Stochastic Differential Equation and Integration

A Thesis

submitted to
Indian Institute of Science Education and Research Pune in partial fulfillment of the requirements for the BS-MS Dual Degree Programme
by

Vikas Shukla

IISER PUNE

Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan, Pune 411008, INDIA.

April, 2020

Supervisor: Dr. Anindya Goswami

(c) Vikas Shukla 2020

All rights reserved

Certificate

This is to certify that this dissertation entitled Stochastic Differential Equation and Integrationtowards the partial fulfilment of the BS-MS dual degree programme at the Indian Institute of Science Education and Research, Pune represents study/work carried out by Vikas Shuklaat Indian Institute of Science Education and Research under the supervision of Dr. Anindya Goswami, Professors, IISER Pune, during the academic year 2019-2020.

Dr. Anindya Goswami

Committee:
Dr. Anindya Goswami
Anus Biswas

This thesis is dedicated to Math finance community

Declaration

I hereby declare that the matter embodied in the report entitled Stochastic Differential Equation and Integration are the results of the work carried out by me at the Department of Mathematics, Indian Institute of Science Education and Research, Pune, under the supervision of Dr. Anindya Goswami and the same has not been submitted elsewhere for any other degree.

Vikas Shukla

Acknowledgments

I express my deepest gratitude to my guide Dr. Anindya Goswami for the guidance, support, encouragement, valuable suggestions that have helped me in the completion of one year long project and understand the mathematical rigorousness. I am also thankful to Dr. Anup Biswas whose consistent examination and advice have helped me in completion of the thesis.

I am extremely grateful to my family members specially my parents for their constant encouragement, love and sacrifice for educating me.

Finally, I thank math department and the institute for creating such a platform and their constant hardwork for recognizing and trying to harvest the talent of every student.

Abstract

The main Objective of the MS project was to investigate the - Regime Switching Diffusion Model with Semi-Markov Regime. Thorough knowledge of SDE's under different process is necessary. Chapter 3 deals with SDE driven by Brownian motion, [1] lacks the mathematical clarity. Although the approach is simplistic in nature, the proof is not satisfactorily complete. The proof given in this thesis have tried to fill the gaps. Chapter 4 investigates SDE driven by Semi-Martingales and in process we learn Kunita-Watanabe Inequality, Itôs Formula (general version), Existence and Uniqueness of SDE. In the last Chapter we study the SDE with jump i.e SDE driven by Poisson point process.

Contents

Abstract xi
1 Introduction 1
2 Preliminary 5
3 Existence and Uniqueness of SDE wrt Brownian Motion: 13
4 Integration Theory for Semi-Martingales: 21
4.1 Semi-Martingale and its properties: 21
4.2 Stochastic Integrals and its Properties: 25
4.3 Quadratic variation and its properties: 32
4.4 Ito's Formula and It's Applications: 38
4.5 Existence and Uniqueness of SDE wrt Semi-Martingales 43
5 Integration wrt Poisson Point Process 55
5.1 Poisson Random Measure: 55
5.2 Poisson Point Process: 59
5.3 Stochastic integral wrt to (Poisson) Point process 60
5.4 Existence and uniqueness of SDE wrt Poisson point process 62

Chapter 1

Introduction

In my previous Summer and Semester projects, I had opportunity to learn Multi-variate analysis, Time-series analysis, Market portfolio theory and option pricing model. In other words, I came into this stream by learning financial mathematics. Along this journey I realized deep knowledge of Stochastic Process, SDE, etc is required. In the current chapter I would give some basic motivation for my proceeding MS project.

- What are Options?:

An Option is a contract(of stock) that gives the buyer(holder,owner) of the option the right, but not the obligation to buy or sell an underlying asset or instrument at a specified strike price(K) on a specified date(T), depending on the form of the option.

- Options Type:

- Call Options: gives the holder the right - but not the obligation - to buy something at a specific price for a specific time period.
- Put Options: gives the holder the right - but not the obligation - to sell something at a specific price for a specific time period.

- Why Options exist?

Buyer afraid that the price of stock may rise(fall) in future so hedges himself by buying the call(put)option whereas seller of the option fears that the value may fall(rise) so he hedges buy selling the option. So, option exist as it hedges the risk.

- Problem: What is a fair price to charge for the option?(PRICING PROBLEM). How much should the holder pay to the writer?(HEDGING PROBLEM) Option valuation is an ongoing research various models are used to solve this problem.

- BSM Option pricing Theory:

- Assumptions:

* No Arbitrage
* Constant risk-free rate(r) to borrow and lend cash
* Complete market (Transaction cost 0 and portfolio can be replicable(selffinancing strategy exist)
* Stock price follow GBM with constant $\mu(\mathrm{drift})$ and $\sigma($ volatility $)$ i.e $d S_{t}=$ $\mu S_{t} d t+\sigma S_{t} d B_{t}$
* No dividends
* Option cannot be exercised before the maturity date(T)
- Problem: What is the option price under BS-Model?
- Parabolic PDE: Under above Assumptions, the call option $\left(C_{t}\right)$ satisfies:

$$
\sigma^{2} S^{2} \frac{\partial^{2} C}{2 \partial S^{2}}+r S \frac{\partial C}{\partial S}+\frac{\partial C}{\partial t}-r C=0
$$

Where, S_{t} is the underlying Stock price.

As measure theory was introduced in 7 th Sem and Stochastic process was introduced in 8th Sem. The mathematical rigorousness of

* What do I mean by Integration w.r.t Brownian motion?
* What do I mean by Solution of the SDE?
* What can we tell about existence and uniqueness of the Solution of the SDE?
* Can I generalize the SDE w.r.t to B.M to some general process i.e For a given integrator(For E.g: B.M.) what is the class of integrand for which the solution exists?
was lacking.

- Regime-Switching Diffusion Model:

The above models assume that market has no jumps but in reality various factors
affects the behaviour of Financial market. For example; consider, Zomato, the various fake news have let the economic slow down. To model such market, we need atleast two regime before the news and after the news. Economic Crisis(global depression, global financial crisis-2008), various financial market behaviour, communication models, biological models can be studied using regime switching diffusion process.

- Definition :

For a given State Space $\mathbf{S}=\{1,2, \ldots ., n, .$.$\} and (\Omega, \mathscr{F}, P)$-complete probability space, we say $\left\{\left(X_{t}, \Lambda_{t}\right)\right\}_{t \geq 0}$ (two-component process) a regime-switching diffusion process if

$$
\begin{gather*}
d X_{t}=b\left(X_{t}, \Lambda_{t}, t\right) d t+\sigma\left(X_{t}, \Lambda_{t}, t\right) d W_{t} \tag{1.1}\\
P\left(\Lambda_{t+\Delta t}=j \mid \Lambda_{t}=i,\left(X_{s}, \Lambda_{s}\right), s \leq t\right)= \begin{cases}q_{i j}\left(X_{t}\right) \Delta t+o(\Delta t), & \text { if } i \neq j \\
1+q_{i i}\left(X_{t}\right) \Delta t+o(\Delta t), & \text { if } \mathrm{i}=\mathrm{j}\end{cases} \tag{1.2}
\end{gather*}
$$

Where, $\left\{W_{t}\right\}_{t \geq 0}$ is a Brownian motion on \mathbf{R}^{d} w.r,t right continuous filtration $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$, $Q(x):=\left(q_{i j}(x)\right)$ be a Q-matrix and $b: \mathbf{R}^{d} \times \mathbf{S} \times[0, \infty) \longrightarrow \mathbf{R}^{d}, \sigma: \mathbf{R}^{d} \times \mathbf{S} \times[0, \infty) \longrightarrow$ $\mathbf{R}^{d} \otimes \mathbf{R}^{d}, q_{i j}: \mathbf{R}^{d} \longrightarrow \mathbf{R}$ are measurable functions and $\mathbf{R}^{d} \otimes \mathbf{R}^{d}$ denotes the $d \times d \mathbf{R}$ valued matrix.

My aim was to study such model in totality but time restrained me only to study jump SDE, which I have presented in the last chapter of thesis.

Chapter 2

Preliminary

- Definition 1:

Let, X and Y be stochastic processes on $\operatorname{Probability~} \operatorname{Space}(\Omega, \mathscr{F}, P)$,
We say that X is a modification or version of Y if, $\mathrm{P}\left\{Y_{t}=X_{t}\right\}=1 \forall \mathrm{t}$ and X and Y are indistinguishable if $\mathrm{P}\left\{Y_{t}=X_{t} \forall \mathrm{t}\right\}=1$.
Result: Any two RCLL process X, Y which are modification of each other are indistinguishable.

- Definition 2:

The stochastic process X is Progressively measurable w.r.t filtration $\left\{\mathscr{F}_{t}\right\}$ if $\forall B \in \mathscr{B}\left(\mathbb{R}^{n}\right)$ and $t \geq 0$, the map

$$
\begin{equation*}
X:\left([0, t] \times \Omega, \mathscr{B}([0, t]) \otimes \mathscr{F}_{t}\right) \longmapsto\left(\mathbb{R}^{n}, \mathscr{B}\left(\mathbb{R}^{n}\right)\right) \tag{2.1}
\end{equation*}
$$

is a measurable map.

- Definition 3:

The stochastic process $\left\{X_{n}\right\}_{n \geq 0}$ is said to be discrete time Markov process if $\forall B \in$ S (any state space),

$$
\begin{equation*}
P\left(\left\{X_{n+1} \in B\right\} \mid \mathscr{F}_{n}\right)=P\left(\left\{X_{n+1} \in B\right\} \mid \sigma\left(X_{n}\right)\right), \forall n \geq 0 \tag{2.2}
\end{equation*}
$$

with probability 1.
Where, $\sigma\left(X_{n}\right)$ denotes the sigma algebra generated by X_{n} and $\mathscr{F}_{n}=\sigma\left(X_{k}: 0 \leq k \leq n\right)$ and $X_{n}:(\Omega, \mathscr{F}, P) \mapsto(S, \mathscr{S}) \quad \forall n \geq 0$

And if we replace n (everywhere) by any t and $n+1$ by $t+s(t, s \in[0, \infty)$) then we say it to be continuous time markov chain.
And if the probability is independent of n (and t for continuous process) then we Homogeneous markov chain (i.e distribution remains the same for any n).

- Definition 4:

A Semigroup of bounded linear operator is family $\left\{S_{t}\right\}_{t \geq 0}$ of one parameter bounded linear operator from a banach space X to itself and satisfies:

$$
\begin{gather*}
S_{0}(x)=I(x)=x \text { (Identity Operator) } \forall x \in X \tag{2.3}\\
S_{t+s}(x)=S_{t}\left(S_{s}(x)\right) \quad \forall t, s \in[0, \infty) \quad \forall x \in X \tag{2.4}
\end{gather*}
$$

We say that a semigroup is (strongly continuous or) C_{0}-Semigroup if for every $x \in X$

$$
\begin{equation*}
\left\|S_{t} x-x\right\| \longmapsto 0 \text { as } t \downarrow 0 \quad(\|\cdot\| \quad \text { is a norm from banach space } X) \tag{2.5}
\end{equation*}
$$

i.e if for every x $\in \mathrm{X}$ (Banach Space) $S_{(\cdot)}:[0, \infty) \mapsto X$ is continuous

And if

$$
\begin{equation*}
\left\|S_{t}-I\right\|_{o p} \longmapsto 0 \text { as } t \downarrow 0 \quad\left(\|\cdot\|_{o p} \text { is a operator norm }\right) \tag{2.6}
\end{equation*}
$$

then we say that the semigroup is uniformly continuous
We say $\left\{S_{t}\right\}_{t \geq 0}$ is a Contraction Semigroup if it is a semigroup and

$$
\begin{equation*}
\left\|S_{t}\right\|_{o p} \leq 1 \quad(t \geq 0) \tag{2.7}
\end{equation*}
$$

Note: Clearly, (6) implies (5)

- Definition 5:

The Infinitesimal Generator A of C_{0}-Semigroup $\left\{S_{t}\right\}_{t \geq 0}$ is map $A: D(A) \mapsto X$

$$
\begin{equation*}
A x:=\lim _{t \downarrow 0} \frac{S_{t}(x)-x}{t} \tag{2.8}
\end{equation*}
$$

Here, $\mathrm{D}(\mathrm{A})$ is the domain of the generator A i.e where the limit exist in RHS.

$$
\begin{equation*}
D(A):=\left\{x \left\lvert\, \lim _{t \downarrow 0} \frac{S_{t}(x)-x}{t}\right. \text { exists }\right\} \tag{2.9}
\end{equation*}
$$

Remark: For uniformly continuous semigroup $\mathrm{D}(\mathrm{A})=\mathrm{X}$ and in C_{0}-semigroup its dense in X .

- Example 2.1.1
$S_{t} f(a)=f(a+c t)$ for some constant c and $\mathrm{X}=\left(\mathrm{C}(\mathrm{K})\right.$,supnorm). Clearly its $C_{0^{-}}$ semigroup with generator $c \frac{d}{d x}$ with domain $C^{1}(K)$
- Example 2.1.2

For continuous time homogeneous Markov chain $\left\{X_{t}\right\}_{t \geq 0}$ with finite state space $\mathrm{S}=\{1,2, . ., \mathrm{n}\}$

$$
\begin{gather*}
P\left(X_{t+h}=j \mid X_{t}=i\right)=\lambda_{i j} h+o(h)(\text { for } j \neq i) \text { i.e } \\
E\left[1_{\{j\}} X_{t+h} \mid X_{t}=i\right]=h \Lambda 1_{\{j\}}^{i}\left(X_{t+h}\right)+o(h) \quad(\text { for } j \neq i) \tag{2.10}
\end{gather*}
$$

Notation: $\Lambda 1_{\{j\}}^{i}=\lambda_{i j}$ and $1_{\{j\}}$ is an indicator function.

$$
\begin{gather*}
P\left(X_{t+h}=i \mid X_{t}=i\right)=1-\sum_{j: j \neq i} \lambda_{i j} h+o(h) \\
\lambda_{i i}:=\sum_{j: j \neq i} \lambda_{i j} \text { and therefore, } \\
E\left[1_{\{j\}} X_{t+h} \mid X_{t}=i\right]-1_{i}^{i}\left(X_{t+h}\right)=h \Lambda 1_{\{j\}}^{i}\left(X_{t+h}\right)+o(h) \quad(\forall j, i) \tag{2.11}
\end{gather*}
$$

So we conclude ,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{E\left[1_{\{j\}} X_{t+h} \mid X_{t}=i-1_{i}^{i}\left(X_{t+h}\right)\right]}{h}=\Lambda 1_{\{j\}}^{i}\left(X_{t+h}\right) \quad(\forall j, i) \tag{2.12}
\end{equation*}
$$

Now, define

$$
\begin{equation*}
S_{h}(f(i)):=E\left[f\left(X_{t+h}\right) \mid X_{t}=i\right] \tag{2.13}
\end{equation*}
$$

where, $\mathrm{X}=\mathrm{BL}(\mathrm{S})$ As infinitesimal generator function A agrees on $\left\{1_{\{j\}}\right\}$ standard basis implies $A=\Lambda$.
In general state space S (usually \mathbf{R}) of a homogeneous continuous time Markov chain
the semigroup is given as
$S_{t}: B L(\mathbf{R}) \mapsto B L(\mathbf{R})$

$$
\begin{equation*}
S_{t} f(x):=E\left[f\left(X_{t}\right) \mid X_{0}=x\right] \tag{2.14}
\end{equation*}
$$

Using Markov property and definition of conditional expectation we can show that its a semigroup.

- Definition 6: $\left(\Omega, \mathscr{F}_{,}, \mathscr{F}_{t}\left(\mathscr{F}_{n}\right), P\right)$

Let, A be an increasing process (adapted process with $A_{0}(\omega)=0$ and right continuous and non-decreasing with t (or n) a.s.and $E A_{t}<\infty\left(\right.$ or $\left.E A_{n}<\infty\right)$ for every $t \geq 0$ (or $n \geq 0$)
We say that A is natural if \forall right continuous(r.c) martingale $\left\{M_{t}, \mathscr{F}_{t}: t \geq 0\right\}\left(\left\{M_{n}, \mathscr{F}_{n}\right.\right.$: $n \geq 0\}$) the following holds:

$$
\begin{equation*}
E \int_{(0, t]} M_{s} d A_{s}=E \int_{(0, t]} M_{s_{-}} d A_{s} \quad(\text { for every } 0<t<\infty) \tag{2.15}
\end{equation*}
$$

For discrete time,

$$
\begin{equation*}
E M_{n} A_{n}=E \sum_{i=1}^{n} M_{i-1}\left(A_{i}-A_{i-1}\right) \quad(\text { for every } n \geq 1) \tag{2.16}
\end{equation*}
$$

- Definition 7:

we say usual conditions/ usual hypothesis are satisfied by a filtration $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ if \mathscr{F}_{0} contains all 0-P measure set and the filtration is right continuous (i.e $\mathscr{F}_{t+}=\mathscr{F}_{t}$)

- Definition 8:

$\mathscr{S}_{\infty}:=\left\{\tau \mid \tau\right.$ is F_{t} measurable stopping time and $\left.P(\tau<\infty)=1\right\}$
$\mathscr{S}_{a}:=\left\{\tau \mid \tau\right.$ is F_{t} measurable stopping time and $\left.P(\tau<a)=1\right\}$
$D:=\left\{X_{\tau} \mid \tau \in \mathscr{S}_{\infty}\right.$ and X is r.c uniformly integrable random variable $\}$
$D L:=\left\{X_{\tau} \mid \tau \in \mathscr{S}_{a}\right.$ and X is r.c uniformly integrable random variable $\left.\forall a \in(0, \infty)\right\}$

Remark: $\mathscr{S}_{a} \subset \mathscr{S}_{\infty} \forall a$ and $\mathrm{D} \subset \mathrm{DL}$

Theorem 1 (Doob-Meyer Decomposition:). (discrete version) Any Submartingale, can be written uniquely as sum of martingale and a predictable increasing sequence.
(General): For every r.c sub-martingale $X=\left\{X_{t}, \mathscr{F}_{t} \mid t \geq 0\right\}$ in class of DL and $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ satisfying usual condition can be written as sum of a r.c martingale and an increasing process and the decomposition is unique up to indistinguishability if increasing process is chosen to be natural i.e

$$
\begin{equation*}
X_{t}=M_{t}+A_{t} \tag{2.17}
\end{equation*}
$$

Where, $M=\left\{M_{t}, \mathscr{F}_{t}\right\}_{t \geq 0}$ and $A=\left\{A_{t}, \widetilde{F}_{t}\right\}_{t \geq 0}$ are r.c martingale and an increasing process respectively. Also if X is from class D then M is u.i and A is integrable.

- Definition 9:

We notate $\mathrm{X} \in \mathscr{M}_{2}$ if $\mathrm{X}=\left\{X_{t}, \mathscr{F}_{t}\right\}_{t \geq 0}$ is square-integrable $\left(E X_{t}^{2}<\infty \quad \forall t \geq 0\right)$ r.c martingale process.
And $\mathrm{X} \in \mathscr{M}_{2}^{c}$ if $\mathrm{X} \in \mathscr{M}_{2}$ and is a continuous process

- Definition 10: For $\mathrm{X} \in \mathscr{M}_{2}$, the quadratic variation process $\langle X\rangle:=\left\{\langle X\rangle_{t}\right\}_{t \geq 0}$ and $\langle X\rangle_{t}:=A_{t}$, where, A is an unique natural increasing process of Doob-Meyer decomposition of X^{2}.
Note: X^{2} is in DL as X^{2} is a non-negative r.c sub-martingale.

- Definition 11:

let, $\mathrm{M} \in \mathscr{M}_{2}$ and $\mu_{M}(\cdot): \mathscr{B}([0, \infty)) \otimes \mathscr{F} \mapsto[0, \infty)$ be a measure defined as

$$
\begin{equation*}
\mu_{M}(A):=E \int_{0}^{\infty} 1_{A}(t, \omega) d\langle M\rangle_{t}(\omega) \tag{2.18}
\end{equation*}
$$

We say two $\left\{\mathscr{F}_{t}\right\}$-adapted, measurable Process X and Y are equivalent if

$$
\begin{equation*}
X_{t}(\omega)=Y_{t}(\omega) \quad \mu_{M} \text { a.e }(t, \omega) \tag{2.19}
\end{equation*}
$$

For measurable $\left\{\mathscr{F}_{t}\right\}$-adapted process X ,

$$
\begin{equation*}
\left([X]_{T}\right)^{2}:=E \int_{0}^{T} X_{t}^{2}(\omega) d\langle M\rangle_{t}(\omega) \tag{2.20}
\end{equation*}
$$

assuming RHS exists.
Observe: The above $[X]_{T}$ is just the L_{2}-norm restricted to space $\Omega \times[0, T]$ w.r.t μ_{M}-measure.

Result: Two adapted, measurable Process X and Y are equivalent iff $[X-Y]_{T}=0$ $\forall T>0$.

- Definition 12:

$\mathscr{L}(M)$ be the set of all equivalence class of $\left\{\mathscr{F}_{t}\right\}$-adapted, measurable Process s.t $[X]_{T}<\infty \forall T>0$
Define,

$$
\begin{equation*}
[X]:=\sum_{n=1}^{\infty} \frac{[X]_{n} \wedge 1}{2^{n}} \tag{2.21}
\end{equation*}
$$

then, $(\mathscr{L}(M),[])$ is a normed linear space.
Similarly, we define, $\mathscr{L}^{*}(M)=\{X \in \mathscr{L} \mid \mathrm{X}$ is progressively measurable $\}$ with same norm ([]) and $M \in \mathscr{M}_{2}^{c}$ is a Banach space.

STOCHASTIC INTEGRALS:

We are interested to define the Stochastic integral, similar to Lebesgue integral. we begin by defining class of simple process (analog to class of simple function but with randomness)

- Definition 13:

$\mathscr{L}_{0}=\left\{X \mid \quad\right.$ i) $X_{t}=\xi_{0}(\omega) 1_{\{0\}}(t)+\sum_{i=0}^{\infty} \xi_{i}(\omega) 1_{\left(t_{i}, t_{i+1}\right]}(t) \forall \omega \in \Omega$ and $t \in[0, \infty)$, ii) ξ_{i} is $\mathscr{F}_{t_{i}}$-measurable random variable and iii) $\left.\sup _{\omega} \sup _{i}|\xi|<\infty\right\}$.
Remark: $\mathscr{L}_{0} \subset \mathscr{L}^{*}(M) \subset \mathscr{L}(M)$
Result:1 For a bounded measurable adapted process X \exists sequence of simple process $\left\{X^{(n)}\right\}_{n=1}^{\infty}$ s.t.

$$
\begin{equation*}
\sup _{T>0} \lim _{n \rightarrow \infty} E \int_{0}^{T}\left|X_{t}(n)-X_{t}\right|^{2} d t=0 \tag{2.22}
\end{equation*}
$$

Result:2 If the map $t \mapsto\langle M\rangle_{t}$ is absolutely continuous a.s then \mathscr{L}_{0} is dense in $\mathscr{L}(M)$ wrt metric [] and is dense in $\mathscr{L}^{*}(M)$ if the map is continuous wrt to same metric [].

- Definition 14:

For $X \in \mathscr{L}_{0}$ and $m \in \mathscr{M}_{2}^{c}$, we define the the stochastic Integral $\mathrm{I}(\mathrm{X})$ as

$$
\begin{equation*}
I_{t}(X):=\int_{0}^{t} X_{s} d M_{s}:=\sum_{i=0}^{\infty} \xi_{i}\left(M_{t_{i+1} \wedge t}-M_{t_{i} \wedge t}\right) \tag{2.23}
\end{equation*}
$$

The definition extends for $X \in \mathscr{L}^{*}(M)$ and $\mathrm{M} \in \mathscr{M}_{2}^{c}$

$$
\begin{equation*}
I_{t}(X):=\int_{0}^{t} X_{s} d M_{s} \tag{2.24}
\end{equation*}
$$

is the unique, square integral martingale with $\lim _{n \rightarrow \infty}\left\|I\left(X^{n}\right)-I(X)\right\|=0$ for any sequence $\left\{X^{n}\right\}$ in \mathscr{L}_{0}, also $\lim _{n \rightarrow \infty}\left[I\left(X^{n}\right)-I(X)\right]=0$, where,

$$
\begin{equation*}
\|X\|:=\sum_{n=1}^{\infty} \frac{1 \wedge\|X\|_{n}\left(:=\sqrt{E X_{n}^{2}}\right)}{2^{n}} \tag{2.25}
\end{equation*}
$$

As $X \in \mathscr{M}_{2} \Longrightarrow\|X\|_{t}\left(:=\sqrt{E X_{t}^{2}}\right) \uparrow$ as $t \uparrow$ (by Jensen's Inequality for conditional expectation and as X is a martingale)
Result:1. \mathscr{M}_{2} is a Banach space and \mathscr{M}_{2}^{c} is a closed subspace of \mathscr{M}_{2} under (25) metric.
Result:2. If $\mathrm{X}, \mathrm{Y} \in \mathscr{M}_{2}$ with $\|X-Y\|=0$ then X and Y are indistinguishable.
Result:3. For $\mathrm{X} \in \mathscr{L}_{0} \Longrightarrow \mathrm{I}(\mathrm{X}) \in \mathscr{M}_{2}^{c}$.
Result:4. For $\mathrm{M} \in \mathscr{M}_{2}^{2}$ and $\mathrm{X} \in \mathscr{L}^{*}(M)$, then $I(X):=\left\{I_{t}(X)\right\}_{t \geq 0}$ satisfies

$$
\begin{gather*}
I_{0}(X)=0 \text { a.s } P \tag{2.26}\\
E\left(\left[I_{t}(X)\right]^{2}\right)=\left([X]_{t}\right)^{2}=E \int_{0}^{t} X_{u}^{2} d\langle M\rangle_{u}(\omega) \tag{2.27}\\
{[X]=\|I(X)\|} \tag{2.28}\\
I(a X+b Y)=a I(X)+b I(Y) \tag{2.29}\\
E\left[\left(I_{t}-I_{s}\right)^{2} \mid \mathscr{F}_{s}\right]=E\left[\int_{s}^{t} X_{u}^{2} d\langle M\rangle_{t}(\omega) \mid \mathscr{F}_{s}\right] \tag{2.30}\\
\langle I(X)\rangle_{t}=E \int_{0}^{t} X_{u}^{2} d\langle M\rangle_{u}(\omega) \tag{2.31}
\end{gather*}
$$

(We will be using these results in Existence and Uniqueness of SDE).

- Definition 15:

Let, $X=\left\{X_{t}\right\}_{t \geq 0}$ and $Y=\left\{Y_{t}\right\}_{t \geq 0}$ be two $\mathscr{M}_{2}^{c}\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$-adapted process then we define Cross-Variation $A=\left\{A_{t}=\langle X, Y\rangle_{t}\right\}_{t \geq 0}$

$$
\begin{equation*}
\langle X, Y\rangle_{t}:=\frac{\langle X+Y\rangle_{t}-\langle X-Y\rangle_{t}}{4} \tag{2.32}
\end{equation*}
$$

is the unique (up-to indistinguisability), $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$-adapted process, continuous BV process with $A_{0}=\langle X, Y\rangle_{0}=0$ and $X Y-A$ Martingale process.

- Definition 16:

We say $X=\left\{X_{t}\right\}_{t \geq 0}$ is a Local Martingale(i.e $\mathrm{X} \in \mathscr{M}^{\text {loc }}$) if it is a $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$-adapted process s.t. $X_{0}=0$ a.s. and if \exists a non-decreasing sequence of stopping time $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ with $P\left(\lim _{n \rightarrow \infty} \tau_{n}=\infty\right)=1$ (i.e $\left\{\tau_{n}\right\}_{n=1}^{\infty}$ diverges a.s) s.t $X_{t}^{(n)}:=X_{t \wedge \tau_{n}}$ is a $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$ Martingale for each $\mathrm{n} \geq 1$. We Notate Continuous local martingale process X as X $\in \mathscr{M}^{c, l o c}$.

- Definition 17:

A Semi-Martingale process $X=\left\{X_{t}\right\}_{t \geq 0}$ is a $\left\{\mathscr{F}_{t}\right\}_{t \geq 0}$-adapted process s.t it can be decomposed into a X_{0}, local martingale M_{t} and a right-continuous process A_{t} of bounded variation on compacts for all t a.s. i.e

$$
\begin{equation*}
X_{t}=X_{0}+M_{t}+A_{t} \tag{2.33}
\end{equation*}
$$

And in Continuous Semi-Martingale the decomposition processes are continuous.
Result: The Decomposition of Continuous Semi-Martingale process is unique a.s. i.e if $X_{t}=X_{0}+M_{t}+A_{t}=X_{0}+\bar{M}_{t}+\bar{A}_{t}$ then $M_{t}=\bar{M}_{t}$ a.s and $A_{t}=\bar{A}_{t}$ a.s for all t

Chapter 3

Existence and Uniqueness of SDE wrt Brownian Motion:

Theorem: For $\mathrm{t} \in[0, T]$, consider SDE

$$
\begin{gather*}
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t} \tag{3.1}\\
X_{0}=Z \tag{3.2}
\end{gather*}
$$

such that, $T>0, b(\cdot, \cdot):[0, T] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}, \sigma(\cdot, \cdot):[0, T] \times \mathbf{R}^{n} \rightarrow \mathbf{R}^{n \times m}$ be the measurable function satisfying

$$
\begin{equation*}
|b(t, x)|+|\sigma(t, x)| \leq C(1+|x|) \quad x \in \mathbf{R}^{n}, t \in[0, T] \tag{3.3}
\end{equation*}
$$

where, $|\sigma|^{2}:=\sum_{i=1, j=1}^{m, n}\left|\sigma_{i j}\right|^{2},|x|$ is a Euclidean norm and C is some constant. Also,

$$
\begin{equation*}
|b(t, x)-b(t, y)|+|\sigma(t, x)-\sigma(t, y)| \leq D(|x-y|) \quad x, y \in \mathbf{R}^{n}, t \in[0, T] \tag{3.4}
\end{equation*}
$$

Finally, let Z be independent of $\sigma\left(\left\{W_{t}\right\}_{t \geq 0}\right)$ and $E|Z|^{2}<\infty$.
Then the SDE has unique continuous (wrt t) solution $X_{t}(\omega)$ s.t. it is $\left\{\mathscr{F}_{t} \wedge \sigma(Z)\right\}_{t \geq 0^{-}}$ $\operatorname{adapted}\left(\mathscr{F}_{t}:=\sigma\left(\left\{W_{s}: s \in[0, t]\right\}\right)\right.$ and $E \int_{0}^{T}|X|^{2} d t<\infty$.

Proof. Definition 1: For a given probability $\operatorname{Space}(\Omega, \mathscr{F}, P)$, We say $X=\left\{X_{t}\right\}_{t \geq 0}$ is a
strong solution of the $\operatorname{SDE}(1),(2)$ w.r.t fixed Brownian motion $W=\left\{W_{t}\right\}_{t \geq 0}$ and has a continuous sample paths, satisfying following properties:

1) X_{t} is \mathscr{F}_{t}-measurable
2) $X_{0}=\mathrm{Z}$ a.s (P)
3) $\int_{0}^{\infty}\left\{\left|b_{i}\left(s, X_{s}\right)\right|+\sigma_{i j}^{2}\left(s, X_{s}\right)\right\} d s<\infty$ a.s holds for all $1 \leq i \leq n$ and $1 \leq j \leq n$ and $0 \leq t<\infty$
4) $\mathrm{P}\left[X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}, 0 \leq t<\infty\right]=1$ i.e the solution satisfy the SDE indistinguishably.

Result1: If $\left\{a_{i}\right\}_{i=1}^{n}$ is a real-valued sequence, we have $\left(a_{1}+a_{2}+a_{3}+\ldots .+a_{n}\right)^{2} \leq n\left(a_{1}^{2}+a_{2}^{2}+\right.$ $a_{3}^{2}+\ldots+a_{n}^{2}$) (true for any n)

Result2(Grönwall's Inequality): For an interval $\mathrm{I}($ here $=[0, \mathrm{~T}]) ; \mathrm{a}(\mathrm{t}), \mathrm{b}(\mathrm{t}), \mathrm{w}(\mathrm{t})$ be realvalued function on I s. $\mathrm{t} \mathrm{b}(\mathrm{t}), \mathrm{w}(\mathrm{t})$ are continuous and if $a=a_{+}+a_{-}$then a_{n} is integrable on every compact sub-interval in I (closed and bounded sub-interval), then if $b \geq 0$, a non-decreasing and if w satisfies

$$
\begin{equation*}
w(t) \leq a(t)+\int_{0}^{t} b(s) w(s) d s, \quad \forall t \in I \tag{3.5}
\end{equation*}
$$

then,

$$
\begin{equation*}
w(t) \leq a(t) e^{\int_{0}^{t} b(s) d s}, \quad t \in I \tag{3.6}
\end{equation*}
$$

UNIQUENESS:

Let $X_{t}^{Z_{1}}$ and $\bar{X}_{t}^{Z_{2}}$ be the Solutions of above SDE with Z_{1} and Z_{2} be the initial condition respectively. (Here, $Z_{1}=Z_{2}=Z$ but we will do in general), We use Itô-isometry, Hölder inequality, Fubini's theorem and (4)

Note: $(4) \Longrightarrow|\sigma(t, x)-\sigma(t, x)| \leq D(|x-y|)$

$$
\begin{align*}
& E\left[\left|X_{t}^{Z_{1}}-\bar{X}_{t}^{Z_{2}}\right|^{2}\right] \\
&= E\left[\left\{Z_{1}-Z_{2}+\int_{0}^{t}\left(b\left(s, X_{s}^{Z_{1}}\right)-b\left(s, \bar{X}_{s}^{Z_{2}}\right)\right) d s+\int_{0}^{t}\left(\sigma\left(s, X_{s}^{Z_{1}}\right)-\sigma\left(s, \bar{X}_{s}^{Z_{2}}\right)\right) d W_{s}\right\}^{2}\right] \\
& \leq 3 E\left[\left|Z_{1}-Z_{2}\right|^{2}\right]+3 E\left[\left(\int_{0}^{t}\left(b\left(s, X_{s}^{Z_{1}}\right)-b\left(s, \bar{X}_{s}^{Z_{2}}\right)\right) d s\right)^{2}\right]+ \\
& 3 E\left[\left\{\int_{0}^{t}\left(\sigma\left(s, X_{s}^{Z_{1}}\right)-\sigma\left(s, \bar{X}_{s}^{Z_{2}}\right)\right) d W_{s}\right\}^{2}\right] \\
& \leq 3 E\left[\left|Z_{1}-Z_{2}\right|^{2}\right]+3 E\left[\left(\int_{0}^{t}\left(b\left(s, X_{s}^{Z_{1}}\right)-b\left(s, \bar{X}_{s}^{Z_{2}}\right)\right)^{2} d s\right)\left(\int_{0}^{t} 1^{2} d s\right)\right]+ \\
& 3 E\left[\left\{\int_{0}^{t}\left(\sigma\left(s, X_{s}^{Z_{1}}\right)-\sigma\left(s, \bar{X}_{s}^{Z_{2}}\right)\right)^{2} d W_{s}\right\}\right] \\
& \leq 3 E\left[\left|Z_{1}-Z_{2}\right|^{2}\right]+3(1+t) D^{2} \int_{0}^{t} E\left[\left|X_{s}^{Z_{1}}-\bar{X}_{s}^{Z_{2}}\right|^{2}\right] d s \tag{3.7}
\end{align*}
$$

Define: $w(t):=E\left[\left|X_{t}^{Z_{1}}-\bar{X}_{t}^{Z_{2}}\right|^{2}\right]$ for $t \in[0, T]$
The map $t \mapsto w(t)$ satisfies

$$
\begin{equation*}
w(t) \leq a+b \int_{0}^{t} w(s) d s \tag{3.8}
\end{equation*}
$$

where, $a=3 E\left[\left|Z_{1}-Z_{2}\right|^{2}\right]$ and $b=3(1+T) D^{2}$
By Gronwall's Inequality, we get
$w(t) \leq a * \exp (b t)$
As $Z_{1}=Z_{2} \Longrightarrow \mathrm{a}=0 \forall t \geq 0$ Therefore, $P\left\{X_{t}^{Z_{1}}=\bar{X}_{t}^{Z_{2}}\right\}=1 \quad \forall t \geq 0$
We know that if X is a version of Y and X and Y are right continuous process then they are indistinguishable. So,

$$
\begin{equation*}
P\left\{X_{t}^{Z_{1}}=\bar{X}_{t}^{Z_{2}} \quad \forall t \geq 0\right\}=1 \tag{3.9}
\end{equation*}
$$

Therefore, the SDE has a unique solution.

EXISTENCE:

We use Picard's iteration technique to prove the existence of the solution

$$
\begin{gather*}
Y_{t}^{0}:=X_{0} \tag{3.10}\\
Y_{t}^{k+1}:=X_{0}+\int_{0}^{t} b\left(s, Y_{s}^{k}\right) d s+\int_{0}^{t} \sigma\left(s, Y_{s}^{k}\right) d W_{s} \tag{3.11}
\end{gather*}
$$

claim: $\left\{Y_{t}^{k}\right\}_{t \geq 0}$ is Cauchy sequence in $L^{2}(\mu \times P)$ (Banach Space), where, μ denotes the Lebesgue measure.
Proof of the claim: If we follow Similar to (7), we get,

$$
\begin{equation*}
E\left[\left|Y_{t}^{k+1}-Y_{t}^{k}\right|^{2}\right] \leq(1+T) 3 D^{2} \int_{0}^{t} E\left[\left|Y_{t}^{k}-Y_{t}^{k-1}\right|^{2}\right] d s \tag{3.12}
\end{equation*}
$$

Now, for $k \geq 1, t \leq T$,

$$
\begin{aligned}
E\left[\left|Y_{t}^{1}-Y_{t}^{0}\right|^{2}\right] & =E\left[\left(\int_{0}^{t} b\left(s, X_{s}^{0}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}^{0}\right) d W_{s}\right)^{2}\right] \\
& \leq E\left[\left(\int_{0}^{t}\left|b\left(s, X_{s}^{0}\right)\right| d s+\int_{0}^{t} \sigma\left(s, X_{s}^{0}\right) d W_{s}\right)^{2}\right] \\
& \leq 2 E\left[\left(\int_{0}^{t}\left|b\left(s, X_{s}^{0}\right)\right| d s\right)^{2}\right]+2 E\left[\left(\int_{0}^{t} \sigma\left(s, X_{s}^{0}\right) d W_{s}\right)^{2}\right]
\end{aligned}
$$

We use Itô - isometry for the second integral to get,

$$
\begin{equation*}
\leq 2 E\left[\left(\int_{0}^{t}\left|b\left(s, X_{s}^{0}\right)\right| d s\right)^{2}\right]+2 E\left[\left(\int_{0}^{t}\left|\sigma\left(s, X_{s}^{0}\right)\right|^{2} d s\right)\right. \tag{3.13}
\end{equation*}
$$

From (3) we get,

$$
\begin{aligned}
& \leq 2 E\left[\left(\int_{0}^{t} C\left(1+\left|X_{0}^{s}\right|\right) d s\right)^{2}\right]+2 E\left[\left(\int_{0}^{t}\left(C\left[\left(1+\left|X_{0}^{s}\right|\right) d s\right)\right)^{2} d s\right)\right] \\
& \leq 2 C^{2}\left(t^{2}+t\right) E\left[\left(1+\left|X_{0}^{s}\right|\right)^{2}\right] \\
& \leq 2 C^{2} E\left[\left(1+\left|X_{0}^{s}\right|\right)^{2}\right](1+T) t \\
& :=A_{1} t
\end{aligned}
$$

From(12) and (13), We get,

$$
\begin{align*}
E\left[\left|Y_{t}^{2}-Y_{t}^{1}\right|^{2}\right] & \leq(1+T) 3 D^{2} \int_{0}^{t} E\left[\left|Y_{t}^{1}-Y_{t}^{0}\right|^{2}\right] d s \tag{3.14}\\
& \leq 6 D^{2} C^{2} E\left[\left(1+\left|X_{0}^{s}\right|\right)^{2}\right](1+T)^{2} t^{2} / 2
\end{align*}
$$

So, If we take $A_{2}=3(1+T) \max \left\{C^{2}, D^{2}\right\} E\left[\left(1+\left|X_{0}^{s}\right|\right)^{2}\right]$ then we have,

$$
\begin{equation*}
E\left[\left|Y_{t}^{k+1}-Y_{t}^{k}\right|^{2}\right] \leq A_{2} \int_{0}^{t} E\left[\left|Y_{t}^{k}-Y_{t}^{k-1}\right|^{2}\right] d s \tag{3.15}
\end{equation*}
$$

By induction we get,

$$
\leq \frac{A_{2}^{k+1} t^{k+1}}{(k+1)!} \quad k \geq 0, t \in[0, T]
$$

$$
\begin{align*}
\left\|Y_{t}^{m}-Y_{t}^{n}\right\|_{L^{2}(\mu \times P)} & \leq \sum_{k=n}^{m-1}\left\|Y_{t}^{k+1}-Y_{t}^{k}\right\|_{L^{2}(\mu \times P)} \\
& \leq \sum_{k=n}^{m-1}\left(\int_{0}^{T} E\left[\left|Y_{t}^{k+1}-Y_{t}^{k}\right|^{2}\right]\right)^{\frac{1}{2}} \tag{3.16}\\
& \leq \sum_{k=n}^{m-1}\left(\int_{0}^{T} \frac{A_{2}^{k+1} t^{k+1}}{(k+1)!}\right)^{\frac{1}{2}} \\
& =\sum_{k=n}^{m-1}\left(\frac{A_{2}^{k+1} T^{k+2}}{(k+2)!}\right)^{\frac{1}{2}} \rightarrow 0 \text { as } m, n \rightarrow \infty
\end{align*}
$$

Now, as $L^{2}(\mu \times P)$ is a Banach Space, implies (upto a.s) $\exists!\left\{X_{t}(\omega)\right\}_{t \geq 0} \in L^{2}(\mu \times P)$ s.t the sequence converges to X_{t} in L^{2}-sense i.e we can define,

$$
\begin{equation*}
X:=\lim _{n \rightarrow \infty} Y^{n} \quad\left(\text { The limit is in } L^{2}(\mu \times P)\right) \tag{3.17}
\end{equation*}
$$

As $\forall t, Y_{t}^{k}$ is \mathscr{F}_{t}^{W}-measurable $\Longrightarrow \forall t X_{t}$ is also \mathscr{F}_{t}^{W}-measurable.(Why?)
Also, if we take $\lim _{m \rightarrow \infty}$ and $n=0$, the RHS form a geometric sum which is finite \Longrightarrow $E \int_{0}^{T}|X|^{2} d t<\infty$
Question: Does X satisfy the SDE?

Claim: $X_{t}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}$ a.s. $\forall t<\infty$ (Modification or Version)

Proof of the claim: We know that if a sequence converges to X and Y both in $L^{2}-$ limit, then $\mathrm{X}=\mathrm{Y}$ a.s.
From (11) we have, $Y_{t}^{k+1}:=X_{0}+\int_{0}^{t} b\left(s, Y_{s}^{k}\right) d s+\int_{0}^{t} \sigma\left(s, Y_{s}^{k}\right) d W_{s}$ holds $\forall k$ and $\forall t \in[0, T]$

If we show, in $L^{2}(P)$, that as $\mathrm{n} \rightarrow \infty$
$\int_{0}^{t} b\left(s, Y_{s}^{n}\right) d s \rightarrow \int_{0}^{t} b\left(s, X_{s}\right) d s$ and $\int_{0}^{t} \sigma\left(s, Y_{s}^{n}\right) d W_{s} \rightarrow \int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}$
$\Longrightarrow \forall t \quad X_{t}:=\lim _{n \rightarrow \infty} Y_{t}^{n}=X_{0}+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s} \quad$ (The limit is in $\left.L^{2}(P)\right)$

Then, we are done by a.s uniqueness of L^{2}-limit.

We Hölder-inequality and (4),

$$
\begin{align*}
E\left[\left|\int_{0}^{t} b\left(s, Y_{s}^{n}\right)-b\left(s, X_{s}\right) d s\right|^{2}\right] & \leq E\left[\left(\int_{0}^{t}\left|b\left(s, Y_{s}^{n}\right)-b\left(s, X_{s}\right)\right| * 1 d s\right)^{2}\right] \\
& \leq E\left[\left(\int_{0}^{t}\left|b\left(s, Y_{s}^{n}\right)-b\left(s, X_{s}\right)\right|^{2} d s\right)^{\frac{2}{2}}\left(\int_{0}^{t} 1^{2} d s\right)^{\frac{2}{2}}\right] \\
& \leq t E\left[\left(\int_{0}^{t} D^{2}\left|Y_{s}^{n}-X_{s}\right|^{2} d s\right)\right] \\
& \leq T D^{2} E\left[\left(\int_{0}^{t}\left|Y_{s}^{n}-X_{s}\right|^{2} d s\right)\right] \rightarrow 0 \quad(B y \text { (17) and on taking limit }) \tag{3.18}
\end{align*}
$$

Next, we use Itô-Isometry and (4),

$$
\begin{align*}
E\left[\left(\int_{0}^{t} \sigma\left(s, Y_{s}^{n}\right)-\sigma\left(s, X_{s}\right) d W_{s}\right)^{2}\right] & =E\left[\int_{0}^{t}\left(\sigma\left(s, Y_{s}^{n}\right)-\sigma\left(s, X_{s}\right)\right)^{2} d s\right] \\
& \text { by steps similar to above we get } \\
\leq & D^{2} E\left[\left(\int_{0}^{t}\left|Y_{s}^{n}-X_{s}\right|^{2} d s\right)\right] \rightarrow 0 \quad \text { (By (17) and on taking limit) } \tag{3.19}
\end{align*}
$$

As (18) and (19) holds for all t. Hence proved.

Note: We have only shown that there exist a modification which satisfies SDE and not the Indistinguishable solution, but once we show that there exist a continuous version of solution implies the continuous process is the indistinguishable solution satisfying the SDE.

Left to show: \exists ! t-continuous square-integrable \mathscr{F}_{t}^{Z}-adapted solution.
proof of the claim: From (17), we get that \exists a sub-sequence which converges a.s.and let that sub-sequence be the sequence then still the sequence converges to same process X , but this time a.s \exists a set N s.t $\mathrm{X}=$ limit of sequence in N^{c} and $\mu \times \lambda(N)=0$
Let us define,
$\tilde{X}_{t}:=X_{t}$ if $\mathrm{P}\left(\left.N\right|_{t}\right)=0$
$\tilde{X}_{t}:=X_{0}+\int_{0}^{\infty} b d s+\int_{0}^{\infty} \sigma d W_{s}$ Otherwise
As, $\lambda\left\{t \mid P\left(\left.N\right|_{t}\right)=0\right\}=0$, then for each $t \geq 0$ limit of Y_{t}^{k} produces, $\tilde{X}_{t}=\tilde{X}_{0}+\int_{0}^{\infty} b\left(s, \tilde{X}_{s}\right) d s+\int_{0}^{\infty} \sigma\left(s, \tilde{X}_{s}\right) d W_{s}$

We will show that, \tilde{X}_{t} is a.s continuous.

Consider,

$$
\begin{aligned}
E\left[\int_{0}^{T} \sigma^{2}\left(s, \tilde{X}_{s}\right) d s\right] & \leq 2 c^{2} E\left(\int_{0}^{T} 1+|X|^{2} d s\right) \\
& \leq 2 c^{2}\left(T+\|X\|_{L^{2}(\lambda \times P)}\right)(<\infty)
\end{aligned}
$$

Hence, $\left\{\sigma\left(t, \tilde{X}_{t}\right)\right\}_{t \geq 0} \in \mathscr{L}^{*}(W) \Longrightarrow I_{t}(\sigma) \in \mathscr{M}_{c}^{2}$ i.e $t \mapsto \int_{0}^{t} \sigma d W_{s}$ is continuous a.s Let, $c^{\prime}(\omega):=\sup _{t \in[0, T]}\left\|\int_{0}^{t} \sigma d W_{s}\right\|<\infty$
Due to a.s continuity of $\sigma, \mathrm{P}\left(c^{\prime}(\omega)<\infty\right)=1$.
Now,

$$
\begin{aligned}
\left\|\tilde{X}_{t}\right\| & \leq\left\|X_{0}\right\|+\int_{0}^{t}\left\|b\left(s, \tilde{X}_{s}\right)\right\| d s+c^{\prime} \\
& \leq c^{\prime \prime}+c \int_{0}^{t}\left\|\tilde{X}_{s}\right\| d s
\end{aligned}
$$

Where, $c^{\prime \prime}=c^{\prime}+\leq\left\|X_{0}\right\|+c T$. Now, we use Grönwall's inequality for $\mathrm{t} \in[0, \mathrm{~T}]$

$$
\sup _{t \in[0, T]}\left\|\tilde{X}_{t}\right\| \leq c \bar{c} e^{c T}(<\infty)
$$

Thus, $s \mapsto b\left(s, \tilde{X}_{s}\right)$ is bounded $\forall t \in[0, T]$ with probability $1 \Longrightarrow t \mapsto \int_{0}^{t} b\left(s, \tilde{X}_{s}\right) d s$ is continuous a.s.
Therefore, \tilde{X}_{s} is continuous

Chapter 4

Integration Theory for Semi-Martingales:

In this chapter we aim to give a meaning to the idea of a SDE to a wider class of stochastic process. We begin by laying the foundation of Semi-Martingales, discuss different properties, define stochastic integral driven by Semi-Martingale and try to widen the class of integrands, talk about general Itô's Formula and end the chapter by discussing the existence and uniqueness of SDE wrt Semi-Martingale.
Note: We will assume that the filtered, complete probability space $(\Omega, \mathscr{F}, \mathbf{F}, P)$ satisfy the usual hypothesis.

4.1 Semi-Martingale and its properties:

- Definition 1:

For any finite sequences of stopping times $0=T_{0} \leq T_{1} \leq \ldots \leq T_{n}+1<\infty, H_{i} \in \mathscr{F}_{T_{i}}$ with $\left|H_{i}\right|<\infty$ a.s, $0 \leq i \leq n$, if H has a representation

$$
H_{t}=H_{0} 1_{\{0\}}(t)+\sum_{i=1}^{n} H_{i} 1_{\left(T_{i}, T_{i+1}\right]}(t)
$$

then we say H is Semi-predictable process.
let, \mathbf{S} denote the collection of semi-predictable process and $\mathbf{S}_{\mathbf{u}}$ denote collection that
of endowed with uniform convergence topology. Also, let \mathbf{L}^{0} denote the space of finitevalued random variables topologized by convergence in probability

- Definition 2: For a given process X, define a linear map $I_{X}: \mathbf{S} \rightarrow \mathbf{L}^{\mathbf{0}}$

$$
I_{X}(H)=H_{0} X_{0}+\sum_{i=1}^{n} H_{i}\left(X_{T_{i+1}}-X_{T_{i}}\right)
$$

Where, H is a Semi-predictable process.
The Linear Operator $I_{X}(\cdot)$ looks like the definite integral of H wrt X.

- Definition 3: A process X is a total semi-martingale if X is RCLL, adapted and $I_{X}: \mathbf{S}_{\mathbf{u}} \rightarrow \mathbf{L}^{\mathbf{0}}$ is continuous
- Definition 4: A process X is semi-martingale if for each $t \in[0, \infty), X^{t}$ is a total semi-martingale

Theorem 2. The Collection of Semi-Martingale (total Semi-Martingale) is a vector space.

Proof. We will prove that if X and Y are total Semi-Martingale then $X+a Y$ is a total Semi-Martingale. The other part follows from it. As X and Y are total Semi-Martingale, clearly, $X+a Y$ is a RCLL, adapted process and Operator I_{X}, I_{Y} are continuous. As, $I_{X+a Y}=I_{X}+a I_{Y}$ for any constant $\Longrightarrow X+a Y$ is a total Semi-Martingale.

Theorem 3. If $Q \ll P$ (Probability measure), then every P-Semi-Martingale(total Semi-Martingale) X is also Q-Semi-Martingale(total Semi-Martingale).

Proof. We know that as X is P-Semi-Martingale(total Semi-Martingale), X is an adapted, RCLL process. Left to show that I_{X} is continuous wrt Probability measure- Q. From [14] Section 18 proposition $19, Q \ll P$ iff for each $\epsilon>0, \exists \delta>0$ s.t for any set $B \in \mathscr{F}$ if $P(B)<\delta \Longrightarrow Q(B)<\epsilon$. Let, $B_{n}=\left\{\omega:\left|I_{X}\left(H_{n}-H\right)\right| \geq \alpha\right.$ s.t $H_{n} \longrightarrow H$ uniformly $\}$, We choose n large enough s.t for small $\epsilon, Q\left(B_{n}\right)<\epsilon$ and clearly the $\exists \delta$ small s.t $P\left(B_{n}\right)<\delta$ i.e in words Convergence in P implies convergence in Q and their for X is also a Q-Semi Martingale(total Semi Martingale).

Theorem 4. Let, $\left(P_{i}\right)_{i \geq 1}$ a sequence of Probability measures s.t, X is P_{i} Semi-Martingale for each i. Then X is $O\left(:=\sum_{i=1}^{\infty} \alpha_{i} P_{i}\right)$ Semi-Martingale, where $\sum_{i=1}^{\infty} \alpha_{i}=1$.

Proof. First Observe that O is a probability measure. We have to just prove the Continuity of I_{X}-Operator wrt O. Note: $\sum_{i=1}^{\infty} \alpha_{i} P_{i}$ is dominated by constant 1 , therefore, by Dominated convergence Theorem $\lim \sum_{i=1}^{\infty} \alpha_{i} P_{i}=\sum_{i=1}^{\infty} \alpha_{i} \lim P_{i}$ and therefore I_{X} is continuous wrt O.

Theorem 5 (Stricker's Theorem). Let, Y be a Semi Martingale for the filtration \mathbf{F} and Let, Y be adapted to $a \mathbf{G}$ (subfiltration of \mathbf{F}). Then X is a \mathbf{G} Semi-Martingale.

Proof. In this Theorem we don't have issue with adaptability and RCLL. Note: as $I_{X}: \mathbf{S}_{\mathbf{u}} \rightarrow \mathbf{L}_{\mathbf{0}}$, we need to understand the underlying Space \mathbf{S}. For the filtration \mathbf{F}, $\mathbf{S}(\mathbf{F})$ denote the space of Simple-Predictable Process for the filtration $\mathbf{F}=\left(\mathscr{F}_{t}\right)_{t \geq 0}$. Clearly, $\mathbf{S}(\mathbf{G}) \subset \mathbf{S}(\mathbf{F})$ and hence Continuity follows.

In the previous Theorem we try to shrink the filtration and try to preserve the SemiMartingale's property. what about if we expand the filtration?(adaptability and RCLL is preserved only we need to check the continuity of I_{X}-operator). We present an rudimentary result.

Theorem 6. Let, \mathcal{D} be a collection of events in \mathscr{F} s.t if $D_{\alpha}, D_{\beta} \in \mathcal{D}$, then $D_{\alpha} \cap D_{\beta}=$ $\phi, \alpha \neq \beta$. Let, $\mathbf{G}=\left\{\mathscr{G}_{t}:=\sigma\left(\mathscr{F}_{t} \vee \mathcal{D}\right)\right\}_{t \geq 0}$. Then, every (\mathbf{F}, P) Semi-Matrtingale is an (\mathbf{G}, P) Semi-Martingale also.

Proof. Note: For $D_{\alpha} \in \mathcal{D}$ s.t $P\left(D_{\alpha}\right)=0, D_{\alpha}, D_{\alpha}^{c} \in \mathscr{F}$ (by usual hypothesis). So. WLOG we assume that $P\left(D_{\alpha}\right)>0$ for every $D_{\alpha} \in \mathcal{D}(0$-measure set won't contribute to any property while expansion of filtration as they already belongs to earlier filtration). Also, observe that only countable sets belongs to \mathcal{D} with positive measure. [As, \#K $K_{n}(:=$ $\left.\left\{D_{\alpha} \in \mathcal{D}: P\left(D_{\alpha}\right)=\frac{1}{n}\right\}\right) \leq n$ and $\cup_{n} K_{n}=\mathcal{D} \Longrightarrow \mathcal{D}$ is countable.]
Remark: When we check whether X is a Semi-Martingale or not, we only see the underlying filtration (Here, \mathbf{G}) and not the collection \mathcal{D}. So, we also assume WLOG that if $D_{n} \in \mathcal{D}, \Lambda:=\cup_{n} D_{n}$, then $\Lambda^{c} \in \mathcal{D}$ i.e we assume that the collection \mathcal{D} is a countable disjoint partition of Ω with each element having positive measure.
For every fixed $D_{n} \in \mathcal{D}$, we define

$$
Q_{n}:=P\left(\cdot \mid D_{n}\right)
$$

Then, $Q_{n} \ll P$ and therefore, X is an $\left(\mathbf{F}, Q_{n}\right)$ Semi-Martingale. Let, $\mathbf{J}^{\mathbf{n}}=\left(\mathscr{J}_{t}^{n}\right)_{t \geq 0}$ where, $\mathscr{J}_{t}^{n}:=\sigma\left(\mathscr{F}_{t} \vee\left\{A \in \mathscr{F}: Q_{n}(A)=0\right.\right.$ or 1$\left.\left.\}\right)\right\}$.

Note: Adding 0 or 1 measure set doesn't disturb the continuity of I_{X}. Therefore, X is $\left(\mathbf{J}, Q_{n}\right)$ Semi-Martingale. Also, as $Q_{n}\left(D_{m}\right)=0$ or 1 for $m \neq n$ we have $\mathscr{F}_{t} \subset \mathscr{G}_{t} \subset \mathscr{J}_{t}^{n}$ for $t \geq 0$ and $\forall n$. From theorem we conclude that, X is an $\left(\mathbf{G}, \mathbf{Q}_{\mathbf{n}}\right)$ semi-martingale for each n .
As $d P=\sum_{n \geq 1} P\left(D_{n}\right) d Q_{n}$, we conclude that X is a (\mathbf{G}, P) Semi-Martingale.

Let, \mathcal{D} be a finite collection of events in \mathscr{F} and let, $\mathbf{G}=\left(\mathscr{G}_{t}\right)_{t \geq 0}$ s.t $\mathscr{G}_{t}:=\sigma\left(\mathscr{F}_{t} \vee \mathcal{D}\right)$. Then, every (\mathbf{F}, P) Semi-Matrtingale is an (\mathbf{G}, P) Semi-Martingale also.

Theorem 7. Let, Y be a RCLL, adapted process. Let, τ_{n} be a sequence of positive random variable increasing to ∞ and $\left(Y^{n}\right)$ be a sequence of semi-martingales s.t for each $n, Y^{\tau_{n}-}=\left(Y^{n}\right)^{\tau_{n}-}$. Then Y is a semi-martingale.

Proof. Need to show: X^{t} is a total Semi-Martingale, for each $t>0$. Define, $R_{n}:=$ $\tau_{n} 1_{\left\{\tau_{n} \leq n\right\}}+\infty 1_{\left\{\tau_{n}>n\right\}}$. Then, for some constant c,

$$
\begin{align*}
& P\left(\left\{\left|I_{Y^{t}}(H)\right| \geq c\right\}\right) \\
& \left.\quad=P\left(\left\{\mid I_{Y^{t}} H\right) \mid \geq c, R_{n}=\infty\right\} \cup\left\{\left|I_{Y^{t}}(H)\right| \geq c, R_{n}<\infty\right\}\right) \\
& \quad=P\left(\left\{\left|I_{Y^{t}}(H)\right| \geq c, t<\tau_{n}\right\} \cup\left\{\left|I_{Y^{t}}(H)\right| \geq c, R_{n}<\infty\right\}\right) \\
& \quad=P\left(\left\{\left|I_{\left(Y^{n}\right)^{\tau_{n}-}}(H)\right| \geq c\right\} \cup\left\{\left|I_{Y^{t}}(H)\right| \geq c, R_{n}<\infty\right\}\right) \\
& \quad \leq P\left(\left\{\left|I_{\left(Y^{n}\right)^{\tau_{n}-}}(H)\right| \geq c\right\}\right)+P\left(\left\{R_{n}<\infty\right\}\right) \\
& \quad=P\left(\left\{\left|I_{\left(Y^{n}\right)^{\tau_{n}}-}(H)\right| \geq c\right\}\right)+P\left(\left\{\tau_{n} \leq t\right\}\right) \tag{4.1}
\end{align*}
$$

Since, $\tau_{n} \rightarrow \infty$ a.s as $n \rightarrow \infty \Longrightarrow$ for large $\mathrm{n} P\left(\left\{\tau_{n} \leq t\right\}\right)<\frac{\epsilon}{2}$ and as Y^{n} is a Semimartingale if $H^{i} \rightarrow 0$ in $\mathbf{S}_{\mathbf{u}} \Longrightarrow$ for a given large n choose i s.t $P\left(\left\{\left|I_{\left(Y^{n}\right)^{\tau_{n}}}-\left(H^{i}\right)\right| \geq\right.\right.$ $c\})<\frac{\epsilon}{2}$ and hence Y is a Semi-Martingale.

For a given process Y and let, τ_{n} be a sequence of positive random variable increasing to ∞ s.t for each $\mathrm{n}, Y^{\tau_{n}}$ is a semi martingale. Then Y is a semi-martingale.

Examples of Semi-Martingales:

- Each adapted with RCLL paths of FV on compacts is a Semi-Martingale.
- Each \mathscr{M}^{2} process with RCLL paths is a Semi-Martingale.
- A decomposable process $\mathrm{X}\left(X_{t}=X_{0}+M_{t}+A_{t}\right.$, where $M \in \mathscr{M}_{l o c}^{2}$ and A is a RCLL, adapted with path of FV on compacts.) is Semi-Martingale. (For example, Levý process)

4.2 Stochastic Integrals and its Properties:

In previous section we saw that Semi-Martingales are good integrators on \mathbf{S}. In this section we will try to increase the domain of integrands and extend continuously the domain of definition of I_{X} and study some properties of integrals.
Let, \mathbf{D} be the space of RCLL, adapted process. Let, \mathbf{L} be the space of LCRL, adapted process and $\mathbf{b L}$ be the space of bounded LCRL, adapted process.

- Definition 5: We say sequence of processes $\left(H^{n}\right)_{n \geq 1}$ convereges in ucp (uniformly on compacts in probability) if, for each $t>0, \sup _{0 \leq s \leq t}\left|H_{s}^{n}-H_{s}\right| \rightarrow 0$ in probability i.e $\lim _{n \rightarrow \infty} P\left(\sup _{0 \leq s \leq t}\left|H_{s}^{n}-H_{s}\right| \geq \epsilon\right)=0$.
Note: The above definition doesn't make sense for any general stochastic process as the supremum is taken over uncountable index $[0, t]$ and the set need not be measurable. However as we are dealing with Right continuous or Left continuous process, the supremum can only be restricted to rational point in the interval, which is clearly measurable.

Let, $\mathbf{S}_{\mathbf{u c p}}, \mathbf{D}_{\mathbf{u c p}}, \mathbf{L}_{\mathbf{u c p}}$, be the respective space endowed with ucp topology.
Theorem 8. The Space \mathbf{S} is dense in \mathbf{L} under ucp topology.

Proof. Let, $X \in \mathbf{L}$, define $R_{n}:=\inf \left\{t:\left|X_{t}\right|>n\right\}, X^{n}:=X^{R_{n}} 1_{\left\{R_{n}>0\right\}}$. Clearly, R_{n} is a stopping time (Hitting time of open set) increasing to ∞ a.s and $X^{n} \in \mathbf{b L}$.
Claim: $X^{n} \rightarrow X$ in ucp i.e $\mathbf{b L}$ is dense in \mathbf{L} proof of the claim:

$$
\begin{aligned}
& \left\{\omega: \sup _{s \leq t}\left|X_{s}^{n}-X_{s}\right| \geq \epsilon\right\} \\
& \quad=\left\{\omega: \sup _{s \leq t}\left|X_{s}^{R^{n}} 1_{\left\{R_{n}>0\right\}}-X_{s}\right| \geq \epsilon\right\}
\end{aligned}
$$

For each fixed $\mathrm{t}, \exists n_{t} \in \mathbf{N}$ s.t $R_{n} \geq t$ a.s \Longrightarrow for each $\mathrm{t}, n \geq n_{t}$ the above set is measure 0 set and hence the claim.

WLOG we assume that $X \in \mathbf{b L}$.

Define, $Z=\left(Z_{t}\right)_{t \geq 0}$, where $Z_{t}:=\lim _{\substack{u \rightarrow t \\ u>t}} X_{t}$. Observe $Z \in \mathbf{D}$ (As, $Z_{t+}=X_{t+}=Z_{t}$ and $Z_{t-}=X_{t}$ exists). For, $\epsilon>0$, define a sequence of stopping time,

$$
\begin{gathered}
\tau_{0}^{\epsilon}=0 \\
\tau_{n+1}^{\epsilon}=\inf \left\{t: t>\tau_{n}^{\epsilon} \text { and }\left|Z_{t}-Z_{\tau_{n}^{\epsilon}}\right|>\epsilon\right\}
\end{gathered}
$$

Claim: For a given $\epsilon>0,\left\{\tau_{n}^{\epsilon}\right\}_{n \geq 0}$ is a \mathscr{F}_{t}-stopping time $\uparrow \infty$ a.s. as $n \uparrow \infty$.
proof of claim: As Z is a RCLL process, $\tau_{n}^{\epsilon} \uparrow \infty$ a.s. as $n \uparrow \infty$. clearly, τ_{0}^{ϵ} is a stopping time.

$$
\begin{aligned}
& \left\{\tau_{1}^{\epsilon} \leq t\right\} \\
& \quad=\left\{\omega: \inf \left\{s: s>0 \text { and }\left|Z_{s}-Z_{0}\right|>\epsilon\right\} \leq t\right\} \\
& \quad=\left\{\omega:\left|Z_{s}-Z_{0}\right|>\epsilon, s \leq t\right\} \in \mathscr{F}_{t}(\text { as } Z \in \mathbf{D})
\end{aligned}
$$

We prove by induction, so we assume that τ_{n}^{ϵ} is \mathscr{F}_{t}-stopping time and want to prove that τ_{n+1}^{ϵ} is \mathscr{F}_{t}-stopping time

$$
\begin{aligned}
& \left\{\tau_{n+1}^{\epsilon} \leq t\right\} \\
& \quad=\left\{\omega: \inf \left\{s: s>\tau_{n}^{\epsilon} \text { and }\left|Z_{s}-Z_{\tau_{n}^{\epsilon}}\right|>\epsilon\right\} \leq t\right\} \\
& \quad=\left\{\omega: \tau_{n}^{\epsilon}<t\right\} \cap\left\{\omega:\left|Z_{s}-Z_{\tau_{n}^{\epsilon}}\right|>\epsilon, s \leq t\right\} \in \mathscr{F}_{t} \cap \mathscr{F}_{t \wedge \tau_{n}^{\epsilon}}\left(\subset \mathscr{F}_{t}\right)(\text { as } Z \in \mathbf{D})
\end{aligned}
$$

Define, $Z^{\epsilon}:=\sum_{k} Z_{\tau_{k}^{\epsilon}} 1_{\left(\tau_{k}^{\epsilon}, \tau_{k+1}^{\epsilon}\right)}$ for each $\epsilon>0$. As $X \in \mathbf{b L} \Longrightarrow Z^{\epsilon}$ is bounded. Also, $Z^{\epsilon} \rightarrow Z$ uniformly as $\epsilon \rightarrow 0$ since for a given $\mathrm{t}, t \in\left[\tau_{k_{0}}^{\epsilon}, \tau_{k_{0}+1}^{\epsilon}\right)$ for some k_{0} (say) and $\left|Z_{\tau_{k_{0}}^{\epsilon}}-Z_{t}\right|<\epsilon \Longrightarrow$ for $s \leq t, s \in\left[\tau_{k}^{\epsilon}, \tau_{k+1}^{\epsilon}\right.$) for $k \leq k_{0}$ and $\left|Z_{\tau_{k}^{\epsilon}}-Z_{s}\right|<\epsilon$ (by definition of τ_{k}^{ϵ}) and hence uniform convergence.

As the theorem talks about space $\mathbf{L}(\mathbf{b L})$, we define $V^{\epsilon}:=X_{0} 1\{0\}+\sum_{k} Z_{\tau_{k}^{\epsilon}} 1_{\left(\tau_{k}^{\epsilon}, \tau_{k+1}^{\epsilon}\right]}$. One can prove that $V^{\epsilon} \rightarrow X_{0} 1\{0\}+Z_{-}=X$ uniformly in compacts. So, we define,

$$
X^{n, \epsilon}:=X_{0} 1\{0\}+\sum_{k=1}^{n} Z_{\tau_{k}^{\epsilon}} 1_{\left(\tau_{k}^{\epsilon}, \tau_{k+1}^{\epsilon}\right]}
$$

we choose small enough ϵ and large enough n s.t $X^{n, \epsilon}$ is arbitrarily close to X.

- Definition 6: Define a linear map $J_{X}: \mathbf{S} \rightarrow \mathbf{D}$ as

$$
J_{X}(H):=H_{0} X_{0}+\sum_{k=1}^{n} H_{k}\left(X^{T_{k+1}}-X^{T_{k}}\right)
$$

For $H \in \mathbf{S}$ and X a RCLL, adapted process. We call $J_{X}(H)\left(\int H_{s} d X_{s}, H \cdot X\right.$ other notations) as Stochastic integrals of \mathbf{H} wrt \mathbf{X}.
Note: We have continuously expanded the domain of definition of integrals from definite integral $I_{X}(H)=J_{X}(H)_{\infty}, I_{X^{t}}(H)=\left(J_{X}(H)\right)_{t}$ to indefinite integral $J_{X}(H)$ which is also a function of time.

Theorem 9. For a Semi-Martingale X, the map $J_{X}: \mathbf{S}_{\mathbf{u c p}} \rightarrow \mathbf{D}_{\mathbf{u c p}}$ is continuous.
Proof. As we are interested only in convergence in compacts set, WLOG we take X to be a total Semi-Martingale.

- Step 1: We prove that for bounded $H^{i} \in \mathbf{S}$ if $H^{i} \rightarrow 0$ uniformly then $J_{X}\left(H^{i}\right) \rightarrow 0$ in ucp i.e the map $J_{X}: \mathbf{S}_{\mathbf{u}} \rightarrow \mathbf{D}_{\mathbf{u c p}}$ is continuous
- Step 2: We use step 1 to prove (the desired result) $J_{X}: \mathbf{S}_{\mathbf{u c p}} \rightarrow \mathbf{D}_{\mathbf{u c p}}$ is continuous.
- Proof of Step 1: Let, $\delta>0$ be given and define sequence of stopping times $\tau_{i}:=\inf \left\{s:\left|\left(H^{i} \cdot X\right)_{s} \geq \delta\right|\right\}$ (It's a stopping time as $H \cdot X$ is a RCLL process). Clearly, $H^{i} 1_{\left[0, \tau_{i}\right]} \in \mathbf{S} \rightarrow 0$ uniformly as $i \rightarrow \infty$.(Notation: $(\cdot)_{t}^{*}=\sup _{s \leq t}(\cdot)$.)Thus for every t,

$$
\begin{aligned}
& P\left(\left\{\omega:\left(H^{i} \cdot X\right)_{t}^{*}>\delta\right\}\right) \\
& \quad \leq P\left(\left\{\omega:\left|\left(H^{i} 1_{\left[0, \tau_{i}\right]} \cdot X\right)_{t}\right| \geq \delta\right\}\right) \\
& \quad=P\left(\left\{\omega:\left|I_{X}\left(H^{i} 1_{\left[0, \tau_{i}\right]}\right)_{t}\right| \geq \delta\right\}\right) \rightarrow 0
\end{aligned}
$$

(By definition of Semi-Martingale.)

- proof of Step 2: Now, suppose that $H^{i} \xrightarrow{\text { ucp }} 0$. Let, $\delta>0, \epsilon>0, t>0$ from step 1 we know that $\exists \eta>0$ s.t $|H|_{u} \leq \eta \Longrightarrow P\left(J_{X}(H)_{t}^{*}>\delta\right)<\frac{\epsilon}{2}$. Define a sequence of stopping time $T_{i}:=\inf \left\{s:\left|H_{s}^{i}\right|>\eta\right\}$ and let $\hat{H}^{i}:=H^{i} 1_{\left[0, T_{i}\right]} 1_{\left\{T_{i}>0\right\}}$.

Then, $\hat{H}^{i} \in \mathbf{S}$ and $\left|\hat{H}^{i}\right|_{u} \leq \eta$ by left continuity (i.e $\hat{H}^{i} \xrightarrow{\text { uniformly }} 0$ [we will use step 1]).

$$
\begin{aligned}
& P\left(\left\{\omega:\left(\mid H^{i} \cdot X\right)_{t}^{*} \mid>\delta\right\}\right) \\
&=P\left(\left\{\omega:\left|\left(H^{i} \cdot X\right)_{t}^{*}\right| \geq \delta, T_{i} \leq t\right\}\right)+P\left(\left\{\omega:\left|\left(H^{i} \cdot X\right)_{t}^{*}\right| \geq \delta, T_{i}>t\right\}\right) \\
& \quad \leq P\left(\left\{\omega:\left|\left(H^{i} \cdot X\right)_{t}\right|^{*} \geq \delta, T_{i} \leq t\right\}\right)+P\left(\left\{\omega: T_{i}>t\right\}\right) \\
&=P\left(\left\{\omega:\left|\left(\hat{H}^{i} \cdot X\right)_{t}^{*}\right| \geq \delta\right\}\right)+P\left(\left\{\omega: T_{i}>t\right\}\right) \\
& \leq \frac{\epsilon}{2}+P\left(\left\{\left(H^{i}\right)_{t}^{*}>\eta\right\}\right) \\
&<\epsilon
\end{aligned}
$$

for i large enough as $H^{i} \xrightarrow{\text { ucp }} 0$.

- Definition 7: We know that for Semi-Martingale X, J_{X} is continuous linear map on $\mathbf{S}_{\mathbf{u c p}}$ and as $\mathbf{S}_{\mathbf{u c p}}$ is dense in $\mathbf{L}_{\mathbf{u c p}}$, we extend continuously domain of definition of $J_{X}: \mathbf{S}_{\mathbf{u c p}} \rightarrow \mathbf{D}$ to $J_{X}: \mathbf{L}_{\mathbf{u c p}} \rightarrow \mathbf{D}$. We will call this extend continuous linear map Stochastic Integrals.
- Properties of stochastic integrals: Here, we denote Y- Semi Martingale and $H \in \mathbf{L}$ for (Ω, \mathscr{F}, P)

Theorem 10. Let T be a stopping time. Then $(H \cdot Y)^{T}=H 1_{[0, T]} \cdot Y=H \cdot\left(Y^{T}\right)$
Proof. As (by definition/notation) $(H \cdot Y)^{t}=H 1_{[0, t]} \cdot Y=H \cdot\left(Y^{t}\right)$ for any $t>0 \Longrightarrow$ $(H \cdot Y)^{t \wedge T}=H 1_{[0, t \wedge T]} \cdot Y=H \cdot\left(Y^{t \wedge T}\right)$ taking limit $t \rightarrow \infty$ we get the result.

For, $Q \ll P, H_{Q} \cdot Y$ is Q indistinguishable for $H_{P} \cdot Y$
Theorem 11. The jump process $\Delta(H \cdot Y)_{s}$ is indistinguishable from $H_{s} \cdot \Delta Y_{s}\left(\Delta X_{s}:=\right.$ $X_{s}-X_{s-}$).

Proof. For $H \in \mathbf{S}$ the above result holds. Now, using right continuity of $H \cdot X$ for $H \in \mathbf{L}$ and denseness of \mathbf{S} in \mathbf{L}.

Theorem 12. Let, $Q \ll P$. Then $H_{Q} \cdot Y$ is Q indistinguishable from $H_{P} \cdot Y$

Let, Q_{i} be a sequence of probabilities s.t Y is a Q_{k} Semi-Martingale for each i. Let, $P:=\sum_{i=1}^{\infty} \alpha_{i} Q_{i}$, where $\alpha_{i} \geq 0$ and $\sum_{i=1}^{\infty} \alpha_{i}=1$. Then $H_{Q_{i}} \cdot Y$ is Q_{i} indistinguishable from $H_{P} \cdot Y$ for all k for $\alpha_{i}>0$.

Proof. We know that Y is also a P - Semi-Martingale and $Q_{i} \ll P$. The result follows from the previous theorem

Theorem 13. Let, \mathbf{G} be another filtration s.t $H \in \mathbf{L}(\mathbf{G}) \cap \mathbf{L}(\mathbf{F})$ and X is also \mathbf{G} -Semi-Martingale. Then $H_{\mathbf{G}} \cdot Y=H_{\mathbf{F}} \cdot Y$. We denote $\mathbf{L}(\mathbf{F})$ as a space of LCRL process adapted to \mathbf{F}-filtration

Proof. Note: $\mathbf{S}(\mathbf{G}) \cap \mathbf{S}(\mathbf{F})$ is dense in $\mathbf{L}(\mathbf{G}) \cap \mathbf{L}(\mathbf{F})$. For $H \in \mathbf{S}(\mathbf{G}) \cap \mathbf{S}(\mathbf{F})$ the result is vacuously true, the result follows by ucp convergence.

We have defined a stochastic integral for a large class, the next theorem correlates it with the Lebesgue-Stieltjes integral.

Theorem 14. If we assume that Y has a finite variation on compacts, then $H \cdot Y$ is indistinguishable from the Lebesgue-Stieltjes integral (enumerated path by path).

Proof. For $H \in \mathbf{S}$ the integral is similar to integration of simple function wrt Y. For, $H \in \mathbf{L}, \exists H^{n} \in \mathbf{S} \xrightarrow{u c p} H$. Then \exists subsequence n_{l} s.t $\exists H^{n_{l}} \rightarrow H$ uniformly in compacts a.s. and as interchange of limit and integral is true for uniform convergence, the result follows.

Theorem 15. Let, Y, \tilde{Y} be semi-martingales and $H, \tilde{H} \in \mathbf{L}$. Let, $A_{1}=\{\omega: H .(\omega)=$ $\tilde{H} .(\omega), \omega: Y .(\omega)=\tilde{Y} .(\omega)\}$ and $A_{2}=\left\{\omega: s \mapsto Y_{s}(\omega)\right.$ is of finite variation $\}$. Then $H \cdot Y=\tilde{H} \cdot \tilde{Y}$ on A_{1} and $H \cdot Y=$ path-by path Lebesgue-Stieltjes integral on A_{2}.

Theorem 16 (Associativity). The stochastic integral process $Y_{1}=H \cdot Y$ is a SemiMartingale and for $K \in \mathbf{L}$,

$$
K \cdot Y_{1}=K \cdot(H \cdot Y)=(K H) \cdot Y
$$

Proof. Suppose that Y_{1} is a Semi-Martingale. If $K, H \in \mathbf{S}$ and $H=H_{0} 1_{\{0\}}+$ $\sum_{i=1}^{n} H_{i} 1_{\left(T_{i}, T_{i+1}\right]}$ and $K=K_{0} 1_{\{0\}}+\sum_{j=1}^{m} K_{j} 1_{\left(\tau_{j}, \tau_{i+1}\right]}$ be the representation of H and K , then $K H(t)=K_{0} H_{0}+\sum_{i, j} K_{j} H_{i} 1_{\left\{t \in\left(T_{i}, T_{i+1}\right] \cap\left(\tau_{j}, \tau_{j+1}\right]\right\}}$.

$$
\begin{aligned}
H & \cdot Y_{1} \\
& =\sum_{j=1}^{n} K_{j}\left((H \cdot Y)^{\tau_{j+1}}-(H \cdot Y)^{\tau_{j}}\right) \\
& =\sum_{j=1}^{n} K_{j}\left(\left(H^{\tau_{j+1}} \cdot Y\right)-\left(H^{\tau_{i}} \cdot Y\right)\right) \\
& =\sum_{j=1}^{n} K_{j}\left(H 1_{\left.\tau_{i}, \tau_{i+1}\right]}\right) \cdot Y \\
& =\sum_{j=1}^{n}\left(\sum_{i=1}^{n} 1_{\left(T_{i}, T_{i+1}\right] \cap\left(\tau_{j}, \tau_{j+1}\right]} K_{j} H_{i}\right) \cdot Y \\
& =(K H) \cdot Y
\end{aligned}
$$

Therefore, the associativity of stochastic integrals holds for Semi-predictable process and can be extended to \mathbf{L} by continuity.

Left to show: $Y_{1}=H \cdot Y$ is a Semi-Martingale (i.e for any $K^{n} \rightarrow K$ in $\mathbf{S}_{\mathbf{u}} \Longrightarrow$ $J_{Y_{1}^{t}}\left(K^{n}\right) \xrightarrow{P} J_{Y_{1}^{t}}(K)$ for each $\left.t>0\right)$.

Observe: For $K, H \in \mathbf{S}, I_{Y_{1}}(K)=I_{Y}(G H)$ and we know that $K H \in \mathbf{S}$. Therefore, the continuity of $I_{Y_{1}}$ is guaranteed by continuity of I_{Y} and as Y is a Semi-Martingale, so is $Y_{1}($ for $H \in \mathbf{S})$.
Let, $H^{i}(\in \mathbf{S}) \xrightarrow{u c p} H(\in \mathbf{L})$. Then by definition, $H^{i} \cdot Y \xrightarrow{u c p} H \cdot Y \Longrightarrow \exists\left(i_{n}\right)_{n \geq 0}$ s.t $H^{i_{n}} \cdot Y \rightarrow H \cdot Y$ a.s and uniformly on compacts. Let, $K \in \mathbf{S}$ and let, $Y_{1}^{i_{n}}=H^{i_{n}} \cdot Y$ and we know that $Y^{i_{n}}$ are semi martingale converging pointwise to $Y_{1}\left(\Longrightarrow Y_{1} \in \mathbf{D}\right)$.

As $J_{Y_{1}}$ is defined for any $Y_{1} \in \mathbf{D}$, we have

$$
\begin{aligned}
J_{Y_{1}} & (K) \\
& =K \cdot Y_{1} \\
& =\lim _{i_{n} \rightarrow \infty} K \cdot Y_{1}^{i_{n}} \\
& =\lim _{i_{n} \rightarrow \infty} K \cdot\left(H^{i_{n}} \cdot Y\right) \\
& =\lim _{i_{n} \rightarrow \infty}\left(K H^{i_{n}}\right) \cdot Y \\
& =\lim _{i_{n} \rightarrow \infty} J_{Y}\left(K H^{i_{n}}\right) \\
\text { (As Y is Semi - Martingale) } & \\
& =J_{Y}(K H)
\end{aligned}
$$

Therefore, for $H \in \mathbf{S}, J_{Y_{1}}(K)=J_{Y}(K H)$.

Now, let $K^{n} \rightarrow K$ in $\mathbf{S}_{\mathbf{u}}$ which means that $K^{n} H \rightarrow K H$ in $\mathbf{L}_{\mathbf{u c p}}$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} J_{Y_{1}}\left(K^{n}\right) \\
& \quad=\lim _{n \rightarrow \infty} J_{Y}\left(K^{n} H\right)
\end{aligned}
$$

(As Y is Semi - Martingale)

$$
\begin{align*}
& =J_{Y}(K H) \\
& =J_{Y_{1}}(K) \tag{4.2}
\end{align*}
$$

Note: As convergence is in ucp for every $t>0, Y_{1}^{t}$ is a total Semi-Martingale and hence Y_{1} is a Semi-Martingale.

- Definition 8: A random partition is a finite collection of finite stopping time $\Lambda=$ $\left(\tau_{i}\right)_{i=0}^{k}$ s.t. $0=\tau_{0} \leq \tau_{1} \leq \ldots \leq \tau_{i} \leq \ldots \leq \tau_{k}<\infty$. And a sequence of such random partition $\Lambda^{n}=\left(\tau_{i}^{n}\right)_{i=0}^{k_{n}}, 0=\tau_{0}^{n} \leq \tau_{1}^{n} \leq \ldots \leq \tau_{i}^{n} \leq \ldots \leq \tau_{k_{n}}^{n}<\infty$ is said to tend to identity if
$-\limsup _{n} \tau_{j}^{n}=\infty$ a.s
$-\left\|\Lambda^{n}\right\|:=\sup _{i}\left|\tau_{i+1}^{n}-\tau_{i}^{n}\right| \rightarrow 0$ a.s
- Definition 9: Let, Λ be a random partition and X be any process. Then the process X sampled at Λ is defined as

$$
X^{\Lambda}:=X_{0} 1_{\{0\}}+\sum_{i} X_{\tau_{i}} 1_{\left(\tau_{i+1}, \tau_{i}\right]}
$$

Theorem 17. Let, $X \in \mathbf{D}$ or \mathbf{L} and Y a Semi-Martingale and Λ^{n} tends to identity. Then, $\int_{0+}^{t} X_{s}^{\Lambda^{n}} d Y_{s}\left(=\sum_{i} X_{\tau_{i}^{n}}\left(Y^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}}\right)\right) \xrightarrow{u c p}\left(X_{-}\right) \cdot Y$

4.3 Quadratic variation and its properties:

- Definition 10: Let, A, B be Semi-Martingales. The Quadratic Variation process of A is defined as

$$
[A, A]:=A^{2}-2 \int A_{-} d A
$$

The Quadratic Covariation of A, B is defined as

$$
[A, B]:=A B-\int A_{-} d B-\int B_{-} d A
$$

Observe: $(A, B \rightarrow[A, B])$ is bilinear and symmetric and $[A, B]=\frac{1}{2}([A+B, A+B]-$ $[A, A]-[B, B])$ - Polarization Identity.

Theorem 18. The Quadratic variation of A is a RCLL, adapted, increasing process satisfying the following properties:

- 1. $[A, A]_{0}=A_{0}^{2}, \Delta[A, A]=(\Delta A)^{2}$
- 2. If Λ^{n} tends to identity, then

$$
A_{0}^{2}+\sum_{i}\left(A^{\tau_{i+1}^{k}}-A^{\tau_{i}^{k}}\right)^{2} \xrightarrow[k \rightarrow \infty]{u c p}[A, A]
$$

- 3. For any stopping time $T,\left[A^{T}, A\right]=\left[A, A^{T}\right]=\left[A^{T}, A^{T}\right]=[A, A]^{T}$

Proof. As we have Quadratic Variation is defined only for Semi-Martingales and stochatic integral is Semi-Martingale and product of RCLL, adapted process is also RCLL, adapted process implies that $[\mathrm{A}, \mathrm{A}]$ is a RCLL, adapted process. If we assume the
that property 2 holds then for $s \leq t$ the LHS has more positive terms in the summation for t and hence $[A, A]_{s} \leq[A, A]_{t}$ a.s
By definition, $[A, A]_{0}=A_{0}^{2}$ and we know that $\Delta(H \cdot Y)_{s}=H_{s} \cdot(\Delta Y)_{s}$. So,

$$
\begin{aligned}
& (\Delta A)_{s}^{2} \\
& \quad=\left(A_{s}-A_{s-}\right)^{2} \\
& =A_{s}^{2}-2 A_{s-} A_{s}+A_{s-}^{2} \\
& =A_{s}^{2}-2 A_{s-} A_{s}+A_{s-}^{2} \\
& =A_{s}^{2}-A_{s-}^{2}-2 A_{s-}\left(A_{s}-A_{s-}\right) \\
& =\Delta\left(A^{2}\right)_{s}-2 A_{s-}\left(\Delta A_{s}\right) \\
& =\Delta[A, A]_{s}
\end{aligned}
$$

Note: If We prove (2), (3) follows.

For (2), WLOG we assume $A_{0}=0$ (as we can take $\bar{A}=A-A_{0}$). Let, $T_{n}=\sup _{i} \tau_{i}^{n}(<\infty$ by definition of random partition) and $\lim _{n \rightarrow \infty} T_{n}=\infty$ a.s. Thus, $\left(A^{2}\right)^{T_{n}}=\sum_{i}\left[A^{\tau_{i+1}^{n}}-\right.$ $\left.A_{i}^{\tau_{i}^{n}}\right] \xrightarrow{u c p} A^{2}$ And by theorem 17, $\sum_{i} A_{\tau_{i}^{n}}\left(A^{\tau_{i+1}^{n}}-A_{i}^{\tau_{i}^{n}}\right) \xrightarrow{u c p} \int A_{-} d A$.

$$
\begin{aligned}
& \sum_{i}\left(A^{\tau_{i+1}^{k}}-A^{\tau_{i}^{k}}\right)^{2} \\
& \quad=\sum_{i}\left(\left(A^{\tau_{i+1}^{k}}\right)^{2}-\left(A_{i}^{\tau_{i}^{k}}\right)^{2}-2 A^{\tau_{i}^{k}}\left(A^{\tau_{i+1}^{k}}-A^{\tau_{i}^{k}}\right)\right) \\
& \xrightarrow{u c p} A^{2}-2 \int A_{-} d A \\
& \quad=[A, A]
\end{aligned}
$$

The Quadratic variation process of two Semi Martingale has a paths of finite variation(FV) and hence its also a Semi-Martingale

Proof. From Polarization Identity, the co-varation process can be return as diffrence of two increasing process, hence it has a path of finite variation process. Since, its also a RCLL, adapted process implies Semi-Martingality.
[Integration By Parts] Let, A,B be Two Semi-Martingales. Then,

$$
A B=\int A_{-} d B+\int B_{-} d A+[A, B]
$$

Hence, AB is a Semi-Martingale.

Proof. Follows from definition of $[\mathrm{A}, \mathrm{B}]$ and space of Semi-Martingale is a vector space.

Space of Semi-Martingale is an Algebra for given $(\Omega, \mathscr{F}, \mathbf{F}, P)$. From the previous theorem, one can conclude the following theorem.

Theorem 19. The Quadratic co-variation of $A, B 0(S e m i-M a r t i n g a l e s) ~ i s ~ a ~ R C L L, ~$ adapted, increasing process satisfying the following properties:

- 1. $[A, B]_{0}=A_{0} B_{0}, \Delta[A, A]=\Delta A \Delta B$
- 2. If Λ^{n} tends to identity, then

$$
A_{0}^{2}+\sum_{i}\left(A^{\tau_{i+1}^{k}}-A_{i}^{\tau_{i}^{k}}\right)\left(B^{\tau_{i+1}^{k}}-B_{i}^{\tau_{i}^{k}}\right) \xrightarrow[k \rightarrow \infty]{u c p}[A, B]
$$

- 3. For any stopping time $T,\left[A^{T}, B\right]=\left[A, B^{T}\right]=\left[A^{T}, B^{T}\right]=[A, B]^{T}$

Theorem 20. Let, μ, ν, η be right continuous functions from $[0, \infty)$ to \mathbf{R} s.t $\mu(0)=$ $\nu(0)=\eta(0)=0$ and μ be of $F V, \nu, \eta$ increasing function. If for all s, t with $s \leq t$,

$$
\left|\int_{s}^{t} d \mu_{u}\right| \leq\left(\int_{s}^{t} d \nu_{u}\right)^{\frac{1}{2}}\left(\int_{s}^{t} d \eta_{u}\right)^{\frac{1}{2}}
$$

Then for any measurable functions f, g

$$
\int_{s}^{t}|f||g| d\left|\mu_{u}\right| \leq\left(\int_{s}^{t} f^{2} d \nu_{u}\right)^{\frac{1}{2}}\left(\int_{s}^{t} g^{2} d \eta_{u}\right)^{\frac{1}{2}}
$$

Where, $d\left|\mu_{u}\right|$ is a total variation measure measure wrt $d \mu_{u}$.

The proof of the theorem is similar to the theorem to follow.

Theorem 21 (Kunita-Watanabe Inequality). Let, A, B be two Semi-Matingales and H, G be two measurable process. Then,

$$
\begin{equation*}
\int_{0}^{\infty}\left|H_{s}\right|\left|G_{s}\right| d|[A, B]|_{s} \leq\left(\int_{0}^{\infty} H_{s}^{2} d[A, A]_{s}\right)^{\frac{1}{2}}\left(\int_{0}^{\infty} K_{s}^{2} d[B, B]_{s}\right)^{\frac{1}{2}} \text { a.s } \tag{4.3}
\end{equation*}
$$

Where, $d|\cdot|$ is a total variation measure of $d(\cdot)$.

Proof. Define, $[A, B]_{s}^{t}:=[A, B]_{t}-[A, B]_{s}$. From observing Theorem 20, we begin by showing for any $s, t(s \leq t)$

$$
\left|\int_{s}^{t} d[A, B]_{u}\right| \leq\left(\int_{s}^{t} d[A, A]_{u}\right)^{\frac{1}{2}}\left(\int_{s}^{t} d[B, B]_{u}\right)^{\frac{1}{2}} \text { a.s }
$$

i.e

$$
\begin{gathered}
{[A, B]_{s}^{t} \leq\left([A, A]_{s}^{t}\right)^{\frac{1}{2}}\left([B, B]_{s}^{t}\right)^{\frac{1}{2}} \text { a.s }} \\
0 \leq[A+x B, A+x B]_{s}^{t}=x^{2}[A, A]_{s}^{t}+2 x[A, B]_{s}^{t}+[B, B]_{s}^{t}
\end{gathered}
$$

The above equation is a Quadratic equation and the minimum value is attained at

$$
x=\frac{-[A, B]_{s}^{t}}{[A, A]_{s}^{t}}
$$

And the minimum value is $-\frac{\left([A, B]_{s}^{t}\right)^{2}}{[A, A]_{s}^{t}}+[B, B]_{s}^{t}$ but the Quadratic equation is postive for any value of x. Therefore, we get

$$
\left([A, B]_{s}^{t}\right)^{2} \leq[A, A]_{s}^{t} \cdot[B, B]_{s}^{t}
$$

Now, firstly let, H, G be simple integrands(process) with representation (for simplicity)

$$
G=\sum_{i=1}^{m} 1_{\left(t_{i-1}, t_{i}\right]}(u) G_{j}
$$

and

$$
H=\sum_{i=1}^{m} 1_{\left(t_{i-1}, t_{i}\right]}(u) H_{j}
$$

Where, H_{j}, G_{j} are $\mathscr{F}_{t_{j-1}}$-measurable.

$$
\begin{align*}
& \left|\int_{0}^{t} H_{s} G_{s} d[A, B]_{s}\right| \\
& \quad \leq \sum_{i=1}^{m}\left|H_{j}\right|\left|G_{j}\right|\left|[A, B]_{t_{i-1}}^{t_{i}}\right| \\
& \quad \leq \sum_{i=1}^{m}\left|H_{j}\right|\left|G_{j}\right|\left([A, A]_{t_{i-1}}^{t_{i}}\right)^{\frac{1}{2}}\left([B, B]_{t_{i-1}}^{t_{i}}\right)^{\frac{1}{2}} \\
& \quad \leq\left(\sum_{i=1}^{m}\left|H_{j}\right|^{2}[A, A]_{t_{i-1}}^{t_{i}}\right)^{\frac{1}{2}}\left(\sum_{i=1}^{m}\left|G_{j}\right|^{2}[B, B]_{t_{i-1}}^{t_{i}}\right)^{\frac{1}{2}} \\
& \quad=\left(\int_{0}^{t} H^{2} d[A, A]\right)^{\frac{1}{2}}\left(\int_{0}^{t} G^{2} d[B, B]\right)^{\frac{1}{2}} \tag{4.4}
\end{align*}
$$

The last inequality is due to Hölder's inequality on counting measure.

Now, if the H, G are bounded measurable process then $\exists H^{n}, G^{n}$-simple processes converging to H, G a.s. respectively. Also, as we are integrating over $[s, t]$ a compact set implies that $[A, A]_{u},[B, B]_{u}$ are finite measure a.s. So, we apply Bounded Convergence Theorem so that eqn(4.4) holds for bounded measurable functions.As the LHS of the equation is not total variation measure we will use the following proposition.

Proposition: Let, ν be a complex measurable on (\mathscr{F}, X) space. Then \exists a measurable function f s.t $|f(x)|=1 \forall x \in X$ and $d \nu=f d|\nu|$, where $d|\nu|$ is total variation measure of ν.

The above proposition implies that for almost all $\omega \in \Omega \exists$, $f_{s}(\omega) \in\{-1,1\}$ s.t. $d[A, B]_{s}(\omega)=f_{s}(\omega) d\left|[A, B]_{s}\right|$. So, in LHS eqn(4.4) we get the desired. And as any arbitary measurable process can be approximated by increasing sequence of bounded measurable process we get the reult by applyoing the Motone Convergence Theorem.

For, A, B Semi-Martingales and H, K - measurable processes,

$$
E\left[\int_{0}^{\infty}\left|H_{s}\right|\left|G_{s}\right| d|[A, B]|_{s} \leq\left\|\left(\int_{0}^{\infty} H_{s}^{2} d[A, A]_{s}\right)^{\frac{1}{2}}\right\|_{p}\left\|\left(\int_{0}^{\infty} K_{s}^{2} d[B, B]_{s}\right)^{\frac{1}{2}}\right\|_{q}\right.
$$

s.t. $\frac{1}{p}+\frac{1}{q}=1$ For a Semi-Martingale Z, as $\Delta[Z, Z]_{t}=\left(\Delta Z_{t}\right)^{2}$ and as $[Z, Z]$ is a non-
decreasing RCLL process We decompose $[Z, Z]$ into path-by path continuous part of $[Z, Z]$ (Notation: $[Z, Z]^{c}$) and jump part i.e for any $t \geq 0$,

$$
[Z, Z]_{t}=[Z, Z]_{t}^{c}+\sum_{0 \leq s \leq t}\left(\Delta Z_{s}\right)^{2}
$$

We say that Z will be a Quadratic pure jump process if $[Z, Z]^{c}=0$. For example, the Poisson process is a Quadratic pure jump process.

Theorem 22. If Z is a RCLL, adapted with paths of $F V$ on compacts, then Z is a quadratic pure jump semi-martingale.

Proof. We already know that Z is a Semi-Martingale and Stochastic integral is pathby path Lebesgue Stieljes Integral. We use path-by path $d\left(X_{s}\right)^{2}=\left(X_{s}\right)^{2}-\left(X_{s-}\right)^{2}=$ $X_{s}\left(X_{s}-X_{s-}\right)+X_{s-}\left(X_{s}-X_{s-}\right)$, therefore

$$
\begin{aligned}
X^{2} & -2 \int X_{-} d X \\
& =\int X d X+\int X_{-} d X-2 \int X_{-} d X \\
& =\int X_{-}+\Delta X d X+\int X_{-} d X-2 \int X_{-} d X \\
& =\int \Delta X d X+2 \int X_{-} d X-2 \int X_{-} d X \\
& =\sum_{s \leq t}\left(\Delta X_{s}\right)^{2}
\end{aligned}
$$

Theorem 23. Let, Z be a local-Martingale with non-constant continuous paths. Then $[Z, Z]$ is not constant process and $Z^{2}-[Z, Z]$ is a continuous local Martingale.

Theorem 24. If Y, Z Semi-Martingales and $H, G \in \mathbf{L}$ then

$$
[H \cdot Y, G \cdot Z]_{t}=\int_{0}^{t} H_{s} G_{s} d[Y, Z]_{s}
$$

Theorem 25. Let, $H \in \mathbf{D}, Y, Z$ be Semi-Martingales and Λ^{n} be random partitions tending to identity. Then

$$
\left.\sum H_{\tau_{i}^{n}}\left(Y^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}}\right)\left(Z^{\tau_{i+1}^{n}}-Z^{\tau_{i}^{n}}\right)\right] \xrightarrow{u c p} \int H_{s-} d[Y, Z]_{s}
$$

Proof. By defintion, $[Y, Z]=Y Z-Y_{-} \cdot Z-Z_{-} \cdot Y$. Consider, the RHS of the result i.e

$$
\begin{aligned}
& H_{-} \cdot[Y, Z] \\
& \quad=H_{-} \cdot(Y Z)-H_{-} \cdot\left(Y_{-} \cdot Z\right)-H_{-} \cdot\left(Z_{-} \cdot Y\right) \\
& \left.\left.\quad=H_{-} \cdot(Y Z)-(H Y)_{-} \cdot Z\right)-(H Z)_{-} \cdot Y\right)
\end{aligned}
$$

By Theorem 17, we know that the sum is a limit (in ucp) of

$$
\begin{aligned}
& \sum_{i}\left\{H_{\tau_{i}^{n}}\left((Y Z)^{\tau_{i+1}^{n}}-(Y Z)^{\tau_{i}^{n}}\right)-(H Y)_{\tau_{i}^{n}}\left(Z^{\tau_{i+1}^{n}}-Z^{\tau_{i}^{n}}\right)\right. \\
& \left.\quad-(H Z)_{\tau_{i}^{n}}\left(Y^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}}\right)\right\} \\
& =\sum_{i} H_{\tau_{i}^{n}}\left\{Y_{i+1}^{\tau_{i+1}^{n}} Z^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}} Z^{\tau_{i}^{n}}-Y_{i}^{\tau_{i}^{n}}\left(Z^{\tau_{i+1}^{n}}-Z^{\tau_{i}^{n}}\right)-Z^{\tau_{i}^{n}}\left(Y_{i+1}^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}}\right)\right\} \\
& =\sum_{i} H_{\tau_{i}^{n}}\left\{Y^{\tau_{i+1}^{n}} Z^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}} Z^{\tau_{i+1}^{n}}-Z^{\tau_{i}^{n}}\left(Y^{\tau_{i+1}^{n}}-Y^{\tau_{i}^{n}}\right)\right\} \\
& =\sum_{i} H_{\tau_{i}^{n}}\left\{\left(Z_{i+1}^{\tau_{i+1}^{n}}-Z_{i}^{\tau_{i}^{n}}\right)\left(Y^{\tau_{i+1}^{n}}-Y_{i}^{\tau_{i}^{n}}\right)\right\}
\end{aligned}
$$

Note: We have used that $(Y Z)^{T}=Y^{T} Z^{T}$ and also, $H_{T}=H^{T}$ in and interval [T, •].

4.4 Ito's Formula and It's Applications:

Theorem 26 (Taylor's Theorem:). Let, $f \in \mathscr{C}^{n}(\mathbf{I})$ for some fixed n and I be an Open interval around a, then for each $x \in I(\neq a) \exists z$ in between z and a s.t

$$
\begin{equation*}
f(x)-f(a)=\sum_{i=1}^{n-1} \frac{f^{i}(a)}{i!}(x-a)^{i}+f^{n}(z)(x-a)^{n} \tag{4.5}
\end{equation*}
$$

which can be further simplified as

$$
\begin{equation*}
f(x)-f(a)=\sum_{i=1}^{n} \frac{f^{i}(a)}{i!}(x-a)^{i}+R(x, a) \tag{4.6}
\end{equation*}
$$

where, f^{i} denotes the $i^{\text {th }}$ derivative of $f,|R(x, a)| \leq r(|x-a|)(|x-a|)^{n}$ and here, r is an increasing positive valued function with $\lim _{\alpha \downarrow 0} r(\alpha)=0$.

We will use explicitly Taylor's Theorem in the Itô's Formula for $\mathrm{n}=2$.

Theorem 27 (Itô's Formula). Let, Z be a Semi-Martingale and f be a $\mathscr{C}^{2}(\mathbf{R})$-valued function. Then $f(Z)$ is a Semi-Martingale and
$f\left(Z_{t}\right)-f\left(Z_{0}\right)=\int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) d Z_{s}+\frac{1}{2} \int_{0+}^{t} f^{\prime \prime}\left(Z_{s-}\right) d[Z, Z]_{s}^{c}+\sum_{0<s \leq t}\left\{f\left(Z_{s}\right)-f\left(Z_{s-}\right)-f^{\prime}\left(Z_{s-}\right) \Delta Z_{s}\right\}(4.7)$
Proof. Observe: The jump part of the $\int_{0+}^{t} f^{\prime \prime}\left(Z_{s-}\right) d[Z, Z]_{s}$ (finite value) is $\sum_{s \leq t} f^{\prime \prime}\left(Z_{s-}\right)\left(\Delta Z_{s}\right)^{2}$
is a convergent series. We add and subtract $\frac{1}{2}$ times this series to the RHS of (4.7) to get,

$$
\begin{align*}
& f\left(Z_{t}\right)-f\left(Z_{0}\right) \tag{4.8}\\
& \quad=\int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) d Z_{s}+\frac{1}{2} \int_{0+}^{t} f^{\prime \prime}\left(Z_{s-}\right) d[Z, Z]_{s} \\
& \quad+\sum_{0<s \leq t}\left\{f\left(Z_{s}\right)-f\left(Z_{s-}\right)-f^{\prime}\left(Z_{s-}\right) \Delta Z_{s}-\frac{1}{2} \sum_{s \leq t} f^{\prime \prime}\left(Z_{s-}\right)\left(\Delta Z_{s}\right)^{2}\right\}
\end{align*}
$$

We aim to prove eqn(4.8).

Step 1: Z be a continuous Semi-Martingale
Proof of Step 1: WLOG assume $Z_{0}=0$. Define,

$$
T_{m}:=\inf \left\{t:\left|Z_{t}\right| \geq m\right\}
$$

are sequence of increasing stopping time $\uparrow \infty . Z^{T_{m}}$ are bounded stopped process $(\leq m)$ and if Itô's formula holds then it will be valid for $Z^{T_{m}}$ for each m. Therefore, we assume that Z takes values in a compact set. For a fixed $t>0$ let, Λ^{n} be a sequence of random partition (i.e $\left.\Lambda^{n}=\left(0=\tau_{0}^{n} \leq \tau_{1}^{n} \leq \ldots \leq \tau_{k_{n}}^{n}=t\right)\right)$ tending to identity. Then, by Taylor's Theorem

$$
\begin{aligned}
& f\left(Z_{t}\right)-f\left(Z_{0}\right) \\
& \quad=\sum_{i=0}^{k_{n}}\left\{f\left(Z_{\tau_{i+1}^{n}}\right)-f\left(Z_{\tau_{i}^{n}}\right)\right\} \\
& \quad=\sum_{i=0}^{k_{n}}\left\{f^{\prime}\left(Z_{\tau_{i}^{n}}\right)\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)\right\}+\frac{1}{2} \sum_{i=0}^{k_{n}}\left\{f^{\prime \prime}\left(Z_{\tau_{i}^{n}}\right)\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)^{2}\right\}+\sum_{i=0}^{k_{n}}\left\{R\left(Z_{\tau_{i}^{n}}, Z_{\tau_{i+1}^{n}}\right)\right\}
\end{aligned}
$$

The first and Second series converges in ucp(in probability as we are talking only in
compact set) to $\int_{0}^{t} f^{\prime}\left(Z_{s-}\right) d Z_{s}$ and $\frac{1}{2} \int_{0}^{t} f^{\prime}\left(Z_{s}\right) d[Z, Z]_{s}$ by Theorem 17 and 25 respectively. The third term,

$$
\begin{aligned}
& \sum_{i=0}^{k_{n}}\left\{R\left(Z_{\tau_{i}^{n}}, Z_{\tau_{i+1}^{n}}\right)\right\} \\
& \quad \leq \sup _{i} r\left(\left|Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right|\right)\left\{\sum_{i=0}^{k_{n}}\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)^{2}\right\}
\end{aligned}
$$

By Theorem 18, $\sum_{i=0}^{k_{n}}\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)^{2} \xrightarrow{u c p}[Z, Z]_{t}$, by assumption for each fixed $\omega \in \Omega$ $u \mapsto Z_{u}(\omega)$ is continuous and as $[0, t]$ is a compact set, the map is uniformly continuous. But, as $\lim _{n \rightarrow \infty} \sup _{i}\left|\tau_{i+1}^{n}-\tau_{i}^{n}\right|=0$ (tends to identity) \Longrightarrow the third tem tends to 0 . Hence, we have proved for the continuous case.

Step 2: Z be any Semimartingale
Proof of Step 2: For any $t>0$ we know that, $\sum_{0<s \leq t}\left(\Delta Z_{s}\right)^{2} \leq[Z, Z]_{t}$ (by decomposition of $[Z, Z])$. Therefore the series is convergent and as Z is RCLL process only countably many jump time \Longrightarrow for every $\epsilon>0$ only finitely many jump times are in A a.s where, $B=B(\epsilon, t):=\left\{s \in(0, t]: \sum_{0<s \leq t}\left(\Delta Z_{s}\right)^{2} \leq \epsilon^{2}\right\}$ and $A:=B^{c}(A, B$ contains all jump points). Now, we use similar methodology used in step 1.

$$
\begin{aligned}
& f\left(Z_{t}\right)-f\left(Z_{0}\right) \\
& \quad=\sum_{i}\left\{f\left(Z_{\tau_{i+1}^{n}}\right)-f\left(Z_{\tau_{i}^{n}}\right)\right\} \\
& \quad=\sum_{i, A}\left\{f\left(Z_{\tau_{i+1}^{n}}\right)-f\left(Z_{\tau_{i}^{n}}\right)\right\}+\sum_{i, B}\left\{f\left(Z_{\tau_{i+1}^{n}}\right)-f\left(Z_{\tau_{i}^{n}}\right)\right\}
\end{aligned}
$$

Where, $\sum_{i, B}$ denotes $\sum_{i} 1_{\left\{B \cap\left(\tau_{i+1}^{n}, \tau_{i}^{n}\right] \neq \phi\right\}}$ and we choose large n enough such that $\sum_{i}=$ $\sum_{i, A}+\sum_{i, B}$. So,

$$
\lim _{n} \sum_{i, A}\left\{f\left(Z_{\tau_{i+1}^{n}}\right)-f\left(Z_{\tau_{i}^{n}}\right)=\sum_{s \in A}\left\{f\left(Z_{s}\right)-f\left(Z_{s-}\right)\right\}\right.
$$

Now, as $f \in \mathscr{C}^{2} \mathbf{R}$, we use Taylor's Theorem,

$$
\begin{aligned}
& \sum_{i, B}\left\{f\left(Z_{\tau_{i+1}^{n}}\right)-f\left(Z_{\tau_{i}^{n}}\right)\right\} \\
& \quad=\sum_{i}\left\{f^{\prime}\left(Z_{\tau_{i}^{n}}\right)\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)\right\}+\frac{1}{2} \sum_{i}\left\{f^{\prime \prime}\left(Z_{\tau_{i}^{n}}\right)\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)^{2}\right\} \\
& \quad-\sum_{i \in A}\left\{f^{\prime}\left(Z_{\tau_{i}^{n}}\right)\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)+\frac{1}{2} f^{\prime \prime}\left(Z_{\tau_{i}^{n}}\right)\left(Z_{\tau_{i+1}^{n}}-Z_{\tau_{i}^{n}}\right)^{2}\right\}+\sum_{i \in B}\left\{R\left(Z_{\tau_{i}^{n}}, Z_{\tau_{i+1}^{n}}\right)(4.9)\right.
\end{aligned}
$$

Similar to continuous case the first two terms converges to to $\int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) d Z_{s}$ and $\frac{1}{2} \int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) d[Z, Z]_{s}$ respectively. The Third term converges to

$$
\left.-\sum_{s \in A}\left\{f\left(Z_{s-}\right) \Delta Z_{s}+\frac{1}{2} f^{\prime \prime}\left(Z_{s-}\right)\left(\Delta Z_{s}\right)^{2}\right)\right\}
$$

We know that for a absolutely convergent series limit and Sum are interchangeable. So, if we prove that for $\tilde{Z}:=Z 1_{\left[0, U_{k}\right)}$, where, $U_{k}:=\inf \left\{u>0:\left|Z_{u}\right| \geq k\right\}$ with $Z_{0}=0$, the above series converges absolutely to the last term of (4.8) for Z replaced by \tilde{Z}. Then, we take limit $\epsilon \rightarrow 0$ and then $k \rightarrow \infty$, we get the desired result as $\left|\tilde{Z}_{s}\right| \leq k$ $\forall s \leq t \Longrightarrow f^{\prime \prime}$ is uniformly continuous (Bounded continuous function on compact is uniformly continuous) and as \tilde{Z} is RCLL process, we have

$$
\limsup _{n} \sum_{i \in B}\left\{R\left(\tilde{Z}_{\tau_{i}^{n}}, \tilde{Z}_{\tau_{i+1}^{n}}\right)\right\} \leq r(\epsilon+)[\tilde{Z}, \tilde{Z}]_{t} \xrightarrow{\epsilon \rightarrow 0} 0
$$

Note: \tilde{Z} is a Semi-Martingale(Product of two Semi-Martingale).

Left to Show: Absolute convergence of the series when Z is replaced by \tilde{Z}.
As $|\tilde{Z}| \leq k$, the map f is restricted to $[-k, k]$, we use (4.5) for $\mathrm{n}=2$ (take $C=$ $\left.\sup _{z \in[-k, k]} f^{\prime \prime}(z)\right)$ to conclude that

$$
\left|f(y)-f(x)-(y-x) f^{\prime}(x)\right| \leq C(y-x)^{2}
$$

$$
\begin{aligned}
& \sum_{s \in A}\left\{\left|f\left(\tilde{Z}_{s}\right)-f\left(\tilde{Z}_{s-}\right)-f^{\prime}\left(\tilde{Z}_{s-}\right) \Delta \tilde{Z}_{s}\right|\right\} \\
& \quad \leq \sum_{0<s \leq t}\left\{\left|f\left(\tilde{Z}_{s}\right)-f\left(\tilde{Z}_{s-}\right)-f^{\prime}\left(\tilde{Z}_{s-}\right) \Delta \tilde{Z}_{s}\right|\right\} \\
& \leq C \sum_{0<s \leq t}\left(\Delta Z_{s}\right)^{2} \\
& \quad \leq C[\tilde{Z}, \tilde{Z}]_{t}<\infty
\end{aligned}
$$

Also,

$$
\begin{aligned}
& \sum_{s \in A}\left\{\left|f^{\prime \prime}\left(\tilde{Z}_{s-}\right)\left(\Delta \tilde{Z}_{s}\right)^{2}\right|\right\} \\
& \leq C \sum_{0<s \leq t}\left(\Delta \tilde{Z}_{s}\right)^{2} \\
& \leq C[\tilde{Z}, \tilde{Z}]_{t}<\infty \text { a.s }
\end{aligned}
$$

Thus, the given series is absolutely convergent.

Theorem 28. Let, $Z=\left(Z^{1}, Z^{2}, . . Z^{m}\right)$ be a m-tuple Semi-Martingale and $f \in \mathscr{C}^{2}\left(\mathbf{R}^{\mathbf{n}}, \mathbf{R}\right)$. Then, $f(Z)$ is a Semi-Martingale and

$$
\begin{align*}
& f\left(Z_{t}\right)-f\left(Z_{0}\right) \tag{4.10}\\
& \quad=\sum_{i=1}^{m} \int_{0+}^{t} \frac{\partial f}{\partial z_{i}}\left(Z_{s-}\right) d Z_{s}^{i}+\sum_{1 \leq i, j \leq m} \frac{1}{2} \int_{0+}^{t} \frac{\partial^{2} f}{\partial z_{i} \partial z_{j}}\left(Z_{s-}\right) d\left[Z^{i}, Z^{j}\right]_{s}^{c} \\
& \quad+\sum_{0<s \leq t}\left\{f\left(Z_{s}\right)-f\left(Z_{s-}\right)-\sum_{i=1}^{m} \frac{\partial f}{\partial z_{i}}\left(Z_{s-}\right) \Delta Z_{s}^{i}\right\}
\end{align*}
$$

- Definition 11: For Y, Z Semi-Martingales, the Fisk-Stratonovich integral of Y wrt Z is defined as

$$
\int_{0}^{t} Y_{s-} \circ d Z_{s}:=\int_{0}^{t} Y_{s-} d Z_{s}+\frac{1}{2}[Y, Z]_{t}^{c}
$$

Theorem 29. For a Semi-Martingale Z and $f \in \mathscr{C}$ 3, the following holds

$$
f\left(Z_{t}\right)-f\left(Z_{0}\right)=\int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) \circ d Z_{s}+\sum_{0<s \leq t}\left\{f\left(Z_{s}\right)-f\left(Z_{s-}\right)-f^{\prime}\left(Z_{s-}\right) \Delta Z_{s}\right\}
$$

Theorem 30. For continuous Semi-Martingales X, Y, let $Z=X+i Y$ and h be analytic function. Then

$$
f\left(Z_{t}\right)-f\left(Z_{0}\right)=\int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) d Z_{s}+\frac{1}{2} \int_{0+}^{t} f^{\prime \prime}\left(Z_{s-}\right) d[Z, Z]_{s}
$$

Proof. We use Itô's formula for $Z=(X, i Y)$ and Cauchy-Riemann equations to get the desired result.

Theorem 31. For Semi-Martingales X, Y, let $Z=X+i Y$ and h be analytic function. Then

$$
\begin{aligned}
& f\left(Z_{t}\right)-f\left(Z_{0}\right) \\
& \quad=\int_{0+}^{t} f^{\prime}\left(Z_{s-}\right) d Z_{s}+\frac{1}{2} \int_{0+}^{t} f^{\prime \prime}\left(Z_{s-}\right) d[Z, Z]_{s}+\sum_{0<s \leq t}\left\{f\left(Z_{s}\right)-f\left(Z_{s-}\right)-f^{\prime}\left(Z_{s-}\right) \Delta Z_{s}\right\}
\end{aligned}
$$

4.5 Existence and Uniqueness of SDE wrt SemiMartingales

- Definition 12: We say $Y \in \mathbf{D}$ is decomposable if $\exists N$, A s.t

$$
Y_{t}=Y_{0}+N_{t}+A_{t}
$$

Where, N-locally square integrable local martingale $\left(N_{0}=0\right)$ and A is FV process ($A_{0}=0$).

- Definition 13: We say $Y \in \mathbf{D}$ is classical Semi-Martingale if $\exists N$, A s.t

$$
Y_{t}=Y_{0}+N_{t}+A_{t}
$$

Where, N-local martingale $\left(N_{0}=0\right)$ and A is FV process $\left(A_{0}=0\right)$.

- Definition 14: The Predicatable σ-algebra \mathscr{P} is the smallest σ-algebra making all L-processes measurable. We will also notate \mathscr{P} for the space of processes that are predictably measurable.

Theorem 32. For $Y \in \mathbf{D}$. The following are equivalent:

- Y is a Semi-Martingale
- Y is decomposable
- given $\alpha>0, \exists N$, A with $N_{0}=A_{0}=0$ and N-local Martingale with jumps bounded by α, $A-F V$ process, s.t $Y_{t}=Y_{0}+N_{t}+A_{t}$
- Y is a classical Semi-Martingale The decomposition is unique if N is local martingale and A a predictably measurable $F V$ process.

We will use the above result explicitly in this section.

- Definition 14:

For $H \in \mathbf{D}$, define

$$
\begin{gathered}
H^{*}=\sup _{t}\left|H_{t}\right| \\
\|H\|_{\underline{\underline{S}}^{p}}:=\left\|H^{*}\right\|_{L_{p}}
\end{gathered}
$$

The above norm can similarly be defined for \mathbf{L}

- Definition 15: For a Semi martingale Z with $Z_{0}=0$, let $Z=N+A$ be one of the decomposition, where N is a local martingale and A an adapted, RCLL process with $\mathrm{FV}\left(N_{0}=0=A_{0}\right)$, for $0 \leq p \leq \infty$ we define,

$$
\begin{gathered}
j_{p}(N, A):=\left\|[N, N]_{\infty}^{\frac{1}{2}}+\int_{0}^{\infty}\left|d A_{s}\right|\right\|_{L_{p}} \\
\|Z\|_{\underline{\underline{\mathbf{H}^{p}}}}:=\inf _{Z=N+A} j_{p}(N, A)
\end{gathered}
$$

the infimum is taken overall possible decompositions.

Theorem 33. For any Semi-Martingale Y with $Y_{0}=0$,

$$
\left\|[Y, Y]_{\infty}^{\frac{1}{2}}\right\|_{L_{p}} \leq\|Y\|_{\underline{\underline{\mathbf{H}^{p}}}}
$$

holds. $(1 \leq p \leq \infty)$

Proof. In Kunita-Watanabe inequality (21) put $H=G=1$ we get

$$
[A, B]_{\infty} \leq\left([A, A]_{\infty}^{\frac{1}{2}}\right)\left([B, B]_{\infty}^{\frac{1}{2}}\right)
$$

Let, $Y=N+A$ be the decomposition, then (Observe: A is a Quadratic pure jum process)

$$
\begin{aligned}
& {[Y, Y]_{\infty}^{1 / 2}} \\
& \quad=[N+A, N+A]_{\infty}^{1 / 2} \\
& \quad=\left([N, N]_{\infty}+2[N, A]_{\infty}+[A, A]_{\infty}\right)^{1 / 2} \\
& \quad \leq\left([N, N]_{\infty}+2\left([N, N]_{\infty}^{1 / 2}\right)\left([A, A]_{\infty}^{1 / 2}\right)+[A, A]_{\infty}\right)^{1 / 2} \\
& =\left(\left([N, N]_{\infty}^{1 / 2}+[A, A]_{\infty}^{1 / 2}\right)^{2}\right)^{1 / 2} \\
& =[N, N]_{\infty}^{1 / 2}+[A, A]_{\infty}^{1 / 2} \\
& \quad=[N, N]_{\infty}^{1 / 2}+\left(\sum_{s}\left(\Delta A_{s}\right)^{2}\right)^{1 / 2} \\
& \quad \leq[N, N]_{\infty}^{1 / 2}+\sum_{s}\left|\Delta A_{s}\right|\left(\text { Hölder's }^{\prime} \text { Inequality }\right) \\
& \quad \leq[N, N]_{\infty}^{1 / 2}+\int_{0}^{t}\left|d A_{s}\right|
\end{aligned}
$$

Where, $\left|d A_{s}\right|$ denotes the total-variation measure. Taking L_{p} norms followed by inf over all decomposition's give the results.

If Y is a local Martingale then above equality holds.

Theorem 34. $(1 \leq p<\infty), \exists$ a constant c_{p} s.t for any Z - semi-martingale with $Z_{0}=0$, we have

$$
\|Z\|_{\underline{\underline{\mathbf{S}^{p}}}} \leq c_{p}\|Z\|_{\underline{\underline{\boldsymbol{H}^{p}}}}
$$

Proof. As, $Z \in \mathbf{D}$ implies both the norm make sense.

$$
\begin{aligned}
& \|Z\|_{\underline{\mathbf{S}^{p}}}^{p} \\
& =E\left[\left(Z_{\infty}^{*}\right)^{p}\right] \\
& \leq E\left[\left(M_{\infty}^{*}+\int_{0}^{\infty}\left|d A_{s}\right|\right)^{p}\right] \\
& \leq 2^{p-1} E\left[\left(M_{\infty}^{*}\right)^{p}+\left(\int_{0}^{\infty}\left|d A_{s}\right|\right)^{p}\right] \\
& \leq 2^{p-1} E\left[\hat{c}_{p}[M, M]_{\infty}^{p / 2}+\left(\int_{0}^{\infty}\left|d A_{s}\right|\right)^{p}\right] \text { (Burkholder'sinequality) } \\
& \leq 2^{p-1} \tilde{c}_{p} E\left[[M, M]_{\infty}^{p / 2}+\left(\int_{0}^{\infty}\left|d A_{s}\right|\right)^{p}\right] \\
& \leq c_{p}\left(j_{p}(N, A)\right)^{p}
\end{aligned}
$$

where, $\tilde{c}_{p}=1 \vee \hat{c}_{p}$ and $c_{p}=2^{p-1} \tilde{c}_{p}$. Now, take the pth root followe by inf over all decompositions.

Theorem 35 (Emery's Inequality). For a Semi-Martingale $Y, H \in \mathbf{L}$ and $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}$,

$$
\begin{equation*}
\left\|\int_{0}^{\infty} H_{s} d Z_{s}\right\|_{\underline{\underline{\mathbf{H}^{r}}}} \leq\left\|Z_{s}\right\|_{\underline{\underline{\mathbf{H}^{p}}}}\left\|H_{s}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \tag{4.11}
\end{equation*}
$$

Holds $(1 \leq p \leq \infty, 1 \leq q \leq \infty)$.

Proof. We assume $Z_{0}=0$ a.s and Let, $Y=N+A\left(N_{0}=A_{0}=0\right.$ a.s $)$ be the decomposition. Then, $H \cdot Y=H \cdot N+H \cdot A$ and is a decomposition of $H \cdot Y$. Therefore,

$$
\begin{aligned}
\| H & \cdot Z \|_{\mathbf{H}^{r}} \\
& \leq j_{r}(H \cdot N, H \cdot A) \\
& =\left\|[H \cdot N, H \cdot N]_{\infty}^{\frac{1}{2}}+\int_{0}^{\infty}\left|H_{s}\left\|d A_{s} \mid\right\|_{L_{r}}\right.\right. \\
& =\left\|\left(\int_{0}^{\infty} H_{s}^{2} d[N, N]_{s}\right)^{\frac{1}{2}}+\int_{0}^{\infty}\left|H_{s}\right|\left|d A_{s}\right|\right\|_{L_{r}} \\
& \leq\left\|H_{\infty}^{*}\left([N, N]_{\infty}^{\frac{1}{2}}+\int_{0}^{\infty}\left|d A_{s}\right|\right)\right\|_{L_{r}} \\
& \leq\left\|H_{\infty}^{*}\right\|_{L_{p}}\left\|\left([N, N]_{\infty}^{\frac{1}{2}}+\int_{0}^{\infty}\left|d A_{s}\right|\right)\right\|_{L_{q}} \text { (Hölder'sinequality) } \\
& \leq\|H\|_{\underline{\mathbf{S}^{p}}} j_{q}(N, A)
\end{aligned}
$$

As, the last inequality holds for every decomposition of Y , the result follows by taking inf over such decompositions.

Recall: For, $Z \in \mathbf{D}$, and stopping time τ, we denote

$$
\begin{aligned}
Z^{\tau} & =Z_{t} 1_{[0, \tau)}+Z_{\tau} 1_{[\tau, \infty)} \\
Z^{\tau-} & =Z_{t} 1_{[0, \tau)}+Z_{\tau-} 1_{[\tau, \infty)}
\end{aligned}
$$

- Definition 16: A process Z is locally in $\underline{\underline{\mathbf{S}^{p}}}\left(\right.$ resp. $\left.\underline{\underline{\mathbf{H}^{p}}}\right)$ if \exists stopping times $\left(\tau^{n}\right)_{(n \geq 1)} \uparrow$ ∞ s.t $Z^{\tau^{n}} 1_{\left\{\tau^{n}>0\right\}} \in \underline{\underline{\mathbf{S}^{p}}}$ (resp. $\underline{\underline{\mathbf{H}^{p}}}$) for each n and a process Z is pre locally in $\underline{\underline{\mathbf{S}^{p}}}$ (resp. $\left.\underline{\underline{\mathbf{H}^{p}}}\right)$ if $Z^{\tau^{n}} 1_{\left\{\tau^{n}>0\right\}} \in \underline{\underline{\mathbf{S}^{p}}}\left(\right.$ resp. $\underline{\underline{\mathbf{H}^{p}}}$) for each n .

Theorem 36. Any Semi-martingale $\left(Z\right.$ with $\left.Z_{0}=0\right)$ is prelocally in $\underline{\underline{\mathbf{H}^{p}}}, 1 \leq p \leq \infty$

- Definition 17: For a given Semi-Martingale $Y \in \underline{\mathbf{H}^{\infty}}, \alpha>0$, we say Y is α Sliceable(notate: $Y \in \mathcal{S}(\alpha)$) if \exists a finite sequence of stopping times $0=\tau_{0} \leq \tau_{1} \leq \ldots \tau_{l}$ s.t
$-Z=Z^{\tau_{l}-}$
$-\left\|\left(Z-Z^{\tau_{i}}\right)\right\|^{\tau_{i+1}} \leq \alpha$
Theorem 37. For a Semi-Martingale with $Z_{0}=0$ a.s
- if $Z \in \mathcal{S}(\alpha)$ then $Z^{T} \in \mathcal{S}(\alpha)$ and $Z^{T-} \in \mathcal{S}(2 \alpha)$
- For each $\alpha>0, \exists$ an arbitrarily large stopping time s.t $Z^{T-} \in \mathcal{S}(\alpha)$

Proof.

- Definition 17: A function $F: \mathbf{R}_{+} \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is Lipschitz if \exists constant K s.t
$-|F(s, a)-F(s, b)| \leq K|a-b|$, each $s \in \mathbf{R}_{+}$
$-s \mapsto F(s, a)$ is RCLL, for each $a \in \mathbf{R}^{n}$
- Definition 18: A function $F: \mathbf{R}_{+} \times \Omega \times \mathbf{R}^{n} \rightarrow \mathbf{R}$ is $\mathbf{R a n d o m}$ Lipschitz if
$-(s, \omega) \mapsto F(s, \omega, a) \in \mathbf{L}$, for each fixed $a \in \mathbf{R}^{n}$
- For each $(s, \omega) \in \mathbf{R}_{+} \times \Omega|F(s, \omega, a)-F(s, \omega, b)| \leq K(\omega)|a-b|$, Where K is a finite random variable.
- Definition 18: An Operator $F: \mathbf{D}^{n} \rightarrow \mathbf{D}$ is process Lipschitz if for any $Y, Z \in \mathbf{D}^{n}$
- given any stopping time $\tau, Y^{\tau-}=Z^{\tau-} \Longrightarrow F(Y)^{\tau-}=F(Z)^{\tau-}$
$-\exists K \in \mathbf{L}$ s.t $\left|F(Y)_{t}-F(Z)_{t}\right| \leq K_{t}\left\|Y_{t}-Z_{t}\right\|$, Where the norm is Euclidean norm.
- Definition 18: An Operator $G: \mathbf{D}^{n} \rightarrow \mathbf{D}$ is functional Lipschitz if for any $Y, Z \in$ D^{n}
- given any stopping time $\tau, Y^{\tau-}=Z^{\tau-} \Longrightarrow G(Y)^{\tau-}=G(Z)^{\tau-}$
$-\exists K=\left(K_{t}\right)_{(t \geq 0)^{-}}$increasing finite process s.t $\left|F(Y)_{t}-F(Z)_{t}\right| \leq K_{t}\|Y-Z\|_{t}^{*}$, a.s, each $t \geq 0$.

Lemma 38. Let, $1 \leq p<\infty, J \in \underline{\underline{\mathbf{S}^{p}}}$, F be a functional lipschitz with $F(0)=0$ and assume $\sup _{t}\left|K_{t}(\omega)\right| \leq k<\infty$ a.s. Let, Y be a Semi-martingale s.t $\|Y\|_{\underline{\mathbf{H}^{\infty}}} \leq \frac{1}{2 c_{p} k}$. Then the equation,

$$
X_{t}=J_{t}+\int_{0}^{t} F(X)_{s-} d Y_{s}
$$

has a unique solution in $\underline{\underline{\mathbf{S}^{p}}}$ and

$$
\|X\|_{\underline{\underline{\mathbf{s}^{p}}}} \leq 2\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}
$$

Proof. Define an operator, $\Gamma: \underline{\underline{\mathbf{S}^{p}}} \rightarrow \underline{\underline{\mathbf{S}^{p}}}$ as

$$
\Gamma(X)_{t}=J_{t}+\int_{0}^{t} F(X)_{s-} d Y_{s}
$$

Claim: The operator is Lipschitz
proof of claim: We will use Theorem 34 and 35

$$
\begin{aligned}
& \left\|\Gamma(X)_{t}-\Gamma(\hat{X})_{t}\right\|_{\underline{\underline{\underline{\underline{s}}^{p}}}} \\
& \quad \leq\left\|\int_{0}^{t}\left(F(X)_{s-}-F(\hat{X})_{s-}\right) d Y_{s}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \quad \leq c_{p}\left\|\int_{0}^{t}\left(F(X)_{s-}-F(\hat{X})_{s-}\right) d Y_{s}\right\|_{\underline{\underline{\mathbf{H}^{\infty}}}} \\
& \quad \leq c_{p}\|F(X)-F(\hat{X})\|_{\underline{\underline{\underline{S}^{p}}}}\|Y\|_{\underline{\mathbf{H}^{\infty}}} \\
& \quad \leq c_{p}\|F(X)-F(\hat{X})\|_{\underline{\underline{\mathbf{S}^{p}}}} \cdot \frac{1}{2 c_{p} k} \\
& \quad \leq c_{p} k\|X-\hat{X}\|_{\underline{\underline{\mathbf{S}^{p}}}} \cdot \frac{1}{2 c_{p} k} \\
& \quad \leq \frac{1}{2} \cdot\|X-\hat{X}\|_{\underline{\underline{\mathbf{S}^{p}}}}
\end{aligned}
$$

By fixed point Theorem, the existence and uniqueness of the solution is guaranteed.

$$
\begin{aligned}
& \|X\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \leq\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}+\left\|\int_{0}^{t} F(X)_{s-} d Y_{s}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \leq\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}+c_{p}\left\|\int_{0}^{t} F(X)_{s-} d Y_{s}\right\|_{\underline{\underline{\mathbf{H}^{\infty}}}} \\
& \leq\|J\|_{\underline{\mathbf{S}^{p}}}+c_{p}\|F(X)\| \underline{\underline{\mathbf{S}^{p}}}\|Y\|_{\underline{\underline{\mathbf{H}^{\infty}}}} \\
& \leq\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}+c_{p}\|F(X)-F(0)\|_{\underline{\underline{\mathbf{S}^{p}}}} \cdot \frac{1}{2 c_{p} k} \\
& \leq\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}+c_{p} k\|X\|_{\underline{\underline{\mathbf{S}^{p}}}} \cdot \frac{1}{2 c_{p} k} \\
& \leq\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}+\frac{1}{2} \cdot\|X\| \|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \quad \Longrightarrow \frac{1}{2}\|X\|_{\underline{\underline{\mathbf{S}^{p}}}} \leq\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}
\end{aligned}
$$

Lemma 39. Let, $1 \leq p<\infty, J \in \underline{\underline{\mathbf{S}^{p}}}$, F be a functional lipschitz with $F(0)=0$ and assume $\sup _{t}\left|K_{t}(\omega)\right| \leq k<\infty$ a.s. Let, Y be a Semi-martingale s.t $Y \in \mathcal{S}\left(\frac{1}{2 c_{p} k}\right)$. Then the equation,

$$
\begin{equation*}
X_{t}=J_{t}+\int_{0}^{t} F(X)_{s-} d Y s \tag{}
\end{equation*}
$$

has a unique solution in $\underline{\underline{\mathbf{S}^{p}}}$ and

$$
\|X\|_{\underline{\underline{\underline{S}^{p}}}} \leq C(k, Y)\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}
$$

where, $C(k, Y)$ is a constant which depends only on k and Y.

Proof. Let, $y=\|Y\|_{\underline{\underline{\mathbf{H}^{\infty}}}}$ and $j=\|J\|_{\underline{\underline{\mathbf{S}^{p}}}}$. Let, $0=\tau_{0}, \tau_{1}, \ldots, \tau_{l}$ be the slicing time times for Y. Consider,

$$
\begin{equation*}
X=J^{\tau_{i}-}+\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i}-} i=0,1, . ., l \tag{i}
\end{equation*}
$$

If we can show that $\exists X^{i}$-unique solution of (i) indexed equation for each i, then the solution of $\left({ }^{*}\right)$ is given as $X=X^{l}+J-J^{\tau_{l}-}$.
As, $J^{0-}=Y^{0-}=0 \forall t \Longrightarrow X \equiv 0$ for eqn (0). By induction, assume that eqn (i) has a unique solution X^{i} and let $x^{i}=\left\|X^{i}\right\|_{\underline{\underline{\mathbf{s}^{p}}}}$. Consider,

$$
\tilde{X}^{i}=J^{\tau_{i}}+\int_{0}^{t} F(X)_{s-} d Y^{\tau_{i}} s
$$

Clearly, the above eqn has a unique solution(denote- \tilde{X}^{i}) as $\tilde{X}^{i}=X^{i}+\left\{\Delta J_{\tau_{i}}+\right.$ $\left.F\left(X^{i}\right)_{\tau_{i}-} \Delta Y_{\tau_{i}}\right\} 1_{\left.\tau_{i}, \infty\right)}$. Also,

$$
\begin{aligned}
& \left\|\tilde{X}^{i}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \leq\left\|X^{i}+\left\{\Delta J_{\tau_{i}}+F\left(X^{i}\right)_{\tau_{i}-} \Delta Y_{\tau_{i}}\right\} 1_{\left[\tau_{i}, \infty\right)}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \leq\left\|X^{i}\right\|_{\underline{\underline{\mathbf{S}^{p}}}}+\left\|\Delta J_{\tau_{i}} 1_{\left[\tau_{i}, \infty\right)}\right\|_{\underline{\underline{\mathbf{S}^{p}}}}+\left\|F\left(X^{i}\right)_{\tau_{i}-} \Delta Y_{\tau_{i}} 1_{\left[\tau_{i}, \infty\right)}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& =\left\|X^{i}\right\|_{\underline{\underline{\mathbf{S}^{p}}}}+\left\|\left\{J^{\tau_{i}}-J^{\tau_{i}-}\right\} 1_{\left[\tau_{i}, \infty\right)}\right\| \underline{\underline{\underline{\mathbf{S}^{p}}}}+\left\|\left(\int_{\left[\tau_{i}-, \tau_{i}\right]} F\left(X^{i}\right)_{s-} d Y_{s}\right) 1_{\left[\tau_{i}, \infty\right)}\right\|_{\underline{\underline{\mathbf{S}^{p}}}} \\
& \leq\left\|X^{i}\right\|_{\underline{\underline{\underline{S}^{p}}}}+2\|J\|_{\underline{\underline{\underline{S}^{p}}}}+\left\|F\left(X^{i}\right)\right\|_{\underline{\underline{\mathbf{S}^{p}}}}\|Y\|_{\underline{\underline{\mathbf{H}^{\infty}}}} \\
& \leq x^{i}+2 j+k x^{i} y \\
& =x^{i}(1+k y)+2 j
\end{aligned}
$$

i.e $\tilde{x}^{i} \leq x^{i}(1+k y)+2 j$

For any $V \in \mathbf{D}$, define

$$
D_{i} V:=\left(V-V^{\tau_{i}}\right)^{\tau_{i+1}-}
$$

Observe, for any solution X of eqn $(i+1)$,

$$
X^{\tau_{i}}=\tilde{X}^{i}, t \in\left[0, \tau_{i+1}\right)
$$

Set, $V=X-\left(\tilde{X}^{i}\right)^{\tau_{i+1}-}$

$$
\begin{aligned}
V & =X-\left(X^{\tau_{i}}\right)^{\tau_{i+1}-} \\
& =X-X^{\tau_{i}} \\
& =J^{\tau_{i+1}-}+\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i+1}-}-\left(J^{\tau_{i+1}-}+\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i+1}-}\right)^{\tau_{i}} \\
& =J^{\tau_{i+1}-}+\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i+1}-}-\left(J^{\tau_{i+1}-}\right)^{\tau_{i}}-\left(\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i+1}-}\right)^{\tau_{i}} \\
& =J^{\tau_{i+1}-}+\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i+1}-}-J^{\tau_{i}}-\int_{0}^{t} F(X)_{s-} d Y_{s}^{\tau_{i}} \\
& =\left(J-J^{\tau_{i}}\right)^{\tau_{i+1}-}+\int_{0}^{t} F\left(V+\tilde{X}^{i}\right)_{s-} d\left(Y-Y^{\tau_{i}}\right)_{s}^{\tau_{i+1}-} \\
& =D_{i} J+\int_{0}^{t} F\left(V+\tilde{X}^{i}\right)_{s-} d D_{i} Y_{s}
\end{aligned}
$$

As, $F\left(\tilde{X}^{i}+0\right)$ may not be 0 , define

$$
G_{i}:=F\left(\tilde{X}^{i}+\cdot\right)-F\left(\tilde{X}^{i}\right)
$$

Thus,

$$
V=\left(D_{i} J+\int_{0}^{t} F\left(\tilde{X}^{i}\right)_{s-} d D_{i} Y_{s}\right)+\int_{0}^{t} G_{i}(V)_{s-} d D_{i} Y_{s}
$$

Clearly, $\tilde{J}=D_{i} J+\int_{0}^{t} F\left(\tilde{X}^{i}\right)_{s-} d D_{i} Y_{s}$ is in $\underline{\underline{\underline{\mathbf{S}^{p}}}}, D_{i} Y$ is a Semi-Martingale with $\left\|D_{i} Y\right\|_{\underline{\mathbf{H}^{\infty}}} \leq$ $\frac{1}{2 c_{p} k}$ as $Y \in \mathcal{S}\left(\frac{1}{2 c_{p} k}\right)$. Therefore by previous lemma this equation has a unique solution in $\underline{\underline{\mathbf{S}^{p}}}$ and

$$
\begin{align*}
v^{i} & \leq 2\left\|D_{i} J+\int_{0}^{t} F\left(\tilde{X}^{i}\right)_{s-} d D_{i} Y_{s}\right\|_{\underline{\mathbf{S}^{p}}} \\
& \leq 2\left(\left\|D_{i} J\right\|_{\underline{\underline{\mathbf{S}^{p}}}}+\left\|\int_{0}^{t} F\left(\tilde{X}^{i}\right)_{s-} d D_{i} Y_{s}\right\|_{\underline{\mathbf{S}^{p}}}\right) \\
& \leq 2\left(2 j+c_{p} k \tilde{x}^{i} \cdot \frac{1}{2 c_{p} k}\right) \\
& =4 j+\tilde{x}^{i} \tag{4.12}
\end{align*}
$$

As $X=V+\left(\tilde{X}^{i}\right)^{\tau_{i+1}-}$, existence and uniqueness of V, \tilde{X}^{i}, yields unique solution of
eqn $(i+1)$ in $\underline{\underline{\mathbf{S}^{p}}}$ (By induction unique solution exists for each eqn (i)) with

$$
\begin{aligned}
& x^{i+1}=\left\|X^{i+1}\right\|_{\underline{\mathbf{S}^{p}}} \\
& \leq\left\|V^{i}\right\|_{\underline{\underline{\mathbf{s}^{p}}}}+\left\|\tilde{X}^{i}\right\|_{\underline{\underline{\mathbf{s}^{p}}}} \\
& =4 j+2 \tilde{x}^{i} \\
& \leq 4 j+2\left(x^{i}(1+k y)+2 j\right) \\
& =8 j+2(1+k y) x^{i} \\
& =8 j+2(1+k y)\left(8 j+2(1+k y) x^{i-1}\right)=8 j+8 j(2(1+k y))+(2(1+k y))^{2} x^{i-1} \\
& =8 j+8 j(2(1+k y))+(2(1+k y))^{2}\left(8 j+2(1+k y) x^{i-2}\right) \\
& =8 j+8 j(2(1+k y))+8 j(2(1+k y))^{2}+(2(1+k y))^{3} x^{i-2} \\
& =8 j \sum_{\alpha=0}^{i}(2(1+k y))^{\alpha} \quad\left(\text { as } x_{0}=0\right) \\
& =8 j \cdot \frac{(2(1+k y))^{i}-1}{1+2 k y}
\end{aligned}
$$

As, the solution of eqn $\left(^{*}\right)$ is $X=X^{l}+J-J^{\tau_{l}-}$, therefore, $\|X\|_{\underline{\underline{\underline{p}}}} \leq x^{l}+2 j$ and hence we conclude that $C(k, Y)=2+8\left[\frac{(2(1+k y))^{l}-1}{1+2 k y}\right]$.

Theorem 40. Let, $Y=\left(Y^{1}, \ldots, Y^{m}\right)$ with $Y_{0}=\overline{0}$ be a vector of Semi-Martingales, $J^{i} \in \mathbf{D}, 1 \leq i \leq n$ and let, F_{j}^{i} be functional Lipschitz operator, then the system of SDE's,

$$
\begin{equation*}
X_{t}^{i}=J_{t}^{i}+\sum_{j=1}^{m} \int_{0}^{t} F_{j}^{i}(X)_{s-} d Y_{s}^{j} \tag{}
\end{equation*}
$$

has a unique solution in \mathbf{D}^{n}. Moreover, if $\left(J^{i}\right)_{i=1}^{n}$ is a vector of Semi-Martingales, then $\left(X^{i}\right)_{i=1}^{n}$ is too.

Proof. We will give the proof for $n=m=1$ i.e consider

$$
X_{t}=J_{t}+\int_{0}^{t} F(X)_{s-} d Y_{s}
$$

WLOG assume that $F(0)=0$ as $X_{t}=\left(J_{t}+\int_{0}^{t} F(0)_{s-} d Y_{s}\right)+\int_{0}^{t} G_{s-} d Y_{s}$, where $G(X):=$ $F(X)-F(0)$ will also be functional Lipschitz and we can redefine J.
Step 1: Assume $\sup _{t} K_{t}(\omega) \leq a<\infty$.
We will use the above two lemma explicitly with $p=2\left(c_{2}=\sqrt{8}\right)$. By Theorem $37 \exists \mathcal{T}$
arbitrary large stopping time s.t $J^{\mathcal{T}-} \in \underline{\underline{\mathbf{S}^{2}}}$ anmd $Y^{\mathcal{T}-} \in \mathcal{S}\left(\frac{1}{4 \sqrt{8} a}\right)$. Then, by Lemma $39, \exists$ a unique solution in $\underline{\underline{\mathbf{S}^{2}}}$

$$
X(\mathcal{T})_{t}=J^{\mathcal{T}-}+\int_{0}^{t} F(X(\mathcal{T}))_{s-} d Y_{s}^{\mathcal{T}-}
$$

For, $\mathcal{R}>\mathcal{T}, X(\mathcal{T})^{\mathcal{T}-}=X(\mathcal{R})^{\mathcal{T}-}$. So, we define, a process $X: \Omega \times[0, \infty) \rightarrow \mathbf{R}$ by $X=X(\mathcal{T})$ on $[0, \mathcal{T})$. By definition of arbitrary large stopping time for each $\mathrm{t} \exists \mathcal{T}>t$ and hence the solution exist.
Uniqueness of solution: Let, \tilde{X} be another solution.
Let, \mathcal{S} be arbitrary large stopping time s.t. $(X-\tilde{X})^{\mathcal{S}-}$ is bounded and let, $\mathcal{R}=$ $\min (\mathcal{S}, \mathcal{T})$ which can also be made arbitrary large. Then, $X^{\mathcal{R}-}, \tilde{X}^{\mathcal{R}-}$ satisfy

$$
Z=J^{\mathcal{R}-}+\int_{0}^{t} F(X(\mathcal{R}))_{s-} d Y_{s}^{\mathcal{R}-}
$$

As $\tilde{X}^{\mathcal{R}-} \in \mathcal{S}(\alpha)$, the solution is unique i.e $X^{\mathcal{R}-}=\tilde{X}^{\mathcal{R}-}$. As this is true for any arbitrary large stopping time, $X=\tilde{X}$ and hence the solution is unique.

Step 2: We prove existence and uniqueness for a fixed t_{0} in $\left[0, t_{0}\right]$.
For fixed t_{0}, the Lipschitz constant constant reduces to $K(\omega)=K_{t_{0}}(\omega)$ a random process. WLOG we can assume $K(\omega)<\infty$ a.s. We choose k s.t $P(K(\omega) \leq k)>0$ and let $\Omega_{i}:=\{\omega: K(\omega) \leq k+i\}$ for each $i=1,2, \ldots$. Observe, $\Omega_{n} \subset \Omega_{m}$ for each $m \geq n$. Define, for each i

$$
Q_{i}(\cdot)=\frac{P\left(\cdot \cap \Omega_{i}\right)}{P\left(\Omega_{i}\right)}
$$

Clearly, $Q_{i} \ll P$ and $Q_{n} \ll Q_{m}$ for $m>n$ implies every P Semi-Martingale and Q_{m} Semi-Martingale are Q_{n} Semi-Martingale. By Theorem 12 every stochastic integral under Q_{n} is indistinguishable under Q_{m} also and here is equal in the space Ω_{n}. Let, X^{m} be the unique solution wrt Q_{m} (true by step 1). By uniqueness of the solution, we conclude that $X^{m}=X^{n}$ a.s Q_{n} on Ω_{n} (indistinguishability). Define,

$$
X_{t}=\sum_{i=1}^{\infty} X_{t}^{i} 1_{\left\{\Omega_{i} \backslash \Omega_{i-1}\right\}}
$$

Clearly, X, X^{i} is indistinguishable ($X=X^{i}$ a.s) wrt Q_{i} on Ω_{i} i.e except $N_{i^{-}}$Zero measure wrt Q_{i} set $X=X^{i}$ on Ω_{i} and by definition of Q_{i}, N_{i} is also zero measure
wrt $P, N:=\cup_{i=1}^{\infty} N_{i}$ is also zero-measure and finally by assumption that $K(\omega)<\infty$ a.s $\Longrightarrow \Omega=\cup_{i=1}^{\infty} \Omega_{i} \backslash \Omega_{i-1}$ a.s (call N_{0} that zero measure set) and hence $N \cup N_{0}$ is zero-measure set wrt P. From above inference we conclude that on Ω_{i}

$$
\begin{aligned}
& X_{t} \\
& \quad=J_{t}+\int_{0}^{t} F\left(X^{i}\right)_{s-} d Y_{s} \\
& \quad=J_{t}+\int_{0}^{t} F(X)_{s-} d Y_{s}
\end{aligned}
$$

a.s P for each n and Hence X is a solution.

Theorem 41. We assume hypothesis of Theorem 40 and let $\left(X^{1}\right)^{i}=H^{i}$ be in \mathbf{D} $(1 \leq i \leq n)$ and let,

$$
\begin{equation*}
\left(X_{t}^{k}\right)^{i}:=j_{t}^{i}+\sum_{j=1}^{m} \int_{0}^{t} F_{j}^{i}\left(X^{k}\right)_{s-} d Y_{s}^{j} \tag{***}
\end{equation*}
$$

inductively be defined. Let, X be the solution of (${ }^{* *}$) then $X^{k} \xrightarrow{u c p} X$.

Chapter 5

Integration wrt Poisson Point Process

We are now interested to understand Stochastic Differential Equations having jump. So we formulate by studying SDE wrt Poisson random measure(PRM). We basically aim to understand the Existence and uniqueness of SDE involving PRM.

5.1 Poisson Random Measure:

- Definition 1:

A random variable X is a said to be Poisson Distributed with parameter $\lambda(X \sim$ $\operatorname{Pois}(\lambda))$ if

$$
\mathbf{P}(\mathbf{X}=\mathbf{k})=\frac{\mathbf{e}^{-\lambda} \lambda^{\mathbf{k}}}{\mathbf{k}!}
$$

for $\mathrm{k}=0,1,2, \ldots$
Some Basic results:

- Mean and variance of $\mathrm{X} \sim \operatorname{Pois}(\lambda)$ is λ
$-\operatorname{MGF}$ of $\mathrm{X} \sim \operatorname{Pois}(\lambda)$ is $e^{\lambda\left(e^{t}-1\right)}$
Let \mathbf{M} be a space of all non-negative integer-valued measures on $\left(\mathcal{U}, \mathcal{B}_{\mathcal{U}}\right)$ - measurable space s.t $\mathcal{B}_{\mathbf{M}}$ is the smallest σ-algebra on \mathbf{M} which makes $\mu \in \mathbf{M} \mapsto \mu(B) \in \mathbf{Z}^{+} \cup\{\infty\}$ a measurable map, for all $B \in \mathcal{B}_{\mathcal{U}}$.

- Definition 2:

A Poisson Random Measure($\mathbf{P R M}$) μ is a $\left(\mathbf{M}, \mathcal{B}_{\mathbf{M}}\right)$ - valued random variable i.e the map $\mu: \Omega \longrightarrow \mathbf{M}$ defined on (Ω, \mathcal{F}, P) is $\mathcal{F} / \mathcal{B}_{\mathbf{M}}$ measurable s.t

- for each $B \in \mathcal{B}_{\mathcal{U}}, \mu(B) \sim \operatorname{Pois}(\lambda(B))$, for a fixed λ
- if $B_{1}, B_{2}, \ldots, B_{n} \in \mathcal{B}_{\mathcal{U}}$ are disjoint, then $\mu\left(B_{1}\right), \mu\left(B_{2}\right), \ldots, \mu\left(B_{n}\right)$ are independent random variable

Observe: $\operatorname{A~} \operatorname{PRM}(\mu(\cdot, \cdot))$ can be viewed as a map of two variable $\left(\omega \in \Omega, B \in \mathcal{B}_{\mathcal{U}}\right)$ where if we fix ω then $\mu(\omega, \cdot)$ is a integer valued measure and if we fix $B, \mu(\cdot, B)$ a Poisson distributed random variable s.t properties of above definition hold.

Theorem 42. For every σ-finite measure λ on $\left(\mathcal{U}, \mathcal{B}_{\mathcal{U}}\right), \exists$ a PRM μ with measure $\lambda(B)$ for every $B \in \mathcal{B}_{\mathcal{U}}$.

Proof. We first assume that λ is a finite measure. We want to construct a PRM s.t. above theorem holds.

Construction:

- For $\mathrm{i}=1,2, .$. define X^{i} a \mathcal{U}-valued random variable s.t $P\left(X^{i} \in d u\right)=\frac{\lambda(d u)}{\lambda(U)}$
- let $p \sim \operatorname{Pois}(\lambda(\mathcal{U}))$ (random variable)
- let X^{i}, p are mutually independent for each i

Note: We assume existence of such random variable.

$$
\mu(B):=\sum_{i=1}^{p} I_{B}\left(X^{i}\right) I_{\{p \geq 1\}}, \quad B \in \mathcal{B}_{\mathcal{U}}
$$

Claim: $\mu=\{\mu(B)\}_{B \in \mathcal{B}_{\mathcal{U}}}$ is a required PRM

proof of claim:

$$
\begin{aligned}
& P(\mu(B)=k) \\
&= P\left(\sum_{i=1}^{p} I_{B}\left(X^{i}\right) I_{\{p \geq 1\}}=k\right) \\
&= E\left[P\left(\sum_{i=1}^{p} I_{B}\left(X^{i}\right)=k\right) \mid p\right] \\
& P\left(I_{B}\left(X^{i}\right)=1\right)=\frac{\lambda(B)}{\lambda(\mathcal{U})}-\text { Bernoulli random variable. } \\
&= E\left[\binom{p}{k} \cdot \frac{\lambda(B)^{k}(\lambda(\mathcal{U} \backslash \mathcal{B}))^{p-k}}{\lambda(\mathcal{U})^{p}}\right] \\
&= \sum_{p \geq k}\binom{p}{k} \cdot \frac{\lambda(B)^{k}(\lambda(\mathcal{U} \backslash B))^{p-k} \lambda(\mathcal{U})^{p} e^{-\lambda(\mathcal{U})}}{\lambda(\mathcal{U})^{p} p!} \\
&= \frac{e^{-\lambda(\mathcal{U})} \lambda(B)^{k}}{k!} \sum_{p \geq k} \cdot \frac{\lambda(\mathcal{U} \backslash B)^{p-k}}{(p-k)!} \\
&= \frac{e^{-\lambda(\mathcal{U})} \lambda(B)^{k}}{k!} \cdot e^{\lambda(\mathcal{U} \backslash B)} \\
&= \frac{e^{-\lambda(\mathcal{B})} \lambda(B)^{k}}{k!} .
\end{aligned}
$$

Therefore, for every $B \in \mathcal{B}_{\mathcal{U}}, \mu(B)$ is a Poisson distributed and Observe $\left\{X^{i}(\omega), i=\right.$ $1,2, \ldots, p(\omega)\}$ is the support of $\mu(\cdot)(\omega)$ - counting measure i.e $\mu(\mathcal{U})(\omega)=p$.
left to show: If $B_{1}, B_{2}, \ldots, B_{n}$ are disjoint then $\mu\left(B_{1}, \mu\left(B_{2}\right), \ldots, \mu\left(B_{n}\right)\right)$ are independent. We will prove for $n=2$ and can be easily seen that then the result holds for any finite
n.

$$
\begin{aligned}
P(& \left.\mu\left(B_{1}\right)=k_{1}, \mu\left(B_{2}\right)=k_{2}\right) \\
= & \left.E\left[P\left(\left(\sum_{i=1}^{p} I_{B_{1}}\left(X^{i}\right)\right)=k_{1}, \sum_{i=1}^{p} I_{B_{2}}\left(X^{i}\right)\right)=k_{2}\right) \mid p\right] \\
& P\left(I_{B_{i}}\left(X^{i}\right)=1\right)=\frac{\lambda\left(B_{i}\right)}{\lambda(\mathcal{U})}, i=1,2 . \Longrightarrow \text { multinomial distribution } \\
= & \sum_{p \geq k_{1}+k_{2}} \frac{p!}{k_{1}!k_{2}!\left(p-k_{1}-k_{2}\right)!} \frac{\lambda\left(B_{1}\right)^{k_{1}} \lambda\left(B_{2}\right)^{k_{2}}\left(\lambda\left(\mathcal{U} \backslash B_{1} \cup B_{2}\right)\right)^{p-k_{1}-k_{2}}}{\lambda(\mathcal{U})^{p}} \frac{\lambda(\mathcal{U})^{p} e^{-\lambda(\mathcal{U})}}{p!} \\
= & \frac{e^{-\lambda(\mathcal{U})} \lambda\left(B_{1}\right)^{k_{1}} \lambda\left(B_{2}\right)^{k_{2}}}{k_{1}!k_{2}!} \sum_{p \geq k_{1}+k_{2}} \cdot \frac{\lambda\left(\mathcal{U} \backslash B_{1} \cup B_{2}\right)^{p-k_{1}-k_{2}}}{\left(p-k_{1}-k_{2}\right)!} \\
= & \frac{e^{-\lambda\left(B_{1}\right)} \lambda\left(B_{1}\right)^{k_{1}}}{k_{1}!} \cdot \frac{e^{-\lambda\left(B_{2}\right)} \lambda\left(B_{2}\right)^{k_{2}}}{k_{2}!} \\
= & P\left(\mu\left(B_{1}\right)=k_{1}\right) \cdot P\left(\mu\left(B_{2}\right)=k_{2}\right)
\end{aligned}
$$

We have used the conditional independence of X^{i} given p and this is guaranteed by our assumption of $\left\{X^{i}\right\}$ and p are independent. As every X^{i} are independent this lead to a multinomial distribution having choice to belong to any set $B_{1}, B_{2}, \mathcal{U} \backslash\left(B_{1} \cap B_{2}\right)$. Also, for fixed ω the $\mu(\omega)(\cdot)$ is a measure. Therefore, we are done.

When λ is σ-finite measure:

The construction is similar to above with some minor changes. As λ is a σ-finite measure $\exists B_{n} \in \mathcal{B}_{\mathcal{U}}$ s.t $\cup_{n} B_{n}=\mathcal{U}$ and $0<\lambda\left(B_{n}\right)<\infty$.

Construction:

- For $\mathrm{n}=1,2, \ldots \mathrm{i}=1,2, .$. define $X_{(n)}^{i}$ a B_{n}-valued random variable s.t $P\left(X_{(n)}^{i} \in d u\right)=$ $\frac{\lambda(d u)}{\lambda\left(B_{n}\right)}$
- let $p_{n} \sim \operatorname{Pois}\left(\lambda\left(B_{n}\right)\right)$, for $\mathrm{n}=1,2, .$. (random variable)
- let $X_{(n)}^{i}, p_{n}$ are mutually independent, for each $\mathrm{i}=1,2, .$. and $\mathrm{n}=1,2, \ldots$

Then, observe that $\mu=(\mu(B))$ is a PRM defined as

$$
\mu(B):=\sum_{n=1}^{\infty} \sum_{i=1}^{p_{n}} I_{B \cap B_{n}}\left(X_{(n)}^{i}\right) I_{\left\{p_{n} \geq 1\right\}}, \quad B \in \mathcal{B}_{\mathcal{U}}
$$

Note: We say λ as intensity measure or mean measure of the PRM μ.

5.2 Poisson Point Process:

- Definition 3:

For $\left(\mathcal{U}, \mathcal{B}_{\mathcal{U}}\right)$-measurable space, a map p: $\mathbf{D}_{\mathbf{p}} \longrightarrow \mathcal{U}$, where $\mathbf{D}_{\mathbf{p}}$ is a countable subset of $(0, \infty)$ is said to be point function if

$$
N_{p}((0, t] \times B):=\#\left\{s \in \mathbf{D}_{\mathbf{p}} ; s \leq t, p(s) \in B\right\}
$$

where $B \in \mathcal{B}_{\mathcal{U}}, t>0$ defines a counting measure on $(0, \infty) \times \mathcal{U}$.

A point process can be defined by randomizing the concept of point function. Let, $\Pi_{\mathcal{U}}$ be the space of point functions on \mathcal{U} and $\mathcal{B}_{\Pi_{\mathcal{U}}}$ be the smallest σ-algebra on $\Pi_{\mathcal{U}}$ s.t. $p \mapsto N_{p}((0, t] \times B)$ is measurable for each $t>0, B \in \mathcal{B}_{\mathcal{U}}$.

- Definition 4:

A point process p is a $\left(\Pi_{\mathcal{U}}, \mathcal{B}_{\Pi_{\mathcal{U}}}\right)$ valued random variable under probability space (Ω, \mathcal{F}, P) i.e $\mathrm{p} \longrightarrow \Pi_{\mathcal{U}}$ is $\mathcal{F} / \mathcal{B}_{\Pi_{\mathcal{U}}}$-measurable.
We say a point process p Poisson point process if the underlying random counting measure is PRM.

- Definition 5:

We say that p is a stationary point process if for every $t>0, \mathrm{p}$ and $\theta_{t} \mathrm{p}$ have same probability where $\mathbf{D}_{\theta_{\mathrm{t}} \mathbf{p}}:=\left\{s \in(0, \infty) ; s+t \in \mathbf{D}_{\mathbf{p}}\right\}$ and $\left(\theta_{t} \mathrm{p}\right)(\mathrm{s}):=\mathrm{p}(\mathrm{s}+\mathrm{t})$.

Some basic results: p is stationary-Poisson point process iff its intensity measure $n_{p}(d t d x):=E\left[N_{p}(d t d x)\right]$ is $=d \operatorname{tn}(d x)$ for some measure $n(d x)$ on $\left(\mathcal{U}, \mathcal{B}_{\mathcal{U}}\right)($ characteristic measure on p).

5.3 Stochastic integral wrt to (Poisson) Point process

- Definition 6: For a given probability space $(\Omega, \mathcal{F}, \mathrm{P})$ and filtration $\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$, we say that a point process p is \mathcal{F}_{t}-adapted if for every $t>0, B \in \mathcal{B}_{\mathcal{U}}$ the $\operatorname{PRM} N_{p}(t, B)=$ $\sum_{s \in \mathbf{D}_{\mathbf{p}}, s \leq t} I_{B}(p(s))$ is \mathcal{F}_{t} measurable.

- Definition 7:

A point process p is σ-finite if $\exists B_{n} \in \mathcal{B}_{\mathcal{U}}, n=1,2, \ldots$ s.t $B_{n} \uparrow \mathcal{U}$ and $E\left[N_{p}\left(t, B_{n}\right)\right]<$ $\infty \forall t>0 n=1,2, \ldots$

- Definition 8:

For a given \mathcal{F}_{t}-adapted and σ-finite point process p we define $\Gamma_{p}:=\left\{B \in \mathcal{B}_{\mathcal{U}} ; E\left[N_{p}\left(t, B_{n}\right)\right]<\right.$ $\infty \forall t>0\}$.
Result: If $B \in \mathcal{B}_{\mathcal{U}}$, then $N_{p}(t, B)$ is an adapted, integrable, increasing process and satisfies conditions in Doob-Meyer decomposition theorem and therefore \exists a natural increasing process $\hat{N}_{p}(t, B)$ s.t $\tilde{N}_{p}(t, B)=N_{p}(t, B)-\hat{N}_{p}(t, B)$ is a Martingale. In general $\hat{N}_{p}(t, B)$ is not a continuous function of t but we will assume continuous function $\hat{N}_{p}(t, B)$ for every $B \in \mathcal{B}_{\mathcal{U}}$.

- Definition 9: An \mathcal{F}_{t}-adapted and σ-finite point process p on $(\Omega, \mathcal{F}, \mathrm{P})$ is said to be in the class(QL) if there exists $\hat{N}_{p}=\left(\hat{N}_{p}(t, B)\right)$ s.t
- for $B \in \Gamma_{p}, t \mapsto \hat{N}_{p}(t, B)$ is a continuous \mathcal{F}_{t}-adapted increasing process
- for each $t>0$ and a.a $\omega \in \Omega, B \mapsto \hat{N}_{p}(t, B)$ is a sigma finite measure on $\left(\mathcal{U}, \mathcal{B}_{\mathcal{U}}\right)$
- for $B \in \Gamma_{p}, t \mapsto \tilde{N}_{p}(t, B)=N_{p}(t, B)-\hat{N}_{p}(t, N)$ is a $\left(\mathcal{F}_{t}\right)$-Martingale.

Note: The $\left\{\hat{N}_{p}(t, B)\right\}$-random measure is called as the Compensator of the p .

- Definition 10:

An $\left(\mathcal{F}_{t}\right)$ Poisson point process p is an \mathcal{F}_{t}-adapted and σ-finite Poisson point process s.t $\left\{N_{p}(t+h, B)-N_{p}(t, B)\right\}_{h>0, B \in \mathcal{B}_{\mathcal{U}}}$ is independent of \mathcal{F}_{t}.

Result: An $\left(\mathcal{F}_{t}\right)$ Poisson point process p is of class(QL) iff $t \mapsto E\left[N_{p}(t, B)\right]$ is continuous for $B \in \Gamma_{p}$
Proof of the result: Take $\hat{N}_{p}(t, B)=E\left[N_{p}(t, B)\right]$ then result follows(Uniqueness of \hat{N}_{p} is guaranteed by Doob-Meyer Decomposition).

Note: Clearly, an $\left(\mathcal{F}_{t}\right)$ stationary Poisson point process p is of class $(\mathrm{QL})\left(\right.$ as $E\left[N_{p}(t, B)\right]=$ $\operatorname{tn}(B))$)

Lemma 43. For a bounded $\left(\mathcal{F}_{t}\right)$-predictable process $f(s)=f(s, \omega)$ and $B \in \Gamma_{p}$,

$$
X(t)=\int_{0}^{t} f(s) d \tilde{N}_{p}(t, B):=\sum_{s \leq t, s \in \mathbf{D}_{\mathbf{p}}} f(s) I_{B}(p(s))-\int_{0}^{t} f(s) d \hat{N}_{p}(t, B)
$$

then, $X(t)$ is an $\left(\mathcal{F}_{t}\right)$ - Martingale.
Proof. Any bounded predictable process can be approximated by bounded, left continuous $\left(\mathcal{F}_{t}\right)$-adapted process $\mathrm{f}(\mathrm{s}, \omega)$. Observe, for every $s \in[0, \infty)$

$$
f_{n}(s):=f(0) I_{s=0}(s)+\sum_{i=0}^{\infty} f\left(\frac{i}{2^{n}}\right) I_{\left(\frac{i}{2^{n}}, \frac{i+1}{\left.2^{n}\right]}\right]}(s) \longrightarrow f(s)
$$

Therefore, it is enough to prove the lemma for $f_{n}(s)$.

$$
\int_{0}^{t} f_{n}(s) d \tilde{N}_{p}(t, B)=\sum_{i=0}^{\infty} f\left(\frac{i}{2^{n}}\right)\left[\tilde{N}_{p}\left(\frac{i+1}{2^{n}} \wedge t, B\right)-\tilde{N}_{p}\left(\frac{i}{2^{n}} \wedge t, B\right)\right]
$$

But, this is clearly \mathcal{F}_{t}-measurable and hence a $\left(\mathcal{F}_{t}\right)$-Martingale.
Theorem 44. If a point process p is in class ($Q L$), then

- for every $B \in \Gamma_{p}, \tilde{N}_{p}(., B) \in \mathcal{M}_{2}$
- for $B_{1}, B_{2} \in \Gamma_{p},\left\langle\tilde{N}_{p}\left(., B_{1}\right) \tilde{N}_{p}\left(., B_{2}\right)\right\rangle(t)=\hat{N}_{p}\left(t, B_{1} \cap B_{2}\right)$.

Proof. If we show,

$$
\begin{equation*}
\tilde{N}_{p}\left(t, B_{1}\right) \tilde{N}_{p}\left(t, B_{2}\right)=\text { local }- \text { Martingale }+\hat{N}_{p}\left(t, B_{1} \cap B_{2}\right) \tag{5.1}
\end{equation*}
$$

Then, $N_{p}(t, B)$ will be square-integrable $\left(E\left[N_{p}^{2}(t, B)\right]=E\left[\hat{N}_{p}(t, B)\right]=E\left[N_{p}(t, B)\right]<\right.$ ∞ as $B \in \Gamma_{p}$) and by uniqueness of quadratic variation we get the desire result. Note: $N_{p}(\cdot, B)$ is right continuous and $\hat{N}_{p}(\cdot, B)$ is continuous, Therefore, \tilde{N}_{p} is a right continuous process $\left(\mathcal{F}_{t}-\right.$ adapted $)$. Therefore, $\exists\left(\mathcal{F}_{t}\right)$-stopping time τ_{n} s.t $\tau_{n} \uparrow \infty$ and $\tilde{N}_{p}^{(n)}\left(t, B_{1}\right):=\tilde{N}_{p}\left(t \wedge \tau_{n}, B_{1}\right), \tilde{N}_{p}^{(n)}\left(t, B_{2}\right):=\tilde{N}_{p}\left(t \wedge \tau_{n}, B_{2}\right)$ both are bounded in t. By above equation it is sufficient to show that

$$
\tilde{N}_{p}^{(n)}\left(t, B_{1}\right) \tilde{N}_{p}^{(n)}\left(t, B_{2}\right)=\text { Martingale }+\hat{N}_{p}\left(t \wedge \tau_{n}, B_{1} \cap B_{2}\right)
$$

We use integration by parts,

$$
\begin{aligned}
& \tilde{N}_{p}^{(n)}\left(t, B_{1}\right) \tilde{N}_{p}^{(n)}\left(t, B_{2}\right) \\
& \quad=\int_{0}^{\infty} \tilde{N}_{p}^{(n)}\left(s-, B_{1}\right) \tilde{N}_{p}^{(n)}\left(d s, B_{2}\right)+\int_{0}^{\infty} \tilde{N}_{p}^{(n)}\left(s-, B_{2}\right) \tilde{N}_{p}^{(n)}\left(d s, B_{1}\right) \\
& \quad+\quad+\int_{0}^{\infty}\left[\tilde{N}_{p}^{(n)}\left(s, B_{2}\right)-\tilde{N}_{p}^{(n)}\left(s-, B_{2}\right)\right] \tilde{N}_{p}^{(n)}\left(d s, B_{1}\right)
\end{aligned}
$$

By the above lemma, first two terms are are martingales. As $\hat{N}_{p}(t, B)$ is continuous function of t, $\tilde{N}_{p}^{(n)}\left(s, B_{2}\right)-\tilde{N}_{p}^{(n)}\left(s-, B_{2}\right)=N_{p}^{(n)}\left(s, B_{2}\right)-N_{p}^{(n)}\left(s-, B_{2}\right)$ for every $s \in$ $(0, \infty)$. Also, as $N_{p}(s, B)$ is a right continuous process, the last term of equation is

$$
\begin{aligned}
& \int_{0}^{\infty} {\left[\tilde{N}_{p}^{(n)}\left(s, B_{2}\right)-\tilde{N}_{p}^{(n)}\left(s-, B_{2}\right)\right] \tilde{N}_{p}^{(n)}\left(d s, B_{1}\right) } \\
& \quad= \int_{0}^{\infty}\left[N_{p}^{(n)}\left(s, B_{2}\right)-N_{p}^{(n)}\left(s-, B_{2}\right)\right] N_{p}^{(n)}\left(d s, B_{1}\right) \\
& \quad= \sum_{s \in \mathbf{D}_{\mathbf{p}}, s \leq t \wedge \tau_{n}} I B_{1} \cap B_{2}(p(s)) \\
& \quad=N_{p}\left(t \wedge \tau_{n}, B_{1} \cap B_{2}\right) \\
& \quad=\hat{N}_{p}\left(t \wedge \tau_{n}, B_{1} \cap B_{2}\right)+\tilde{N}_{p}\left(t \wedge \tau_{n}, B_{1} \cap B_{2}\right)
\end{aligned}
$$

The only non-Martingale term is $\hat{N}_{p}\left(t \wedge \tau_{n}, B_{1} \cap B_{2}\right)$ continuity of t and taking limit $\tau_{n} \uparrow \infty$ gives the desired result.

5.4 Existence and uniqueness of SDE wrt Poisson point process

Theorem 45. Let, p be any $\left(\mathcal{F}_{t}\right)$-stationary Poisson point process with characteristic measure $n(d u)$ (σ-finite measure) defined on $\left(\mathcal{U}, \mathcal{B}_{\mathcal{U}}\right)$-measurable space. Let, $B_{0} \in \mathcal{B}_{\mathcal{U}}$ s.t $n\left(\mathcal{U} \backslash B_{0}\right)<\infty$. Let, W_{t} be any \mathbf{R}^{n}-valued Brownian motion. Let, $\sigma: \mathcal{R}^{d} \longrightarrow \mathcal{R}^{d} \otimes \mathcal{R}^{n}$ and $b: \mathcal{R}^{d} \longrightarrow \mathcal{R}^{d}$ be Borel measurable functions and $f: \mathbf{R}^{d} \times \mathcal{U} \longrightarrow \mathbf{R}^{d}$ be a $\mathcal{B}\left(\mathbf{R}^{d}\right) \times \mathcal{B}_{\mathcal{U}}$-measurable function s.t. the following two properties holds:

$$
\begin{equation*}
\|\sigma(x)\|^{2}+\|b(x)\|^{2}+\int_{B_{0}}\|f(x, u)\|^{2} n(d u) \leq K\left(1+\|x\|^{2}\right), \quad x \in \mathbf{R}^{d} \tag{5.2}
\end{equation*}
$$

$$
\begin{equation*}
\|\sigma(x)-\sigma(y)\|^{2}+\|b(x)-b(y)\|^{2}+\int_{B_{0}}\|f(x, u)-f(y, u)\|^{2} n(d u) \leq K\left(\|x-y\|^{2}\right), \quad x, y \in \mathbf{R}^{d} \tag{5.3}
\end{equation*}
$$

For some constant K and where, $\|\sigma(x)\|^{2}:=\sum_{i=1, j=1}^{d, n}\left(\sigma_{j}^{i}(x)\right)^{2}$ and others are just Euclideannorm. Then the SDE

$$
\begin{align*}
X^{i}(t)=X^{i}(0)+\sum_{j=1}^{n} & \int_{0}^{t}\left(\sigma_{j}^{i}(X(s))\right) d W_{s}^{j}+\int_{0}^{t} b(X(s))^{i} d s \\
& +\int_{0}^{t+} \int_{\mathcal{U}} f^{i}(X(s-), u) I_{B_{0}} \tilde{N}_{p}(d s d u) \\
& +\int_{0}^{t+} \int_{\mathcal{U}} f^{i}(X(s-), u) I_{\mathcal{U} \backslash B_{0}} N_{p}(d s d u) \tag{5.4}
\end{align*}
$$

$i=1,2, \ldots, d$.
If $X(0)=\left\{X^{i}(0)\right\}_{i \in \mathbf{N}} \in \mathcal{F}_{0}$-random variable and above conditions on $\sigma(x), b(x), f(x, u)$ holds then, there exists unique $\left(\mathcal{F}_{t}\right)$-adapted, d-dimensional, RCLL process $X=\{X(t)\}_{t \geq 0}$ which satisfies the above SDE.

Proof. For a given $W=\left\{W_{t}\right\}_{t \geq 0}, \mathrm{p}$ and $X(0)$, let; $\mathbf{D}:=\left\{s \in \mathbf{D}_{\mathbf{p}}: p(s) \in \mathcal{U} \backslash B_{0}\right\}$. Clearly, \mathbf{D} is a dicrete set in $(0, \infty)$. Let, $\tau_{1}<\tau_{2}<\ldots<\tau_{n}<\ldots$ be the enumeration of all the elements in \mathbf{D}. The $\left\{\tau_{n}\right\}$ are \mathcal{F}_{t}-stopping time (as we assumed that p is $\left(\mathcal{F}_{t}\right)$-stationary Poisson point process).
Claim: $\lim _{n \uparrow \infty} \tau_{n}=\infty$ a.s
proof of the claim: Let, $\lambda=n\left(\mathcal{U} \backslash B_{0}\right)<\infty$. Observe, $t \mapsto N\left(t, \mathcal{U} \backslash B_{0}\right)$ is a Poisson process with intensity λ and τ_{n} are the $n^{\text {th }}$-transition time of this Poisson process. Let, for a fixed t define, $E_{t}:=\left\{\tau_{n}<t, \forall n\right\}\left(=\left\{\lim _{n \uparrow \infty} \tau_{n}<t\right\}\right)=\left\{N_{p}\left(t, \mathcal{U} \backslash B_{0}\right)=\infty\right\} \Longrightarrow$ $P\left(E_{t}\right)=0 \forall t$ (as for fixed $\left.\mathrm{t}, N_{p}\left(t, \mathcal{U} \backslash B_{0}\right) \sim \operatorname{Pois}(\lambda)\right)$. As $N_{p}\left(\cdot, \mathcal{U} \backslash B_{0}\right)$ is RCLL process $P\left(\cup_{t=0}^{\infty} E_{t}\right)=0$. Hence, the claim.
We begin proving existence and uniqueness of solution of SDE step by step i.e Consider the time interval $\left[0, \tau_{1}\right]$ and the SDE :

$$
\begin{align*}
Y^{i}(t)= & X^{i}(0)+\sum_{j=1}^{n} \int_{0}^{t}\left(\sigma_{j}^{i}(Y(s))\right) d W_{s}^{j}+\int_{0}^{t} b(Y(s))^{i} d s \\
& +\int_{0}^{t+} \int_{\mathcal{U}} f^{i}(Y(s-), u) I_{B_{0}} \tilde{N}_{p}(d s d u), i=1,2, . ., d \tag{5.5}
\end{align*}
$$

Now, Observe,

$$
\begin{align*}
E & {\left[\left\{\int_{0}^{t+} \int_{\mathcal{U}} f^{i}(Y(s-), u) I_{B_{0}} \tilde{N}_{p}(d s d u)\right\}^{2}\right] } \\
& =E\left[\int_{0}^{t} \int_{\mathcal{U}}\left\{f^{i}(Y(s), u)\right\}^{2} I_{B_{0}}\left\langle\tilde{N}_{p}(d s d u), \tilde{N}_{p}(d s d u)\right\rangle\right] \\
& =E\left[\int_{0}^{t} \int_{\mathcal{U}}\left\{f^{i}(Y(s), u)\right\}^{2} I_{B_{0}} \hat{N}_{p}(d s d u)\right] \\
& =E\left[\int_{0}^{t} \int_{\mathcal{U}}\left\{f^{i}(Y(s), u)\right\}^{2} I_{B_{0}} E\left[N_{p}(d s d u)\right]\right] \\
& =E\left[\int_{0}^{t} \int_{\mathcal{U}}\left\{f^{i}(Y(s), u)\right\}^{2} I_{B_{0}} d s n(d u)\right] \\
& =\int_{0}^{t} d s \int_{B_{0}} E\left[\left\{f^{i}(Y(s), u)\right\}^{2}\right] n(d u) \tag{5.6}
\end{align*}
$$

The method of proving the existence and uniqueness of $Y=\left\{Y^{i}\right\}$ is same as that we did when we dealt SDE containing only Brownian motion W_{t}. We just give the proof of uniqueness of solution and leave reader to prove the existence of solution by Picard'd iteration.

Uniqueness of Y :

Suppose that Y and \bar{Y} be two solution of equation (5.5). Consider,

$$
\begin{aligned}
& E\left[\left|Y^{i}(t)-\bar{Y}^{i}(t)\right|^{2}\right] \\
& \leq 3\left(E\left[\left\{\sum_{j=1}^{n} \int_{0}^{t}\left(\sigma_{j}^{i}(Y(s))-\sigma_{j}^{i}(\bar{Y}(s))\right) d W_{s}^{j}\right\}^{2}\right]+E\left[\int_{0}^{t}\left\{b(Y(s))^{i}-b(\bar{Y}(s))^{i} d s\right\}^{2}\right]\right. \\
&+\left.E\left[\left\{\int_{0}^{t+} \int_{\mathcal{U}} f^{i}(Y(s-), u) I_{B_{0}}-f^{i}(\bar{Y}(s-), u) I_{B_{0}} \tilde{N}_{p}(d s d u)\right\}^{2}\right]\right) \\
& \text { we use Ito's isometry, Holder's inequality, conditions on } \sigma, \text { b, } f \text { and eqn(5.6) } \\
& \leq 3\left(n \cdot \sum_{j=1}^{n} E\left[\int_{0}^{t}\left(\sigma_{j}^{i}(Y(s))-\sigma_{j}^{i}(\bar{Y}(s))\right)^{2} d s\right]+t \cdot E\left[\int_{0}^{t}\left\{b(Y(s))^{i}-b(\bar{Y}(s))^{i}\right\}^{2} d s\right]\right. \\
&+\left.E\left[\int_{0}^{t} d s \int_{B_{0}}\left\{f^{i}(Y(s), u)-f^{i}(\bar{Y}(s), u)\right\}^{2} n(d u)\right)\right] \\
& \leq 3\left(n \cdot \sum_{j=1}^{n} E\left[\int_{0}^{t} K \cdot|Y(s)-\bar{Y}(s)|^{2} d s\right]+t \cdot E\left[\int_{0}^{t} K \cdot|Y(s)-\bar{Y}(s)|^{2} d s\right]\right. \\
&+\left.E\left[\int_{0}^{t} K \cdot|Y(s)-\bar{Y}(s)|^{2} d s\right]\right) \\
&= 3 K\left(\left(n^{2}+1+t\right) \cdot \int_{0}^{t} E\left[|Y(s)-\bar{Y}(s)|^{2}\right] d s\right) \\
& W e \text { use Gronwall's inequality to conclude } \\
&= 0
\end{aligned}
$$

Therefore, Y is a modification of \bar{Y} but as they are RCLL process $\Longrightarrow Y, \bar{Y}$ are indistinguishable. Hence, unique solution exists.
We use the existence and uniqueness of the solution of (5.5) to define the same for SDE (5.4) in an interval $\left[0, \tau_{1}\right]$. Define

$$
X_{1}(t)= \begin{cases}\mathrm{Y}(\mathrm{t}), & \text { if } 0 \leq \mathrm{t}<\tau_{1} \\ \mathrm{Y}\left(\tau_{1}-\right)+\mathrm{f}\left(\mathrm{Y}\left(\tau_{1}-\right), \mathrm{p}\left(\tau_{1}\right)\right), & \text { if } \mathrm{t}=\tau_{1}\end{cases}
$$

Observe: $\left\{X_{1}(t)\right\}_{t \in\left[0, \tau_{1}\right]}$ is the unique solution of SDE (5.4), as in the interval $\left[0, \tau_{1}\right), N_{p}\left(\left[0, \tau_{1}\right), \mathcal{U} \backslash\right.$ $\left.B_{0}\right)=0$ and for $t=\tau_{1}, N_{p}\left(\left\{\tau_{1}\right\}, \mathcal{U} \backslash B_{0}\right)=1$ implies in the nbhd of $\tau_{1}, N_{p}\left(\left\{\tau_{1}\right\}, B_{0}\right)$ (no jump in B_{0}) is continuous i.e $\tilde{N}_{p}\left(t, B_{0}\right)$ is continuous in that nbhd. So, for $t=\tau_{1}$ first three terms in the integral is just the left limit due to continuity and the last term gives non-zero term at $\left\{\tau_{1}\right\} \times\left\{p\left(\tau_{1}\right)\right\}$.

We now move to the interval $\left[\tau_{1}, \tau_{2}\right]$. Let, $\tilde{X}_{2}(0)=X_{1}\left(\tau_{1}\right), \tilde{W}=\left\{\tilde{W}_{t}=W_{t+\tau_{1}}-\right.$ $\left.W_{\tau_{1}}\right\}_{t \geq 0}, \tilde{p}=\left\{\tilde{p}(s)=p\left(s+\tau_{1}\right)\right\}_{t \geq 0}$, where, $\mathbf{D}_{\tilde{\mathbf{p}}}=\left\{s: s+\tau_{1} \in \mathbf{D}_{\mathbf{p}}\right\}$. Now, we enumerate similar to done in $X_{1}(t)$ i.e $\tilde{\mathbf{D}}=\left\{s \in \mathbf{D}_{\tilde{\mathbf{p}}} ; \tilde{\mathbf{p}}(\mathbf{s}) \in \mathcal{U} \backslash \mathbf{B}_{\mathbf{0}}\right\}$. Let, $\left\{\mathcal{F}_{t+\tau_{1}}\right\}_{t \geq 0}$ measurable stopping time be named as $\tilde{\tau}_{1}, \tilde{\tau}_{2}, \ldots, \tilde{\tau}_{m}, \ldots$ and observe that $\tilde{\tau}_{k}=\tau_{k}-\tau_{1}$ in particular $\tilde{\tau}_{2}=\tau_{2}-\tau_{1}$. Consider,

$$
\begin{align*}
\tilde{Y}^{i}(t)= & X_{1}^{i}\left(\tau_{1}\right)+\sum_{j=1}^{n} \int_{0}^{t}\left(\sigma_{j}^{i}(\tilde{Y}(s))\right) d \tilde{W}_{s}^{j}+\int_{0}^{t} b(\tilde{Y}(s))^{i} d s \\
& +\int_{0}^{t+} \int_{\mathcal{U}} f^{i}(\tilde{Y}(s-), u) I_{B_{0}} \tilde{N}_{\tilde{p}}(d s d u), i=1,2, . ., d \tag{5.7}
\end{align*}
$$

By similar argument done in SDE (5.5), we conclude the existence and uniqueness of SDE (5.7) in $\left[0, \tilde{\tau}_{1}\right]$. Define,

$$
\tilde{X}_{2}(t)= \begin{cases}\tilde{Y}(t), & \text { if } 0 \leq \mathrm{t}<\tilde{\tau}_{1} \\ \tilde{Y}\left(\tilde{\tau}_{1}-\right)+\mathrm{f}\left(\tilde{Y}\left(\tilde{\tau}_{1}-\right), \tilde{p}\left(\tilde{\tau}_{1}\right)\right), & \text { if } \mathrm{t}=\tilde{\tau}_{1}\end{cases}
$$

Now, Define

$$
X_{2}(t)= \begin{cases}X_{1}(\mathrm{t}), & \text { if } \mathrm{t} \in\left[0, \tau_{1}\right] \\ \tilde{X}_{2}\left(\mathrm{t}-\tau_{1}\right), & \text { if } \mathrm{t} \in\left[\tau_{1}, \tau_{2}\right]\end{cases}
$$

By uniqueness in their respective interval and $X_{1}\left(\tau_{1}\right)=\tilde{X}(0), X_{2}(t)$ is the unique solution of $\operatorname{SDE}(5.4)$ in $\left[0, \tau_{2}\right]$. Continuing this process, we define $X_{n}(t)$ which satisfies the $\operatorname{SDE}(5.4)$ uniquely in the time interval $\left[0, \tau_{n}\right]$ and taking limit $n \uparrow \infty$ the solution of $\operatorname{SDE}(5.4)$ is determined and defined globally.

Bibliography

[1] Brent Oksendal(6th ed.):Stochastic Differential Equations: An Introduction with Aplications; Springer
[2] Karatzas and Shreve(2nd ed.):Brownian Motion and Stochastic Calculus; SpringerVerlag
[3] P.E. Protter(2nd ed., version2.1): Stochastic Integration and Differential Equations; Springer
[4] Gopal K. Basak and Rabi N. Bhattacharya: Stability in Distribution for a Class of Singular Diffusions; The Annals of Probability, Vol. 20, No. 1 (Jan., 1992), pp. 312-321
[5] Gopal K. Basak and Arnab Bisi: Stability of a Random Diffusion with Linear Drift; Journal Of Mathematical Analysis And Applications 202, 604-622 (1996), Article No. 0336
[6] Gopal K. Basak, Arnab Bisi and Mrinal K. Ghosh: Stability And Functional Limit Theorem For Random Degenerate Diffusions; Sankhya: The Indian Journal of Statistics(1999), Volume 61, Series A, Pt. 1, pp. 12-35
[7] Xuerong Mao: Razumikhin-Type Theorems On Exponential Stability Of Neutral Stochastic Differential Equations; SIAM J. MATH. ANAL, Vol 28, No.2, pp. 389-401, March 1997.
[8] Krishna B. Athreya and Soumendra Lahiri: Measure Theory and Probability Theory; Springer.
[9] Shao-Qin Zhang (2019): Regime-switching diffusion processes: strong solutions and strong Feller property, Stochastic Analysis and Applications, DOI: 10.1080/07362994.2019.1650066
[10] Rick Durret (4th ed.): Probability Theory and Examples; Cambridge University Press
[11] R.Schilling and L.Partzch(2nd ed.):Brownian Motion :An Introduction to Stochastic Calculus
[12] A.Pazy: Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer
[13] L.Evans: Partial Differential Equations; AMS
[14] H.L.Royden and P.M. Fitzpatrick(4th ed.): Real Analysis, Eastern Economy Edition
[15] Nobuyuki Ikeda and Shinzo Watanabe(Vol.24): Stochastic Differential Equations and Diffusion Process; North-Holland Mathematical Library
[16] Walter Rudin(3rd ed.): Real and Complex Analysis; Tata McGraw-Hill edition

