the radial projection p(x) = x

||x|| we can show that medial segments of
a spherical simplex ∆ have a common intersection at the centroid, as in the hyperbolic
case.

Proceeding as in the hyperbolic case, using s(a, x, b) = sin(d(a, x))/sin(d(x, b)) in-
stead of h(a, x, b) and using the spherical van Obel theorem

s(a, o, z′) = cos(d(a′, z′))s(a, x, a′) + cos(d(z′, y))s(a, z, y)
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we get the bound s(a, o, z′) ≤ n.
Suppose that for 0 < p, q ≤ π/2, we are given sin(p)/sin(q) ≤ n. Then we shall

show that p/q ≤ 2n. As sin(q) ≤ q for q > 0, so sin(p)/q ≤ sin(p)/sin(q) ≤ n. Let
0 < t0 < π/2 be the point where sin(t0) = π/4. When t0 ≤ p ≤ π/2, sin(t0) ≤ sin(p)
so sin(t0)/q ≤ sin(p)/q ≤ n and we get p/q ≤ nπ/(2sin(t0)) = 2n. When 0 < p ≤ t0,
cos(t0) ≤ cos(p) and as p ≤ tan(p) (see the power series expansion of tan for this
relation) so pcos(p)/q ≤ sin(p)/q ≤ n. We therefore get p/q ≤ n/cos(t0) ≤ 2n as
cos(t0) ≥ 1/2. Taken together we conclude that p/q ≤ 2n as required. As s(a, o, z′) ≤ n,
d(a, o)/d(o, z′) ≤ 2n and adding one and taking reciprocals gives the required bound κ
in the spherical case.

Lemma 3.4.3.Let ABC be a hyperbolic, Euclidean or spherical triangle. When ABC is
spherical we assume that the length of edges of ABC is at most π/2. Then for any point
D on the segment [B,C], d(A,D) ≤ max(d(A,B), d(A,C)).

Proof. Suppose that ABC is a hyperbolic or Euclidean triangle for which the lemma is
not true. Then the angle ADB is less than angle B and angle ADC is less than angle C
which would imply that the sum of angles B and C is greater than π, a contradiction.

Let ABC be a spherical isosceles triangle in S2 ⊂ R3 with A at the north pole and
with base BC having z coordinate z0 ≥ 0. The plane containing the origin, B and C

intersects S2 in the spherical geodesic segment [B,C] which lies in the half space z ≥ z0.
So for any point D ∈ [B,C], d(A,D) ≤ d(A,B). When ABC is an arbitrary spherical
triangle with A at the north pole, side AB longer than side AC and z0 as the z-coordinate
of B, we extend the side AC to the point C ′ which has z coordinate z0 so that ABC ′ is
an isosceles triangle. For any point D ∈ [B,C], extend the segment [A,D] to D′ ∈ [BC ′],
then by the above argument d(A,D) ≤ d(A,D′) ≤ d(A,B).

Lemma 3.4.4.Let ∆ be a hyperbolic, spherical or Euclidean simplex. If ∆ is spherical
we assume the length of its edges is at most π/2. Then the diameter of ∆ is the length
of the longest edge of ∆.

Proof. Let [x, y] be a maximal segment in ∆ and assume that it does not lie in any proper
simplex of ∆. Let x ∈ A, y ∈ B for simplexes A and B in ∂∆ then ∆ = A ∗B. If both x
and y are vertices then trivially, d(x, y) = l([x, y]) is at most length of longest edge of ∆.
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If x is not a vertex, then let A = a ∗ A′ with a a vertex of A. Extend the segment [a, x]
to x′ ∈ A′. Applying Lemma 3.4.3 to the triangle [ax′y], d(y, x) ≤ max(d(y, a), d(y, x′)).
As dimensions of a ∗ B and A′ ∗ B are both less than dimension of ∆, so by induction
d(y, x) is at most the length of the longest edge of ∆.

Note that Lemma 3.4.4 is not true for spherical triangles with edges longer than π/2
as can be seen by taking an isosceles triangle with base length less than π/2 and the
equal length edges of length more than π/2. The diameter of such a triangle is the length
of the altitude on the base, which is greater than the length of all the edges.

We are finally in a position to prove the main Theorem of this section:

Proof of Theorem 3.3.14. We shall first show, by induction on the dimension of faces
A of ∆, that d(c(A), c(∆)) ≤ κΛ. When A is a vertex, by Lemma 3.4.2 and Lemma
3.4.4, d(a, c(∆)) ≤ κd(a, c(B)) ≤ κdiam(∆) ≤ κΛ. For A = a ∗ A′, consider the
triangle T = [a, c(A′), c(∆)]. As the medial segment [a, c(A′)] passes through c(A),
the segment [c(∆), c(A)] lies in T and by Lemma 3.4.3, d(c(∆), c(A)) is at most
max(d(c(∆), a), d(c(∆), c(A′))) which is in turn bounded by κΛ by induction.

Each edge of β∆ is a medial segment in some simplex δ ∈ ∆, of the kind [c(δ), c(A)]
for A ∈ δ. By above arguments, length of such edges is bounded by κΛ. Repeating the
argument for β∆ in place of ∆, taking κΛ as the upper bound for length of edges, we get
the bound κ2Λ for edges of β2∆. Repeating the argument m times and applying Lemma
3.4.4, we get the required upper bound for the diameter of simplexes of β∆.

To see that the constant κ in the hyperbolic case can not be made independent of
the length of the edges, consider a hyperbolic isosceles triangle ∆ = ABC with base
BC. Let a and b be the length of the sides opposite to vertices A and B, let m be the
length of the median from A and let x be the distance from A to the centroid of ABC.
Assume that m = ya for some y > 0. By the hyperbolic version of Pythagoras theorem,
cosh(b) = cosh(a/2)cosh(m) which gives the following for all a > 0:

1 ≤ b/m = cosh−1(cosh(a/2)cosh(ya))
ya

≤ cosh−1(cosh(ya+ a/2))
ya

= 1 + 1
2y

So for any fixed base length a and isosceles triangle as above with m = ya,
limy→∞m/b → 1. Also, as sinh(x)/sinh(m) = 2cosh(a/2)/(2cosh(a/2) + 1) → 1 as
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a → ∞. So for large enough a and y, x/b = (x/m)(m/b) is as close to 1 as required.
In other words, the diameter of simplexes in β∆ can be made arbitrarily close to the
diameter of ∆.



4
Algorithm For Once Punctured Torus Bundles

4.1 Introduction

Mijatovic [31] has given bounds on the number of Pachner moves required to relate
two triangulations of knot complements. We attempt to give such a bound for once-
punctured torus bundles, which are not covered by Mijatovic’s result. Our main aim is
to improve the bound significantly for such an important class of manifolds, as the bound
in Mijatovic’s result is a bounded tower of exponentials.

Theorem 4.1.1. [Theorem 1.1 in [31]] Let P and Q be two triangulations of a knot
complement M which contains p and q many tetrahedra respectively. Then there is a
sequence of Pachner moves of length at most e2ap(p) + e2aq(q) which transforms P into
a triangulation isomorphic to Q. The constant a is bounded above by 200 and e(x) =
2x. The homeomorphism that realises this simplicial isomorphism, is supported in the
characteristic sub-manifold Σ of M and it does not permute the components of ∂M.

In this chapter we will see the work done so far in lowering this bound.

4.1.1 Normal Surface Theory

Normal surface theory is a necessary tool in dealing with triangulations of 3-manifolds.
Book by Sergei Matveev [27], papers by Mijaovic [28] and Bart and Schalemann [4] has
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covered the following section in details. A properly embedded disk D in a 3-simplex
is called a normal triangle or quadrilateral if ∂D intersects exactly three or four edges
transversely in a single point and remains disjoint from other 1-simplexes and vertices of
3-simplex. A normal disk is a normal triangle or a normal quadrilateral.

There are four types of normal triangles and three types of normal quadrilaterals up
to isotopy through normal disks. Let M be a 3-manifold and let T be a triangulation of
M . We say a properly embedded surface F in M is in normal form with respect to T , if
it intersects each 3-simplex in a finite collection of disjoint normal disks.

Suppose F is normal surface inM with respect to T . Then F corresponds to a vector
X = (X1, . . . , X7t) in R7t, where t is the number of 3-simplexes in T and the indexing
set {1, . . . , 7t} corresponds to all the possible normal disks types. The coordinate Xi

corresponds to the number of copies of i-th disk type in F.
Each 2-simplex in T contains three types of normal arcs up to normal isotopy. If

two 3-simplexes A and B share a 2-simplex, then number of normal disks of A which
intersect the 2-simplex in the same type of normal arc should be the same as for B.
If {xi, yi} are number of normal triangles and number of normal quadrilaterals in two
adjoining 3-simplexes. Then we should have, x1 + y1 = x2 + y2, we get a system of
homogeneous linear equation for each arc type on each face. This system of homogeneous
linear equations are called the matching equations. As quadrilateral of two distinct types
in a 3-simplex would intersect so we add a quadrilateral constraint, which says that we
can not have more than one quadrilateral type in a 3-simplex. Non-negative integer
solution of the matching equations which satisfy the quadrilateral constraint gives rise
to a normal surface and vector given by a normal surface is a non-negative solution of
this system which satisfy the quadrilateral constraint. Hence, normal isotopy class of
properly embedded normal surfaces are in one to one correspondence with non-negative
integer solution of the matching equations with quadrilateral constraint.

Haken showed that all the non-negative integer solutions of this linear system are
integer linear combination of a finite set of non-negative integer solutions X ′1, . . . , X ′n
called the fundamental solutions. Upon normalising the solution space of this linear
system, it projects down to a compact linear cell which is called the projective linear
space. Each fundamental solution gives rise to an embedded normal surface, which is
called a fundamental surface. As each solution of the system can be written as the sum
of fundamental solutions, we can write each embedded normal surface as a Haken sum
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Figure 4.1: Regular switch

Figure 4.2: Sum of two normal surfaces

of fundamental surfaces. [15] has detailed description on the subject.
Given two surfaces F and F ′ in normal form with corresponding vectors X and X ′,

define the sum F + F ′ corresponding to the vector X +X ′ in the following way:
A regular switch on a face of the 3-simplex is the operation depicted in Figure 4.1

In which we are cutting both the arcs at the intersection point and joining four arcs at
the end points in a way to get two normal arcs. Regular switch on the faces extends to
cut and paste operation on normal disks resulting in disjoint normal disks of the same
normal isotopy type as shown in Figure 4.2, where two normal disks with red and blue
boundary intersecting in two faces of a tetrahedron. Extending this procedure to every
3-simplex in the triangulation gives a normal surface which is the Haken sum F + F ′

corresponding to the vector X +X ′.
A vertex surface is a connected two sided normal surface that projects onto a vertex

of the projective solution space of system of matching equations. We care about vertex
surfaces and fundamental surfaces because we have a bound on number of normal disks
of these surfaces.

Proposition 4.1.2. [Lemma 6.1 of [15]] Let M be a compact triangulated 3-manifold
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containing t tetrahedra. Then each normal coordinate of a vertex surface in M is bounded
above by 27t. If the normal surface is fundamental, 7t27t acts as an upper bound on all
of its normal coordinates.

Definition 4.1.3. A properly embedded surface S in M is called 2-sided if its normal I-
bundle is trivial and it is called 1-sided otherwise, where I = [0, 1]. 2-sided surfaces which
do not have sphere or disk components are called incompressible if for each embedded
disk D ⊂ M with D ∩ S = ∂D there is a disk D′ ⊂ S such that ∂D′ = ∂D. A properly
embedded surface S in M is called ∂-incompressible if for each disk D ⊂ M such that
∂D decomposes as union of two arcs α and β, with D ∩ S = α and D ∩ ∂M = β, there
is a disk D′ ⊂ S with α ⊂ ∂D′ and ∂D′ − α ⊂ ∂S. We will call a surface in M essential
if it is properly embedded, incompressible, boundary incompressible and not parallel to
a surface in ∂M .

Definition 4.1.4. [F− bundle over B] An F -bundle over B is a fibre bundle structure
with topological spacesM,B, F and a projection map π : M → B, such that for every x ∈
M , there is an open neighbourhood U ⊂ B of π(x) such that there is a homeomorphism
φ : π−1(U)→ U × F , proj1 : U × F → U and proj1 ◦ φ = π|π−1(U).

Let T be a punctured torus, two T -bundles over S1 are equivalent if there is a fibre
preserving homeomorphism between them which induces the identity on the base. We
know that the equivalence classes of T -bundles over S1 are in one-to-one correspondence
with conjugacy classes of GL2(Z) and that every T -bundle over S1 is of the form T × I/η
with η ∈ GL2(Z). For more details refer to paper by Culler, Jaco and Rubinstein [6].
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Figure 4.3: Maximal graph and Polygonal representation

4.2 Bound for Surfaces

This section deals with the bound on number of Pachner moves required to relate two
triangulations of closed surfaces.

Let S be a closed surface and T be some triangulation of S. Let GT be the dual
graph of T , that is, take a vertex for each triangle in T and an edge between two vertices
if their corresponding triangles share an edge. Let MT be a maximal tree in the graph
GT . Consider the span P (T ) of MT in T , that is an induced triangulation from T whose
dual is the given graph MT . Then P (T ) gives us a polygonal representation of S in the
following way:

As P (T ) is an induced triangulation from T which contains all the triangles of T , we
can go back and forth between P (T ) and T by identifying the necessary edges in ∂P (T ).
See Figure 4.3. As dual graph MT of P (T ) has no circuits so it is a disk.

Lemma 4.2.1. [Lemma 3.2.2 for n = 2] Any combinatorial triangulation of a piecewise
linear disk with n triangles can be changed to a cone over the boundary of the same disk
by n Pachner moves.

Proof. As the combinatorial triangulation of a disk is shellable, we can index all the
simplexes in it by numbering them from 1 to n such that the ascending integers give a
way to reduce the triangulation down to a single simplex. The 2-simplex which is left
has index n. Make a (1–3) move on the index n simplex so that it is a cone over its
boundary. Assume that we already have a cone over the boundary of last k simplexes
and rest of the triangulation we started with is unchanged. If the triangle corresponding
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Figure 4.4: Changing Polygonal representation

to k − 1 simplex has single edge in common with the coned sub complex then a (2–2)
move gives a cone, if it shares two faces then (3–1) moves gives the cone.

Let T and T ′ be two combinatorial triangulations of S. Let P (T ) and P (T ′) be two
polygonal representations of S. Let us assume that, e(∂P (T )) = 2k > e(∂P (T ′)) = 2k′,
e is the number of edges. Choose any k− k′ pairwise unidentified edges in the boundary
of P (T ′). Perform (1-3) Pachner moves on each triangle which intersects these edges and
change the polygonal representation as shown in Figure 4.4.

After changing the polygonal representation of P (T ′), we have a new polygonal tri-
angulation, P ′ such that ∂P (T ) is isomorphic to ∂P ′.

Theorem 4.2.2.Let S be a closed surface, T and T ′ be combinatorial triangulations of
S with t and t′ many triangles respectively. Then, we get a sequence of at most 4t + 2
Pachner moves which takes T to T ′.

Proof. Let P (T ) and P (T ′) be polygonal representations of P and P ′, with number of
triangles t and t′ respectively. Assume t ≥ t′ then the number of edges in the boundary of
P (T ) and P (T ′) is bounded by t+2. We can change one of the polygonal representations
with less than (t + 1)/2 many (1–3) moves into a representation whose boundary is
isomorphic to the boundary of the other polygonal representation.

As each (1–3) move adds two new triangles in the triangulation, the number of trian-
gles in the new triangulation will be bounded by 2t+ 1 = t+ 1 + t where, t is the bound
on number of triangles of T and we need (t+ 1)/2 many (1-3) Pachner moves to change
polygonal representation. Using Lemma 4.2.1, as assumed t ≥ t′, we can relate polygonal
representations via cone over their boundary in less than 4t+ 2 Pachner moves.
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4.3 Algorithm for once-punctured torus bundle

We know all the essential surfaces in once-punctured torus bundles thanks to Culler,
Jaco and Rubinstein [6]. We know that essential surfaces are normal with respect to
any triangulation. As the fibres of these bundles are essential, we can put these fibres in
the two skeleton of the given triangulations using techniques of Mijatovic as in Lemma
4.3.1. In particular, we put that fibre in the 2-skeleton of the triangulation, which has
a minimal weight boundary (least number of normal arcs) with respect to the boundary
triangulation of once-punctured torus bundle.

Lemma 4.3.1. [Lemma 4.1 in [28]] Let M be a 3-manifold with a triangulation T con-
sisting of t tetrahedra. Assume that F is a properly embedded surface in M with respect
to T which contains n normal pieces. Then we can obtain a subdivision T1 of T, using
less that 200nt Pachner moves, with the following properties: T1 contains the surface F
in its 2-skeleton and it consists of not more than 20(n+t) tetrahedra.

If we start with two different triangulations T1 and T2 of the once-punctured torus
bundle, assuming triangulations agree on the boundary, we can put the required fibre in
the 2-skeleton using Lemma 4.3.1. Cutting along the fibre gives triangulations of T × I
which agree on the boundary. We get a pair of compression disks for T × I which we put
in the two skeleton using Lemma 4.3.1 and again cut along them to get triangulations
of a 3-ball which agree on the boundary. Using Mijatovic’s Theorem 4.3.2 for a 3-ball
which gives a bound on number of Pachner moves required to go from any triangulation
of a 3-ball to cone over its boundary, we get a bound on the number of Pachner moves
required to relate triangulations of once-punctured torus bundles.

Theorem 4.3.2. [Theorem 5.2 in [29]] Let T be triangulation of a 3-ball with t tetrahedra.
Then it can be changed to cone on the bounding 2-sphere, without altering the induced
triangulation of the boundary, by less than at22at2 Pachner moves, where the constant a
is bounded above by 6.106.

In order to count the number of Pachner moves required, we need to count the number
of simplexes at each step of our process. We need to know the number of simplexes when
we put the required fibre in the 2-skeleton of the triangulations, we need to know the
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number of simplexes when we put compression disks in the two skeleton of T × I and
finally we also need the triangulation on the boundary at each step to remain simplicially
isomorphic.

4.3.1 Outline of the Algorithm

Let T be a compact once-punctured torus. Let M = T × I/ν, and let T1 and T2 be two
triangulations of M . Assume that T1 and T2 agree on the boundary torus of M . Our
algorithm works in the following way:

1. Fix a simple closed minimal weight curve c in ∂M such that c is not homotopic to
a point and c bounds a fibre in M.

2. Show that the fibre F bounded by c is fundamental with respect to T1 and T2.

3. Subdivide T1 and T2 such that F lies in the 2-skeleton of both.

4. Change T2 to T ′2 by Pachner moves such that the triangulation of F induced by T1

is isomorphic to the triangulation induced by T ′2.

5. Cut T1 and T ′2 along this fibre to get triangulations T (1)
1 and T (1)

2 of T × I = M ′.

6. Find a pair of disjoint compression disks inM ′ which are fundamental with respect
to T (1)

1 and T (1)
2 .

7. Subdivide T (1)
2 such that the triangulation of these disks agree with the triangula-

tion induced by T (1)
1 on them.

8. Cut T (1)
1 and subdivide T (1)

2 along these disks to get triangulations T (2)
1 and T (2)

2 of
a 3-ball such that ∂T (2)

1 = ∂T
(2)
2 .

9. Use Theorem 4.3.2 to get a bound on the number of Pachner moves required to
relate T (2)

1 and T (2)
2
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4.4 Conclusion

As seen in the outline of the algorithm 4.3.1, our goal is to show that

• Boundary minimal weight fibres are fundamental with respect to given triangula-
tions of M .

• Pairs of compression disks are fundamental with respect to triangulations of M ′.

• Bounds depend on the triangulations T (2)
1 and T (2)

2 of the 3-ball.

In Mijatovic’s result the number of Pachner moves relating cone over boundary of the
3-ball and the triangulation of 3-ball is a function of the number of 3-simplexes in the
triangulation. So for counting the number of Pachner moves, we need the number of
3-simplexes in T (2)

1 and T (2)
2 . This can be counted by keeping track of the subdivisions.

Each time we put a surface in the 2-skeleton, we are adding some simplexes to the
triangulation using Lemma 4.3.1. We keep a count of these new simplexes and then
using Theorem 4.3.2 we attempt to get a bound.

This chapter is an ongoing work, to get a bound on number of Pachner moves relating
two triangulations of once-punctured torus bundles. Solutions to above questions will give
us our required result.
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