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Abstract

For the similitude symplectic group GSp6 over a totally real number field F , we establish

the meromorphic continuation of the standard L-function and the spin L-function which are

Langlands L-functions associated to the automorphic representation of PGSp6(AF). In the

second part of this thesis we compute the dimesion of the spaces of automorphic forms for

rank 3 unitary groups where the entries of the group are from a definite quaternion algebra

B over Q. This group is an inner form of GSp6 over Q.
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Notation

F : a field (char 6= 2)

F̄ : algebraic closure of F

Z : integers

Q : the field of rational numbers

R : the real field

C : the complex field

Qp : p-adic fields

⊗ : tensor product

⊕ : direct sum

∼=: isomorphism

Ẑ := lim
←−
n
Z/nZ, finite adèles of Z

Q̂ :=Q⊗Z Ẑ, finite adèles of Q

A := R× Q̂, the ring of adeles of Q

gt : transpose of a matrix g

: end of a proof
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Chapter 1

Introduction

This thesis deals with two questions on which I was working during my Ph.D. Both of these

two questions are related to Siegel modular forms of genus 3.

The idea of the first question came after reading the paper by Asgari–Schmidt [AS01].

In their paper, they start with a Siegel modular Hecke eigen form f of degree n for the full

modular group Sp2n(Z) with trivial nebentypus character. Then using the strong approx-

imation property for Sp2n, they associate to f a function Φ f on PGSp2n(A) which may

be thought of as the adélic version of f . Moreover, they construct an automorphic repre-

sentation π( f ) of PGSp2n(A) via Φ f . Using classical Hecke operators acting on f they

considered the associated standard L-function and spin L-function of degree (2n+ 1) and

2n respectively. Then they deal with n= 3 situation. The Langlands dual of PGSp6 is Spin7.

Let ρ1 : Spin7
Std−→ SO7(C) be the standard representation and ρ2 : Spin7

spin−→ SO8(C) be

the spin representation. Let L(s,π( f ),ρ1) and L(s,π( f ),ρ2) ([AS01, Section 4.6]) be two

Langlands L-functions associated with them. These Langlands L-functions are related to

classical standard L-function and spin L-function with a shifting in s∈C. The main goal of

their paper [AS01] is to prove the meromorphic continuation of L-functions L(s,π( f ),ρ1)

and L(s,π( f ),ρ2) to all of C via Langlands theory of Euler products [AS01, Theorem 4].

The goal of the first question is to generalise their result in the case of Siegel-Hilbert

modular forms, i.e., replace the base field Q by a totally real number field. Let F be a to-

tally real number field of degree d over Q. Let G = ResF/Q(GSp6) be the Weil restriction

of scalars from F to Q of the algebraic group GSp6. Then G(A) = GSp6(AF). We recall

the necessary theory of scalar valued Siegel-Hilbert modular forms of genus 3 and weight

1



2

k = (k1,k2, . . . ,kd) where ki’s are nonnegative integers. These forms are functions on H d
3

satisfying the usual transformation property with respect to congruence subgroups. Here

H d
3 is the d-copies of Siegel upper half-space. Let us start with a tuple f = ( f1, f2, . . . , fh)

of Siegel-Hilbert modular forms with trivial characters, then utilizing the strong approxi-

mation theorem for Sp6, an adélic Siegel-Hilbert automorphic form Φ f : G(A)→ C may

be realised as this tuple. Here h denotes the narrow class number of F . By Borel and

Jacquet [BJ79], we associate an automorphic representation π( f ) of G(A) with Φ f . Since

π( f ) has a trivial central character so we consider π( f ) as an automorphic representation

of G(A) = ResF/Q(PGSp6)(A). Here the L-group of G is

LG = (Spin7)
d oGal(F ′/Q),

where F ′ is a finite Galois extension of Q such that F ′ contains F . Let S denote the set

of places of Q which include Archimedean place ∞, the ramified primes p and those finite

places p where π( f )p is not spherical.

Now corresponding to the representations ρ1 and ρ2, let us define another two repre-

sentations,

φ1 : (Spin7)
d oGal(F ′/Q)→ GL7d(C)

and

φ2 : (Spin7)
d oGal(F ′/Q)→ GL8d(C).

The representations φ1 and φ2 are constructed out of ρ1 and ρ2. So, in our setting, they are

the analogues of standard representation and spin representation. Now the local compo-

nents of π( f ) which are spherical representations of local groups G(Qp) can be attached

to a unique semisimple conjugacy class denoted by (t0
p,Frp) in the local L-group of G.

Then corresponding to these two representations φ1,φ2 we have two Langlands L-functions

associated to the automorphic representation π( f ) =⊗′pπp( f ) of G(AQ).

One is the standard L-function

LS(s,π( f ),φ1) := ∏
p/∈S

Lp(s,π( f )p,φ1 p)
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for s ∈ C, where the local Euler factors attached to π( f )p and φ1 p are defined as

Lp(s,π( f )p,φ1 p) := det
(

I−φ1 p(t
0
p,Frp)p−s

)−1
.

and another one is the spin L-function,

LS(s,π( f ),φ2) := ∏
p/∈S

Lp(s,π( f )p,φ2 p)

for s ∈ C, where the local Euler factors attached to π( f )p and φ2 p are defined as

Lp(s,π( f )p,φ2 p) := det
(

I−φ2 p(t
0
p,Frp)p−s

)−1
.

Our main aim is to prove the meromorphic continuation of LS(s,π( f ),φ1) and LS(s,π( f ),φ2)

to all of C using Langlands theory. Our Theorem 3.2.2 is a straightforward generalisation

of [AS01, Theorem 4] by Asgari-Schmidt.

In this context, we mention that one of the results in Kret–Shin [KS16] is the meromor-

phic continuation of the spin L-function for GSp2n over totally real number field F under a

local hypothesis that at the Archimedean place there is a Steinberg component twisted by

a character.

The second question studied in this thesis is algorithmic and more computational in

nature. Here we compute the dimension of the spaces of automorphic forms for rank 3

unitary groups where the entries of the elements of the group are from a quaternion al-

gebra. The idea of this second problem came after reading various papers based on the

dimension calculation of the spaces of modular forms for different groups (for example

see [CD09, Dem05, Dem14, Loe08]). For a reductive algebraic group G over Q the space

of automorphic forms for G of a given level and weight is known to be finite dimensional.

However, for most of the groups how to calculate this dimension explicitly is less known.

For the case of classical modular forms, for GL2 there are well-known algorithms based

on modular symbols (See [Ste07]), but in general for other groups very little is known.

For computational convenience Gross in [Gro99] has developed a theory of modular forms
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totally algebraically. His theory deals with a connected reductive group over Q where the

group satisfies the condition that all its arithmetic subgroups are finite. He defined the

space of algebraic modular forms for these groups. Theoretically, this space is computable.

Carrying out Gross’s theory, Loeffler [Loe08] has given an algorithm for computing the

full space of automorphic forms of full level for definite unitary groups over Q. He has ap-

plied this algorithm of a rank 3 definite unitary group and calculated dimension for various

small weights. Cunningham and Dembélé have their subsequent papers for the algorithmic

calculations in the case of GSp4 under the assumption of conjectural Jacquet-Langlands

correspondence. We refer the readers to [CD09] where the authors have presented an al-

gorithm for the computation of the space of genus 2 Siegel-Hilbert cusp forms over a real

quadratic field of narrow class number 1 and then for compact inner forms of GSp4 over

totally real number fields (cf. [Dem14]).

In the same spirit, we want to calculate the dimensions of the space of genus 3 Siegel

automorphic forms for various small weights for the group GSp6 over Q. We can not

compute this space directly. To be able to apply Gross’s theory we take a definite quaternion

algebra B over Q which is ramified exactly at a prime p and ∞ and unramified at all other

places. Let GB over Q be the algebraic group whose Q-rational points are given by the

unitary similitude group GU3(B). The group GB is an inner form of GSp6 over Q such

that GB(R) is compact modulo center. We check that every arithmetic subgroup of GB

is finite. Now fixing an irreducible algebraic representation (ρ,V ) of GB(Q) and K :=

GB(Ẑ) = ∏p<∞ GB(Zp) maximal compact open subgroup of GB(Q̂) the space of algebraic

automorphic forms of weight V , genus 3 and level K is then defined by Gross as,

MGB(V ) = { f : GB(A)/(GB(R)+×GB(Ẑ))→V | f (γg) = γ f (g) for γ ∈ GB(Q)}.

By the conjectural Jacquet-Langlands correspondence for similitude symplectic groups,

computing the dimension of the space of Siegel automorphic forms amounts to computing

the dimension of the space of algebraic automorphic forms on B. Then under the assump-

tion of the existence of a Jacquet-Langlands correspondence between GB and GSp6/Q, our

goal is to compute the dimension of the space of algebraic automorphic forms MGB(V ). In
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Chapter 5, we give a Table 5.1 of dimensions of the spaces of cuspidal algebraic automor-

phic forms of full level and for various small weights V . The weights V are parametrized

by non-negative integers a,b,c,d with no condition on b and with the condition that a+ c

to be even. We fix d to be 0. The main idea of Chpater 5 is to give an algorithm to com-

pute the dimensions of the space MGB(V ) which takes values for a,b,c as inputs and gives

dimensions as outputs.
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Chapter 2

Theory of Siegel-Hilbert automorphic

forms

The purpose of this chapter is to include the preliminaries related to Siegel–Hilbert modular

forms and then describe the procedure of associating a Siegel–Hilbert automorphic form

with an automorphic representation of GSp6(F), where F is a totally real number field. To

describe the matters in details, let us fix the following notations.

2.1 Notations

The similitude symplectic group of degree n is given by,

GSp2n = {g ∈ GL2n | ∃ µ(g) ∈ GL1 gJgt = µ(g)J},

where

J =

 0 In

−In 0

 , In is the n×n identity matrix.

Let F denote a totally real number field of degree d over Q and OF be its ring of integers.

The set of real embeddings of F is denoted by S∞ = {σ1,σ2, . . . ,σd}. This is the set of

all archimedean places of F . Let F+ denote the set of all totally positive elements in

F . By totally positive we mean all those elements a in F such that, σi(a) > 0 for all

i = 1,2, . . . ,d. Let F∞ = ∏v∈S∞
Fv = ∏

d
j=1 Fσ j

∼= Rd. Now F+
∞ ⊂ F∞ is such that, F+

∞ =

{(x1, . . . ,xd) ∈ F∞ | x j > 0 ∀ j}. Let AF denote the adèle ring of F , A f ,F denotes the finite

7
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adèles of F . Let us call, G′ := GSp6. Let G = ResF/Q(GSp6) [ G := ResF/Q(PGSp6) ]

which is the Weil restriction of scalars from F to Q of the F-algebraic group GSp6 [of

the F-algebraic group PGSp6]. Then, G(Q) = GSp6(F) and more generally for any Q-

algebra A, G(A) = GSp6(A⊗Q F). Hence G(A) = GSp6(AF). Let G(A f ) denote the finite

part of G(A), where A = A f ×R. Let p denote a prime ideal of OF and OFp denotes

the completion of OF at p. Then OFp is the ring of integers of Fp. For any prime p in

Q, G(Qp) = GSp6(Qp⊗Q F) = ∏p|p GSp6(Fp) where p|p denotes prime ideals p lying

over p. Let G∞ = G(R) and let G+
∞ denote the matrices in G(R) which have positive

similitudes at each place σ ∈ S∞. Let G(Q)+ = G(Q)∩G+
∞ . Let K f be an open compact

subgroup of G(A f ). We choose K f to be GSp6(ÔF) and we fix the choice. Let K∞ =

∏GU3(R) denote the maximal compact subgroup of G(R); K+
∞ = ∏U3(R) will denote the

connected component of the identity element. Let Z and Z∞ denote the center of G and G∞,

respectively.

2.2 Siegel-Hilbert automorphic forms

Siegel modular forms are certain holomorphic functions on the Siegel upper half space Hn

of genus n. The Siegel upper half space is by definition

Hn := {Z = X + iY ∈Mn(C) | Z = Zt , Y is positive definite}.

To know basic facts about classical Siegel modular forms, we refer the readers to see Klin-

gen [Kli90], Andrianov [And09], [And74]. We will first recall the definition of Siegel-

Hilbert modular forms which are generalisations of Siegel modular forms in some sense.

We are interested in genus-3 case only. We regard F as a subring of Rd by means of em-

beddings α 7→ (σ1(α), . . . ,σd(α)) for α in F . Via these σi’s we have a map, GSp6(F) ↪→

GSp6(R)d such that,A B

C D

 7→
σ1(A) σ1(B)

σ1(C) σ1(D)

 ,

σ2(A) σ2(B)

σ2(C) σ2(D)

 , . . . ,

σd(A) σd(B)

σd(C) σd(D)

 .



9

The group GSp+6 (R) acts on H3 via linear fractional transformations defined as following,

g =

A B

C D

 : Z 7→ g〈Z〉 := (AZ +B)(CZ +D)−1.

Remark 2.2.1.

(1) This is a bonafide group action, i.e., g1g2〈Z〉 = g1〈g2〈Z〉〉 for any g1,g2 ∈ GSp+6 (R)

and Z ∈H3.

(2) For any such symplectic map, Z 7→ g〈Z〉 let us define the function j by j(g,Z) :=

det(CZ +D), for g =

A B

C D

 ∈ GSp+6 (R). The function j satisfies the cocycle re-

lation: j(g1g2,Z) = j(g1,g2〈Z〉) j(g2,Z) for all g1,g2 ∈ GSp+6 (R),and Z ∈H3.

(3) GSp+6 (R)〈iI3〉 = H3, i.e., if we vary g∞ ∈ GSp+6 (R) and apply it on iI3 we will get

entire Siegel upper half space.

(4) StabSp6(R)(iI3) = K∞,Sp6
∼= U(3), where U(3) is the maximal compact subgroup of

Sp6(R).

(5) StabGSp+6 (R)
(iI3) = K∞,Sp6 ·Z

∞, where Z∞ is the center of GSp+6 (R).

For Z = (Z1,Z2, . . . ,Zd) ∈H d
3 , where H d

3 is the d-fold product of Siegel upper half

space, there is a group action of GSp+6 (F) on H d
3 defined by

g〈Z〉 := (σ1(g)〈Z1〉,σ2(g)〈Z2〉, . . . ,σd(g)〈Zd〉),

where g =

A B

C D

 ∈ GSp+6 (F). Explicitly, we have,

A B

C D

〈Z1,Z2, . . . ,Zd〉 : =
(
(σ1(A)Z1 +σ1(B))(σ1(C)Z1 +σ1(D))−1,

(σ2(A)Z2 +σ2(B))(σ2(C)Z2 +σ2(D))−1,

. . . ,(σd(A)Zd +σd(B))(σd(C)Zd +σd(D))−1
)
.
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This induces an action of GSp+6 (F) on the space of functions { f : H d
3 → C}.

GSp+6 (F)×{H d
3 → C} −→ {H d

3 → C}

(g, f ) 7→ f |kg,

where k = (k1, . . . ,kd) and k1,k2, . . . ,kd are non-negative integers. The function f |kg is

defined by

f |kg(Z) = f |kg(Z1,Z2, . . . ,Zd)

=
d

∏
l=1

µ(σl(g))3kl/2j(σl(g),Zl)
−kl f (g〈Z〉).

Definition 2.2.2. A Siegel-Hilbert modular form of weight k = (k1, . . . ,kd) , genus 3, level

1 is an analytic function f : H d
3 → C such that f |kγ = f for all γ ∈ GSp+6 (OF). i.e., a

Siegel Hilbert modular form f of weight (k1, . . . ,kd) is a complex valued function such that

(1) f is an analytic function on H d
3 .

(2) f (γ〈Z〉) = ∏
d
l=1 µ(σl(γ))

−3kl/2j(σl(γ),Zl)
kl f (Z) for all γ =

A B

C D

 in GSp+6 (OF).

Remark 2.2.3. We remark that the exponent of µ as showing up in the definition of Siegel–

Hilbert modular form is chosen this way so that the center of G(A) = GSp6(AF) acts

trivially. Note that the center of GSp6 consists of scalar matrices. The integers k1,k2 . . . ,kd

have the same parity so that the space of Siegel–Hilbert modular forms is nonzero.

Using the strong approximation theorem of Sp6 (See Kneser[Kne66]) one may find

ti ∈ G(A), where ti is of the form ti =

aiI3 0

0 I3

 with µ(ti) = ai and ai’s are from ideles

chosen as representatives of the narrow class group of F such that

G(A) =
h⊔

l=1

G(Q)tlGSp6(ÔF)G+
∞ . (2.2.1)
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Note that, since µ(GSp6(ÔF)) = Ô×F , where ÔF = ∏pOFp denotes the product of all com-

pletions of OF , h is just the narrow class number of F , where narrow class number is the

cardinality of the narrow class group F×\A×F /Ô
×
F F+×

∞ of F .

Now set, Γl = G(Q)+∩ tlK f G+
∞t−1

l . This Γl is an arithmetic subgroup of G(Q). Let us

denote by Z0 = (iI3, iI3, . . . , iI3), the base point in H d
3 . Note that, H d

3
∼= G+

∞/K+
∞ Z∞. Then

the map,

γtlu f g∞ 7→ g∞〈Z0〉

for γ ∈ G(Q),u f ∈ K f and g∞ ∈ G+
∞ , induces a decomposition,

G(Q)\G(A)/K f K+
∞ Z∞

∼=
h⊔

l=1

Γl\H d
3 . (2.2.2)

We put Mk(Γl) to be the space of Siegel Hilbert modular forms of weight k=(k1, . . . ,kd)

with respect to Γl by which we mean a space of functions f that are holomorphic on H d
3

and satisfy f |kγ = f for all γ ∈ Γl (Definition 2.2.2). Every f ∈Mk(Γl) admits a Fourier

expansion, which by the Koecher principle takes the form,

f (Z) = ∑
{Q}∪{0}

aQe2πiTr(QZ),

where Q runs over all half-integral symmetric totally positive matrices and Tr denotes the

trace of a matrix.

Definition 2.2.4. A Siegel-Hilbert modular form is called a cusp form if for all γ ∈ Γl , the

constant term in the Fourier expansion of f |kγ vanishes.

We denote the space of Siegel Hilbert cusp forms by Sk(Γl).

Now choose a function, fl ∈ Sk(Γl) for each l ∈{1, . . . ,h} and put Φ f :=( f1, f2, . . . , fh).

Then using the decompositions (2.2.1) and (2.2.2), let us define, Φ f : G(A)→ C by

Φ f (γtlu f g∞) = fl|kg∞(Z0)

for γ ∈ G(Q),u f ∈ K f and g∞ ∈ G+
∞ .
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Definition 2.2.5. A Siegel–Hilbert automorphic cusp form of weight k = (k1, . . . ,kd) and

level 1 is a function Φ : G(A)→ C satisfying the following properties:

(1) Φ(γg) = Φ(g) for all γ ∈ G(Q).

(2) Φ(zg) = Φ(g) for all z ∈ Z(A).

(3) Φ(gu f ) = Φ(g) for all u f ∈ K f .

(4) Φ(gu∞) = ∏
d
l=1 j(ul

∞, iI3)
−kl Φ(g), where u∞ ∈ K+

∞ and ul
∞ := σl(u∞),σl ∈ S∞.

(5) Φ has vanishing constant terms, i.e., for each g∈G(A),
∫

N(Q)\N(A)Φ(ng)dn= 0, where

N is the unipotent radical of B∞, the standard Borel subgroup of G.

We denote the space of Siegel-Hilbert cuspidal automorphic forms by Sk(K f ).

2.3 Hecke algebras

Let Φ be a cusp form of weight k = (k1,k2, . . . ,kd) and of level 1. The space of cuspidal

automorphic forms, denoted by Sk(K f ) comes equipped with a Hecke-algebra action. First,

we will recall the definition of Hecke algebra and then the action of it on Sk(K f ). Now, let

∆ f =G(A f )∩M6(ÔF), let K f \∆ f /K f denote the space of double cosets of K f in ∆ f . Define

the Hecke algebra,

H (∆ f ,K f ) := Z[K f \∆ f /K f ]

to be the free abelian group with basis the set of double cosets of K f in ∆ f . For a dou-

ble coset, K f gK f ∈ K f \∆ f /K f , let [K f gK f ] denote the corresponding basis element. The

algebra structure on H (∆ f ,K f ) is given by customary convolution formula

[K f gαK f ]∗ [K f gβ K f ] = ∑cαβγ [K f gγK f ],

where the coefficients cαβγ are computed as follows:

The group K fα = K f ∩ gαK f g−1
α is compact and open, hence of finite index in K f .

Hence there exists finite number of elements x1,x2, . . . ,xm of K f such that K f =tm
j=1x jK fα .
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Therefore K f gK f = tx jgαK f . Define similarly K fβ and get y1, . . . ,yn. Then cαβγ is the

number of pairs ( j, l) such that g−1
γ x jgαylgβ ∈K f (see Cartier [Car79, p. 116] and Shimura

[Shi71]). Now for each integral ideal m, let Tm = ∑g[K f gK f ], where the sum is taken over

all distinct double cosets with g ∈ ∆ f such that (µ(g))OF = m. Noting that summand

K f gK f can be expressed as a disjoint union of left cosets, i.e., K f gK f = tlglK f , mentioned

earlier, we can define Hecke action on Φ as

(Φ|[K f gK f ])(x) = ∑
l

Φ(xgl).

We can define the Hecke algebra, locally as following.

For each prime p of OF , let ϖp be the uniformizer of OFp . Let Gp :=GSp6(Fp) and Kp :=

GSp6(OFp). Let Hp(Gp,Kp) be the unramified Hecke algebra consisting of compactly

supported functions which are bi-Kp invariant, i.e., T (kgk′) = T (g) for all g ∈ Gp and

k,k′ ∈ Kp. The definition assures that T vanishes off a finite union of double cosets KpgKp.

The multiplication in Hp(Gp,Kp) is defined by the customary convolution formula,

(T1 ∗T2)(x) =
∫

Gp

T1(xy)T2(y−1)dy,

for T1,T2 ∈Hp(Gp,Kp). The integral makes sense since as a function of y the integrand

is locally constant and compactly supported. In our case, we have four Hecke operators

corresponding to the double Kp cosets of the 6× 6 symplectic similitude matrices which

are,

T0,p = diag(1,1,1,ϖp,ϖp,ϖp)

T1,p = diag(ϖp,1,1,ϖ−1
p ,1,1)

T2,p = diag(1,ϖp,1,1,ϖ−1
p ,1)

T3,p = diag(1,1,ϖp,1,1,ϖ−1
p ).

Therefore,

Hp(Gp,Kp) = C[T0,p,T1,p,T2,p,T3,p]

Details are given in Asgari-Schmidt[AS01, p. 177]. The Hecke algebra Hp(Gp,Kp) is

generated by the operators T0,p,T1,p,T2,p,T3,p and



14

H (∆ f ,K f )⊗C = ⊗pHp(Gp,Kp) (cf.[BJ79, p.194]) where p runs over all primes in OF .

There is a left action of Hp(Gp,Kp) on Φ ∈ Sk(K f ), which is given by

(T Φ)(x) =
∫

Gp

T (h)Φ(xh)dh,

where T ∈Hp(Gp,Kp) and x ∈ G(A)(= GSp6(AF)). If T is a characteristic function of

KpgKp then writing KpgKp as a disjoint union of left cosets, KpgKp=tlglKp and noting that

Φ is right Kp-invariant, we get (T Φ)(x) = ∑Φ(xgl). By Iwasawa decomposition of GSp6,

we may assume that, gl =

Al Bl

0 ϖ
dl0
p

tA−1
l

 with Al =


ϖ

dl1
p 0 0

∗ ϖ
dl2
p 0

∗ ∗ ϖ
dl3
p

 , where dl j

are integers, dl0 does not depend on l since it equals the valuation of µ(g). Here µ is the

similitude factor (cf.[AS01, p. 178]).

2.4 Restriction of scalars and L-group

In this section, we will recall the definition of Langlands L-group and some necessary

facts from Springer [Spr79] and Borel [Bor79, p. 34]. The notations and definitions are

borrowed from the above mentioned references. We have already fixed our group to be

G = ResF/Q(GSp6) and G′ = GSp6, where F is a totally real number field. We denote the

Galois group of Q over F by ΓF = Gal(Q/F) and ΓQ = Gal(Q/Q). Then ΓF is an open

subgroup of finite index of ΓQ.

Let ∑F,Q = ΓF\ΓQ be the set of Q-monomorphisms F →Q. Then

G(Q) = IndΓQ
ΓF
(G′(Q)) = ∏

σ∈ΓF\ΓQ

σ G′(Q) = ∏
α:F ↪→Q

αG′(Q),

where IndΓQ
ΓF
(G′(Q)) := { f : ΓQ→G′(Q) | f (g′g) = g′ · f (g),g′ ∈ ΓF ,g∈ ΓQ}. For general

definition of induced groups please see Borel[Bor79, p. 33]. Since, G′ and G both are

connected, reductive groups, it is possible to associate the root datum,

ψ(G′) = (X∗(T ′),φ ′,X∗(T ′),φ ′∨),
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with G′. Here T ′ is a maximal torus of G′ defined over Q, X∗(T ′) denotes the group

of characters of T ′ whereas X∗(T ′) is the 1-parameter subgroup of T ′, φ ,φ ′∨ denote the

set of roots and co-roots with respect to T ′ respectively. The choice of Borel subgroup

B′ ⊃ T ′ (defined over Q) gives a basis ∆′ of root datum, and so we can fix a based root data

ψ0(G′) = (X ′∗,∆′,X ′∗,∆
′∨) associated to G′. Then, the root data corresponding to the group

G is given by ψ0(G) = (X∗,∆,X∗,∆∨), where

X = IndΓQ
ΓF
(X ′) and ∆ = ∪a∈ΓF\ΓQ∆

′ ·a. (2.4.1)

For details, see Borel[Bor79, p. 35].

Remark 2.4.1. In our case, G′ is an F-group, hence it is quasi-split over F . G is quasi-split

over Q. Note that G is not split over Q. But G′ is split over Q.

Correspondingly, B = ResF/QB′ is a Borel subgroup of G and T = ResF/Q(T ′) will

stand for torus in G. For any Q-algebra A, we can talk about B(A),T (A) as we did for

G(A). The inverse system to the based root datum ψ0(G′) is ψ0(G′)∨ = (X ′∗,∆
′∨,X ′∗,∆′).

To the Q-group G′, we first associate the group LG′0 over C such that ψ0(
LG′0) = ψ0(G′)∨.

Let LT ′0,LB′0 be the maximal torus and Borel subgroup defined by ψ0(G′)∨. We have a

canonical bijection,

Aut(ψ0(G′)∨)∼= Aut(LG′0,LB′0,LT ′0,{xα}α∈∆′∨)

and a homomorphism

µG′ : ΓF → Aut(ψ0(G′)∨).

For details see [Bor79, Section 2.3]. Thus, we can define the Langlands dual group associ-

ated to G′ as LG′ = LG′0 oΓF = LG′0×ΓF (Since G′ splits over F , we get direct product)

and associated to G as LG = LG0 oΓQ.

Remark 2.4.2. There are various variants of this notion, depending on the convenience of

contexts. For instance, if we take a finite Galois extension F ′ of Q such that F ′ ⊃ F , then

our group G splits over F ′ (G splits over F , so does over F ′ too). Now Gal(Q/F ′) acts
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trivially on ψ0(G,T ) (since torus T is now defined over F ′). Hence, we can divide ΓQ, by

this closed normal subgroup Gal(Q/F ′) and take the action of Gal(F ′/Q) on LG0.

By following the above remark, we can replace ΓQ in the definition of L-group of G and

can take the definition of L-group as

LG = LG0 oGal(F ′/Q).

Now,
LG = L(ResF/Q(GSp6)) =

L(ResF/Q(GSp6))
0 oGal(F ′/Q).

Here

LG0 = L(ResF/Q(GSp6))
0 ∼= ∏

σ∈Gal(F ′/F)\Gal(F ′/Q)

σ (LGSp0
6)

= ∏
σ :F ↪→F ′

Q embeddings

σ GSpin7(C)

= GSpin7×·· ·×GSpin7︸ ︷︷ ︸
d many copies

(since |Gal(F ′/F)\Gal(F ′/Q)|= [F :Q] = d). Hence, LG=(GSpin7)
doGal(F ′/Q). Here

we have dropped C and simply written complex dual group GSpin7(C) of GSp6 as GSpin7.

2.5 Parabolic subgroups of LG and Levi-decompositions

The notations and definitions in this section are borrowed from Borel [Bor79, p. 32]. We

know that there is a canonical bijection between the set of conjugacy classes of parabolic

Q-subgroups of G with respect to G(Q) and the subsets of ∆, ∆ denoting the basis of root

data corresponding to G. Let J(P̃) be the subset of ∆ assigned to the class of P̃, where P̃ is

any parabolic Q- subgroup of G.

Parabolic subgroups in L-dual: A parabolic subgroup P of LG is the normaliser of a

parabolic subgroup P0 in LG0 provided the normaliser meets every class of P modulo
LG0. We call P to be standard parabolic if P contains Borel subgroup LB. The standard
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parabolic subgroups are the subgroups LP0oGal(F ′/Q), where LP0 runs through the stan-

dard parabolic subgroups of LG0 such that J(LP0) ⊂ ∆∨ is stable under Gal(F ′/Q). Note

that every parabolic subgroup of LG is a conjugate (under LG or LG0) to one and only

one standard parabolic subgroup. So it is enough to talk about only standard parabolic

subgroups (see [Bor79, p. 32, 33]).

Levi subgroups: Let P be a parabolic subgroup of LG. The unipotent radical N of P0 is

normal in P. We call N to be the unipotent radical of P too in LG. Then P0/N ∼= M0 is Levi

in LG0. In fact, P∼= N oNP(M0), these normalizers NP(M0) are Levi-subgroups of P. Let
LP be the standard parabolic subgroup associated with parabolic subgroup P of G. Then
LM = LM0 oGal(F ′/Q) is identified with a Levi subgroup of LP. Sometimes we replace

the term "Levi subgroups of parabolic subgroup P in G" with "Levi-subgroup in G" for the

sake of brevity.

2.6 Automorphic representations

We now associate a representation of G(A) = PGSp6(AF) with Siegel–Hilbert automorphic

form Φ defined in Section 2.2. Following Borel and Jacquet [BJ79], we say an irreducible

representation of G(A) is automorphic if it is isomorphic to an irreducible subquotient of

the representation of G(A) on its space of automorphic forms. Let Φ be an automorphic

form on G(A) which lies in L2(Z(A)G(Q)\G(A)). Let VΦ denote the subspace of this

Hilbert space L2 spanned by all right translates of Φ. Let π be an irreducible constituent of

this representation. Let Vπ be its representation space. Then π is an automorphic represen-

tation of G(A) = GSp6(AF), which is trivial on Z(A). Hence we can consider π as an au-

tomorphic representation of PGSp6(AF). Now using the decomposition theorem by Flath

(cf.[Fla79]), let us decompose π = π∞⊗π f , where π∞ = ∏ω|∞ πω is an irreducible repre-

sentation of G(R) = (GSp6(R))d . In fact, we can write, π∞ =⊗σ∈S∞
πσ = πσ1⊗·· ·⊗πσd ,

where S∞ = {σ1, . . . ,σd}. Here each πσi is an irreducible representation of GSp6(R). The

representation π f =⊗′p(∏p|p πp) is a restricted tensor product and an irreducible represen-
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tation of G(A f ). Call πp := ∏p|p πp, where πp is an irreducible representation of GSp6(Fp).

The representations πp are irreducible representations of G(Qp) and by Flath’s theorem, al-

most all of πp’s are unramified (spherical) [Fla79]. That means, for almost all prime p the

representation space of πp has a vector fixed by certain maximal compact subgroup G(Zp).

Let S denote the set of places of Q which include Archimedean place ∞, the ramified primes

p and those finite places p where πp is not spherical.

In this decomposition of π , π∞ is completely determined by the weights of Siegel

Hilbert automorphic form Φ and πp’s are completely determined by the Satake parame-

ters which we will be going to talk about in the next section.

2.7 L-functions

The isomorphism class of the spherical representations depends only on the unramified

characters modulo the action of the Weyl group. It is further proved that each spherical

representation is obtained in this way, for details see [AS01]. In our case, for p /∈ S, each

πp is spherical, so πp is obtained by unramified characters of Q∗p (unramified characters

are homomorphisms Q∗p→ C∗, which are trivial on Z∗p). In fact, the Satake isomorphism

attaches each πp with a unique semisimple conjugacy class (known as Satake parameter)

t(πp) in the local L-group LGp (LGp is the L-group of G as a group defined over Qp), where

tp := t(πp) = (t0
p,Frp), t0

p ∈ LT 0,T = ResF/QT ′ and t0
p is determined up to conjugacy by

LT 0, Frp denotes the unique Frobenius conjugacy class in Gal(F ′p/Qp). We may further

assume t0
p to be fixed by Frp (for details see Borel [Bor79, p. 35, Section 6] and Shahidi

[Sha88, p. 553]).

Now let us take ψ : LG→ GLm(C) to be a finite dimensional complex representation

of LG. Let ψp denote the composite map LGp→ LG→ GLm(C) (since we have G ↪→ Gp,

hence we have a natural homomorphism, LGp→ LG).

Then one can define partial Langlands L-function by

LS(s,π,ψ) := ∏
p/∈S

LS
p(s,πp,ψp) (2.7.1)
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for s ∈ C, where the local Euler factors attached to πp and ψp are defined as

LS
p(s,πp,ψp) := det

(
I−ψp(t0

p,Frp)p−s)−1
.

If p splits completely in OF , i.e., if (p) = p1p2 · · ·pd , where d = [F : Q], then πp = πp1 ⊗

πp2 ⊗ ·· · ⊗ πpd , where each πpi is spherical, t0
p = (tp1, tp2, . . . , tpd) ∈ LT 0 with semisimple

conjugacy classes tpi associated to πpi , Frp =identity. By abuse of notation, we also denoted

by π = ⊗′pπp an automorphic representation of PGSp6(AF) (Section 2.6) attached to a

Siegel–Hilbert automorphic form Φ introduced in section 2.2.

Here the L-group of G is

LG = (Spin7)
d oGal(F ′/Q);

Note that Spin7 ⊂ GSpin7 is also the derived group of GSpin7 and LT 0 := LT 0∩ (Spin7)
d

is the maximal torus of LG0.

We are going to take two particular representations of our group LG. We will describe

them now. Let

ρ1 : Spin7(C)→ SO7(C)

and

ρ2 : Spin7(C)→ SO8(C)

denote the first two fundamental representations of Spin7(C), namely the "projective rep-

resentation" ρ1 and "spin representation" ρ2, respectively.

Definition 2.7.1. Define, Pτ,n,d := A block permutation matrix of order nd× nd, where τ

is some d×d permutation matrix which replaces each 0 and 1 by either null matrix 0n or

identity matrix In.

Now corresponding to the representations ρ1 and ρ2, let us define another two repre-

sentations as following,

φ1 : (Spin7)
d oGal(F ′/Q)→ GL7d(C)
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is defined by φ1(g1,g2, . . . ,gd,1)= diag(ρ1(g1),ρ1(g2), . . . ,ρ1(gd)) for (g1, . . . ,gd)∈ (Spin7)
d

and φ1(1, . . . ,1,τ) = Pτ,7,d for τ ∈ Gal(F ′/Q) ⊂ Sd , where Sd represents the symmetric

group defined over {1,2, . . . ,d}. Note that any element (g̃,τ) of (Spin7)
d oGal(F ′/Q)

can be written as (g̃,τ) = (g̃,1) · (1,τ) (by the definition of semi-direct product). So, it is

enough to describe φ1 on (g̃,1) and (1,τ) separately.

Similarly, we define

φ2 : (Spin7)
d oGal(F ′/Q)→ GL8d(C)

by φ2(g1, . . . ,gd,1) = diag(ρ2(g1), . . . ,ρ2(gd)) for (g1, . . . ,gd) ∈ (Spin7)
d

and φ2(1, . . . ,1,τ) =Pτ,8,d for τ ∈ Gal(F ′/Q).

Then corresponding to these two representations φ1,φ2 we have two Langlands L-

functions associated to an automorphic representation π = ⊗′p/∈Sπp of G(AQ). They are

respectively LS(s,π,φ1) and LS(s,π,φ2). These two L-functions are defined in the same

way as in (2.7.1).

However, it remains to define such local L-functions for the remaining places, i.e., for

all p ∈ S. We are dealing with level 1 Siegel-Hilbert automorphic cusp forms and at level

1 case finite primes are all such that πp are unramified. Now if not level 1 then there are

finite number of ramified primes. To define the completed L-function, we need to define

L-factors at those ‘bad’ primes. It is trickier to define L-function at those bad places though,

as we can not define Satake parameters and calculate. The way is to go about it, is to take

Rankin-Selberg convolutions (global zeta integrals) which are Eulerian integral represen-

tations associated to π . Though this concept is valid when π is generic (because then we

can associate a Whittaker model to it). The global Whittaker function then decomposes as

a product of local Whittaker functions, the product varies over all places of Q. The zeta

integrals are defined with the help of Whittaker functions and having reduced the matters

to the local theory, it remains to analyse the L-factors in terms of the local zeta integrals.

Then the integrals corresponding to automorphic forms at finite ramified places v form a

principal ideal. And that principal ideal is generated by a rational function of the form

q−s
v . Hence, the resulting L-factors at the ramified places v are rational function in q−s

v .
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Generally, this is how L-factors are defined at ramified places under the condition that π is

generic, for example, see [BG92]. Unfortunately, Siegel modular forms (in our case Siegel-

Hilbert automorphic forms) are not generic. On the other hand, Piatetski-Shapiro and Rallis

[GPSR87] introduced integral representation using doubling method, which represents the

standard L-function for any classical group over any number field F . Where the cuspi-

dal automorphic representation of that classical group needs not to be generic. Recently

Cai-Friedberg-Ginzburg-Kaplan [CFGK17] generalised the doubling method and provided

integral representations for L-functions for arbitrary cuspidal automorphic representations

of classical groups twisted by automorphic cuspidal representations of arbitrary rank gen-

eral linear groups. The authors worked out the case for the symplectic group Sp2n in detail

in this paper [CFGK17]. The global integral coming from the generalised doubling con-

struction in [CFGK17] uses the specialised inducing data namely the generalised Speh

representations. This global integral converges absolutely in some right half-plane and

admits meromorphic continuation to the whole complex plane. Cai-Friedberg-Ginzburg-

Kaplan introduced a new generalised model known as Whittaker-Speh-Shalika model and

that includes the generic and non-generic automorphic cuspidal representations of Sp2n(A).

Using this model the global integral unfolds to an adelic integral. That adelic integral is

almost Eulerian in the sense that every unramified component can be separated ([CFGK17,

Section 3, equation 3.1, Theorem 21]). Consequently this integral represents the partial

L-function which is a product of local L-functions over all finite places of F for which the

local data is unramified. In Section 3 of [CFGK17] the authors computed the local factors

with unramified data. In their second paper, Cai-Friedberg-Kaplan [CFK18] have devel-

oped the local theory of the doubling integrals over all places of F including ramified and

Archimedean ones. Since these theories are applicable for any cuspidal automorphic rep-

resentaions of the classical groups, hence it shall include the case of Siegel modular forms

too. Thus one can recover the standard L-function of GSp2n via the doubling method. Infact

the paper [CFK18] covers the complete local and global theory (over all places of F) of ten-

sor product L-functions for any cuspidal automorphic representaions of GSpin group with
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represenations of GLk without any condition on genericity on representations of GSpin.

Hence, one can recover the spin L-function of GSp2n via the doubling method too. Please

see the paper [CFK18] for more details.

The L-functions at the Archimedean places are defined by local Langlands correspon-

dence (cf. [Lan71a]). We attach the Archimedean Euler factor computations in the next

section.

2.7.1 Archimedean Euler factors

In this section, we mostly follow Schmidt [Sch02]. This section is devoted to give the

formula for the archimedean Euler factors for φ1 and φ2. We need to set the stage by

recalling some basic facts about representations of real Weil groups.

Representations of the Weil group

The real Weil group, denoted by WR, is defined as a semidirect product WR :=C∗o< j >,

where j is an element such that j2 = −1 which acts on C∗ by jz j−1 = z̄ for z ∈ C∗. Here

bar denotes the complex conjugation. We are interested in finite-dimensional complex

semisimple representations of WR. A representation of WR is called semisimple if the

image of WR consists of semisimple elements in some finite-dimensional complex vector

space. Every such representation is completely reducible. Any irreducible semisimple

representation of WR has dimension 1 or 2. They are listed as follows:

One-dimensional representations:

τ+,t : z 7→ |z|t , j 7→ 1, (2.7.2)

τ−,t : z 7→ |z|t , j 7→ −1. (2.7.3)

Where t ∈ C and | · | is the usual absolute value on C.

Two-dimensional representations:

τu,t : reiθ 7→

r2teiuθ

r2te−iuθ

 , j 7→

 (−1)u

1

 . (2.7.4)
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Where we have t ∈ C and u as positive integers. An L-factor is attached to a semisimple

representation of WR. For an arbitrary semisimple representation, the associated L-factor

is the product of the L-factors of its irreducible components. For the aforementioned irre-

ducible representations the L-factors are the following:

L(s,τ+,t) = π
− (s+t)

2 Γ

(
s+ t

2

)
, (2.7.5)

L(s,τ−,t) = π
− (s+t+1)

2 Γ

(
s+ t +1

2

)
, (2.7.6)

L(s,τu,t) = 2(2π)−(s+t+u/2)
Γ

(
s+ t +

u
2

)
. (2.7.7)

The local Langlands correspondence (LLC) is a parametrization of the infinitesimal equiv-

alence classes of irreducible admissible representations of a real reductive group G(R) by

admissible homomorphisms WR→ LG into the L-group of G. If G is split over R then in-

stead of LG we can work with the identity component of LG, i.e., the complex group LG0.

Let π be an irreducible admissible representation of G with archimedean component as π∞

and ρ be a finite-dimensional representation of LG. Let ϕ : WR→ LG be the local param-

eter attached to the representation π∞. If we define a semisimple representation of WR by

τ := ρ ◦ϕ , then the L-factor associated to π∞ and ρ is defined by

L(s,π∞,ρ) := L(s,τ).

We will be interested in the following situation. When G is ResF/Q(PGSp6) (already de-

noted by G in the beginning of Section 2.1) and π∞ being the archimedean component of the

automorphic representation of PGSp6(AF) corresponding to a Siegel-Hilbert automorphic

form Φ of weight k = (k1,k2, . . . ,kd), where each ki is an integer and ki > 3 for i = 1, . . . ,d.

We write

π∞ = ∏
σ∈S∞

πσ = πσ1⊗·· ·⊗πσd ,

where S∞ = {σ1, . . . ,σd} is the finite set of all archimedean places. In this case, LG is

(Spin7)
d oGal(F ′/Q). We are concerned with two types of finite-dimensional representa-

tions: one is φ1 : (Spin7)
d oGal(F ′/Q)→ GL7d(C) and the other one is φ2 : (Spin7)

d o
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Gal(F ′/Q)→ GL8d(C). Since G splits over F ′, we can replace LG with its identity com-

ponent LG0
= (Spin7)

d and work with that. By abuse of the notations, we will denote the

restriction of φ1 and φ2 on LG0 by φ1 and φ2 only. So φ1 : (Spin7)
d→GL7d(C) is defined as

φ1(g1,g2, . . . ,gd) = diag(ρ1(g1),ρ1(g2), . . . ,ρ1(gd)) for (g1,g2, . . . ,gd) ∈ (Spin7)
d and ρ1

is the projection representation. And φ2 : (Spin7)
d→GL8d(C) is defined as φ2(g1, . . . ,gd)=

diag(ρ2(g1),ρ2(g2), . . . ,ρ2(gd)) for (g1,g2, . . . ,gd) ∈ (Spin7)
d and ρ2 is the spin represen-

tation.

In this set up, we want to calculate Archimedean Euler factors L(s,π∞,φ1) and L(s,π∞,φ2).

Let X := {∑3
i=1 ciei |∑ci ∈ 2Z},P := 〈e1,e2,e3〉 and Q := 〈e1−e2,e2−e3,2e3〉 denote the

character lattice, weight lattice and root lattice of the group PGSp6, respectively. Then

X∨,P∨,Q∨ denote the co-character lattice, co-weight lattice and co-root lattice, respec-

tively, where {e1,e2,e3} is a basis of X⊗ZQ and { f1, f2, f3} is a basis of X∨⊗ZQ dual to

each other in a sense that, ei( fi)(x) = x and ei( f j)(x) = 1 for i 6= j. This implies 〈 f1, f2, f3〉

and 〈e1,e2,e3〉 denote character lattice and co-character lattice for Spin7, respectively. The

element νl = ∑
3
m=1(kl−m)em is the Harish Chandra parameter for representation πσl (l =

1, . . . ,d) of PGSp6. For z ∈ C∗, we have zνl = z(kl−1)e1+(kl−2)e2+(kl−3)e3 =
3

∏
m=1

em(z)kl−m.

Writing z = reiθ , we get zνl =
3

∏
m=1

em(reiθ )kl−m =
3

∏
m=1

em

(
rkl−mei(kl−m)θ

)
. Similarly, we

get z̄−νl =
3

∏
m=1

em

(
r−(kl−m)ei(kl−m)θ

)
. We define the local parameter φ : WR→ (Spin7)

d

attached to π∞ as follows:

φ(z) =
d

∏
l=1

φl(z) = (zν1 z̄−ν1 ,zν2 z̄−ν2, . . . ,zνd z̄−νd) ∈ (Spin7)
d

for z ∈ C∗ and φl(z) = zνl z̄−νl denoting local parameters attached to πσl for l = 1,2, . . . ,d.

φ( j) = (w,w, . . . ,w),

where φl( j) = w is a representative of the longest Weyl group element (meaning it sends

em to −em for each m ∈ {1,2,3}).

Writing z = reiθ , we get φl(reiθ ) =
3

∏
m=1

em

(
e2i(kl−m)θ

)
=
(

eiθ
)2∑

3
m=1(kl−m)em

=
(

eiθ
)2νl

.
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Archimedean Euler factors for φ1:

Now, we have to consider the semisimple representation

τ1 := φ1 ◦φ : WR→ GL(C7⊕·· ·⊕C7)

into irreducible representations. The weights of the projection representation ρ1 are well-

known and they are: f1, f2, f3,0,− f1,− f2,− f3. Each weight space is one-dimensional (for

details please see Asgari-Schmidt [AS01, p. 181, Section 3.4]. Let vεnn be the spanning

vectors of one-dimensional weight spaces corresponding to the weights εn fn (n = 1,2,3

and εn ∈ {±1}) and v0 is the weight vector corresponding to the the weight 0. Let vl
εnn :=

(0, . . . ,0,vεnn,0 . . . ,0) denote the vector in C7⊕·· ·⊕C7, where lth entry is vεnn and other

entries are zero. Therefore, for n = 1,2,3, we have,

τ1(z)(vl
εnn) = (φ1 ◦φ)(z)(vl

εnn)

= φ1(zν1 z̄−ν1 ,zν2 z̄−ν2, . . . ,zνd z̄−νd)(vl
εnn)

= φ1

((
eiθ
)2ν1

, . . . ,
(

eiθ
)2νd

)
(vl

εnn)

= diag
(

ρ1

(
eiθ
)2ν1

, . . . ,ρ1

(
eiθ
)2νd

)
(vl

εnn)

=
(

0, . . . ,0,ρ1

(
(eiθ )2νl

)
vεnn, . . . ,0

)
= εn fn

(
(eiθ )2νl

)
vl

εnn

= εn fn

(
3

∏
m=1

em(eiθ )2(kl−m)

)
vl

εnn

= e2iεn(kl−n)θ vl
εnn

= eiulθ vl
εnn (where ul := 2εn(kl−n)).

Similarly, let vl
0 :=(0, . . . ,0,v0,0 . . . ,0) denote the vector in C7⊕·· ·⊕C7, where lth entry is

v0 and other entries are zero. Now τ1(z)vl
0 = ρ1(eiθ )2νl vl

0 = vl
0. For the action of j, observe

that, τ1( j) = (φ1 ◦φ)( j) = φ1(w,w, . . . ,w) = diag(ρ1(w),ρ1(w), . . . ,ρ1(w)) . Define, w0 :=
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ρ1(w). Here w0 is a representative of the longest Weyl group element in SO7(C). We

choose the representative to be


0 I3 0

I3 0 0

0 0 −1

= w0. I3 denotes 3×3 identity matrix.

Therefore, for n = 1,2,3, we have,

τ1( j)vl
εnn = vl

−εnn,

τ1( j)vl
0 =−vl

0.

It follows that for n = 1,2,3 and l ∈ {1,2, . . . ,d} the two-dimensional spaces 〈vl
εnn,v

l
−εnn〉

and one-dimensional subspaces 〈vl
0〉 are invariant for the action of WR. For each l in

{1,2, . . . ,d} let τ l
εnn (for n = 1,2,3) and τ l

0 be the representations on these two-dimensional

and one-dimensional spaces, respectively. Therefore

τ
l
εnn = τ|ul |,0 (n = 1,2,3; ul = 2εn(kl−n))

τ
l
0 = τ−,0

where τu,t and τ−,t are defined in equations 2.7.4 and 2.7.3, respectively. Hence, τ1 =

⊕d
l=1

(
⊕3

n=1τ
l
εnn⊕ τ

l
0

)
. The archimedean L-factor associated to π∞ is then given by

L(s,π∞,φ1) = L(s,τ1) =
d

∏
l=1

(
L(s,τ l

0)
3

∏
n=1

L(s,τ l
εnn)

)
=

d

∏
l=1

(
L(s,τ−,0)

3

∏
n=1

L(s,τ|ul |,0)

)

=
d

∏
l=1

π
−( s+1

2 )
Γ

(
s+1

2

)
2(2π)−(s+kl−1)

Γ(s+ kl−1)2(2π)−(s+kl−2)

Γ(s+ kl−2)2(2π)−(s+kl−3)
Γ(s+ kl−3).

Archimedean Euler factors for φ2:

Similarly we have to write the decomposition of semisimple representation

τ2 := φ2 ◦φ : WR→ GL(C8⊕·· ·⊕C8)

into irreducible representations. The weights of the spin representation ρ2 are:

ε1 f1 + ε2 f2 + ε3 f3

2
,εn ∈ {±1}
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and each weight space is one-dimensional. Let vε1,ε2,ε3 be the corresponding weight vectors

spanning the weight spaces. For each l in {1,2, . . . ,d} let vl
ε1,ε2,ε3

:=(0, . . . ,0,vε1,ε2,ε3,0 . . . ,0)

denote the vector in C8⊕·· ·⊕C8, where the lth entry is vε1,ε2,ε3 and other entries are zero.

Therefore, for z ∈ C∗, we have,

τ2(z)(vl
ε1,ε2,ε3

) = (φ2 ◦φ)(z)(vl
ε1,ε2,ε3

)

= φ2(zν1 z̄−ν1 ,zν2 z̄−ν2, . . . ,zνd z̄−νd)(vl
ε1,ε2,ε3

)

= diag
(

ρ2

(
eiθ
)2ν1

, . . . ,ρ2

(
eiθ
)2νd

)
(vl

ε1,ε2,ε3
)

=
(

0, . . . ,0,ρ2

(
(eiθ )2νl

)
vε1,ε2,ε3, . . . ,0

)
=

(
ε1 f1 + ε2 f2 + ε3 f3

2

)(
eiθ
)2νl

vl
ε1,ε2,ε3

=

(
ε1 f1 + ε2 f2 + ε3 f3

2

)( 3

∏
m=1

em(eiθ )2(kl−m)

)
vl

ε1,ε2,ε3

= ei(ε1(kl−1)+ε2(kl−2)+ε3(kl−3))θ vl
ε1,ε2,ε3

= eiūlθ vl
ε1,ε2,ε3

(where ūl := ε1(kl−1)+ ε2(kl−2)+ ε3(kl−3)).

Since ρ2(w) is a representative of the longest Weyl group element in SO8(C), the action of

j gives the following,

τ2( j)vl
ε1,ε2,ε3

= diag(ρ2(w), . . . ,ρ2(w))vl
ε1,ε2,ε3

=(0,0, . . . ,ρ2(w) · vε1,ε2,ε3, . . . ,0)= vl
−ε1,−ε2,−ε3

.

These calculations imply that for each l ∈ {1,2, . . . ,d} the two-dimensional subspaces

〈vl
ε1,ε2,ε3

,vl
−ε1,−ε2,−ε3

〉 are invariant for the action of WR. For each l in {1,2, . . . ,d} let

τ l
ε1,ε2,ε3

be the representations on these two-dimensional spaces. Therefore

τ
l
ε1,ε2,ε3

=

 τ|ūl |,0 if ūl 6= 0,

τ+,0⊕ τ−,0 otherwise

By Legendre’s formula for the Γ-function L(s,τ|ūl |,0) and L(s,τ+,0⊕ τ−,0) are the same

factors [Sch02, p. 8]. So, the archimedean Euler factor associated to π∞ and φ2 is then
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given by,

L(s,π∞,φ2) = L(s,τ2) =
d

∏
l=1
|ūl |6=0

2(2π)−s(2π)−(
|ūl |
2 )

Γ

(
s+
|ūl|
2

)

=
d

∏
l=1

2(2π)−s(2π)−(
3kl−6

2 )
Γ

(
s+

3kl−6
2

)
2(2π)−s(2π)−(

kl
2 )Γ

(
s+

kl

2

)
2(2π)−s(2π)−(

kl−2
2 )

Γ

(
s+

kl−2
2

)
2(2π)−s(2π)−(

|kl−4|
2 )

Γ

(
s+
|kl−4|

2

)
.



Chapter 3

Meromorphic continuation of the

L-functions

In this chapter, we are going to prove the meromorphic continuation of the standard L-

function L(s,π,φ1) and spin L-function L(s,π,φ2) defined in the previous chapter using

Langlands’ theory of Euler products. Let us briefly recall Langlands’ theory. We will be

using the notations and recalling this theory from Shahidi [Sha88] and Asgari [AS01].

3.1 Langlands theory

Let G be a connected quasi-split reductive algebraic group over a number field k. Fix a

Borel subgroup B of G over k with B = TU where T is a maximal torus of G and U is

the unipotent radical of B over k. Let M be a maximal standard Levi subgroup in G. Let

P = MN be a standard parabolic subgroup in G. We take B ⊂ P. The L-group of P is

then LP = LMLN in LG. Let Lr denote the adjoint action of LM on Ln, Lie algebra of
LN. Since LM is a reductive group itself, by complete reducibility theorem, we can write,
Lr = ⊕l

i=1
Lri with Lri’s being the irreducible constituents of Lr. For every place v of k, let

Gv := G(kv). Similarly, we will write Pv,Mv,Nv. For the places v where G is unramified

over v, we define Kv =G(Ov) and K =⊗vKv. Let π =⊗vπv be a cusp form on M =M(Ak),

where Ak denotes the ring of adeles of k. Let A be the split torus in the center of M. For

each v, there exists a homomorphism HPv from Mv into the real Lie algebra of A as a group

29
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over kv. Let

I(s,πv) = IndMvNv↑Gvπv⊗q〈s,Hpv(.)〉
v ⊗1

be the corresponding induced representation of Gv for v < ∞. Here s ∈ C and qv denotes

the cardinality of the residue field kv. If v = ∞, qv is replaced by exp〈s,Hpv(.)〉. Note

that for s ∈ C we have representation I(s,π) = IndP↑Gπ ⊗ exp〈s,Hpv(.)〉⊗ 1 of G, where

I(s,π) = ⊗vI(s,πv) and I(s,πv) is defined as above. The 1 in the formula implies that

π⊗ exp〈s,Hpv(.)〉 is extended trivially across N. Let A0 be the maximal k-split torus in T.

Let W be the Weyl group of A0 in G. Let ∆ denote the set of simple roots and the unique

reduced root of A in N be identified by a simple root α . The complement set of α in ∆

generates M. We denote this set by θ . Now given a K-finite function φ in the space of π ,

we get a function φ̃ extending φ to G and we set

Φs(g) = φ̃(g)exp〈s+ρP,HP(g)〉.

The associated Eisenstein series is then given as

E(s, φ̃ ,g,P) = ∑
γ∈P(F)\G(F)

Φs(γg). (3.1.1)

Here ρP denotes half the sum of k-roots generating N. The constant term of E(s, φ̃ ,g,P)

along with a parabolic subgroup Q = MQNQ is then given by

EQ(s, φ̃ ,g,P) =
∫

NQ(k)\NQ(Ak)
E(s, φ̃ ,ng,P)dn. (3.1.2)

Unless Q is P or conjugate parabolic of P, EQ(s, φ̃ ,g,P) is zero. For details please see

Kim [Kim04, Chapter 5, Section 2] and Langlands-Shahidi [Lan71b, Sha78]. There exists

a unique element w̃ ∈W such that w̃ takes α to a negative root and the remaining simple

roots θ into ∆. Fix a representative of w̃ as w. We let M′ denote the subgroup of G

generated by w̃(θ). Then there exists a parabolic subgroup P′ ⊃ B which contains M′ as

its Levi factor. Let N′ be the corresponding unipotent radical. Given f ∈ I(s,π) and Re(s)

sufficiently large, set

M(s,π) f (g) =
∫

N′
f (w−1ng)dn (g ∈ Gv). (3.1.3)
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Observe that if f =⊗v fv then for almost all v, fv is the unique Kv-fixed function normalized

by fv(ev)= 1. Finally, if at each v we define a local intertwining operator attached to I(s,πv)

by

A(s,πv,w) fv(g) =
∫

N′v
fv(w−1ng)dn (g ∈ Gv) (3.1.4)

then

M(s,π) =⊗vA(s,πv,w). (3.1.5)

M(s,π) denotes the nontrivial part of the constant term of the Eisenstein series 3.1.1. Let

S denote a finite set of places of k containing the archimedean places too such that for

v /∈ S,G,πv are all unramified. Then for every finite place v /∈ S we can attach a L-function

L(s,πv,
Lrv), where Lrv =

Lr|LMv
and s ∈ C.

The Euler product

LS(s,π,Lr) = ∏
v/∈S

L(s,πv,
Lrv)

always converges absolutely for Re(s) >> 0 (cf. [Bor79], [Lan70]). The theory of Euler

products developed by Langlands gives us the following,

M(s,π) f = (⊗v∈SA(s,πv,w) fv)⊗ (⊗v/∈S f̃v) ·
l

∏
i=1

LS(is,π,Lr̃i)

LS(1+ is,π,Lr̃i)
(3.1.6)

where f =⊗v fv, fv ∈ I(s,πv), f ∈ I(s,π) and for every v /∈ S, fv and f̃v are the unique nor-

malised fixed functions in I(s,πv) and I(−s, w̃(πv)) respectively. For i = 1,2, . . . , l,Lr̃i de-

notes the contragredient of Lri. Each of these representations Lri is irreducible (cf. [Sha88]).

This method deals with this specific type of representations Lr, so that with the appropriate

choices of M and G, they cover the most important examples of L-functions. The function

M(s,π) extends to a meromorphic function of s∈C. The intertwining operators A(s,πv,w)

for v ∈ S is non-vanishing and has a meromorphic continuation to all of C. This result is

due to Shahidi [Sha88].

Now assume, l = 1, then by expression (3.1.6) and discussion followed by expression

(3.1.6), we get

F(s) =
LS(s,π,Lr̃i)

LS(s+1,π,Lr̃i)
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is meromorphic. Writing this above expression as

F(s)LS(s+1,π,Lr̃i) = LS(s,π,Lr̃i) (3.1.7)

and noting the fact that LS(s,π,Lr̃i) is analytic for sufficiently large Re(s) (cf.[Sha88]), we

can apply induction on LS(s,π,Lr̃i) and conclude that LS(s,π,Lr̃i) is meromorphic to all of

C.

3.2 Meromorphic continuation

As mentioned in the beginning of the section our main goal is to deduce the meromorphic

continuation of the standard L-function L(s,π,φ1) and spin L-function L(s,π,φ2) associ-

ated with an automorphic representation π of PGSp6(AF) and with the standard represen-

tation φ1 and the spin representation φ2 (introduced in Section 2.7) to all of C. We will use

the Langlands theory and notations from the above discussion.

Proposition 3.2.1. The function L(s,π,φ1) has a meromorphic continuation to all of C.

Proof. Let us first observe that, GL1× Sp6 sits as a standard Levi subgroup in the sym-

plectic group Sp8. Let the corresponding Levi decomposition of parabolic P in Sp8 be

P = (GL1×Sp6)N. Now consider, M as ResF/Q(GL1×Sp6) and G as ResF/Q(Sp8) from

3.1. M is a Levi-subgroup of G over Q (by [Bor79, Section 5.2, p. 35]). Let corre-

sponding Levi decomposition be P = MN in G. Now LM = L(ResF/Q(GL1× Sp6)) =

(C× × SO7)
d o Gal(F ′/Q), where C× × SO7 is the complex dual of GL1 × Sp6. LM

is a Levi-subgroup of a parabolic subgroup LP in L(ResF/Q(Sp8));
LP = LMLN, where

LN is the unipotent radical of LP and LN = LN0 (see Section 2.5), Ln =Lie algebra of
LN0 = n̂⊕·· ·⊕ n̂ (d copies). Here n̂= Lie algebra of N̂ (N̂ is the complex dual of N). Let
Lr be the adjoint action of LM on Ln and r be the adjoint action of C××SO7 on n̂, i.e.,

r : C××SO7→ GL(n̂). Using Shahidi [Sha88, Case (Cn), Section 4], Asgari and Schmidt

have proved that r is an irreducible self-dual 7-dimensional representation of C××SO7 (cf.
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[AS01, Theorem 4]). This implies dim(n̂) = 7. The representation

Lr : LM→ GL(n̂⊕·· ·⊕ n̂)

is defined as

Lr(m1,m2, . . . ,md,1)(n1,n2, . . . ,nd) = (m1,m2, . . . ,md,1)(n1,n2, . . . ,nd)(m1,m2, . . . ,md,1)−1

= (m1n1m−1
1 ,m2n2m−1

2 , . . . ,mdndm−1
d )

= (r(m1)(n1),r(m2)(n2), . . . ,r(md)(nd))

for (m1,m2, . . . ,md,1) ∈ (C××SO7)
d oGal(F ′/Q) and (n1,n2, . . . ,nd) ∈ n̂⊕·· ·⊕ n̂.

For (1,1, . . . ,1,τ) ∈ LM, where τ ∈ Gal(F ′/Q), we have Lr(1,1, . . . ,1,τ) =Pτ,7,d

(since dim(n̂) = 7).

Claim: Lr is irreducible.

Proof. Let W be a non-zero LM-invariant subspace of n̂⊕·· ·⊕ n̂. For any w = (w1,w2, . . . ,

wd)∈W , w will have at least one component wi 6= 0. Without loss of generality, let w1 6= 0.

Now, n̂⊕·· ·⊕0∼= n̂ and (r, n̂) is an irreducible representation of C××SO7. The space

n̂(w1) := {w | w = c1g1w1 + c2g2w1 + · · ·+ cngnw1 for some ci ∈ C,gi ∈ (C××SO7)}

is a C××SO7-invariant subspace of n̂. By the irreducibility of n̂, we have n̂(w1) = n̂. This

implies n̂⊕·· ·⊕0⊂W , i.e., n̂⊂W . Now by the action of Gal(F ′/Q) different copies of n̂

gets permuted. This means Gal(F ′/Q) is a transitive subgroup of the symmetric group Sd .

So for any i∈ {1,2, . . . ,d} there will always exist σ ∈Gal(F ′/Q) such that wi = wσ(1) 6= 0.

Hence (n̂⊕·· ·⊕ n̂)⊂W . This completes the proof of irreducibility of Lr.

Since adjoint representations are self-dual, so Lr is self-dual too. Now, let π ′ be an

automorphic representation of GSp6(AF). We restrict π ′ to the derived subgroup Sp6(AF)

of GSp6(AF). We further denote by π , the irreducible constituent of π ′|Sp6 . Put the cusp

form σ = 1⊗π on M(AQ). Then

L(s,σ ,Lr̃) = L(s,σ ,Lr1) = L(s,π,φ1)
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(since Lr and φ1 are constructed out of r and ρ1 and for r and ρ1 this equality holds by

[AS01, Theorem 4] ) . Now by the same argument as in (3.1.7), L(s,σ ,Lr) is meromorphic

to all of C. Hence the standard L-function L(s,π,φ1) has meromorphic continuation to all

of C.

Theorem 3.2.2. The spin L-function L(s,π,φ2) has a meromorphic continuation to all of

C.

Proof. Let H be a Chevalley group of type F4. This is a split as well as adjoint sim-

ply connected simple algebraic group. The complex dual of H is again of type F4. Let

∆ = {α1,α2,α3,α4} be a system of simple roots of H, where α1,α2 are long roots and

α3,α4 denote the short ones. Consider the standard Levi subgroup M corresponding to

{α2,α3,α4}. Then by [Asg00, Proposition 4.1.1] one is able to show M ∼= GSp6. The com-

plex dual of M is GSpin7(C). Let P̂ = M̂N̂ be the corresponding Levi decomposition in the

dual of H. Let r be the adjoint action of M̂ on n̂= Lie(N̂). Asgari and Schmidt showed that

r = r1⊕ r2 with r1 an irreducible self-dual 8-dimensional and r2 an irreducible self-dual

7-dimensional representation of M̂ (cf. [AS01, Theorem 4]), i.e., n̂= n̂1⊕ n̂2; dim(n̂1) = 8

and dim(n̂2) = 7. Moreover, r|Spin7
= r1|Spin7

⊕ r2|Spin7
= ρ2⊕ρ1. Let M = ResF/Q(GSp6)

and G = ResF/Q(H) in our case from Section (3.1), where GSp6 and H are defined over F

now. That means our group G sits as a Levi in ResF/Q(H).

Consider the corresponding Levi-decomposition of a standard parabolic LP = LGLN

and the adjoint action
Lr : LG→ GL(Ln)

by

Lr(g1,g2, . . . ,gd,1)(n1,n2, . . . ,nd) = (g1,g2, . . . ,gd,1)(n1,n2, . . . ,nd)(g1,g2, . . . ,gd,1)−1

= (g1n1g−1
1 ,g2n2g−1

2 , . . . ,gdndg−1
d )

= (r(g1)(n1),r(g2)(n2), . . . ,r(gd)(nd))

= ((r1⊕ r2)(g1)(n1), . . . ,(r1⊕ r2)(gd)(nd)),
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where Ln= Ln0 = Lie(LN) = n̂⊕·· ·⊕ n̂ and Lr(1, . . . ,1,τ) =Pτ,15,d .

Our claim is to show that Lr = Lr1⊕ Lr2, i.e., Lr decomposes into two irreducible rep-

resentations of LG. Now
Lr1 : LG→ GL(n̂1⊕·· ·⊕ n̂1)

and
Lr2 : LG→ GL(n̂2⊕·· ·⊕ n̂2).

We prove that claim by giving the same argument as we gave for the previous case. We can

further observe that both Lr1 and Lr2 are self-dual (since from the observation, Lr1⊕ Lr2 =

Lr = Lr̃ = Lr̃1⊕ Lr̃2 and by the dimension calculations of theses representations). Also,

note that restrictions of Lr1 and Lr2 on LG give, Lr1|LG = φ2 and Lr2|LG = φ1. Let π be

the representation on M(AQ) = G(AQ) lifted from the representation π of G(AQ). Then

expression (3.1.6) and its subsequent argument imply

M (s) =
LS(s,π,Lr1)

LS(s+1,π,Lr1)
· LS(2s,π,Lr2)

LS(2s+1,π,Lr2)
(3.2.1)

has a meromorphic continuation to all of C. The standard L-function L(s, π̄,φ1)=L(s,π,Lr2)

has a meromorphic continuation to all of C (by Proposition (3.2.1)). Writing the expres-

sion (3.2.1) as LS(s,π,Lr1) =M (s) · LS(2s+1,π,Lr2)
LS(2s,π,Lr2)

·LS(s+1,π,Lr1) and applying induction

argument as in (3.1.7) we get the meromorphic continuation of the spin function to all of

C.
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Chapter 4

Algebraic theory of automorphic forms

It is an interesting problem to compute the dimensions of the space of genus 3 Siegel

automorphic forms for various small weights for the group GSp6 over Q. This space is not

computable directly. So we compute the dimensions of the space of automorphic forms

for rank 3 unitary groups, where the entries of the group are from a definite quaternion

algebra over Q. This group is an inner form of GSp6/Q. The theory of algebraic modular

forms on quaternion algebras are set up by Gross [Gro99]. In this chapter, we include all

the preliminaries to carry out his theory for our computations. This theory deals with a

connected reductive algebraic group over Q, where the group satisfies the condition that all

its arithmetic subgroups are finite. Then the conjectural Jacquet-Langlands allows us to go

from the algebraic theory of modular forms to automorphic forms for GSp6/Q. Let us set

the stage by recalling some facts on quaternion algebra.

4.1 Quaternion algebras

Definition 4.1.1. Let F be any field of characteristic 6= 2 and a,b ∈ F×. A quaternion

algebra is an associative F-algebra of dimension 4 with basis 1, i, j,k denoted by
(

a,b
F

)
,

where i2 = a, j2 = b and i j =− ji = k.

Fact 4.1.2.

(1) The matrix algebra M2(F) is called trivial or split quaternion algebra. In particular, if

F= C, this is a unique quaternion algebra over C.
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(2) A quaternion algebra is either a division algebra or a matrix algebra.

(3) There are exactly two real quaternion algebras: H =
(
−1,−1

R

)
(Hamiltonian algebra)

and M2(R).

If F′/F is a field extension, then we have,(
a,b
F′

)
∼=
(

a,b
F
⊗F F

′
)
.

So, B⊗F F∼= M2(F) for any quaternion algebra B, where F denotes the algebraic closure of

F.

Definition 4.1.3. The anti-involution map of B defined as x = α + β i+ γ j + δk 7→ x :=

α −β i− γ j− δk, defines the norm structure on B. So, the norm of any element x in B is

defined as N(x) := xx, i.e., N(α +β i+ γ j+δk) = α2−aβ 2−bγ2 +abδ 2.

In our case, we will deal with the rational field Q. Let B :=
(

a,b
Q

)
and let v be a place of Q

with completion Qv (so it is either Qp for some prime p or R). Define Bv := B⊗QQv, i.e.,(
a,b
Qv

)
∼=
(

a,b
Q

)
⊗QQv,

which is a quaternion algebra over Qv. We say that B is split or unramified at v if Bv ∼=

M2(Qv) and B is non-split or ramified at v if Bv is the quaternion division algebra over Qv.

Remark 4.1.4.

(1) The number of places where a quaternion algebra over Q ramifies is always even, and

this is equivalent to quadratic reciprocity law over Q. For any finite set S with even

cardinality there is a unique quaternion algebra over F such that the set of places v,

where B is ramified is exactly the set S.

(2) The product of the primes at which B ramifies is called the discriminant of B.

Definition 4.1.5. A quaternion algebra over Q is called definite if B∞ is not split. It is

indefinite otherwise.
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Remark 4.1.6. (1) Note that
(

a,b
Q

)
is definite if and only if a,b < 0.

(2) For each prime p of Q, there is a unique (up to isomorphism) definite quaternion alge-

bra B over Q ramified exactly at p and ∞.

(3) An order of a quaternion algebra
(

a,b
F

)
over F is a subring O ⊂

(
a,b
F

)
, which is a

OF -lattice in
(

a,b
F

)
and each order is contained in a maximal order.

For our purpose, we fix the quaternion algebra B :=
(
−1,−1

Q

)
and a maximal order

OB := Z⊕Zi⊕Z j⊕Z
(

1+i+ j+i j
2

)
of B throughout this chapter. Note that B is the unique

definite quaternion algebra over Q , ramified exactly at 2 and ∞ and unramified at all odd

primes. Therefore the discriminant of B is 2. We need to choose a finite Galois exten-

sion E/Q, contained in C such that E splits B. In our case we fix E to be Q(I), the

imaginary quadratic field where I is the imaginary unit. Note that we have a splitting iso-

morphism B⊗Q E
ι∼=
(
−1,−1

E

)
∼= M2(E). For any g ∈ M3(B), M3(B) ↪→ M3(B⊗Q E) ∼=

M6(E) maps g 7→ g⊗1. Define, det(g) := det(g⊗1). For each prime p (6= 2) in Q, we fix

a local isomorphism (OB)p = OB,p ∼= M2(Zp) and extend it to Bp ∼= M2(Qp).

4.2 Theoretical background

In this section, we are going to discuss briefly the theory of modular forms, which B. H.

Gross developed totally algebraically for connected reductive algebraic groups over Q in

his paper [Gro99]. Let G be such a connected reductive group over Q. We are going to

follow the notations, set up by Gross himself from his paper [Gro99]. Let G(Q) denote

the Q-rational points of G and more generally let G(A) denote the group of adèlic points.

G(R)+ will denote the connected component of the identity in the Lie group G(R). That

means the group G(R)+ will contain matrices having positive similitudes. Let S′ be the

maximal quotient of G which is a split torus. After fixing an isomorphism S′ ∼= Gn
m, we get

a continuous homomorphism

G(A)−→ S′(A)∼= (A×)n ||·||−→ (R×+)n,
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where the kernel of this composition map is denoted by G(A)1. The subgroup G(Q) is

discrete in the locally compact group G(A)1 due to a result by Borel and Harish-Chandra

[BHC62].

One of the main results in [Gro99, p. 63, Proposition 1.4] gives a series of equivalent

conditions.

Proposition 4.2.1. [Gro99, Proposition 1.4] The following conditions are equivalent:

(1) Every arithmetic subgroup Γ of G(Q) is finite.

(2) Γ = {e} is an arithmetic subgroup of G(Q).

(3) G(Q) is a discrete subgroup of the locally compact group G(Q̂).

(4) G(Q) is a discrete subgroup of the locally compact group G(Q̂) and the quotient space

G(Q)\G(Q̂) is compact.

(5) S is a maximal split torus in G over R.

(6) The Lie group G(R)1 = G(R)∩G(A)1 is a maximal compact subgroup of G(R).

(7) For every irreducible representation V of G there is a character µ : G→ Gm and a

positive definite symmetric bilinear form 〈,〉 : V ×V →Q which satisfy

〈gv,gv′〉= µ(g)〈v,v′〉

for all g ∈ G(Q) and v,v′ ∈V .

The proof of this proposition can be found in [Gro99, p. 63].

If a connected reductive group G/Q satisfies one of the equivalent conditions of Proposition

4.2.1 with K a compact open subgroup of G(Q̂) and V an irreducible representation of G

over Q, then Gross defined the space of algebraic modular forms of weight V and level K

by the following space of functions:

M(V,K) = { f : G(A)/(G(R)+×K)→V | f (γg) = γ f (g) for γ ∈ G(Q)}.
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He proved another two propositions which we will be going to use for our purpose. We

include them here.

Proposition 4.2.2. [Gro99, Proposition 4.3]

(1) The double coset space G(Q)\G(A)/(G(R)+×K) is finite. The cardinality of this dou-

ble coset space is called the class number of G.

(2) M(V,K) is a finite-dimensional D-vector space, where D = EndG(V ) is a division al-

gebra of finite dimension over Q.

Proposition 4.2.3. [Gro99, Proposition 4.5] If we fix representatives of the classes in the

above mentioned set of double cosets by {gα} then denoting Γα by G(Q)∩ gα(G(R)+×

K)g−1
α , each function f in M(V,K) is completely determined by the values f (gα) in V Γα ,

where V Γα is the Γα -invariant subspaces of V and furthermore,

M(V,K)∼=⊕V Γα .

Now, the broad steps of the algorithm to compute dim M(V,K) is as follows,

1. Compute the class number of G.

2. Compute Γα explicitly.

3. Calculate the invariant subspaces V Γα .

4.3 Space of algebraic automorphic forms

In our case, first we will define the group which will play the role of G. Then we will talk

about the space of algebraic automorphic forms on that group defined in the sense of Gross

4.2.
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4.3.1 Similitude groups

Let X be a free left B-module of rank n equipped with a positive definite Hermitian form

ϕ : X×X → B

such that

(1) ϕ(x,y) = ϕ(y,x) and

(2) ϕ(αx,βy) = αϕ(x,y)β .

for all x,y ∈ X and for all α,β ∈ B. Here¯denotes the anti-involution map in B. Then the

group of similitudes GB over Q is defined as the following:

GB = {T ∈ End(X ,ϕ) | ϕ(T x,Ty) = µ(T )ϕ(x,y) ∀x,y ∈ X , µ(T ) ∈Q×},

where End(X ,ϕ) is the ring of all B-linear endomorphisms of X . By fixing a basis of

X we can associate a matrix to ϕ . Let {e1,e2, . . . ,en} be the standard basis for X , set

ϕi j := ϕ(ei,e j) for all 1 ≤ i, j ≤ n. Then [ϕ] := (ϕi j) is called the matrix of ϕ relative to

{e1,e2, . . . ,en}. If x,y∈ X , write x = ∑i xiei, and y = ∑ j y je j, so that x and y are represented

by row vectors x = (x1 · · ·xn) and y = (y1 · · ·yn). Then ϕ(x,y) = x[ϕ]yt for all x,y ∈ X ,

where x,y are the row vectors with the entries being the components of x,y with respect

to the given basis {e1,e2, . . . ,en} of X . In our situation, we will work with the following

B-Hermitian form

ϕ(x,y) = x1ȳ1 + · · ·+ xnȳn,

where x = (x1, . . . ,xn), y = (y1, . . . ,yn) ∈ X . Therefore the matrix representation of ϕ with

respect to the standard basis {e1, . . . ,en} of X is [ϕ] = In. In matrix terminology, we have

GB = {g ∈ GLn(B) | gḡt = µ(g)In, µ(g) ∈Q×}.

For the rest of the following chapters, we fix and deal with n = 3 situation. So the group of

similitudes GB over Q is

GB = {g ∈ GL3(B) | gḡt = µ(g)I3, µ(g) ∈Q×}.
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For any Q-algebra A, the set of A-rational points of GB is given by

GB(A) = {g ∈ GL3(B⊗Q A) | gḡt = µ(g)I3,µ(g) ∈ A×}.

Note that GB/Q is the algebraic group whose Q−rational points are given by unitary simili-

tude group GU3(B), which is an inner form of GSp6/Q such that GB(R) is compact modulo

its center. Also, GB admits an integral model GB/Z in the sense of Gross [Gro96]. Maximal

order OB determines the following integral structure on GB.

For every Z-algebra A, the group of A-rational points is given by

GB(A) = {g ∈ GL3(OB⊗Z A) | gḡt = µ(g)I3,µ(g) ∈ A×}.

From now on, we simply denote the group of similitudes over B by GB and its integral

model associated with the maximal order OB by GB. For the sake of completeness, we

include the definitions of ‘inner forms’ and ‘arithmetic groups’ here.

Definition 4.3.1. A form of an algebraic group G/F is another algebraic group G′/F,

which is isomorphic to G over some extension F ′/F, i.e.,G/F ∼= G′/F over F ′. In this case,

G′ is said to be an F ′/F form of G.

Remark 4.3.2. Two algebraic groups G and G′ would be inner forms if they are Galois

twists of each other, with the twists lying in Inn(G).

Remark 4.3.3. Given a connected, reductive linear algebraic F-group G, there is always

a unique quasi-split F-group G′, which is an inner form of G. For example, SU(2,1) and

SU(3) are inner forms.

Definition 4.3.4. A group is said to be an arithmetic group if it is obtained as the integer

points of an algebraic group.

Example 4.3.5. SL(n,Z), Sp(2n,Z).

Remark 4.3.6. Let G be an algebraic subgroup of GLn(Q) for some n, then Γ := GLn(Z)∩

G(Q) is a group of integer points, Γ is an arithmetic subgroup of G.
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Observation 1: Now observe that our group GB satisfies the equivalent conditions as in

Proposition 4.2.1. To prove that, let us consider S to be the maximal split torus in the

center of GB, Now the center of GB ∼=Q×. This implies dim(S ) = 1. If S′ is the maximal

quotient of GB, which is a split torus, then the composite map

S → GB→ S′

is an isogeny of tori (see Gross [Gro99, p. 62]). Again this implies that dim(S′) =

dim(S ) = 1. Once we fix an isomorphism, S′ ∼=Gm, we get a continuous homomorphism

GB(A) µ−→ A× ||·||−→ R×+,

where µ denotes the similitude character. Define GB(A)1 := ker(|| · || ◦ µ). Hence the Lie

group GB(R)1 defined by GB(R)1 := GB(R)∩GB(A)1 turns out to be U3(H), which is a

maximal compact subgroup of GB(R)(= GU3(H)).

4.3.2 Class number and mass formula

We consider O⊕3
B as a lattice in X (OB and X as in Section 4.1 and 4.3.1). The principal

genus of GB is denoted by L (OB) and defined as the collection of OB-lattices in X contain-

ing O⊕3
B . For each finite prime p, let OB,p =OB⊗ZZp, Lp = L⊗ZZp and GB

p = GB⊗QQp

be p-adic completions of OB,L and GB respectively. Then by definition, an OB-lattice L

in X belongs to L (OB) if and only if Lp = (O⊕3
B,p)gp, where gp ∈ GB

p for all prime p.

The adèlic group GB(A) of GB acts transitively on L (OB) by Lg = ∩p(Lpgp ∩ X) and

then the stabiliser K := StabGB(A)(O
⊕3
B ) is given by K = GB

∞×K where K = ∏pUp and

Up = GB
p ∩GL3(OB,p), StabGB(Q)(O

⊕3
B ) = GB(Q)∩ (GB

∞×K)

Remark 4.3.7. The notations are borrowed from Hashimoto [Has83] and this definition

works in much more generality, for example, see [Has83]. But we have restricted ourselves

to n = 3 case.
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The number of the GB-orbits in L (OB) is called the class number. There is a well-

known fact which says this class number is equal to the number of (GB,K ) double cosets

in GB\GB
A/K . These double cosets are called K -classes. Hashimoto and Ibukiyama

studied the class numbers of positive definite quaternary Hermitian forms in their papers

(for details, see [HI80], [HI81]). There they classified the conjugacy classes of the group of

similitudes for different forms and for arbitrary rank n. Using the traces of Brandt matrices

associated with such forms, they explicitly worked out formulas in the binary case (n = 2)

(cf.[Has80]) and in the ternary case (n = 3) (See [Has83]) under the condition that the

discriminant of B is a prime p.

In our case, B has discriminant prime 2. So, from the table ([Has83, p. 493]) the group

of similitudes GB has class number 1 in the principal genus. Hence, we can choose the

identity element as a representative of our K -class.

Then the mass of genus L (OB) (cf. [Shi99, p. 67]) is defined to be the real number given

by,

Mass(O⊕3
B ) = [Γ : 1]−1,

where Γ := StabGB(Q)(O
⊕3
B ). This formula (for details, see [Shi99, p. 68]) could be further

simplified in our case and can be written as

Mass(O⊕3
B ) =

3

∏
k=1

|B2k|
4k ∏

p prime
p|disc(B)

(
3

∏
k=1

(pk +(−1)k)

)
,

where B2k denote the Bernoulli numbers. Putting the values for B2k, the mass formula gives

Mass(O⊕3
B ) =

3

∏
k=1

|B2k|
4k ∏

p prime
p|2

(
3

∏
k=1

(pk +(−1)k)

)

=
|B2||B4||B6|

4 ·8 ·12
(2−1)(22 +1)(23−1)

=
1

82,944
,

where B2 = 1/6,B4 = −1/30,B6 = 1/42. Therefore [Γ : 1]−1 = 1
82,944 . Hence the cardi-

nality of Γ is 82,944. We will come back to the cardinality of Γ later in Chapter 5, where

we will give an algorithm to compute it using MAGMA computational software system.



46

4.3.3 Algebraic automorphic forms of genus-3

Now, we fix an irreducible algebraic representation (ρ,V ) of GB(Q) where V is a Q-vector

space. For any finite prime p 6= 2, we choose an isomorphism, GU3(OB,p) ∼= GSp6(Zp)

which is compatible with the splitting isomorphism ι we fixed earlier in Section 4.1. Let

us choose the maximal compact open subgroup of GB(Q̂) as

K := GB(Ẑ) = ∏
p<∞

p6=2

GSp6(Zp)×GU3(OB,2) = ∏
p<∞

GB(Zp).

We want to take this compact open subgroup so that, we get automorphic forms of ‘level 1’

in some sense. The space of algebraic automorphic forms of weight V , genus 3 and level

K is then defined by

MGB(V ) = { f : GB(A)/(GB(R)+×GB(Ẑ))→V | f (γg) = γ f (g) for γ ∈ GB(Q)}.

(4.3.1)

In our case under the assumption of the existence of a conjectural Jacquet-Langlands

correspondence between GB and GSp6/Q our goal is to compute the dim (MGB(V )). We

refer the readers to see Section 4.4 to know about conjectural Jacquet-Langlands corre-

spondence. Now by Proposition 4.2.2 the double coset space

GB(Q)\GB(A)/(GB(R)+×K)

is finite, where GB(R)+ is the connected component of the identity in the Lie group GB(R).

By definition, any algebraic automorphic form f in MGB(V ) is completely determined by

its values on this double coset space. In fact, we could prove the following.

Observation 2: The cardinality of GB(Q)\GB(A)/(GB(R)+×K) is 1.

We already know that in our case, B has discriminant prime 2. So, from the table ([Has83,

p. 493]) the group of similitudes GB has class number 1 in the principal genus. This implies

the cardinality of GB(Q)\GB(A)/(GB(R)×K) is 1. Now, let us consider the following two

exact sequences

1→GB
1 (Q)\GB

1 (A)/GB
1 (R)×K1→GB(Q)\GB(A)/GB(R)×K

µ→Q×\A×/(R××Ẑ)→ 1
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and

1→GB
1 (Q)\GB

1 (A)/GB
1 (R)×K1→GB(Q)\GB(A)/GB(R)+×K

µ→Q×\A×/R×>0×Ẑ→ 1

where µ is the similitude character. The groups GB
1 , K1 are the collection of matrices from

GB and K respectively, where the matrices have similitude 1. Since,

(1) |Q×\A×/(R×× Ẑ)| = |Q×\A×/(R×>0× Ẑ)| = 1 (because the field Q has the narrow

class number 1).

(2) Both the double coset sets

GB(Q)\GB(A)/(GB(R)×K) and GB(Q)\GB(A)/(GB(R)+×K)

are finite sets and they have the same kernel and image space under the map µ , hence

the cardinality of both the double coset sets are same and that is 1.

This observation implies there is only one class in the set of double cosets. So we can take

identity element I3 as a representative of that class. Then by Proposition 4.2.3, the space

of automorphic forms for GB of full level and weight V is isomorphic to the subspace of

Γ-invariants V Γ via the map f → f (I3) and we have

MGB(V )∼=V Γ, (4.3.2)

where

Γ = GB(Q)∩ (GB(R)+×GB(Ẑ)),

V Γ = {v ∈V | ρ(γ)v = v ∀γ ∈ Γ}.

Note that Γ being the arithmetic subgroup of GB (by Proposition 4.2.1) is finite. In fact, we

have already calculated the cardinality of Γ using the theory of mass formula by Shimura

[Shi99] in the previous section.

We make the following observation about Γ.

Observation 3: We already know

Γ = StabGB(Q)(O
⊕3
B ) = GB(Q)∩ (GB(R)+×K).
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Our next claim is

Γ = StabGB
1 (Q)(O

⊕3
B ).

To prove that, let us take an element γ ∈ StabGB(Q)(O
⊕3
B ). Then we get µ(γ)∈Q×+. We have

µ(γ) ∈ Ẑ× too, since γ is in K. This implies µ(γ) = 1. Therefore, StabGB
1 (Q)(O

⊕3
B ) = Γ.

So, we could write Γ more explicitly as,

Γ = {γ ∈ GL3(OB) | γγ̄
t = I3}. (4.3.3)

We will work with this expression of Γ later on.

4.4 Conjectural Jacquet-Langlands correspondence

This section is dedicated to a brief discussion about the conjectural Jacquet-Langlands

correspondence in the case of symplectic similitude groups GSp6 and its inner forms. This

correspondence is a theorem for the case of GL2, proved by Jacquet-Langlands [JL70]. This

relates the automorphic representations of the multiplicative group of quaternion algebra

with certain automorphic representation of GL2. We refer to Ihara [Iha64], Hashimoto and

Ibukiyama [HI81], [Ibu84] for the analogue of conjectural J-L correspondence in the case

of GSp4 over Q. In particular Sorensen proved this conjecture to be true for GSp4 over Q

in paper [Sor09a] and for GSp4 over a totally real field F of even degree in paper [Sor09b].

Conjecturally, Jacquet-Langlands correspondence is a bijection between smooth auto-

morphic representations on the compact side, i.e., of GB to cuspidal automorphic represen-

tations of GSp6 that are square integrable representations at each place where B is ramified.

In our case, B is the unique (upto isomorphism) definite quaternion algebra over Q with

ramification at 2 and ∞. Let S= {2,∞}. We now describe analogue of JL correspondence

for the group GSp4 as described in Sorensen (cf. [Sor09a]). Let π be an automorphic repre-

sentation of GB(A), with trivial central character and π∞ some finite-dimensional represen-

tation. Then conjecturally there exists a cuspidal automorphic representation Π of G′(A),

with trivial central character such that Πp = πp for all p /∈ S, and Π∞ is a cohomological
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discrete series representation. Moreover, it is further expected that if π2 is paraspherical

(i.e., has fixed vectors by a paramodular group) then Π2 is paraspherical too. Perhaps, an

additional local assumption is needed as in Sorensen (cf. [Sor09a, Section 4.2.2]) to get the

JL correspondence, otherwise we might get a weak version of it.

In our case, JL(π) = Π is ramified at 2. Because at 2, we can’t have principal series

representation, as principal series representations are never square integrable. Because of

the same reason, we can not have level 1 either, since at level 1 we only get principal series

representations.

The heart of the proof is the ‘character identity’ which comes from Arthur’s trace for-

mula. We are interested in the spectral side of the trace formula for both the groups GB and

G′. There is a distribution, denoted by IG′
disc which is supported on automorphic represen-

tations occurring discretely in the trace formula. The distribution has an expansion of the

following form

IG′
disc( f ′) = ∑

Π

aG′
disc(π)trΠ( f ′)

for a smooth function f ′ on G′(A). Here aG′
disc denotes a complex number attached to an

automorphic representation Π. However, the distribution formed this way is unstable. To

make it stable, a certain suitable error term needs to be subtracted (see Arthur [Art98]).

There is a similar formula for the group GB. But since GB is anisotropic modulo center

so all the term occurs discretely and aG
disc(π) always denotes the multiplicity of π (see

Sorensen [Sor09a, Section 4.2]).

A standard argument based on the spectral identity connecting the stable trace formula

of GB and G′ says that there exists an irreducible representation Π of G′(A) such that

ΠS = πS. Now to talk about the infinity component Π∞ of the representation, we recall

that by Langlands classification, the irreducible admissible representations of G′(R) are

partitioned into finite L-packets Πφ parametrized by admissible homomorphisms φ : WR→
LGB. Since GB(R) is compact modulo center, the L-packets are singletons {πφ}. Now, pick

a cohomological discrete series representation (see Sorensen [Sor09a, Section 4.2.3]) Π∞

of G′(R) from the L-packet Πφ with the same central and infinitesimal characters as πφ ,
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then the key identity is as follows:

∑
π2

aG
disc(π∞⊗π2⊗π

S)trπ2( f2) = ∑
Π2

aG′
disc(Π∞⊗Π2⊗Π

S)trΠ2( f ′2) (4.4.1)

which is valid for any discrete L-parameter φ , and Π∞ ∈ Πφ and any matching pair of

smooth functions f2 and f ′2 on G(Q2) and G′(Q2) respectively. Now to get information at

prime 2, we use argument on linear independence of characters for GB(Q2). There exists

a function f2 and an automorphic representation π2 such that the left hand side of the key

identity Equation (4.4.1) is non-zero. Then the right hand side of Equation (4.4.1) is non-

zero too. This implies there exists at least one matching function f ′2 and correspondingly

one representation Π2 with trΠ2( f ′2) 6= 0.



Chapter 5

On the computation of genus-3 algebraic

automorphic forms over Q

In this chapter, we will discuss about the algorithm in computing the dimension of the

space MGB(V ) of automorphic forms on B of weight V and full level. At the end of this

chapter we will give a Table 5.1 of dimensions for various small weights V computed using

the algorithm, which we have implemented in MAGMA using the packages of the Magma

computational Algebra system (version V2.24). Table 5.1 is the main result of this chapter.

We will discuss some implementation issues related to the algorithm as well. But at first,

we will briefly recall some necessary facts on the highest weight theory for symplectic Lie

algebras.

5.1 Background on the highest weight theory

According to the basic results of Fulton-Harris ([FH91, Lecture 7]) representations of a

complex Lie algebra g will correspond exactly to the representations of the associated sim-

ply connected Lie group G̃. For any other group given as G = G̃/C, where C ⊂ Z(G̃)

with Lie algebra g, representations of G are simply the representations of G̃ trivial on C

(cf.[FH91, p. 369, Lecture 23]). Let h be the Cartan subalgebra and the root space h∗ be

spanned by weights L1,L2, . . . ,Ln. Then any weight can be written uniquely as an integral

linear combination λ1L1 +λ2L2 + · · ·+λnLn.
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Fact 5.1.1. The following facts with all the notations intact are borrowed from different

sections of Fulton-Harris [FH91].

(1) Let Vλ be the irreducible representation of sp2n with highest weight λ = (λ1 + λ2 +

· · ·+ λn)L1 + (λ2 + · · ·+ λn)L2 + · · ·+ λnLn. Then Vλ will be a representation of

Sp2n(C)/{±1} if ∑λ j is even [FH91, p. 371, Proposition 23.13].

(2) V (k) =V0,...,1,...,0 is the irreducible representation of sp2n(C) with highest weight L1 +

· · ·+Lk ([FH91, p. 262]).

(3) Any other representation of sp2n(C) will occur in a tensor product of these V (k). Specif-

ically, the irreducible representation Va1,a2,...,an with highest weight λ = (a1 + · · ·+

an)L1 + · · ·+anLn = a1L1 +a2(L1 +L2)+ · · ·+an(L1 + · · ·+Ln) will occur inside the

space

Syma1V (1)⊗Syma2V (2)⊗·· ·⊗SymanV (n),

where V (1) is the standard representation of sp2n(C) on C2n ([FH91, p. 262]).

(4) The kth symmetric powers Symk(C2n) of the standard representation are all irreducible

in both the cases for Lie algebra and for group Sp2n(C) ([FH91, p. 265, p. 406]).

5.2 Dual spaces, contractions, and exterior powers

This section contains some necessary background theory about duals, contraction maps and

exterior powers. We have followed the exact notations from [FH91].

Fact 5.2.1. (1) If {ei} is a basis for V , then {ei1 ∧ ei2 ∧ ·· · ∧ ein | i1 < i2 < · · · < in} is a

basis for the exterior power
∧nV of V .

(2) If V ∗ denotes the dual space of V , then
∧n(V ∗)∼= (

∧nV )∗ .

(3) The dual basis for
∧n(V ∗) is {e∗i1 ∧ e∗i2 ∧·· ·∧ e∗in | i1 < i2 < · · ·< in}.



53

(4) The contraction maps Ci
j : V⊗p⊗ (V ∗)⊗q → V⊗(p−1)⊗ (V ∗)⊗(q−1) for any 1 ≤ i ≤ p

and 1 ≤ j ≤ q, are determined by, evaluating the jth co-ordinates of (V ∗)⊗q on the

ith co-ordinate of V⊗p. i.e., Ci
j : V⊗p⊗ (V ∗)⊗q → V⊗(p−1)⊗ (V ∗)⊗(q−1) is given by

Ci
j(v1⊗·· ·⊗vp⊗φ1⊗·· ·⊗φ j⊗·· ·⊗φq) = φ j(vi)v1⊗·· ·⊗ v̂i⊗·· ·vp⊗φ1⊗·· ·⊗ φ̂ j⊗

·· ·⊗φq.

(5) There are related contractions between exterior powers and dual spaces of exterior

powers. They are known as internal products. The contraction maps for the exterior

powers are denoted by y and x respectively, and they are given as:

∧p
V ⊗

∧p+q
(V ∗)→

∧q
(V ∗), x⊗α 7→ xyα

and ∧p+q
V ⊗

∧p
(V ∗)→

∧q
(V ∗), x⊗α 7→ xxα,

where xyα and xxα are defined as follows:

(a) If x = v1∧·· ·∧ vp and α = φ1∧·· ·∧φp+q with vi ∈V and φ j ∈V ∗, then

xyα = ∑sgn(σ)φσ(q+1)(v1) · . . . ·φσ(q+p)(vp) ·φσ(1)∧·· ·∧φσ(q),

the sum over all permutations σ of {1, . . . , p + q} that preserve the order of

{1, . . . ,q}.

(b) If x = v1∧·· ·∧ vp+q and α = φ1∧·· ·∧φp with vi ∈V and φ j ∈V ∗, then

xxα = ∑sgn(σ)φ1(vσ(1)) · . . . ·φp(vσ(p)) · vσ(p+1)∧·· ·∧ vσ(p+q),

the sum over all permutations that preserve the order of {p+ 1, . . . , p+ q}. For

details, we refer to the reader [FH91, Exercise B.15].

There are analogous formulas for symmetric powers too [FH91, Appendices B.3].
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5.3 Outline of the algorithm

Our primary goal is to compute the dimension of MGB(V ). But by the isomorphism as in

expression (4.3.2) in Section (4.3.3) calculating this dimension is same as calculating the

dimension of V Γ. The first and foremost step towards this is to calculate the group Γ ex-

plicitly.

Cardinality of Γ:

We calculate Γ explicitly by writing a program using MAGMA software. For this calcula-

tion, let us look at the description of Γ as in Equation (4.3.3) (Observation 3), i.e.,

Γ = {γ ∈ GL3(OB) | γγ̄
t = I3}.

Let γ :=


a b c

d e f

g h m

 be an arbitrary 3× 3 matrix from Γ where a,b,c,d,e, f ,g,h,m are

arbitrary elements from the quaternion algebra B. We could further write a,b,c in the fol-

lowing ways a := a1+a2i+a3 j+a4k; b := b1+b2i+b3 j+b4k; c := c1+c2i+c3 j+c4k,

where a1, . . . ,a4,b1, . . . ,b4,c1, . . . ,c4 are rational numbers. Similar expressions hold for

b,c,d,e, f ,g,h,m also. Since the matrix γ is from Γ so we could express the matrix entries

as elements from OB. Hence each a,b,c,d,e, f ,g,h,m has another set of expressions, such

as a := α1 +α2i+α3 j +α4l, b := β1 + β2i+ β3 j + β4l, c := γ1 + γ2i+ γ3 j + γ4l, where

α1 . . .α4,β1 . . .β4,γ1 . . .γ4 are integers. Now, if we equate these two expressions of a, we

get,

a1 +a2i+a3 j+a4k = α1 +α2i+α3 j+α4

(
1+ i+ j+ i j

2

)
=

(
2α1 +α4

2

)
+

(
2α2 +α4

2

)
i+
(

2α3 +α4

2

)
j+
(

α4

2

)
k.

If we compare the constant terms and coefficients of i, j, k we get a1,a2, a3,a4 as half

integers. We could similarly do for the rest of the matrix entries. Now, γ being the member

of Γ gives us,

aā+bb̄+ cc̄ = 1.
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This implies,

a2
1 +a2

2 +a2
3 +a2

4 +b2
1 +b2

2 +b2
3 +b2

4 + c2
1 + c2

2 + c2
3 + c2

4 = 1.

Furthermore, if we expand these expressions putting the values of a1, . . . ,c4, we get,

(2α1 +α4)
2 +(2α2 +α4)

2 +(2α3 +α4)
2 +α

2
4 +(2β1 +β4)

2 +(2β2 +β4)
2 +(2β3 +β4)

2

+β
2
4 +(2γ1 + γ4)

2 +(2γ2 + γ4)
2 +(2γ3 + γ4)

2 + γ
2
4 = 4.

This implies, α4,β4,γ4 are integers in [−2,2] and for different choices of α4, we could

show that α1,α2,α3,β1,β2,β3,γ1,γ2,γ3, are integers in [−1,1]. By this calculation, we are

able to give finite bounds for entries of an arbitrary matrix in Γ. Since the computation

is now over a finite discrete set, so the cardinality of Γ is finite. We wrote one MAGMA

program and got the cardinality 82944.

Remark 5.3.1. This cardinality matches with the mass formula calculation as we did in

Chapter 4 (cf. Section 4.3.2).

Generators of Γ:

The next task is to find the generators of Γ. Now observe that, each element x+yi+z j+wk

of B can be associated with a 2× 2 matrix over a suitable choice of field E/Q. E is such

that E splits B. In our case, we already fixed E to be Q(I), where I2 =−1. Though as some

inbuilt packages from Magma works only for complex field C. So, only for programming

convenience we consider the complex field C, otherwise, Q(I) is an adequate choice to

work with. Now, using the following bijections:

1↔

1 0

0 1

 , i↔

I 0

0 −I

 , j↔

 0 1

−1 0

 ,k↔

0 I

I 0

 .

we can observeI 0

0 −I

2

=−

1 0

0 1

 ;

 0 1

−1 0

2

=−

1 0

0 1

 ,

I 0

0 −I

 0 1

−1 0

=

0 I

I 0

 .
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Hence, an arbitrary element x+ yi+ z j+wk of B can be associated with a 2×2 matrix in

the following way:

x+yi+z j+wk↔ x

1 0

0 1

+y

I 0

0 −I

+z

 0 1

−1 0

+w

0 I

I 0

=

 x+ Iy z+ Iw

−z+ Iw x− Iy

 .

Using the above observation, an arbitrary element γ :=


a b c

d e f

g h m

 in Γ can be viewed as


{a1,a2,a3,a4} {b1,b2,b3,b4} {c1,c2,c3,c4}

{d1,d2,d3,d4} {e1,e2,e3,e4} { f1, f2, f3, f4}

{g1,g2,g3,g4} {h1,h2,h3,h4} {m1,m2,m3,m4}

 ,

here we introduce a new symbol {p,q,r,s} := 2p+s
2 + 2q+s

2 i+ 2r+s
2 j+ s

2k for convenience

to write matrix entries.

The above γ ∈ Γ can be considered as 6×6 matrix as follows


[a1,a2,a3,a4] [b1,b2,b3,b4] [c1,c2,c3,c4]

[d1,d2,d3,d4] [e1,e2,e3,e4] [ f1, f2, f3, f4]

[g1,g2,g3,g4] [h1,h2,h3,h4] [m1,m2,m3,m4]

 ,

where each entry of the above 2×2 matrix is defined by

[p,q,r,s] :=

2p+s
2 + I 2q+s

2
2r+s

2 + I s
2

−2r+s
2 + I s

2
2p+s

2 − I 2q+s
2

 .

In fact, we can check that these matrices are from Sp6 over Q, where

Sp6 = {g ∈ GL6 | gtJg = J}
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and

J =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


.

Remark 5.3.2. For the sake of calculations we have taken this skew-symmetric form J.

Using MAGMA software program we have found the following three matrices generate the

group Γ. We fix these three generators of Γ for further computations.

M1 =



I−1
2

−I+1
2 0 0 0 0

−I−1
2

−I−1
2 0 0 0 0

0 0 0 0 I−1
2

−I+1
2

0 0 0 0 −I−1
2

−I−1
2

0 0 I+1
2

I+1
2 0 0

0 0 I−1
2

−I+1
2 0 0



M2 =



0 0 0 0 I−1
2

I+1
2

0 0 0 0 I−1
2

−I−1
2

0 0 I−1
2

−I−1
2 0 0

0 0 −I+1
2

−I−1
2 0 0

0 1 0 0 0 0

−1 0 0 0 0 0



M3 =



0 0 0 0 0 −I

0 0 0 0 −I 0

0 0 −I−1
2

I−1
2 0 0

0 0 I+1
2

I−1
2 0 0

I+1
2

−I−1
2 0 0 0 0

−I+1
2

−I+1
2 0 0 0 0


,
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Remark 5.3.3. Observe also that all of these three matrices M1,M2,M3 satisfy the same

characteristic polynomial x6+x5+2x4+x3+2x2+x+1= (x−ω)2(x−ω̄)2(x+ω)(x+ω̄)

and the same minimal polynomial x4 + x2 + 1 = (x2 + x+ 1)(x2− x+ 1) = (x−ω)(x−

ω̄)(x + ω)(x + ω̄), where ω is the third root of unity. We can see all the roots of the

minimal polynomial are distinct. Hence each of the generating matrices is diagonalizable

(or semisimple).

As we get these generators of Γ, hence we can write MGB(V )∼=V Γ = ∩3
i=1V Mi . So, calcu-

lating the dimension for the space MGB(V ) is same as calculating the dimension of the inter-

section of these three subspaces V Mi for i ∈ {1,2,3}. Since, we started with an irreducible

algebraic representation (ρ,V ) of GB over Q (cf. Section 4.3.1), it can be parametrized by

quadruple of non-negative integers a,b,c,d where the representation V (= Va,b,c,d) is the

unique highest weight direct summand of

Ṽ(a,b,c,d) := Syma(C6)⊗Symb(W )⊗Symc(U)⊗µ
d. (5.3.1)

Define Ṽ(a,b,c) := Syma(C6)⊗Symb(W )⊗Symc(U). (5.3.2)

Then we have,

V =Va,b,c,d ⊆ Ṽ(a,b,c)⊗µ
d. (5.3.3)

For details see [FH91, p. 258]. Here µ denotes the similitude factor.

Remark 5.3.4.

1. The spaces W and U are subspaces of exterior powers
∧2(C6) and

∧3(C6) respec-

tively. We will give the full descriptions of W,U below.

2. For the sake of simplicity in our calculations, we will fix d = 0. If in addition b =

c = 0, then we get, Va,0,0 = Ṽ(a,0,0) (by Fact 5.1.1 (4)).

3. The non-negative integers a,b,c have relations among themselves. We need a+ c to

be even and there is no condition on b (by Fact 5.1.1(1)).
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4. Since we do not directly identify our space Va,b,c as a subspace of the vector space

Ṽ(a,b,c) so for our purpose, we only compute an upper bound of V Γ
a,b,c. The dimen-

sions of Ṽ(a,b,c) surely give an upper bound for dim (V Γ
a,b,c). Now if we extend the

action of Γ on Ṽ(a,b,c) and compute dim (Ṽ Γ

(a,b,c)) then this will give a better bound

for dim (V Γ
a,b,c). Hence the next task in our algorithm is to define the action of Γ on

Ṽ(a,b,c).

Extension of the action of Γ to Ṽ(a,b,c):

We start by considering the standard representation of sp6(C) on C6. Then the matrices

obtained by the action of the generators of Γ on C6 will be the same M1,M2,M3. Note that

the dimension of the space Syma(C6) is
(5+a

a

)
. Call this dimension as na.

Descriptions of W and U:

The space W :

The vector space
∧2(C6) = C6⊗C6

<v⊗v> has basis {ei ∧ e j | 1 ≤ i < j ≤ 6}. Let S denote the

vector space of all 6× 6 skew-symmetric matrices over C. Then we have the following

isomorphism of vector spaces S ∼= (
∧2V )∗ ∼=

∧2V ∗ (for the last isomorphism (see (2) in

Section 5.2). Under this isomorphism, the skew-form J preserved by the definition of

sp6(C), maps to e∗1∧ e∗2 + e∗3∧ e∗4 + e∗5∧ e∗6, i.e.,

J =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


7→ e∗1∧ e∗2 + e∗3∧ e∗4 + e∗5∧ e∗6.

By the definition of the action of Sp6(C) on the standard representation preserves a skew-

form so that, the representation on
∧2(C6)

(∼=∧2(C6)∗
)

has a trivial summand. This im-

plies that
∧2(C6) has an irreducible subspace 〈J〉 by the action of Sp6(C). The complement

of the trivial representation 〈J〉 in
∧2(C6) is irreducible too (for details, see [FH91, Section

17.1]). For us, W is this irreducible representation such that,
∧2(C6)∼=W ⊕C. Therefore
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dim(W ) = dim(
∧2(C6))−1 = 6(6−1)

2 −1 = 14. In fact, we could explicitly write down all

the basis elements of W . Define, a bilinear form on S by following

J1 : S×S→ C

by J1(X ,Y ) = tr(JXJY ).

Claim: The new form J1 is Sp6-invariant.

To prove our claim, let A be any symplectic matrix. Then A satisfies AtJA = J. Now Sp6

acts on S via A ·X = AtXA (since X is skew-symmetric then AtXA is also so). Therefore,

J1(A ·X ,A ·Y ) = J1(AtXA,AtYA) = tr(JAtXA,JAtYA) = tr(AJAtXAJAtY ) = tr(JXJY ).

This implies J1 is Sp6-invariant. By definition J is Sp6-invariant. Our required space W is

a space perpendicular to J under J1. Therefore

W = J⊥ = {X ∈ S | J1(X ,J) = 0}= {X ∈ S | tr(JXJJ) = 0}= {X ∈ S | tr(JX) = 0}.

Now the trace condition

tr

[


0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0





0 x12 x13 x14 x15 x16

−x12 0 x23 x24 x25 x26

−x13 −x23 0 x34 x35 x36

−x14 −x24 −x34 0 x45 x46

−x15 −x25 −x35 −x45 0 x56

−x16 −x26 −x36 −x46 −x56 0



]
= 0.

gives, x12 + x34 + x56 = 0.

Therefore the space W is 〈e12−e34, e13, e14, e15, e16,e23,e24,e25,e26,e35,e36,e45,e46, e34−

e56〉, where ei j denotes the basis element ei∧ e j of
∧2(C6).

Action of Γ on W :

Define the action of Γ on
∧2(C6) by

g · (ei0 ∧ e j0) = g · ei0 ∧g · e j0( for i0 < j0)

= (g1i0e1 +g2i0e2 + · · ·+g6i0e6)∧ (g1 j0e1 +g2 j0e2 + · · ·+g6 j0e6)

= ∑
i< j

(gii0g j j0−gi j0g ji0)ei∧ e j,
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where g = (gi j) is 6×6 matrix with g · e j = (gi j)



0
...

1
...

0


=


g1 j

g2 j
...

g6 j.


Observation: Γ acts on

∧2(C6) by conjugation, i.e., using the bijection,

e∗i0 ∧ e∗j0 ←→



0 0 0 0 0 0

∗ 0 ∗ ∗ ∗ ∗

∗ ∗ 0 1 ∗ ∗

∗ ∗ −1 0 ∗ ∗

∗ ∗ ∗ ∗ 0 ∗

0 0 0 0 0 0


where the [i0, j0]th entry is 1 and correspondingly [ j0, i0]th entry is −1, we can show

g · (ei0 ∧ e j0) = g



0 0 0 0 0 0

∗ 0 ∗ ∗ ∗ ∗

∗ ∗ 0 1 ∗ ∗

∗ ∗ −1 0 ∗ ∗

∗ ∗ ∗ ∗ 0 ∗

0 0 0 0 0 0


gt .

Since Γ = 〈M1,M2,M3〉, so it is enough to see how each Mi acts on basis elements of W .

Let P1,P2,P3 be the matrices obtained by the action of M1,M2,M3 on W respectively.

Action of Γ on Symb(W ):

The vector space Symb(W ) has the dimension
(13+b

13

)
. Define, nb :=

(13+b
13

)
. Now to see the

action of each Mi (for i = 1,2,3) on Symb(W ), let us recall the following definition of the

linear transformation

Symb(Pi) : Symb(W )→ Symb(W )

Symb(Pi) · (v j1 ·v j2 · . . . ·v jb) = Pi(v j1) ·Pi(v j2) · . . . ·Pi(v jb), where 1≤ j1 ≤ j2 ≤ ·· · ≤ jb ≤

14, where for each i = 1,2,3, Pi is a 14× 14 matrix and {v ji}1≤ ji≤14 are arbitrary basis
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vectors of W ⊂
∧2(C6). Precisely the action of each Mi (for i = 1,2,3) on Symb(W ) are

determined by the action of each Pi (i = 1,2,3) on W . By abuse of notation, let us denote

the matrix obtained by this action as Symb(Pi) too (for each i = 1,2,3).

Remark 5.3.5. For each i ∈ {1,2,3}, Symb(Pi) is a nb×nb matrix.

Description of U: We have a contraction map

∧3V ⊗∧2(V ∗)→V

defined by x⊗α 7→ xxα (see 5 in Section 5.2), where

xxα = (v1∧ v2∧ v3)x(φ1∧φ2)

= ∑
σ∈S3

sgn(σ)(σ)φ1(vσ(1))φ2(vσ(2))vσ(3).

Also, we know the skew-form J preserved by the action of Sp6(C) can be identified with the

element e∗1∧ e∗2 + e∗3∧ e∗4 + e∗5∧ e∗6 of ∧2(C6)∗(∼= ∧2(C6)). Then by [FH91, Section 17.2],

the kernel of the contraction map obtained by contracting with e∗1∧ e∗2 + e∗3∧ e∗4 + e∗5∧ e∗6 is

the irreducible representation with highest weight L1+L2+L3. We call this representation

as U . Therefore

U = {v1∧ v2∧ v3 ∈ ∧3(C6) | (v1∧ v2∧ v3)x(e∗1∧ e∗2 + e∗3∧ e∗4 + e∗5∧ e∗6) = 0}.

We can also write down explicitly the basis elements of U by exploring the kernel condition

of the contraction map x. But before that let us first show by example, how the formula for

‘x’ works. Choose e1∧ e2∧ e3 ∈
∧3(C6), then

(e1∧ e2∧ e3)x(e∗1∧ e∗2) = ∑
σ∈S3

sgn(σ)e∗1(eσ(1))e
∗
2(eσ(2))eσ(3)

= e∗1(e1)e∗2(e2)e3− e∗1(e1)e∗2(e3)e2− e∗1(e2)e∗2(e1)e3

+ e∗1(e2)e∗2(e3)e1 + e∗1(e3)e∗2(e1)e2− e∗1(e3)e∗2(e2)e1

= e3 (since e∗i (e j) = δi j,Kronecker delta)
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For e1 ∧ e2 ∧ e3 ∈
∧3(C6) and e∗3 ∧ e∗4 ∈

∧2(C6), we have (e1 ∧ e2 ∧ e3)x(e∗3 ∧ e∗4) = 0.

Similarly, we can check, (e1∧ e2∧ e3)x(e∗5∧ e∗6) = 0. Therefore

(e1∧ e2∧ e3)x(e∗1∧ e∗2 + e∗3∧ e∗4 + e∗5∧ e∗6) = e3.

Similarly, we can evaluate this formula for each basis ei∧ e j ∧ ek of
∧3(C6) and can cal-

culate the kernel of the x map. Therefore the basis of the kernel or U is {e1∧ e3∧ e5,e1∧

e3∧e6,e1∧e4∧e5,e1∧e4∧e6,e1∧e5∧e6−e1∧e3∧e4,e2∧e3∧e5,e2∧e3∧e6,e2∧e4∧

e5,e2∧ e4∧ e6,e2∧ e5∧ e6− e2∧ e3∧ e4,e3∧ e4∧ e5− e1∧ e2∧ e5,e3∧ e4∧ e6− e1∧ e2∧

e6,e3∧ e5∧ e6− e1∧ e2∧ e3,e4∧ e5∧ e6− e1∧ e2∧ e4}. Hence the dimension of U is 14.

Action of Γ on U:

Define the action of Γ on
∧3(C6) by

g · (ei1 ∧ ei2 ∧ ei3) (for i1 < i2 < i3)

= g · ei1 ∧g · ei2 ∧g · ei3

= (g1i1e1 + · · ·+g6i1e6)∧ (g1i2e1 + · · ·+g6i2e6)∧ (g1i3e1 + · · ·+g6i3e6)

= ∑
i0< j0<k0

(gi0i1g j0i2gk0i3−g j0i1gi0i2gk0i3 +gk0i1gi0i2g j0i3−gi0i1gk0i2g j0i3

+g j0i1gk0i2gi0i3−gk0i1g j0i2gi0i3)ei0 ∧ e j0 ∧ ek0

for any g ∈ Γ. Let Q1,Q2,Q3 be the matrices obtained by restricting the action of genera-

tors M1,M2,M3 of Γ on U and the matrices Symc(Q1),Symc(Q2),Symc(Q3) for the action

of generators on Symc(U). Now, note that the vector space Symc(U) has the dimension(13+c
13

)
. Define, nc :=

(13+c
13

)
. Then for each i ∈ {1,2,3}, Symc(Qi) is an nc×nc matrix.

The matrix obtained by the action of Γ on the space Ṽ(a,b,c) is Syma(Mi)⊗ Symb(Pi)⊗

Symc(Qi). Then we have,

dim
(

Ṽ Γ

(a,b,c)

)
= dim

(
3⋂

i=1

Ṽ Mi
(a,b,c)

)
(5.3.4)

= dim

(
3⋂

i=1

ker
(

Syma(Mi)⊗Symb(Pi)⊗Symc(Qi)−1
))

(5.3.5)

= dim

(
3⋂

i=1

E i
a,b,c

)
, (5.3.6)
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where E i
a,b,c is the eigen space of 1.

Complexity issues: Define Na,b,c := nanbnc =
(5+a

a

)(13+b
13

)(13+c
13

)
. The matrix Syma(Mi)⊗

Symb(Pi)⊗ Symc(Qi) is an Na,b,c×Na,b,c matrix. Now Na,b,c grows rapidly as a,b,c in-

creases. This process calculates three eigenspaces for three big Na,b,c×Na,b,c matrices and

then compute the dimension of their intersections. We could bypass the idea of directly

calculating the kernel and can reduce the complexity. So, in our algorithm to reduce the

number of operations involving nullspace calculations, we compute for each i ∈ {1,2,3}

when all those ix, jy,kl with the condition, ∑ ix = a;∑ jx = b;∑kx = c when the following

expression involving eigenvalues is true.

α
i1
1Mi

α
i2
2Mi
· · ·α i6

6Mi
β

j1
1Pi

β
j2

2Pi
· · ·β j14

14Pi
γ

k1
1Qi

γ
k2
2Qi
· · ·γk14

14Qi
= 1, (5.3.7)

Here α1Mi,α2Mi, . . . ,α6Mi,β1Pi,β2Pi, . . . ,β14Pi,γ1Qi,γ2Qi, . . . ,γ14Qi are eigenvalues of Mi,Pi

and Qi respectively for each i ∈ {1,2,3}. Correspondingly α
i1
1Mi

α
i2
2Mi
· · ·α i6

6Mi
with ∑ ix = a

are the eigenvalues of Syma(Mi) (for i ∈ {1,2,3}). Similarly, we can write the eigenvalues

of Symb(Pi) and Symc(Qi).

Table 5.1: The dimensions of the space for different inputs of a,b,c

a 1 2 2 4 6 8 10 12 14

b 0 0 1 0 0 0 0 0 0

c 1 0 0 0 0 0 0 0 0

dim
(

Ṽ Γ

(a,b,c)

)
0 0 0 0 1 1 0 3 2

Observation 5.3.6. Since M1,M2,M3 have the same characteristic polynomial and same

minimal polynomial, hence their eigenvalues are same too with the same multiplicity. In

fact, we prove that M1,M2,M3 are diagonalisable matrices (see remark 5.3.3). We can also

prove that P1,P2,P3,Q1,Q2,Q3 are diagonalisable too. Moreover, each of P1,P2,P3 satisfies

the same minimal polynomial, characteristic polynomial and each of Q1,Q2,Q3 has the

same set of eigenvalues with the same multiplicity.
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The above two observations lead us to imply that E i
a,b,c for each i ∈ {1,2,3} will be

spanned by eigenvectors and we get,

E i
a,b,c = Span{vi1

1Mi
· · ·vi6

6Mi
⊗w j1

1Pi
· · ·w j14

14Pi
⊗uk1

1Qi
· · ·uk14

14Qi
| Expression(5.3.7) is true}.

Now, there is a general formula to calculate the dimension of the intersection of three

subspaces V1,V2,V3 of a vector space V due to [Tia02] given as following,

dim(V1∩V2∩V3) = rk(A1)+ rk(A2)+ rk(A3)− rk

A1 A2 0

A1 0 A3

 (5.3.8)

where Vi = column space of the matrix Ai. This means that each column of Ai is actually a

basis of Vi. Using this general formula for computing dimension of three vector spaces in

our situation, we get

dim

(
3⋂

i=1

E i
a,b,c

)
=

3

∑
i=1

rk(Ai)− rk

A1 A2 0

A1 0 A3

 ,

where E i
a,b,c = column space of Ai. Each column of Ai actually gives an eigen basis in our

case. We calculate rk(Ai) for each i, during the process of the program and get rk(A1) =

rk(A2) = rk(A3). Denote this rank rk(A1) by h. Then, calculating the dim
(

Ṽ Γ

(a,b,c)

)
boils

down to calculate the rank of the last matrix

A1 A2 0

A1 0 A3

. This matrix has order

2Na,b,c×3h.

Conclusion 5.3.7. The key reason for choosing this rank calculation approach is to reduce

the complexity. The matrix

A1 A2 0

A1 0 A3

 has size 2Na,b,c× 3h. The time complexity

for calculating the rank of

A1 A2 0

A1 0 A3

 involves Õ(Na,b,c ·h) field operations [CKL13].

The notation Õ is used to hide (small) polylog factors in the time bounds. Whereas if we

want to calculate the intersection of three eigenspaces and then calculate the dimension,

then this process will involve more operations. In our case, V1 = Range(A1) and V2 =
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Range(A2). A vector w ∈ V1 ∩V2 if and only if A1u = A2v = w for some u ∈ V1 and

v ∈V2. Therefore A1u−A2v = w−w = 0. Now consider the matrix A = [A1,−A2]. Hence

V1∩V2 = {w = A1u |

u

v

 ∈ ker(A)}. So it is enough to compute the ker(A). Now kernel

calculation involves Gaussian elimination process. If we want to calculate (V1∩V2)∩V 3,

then this will be computationally more intensive. So calculating the intersection of three

eigenspaces and then calculating the dimension of the intersection involves more operations

than calculating the rank of

A1 A2 0

A1 0 A3

. This is the key observation of this approach.

We record this discussion as the following theorem.

Theorem 5.3.8. The aforementioned algorithm takes non-negative integer values for a,b,c

as inputs under the condition that a+c must be even and b can be any non-negative integer.

And as an output, it returns dim
(

Ṽ Γ

(a,b,c)

)
which gives bounds for the dimension of the

space of cuspidal algebraic automorphic forms MGB(V ). For the choices (a,0,0), we get

the exact dimensions of MGB(Va,0,0). In other cases, we just get bounds of dimMGB(Va,b,c).

In particular, from the Table 5.1 the dimensions of the space of cusp forms of weights

(6,0,0),(8,0,0),(12,0,0),(14,0,0) are 1,1,3,2 respectively. Whereas the space of cusp

forms of weights (1,0,1),(2,0,0),(2,1,0),(4,0,0) and (10,0,0) are trivial.

Remark 5.3.9. In the above theorem the forms are cuspidal since GB(R) is compact mod-

ulo center hence it does not have any cusps. This precisely means the Table 5.1 gives the

bounds for the dimensions of the space of cuspidal algebraic automorphic form MGB(V ).

Future Plans: In future, we want to work for reducing the complexity and if possible

getting more values to fill up the table of dimensions of Ṽ(a,b,c). There is a scope of using

faster rank calculating programs which involves parallel processing. We intend to work

on that. If by using tools of representation theory we could identify the space Va,b,c as a

subspace of Ṽ Γ

(a,b,c) then we can have a table of dimensions for the space MGB(V ) itself.
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