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Abstract

The analysis of stochastic gravitational wave background involves the cross-correlation of

signals detected by the two detectors at short time intervals augmented by a filter to optimize

the signal to noise ratio. The rotation of Earth leads to a change in the baseline with respect

to the signal coming from a particular direction in the sky which causes interference which

is used to sample the Gravitational Wave Background. This however leads to a point spread

function which means that the contribution from a single source spreads across the sky-

sphere. The statistic that is obtained from this analysis shows that the contribution at each

point is a weighted sum from the sources over the entire sky.If the sky is divide into n pixels,

the weights form a n×n matrix dubbed the beam pattern matrix. The power is now obtained

by solving n linear algebraic equations in power. This process is called deconvolution. The

aim of this project is to get a basis to represent the beam pattern matrix and do away with

the need to deconvolve the map which is a cumbersome process. The basis being optimized

to the problem might also provide some new insight into the problem.
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Preliminaries

Basic Formulas: The unit vectors in spherical polar coordinates:

r̂ = (sin θ cosφ, sin θ sinφ, cos θ) (1)

êθ = (cos θ cosφ, cos θ sinφ,− sin θ) (2)

êφ = (− sinφ, cosφ, 0) (3)

The polarization tensors e+ and e× are given by:

e+ = eθ ⊗ eθ − eφ ⊗ eφ (4)

e× = eθ ⊗ eφ + eφ ⊗ eθ (5)

Consider a detector whose location is given by the latitude π
2
− θ and longitude φ. If

ψ denotes the angle the arm of the detector makes with the great circle running along its

latitude location, then the detector arm locations assuming that the angle between the arms

themselves is 90o is:

X = (− sinφ cosψ − cosφ cos θ sinψ, cosφ cosψ − sinφ cos θ sinψ, sin θ sinψ) (6)

Y = (sinψ sinφ− cosφ cos θ cosψ,− sinψ cosφ− sinφ cos θ cosψ, sin θ cosψ) (7)

Note that equation of the arm is given according to a basis that is rotaing with Earth.
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In order to get the vectors X and Y in a coordinate system that is fixed, we must multiply

by the rotation matrix R.
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Chapter 1

Introduction

The advent of the gravitational wave detectors and the successfull detection of colliding black

hole and neutron star binaries has opened the channel for work on determining the large

scale structures of the universe using gravitational wave astronomy. One of the leading push

in this direction is to figure out the stochastic gravitational wave background. The stochastic

gravitational wave background like the CMB can provide information about the evolution

of large scale structures in the universe. It can have its origin either in cosmological sources

or astrophysical. Since there does not exist a viable and testifiable cosmological model to

account for any stochastic gravitational wave background, the source is more likely to be

astrophysical like a region in the sky with a very large population of colliding binaries or

other sources of gravitational waves. The virgo supercluster for example can be such a

location. An important thing to consider here is that unlike the CMB, it is very difficult

to determine the time of formation of this stochastic gravitational wave bakground owing

to the nonlinearity of the Einstein’s field equations and the lack of a parameter that can be

associated to time, like the temperature in case of CMB. The space we are therefore working

with is a quotient space i.e. we have no information about the distance of the source(unless

known by some other method) only its direction.

The analysis of stochastic gravitational wave background requires the cross-correlation

of input signal from two different detectors. The data is collected for a single sidereal day

since a stochastic background will remain constant over short time intervals and the earth’s

location in the barycentric co-ordinates does not alter much during this time interval.
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Consider a detector at location r on the globe. The gravitational wave signal at this

location from an area dΩ on the sky sphere centred around Ω̂ is;

dhµν(t, r) =

∫ ∞
−∞

h̃A(f, Ω̂)eAµνe
2πif(t+Ω̂·r/c) dfdΩ (1.1)

where h̃A(f, Ω̂) is the fourier transform of of the gravitational wave signal.

Since the search is for a stochastic background the contribution is taken from the entire

sky sphere.

This implies;

hµν(t, r) =

∫ ∞
−∞

df

∫
S2

h̃A(f, Ω̂)eAµνe
2πif(t+Ω̂·r/c) dΩ (1.2)

is the gravitational wave signal from the entire sky sphere at the detector location r.

For a stochastic background the signal from different directions must be uncorrelated.

There should also be no correlation between signals arriving at different frequencies.

Mathematically this condition is represented by the equation;

〈h̃∗A(f, Ω̂)h̃A(f ′, Ω̂′)〉 = δ(f − f ′)δ2(Ω̂− Ω̂′)PA(Ω̂)H(f) (1.3)

The mean described above is a statistical mean and is a quantity that will be used

frequently through this analysis.

PA(Ω̂) is the power in polarization A from the direction Ω̂ on the sky-sphere. H(f) is

the spectral power density i.e. H(f) gives the distribution of power in the gravitational wave

signal in the frequency domain. The signal detected by the detector I at time t is given by

the gravitational wave strain function hI(t).

This function is given by the formula;

hI(t) = dµνI (t)hµν(t, rI) (1.4)
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where dµνI is the detector tensor for detector I and given by the equation

dµν =
1

2
(XµXν − Y µY ν) (1.5)

where X̂ and Ŷ are the normal vectors ruuning along the length of the detector arms.

Expanding equation (1.4) using equation (1.2) and (1.5);

hI(t) =

∫ ∞
−∞

df

∫
S2

hA(f, Ω̂)eAµν(Ω̂)dµνI (t)e2πif(t+Ω̂·r/c) dΩ (1.6)

Denoting FA
I (Ω̂, t) = eAµν(Ω̂)dµνI (t).

It is to be noted that the output from the detector also contains noise and hence the

output signal for the detector I at time t is given by;

sI(t) = hI(t) + nI(t)

In order to sample out the signal from the noise, data from two different detectors is cross-

correlated with a time delay which is equal to the travel time between the two detectors.
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Chapter 2

Statistic

2.1 The Principle Behind the Cross-Correlation Statis-

tic

Consider two detectors located at r1(t) and r2(t) on the globe. Consider a gravitational wave

signal coming from a direction Ω̂ on the sky sphere. Note that the signal is approaching

radially assuming large distances between the source and Earth. Because of the seperation

between the detectors at any given time t there is a time delay between the signal detected

by the two detectors. If ∆r(t) denotes the vector joining detector 1 and detector 2, the

additional distance the gravitational wave signal has to travel between the detectors is given

by ∆r · Ω̂. Thus the time delay between the signal is given by τ = ∆r·Ω̂
c

where c is the speed

of light.

Now if the signal from the two detectors is cross-correlated with time delay τ , the signals

will interfere constructively. For any other time delay, the interference will be destructive.

Another way to think about it is that if the signal approaches from a direction other than

Ω̂ say Ω̂′, the signals when cross correlated with time delay τ will interfere destructively

because the time delay τ ′ for the sky direction Ω̂′ will be different from τ .

Because of Earth’s rotation τ also changes and hence for a fixed time delay the direction

from which the incoming signals interfere constructively changes with time. Thus the two
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detectors make a baseline that changes with time and can be used to sample the sky sphere.

Numerically the cross-correlation is performed at time intervals of a finite width. In

order to find an appropriate time interval, lower and upper bounds for this interval must be

calculated. The upper bound can be any time interval over which the angular change in the

baseline is small enough to be ignored. But for accuracy in the numerical calculation the

smallest of these upper bounds is chosen. The lower bound comes from the time taken by

the gravitational wave to travel between the two detectors td. This time interval is calculted

by assuming light travel along the length of the detector.If the time interval is chosen to

be smaller than td, the signal will be incoherent since we will be cross-correlating signals

belonging to different section of the incoming gravitational wave with no overlap.

The way to achieve this cross-correlation is by introducing a direction dependent filter

Q(t, Ω̂, t′, t”) which cross-correlates the signal from detector i at time t
′
with that of detector

j at t
′′

with time delay t. If sI(t) denotes the output from detector I. Then the quantity;

∆S(t, Ω̂) =

∫ t+ ∆t
2

t−∆t
2

dt′
∫ t+ ∆t

2

t−∆t
2

dt”s1(t′)s2(t
′′
)Q(t, Ω̂, t′, t”) (2.1)

samples the signal from direction Ω̂ with time delay t.

The time parameter t in the filter takes care of the baseline’s rotation and hence the final

statistic is obtained by integrating over the time parameter t in the directional filter;

S(Ω̂) =

∫
dt∆S(t, Ω̂) (2.2)

Now any useful statistic in signal detection must maximize the signal to noise ratio. For

S(Ω̂), this can be achieved by adding weights to the time sections such that the interval

in which the signal interferes constructively is enhanced compared to the sections where

destructive interference take place.

The statistic is therefore given by;

S(Ω̂) = Σn
k=1wk(Ω̂)∆S(tk, Ω̂) (2.3)
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where wk are the said weights.

2.2 Cross-Correlation in the Frequency Domain

In order to further the analysis we move from time domain to frequency domain since we

have a spectral power density and the gravitational wave strain which are both freqency

dependent. Note however that since the statistic is divided into short time intervals, when

the fourier transform is taken, we simply cannot take the fourier transform for time strecthing

across the entire day. Just like the statistic ∆S(t, Ω̂), the time period over which the fourier

transform is taken is divided into short intervals ∆t.

Thus the Short Fourier Transform(SFT) for a quantity s(t
′
) on a time interval ∆t centred

around t is given by the equation;

s(t; f) =

∫ t+∆ t
2

t−∆ t
2

dt′s(t′)e−2πift′ (2.4)

Thus the SFT of the detector strain function hI(t) is given by

hI(t; f) =

∫ t+∆ t
2

t−∆ t
2

dt′
∫ ∞
−∞

df ′
∫
S2

dΩhA(f ′, Ω̂)eAµν(Ω̂)dµνI (t′)e2πif ′(t′+Ω̂·r/c)e−2πift′ (2.5)

Consider the integral; ∫ t+∆ t
2

t−∆ t
2

dt′e−2πift′ = e−2πift sin πf∆t

πf
(2.6)

Defining the short time delta function δ∆t(f) = sinπf∆t
πf

. Note that in the limit of large

∆t, the short time delta function goes to our normal Dirac delta.

Using this result to integrate over t’ in equation (1.11) under the assumption that dµνI (t)
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is constant on the time interval ∆t centred at time t;

hI(t; f) =

∫ ∞
−∞

df ′
∫
S2

dΩhA(f ′, Ω̂)eAµν(Ω̂)dµνI (t)e(2πi(f ′−f)t′+2πif ′Ω̂·r/c) (2.7)

In order to get the SNR ratio the mean and variance of ∆S(t, Ω̂) must be calculated

Now the mean of ∆S(t, Ω̂) is defined as;

〈∆S(t, Ω̂)〉 =

∫
dt′
∫

dt”〈s1(t′)s2(t”)〉Q(t, Ω̂, t′, t”) (2.8)

Considering the quantity that inside the integral is being averaged over.

〈s̃1(t′)s2(t”)〉 = 〈h̃1(t′)h2(t”)〉+ 〈h̃1(t′)n2(t”)〉+ 〈ñ1(t′)h2(t”)〉+ 〈ñ1(t′)n2(t”)〉 (2.9)

The noise in detector I is uncorrelated to the detector strain at detector I as well as the

detector strain at another detector J. The noise in a detector is also uncorrelated to the noise

in another detector given the detectors are far away from each other. The reason for this

is the noise has its origin in the conditions local to the detector while the strain originates

from non local sources.

This implies 〈s1(t′)s2(t”)〉 = 〈h1(t′)h2(t”)〉.

Calculating this average by moving into the frequency domain;

〈h̃∗1(t, f)h2(t, f ′)〉 =

∫ t+∆ t
2

t−∆ t
2

dt′
∫ t+∆ t

2

t−∆ t
2

dt
′′
∫ ∞
−∞

df
′′
∫ ∞
−∞

df
′′′
∫
S2

dΩ

∫
S2

dΩ′〈h̃∗A(f
′′
, Ω̂)h̃A(f

′′′
, Ω̂′)〉

eAµν(Ω̂)dµν1 (t)eAαβ(Ω̂′)dαβ2 (t)e(2πi(f−f ′′ )t′−2πif
′′
Ω̂·r1/c)e(2πi(f ′′′−f)t

′′
+2πif

′′′
Ω̂′·r2/c) (2.10)

Carrying out the integration over t’, t
′′
, Ω′ and f

′′′
making use of equation (1.3);

〈h̃∗1(t, f)h2(t, f ′)〉 =

∫ ∞
−∞

df
′′
H(f

′′
)γ(t, f

′′
; ∆Ω, dPA)δ∆t(f

′′ − f)δ∆t(f
′′ − f ′) (2.11)
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where;

γ(t, f
′′
; ∆Ω, dPA) =

∫
∆Ω=S2

dΩ[F+
1 (Ω̂, t)F+

2 (Ω̂, t)P+(Ω̂)+F×1 (Ω̂, t)F×2 (Ω̂, t)P×(Ω̂)]e2πifΩ̂·∆r/c

(2.12)

The quantity γ(t, f
′′
; ∆Ω, dPA) is called the overlap reduction function. It is this term

that carries the phase according to which the interference takes place. Notice the parameters

of the reduction function involves the measure dPA(Ω̂).

Another important quantity to calculate is the noise power spectral density as it will

contribute to the variance of the statistic. For a time segment centered at t, this quantity is

given by using the following equation;

〈nI(t
′
)nI(t

′′
)〉 =

1

2

∫ ∞
−∞

dfPI(t; |f |)e2πif(t
′′−t′) (2.13)

PI(t; |f |) is the one sided noise power spectral density.

Now we have all the quantities required to calculate the statistic. The only issue is to

figure out the weight’s wk and the directional filter Q(t, Ω̂; t
′
, t′′). They are calculated by

getting the equation for the SNR for the statistic which is ρSσS where,

ρS = Σn
k=1wk〈∆S(tk, Ω̂)〉 (2.14)

is the average of the statistic, and

σ2
S = 〈(∆S(tk, Ω̂))2〉 − (〈∆S(tk, Ω̂)〉)2 (2.15)

is the the standard deviation of §(Ω̂) The SNR is now maximized first with respect to wk

and with respect to the directional filter Q(t, Ω̂; t
′
, t′′). (For details see [1].) After following

through with this process, the obtained statistic is;

S(Ω̂) =

∫
S2

B+(Ω̂, Ω̂′)P+ +B×(Ω̂, Ω̂′)P× dΩ′ (2.16)

where the beam pattern function is given by:
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BA(Ω̂, Ω̂′) = Λ(Ω̂)

∫ ∫ ∞
−∞

H(f)H ′(f)

P1(t, |f |)P2(t, |f |)
FA

1 (Ω̂′, t)FA
2 (Ω̂′, t)Γ(Ω̂, t)e−2πif(Ω̂−Ω̂′).∆r(t) dfdt

(2.17)

The quantity Λ is a normalization factor.

FA
I (Ω̂, t) = eAµν(Ω̂)dµν(t) (2.18)

Γ(Ω̂, t) = F+
I (Ω̂, t) + F×I (Ω̂, t) (2.19)

In order to ease further analysis the background is taken to be unpolarized i.e P×(Ω̂) =

P+(Ω̂). The noise is also taken to be white. Note that H(f) is not necessarily known for it

depends on the source. This quantity will also be set to unity. This is an assumption we

will be working with from here on out. A thing to be added here is that if the background

in indeed polarized, the statistic we are deriving will not be able to determine the power in

each polarization from each direction, since the number of independent power sources will

be twice the number of points sampled from the skt sphere. For such an analysis, some sort

of a polarization filter will have to be introduced.

Thus the final equation of interest is

B(Ω̂, Ω̂′) = Λ(Ω̂)

∫ ∫ ∞
−∞

H(f)H ′(f)

P1(t, |f |)P2(t, |f |)
Γ(Ω̂′, t)Γ(Ω̂, t)e−2πif(Ω̂−Ω̂′).∆r(t) dfdt (2.20)

and

S(Ω̂) =

∫
S2

B(Ω̂, Ω̂′)P (Ω̂′) dΩ′ (2.21)

Let Bij denote the element of the beam pattern matrix which is in ith row and jth column.

This entry denotes the power registered in the direction Ωi because of a source with unit
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power in the direction Ωj. Thus the jth column gives the spread of a source of unit power

in the direction Ωj. Note that the beam pattern matrix described earlier is a symmetric

matrix if the normalization is made direction independent. Thus the beam matrix describes

the weighted power dpread for a source in the sky and in reciprocity it is these point spreads

that construct statistic.

2.3 Pixel Basis

The sampling of the sky sphere by any detector pair does not occur with infinite accuracy

because of physical constraints like the sensitivity of the detectors. The accuracy of the

detection apart from the effects of noise is determined by the operational bandwidth of

the detectors. Though in the equations derived, integration over frequency is taken from

−∞ to ∞ in reality there is an upper and a lower bound between which the frequency is

integrated. The second parameter that determines the accuracy is the length of the baseline.

Consider the bandwidth ∆f that is detectable by the detector pairs under consideration.

The corresponding wavelength of the gravitational wave signal is λ = c
∆f

. Thus the angular

width detected is ∆Omega = λ
d

where d is the distance between the detector pairs. Since we

are working in the pixel basis right now, the maximum number of pixels that can be sampled

is given by n = 4π
res2

.(the 4π is the solid angle of the entire sphere) Thus for the pair of LIGO

detectors where d=3000 km and ∆f ∼ 1000kHz, no ' 1200. Notice that in the limit of the

bandwidth approaching∞, the resolution and the number of pixels go to∞. The numerical

analysis therefore involves patches of the sky sphere instead of single points. Now the power

from direction Ω̂ is therefore taken to be spread over the patch. This allows us to define the

measure dPA(Ω̂) = PA(Ω̂)dΩ.

So for an unpolarized stochastic background, S(Ω̂) =
∫

dP (Ω̂′)B(Ω̂, Ω̂′). Now going

from integration to sum,

S(Ω̂) = ΣΩ̂′∆P (Ω̂′)B(Ω̂, Ω̂′). (2.22)

where ∆P (Ω̂′) is the power spread over the sky patch Ω̂′. But this quantity is P (Ω̂′).

Hence;

S(Ω̂) = ΣΩ̂′P (Ω̂′)B(Ω̂, Ω̂′). (2.23)
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The most natural way to plot the above equation is through the use of the pixel basis.

A pixel basis is set by dividing the entire sky sphere into pixels of equal area. There are

multiple ways to achieve this. The pixelization scheme used in this thesis is an isolatitude

equal area pixelization. The way it works is that the pixels are divided into groups such that,

pixels belonging to the same group have the same latitude (θ) hence, it is called isolatitude

pixelization. The reason to choose this particular scheme is that numerical integration using

an isolatitude basis is much faster compared to pixelization schemes that are not isolatitu-

dinal. In the (θ, φ) basis each pixel is described by the point at the centre of the pixel. The

pixels are identified by a number called their index running from 0 to n-1 where n is the

number of pixels. The numbering can be achieved in different ways. The one followed in

this thesis is achieved in the following way

The pixel with index 0 is the one closest to the northpole and with φ = 0. Going clockwise

the pixel directly to the right is numbered 1. This continues untill the pixel directly to the

left of pixel 0 is reached. Then move down directly below pixel 0 and start the entire process

again.

The figure below shows the sequence in which this is achieved;

13



Unless otherwise mentioned whenever pixelization is used the number of pixels is kept

588.

Equation number (2.29) can now be be reformulated as a matrix equation. Let S(Ω̂i) be

denoted by Si, P (Ω̂i) by Pi and B(Ω̂i, Ω̂j) by Bij.

Denoting P = {P1, P2, ..., Pn}, S = {S1, S2, ..., Sn} and describing a matrix B. The ele-

ment in the ith row and jth column of B is given by Bij.

Thus we have the equation;

S = B ·P (2.24)

2.4 Dirty Map

Plotting P on the sky sphere the map obtained is the true map of the stochastic gravitational

wave background. What we get however as a plot of the sky after the cross-correlation is S

which is a linear combination of the elements of the true sky map weighted by the elements

of the beam pattern matrix.

Note that the beam pattern matrix described earlier is a symmetric matrix if the nor-

malization is made direction independent. Thus the beam matrix is costructed by these

structures. This map of the sky is called the sky sphere. The task we now have is to ob-

tain the information about the true stochastic background. The beam pattern matrix is

symmetric except for the normalization Λ(Ω̂) which can be set to unity.

Consider a scenario where there is a single source of power in the sky say at the location

occupying pixel i(remember the pixels are marked by numbers). The resulting output is

the first column of the beam mattern matrix, i.e. the source power has been spread over

the entire sky sphere though with different weights. Thus we are dealing here with a point

spread function. An analytical derivation of the shape and the weight at each point of the

spread will be derived in the next section.

The problem at hand is therefore to get the true sky map from the dirty map. The most

14



straight forward way is to calculate the inverse of B resulting in the equation;

B−1 · S = P (2.25)

Though calculating the inverse of large matrices is both time and power consuming and is

difficult for large matrices. For example, for the LIGO pair of detectors with bandwidth a

few kilohertz, and the distance between them around 3000 kms, the minimum number of

pixels required is around 1200 and in order to do away with discrepancies, the sky sphere

is often oversampled. It is computationally extensive to handle such a large matrix. The

method that is generally employed to deal with this situation is to use computer algorithms

to solve the algebraic equations of the form Si = Σn
k=1BijPj. This procedure of numerically

obtaining the true sky map from the dirty map is called deconvolution.

The idea of a basis for the dirty map and how it might do away with the highly involved

deconvolution procedures using computer algorithms is described below:

Let bi denote the ith column of B. A basis {v1,v2,v3, ...,vn} for the beam pattern matrix

is the set of vectors that construct the bi’s. Let αji denote the vector dot product vTj · bi.
Thus bi can be written as;

bi = Σn
k=1α

j
ivj (2.26)

Then the vector dot product vTj · S gives;

Σn
k=1α

j
iPj (2.27)

A good basis will be such that the number of non-zero α’s in the above equation is small

enough to ease the calculation. Getting a good basis does more than just ease the calculation.

It can also give a deeper insight into the problem.
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Chapter 3

Point Spread Function

3.1 Stationary Phase Approximation

Consider an integral of the form
∫ tu
tl
f(t)g(t) dt, where both f(t) and g(t) are functions pe-

riodic in t. Conside that g(t) has a time period much smaller than f(t). Consider a time

interval 2∆t is chosen centred around t such that the variation in f(t) is very small but g(t)

varies significantly owing to its small time period. Then the sum

Σt+∆t
t−∆tf(t)g(t) ' f(t)Σt+∆t

t−∆tg(t)

If 2∆t is of the same order of magnitude as the time period of g(t), then the sum is

0 unless there is a critical point in the interval i.e. there exists a value to in the interval

[t−∆t, t+ ∆t] such that
dg(t)

dt
= 0. If there indeed is a critical point in the interval the sum

gives f(to)g(to). This is the central idea behind stationary phase approximation.

Now consider an integral of the form;∫ tu

tl

f(t)eig(t) dt (3.1)
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Let to denote the critical point of g(t). Taylor expanding g(t) around t;

g(t) = g(to) + (t− to)
dg(to)

dt
+

1

2
(t− to)2 d2g(to)

dt2 + ... (3.2)

Since to is a critical point, the first order derivative of g(t) at to is zero.

Hence the integral (2.1) becomes;

f(to)e
ig(to)

∫ tu

tl

exp

(
i

2

d2g(to)

dt2 (t− to)2

)
dt (3.3)

which is solved using countour integration.

3.2 SPA of the beam pattern matrix

The equation for the beam pattern matrix (1.8) has integral over both time and frequency

and since the exponential term depends on both these parameters therefore SPA with respect

to both frequency and time is carried out.

Let T(t) and F(f) denote functions depending only on time and frequency respectively.

If to and fo are the critical points respectively then Taylor expansion of the product T(t)F(f)

upto second order has the form;

T (t)F (f) = T (to)F (fo) +
1

2

(
F (fo)(t− to)2 d2T (to)

dt2 + T (to)(f − fo)2 d2F (fo)

df2

)
(3.4)

Replacing F(f) by f and T(t) by ∆Ω ·∆r and setting the first order derivative to zero,

the conditions for the stationary points are:

∆Ω ·∆r(t) = 0 (3.5)

∆Ω ·∆ṙ(t) = 0 (3.6)
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Using the property of curl that;

A× (B×C) = B(A ·C)−C(A ·B) (3.7)

combined with equations (3.6) and (3.7);

∆Ω(t)× (∆r×∆ṙ) = 0 (3.8)

which imples that ∆Ω(t), ∆r, and∆ṙ form an orthogonal triad.

Now using the fact ∆Ω(t) = Ω̂(t)− Ω̂o and that both Ω̂(t) and Ω̂o have unit norm;

∆Ω2 = −2∆Ω · Ω̂o (3.9)

Defining the unit vector parallel to the baseline as;

n̂cone(t) =
∆r×∆ṙ

|∆r×∆ṙ|
(3.10)

Since ∆Ω(t) is parallel to n̂cone(t), therefore equation (3.1) becomes;

∆Ω = −2n̂cone · Ω̂o (3.11)

Ω̂(t) = Ω̂o − 2(n̂cone · Ω̂o)n̂cone (3.12)

3.2.1 Cone angle

Let r1(t) = R(sin θ1 cosφ1 coswt−sin θ1 sinφ1 sinwt, sin θ1 cosφ1 sinwt+sin θ1 sinφ1 coswt, cos θ1)

and r2 = R(sin θ2 cosφ2 coswt−sin θ2 sinφ2 sinwt, sin θ2 cosφ2 sinwt+sin θ2 sinφ2 coswt, cos θ2)

denote the position of two detectors where R is the radius of the Earth. The vector joining
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the two detectors is given by

∆r = R((sin θ1 cosφ1 − sin θ2 cosφ2) coswt− (sin θ1 sinφ1 − sin θ2 sinφ2) sinwt,

(sin θ1 cosφ1 − sin θ2 cosφ2) sinwt+ (sin θ1 sinφ1 − sin θ2 sinφ2) coswt, cos θ1 − cos θ2)

(3.13)

If the detectors are not at the same latitude, the vector ∆r makes an angle Θ with the

z-axis. As the earth rotates, the vector ∆r also rotateswhile maintaining the angle Θ with

the z-axis. Thus, after one complete rotation around the globe the vector, ∆r carves out a

cone centred at the origin and the z-axis as its axis of symmetry. The shape of the PSF is

therefore given by the intersection of this cone with the sky sphere with the centre on the

cone located at the source location. In the next section these shapes will be studied.

The distance between the detectors is constant and is given by:

∆r = R
√

2[1− cos θ1 cos θ2 − sin θ1 sin θ2(cosφ1 − cosφ2)] (3.14)

Now the cone angle Θ is defined as cos Θ = ẑ ·∆r̂. Using equation (3.4) and (3.5), the

cone angle is given by the equation;

cos Θ =
cos θ1 − cos θ2√

2[1− cos θ1 cos θ2 − sin θ1 sin θ2(cosφ1 − cosφ2)]
(3.15)

Using the above equation combined with equation (3.14);

∆r = ∆r(sin Θ cos (Φ + wt), sin Θ sin (Φ + wt), cos Θ) (3.16)

where,

cos Φ =
sin θ1 cosφ1 − sin θ2 cosφ2√

sin θ2
1 + sin θ2

2 − 2 sin θ1 sin θ2 cosφ1 − φ2

(3.17)

is the angle between the vector ∆r and the x-axis.

Because of rotational symmetry, without any loss of generality, the x-axis can be chosen
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to be along ∆r. This implies;

∆r = ∆r(sin Θ coswt, sin Θ sinwt, cos Θ) (3.18)

.

3.3 PSF

Using equation (3.10), (3.12) and (3.18) Ω̂(t) can now be calculated. Denoting Ω̂(t) =

(x(t), y(t), z(t)) the following equations are obtained

x(t) = sin θ cosφ− 2 cos2 Θ sin θ cos (φ− wt) coswt+ sin 2Θ cos θ coswt (3.19)

y(t) = sin θ sinφ− 2 cos2 Θ sin θ cos (φ− wt) sinwt+ sin 2Θ cos θ sinwt (3.20)

z(t) = cos 2Θ cos θ + sin 2Θ sin θ cos (φ− wt) (3.21)

The above equations give the spread of a source at the location (θ, φ) on the sky sphere.

Notice the time dependence that has propped up even though the statistic was obtained

by integrating over time. The reason for this is the way the statistic was defined by cross-

correlating signal from a particular direction on the sky-sphere at different time delays. The

signals interfere constructively when the time delay matches the travel time between the

detectors. Since the time delay is changed, the section of the sky contributing constructively

to the signal is also changing. Thus different sections of the sky contribute to a point on the

dirty map at different times.

These structures are not bases as they are not linearly independent. In fact the space

that we are working with is overcomplete.

The figure below shows the shape of the spread function for differnt values of θ. These

structures are symmetric in φ as expected.
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From left to right the latitude of the source goes from 0o to 15o.

As can be seen from the plot, for a source at the equator the spread is in the form of a

figure of 8 which changes into a tear drop shape as the source is moved along the longitude

to higher latitudes.

An interesting calculation that can be done is to figure out the time when a source in

the sky at location (θ, φ) contributes at its own location in the dirty map. This can be done

by simply putting in the source location in place of x(t),y(t) and z(t).
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This yields the equation:

cos (φ− wt) = tan θ cot Θ (3.22)

The condition on the range of phi leads to a condition on when can we expect to have a

source light up at its own location on the dirty map. − cot θ <= cot Θ <= cot θ.

As it turns out, this happens only when the absolute value of the source’s latitude is less

than the cone angle Θ.

The SPA of the beam pattern matrix is;

B(Ω̂(t), Ω̂o) = Λ(Ω̂(t))Γ(Ω̂(t), t)Γ(Ω̂o, t)

√
fu −

√
fl

w

√
8c

[ẑ ·∆r(t)][ẑ · (Ω̂(t)− Ω̂o)]
(3.23)

Since there is a denominator term, the first obvious thing to look for is the conditon

when the denominator goes to zero, for then the SPA is not applicable.

As it turns out this condition is when ẑ ·∆r(t) = 0 i.e. the two detectors are on the same

latitude.

3.4 Power Distribution

One of the first things to look for in case of a point spread is the power distribution, for if there

is a concentration of power in certain regions of the curve, the curve can be approximated

by those regions of concentrated power.

The graphs below show the fractional power concentration for a source at the equator.

From left to right the fractional power goes from 100 percent to 50 percent. The source is

at the origin.
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Note that for a source with −Θ <= θ <= Θ, the power peaks at the source location. In

fact the curve is singular at his point. The power however is not concentrated in a particular

region which forces us to consider the entire curve in our analysis
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Chapter 4

Groebner Basis and Stereographic

Projection

4.1 Basics of Algebraic Geometry

As mentioned before that the point spread functions intersect each other, it was of interest to

study these intersections. The first method that was employed to study these intersections

was one of Algebraic Geometry. The reason why this method was pursued is because Alge-

braic Geometry enables us to translate an algebraic problem involving polynomial equations

to a problem on vectors spaces, the solution set of the algebraic problem and vice-versa.

Ideals

Consider a set F of m polynomials in n variables (x1, x2, ...., xn) such that F = {f1, f2, ...., fm}.
The space of functions that can be represented as a linear combination of the elements of

F is called the ideal of F and denoted by I(F). This implies given some arbitrary function

g(X)εI(F );

g(X) = Σici(X)fi(X) (4.1)

The important thing to remember here is that we are not working with a vector space and

there is no reason to assume that the linear combinations are unique.
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Varieties

Given an ideal I, the set of solutions of I is called the variety of I and denoted by V(I). If

a = {a1, a2, ..., an} is an aribrary element of V(I) then, for all fεI f(a) = 0.

If I is an ideal of F such that F = F = f1, f2, ...., fm and Vi denotes the variety of fi then,

V (I(F )) = ∩mi=1Vi (4.2)

An intuitive proof for the above equation goes something like this;

If g is an arbitrary element of I(F), then by the definition of an ideal, g = Σm
i=1cifi. Let xi

denote an arbitrary element of Vi. Then xiεV (g) iff xiεVj for all j epsilon[1, ..,m]. Hence;

V (g) ∩mi=1 Vi (4.3)

Since g is arbitrary element of I(F), condition (3.3) is valid for all gεI(F ). Hence, the validity

of equation (3.2) is established.

Ordering

Ordering of variables in algebraic geometry is defining the prominence of the variables. What

is meant by it is that if there are two variables x1 and x2 such that x1 is more prominent than

x2 which can be represented as x1 > x2 then for two monomials xm1 x
n
2 and xk1x

l
2 x

m
1 x

n
2 > xk1x

l
2

if m > k irrespective of the relation between n and l. The ordering is not unique and depends

on the users choice. In the case of polynomials n variables (x1, x2, ..., xn) the ordering can

be such that x1 > x2 > ..... > xn. This particular ordering is called lexical ordering.

Least Common Multiple(LCM)

Let f and g be two monomials in n variables in (x1, x2, ..., xn) such that f = xl11 x
l2
2 ...xnln and

g = xk1
1 x

k2
2 ...xnkn where li and mi are all positive integers.

If Mi = max(li, ki) denotes the maxima between liandki then,

LCM(f, g) = Πn
i=1x

Mi
i (4.4)
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LCM(f,g) is divisible by both f and g. This fact is evident from its definition.

S polynomial

Consider the set F of m polynomials in n variables (x1, x2, ..., xn) whose ith element si given

by fi, with a defined ordering say x1 > x2 > ..... > xn. Let LT (fi) denote the leading term

in the polynomial fi which is the one with the highest power of x1 and if fi is independent of

x1 then the term with leading power of x2 and so on. Let LC(fi) define the corresponding

leading coeficient and LM(fi) the corresponding leading monomial.

Then the S polynomial of fi fj is defined as;

S(fi, fj) =
LCM(LT (fi), LT (fj))

LC(fi)LT (fi)
fi −

LCM(LT (fi), LT (fj))

LC(fj)LT (fj)
fj (4.5)

Notice that S(fi, fi) = 0.

Groebner Basis

Given an ideal I, the Groebner basis of I is the generator set G of I i.e. any element of I can

be represented as a linear combination of the elements of the G.

Considering two polynomials f1 and f2 of n variables (x1, x2, ..., xn) with the lexical

ordering x1 > x2 > ..... > xn. If f1 > f2 based on the lexical ordering used here, then f1 can

be written as f1 = c1f2 + r1, where r1 < f2 and c1 and r1 are polynomials of the n variables

(x1, x2, ..., xn). Using equation (3.3); V (f1) = V (f2) ∩ V (r1).

Now since r1 < f2, the above procedure is repeated and we obtain f2 = c2r1 + r2 where,

r2 < r1 and V (f1) = V (f2)∩V (r1). This process is repeated untill the condition ri−1 = ci+1ri

for sime i is reached. The Groebner basis for the ideal I(f1, f2) is now defined by the set G

= {f1, f2, r1, ...., ri}.

The procedure can be extended to a system of any m number of polynomials. Though it

becomes increasingly cumbersome. In order to calculate the Groebner basis there exists one

of the most well known algorithm’s in Algebraic Geometry called Buchberger’s Algorithm.
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A feature that makes Groebner basis interesting is that the variables that are given

the highest prominence are the first to be removed from subsequent Groebner bases. A

polynomial in n variables (x1, x2, ..., xn) where the variables belong to a K vector space

basically defines a surface in the said K space. If f ang g are two such polynomials in this K

space then there intersection defines a hypersurface in K. An m-dimensional hypersurface

in an n dimensional vector space requires only m independent variables. The remaining l-m

variables can be determined using the equation of the hypersurface. The vanishing of highest

order variables in the calculation of Groebner basis captures exactly this feature.

Buchberger’s Algorithm

Consider the set F of m polynomials and the corresponding ideal I(F). Setting G = F

G’ = G

Denote the number of elements in G by num

Denoting the ith element of G by gi

Calculate the S-polynomial S(gi, gj).

Divide S(gi, gj) by the elements of G i.e. express it in the form S(gi, gj) = Σnum
i=1 gi + rij

where rij is the remainder.

If rij 6= 0, then G = G ∩ {rij}
If G′ 6= G, continue in the loop.

If G′ = G, end the loop

G’ thus obtained is the required Groebner basis.

(Check reference [2] for proof)

There is also a modified Buchberger’s algorithm to reduce the number of steps taken to

construct the Groebner Basis for a given ideal though it runs on the same basic principle.

Buchberger’s algorithm is instrumental for any computational algebraic geometry problem.
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4.2 Groebner Basis for Point Spread Function

The motive behind the use of the Groebner Basis is given by the property of the Varities, if

f is a polynomial which is given as a linear combination of polynomials {g1, g2, ..., gn}, then

the set of solutions of f is given by the intersection of the solution sets of the gis.

The aim is to look for something akin to a superstructure for the entire point spread

function. Superstructures often provide deeper insight into the problem. For the shape of

the PSF these structures are the unit sphere and the cone formed by the rotating baseline.

We as of yet do not have such a description for the the entire PSF i.e. the shape and the value

at each point on the shape. The method of Groebner basis therefore facilitates in getting

the solution of an equation of many variables by instead making us solve multiple equations

but each in a lower number of variables, though with a higher order in the variables. The

trade-off is that the eequations become increasingly more complicated

In order to get the Groebner basis for the PSF we must first move from trigonometric

equations to algebraic equations since the latter is easier to solve. We will proceed only

with the shape of the PSF to gauge the difficulty in arriving at a generalized solution. In

order to do that, denote coswt = ut and sinwt = vt and they are related by the polynomial

equation u2 + v2 − 1 = 0. Similarily denote variables for cos θ = uθ, sin θ = vθ, cosφ = uφ

and sinφ = vφ. Θ is a constant and is kept as it is.

Thus at the end we have 6 polynomials in 9 variables, namely (x, y, z, ut, vt, uθ, vθ, uφ, vφ).

The 6 polynomial equations are:

x− vθuφ + 2 cos Θ2vθ(uθuφ + vθvφ)ut − sin 2Θuθut = 0 (4.6)

y − vθvφ + 2 cos Θ2vθ(uθuφ + vθvφ)vt − sin 2Θuθvt = 0 (4.7)

z − cos 2Θuθ − sin 2Θ(uθuφ + vθvφ) = 0 (4.8)

u2
t + v2

t − 1 = 0 (4.9)

u2
θ + v2

θ − 1 = 0 (4.10)

u2
φ + v2

φ − 1 = 0 (4.11)
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Now the Groebner basis is calculated using the inbuilt Buchberger’s algorithm in python.

The basis though comes out to be constituted of polynomials with order as high as 144 in

the variable z. Note that which variable it is depends on the ordering set by the user. In

this case the ordering was set to be (ut > vt > uφ > vφ > uθ > vθ > x > y > z). The

time dependent variables were given highest prominence in order to get rid of them much

earlier in the Groebner basis calculation. As discussed before the trade-off for getting rid of

variables is the increased complexity in the known variables. A thing to keep in mind that

the source locations were also treated as variables.

A glance at the Stationary Phase Approximation of the beam pattern approximation

reveals that there is a square root in the formula which needs to be done away with and hence,

we will have to work with the square of the matrix element which upon closer inspection of

the formula gives a polynomial equation of order 16 in ut and vt.

Since the Groebner basis increase in complexity with the number of polynomials and the

complexity of the initial polynomials themselves, pursuing this brute force derivation will

make the problem intractable and hence this approach hasn’t been followed further.

4.3 Stereographic Projection

The stereographic projection is the projection of a 3-dimensional object onto a 2 -dimensional

surface. This particular method was chosen for two different reasons. The first was that

when working with the stereographic projection we are working with polynomials instead

of trigonometric functions for the former is easier to deal with. The second reason is that

this particular formalism of the problem does away with the time dependence as will be seen

later in the section.

Its important to remember that the time dependence in the PSF came from the stationary

phase approximation but the dirty map that is numerically generated and what we have to

work with does not explicitly carry any information about the time the particular pixel was

lit up.

The projection will be taken on the xy plane. In order to calculate the stereographic

projection first a reference point is chosen. Since this reference point will be mapped to
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infinity on the xy plane, it is better to choose as reference a point on the pole. Note that the

analysis we have built this thesis on does not work for a source at either of the poles since

the statistic is constructed based on the fact that the angle between the baseline vector and

the unit vector Ω̂ changes as the Earth rotates which is not the case when the source is at

the pole for then the angle is Θ(the cone angle) which is constant.

The point (0,0,1) is defined as the reference point O. For an arbitrary point P=(x,y,z) on

the unit sphere a line is drawn connecting P and 0. The point where this line intersects the

xy plane is the stereographic projection of point P and is denoted by Q.

Let Q=(X,Y,0), then using the fact that P,Q and O all lie on the same line;

x

X
=

y

Y
=
z − 1

−1
(4.12)

which combined with the equation for a unit sphere x2 + y2 + z2 = 1 gives:

X =
x

1 + z
;Y =

y

1 + z
(4.13)
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from left to right θ = 0o and θ = 5o

from left to right θ = 10o and θ = 15o

The figures above are the stereographic projections for sources at φ = 150o with varying

θ. The dots represent the source location

Since the stereographic projections also carry a rotational symmetry, φ can be set to zero

without any loss of generality.

Lets start with the simple case when the source is at the equator i.e. θ = π
2
. For such a

source;

X =
1− 2 cos Θ2 coswt2

1 + sin 2Θ coswt
(4.14)

Y =
−2 cos Θ2 coswt2

1 + sin 2Θ coswt
(4.15)

The above equations can now be written as quadratic equations in coswt.

The two quadratic equations that are obtained are;

A cos2wt+B coswt+ C = 0 (4.16)
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A′ cos2wt+B′ coswt+ C ′ = 0 (4.17)

where the coefficients A,B and C are given by;

A = 2 cos2 Θ, B = −X sin 2Θ, C = X − 1 (4.18)

The coefficients A’, B’ and C’ are a bit more involved and given by;

A′ = R2 sin2 2Θ (4.19)

B′ = −2(R2 sin 2Θ−X sin 2Θ sin2 Θ) (4.20)

C ′ = R2 − 2X sin2 Θ− cos 2Θ (4.21)

where R2 = X2 + Y 2.

The time dependence is now removed by using the formula;

cos2wt

BC ′ −B′C
=

coswt

CA′ − C ′A
=

1

AB′ − A′B
(4.22)

This removal of time dependence leads to the following equations;

(R2 + 1)(R2 − 2X + 1) cos 2Θ +R2(X − 2) +X = 0 (4.23)

Now that we have obtained the correponding algebraic equation for the stereographic

projection of the shape of the point spread for a source at the equator, we calculate the same

for a general for a source at any arbitrary latitude θ.

X =
sin θ − 2 cos2 Θ sin θ cos2wt+ sin 2Θ cos θ coswt

1− cos 2Θ cos θ − sin 2Θ sin θ coswt
(4.24)

X =
−2 cos2 Θ sin θ coswt sinwt+ sin 2Θ cos θ sinwt

1− cos 2Θ cos θ − sin 2Θ sin θ coswt
(4.25)
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After some algebra two equations quadratic in coswt are obtained.

A coswt2 +B coswt+ C = 0 (4.26)

A′ coswt2 +B′ coswt+ C ′ = 0 (4.27)

The coefficients A,B and C are given by:

A = 2 cos2 Θ sin θ (4.28)

B = −2 sin Θ(X sin θ + cos θ) (4.29)

C = (1− cos 2Θ cos θ)X − sin θ (4.30)

The coefficients A’,B’ and C’ are given in terms of A, B, C and three auxilliary functions

a, b and c where,

a = 1− cos 2Θ cos θ (4.31)

b = sin 2Θ sin θ (4.32)

c = sin 2Θ cos θ (4.33)

The primed coefficients are now given by:

A′ = A(b2 + Y 2 +B(2 + c)) (4.34)

B′ = A(A+ c)(2c+B)−Bc2 + ABC − 2abAY 2 (4.35)

C ′ = a2AY 2 − (A+ C)(c2 − AC) (4.36)

The time dependence can now be removed. It is to be noted that the time dependence

arrived after the stationary phase approximation. The reason for is that for a given image

point on the dirty map, the contribution from a source location say Ω̂o occurs at all times

but because there is also a sum over frequency, the contributions cancel unless the conditions

for the stationary phase occur at which point there is a signal peak. This of course occurs

at a particular time and hence the time dependence. Since the output signal S(Ω̂) is time

independent, it is imperative that any basis we arrive upon must be time independent.
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The equation obtained after removing time dependence from the above equations is a

quartic equation:

R4−6R2 +1+(R2 +1)2(2 cos 2Θ+2 cos2 θ)−(R4−1)(cos (θ − 2Θ)+2 cos θ+cos (θ + 2Θ))

− 2(X cosφ+ Y sinφ)(R2 + 1)(sin (θ − 2Θ)− 2 sin θ + sin (θ + 2Θ)) = 0 (4.37)

This quartic polynomial equation is completely parametrized by θ in the sense that upon

being plotted the shape of the projection completely depends upon θ. As discussed before

φ leads to a rigid rotation around the origin with the z-axis as the axis of rotation. Being a

quartic equation, two projections for different θ have atmost 4 points of intersection. Its a

property that will be used in the later section to propose an approximate basis for the beam

pattern matrix.

Efforts have been made to use these equations to get the basis but they haven’t provided

any additional information about the point spread. A thing of importance is that the point

spread for two sources at the same longitude but latitudes θ and −θ have the same spread

albeit rotated rigidly along an axis that crosses the origin and intersects the line joining the

two sources perpendicularly. Though when a stereographic projection is taken, owing to the

choice of a reference point, this symmetry is broken.
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Chapter 5

Singular Value Decomposition

In the previous sections the shape of the point spread function was used in order to obtain a

viable basis. If a basis using only the shape could be obtained, the analysis would be much

more simple because the SPA value of the beam matrix is quite complicated to deal with.

But as it turns out, the amount of information in the shape is not enough to determine it.

Singular value decomposition is the generalization of eigenvalue decomposition. Consider

an m × n beam pattern matrix M. The matrix is then decomposed into 3 matrices U, Σ,

V such that M = U Σ VT . The matrices U and V are m × m and n × n unitary matrices

respectively i.e. U∗U = Im×m and V∗V = In×n and Σ is a m × n diagonal matrix.

Consider the m × n matrix M. M is a map from an n dimensional vector space Kn to

an m dimensional vector space Km. Lets consider the action of M on an arbitrary basis

v1,v2, ...,vn of the n dimensional vector space. Since the matrices Um×m and Vn×n are

unitary, there action on a vector is akin to a rotation. The action of the diagonal matrix Σ

is to scale the axes. Thus the action of M takes place in three steps.

First there is a rotation of the bases by V∗, which is then followed by the scaling of the

axes by the matrix Σ. After this another rotation is initiated by U. If m < n, the operation

of Σ scales n-m of the axes to zero. Now in order to do a numerical analysis it is better

to oversample the space since it improves the signal to noise ratio. So if no is the number

of pixels the detector pairs sample, the numerical analysis to get the S(Ω̂) is done for an

n > no. Thus implicitly, the beam pattern matrix takes as input the n P(Ω̂) and returns n
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S(Ω̂) out of which only no are prominent.Thus upon taking the SVD of the beam pattern

matrix, the diagonal matrix Σ has only no prominent diagonal values. Since the singular

values are calculated such that in the matrix Σ, they occur in the order from highest to

lowest, upon being plotted one must observe a fall in the singular values after no.

Using the SVD on the beam pattern matrix B = U Σ VT . Using the unitarity of U; BT

B = VΣΣ VT . Since B is a real and symmetric matrix, therefore B2 = VΣΣ VT .

Consider the matrix V. The ith column of V is the singular vector corresponding to the

ith singular value.

Since B is symmetric therefore, VΣVT . If the ith singular vector is given by vi, the ith

singularvalue denoted by σi(σi = Σii) and the jth element of this vector is denoted by [vi]j

then,

Bij = Σn
k=1[vk]iσk[vk]j (5.1)

Since the singular values fall off after no therefore, the above equation can be rewritten

as

Bij ' Σno
k=1[vk]iσk[vk]j (5.2)

The singular values and singular vectors have been calculated for a toy problem with the

LIGO detectors but the distance between them is halved to 1500 km bringing no to 300.

The calculation has been done for 2 different sample space. One with 300 pixels and the

other with 568 pixels.

The plot below is for the singularvalues to descern there falloff point. The plot is loga-

rithmic with base 10. The y-axis carries the log of the singular value and the x-axis simply

marks the index of the singular value.

The singular values fall rapidly for the first few terms after which there is a long plateau

where the fall off is gradual followed by another sudden fall off. It is interesting to note that

only the first few singular vectors corresponding to the initial few highest singular values

have any descernible pattern. The rest of the singular vectors upon being plotted appear

completely random.

The singular vectors are identified by the index of their corresponding singular values.
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singular value plot. Orange line is for 588 pixels and blue line is for 300 pixels

The plot of the first 6 singular vectors for 588 pixels:
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The plot of the 6 singular vectors from index 30 to 35 for 588 pixels:
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5.1 Spherical Decomposition of Singular Vectors

Once the singular vectors are obtained, it needs to be checked whether it can be expanded

in the form of simpler functions. The most obvious choice is the spherical harmonics.

Expanding the ith singular vector into spherical harmonics:

vi(θ, φ) = Σl,ma
lm
i Ylm(θ, φ) (5.3)

The coefficients almi are given by:

almi =

∫
S2

vi(θ, φ)Y ∗lm(θ, φ) sin θ dΩ (5.4)

The plots below show the coefficients from l=0 to l=3. The y-axis marks the coefficients

and the x-axis marks index of the singular vector

5.1.1 l=0
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5.1.2 l=1

from left to right m=-1 to m=1

5.1.3 l=2

from left to right m=-2 to m=0

from left to right m=1 to m=2
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5.1.4 l=3

from left to right m=-3 to m=-1

from left to right m=0 to m=2

m=3
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As is descernible from the plots, apart from the first few singular vectors, the rest of the

vectors cannot be constructed from the spherical harmonics. This lack of any descernible

pattern among the majority of the singular vectors makes it difficult to decompose them into

any simple functions. However it still needs to be checked what is the relative error if the

beam pattern matrix is reconstructed from the coefficeints almi . For this particular analysis

the coeffiecients were constructed till l = 20. Since −l <= m <= l therefore for a given l the

number of spherical harmonics is 2l+1. The total number of spherical harmonics calculated

to reconstruct B is then given by Σn
l=0(2l+1) = n2 +2n which for n=20 is given by 420. Note

that the number of prominent singular vectors is only around 300, so we are oversampling.

The relative error however turns out to be large, the same order of magnitude as the

beam matrix itself. This approach has therefore been dropped.

A point to note is that we haven’t been able to figure out the decomposition of the

singular vectors into simple functions, it might be that this approach needs to combined

with efforts through other analytical approaches in order to help solve the problem. The

usefulness of the SVD is therefore still an open question in this problem.
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Chapter 6

An Approximate Basis

As discussed at the end of chapter 3, the quartic equations suggest that point spread curves

for two different source locations at most intersect at 4 distinct places. This implies that if

bi denotes the ith column of the beam pattern matrix then,

bTj bi � bTi bi (6.1)

Now lets consider the action of B on bTi

bTi B = [bTi b1, ...,b
T
i bi−1,b

T
i bi,b

T
i bi+1, ...b

T
i bn] (6.2)

which under the condition (5.1) becomes:

bTi B ' [0, ..., 0,bTi bi, 0, ..., 0] (6.3)

This implies that BTB is an approximately diagonal matrix. An important thing to note

is that the above calculation has been done considering the pixel size to be extremely small

and the effect of noise has also been ignored.

Taking a note from the previous chapter the sky sphere is being oversampled. If the

number of prominent singular vectors is no and the sky is divided into n pixels Then we have

two sky maps, M1 with no pixels and M2 with n pixels then. A single pixel in M1 contains

multiple pixels of M2. The ith column of B given by bi gives the spread for a source at the

ith pixel in the M2 map. Let Si denote the set of pixels of M2 contained in the ith pixel of
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M1. The elements of Si are now averaged and let this average vector be denoted by bavei .

The process is repeated for all pixels of M1. The vectors thus obtained are used to construct

a matrix Bave. Note that this is a n × no matrix with the column given by the averaged

vectors.

Taking the product BT
aveB, the result is a no × n matrix. Using equation (1.10),

BT
aveS = BT

aveBP (6.4)

The result is a no × 1 column vector. If n is large enough that the conditions (5.1) to

(5.3) are valid then, BT
aveB is a block diagonal matrix. Equation (5.4) gives a vector whose

ith element is dominated by power centred around a single direction in the sky sphere.

It still needs to be checked how well this method actually works numerically.
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Chapter 7

Conclusion and Future Possibilities

Though progress has been made towards solving the problem, a viable basis has not been

found. The last method that has been discussed if it turns out to be successfull does not as

such give us a basis. The problem for finding an analytical solution is much more difficult.

During the course of the project a couple other methods were also tried. One of them was to

decompose the point spread in fourier space and study it. The fourier series for the equations

(3.4) to (3.6) is extremely simple and gives only around 22 independent components that

depend upon (θ, φ), though no further progress could be made from there on out. One

possible reason for the difficulty in solving this problem is that the space we are working

on is a quotient space as was described in the beginning of the thesis, which has been

overcompleted by the point spread functions.By overcompleteness what is meant is that

even upon removing the a few point spread functions, the rest will still cover the entire unit

sphere. Quotient spaces on there own are difficult to work with.

It could be that an analytical solution to the problem might be possible when the value

of the point spread function along with its shape is also taken into account. Though as

discussed, even though the shape of the point spread function is quite easy to descern,

the corresponding values are quite cumbersome to deal with. A major problem that is

being encountered is the lack of a decomposition of the point spread functions into simpler

functions.

A mathematical analysis that explicitly deals with overcomplete spaces might be useful

in solving this problem. The mathematics of frame theory is one such analysis. The basic
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idea is that one looks for an overcomplete basis for a proposed problem since the solving

the problem involves the introduction of a generalization of bases that prioritizes span over

linear independence. The basics of this subject have been studied during the course of this

thesis, but as of right now no methodology has been discovered that can aid in the analysis.

Though its usefulness is still open to debate. The prerogative for looking in this particular

direction is that frame theory is being used extensively in signal analysis It might be that

the problem could be solved by involving multiple detectors but since the dirty map depends

on the combination of detectors used it is not clear how if at all it could be done by this

method. The problem is very much an open problem and if a general method to solve such

a problem can be obtained it will prove instrumental in researches involving interferometric

systems for spread functions in such systems is not that uncommon.
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