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Living organisms possess the ability to tune themselves in response to various intra- 

and extracellular cues, which in turn creates an assortment of metabolites in the cellular soup. 

Metabolomics – the science that deals with the identification and quantification of metabolites 

in a biological system under a set of conditions – is gaining recognition as a powerful tool that 

helps comprehend the effect of various stressors and environmental conditions on the 

metabolome of a biological system. NMR-based metabolomics is being used in different areas, 

including disease biology, medicine, pharmacy, toxicology, food, environmental sciences, etc., 

to obtain the metabolic fingerprint associated with different biological systems. The work 

carried out in this Ph.D. thesis has focussed on the analysis of samples ranging from animal 

cells, microbial cultures, plants to human body fluids using a metabolomics approach. This 

thesis is divided into six chapters.  

 

Chapter 1: Introduction 

This chapter details on the need of performing metabolomics studies and describes the 

methods commonly used in NMR-based metabolomics. It provides an overview of 

metabolomics and covers important topics such as sample preparation and collection, multiple 

analytical platforms currently in use to study the metabolome, description of majorly used 

NMR experiments, various spectral pre- and post-processing steps needed to analyze raw 

spectral data, data processing tools to eliminate spectral artifacts and remove biologically 

irrelevant variations, statistical analysis for data interpretation and modelling for validation. 

Recent developments in NMR methodology pertaining to metabolomics has also been 

discussed. 

 

Chapter 2: General Methodology 
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 The combined use of NMR spectroscopy and chemometrics techniques can provide the 

metabolic “fingerprint” of the different types of biological samples analysed. This chapter 

provides information about important parameters, e.g., NMR experiments, metabolomics 

spectral databases, computational tools for metabolomic data and pathway analysis, software 

packages for metabolite identification, their quantification, and types of analysis that have been 

performed for data interpretation and feature selection. The selection criteria for different 

chemometrics techniques used in metabolite biomarker discovery have also been highlighted. 

 

Chapter 3: Metabolic signatures suggest o-phosphocholine to UDP-N-acetylglucosamine 

ratio as a potential biomarker for high-glucose and/or palmitate exposure in pancreatic β‐

cells 

Chronically elevated glucose (hyperglycemia) and lipid levels (dyslipidemia in T2DM 

confounded with obesity) are the major phenotypes associated with T2DM and have been 

known to induce dysfunction and apoptosis of pancreatic β-cell. In particular, in this chapter, 

we aimed to determine the metabolic signatures associated with high glucose (glucotoxic), high 

lipid exposure (lipotoxic) alone and in combination (glucolipotoxic) conditions in INS-1E cells 

(pancreatic β-cells) and have identified metabolic pathways that play significant roles in 

excess-fuel detoxification in these cells. Here, we employed untargeted 1H NMR-based 

metabolomics to identify and quantify the metabolites, and use this information to gain insights 

into the associated metabolic shifts and key metabolic pathways that are significantly altered 

in INS-1E cells exposed to different toxic conditions used in this study. The perturbed 

metabolites identified in the course of this work majorly belong to glycolysis, TCA cycle, 

amino acid metabolism, and hexosamine metabolism pathways. Interestingly, UDP-N-

acetylglucosamine and o-phosphocholine were identified as the commonly dysregulated 

metabolites under all three stress conditions used, and we proposed to use the ratio of these 

metabolites as a biomarker for these conditions. The results from this study helped us in 

annotating the critical metabolites associated with diabetes-like conditions and consequently 

in constructing the metabolic pathways that play crucial roles in excess-fuel detoxification 

associated with chronic T2DM. 

 

Chapter 4: Identification of potential serum biomarkers linked with Type 2 Diabetes in an 

Asian Indian population using NMR-based metabolomics  

Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder that has been 

characterized by chronic hyperglycemia that occurs due to insulin insufficiency from 
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pancreatic b-cells and has been associated with the development of insulin resistance (IR) in 

the insulin-target tissues. The prevalence of prediabetes and T2DM is increasing globally, with 

worrying statistics from the children, adolescents, and young adults worldwide and in 

developing countries like India. As per the International Diabetes Federation, ~77 million 

people, which account for one in six people, or 17% of the world diabetic population, belong 

to India (https://www.diabetesatlas.org/en/). Here, we aimed to identify unique circulating 

metabolic markers associated with pre-diabetes and T2DM in Asian Indians using NMR-based 

metabolomics that could be used as potential biomarkers for prognosis and disease diagnosis. 

A total of 284 individuals (Asian Indians) were recruited for the study. Our study identified 36 

aqueous metabolites from the methanolic extracts of serum samples collected from each 

individual after overnight fasting, of which 24 metabolites showed a statistically significant 

difference between normal individuals (referred to as healthy controls), prediabetic individuals, 

and subjects with established T2DM. Using ROC curve analysis, 12 metabolites (including 

glucose, pyroglutamate, serine, proline, glutamate, methionine, isoleucine, alanine, citrate, 

betaine, glycerol, and o-phosphocholine) in the T2DM subjects; and six metabolites (including 

glucose, pyroglutamate, o-phosphocholine, serine, snglycero-3-phosphocholine, and 

methionine) in prediabetic subjects, were identified with high specificity and sensitivity (AUC 

> 0.7). On performing multivariate ROC curve analysis with the panel of selected 5 metabolites 

commonly dysregulated in prediabetes and T2DM subjects, AUC values obtained were 0.96 

(95% confidence interval (CI) = 0.93, 0.98) for established T2DM; and 0.88 (95% CI = 0.81, 

0.93) for prediabetic subjects. Hence, we propose that this panel of 5 metabolic biomarkers 

(namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) can be used in the 

future for clinical diagnosis, patient surveillance, and for predicting individuals at risk for 

developing overt diabetes in the future in the South Asian Indians.  

 

Chapter 5: Mapping metabolic perturbations in Mycobacterium smegmatis in response to 

different stress conditions using NMR spectroscopy 

Mycobacterium smegmatis, the saprophytic soil mycobacteria besides being 

extensively applied as a surrogate for the human pathogen Mycobacterium tuberculosis, is an 

important constituent of natural and human-engineered habitats, including environmental inter-

surfaces like aerosolized water droplets. Its survival in consistently changing ecological set-

ups and turning into an opportunistic pathogen in immune-compromised hosts suggest high 

versatility at molecular and cellular levels. Here, we aimed to identify metabolites/metabolic 
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pathways critical for early adaptive response to abiotic stresses like acidic, oxidative, and 

nutrient starvation in Mycobacterium smegmatis. Using untargeted 1H NMR based 

metabolomics, 22, 21, and 47 dysregulated metabolites were identified in acidic, oxidative, and 

nutrient starvation conditions. Distinct topological shifts were observed in purine-pyrimidine, 

amino-acid metabolisms, and energy metabolism pathways. The accumulation of organic 

osmolytes, such as dimethylamine, methylamine, and betaine during nutrient starvation and 

oxidative stress, was specifically noticeable. Tracing these accumulated osmolytes through 

computational search tools and gene-expression studies, we deciphered pathways of 

biosynthesis of betaine, methylamine and dimethylamine (previously undocumented and 

unreported in Mycobacterium smegmatis). We also observed the differential levels of 

intermediary metabolites involved in the α-glucan biosynthesis pathway. This study 

documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis 

as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. 

These stresses are also faced by intracellular mycobacteria during infection and, therefore, may 

be extended to frame therapeutic interventions for pathogenic mycobacteria.  

 

Chapter 6: Cold storage reveals distinct metabolic perturbations in processing and non-

processing cultivars of potato (Solanum tuberosum L.)  

Potato (Solanum tuberosum), the largest popular non-grain vegetable food crop 

worldwide, belongs to the Solanaceae family and ranks third most wanted food crop after wheat 

and rice. Cold-induced sweetening (CIS) has been known to cause a significant loss to the 

potato processing industry, wherein the selection of potato genotypes using biochemical 

information through marker-trait associations has been found to be advantageous. The potato 

industry faces a massive loss due to CIS as chips and French fries get discolored,  a parameter 

which is primarily determined by RS content in potato tubers. As a result, CIS is known to be 

one of the critical parameters in potato cultivation; the selection and breeding of CIS-resistant 

potato tubers have become a priority in potato breeding programs. In this study, an untargeted 
1H nuclear magnetic resonance (NMR)-based approach was conducted to assess the alterations 

in the metabolic profiles of five different potato cultivars namely, Atlantic, Frito Lay-1533, 

Kufri Pukhraj, Kufri Jyoti, and PU1, upon cold storage at 4 °C. These potato cultivars differ in 

their CIS abilities and processing characteristics. The key purpose of this work was to 

investigate the variations in metabolic profiles of different potato cultivars at fresh harvest and 

after cold storage to further advance the knowledge of metabolic events associated with the 

CIS phenomenon. From this study, key metabolites were identified that could potentially be 
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used in breeding programs for the development of CIS-resistant cultivars with improved 

processing characteristics and thereby would enhance the quality of potato 

 

Conclusions 

 Using different biological systems, ranging from animal cells, microbial cultures, plants 

to human body fluids, we have been able to gain insights into important biological problems. 

Based on the results obtained in this thesis, we have been able to identify perturbed metabolites 

(using 1H NMR spectroscopy) that can be used as biomarkers in future.  
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1.1 Introduction to metabolomics  

 Omics sciences are rapidly evolving disciplines that have been developed for studying 

and describing complex biological systems in a holistic manner (Berry et al. 2011; Kell 2004). 

The initial understanding of complexity of living organisms was classically described in the 

simplest way with the help of central dogma – the directional flow of information (Kaddurah-

Daouk, Kristal, and Weinshilboum 2008) from genomic DNA to proteins via mRNA 

transcripts, all are integrated to generate a desired phenotype. Under this ‘Omics’ umbrella, the 

analysis of genome (referred to as Genomics); the analysis of complete set of RNA transcripts 

produced by the genome at a particular instant (referred to as Transcriptomics); the analysis 

of expression profile of proteins (referred to as Proteomics); and the analysis of small 

molecules called metabolites generated as a result of protein-protein and protein/nucleic acid 

interactions (referred to as Metabolomics), is increasingly being used to generate a system-

wide view of a biological system (Dettmer and Hammock 2004). Metabolomics has been 

considered as the endpoint of this omics cascade (Kaddurah-Daouk et al. 2008), as metabolome 

is the terminal downstream product of the genome. It consists of the complete set of low 

molecular weight (<1500 Da) metabolites in a biological system, including cells, tissues, fluids, 

and whole organisms (Wishart et al. 2007a). Being the downstream product of the omics 

cascade (Figure 1.1) and eventual reaction to various pathophysiological stimuli or genetic 

modifications, the metabolome is highly dynamic and hence, can be considered as a reliable 

snapshot of the physiological state of an organism. In addition to providing snapshot of the 

physiological state of an organism, metabolites are also known to take part in various cellular 

pathways, e.g., glycolysis, pentose phosphate pathway, fatty acid biosynthesis, oxidative 

phosphorylation, Krebs cycle, etc., (Bruntz et al. 2017; Jalloh et al. 2015; Martínez-Reyes and 

Chandel 2020). This sometimes makes it difficult to understand if they are indeed cause or the 

effect of any particular disease (Mi et al. 2020; Nemet et al. 2020). 

Metabolomics, an emerging and rapidly evolving technology, has been defined by 

Fiehn as ‘the qualitative and quantitative study of the metabolome in a biological system’ 

(Fiehn 2002). As explained before as well, it emphasizes on the study of a diverse range of low 

molecular weight (<1500 Da) endogenous and exogenous metabolites that include various 

organic species, such as, amino acids, fatty acids, nucleic acids, carbohydrates, organic acids, 

vitamins, polyphenols, and lipids (collectively called as metabolome). The information about 

these low molecular weight compounds present in the biological soup can be used in various 

aspects of scientific research, such as development of biomarkers for disease diagnosis, 
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monitoring the effects of medical interventions like medications, identification of food 

adulteration and understanding of the chemical diversity of a species based on geographical 

origin. In addition to this, metabolomics may provide not only disease-specific biomarkers but 

also provide deep insights into the etiology and progression of a variety of complex disorders. 

For example, biofluid metabolomics has been used to understand various human diseases, to 

examine biochemical pathways and their perturbations that arise due to mutations, ageing, diet, 

exercise, lifestyle changes, etc. (Beckonert et al. 2007; Markley et al. 2017; Wishart 2008, 

2016). Metabolomics, therefore, seeks to provide detailed insights into the physiological state 

of an organism by analyzing the global metabolic profile of a biological sample in relation to 

genetic variations or external stimuli (Monteiro et al. 2013). 

  

Figure 1.1: The central dogma of biology and the omics cascade. 

 

1.2 Targeted and Untargeted Metabolomics  

 Two different approaches have been developed for performing metabolomics analysis 

– targeted and untargeted metabolomics (Fernández-Peralbo and Luque de Castro 2012). The 

choice of the approach depends on the kind of information that is sought from the metabolomic 

analysis.  

 In untargeted approaches or global profiling approach, significant metabolites are, by 

definition, unknown prior to analysis. This approach provides an unbiased overview of the 

entire metabolome and focuses on simultaneously measurement of as many metabolites as 

possible from biological samples (without any previous bias) in order to generate a metabolic 

fingerprint of a sample (Shulaev 2006). On the other hand, targeted metabolomics aims to 

measure a set of specific and pre-defined metabolites whose physico-chemical characteristics 

are known. This approach focuses on the absolute quantification of metabolites, that have been 

identified in advance, and which are highly related to a specific pathway (Bingol 2018). This 
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method has been characterised as a “hypothesis-driven approach” rather than as a “hypothesis-

generating approach”. In this thesis, the untargeted metabolomics approach has been used to 

address different biological problems. 

 

1.3 The metabolomics workflow 

 Independent of the field of application, metabolomics investigations need to follow a 

specific and systematic workflow in order to achieve appropriate and reliable results. The 

typical workflow involved in obtaining the metabolomic fingerprint of a biological system has 

been presented in Figure 1.2. The first and most important step is the formulation of a 

hypothesis or biological problem to be resolved by metabolomics. This is followed by the set-

up of experimental design wherein the sample in question is collected and processed to extract 

the metabolites. The extraction methods need to be standardized to cover the maximum 

metabolites that can be obtained from a sample. This is followed by an analysis of the extracted 

metabolites using techniques that separate, identify and quantitate them. This, in turn, leads to 

the generation of large datasets, which are curated, and then analysed either manually or by 

pre-designed software packages, followed by rigorous processing of the data and analysis. 

 

Figure 1.2: Workflow followed for conducting a metabolomics study: The basic steps involved in performing a 
metabolomics study include: hypothesis generation, experimental design, sample collection, sample preparation, 
data acquisition, statistical analysis –generally multivariate data analysis, followed by the interpretation of the 
results (i.e. identification of the major perturbed metabolic pathways). 
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1.4 Sample preparation  

 Sample collection, preparation, and storage are crucial steps since only a correct 

sampling method would provide a real snapshot of the metabolome at a given point in time. 

Thus, strict protocols both for the collection and the preparation of the samples have to be 

followed by all the operators involved in the project. For the most common analysed biofluids 

such as plasma, serum and urine, generally methods that involve minimal sample treatment are 

preferred, wherein samples are diluted, filtered and centrifuged to perform the extraction 

(Beckonert et al. 2007). On the other hand, in case of semi-solid or solid biological samples, 

extraction is performed after weighing and grinding in a pre-cooled mortar-pestle under liquid 

nitrogen and/or a pre-cooled blender (for harder tissues/samples) (Kim, Choi, and Verpoorte 

2010). This is followed by the step-wise addition of reagents and solvents with different 

polarities to extract the metabolites (Kim and Verpoorte 2010). The performance of various 

organic solvents such as alcohol, acetonitrile, acetone, acid and their combination have been 

studied for metabolite extraction from biological fluids or tissues using NMR analysis. It has 

been shown that protein precipitation and metabolite extraction using methanol gives better 

results for metabolite concentrations as compared to other solvents. The use of methanol 

provides high extraction efficiency and minimal metabolite losses, and hence is potentially well 

suited for routine NMR based metabolomics studies (Nagana Gowda and Raftery 2014; 

Snytnikova et al. 2019). The entire extraction process must be followed at low temperatures (< 

-20 °C) in order to inhibit the enzymes responsible for the degradation of metabolites (Dunn 

and Ellis 2005; Pinu, Villas-Boas, and Aggio 2017). It is important to follow a unique 

standardized protocol for sample preparation in NMR-based metabolomic studies in order to 

avoid the identification of spurious biomarkers due to a general lack of reproducibility between 

laboratories (Emwas et al. 2015). 

 
1.5 Analytical platforms 

 The most important analytical tools commonly used in metabolomics are NMR 

spectroscopy and Mass spectrometry (Djukovic, Nagana Gowda, and Raftery 2013; Dunn and 

Ellis 2005). Both these techniques have advantages and disadvantages, thus there is not a single 

analytical technique fully suited for metabolomic studies. Indeed, NMR and MS have been 

demonstrated to be complementary and powerful analytical approaches for the complete 

characterization of the metabolome (Pan and Raftery 2007). 
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Mass spectrometry (MS) is an analytical technique that separates the compounds in a 

biological sample based on their mass to charge ratios by taking into an account the degree of 

deflection of charged particles in an electromagnetic field (Picó 2015). The higher sensitivity 

and selectivity of MS, with detection limits in the picogram range makes it an important 

technique for the metabolic profiling of biological samples (Pan and Raftery 2007). MS is often 

coupled with chromatographic techniques, as Liquid Chromatography-Mass Spectrometry 

(LC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS) (Scalbert et al. 2009). MS-

based metabolomics typically requires complex pre-processing of samples (i.e., via 

derivatization in GC-MS) that results in loss of many non-derivatised chemical constituents. 

The overall throughput of this platform is further hampered by many unsolved problems such 

as a non-uniform detection caused by variable ionization efficiency, lack of standardized 

protocols or procedures (as it requires optimization of separation conditions each time) and a 

lack of a universal database due to different ionisation mode, etc. (Aretz and Meierhofer 2016). 

NMR spectroscopy is a highly powerful and versatile analytical technique in 

metabolomics since it allows the qualitative and quantitative analysis of chemical compounds 

from complex mixtures as well as the structural elucidation of unknown compounds (Huang et 

al. 2007; Kruk et al. 2017). NMR has an important role in metabolomics owing to the use of 

easy and rapid sample preparation methods, non-destructiveness of samples, lack of 

dependence on chromatographic separation and high degree of reproducibility (Clayton et al. 

2006; Lindon et al. 2000). It is non-selective (i.e., it is not biased towards the detection of 

certain metabolites present in a biological sample), and can simultaneously analyse all highly 

abundant aqueous metabolites present in a biological mixture. NMR experiments generally 

require minimal sample preparation, often consisting only of pH adjustments and internal 

standard addition. Further, one of the greatest strength of NMR lies in its utility for the absolute 

quantification of metabolites as the NMR spectral integral of a peak shows direct 

proportionality to the molar concentration of the corresponding metabolites (Mahrous and 

Farag 2015). The metabolite concentrations can be calculated by comparing the area under 

each peak corresponding to a particular metabolite with that of the internal standard of known 

concentration, such as 3-trimethylsilylpropionic acid (TPS) or 2,2-dimethyl-2-silapentane-5-

sulfonate (DSS). In view of this, a direct comparison of different metabolites is possible 

without the need for any calibration curve of each individual metabolite. NMR is, however, 

largely limited by its low sensitivity as it can only detect medium to highly abundant 

metabolites, typically anything in or above the micromolar range (Pan and Raftery 2007). 

Increased signal- to noise- (S/N) ratio and spectral resolution can be achieved by the 
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application of a higher magnetic field instrument and cryoprobe to reduce thermal noise 

(Kovacs, Moskau, and Spraul 2005). In addition, the use of small volume probes (1 mm and 

1.7 mm tube probes), which require less sample volumes ( less than 30 μl), is able to provide 

several-fold increased sensitivity when compared to the conventionally used probes (3 mm or 

5 mm cryoprobes). This is due to the fact that for a given mass of analyte, a reduction in the 

diameter of the radio-frequency (RF) coil increases the S/N ratio (Dalisay and Molinski 2009; 

Dona 2018; Hoult and Richards 1976; Schroeder and Gronquist 2006). In addition to this, 

isotopic enrichment of the metabolites through chemical reactions can be commonly applied 

to enhance the sensitivity of heteronuclear 2D NMR experiments. Other limitations of NMR 

experiments include the heavy overlap of spectral resonances as several endogenous 

metabolites may contribute to a signal; variation in chemical shift of resonances due to changes 

in pH, concentration, and ionic strength due to alterations in the acid-base equilibrium and 

solute-solute interactions; poor water suppression in case of dilute samples; baseline 

distortions; and chemical exchange between metabolites, particularly with water. In this thesis, 

we have performed metabolomics investigations in different biological systems using NMR 

spectroscopy.  

 

1.6 NMR as a tool in metabolomics  

 In the following sections, a brief overview of typical NMR experiments (Figure. 1.3) 

that are being used extensively to analyze a mixture of metabolites has been provided.  

 

Figure 1.3: NMR experiments typically used for the analysis of metabolites. Using Antalid (a recently isolated 
secondary metabolite from Polyangium species) as an example (Tautz et al. 2016), the NMR experiments 
employed for the identification of metabolites and the corresponding information content from these experiments 
(highlighted) have been enlisted. [Adapted from (Yousf et al. 2017)]. 
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1.6.1 1H NMR Spectroscopy 

 One dimensional (1D) 1H NMR is the most robust and powerful technique used in the 

analysis of overwhelming majority of metabolomics studies (Larive, Barding, and Dinges 

2015) performed to date because it is fully automated, efficient, and very rapid (Beckonert et 

al. 2007). In fact, the data collection times for 1H NMR experiments can often be as short as a 

few minutes per sample. In addition to this, the information generated by the 1D 1H NMR 

spectrum is often enough to identify and quantify 40–80 metabolites at a time in a given 

biological sample. Furthermore, 1D 1H NMR experiments has the possibility to directly 

measure the metabolite concentration by integrating the peak using an internal standard of 

known concentration. In most cases, DSS (4,4-dimethy-4-silapentane-1-sulfonic acid) or TSP 

(3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid) have been used as internal standards for 

quantitation of metabolites (Mallol et al. 2013). Besides quantification, they are also used for 

the calibration of NMR chemical shifts during spectral analysis. 

In NMR-based metabolomics, solvent suppression is one of the important aspects that 

has the greatest impact on overall spectral quality. Solvent suppression is required during the 

measurement due to the large water signal to avoid signal overlapping and baseline distortions. 

The most popular water suppression schemes commonly used in NMR-based metabolomics 

include simple presaturation (pre-sat) which uses weak radiofrequency to saturate the water 

resonance during relaxation delay, 1-D Nuclear Overhauser Effect Spectroscopy (NOESY) 

presaturation with gradients (noesygppr1d), water suppression by WATERGATE that uses 

gradient tailored excitation (Piotto, Saudek, and Sklenář 1992; Sklenáŕ et al. 1993) and 

excitation sculpting (ES) using pulse field gradient echo sequence (Hwang and Shaka 1995; 

Nguyen et al. 2007) for water suppression. Amongst these, noesygppr1d has been widely used 

to suppress water signal efficiently in case of biological samples, since it is highly robust. This 

pulse sequence (noesygppr1d) uses the first increment of a NOESY pulse sequence, with water 

presaturation and spoiler gradients during relaxation delay and mixing time and is in the form 

of −RD-90°-t-90°-tm-90°-ACQ, where RD is the relaxation delay, t is a short delay, 90° 

represents the RF pulse, tm is the mixing time and ACQ is the data acquisition period. The 

noesygppr1d pulse sequence has emerged as the leading choice for NMR-based metabolomic 

studies as it provides good solvent suppression without rolling baselines. 

Another important 1D NMR experiment commonly used in NMR-based metabolomics 

is CPMG (Carr-Purcell-Meiboom-Gill), that employs T2 filtering to attenuate the broad signals 

from macromolecules, mainly proteins and lipids, which have short T2 relaxation time 
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compared to metabolites (Carr and Purcell 1954). CPMG experiment is based on the spin-echo 

pulse sequence and consists of −RD-90°x-(tE- 180°- tE)n-ACQ, where tE represents the echo 

time and n is the number of repetition of the block in parenthesis. By carefully optimising these 

two parameters, the resonances in the spectrum can be separated according to their spin-spin 

relaxation time (T2). 

 

1.6.2 2D NMR Spectroscopy 

 The main drawback of 1D NMR experiments is the extensive signal overlapping that 

seriously limits the clear identification and quantification of metabolites during metabolite 

analysis. For this reason, two dimensional (2D) NMR experiments that provide additional 

dimensions are carried out in order to alleviate the congestion of 1D spectrum. The benefits of 

using 2D NMR spectroscopy include the reduced overlap of spectral peaks allowing 

unambiguous identification of the compounds in the mixture, additional information regarding 

the resonance multiplicity, and coupling patterns. The most commonly used experiments in 

metabolomic studies include 1H-1H COSY (COrrelation SpectroscopY), 1H-1H TOCSY (TOtal 

Correlation SpectroscopY), 2D J-resolved spectroscopy (J-Res), 1H-13C HSQC (Heteronuclear 

Single-Quantum Correlation spectroscopy), and HMBC (Heteronuclear Multiple-Bond 

Correlation spectroscopy).  

 

1.6.2.1 1H-1H Correlation Spectroscopy (COSY) 

2D 1H-1H correlation spectroscopy (COSY) is the simplest experiment of all 2D NMR 

experiments used to identify homonuclear correlations between coupled 1H nuclei. During the 

COSY experiment, protons with mutual spin-spin coupling correlations are observed and are 

displayed in the form of cross-peaks in the COSY spectrum (Figure 1.4B). These cross-peaks 

in the 2D spectrum indicate pair of nuclei connected through scalar coupling on the same 

carbon (germinal coupling, 2JH-H), or on adjacent carbon (vicinal coupling, 3JH-H), or in rare 

cases protons connected via four/five bonds (long-range COSY) (Jacobsen 2007) (Figure 

1.4A). There are several variants of COSY that have been developed to improve the resolution 

of the cross-peaks and to reduce the acquisition time. 
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Figure 1.4: 2D 1H-1H Correlation Spectroscopy (COSY). A) 1H-1H correlations that can be observed as a cross 
peak in COSY spectrum have been connected by arrows in a small molecule taken as an example. B) A typical 
COSY spectrum: Diagonal peaks are observed at the respective chemical shifts of each proton and can be read in 
either F1 or F2 dimension. Cross-peaks are observed between the proton pairs marked by arrows in (A) that read 
1H chemical shifts of the respective protons in F1/F2 dimension. For simplicity, cross peaks have been shown 
only on one side of the diagonal. Adapted from (Yousf et al. 2017). 

 

1.6.2.2 1H-1H Total Correlation Spectroscopy (TOCSY) 

Another powerful 1H–1H correlation spectroscopy is the Total Correlation 

Spectroscopy (TOCSY), also known as the homonuclear Hartmann–Hahn (HOHAHA) 

experiment. In a typical TOCSY experiment, all protons involved in the same spin system are 

detected and are shown either in 1D mode or most commonly in the form of cross peaks in 2D 

TOCSY spectrum (Jacobsen 2007) (Figure 1.5B). In a metabolomics study, TOCSY 

experiment is used to provide the complete assignment for proton resonances of sugars and 

peptides, as all the protons that are correlated in the same sugar residue or in a single amino 

acid will get detected (Adell et al. 1997). In the 1D version of a TOCSY experiment, a particular 

signal with a good signal- to- noise ratio is selected in the spectrum and the other corresponding 

signals that appear correlated with the selected signal can be determined by applying excitation 

pulse on the selected signal (Figure 1.6). 1D TOCSY is very fast (can be recorded in one or 

two minutes) providing a relatively simple 1D NMR spectrum which is easier to analyse  
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Figure 1.5: 2D 1H-1H Total Correlation Spectroscopy (TOCSY). A) A set of 1H-1H correlations that show a cross-
peak in TOCSY are connected by arrows in a small molecule taken as an example. For example, H3 shows a cross-
peak with H1, H2 and H4. B) A typical TOCSY spectrum; F1 (corresponding to t1 period) and F2 (corresponding 
to t2 period) dimensions both read 1H chemical shifts. Diagonal peaks are observed at the respective chemical 
shifts of each proton and can be read in either F1 or F2 dimension. Cross-peaks are observed between the proton 
pairs marked by arrows in (A) that read 1H chemical shifts of the respective protons in F1/F2 dimension. For 
simplicity, cross peaks have been shown only on one side of the diagonal. Adapted from (Yousf et al. 2017). 

 

 
 

Figure 1.6: 1D TOCSY spectrum of glycocarbamates in MeOH-d3. (A) 1D-TOCSY sub spectra obtained by 
selective excitation of the signals at δ H 3.03 ppm. (B) 1H-NMR spectrum control. 
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1.6.2.3 2D J-resolved NMR Spectroscopy (J-RES) 

The 2D J-resolved spectroscopy (J-Res) experiment has become a popular method for 

a wide range of NMR-based metabolomic studies because of its simplicity and short acquisition 

time (Ludwig and Viant 2010). It is a 2D homonuclear experiment in which proton spectrum 

(chemical shift ) is displayed in one dimension (F2) and the coupling constant (J-couplings) of 

each peak is presented in a second dimension (F1) (Huang et al. 2015) (Figure 1.7B). A skyline 

projection of F2 yields a proton-decoupled 1D spectrum that highly reduces the spectral 

congestion and thus facilitates the assignment and quantifications of metabolites. Unlike 

chemical shits, J-couplings are resistant to physiological factors (such as temperature or pH 

value) and thus simplifies the resonance assignment, especially for low-intensity peaks which 

may be completely hidden by the overlapping of main peaks. Additionally, details about the J-

value can be used to differentiate between certain isomers, such as a and b anomers of sugars 

and glycosides or cis- and trans- isomers of olefinic compounds (Mahrous and Farag 2015). 

 

 

Figure 1.7: 2D J-resolved NMR Spectroscopy (J-RES). A) A small molecule taken as an example. B) A typical 
J-resolved spectrum of a small molecule (A) taken as an example. F2 dimension reads 1H chemical shift and F1 
dimension reads scalar coupling of fine structure. H1 proton shows a triplet in the spectrum indicating it is next 
to a group having two equivalence protons in the molecular structure. Adapted from (Yousf et al. 2017). 
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1.6.2.4 2D 1H-13C Heteronuclear Single Quantum Coherence (HSQC) 

The 2D 1H-13C heteronuclear NMR spectroscopy in metabolomics represents a valuable 

tool for resolving and assigning overlapping proton peaks, especially for metabolite signals 

resulting from complex biological samples (Mahrous and Farag 2015). The 2D correlation 

spectroscopy such as Heteronuclear Single Quantum Coherence (HSQC), maps a single-bond 

proton and carbon correlation (Figure 1.8B) is used for identification of molecules through 

complete resonance assignments. The HSQC experiment provides the highest resolution 

compared to the other 2D experiments. Nevertheless, the increased resolution is associated with 

a reduction in sensitivity, especially at the relatively low natural abundance of 13C. To increase 

the sensitivity, isotopic labelling with 13C is carried out in order to increase the abundance of 
13C. This can be done either by using 13C glucose in nutrient media or by performing chemical 

reaction after the collection of samples (Buescher et al. 2015; Klein and Heinzle 2012).  

 

 

 

Figure 1.8: 2D 1H-13C Heteronuclear Single Quantum Coherence (HSQC). A) One-bond 1H-13C correlation that 
shows a cross-peak in HSQC is connected by an arrow in a small molecule taken as an example. For example, H3 
shows a cross-peak with C3. B) A typical HSQC spectrum; F1 (corresponding to t1 period) reads 13C chemical 
shifts and F2 (corresponding to t2 period) dimension reads 1H chemical shifts. Unlike homonuclear experiments 
one does not observe diagonal peaks in heteronuclear experiments. Cross-peaks are observed between a directly 
connected 1H and 13C pair marked by arrows in (A) that reads 1H chemical shift in F2 dimension and 13C chemical 
shift in F1 dimension. Adapted from (Yousf et al. 2017). 

 

For metabolite analysis, crucial NMR data acquisition parameters must be optimised in 

all aforesaid NMR experiments for different biological samples. This includes spectral width, 

time-domain points, number of scans, receiver gain, inter-scan delay and the acquisition time. 
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1.6.3 Recent advances in NMR spectroscopy 

The main limitation of 2D NMR experiments is the relatively longer acquisition time. 

To overcome this problem, several approaches have been suggested in recent past, which 

continue to evolve, for the reduction of NMR experiment measurement time. Among which 

the two of the methods that show great promises, in a quantitative metabolomics context, are: 

1) non-uniform sampling (NUS) which acquires only a subset of the data points in the indirect 

dimension and remaining points can be predicted using novel reconstruction methods that 

ultimately allow the extraction of complete sets of chemical shift information (Le Guennec et 

al. 2015; Mobli and Hoch 2014); and 2) Ultrafast (UF) 2D NMR, the only current approach 

that makes it possible to record a 2D spectrum in a single scan (Giraudeau and Frydman 2014a). 

In ultrafast experiments, instead of repeating N successive experiments on a sample with an 

array of independent time increments, the sample is divided into N virtual slices, where the 

spins located at different Z-positions undergo different evolution periods, but happens 

simultaneously for all the spatial slices in the same scan (Figure 1.9) (Giraudeau and Frydman 

2014b). In addition, rapid data collection using multiple NMR receivers have been used in 

metabolomics for acquiring multiple NMR spectra required for resonance assignments 

simultaneously in a single data set. For instance, in metabolomics the most commonly used 2D 

NMR experiments are: 2D 1H-1H TOCSY, 2D 1H-13C HSQC and 2D 1H-13C] HSQC-TOCSY 

(Dubey, Pudakalakatti, and Atreya 2019). These three spectra can be visualised as three 

orthogonal projections (2D planes) of 3D [1H-13C] HSQC-TOCSY (Figure 1.10). By 

combining all the three 2D planes together provides complete 3D spectral information. Thus, 

a 3D spectrum, which requires few days for data recording can be replaced by recording the 

three 2D projections, which can be acquired rapidly with high resolution. The main problem in 

implementing these experiments is the requirement of specialized hardware and software 

technology, and technically involved acquisition schemes (Kupce 2015). 

The resolution of 1H NMR spectra of complex mixtures could be significantly boosted 

using “Pure Shift“ methods (Adams 2014; Zangger 2015). Pure shift methods also known as 

broadband homonuclear decoupling are particularly used to enhance the spectral resolution in 

the direct proton dimension, which is typically crowded due to the limited proton chemical 

shift range (10-15 ppm) and extensive signal splitting due to proton–proton scalar coupling. 

Pure shift methods removes all homonuclear scalar couplings by collapsing all multiplets to 

singlets, simplifying spectra with improved resolution along the proton dimension (Timári et 
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al. 2019). However, these methods typically come with a significant loss in sensitivity and are 

not commonly applied to the metabolomic data analysis (Giraudeau 2020).  

 

Figure 1.9: Ultrafast acquisition strategy. In ultrafast experiments, the NMR sample is divided into spatial slices 
along Z-dimension using gradients and each slice is then evolved to a different time during first evolution period. 
Adapted from (Yousf et al. 2017). 
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Figure 1.10: (a) The 3D [1H-13C] HSQC-TOCSY spectrum. The 3D [1H-13C] HSQC-TOCSY spectrum can be 
visualized as a combination of three 2D experiments: 2D [1H-13C] HSQC, 2D [1H-13C]] HSQC-TOCSY and 2D 
[1H-1H] TOCSY. (b) The peak pattern observed in the three 2D spectra is illustrated for two spin systems. Adapted 
from (Dubey et al. 2019). 

 

1.7 Post-acquisition processing of NMR spectra  

 Prior to chemometric analysis, a number of processing steps have to be performed 

before and after the Fourier transformation (FT) of the FID. The key stages of NMR data 

processing have been briefly summarised in the following sub-sections. 

 

1.7.1 Chemical shift referencing 

 The acquired NMR spectra needs to be properly referenced with an internal chemical 

shift standard prior to any qualitative and quantitative analysis. Chemical shift referencing is 

important for resonance assignment of metabolites, spectral alignment and thus any statistical 
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analyses. For most metabolomics studies, referencing standards including trimethylsilyl 

propanoic acid (TSP) and 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) are widely used 

for chemical shift referencing (Dona et al. 2016). Also, the chemical shift referencing with 

respect to solvent peaks (i.e., water) must be avoided since its signal position is very sensitive 

to various sample parameters including pH, salt, exchangeable moieties, and temperature. 

 

1.7.2 Phase correction  

 Phase correction is an NMR spectral adjustment procedure designed to increase the 

absorptive character and symmetry of all NMR signals across all regions of an NMR spectrum. 

It is generally generated by two main phenomena: (i) temporal delays between the RF pulse 

and the opening of the receiver for the FID acquisition; and (ii) off-resonance effects due to 

inability of the pulse to excite all the nuclei equally. This is considered as an essential spectral 

processing step since even a minor error in phasing can results in severe problems that will 

cascade down through all remaining processing steps, especially quantification. A spectrum 

that is not phase-corrected has a signal with a dispersive line shape, as well as inverted signals. 

As a result, a zero-order and first-order phasing adjustments are required to deal with this 

problem. Zero-order correction is frequency independent and thus, the correction applied in 

phase factor is same across the spectrum for all the lines. Whereas the first-order correction is 

frequency dependent and applies a phase change, which increases linearly with the distance 

from a “pivot” point where the first-order phase correction is zero. 

 

1.7.3 Baseline correction  

 The existence of the baseline artefacts is one of the most ubiquitous problems in FT-

NMR spectra that could adversely affect the identification and quantification of NMR signals. 

It is a crucial feature in a metabolomics experiment. Indeed, a flat baseline is fundamental for 

an accurate integration and thus, the quantification of the chemical compounds. Furthermore, 

small peaks could be hidden under a distorted baseline. This issue is usually caused by the 

corruption of the first few data points in FID that add low frequency modulations in the Fourier-

transformed spectrum, and thus forms a distorted baseline. Correcting such distortions is an 

important step in the processing of NMR spectra. Baseline correction models the baseline by 

fitting it to polynomial, sine, or exponential functions. Even little baseline distortions lead to 

large errors in the quantification of metabolites of low abundance.  
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1.7.4 Zero filling  

 Zero filling is a data processing technique which is always done prior to Fourier 

Transformation to increase the digital resolution of the NMR spectra by increasing the FID 

data points. Moreover, it is essential to point out that zero filling does not increase the true 

resolution, it only enhances the apparent resolution that might be helpful in visualising the fine 

coupling. Zero filling is often applied to at least double the original FID data size i.e., twice the 

number of experimentally collected data points. 

 

1.7.5 Apodization  

 Apodization is a digital filtering manipulation of the NMR spectra that consists of 

multiplying the FID with different window functions (Lorentzian, Exponential, Gaussian, or 

Sine-bell function) prior to Fourier transformation. Window apodization is applied to the FID 

either to enhance the signal-to-noise ratio (S/N), usually with a Lorentzian function or to 

improve resolution, using a shifted sine-bell or a Gaussian function.  

 

1.8 NMR data pre-processing for chemometric analysis  

 NMR data are not readily suitable for the analysis by chemometric methods. Therefore, 

these data need to be transformed into a format that is suitable for carrying out multivariate 

analysis. This can be achieved through several steps: binning, alignment, normalisation, and 

scaling. 

 

1.8.1 Binning 

 Binning consists of segmenting of an NMR spectrum into a number of small regions or 

buckets (usually 0.02-0.04 ppm) that are large enough to have one or more NMR peaks in it. 

The bin intensity is then calculated by means of integrating signal intensities within each bin. 

One of the important advantage of binning is that it prevents the NMR shift variations from 

affecting statistical processing, provided such shifts remain within the borders of corresponding 

bins (Emwas et al. 2018). Binning approach generally tends to decrease the complexity of the 

data by reducing the number of variables and thus makes it more manageable. After binning, 

the statistical analysis can then be conducted on the extracted bin intensities, and the peaks are 

then assigned to metabolites. Binning method requires less effort and less time. The major 

disadvantage of the equidistant binning is the lack of flexibility in situations where peaks split 

between two adjacent bins, thereby resulting in a dramatic loss of resolution. To overcome this 
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problem, several other approaches can be used, such as adaptive-intelligent binning and 

dynamic adaptive binning, which dynamically determines the size and location of each bin. 

(Anderson et al. 2011; Davis et al. 2007). Adaptive binning approach identifies bin edges (the 

beginning and end of each peak) in the existing bins using undecimated wavelet transform. 

 

1.8.2 Spectral alignment 

 Spectral alignment is a method that iteratively adjusts NMR peak positions in multiple 

spectra in order to directly overlay or align the peaks corresponding to the same compounds. 

However, it can happen that a peak belonging to the same analyte, and thus expected at the 

same chemical shift in all the samples, changes its position across the spectra, even when 

properly referenced. This is known as chemical shift drift and the most common reasons for 

this phenomenon arise mainly due to changes in experimental conditions such as pH, 

temperature, ionic strength, physicochemical interactions, etc. Such chemical shift drifts have 

been known to create variation in the ppm values across different NMR spectra. Even slight 

changes in the NMR spectra can deeply influence the statistical analysis and thus complicate 

the discovery of biomarkers or the pattern of metabolic profiles. Therefore, to correct local 

signal shifts, it is preferable to perform a spectral alignment that will allow a good chemometric 

modelling. Some of the examples of alignment algorithms include, interval correlation shifting 

(icoshift) (Savorani, Tomasi, and Engelsen 2010), Correlation Optimised Warping (COW) 

(Nielsen et al. 1998) and Recursive Segment-Wise Peak Alignment (RSWPA) (Veselkov et al. 

2009). 

 

1.8.3 Normalisation 

 After the metabolite identification and quantification, the next step in the data post-

processing pipeline is to normalize the data in order to remove any variation in signal intensities 

due to dilutions of each sample or the amount of material analysed rather than changes in 

metabolic responses. Normalization is a table row operation in the data matrix (containing N 

observation row vectors of various samples having K variables each in columns where variable 

can be NMR peak intensity or NMR peak volume) that aims to make spectra comparable with 

each other (Worley and Powers 2013). 

Different normalisation methods mostly used in metabolomics studies include: 

1) Normalization with respect to an internal standard  

2) Normalization to a particular reference feature  

3) Normalization to total intensity or total area  
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4) Probabilistic Quotient Normalization (PQN)  

5) Sample-specific Normalisation 

Normalization to total or total integral is the most common method of normalisation in 

NMR-based metabolomic studies, which assumes that the total sum of the intensities of each 

spectrum is constant (Emwas et al. 2018). This algorithm divides the individual bin integral by 

the total integrated intensity for each sample. This method is used to normalize deviations 

between spectra due to sample concentration/dilution. Nonetheless, this approach has been 

reported to have robustness and accuracy limitations when the samples contain extreme 

quantities of one or few metabolites. To overcome this issue, Probabilistic Quotient 

Normalization (PQN) approach has been developed, which is based on the assumption that 

changes in concentration of single metabolites only affect certain portions of the NMR spectra, 

whereas dilution effects will influence the complete spectrum (Dieterle et al. 2006). This 

algorithm relies on the determination of most probable dilution factor for all signals of the 

spectrum compared to a reference spectrum. 

When undertaking any normalisation, it is important to consider eliminating NMR 

peaks considered to be irrelevant to biological effects, such as solvent peaks, the intensities of 

which can interfere with this procedure. 

 

1.8.4 Scaling 

 Scaling, a column-wise operation on the variables in the matrix defined above, is a data 

pre-treatment method that divides each variable by a factor, the scaling factor, that is different 

for different variables (Hendriks et al. 2011). Generally most abundant metabolites display 

greater variances among samples that may obscure smaller, but biologically important changes 

in low-abundant metabolites. Scaling aims to remove the bias towards the most abundant 

metabolites in the data analysis in order to make data more normally distributed. The most 

commonly used data scaling methods in multivariate analysis include Autoscaling and Pareto 

scaling (van den Berg et al. 2006a; Keun et al. 2003). 

 

1.8.5 Mean centering 

 Prior to scaling, a column-wise operation called mean centering is used to convert all 

concentrations such that they fluctuate around zero rather than mean value (Smolinska et al. 

2012). This is achieved by subtracting the column mean intensity from each individual intensity 

values, thus allowing the correction for the gap among metabolites present in high and low 

abundances. 
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1.8.6 Autoscaling 

 Autoscaling, also referred as standardization or Unit Variance Scaling (UV), is a 

method that converts all the variables to have unit variance (van den Berg et al. 2006b). This 

approach of scaling uses standard deviation as the scaling factor, dividing each value in a 

column by the standard deviation after mean centering and thus making all variables equally 

important, including noise. However, this method blows up baseline noise and can be a concern 

in NMR applications where noise covers major portions of the spectra.		
	
1.8.7 Pareto scaling 

 Pareto scaling, a highly recommended scaling approach for the metabolomics study, is 

achieved by dividing each variable by the square root of the standard deviation (van den Berg 

et al. 2006b). This is quite similar to autoscaling. In this approach, large fold changes in the 

metabolic data are downscaled more than small fold changes, thus it significantly reduces the 

former’s effect while comparing with the clean data (Yang et al. 2015). This approach is 

considered as an intermediate between the extremes of no scaling (only mean centering), where 

medium features (low abundance metabolites) are overwhelmed by big ones (high abundance 

metabolites), and autoscaling that enlarges baseline noise.  

 

1.9 Univariate Analysis 

 Univariate analysis is the simplest form of data analysis where only one variable is 

involved while analysing the data (Sandilands 2014). Because it only includes one variable, 

therefore it does not deal with causes or relationships (unlike regression). The major aim of 

univariate analysis is to describe the data and to find patterns that exist within it. The univariate 

analysis uses one dependent variable – the outcome; and one independent variable – the 

intervention. To access the significance of the difference between the means of two 

independent sets of data, the Student’s T-test is commonly used. For data that contains more 

than two independent groups, one-way analysis of variance (ANOVA) can be applied to access 

the difference between group means of each variable. Both t-test and ANOVA are parametric 

tests that rely on the assumption of normality and equality of variances between groups (Horne 

1998). If, in any case, the assumption of normal distribution for the sample population is not 

met, non-parametric analysis – such as the Wilcoxon rank sum test, can be used to evaluate the 

difference between two independent samples by comparing their medians (Gauthier and 
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Hawley 2015). Kruskal-Wallis one-way analysis of variance is the nonparametric equivalent 

of ANOVA comparing data with multiple groups.  

 

1.10 Multivariate Analysis (MVA) 

 Multivariate analysis (MVA) methods are crucial in metabolomics studies since all 

metabolites are considered simultaneously, allowing the detection of trends between samples 

and metabolites, as well as within samples and metabolites (Worley and Powers 2013). MVA 

is performed to find the metabolite patterns and relationships in the data. MVA is highly 

graphical in its approach, provide tools to visualize the relationships between samples and 

variables. This approach is also used for predicting behaviour and improving forecasting of 

likely outcomes using predictive tools. 

The basic categories of analysis techniques are: 

1) Exploratory analysis: unbiased overview of the data where patterns and outliers can be easily 

detected. 

2) Classification and discrimination: allows to discriminate between groups and to find 

biomarker candidates. 

3) Regression analysis: models the quantitative relationship between two blocks of data.  

The selection of the type of analysis mainly depends on the scientific goal.  

 

1.10.1 Principal Component Analysis (PCA)  

 Principal Component Analysis (PCA) is one of the most commonly used approaches in 

metabolomics. It is an unsupervised projection method commonly used in chemometrics to 

reduce multidimensional data complexity in order to visualize and interpret relations between 

samples and between studied variables (e.g. levels of metabolites) (Hotelling 1933). This 

method summarizes the variation within a dataset by a smaller number of (uncorrelated) 

variables, called principal components (PCs) (Jolliffe 2005). PCs are linearly weighted 

combinations of the original variables calculated in such a way that each PC consecutively 

models the maximum variation in the data and at the same time is orthogonal to the other PCs.  

PCA always begins with a normalised data often expressed as a data matrix with N rows 

(observations) and K columns (variables) (Wold, Esbensen, and Geladi 1987). The 

observations can be analytical samples, biological samples from different individuals, batch 

processing time points, and so on. The columns can be spectral or chromatographic variables. 

Although theoretically a number of PCs can be obtained from the calculation, the truly effective 
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PCs that generates the most of the relevant information are usually first few of them, while the 

other ones are often computed considering chance variation and noise. The outcome of this 

analysis consists of two plots: a ‘scores plot’, that displays the distribution trend of data points, 

in which each point represents a single spectrum (a single sample), and a ‘loadings plot’ that 

shows the variables of the spectrum (e.g., metabolites). The similarities and differences 

between samples are reflected by the clustering pattern (aggregation or dispersion trend) of 

samples in the score plots. The aggregation of points in the score plot indicates similarity of 

observation variables, whereas the well separate clustering of points represents the significant 

difference of observation variables. Both score and loading plots always need to be inspected 

together since the directions in the score plot correspond to direction in the loading plot. Thus, 

in order to understand the reason of a particular grouping observed in the score plot, it is needed 

to look at the same direction in loadings.  

A more appropriate way to explain the PCA is possible using the mathematical 

interpretation of this method, as illustrated in Figure 1.11.  

 

Figure 1.11: Schematic illustration of a PCA model. T and P represent the scores and loading matrices, while E 
is the residual matrix. N and K are the number of samples and variables respectively. A is the number of Principal 
Components chosen to build the model. Redrawn and adapted from (Bro and Smilde 2014). 

The data matrix is decomposed into a structure part and a noise part: 

 

 ! = #$! + & = '()*+(*), + -./0, (1.1) 

 

Where, T is the scores matrix, P the transposed loadings matrix, and E the residual matrix. 

Another way to clarify the scores definition is to consider them as element of the T matrix, 

where each row is an observation while each column represents the value that the observation 

has along each Principal Component (Bro and Smilde 2014).  
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Loadings, also called weights, allow one to understand the influence of the original 

variables on the scores T. The loading plot (Figure 1.12) shows the loadings of a certain PC; 

also, in this case, it is possible to plot the loadings of a PC against the loading of another PC.  

The residuals are not part of the model; thus this part should be “small” in order to not 

remove too much information from the original dataset. If more PCs are included in the model, 

higher will be the variance that it is able to explain, thus smaller will be the residuals, following 

this calculation:  

 

 &1234/5,6	84)/45+, + 9,0/6*43	84)/45+, = 100% (2.2) 

 

However, retaining too many PCs has the drawback to include not relevant information in the 

model, thus affecting its goodness.  

 

 

 
Figure 1.12: Representative Score and Loading plot of the first two components of a PCA model. Each point 
(Red and green circles) in the score plot represent samples, while each point (black diamonds) in the loading plot 
represent the variables (loadings) that are responsible for the observed clustering trend observed in the score plot. 

  
1.10.2 Partial least squares for discrimination (PLS-DA) 

 Partial Least Squares (PLS), also known as projection to latent structures (PLS) 

regression is a supervised method which can be used when predefined knowledge about each 

samples, such as class membership and quantitative information is available (Wold, Sjöström, 

and Eriksson 2001). It is a multivariate technique that assesses the relationship between two 

blocks of data: a descriptor matrix X (i.e. spectral data) and a response matrix Y (known sample 
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information) and thus finds components (e.g. latent variables) in the predictor matrix that best 

predict the response variables. The Y matrix can either contain quantitative (i.e. metabolite 

concentration) or qualitative information (i.e. class membership). When Y contains sample 

class membership information, the application of PLS regression is called partial least squares-

discriminant analysis (PLS-DA) (Barker and Rayens 2003). 

 The decomposition form of PLS-DA can be written as:  

 ! = #$! + & (3.3) 

 = = >?! + @ (4.4) 

where, X is the matrix of predictors and Y is the matrix of responses; T and P are the scores 

(projections) and loadings for matrix X, respectively; U and Q are, respectively, the scores and 

loadings for matrix Y; and E and F matrices represent the residuals or error terms for X and Y, 

respectively. The decompositions of X and Y is performed such that T and U share maximum 

covariance (Trygg, Holmes, and Lundstedt 2007a). 

 Although, the use of class information in PLS-DA allows for a better discrimination 

between classes, the variation that is not directly correlated with Y being still present in the 

scores, complicating the interpretation of the model. Thus, in the cases where class separation 

is not observed in scores plot of PLS-DA model, orthogonal partial least squares discriminant 

analysis (OPLS-DA) can be carried out to perform the analysis. The OPLS-DA is a 

modification of PLS-DA model, in which the systematic variation of data that is not related to 

the response variable (e.g. sample class labels) is removed. OPLS-DA method uses PLS model 

in combination with Orthogonal Signal Correction (OSC) filter to exclude irrelevant part of 

data that are uncorrelated (orthogonal) with the response and thus separates Y-predictive 

variation from the Y-orthogonal (uncorrelated) variation (Sjöblom et al. 1998; Worley and 

Powers 2013). OPLS-DA improves the classification performance only in cases where 

individual classes exhibit divergence in within-class variation. It presents a similar prediction 

ability to PLS-DA, and demonstrates improved model interpretability. The mathematical 

relationship is described in equation (1.5) (Trygg, Holmes, and Lundstedt 2007b).  

 ! =	#"$"! + ##$#! + & (5.5) 

 

Where, !p is the predictive score matrix for X; "!" is the predictive loading matrix for X; !# is 

the corresponding Y-orthogonal score matrix; "#" is the corresponding Y-orthogonal loading 

matrix; and E is the residual matrix. 
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The main benefit of OPLS-DA over PLS-DA is that a single component serves as a 

predictor for the class, while the other components describe the variation orthogonal to the first 

predictive component (Westerhuis et al. 2010). 

 

1.10.3 Statistical validation of multivariate models  

 To assess the predictive ability of the multivariate models, statistical validation step is 

needed. Two types of validations are commonly performed: external and internal. In external 

validation, new data are collected/measured and used, and for internal validation, the data are 

either divided into two sets: training set for modelling and a test/validation set or a permutation 

technique is used. The training set is used to build the classification models (e.g. PLS-DA), and 

the resulting model is used to predict the classes of the test set (Broadhurst and Kell 2006). The 

purpose of validation is to assess the predictive ability of the model. Preferably, both types of 

methods should be used in parallel to confirm the reliability of the model. A number of methods 

such as cross-validation (CV), permutation, or bootstrap can be carried out to assess the 

performance and reliability of multivariate model.  

Cross-validation techniques include leave-n-out and K-fold methods (Shao 1993; 

Worley and Powers 2013). In K-fold CV, the dataset is partitioned into k sized subsets and then 

iteratively k−1 subsets are combined as a training set, with the remaining subset functioning as 

a test set. In leave-n-out, the data are divided into N choose-n subsets and each subset serves 

as a validation set in each iteration. If the sample size is n, in leave-one-out, n−1 samples are 

used as a training set to fit a classification model and the remaining sample is used as test data. 

Therefore, every sample functions as a test set just once. The model built on n-1 samples has 

the same accuracy as a model built on all (n) samples. Leave-one-out techniques are 

computationally desirable because they involve fitting the classification model n times. This 

process is repeated until all samples have been left out and predicted once. 

 

1.11 Receiver operating characteristic (ROC) curve  

Receiver operating characteristic (ROC) curve analysis is a validation tool that does not 

assume a normal distribution of the studied variable and measures a variable’s predictive 

accuracy by showing the relation between the true positive rate (sensitivity) and true negative 

rate (specificity) (Bünger and Mallet 2016; Moroz 2010). Sensitivity is defined as the fraction 

of positive observations correctly classified by the model into the positive class. On the other 

hand, specificity is defined as the fraction of negative observations correctly assigned by the 
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model to the negative class. In an ROC curve, the sensitivity (in Y-axis) is plotted against the 

specificity of a variable (in X-axis). The area under the curve (AUC) value generated from 

ROC curve can be used as a criterion for assessing the success of the classification model 

(Macias et al. 2019). The closer the area under the ROC curve (AUC) to 1 (maximum value), 

the more successful the classification model. The classifier is of no practical utility when AUC 

reaches 0.5, as this indicates that subject classification is random. In addition, the ability of the 

metabolite to differentiate between two groups of samples can be investigated from the shape 

of the ROC curve. The most desirable curve has a sharp increase in true positive rate and a 

slight increase in false positive rate. In this thesis, ROC curves have been generated using 

“Biomarker Analysis” module of the MetaboAnalyst (www.metaboanalyst.ca). 

 

1.12 Correlation analysis and heat maps  

 The analysis of the correlations is an additional tool useful for retrieving information 

from the metabolomics data. It is commonly based on pairwise correlation between 

concentration levels of the metabolites in a sample.  

The most common correlation approach in metabolomics is Pearson’s correlation 

(linear correlation between variables), however other options are also available (e.g. the non-

linear Spearman correlation). Pearson correlation works with the raw data of the variables 

whereas the Spearman correlation coefficient is based on the ranked values for each variable 

rather than the raw data. 

A heatmap is a graphical representation of individual metabolite concentrations, where 

values contained in a matrix, are usually represented using a colour scale (Figure 1.13) The 

main advantage of heatmaps is that they display relationships between data values that might 

be complicated to understand if presented numerically in the datasheet.  
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Figure 1.13: Heat map of Mycobacterium smegmatis grown under different stress conditions. Normalized signal 
intensities are visualized as a colour spectrum. The intensity of colour indicates the metabolite concentrations 
ranging from least abundant (dark blue) to higher ranges (dark red). 
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1.13 Significance Analysis for Microarrays (SAM) 

Significance Analysis for Microarrays (SAM) is a permutation-based (non-parametric) 

hypothesis testing method which uses a moderated t-test, denoted as di, to measure the change 

in metabolite expression between the two groups. SAM method is used to identify the most 

discriminant and important metabolites responsible for the intergroup separation. SAM 

provides an estimation of the FDR, and metabolites with SAM-FDR q-value < 0.05 were 

considered statistically significant. One of the crucial parameter in SAM is the tunable delta 

value, which is used to tune the FDR values and selection of important metabolites. The SAM 

plot has three lines, one centre line crossing the origin corresponds equal observed d(i) and 

expected d(i) values, and the other two lines parallel to the diagonal line are defined by the ∆ 

cut-off, more precisely going below and above the centre line by ∆ (Figure 1.14). Metabolites 

with observed SAM scores above the upper line are positive significant metabolites 

(upregulated) and metabolites with observed SAM scores below the lower line are negative 

significant metabolites (downregulated).  

 

Figure 1.14: Significance analysis of microarray (SAM) plots for selection of significant metabolites. The green 
circles on the top represents upregulated metabolites and red circles on the bottom represents down-regulated 
metabolites. d(i) indicates SAM score. 
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1.14 Pathway analysis  

To gain insights into the metabolic mechanism of various cellular processes and diseases, 

metabolic pathway analysis is essential for understanding the biological significance of the 

metabolic perturbations and provides insight in the development of treatment methods. After 

the identification of potential metabolite biomarkers, the pathway analysis is used to identify 

target pathways involved in the mechanism of different biological problems and is the best 

route to link metabolites to biological functions or biological consequences. The metabolic 

pathway analysis in this thesis has been carried out on a free web-based program – 

Metaboanalyst. MetaboAnalyst encompassed two modules for functional analysis, Metabolic 

Pathway Analysis (MetPA) and Metabolite Set Enrichment Analysis (MSEA) (Xia and 

Wishart 2011). The pathway analysis module (MetPa) of MetaboAnalyst 4.0 conducts the 

metabolic pathway analysis based on the databases of HMDB (Wishart et al. 2007b) and Kyoto 

Encyclopaedia of Genes and Genomes (KEGG) (Kanehisa and Goto 2000).The most 

dysregulated metabolic pathways can be identified based on the statistical value (p-value ) of 

the pathway enrichment analysis and pathway impact value calculated from pathway 

topological analysis (Xia et al., 2011). The pathway topological analysis is based on the 

centrality measures of a metabolite in a given metabolic network. ‘MetPA’ uses the relative 

betweenness centrality and out degree centrality measures to calculate the importance of each 

metabolite in each pathway (Xia, Wishart, and Valencia 2011).The metabolic pathways with 

impact value > 0.1 and p < 0.05 are usually considered as significantly perturbed pathways.  

 

1.15 Summary of the chapter 

Over the last decade, the rapid advancement of the Omics technologies has made it 

feasible for researchers to target a wider area of any given biological sample when looking for 

disease biomarkers. Metabolomics provides unique snapshots of the interaction between the 

pathophysiological stimuli and the host response, providing an opportunity to answer questions 

that have not been addressed with other upstream -omics technologies. Generally, there are 

three important and crucial steps in any metabolic experiment: sample preparation, data 

measurement and analysis, and statistical analysis. For each of these steps, a number of issues 

need to be carefully considered to ensure that the metabolomics experiment can be labelled as 

both robust and reliable. Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS) 

spectroscopy are two most powerful and information-rich analytical platforms currently 

employed in metabolomics studies. The unique properties of NMR, including its high degree 

of reproducibility, relative ease of sample preparation, its ability to handle various types of 
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samples, its highly quantitative nature, its ability to identify unknown metabolites and its 

inherently non-destructive nature, have made it an eminent technique useful in several 

disciplines of metabolomics. NMR-based Metabolomics is being used in different areas 

including disease biology, medicine, pharmacy, toxicology, food and environmental sciences, 

etc., to obtain the metabolic fingerprint associated with different biological systems. To ensure 

robust and accurate quantification of metabolites by NMR, several parameters related to 

instrumental, acquisition, and post-acquisition including optimal NMR pulse sequences, 

acceptable acquisition parameter ranges, magnetic field strength, chemical shift referencing, 

baseline correction, etc. need to be carefully optimised before conducting any quantitative 

analysis. To analyse the complex and high-dimensional metabolic data, chemometric analysis 

needs to be required for data interpretation. Prior to multivariate analysis, pre-processing of the 

metabolome data must be performed to eliminate spectral artifacts and remove biologically 

irrelevant variations, making the NMR more comparable. Pre-processing of NMR 

metabolomics data includes several procedures and the optimal method to carry out may vary 

depending on the type of samples analyzed. Metabolic profiles of plants, animals, or humans, 

even if healthy, are very complex. In order to validate the classification and prognostic models 

for the identification of potential biomarkers that could aid the diagnosis, monitoring and the 

prediction of a disease or the outcome of a stimuli, the metabolomics data are subjected to 

chemometric analysis. Multivariate analysis (MVA) have been used to explore and discover 

the overall structure of the data, find trends and groupings, detects outliers in the analysis. 

MVA is highly graphical in its approach, provide tools to visualize the relationships between 

samples and variables. Thus, a systematic approach encompassing above-described methods 

pertaining to metabolomics yields a crafted strategy to understand the phenotypic response to 

given stimuli. 
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2.1 Introduction  

This chapter gives an outline of the research methods that have been followed in the 

study. It provides information about essential parameters related to NMR experiments, 

metabolomics spectral databases, computational tools for metabolomic data and pathway 

analysis, software packages for metabolite identification and quantification, and types of 

analysis that we performed for data interpretation and feature selection. The other specific 

methods including other biochemical and cellular experiments, sample preparation and 

processing for NMR spectroscopy, etc. have been given in the respective chapters.  

 

2.2 NMR Spectroscopy 

All the NMR data were measured at VT controlled 298 K using a Bruker AVANCE III 

HD Ascend NMR spectrometer operating at 14.1 Tesla equipped with pulsed-field gradients in 

x, y, and z-direction (operating at 54 Gauss/cm); Bruker high-performance shim system with 

36 orthogonal shim gradients and integrated real-time shim gradient for 3-axis shimming. A 

quad-channel (1H, 13C, 15N, 31P, and one separate channel for lock using 2H) cryogenic solution-

state 5 mm probe with automated tuning-matching was used for recording all the NMR data 

without sample spinning. Water suppression pulse sequence noesygppr1d from Bruker library 

was used to record 1D 1H NMR spectra, which uses water pre-saturation (using a cw irradiation 

at 5.56E-05 W during the inter-scan delay of 5 s) and spoiler gradients (Smoothed square shape 

SMSQ10.100, where G1 was with 50% power and G2 was with –10% power for 1 ms duration) 

during the relaxation delay and is of the form: RD-G1-90°-t-90°-tm-G2-90°-ACQ, where RD 

is the inter-scan relaxation delay of 5 s, t is a short delay typically of ~3 µs, 90° represents a 

90° RF pulse (15.47 µs square pulse at 5.8479 W), tm is the mixing time of 100 ms, and ACQ 

is the data acquisition period (6.95 s). A long relaxation delay of 5 s was chosen since peak 

intensities obtained from NMR data had to be used for quantification. For a given sample, a 

total of 64 transients and 16 steady-state transients were collected into 32K data points for each 

spectrum with a spectral width of 7200 Hz. Pulse width, receiver gain, and water suppression 

parameters were kept identical among all the 1H experiments recorded for different samples to 

rule out intensity variations while recording the NMR data. For the 1H-1H total correlation 

spectroscopy (TOCSY) experiment, the mlevesgpph pulse program from Bruker library was 

used with acquisition times of 0.065 s and 0.131 s in F1 and F2 dimension, respectively. 

TOCSY spin-lock of 80 ms was used for Hartman-Hahn mixing using composite blocks of 

90°-180°-90° pulses with 90° pulse width of 25 µs at 2.29 W of power. A total of 2048 × 1024 
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data points with 64 transients per increment in the indirect dimension were recorded, spanning 

a spectral width of 6000 Hz in both the dimensions. A total of 4 steady-state transients were 

used in the TOCSY experiment, and data was collected in States-TPPI mode. Smoothed square-

shaped (SMSQ10.100) gradients were used with 31% power (after the spin-lock period) and 

11% power (before refocusing) for a duration of 1 ms.  

 

2.3 Spectral processing  

The 1H NMR spectra of all the samples were processed using Bruker’s NMR data 

processing software Topspin (v3.5) (www.bruker.com/bruker/topspin). 1H NMR raw data was 

multiplied with exponential function and zero-filled to 64K data points before Fourier 

transformation. No linear prediction was applied during the processing of the data. Standard 

pre-processing steps such as phasing, baseline correction, line broadening was carried out for 

all the individual 1H NMR spectra. All the 1H chemical shifts were directly referenced with 

respect to methyl singlet of DSS internal reference, set to a chemical shift (δ) of 0.00 ppm. For 
1H -1H TOCSY processing, the FIDs were weighted in both dimensions by a pure cosine 

function (SINE with SSB = 2) and zero-filled to 2048 and 1024 data points in F1 and F2 

dimensions, respectively, before subjecting the data to Fourier transformation. 

 

2.4 Metabolite Identification and Quantification 

After spectral processing, identification and quantification of metabolites were carried 

out with the Chenomx NMR Suite 8.1 (Edmonton, AB, Canada) software. The profiler module 

of this software was used to carry out the 1H resonance assignment of metabolites based on the 

chemical shift values, coupling values, line shape, line-width, and multiplicity information. All 

the identified metabolites were further confirmed with biological magnetic resonance data bank 

(BMRB) (Ulrich et al. 2008) database and human metabolome database (HMDB) (Wishart et 

al. 2007). In addition, two dimensional 1H -1H TOCSY was used for further metabolite 

confirmation via a semi-automated software – MetaboMiner (Xia et al. 2008).  

All the identified metabolites were then quantified using the profiler module of 

Chenomx software, which enables metabolites quantification relative to an internal standard of 

known concentration (400 µM). Quantification is achieved using targeted profiling in which 

mathematically modelled pure compound NMR resonances from the Chenomx library are fit 

to the acquired spectra (Weljie et al. 2006). The concentration data obtained after metabolite 

quantification were converted to comma-separated values (CSV) format using Microsoft excel 
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format and imported into MetaboAnalyst 4.0 (www.metaboanalyst.ca), a free web-based 

program for multivariate analysis (Chong et al. 2018). Metabolites with low signal-to-noise 

(s/n ≤ 15) in NMR analysis were excluded from the analysis as they may be vulnerable to over- 

or under-estimation of concentrations. 

 

2.5 Statistical Analysis 

Because of the high dimensionality and massive complexity of NMR metabolomics 

data, multivariate statistical analysis was carried out to discern the inter-group differences and 

to establish a systematic overview of the discrimination of metabolic patterns of different 

experimental conditions. For predicting the metabolite variations and identification of 

important features in different experimental conditions and samples, chemometric analysis – 

Principal Component Analysis (PCA), Partial Least Squares Discriminant Analysis (PLS-DA), 

and Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) were conducted 

using a free web server program, MetaboAnalyst (Chong et al. 2018). Before subjecting the 

data for multivariate analysis, row-wise normalization of the data matrix [containing N 

observation row vectors of various samples (experimental conditions and replicates) having K 

variables (metabolites) in columns] was performed to normalize the data and reduce the 

variation within replicates. The normalized metabolite concentration was used as an input 

parameter to carry out chemometric analysis of the data in the MetaboAnalyst web tool. The 

metabolomics data sets were then subjected to scaling prior to chemometric analysis. Pareto-

scaling has typically been the method of choice in NMR-based metabolomics studies as it 

minimizes the effect of intense signals while emphasizing weaker ones that could be more 

biologically important (Worley and Powers 2013a). PCA is an unsupervised method that does 

not use class label information and is used for clustering, while PLS-DA is a supervised method 

that uses class label information. and is used for classification (Worley and Powers 2013b). 

The score plot of the first two principal components was obtained and ellipses showing 95% 

confidence limits of a normal distribution for each group using PLS-DA/PCA utilities. OPLS-

DA is a modification of the PLS-DA model, in which the systematic variation of data that is 

not related to the response variable (e.g., sample class labels) is removed (Boccard and 

Rutledge 2013; Westerhuis et al. 2010) The ellipse in the scores of the OPLS-DA model 

represents Hotelling's T2 regions with a 95% confidence interval of the modelled variation. The 

quality of the OPLS-DA models was assessed by R2, which defines the total explained variance 

(indicating goodness of fit) and Q2 values, indicating the predictability of the model. The 
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permutation statistic was further used with 100 permutations to validate the OPLS-DA models. 

To identify the key metabolites responsible for the differential clustering of score plots in the 

PLS-DA model, the variable importance of projection (VIP) score plot was generated from 

PLS-DA analysis. VIP score measures the contribution of a variable to the PLS-DA model. 

The VIP score of a variable is calculated as a weighted sum of the squared correlations between 

the PLS-DA components and the original variable. VIP score identifies the important 

metabolites that vary significantly between the groups and better describes the intergroup 

variation. Metabolites with a VIP score of ≥1.0 are considered to be statistically significant as 

these contributed most to group discrimination. 

Further one way ANOVA analysis followed by Fishers’s least significant difference 

(LSD) post-hoc tests were used to assess the significance of changes in the levels of metabolite 

concentrations in different experimental conditions used in different chapters of this thesis. A 

false discovery rate (FDR)- adjusted p-value (or q value) threshold (q-value ≤ 0.05) has been 

used in ANOVA analysis to determine the significance of differences in metabolite levels. Box 

and Whisker plots were generated to visualise the comparative variation in the metabolite 

concentrations of all the metabolites across the replicates and different experimental 

conditions. Pair-wise analysis was carried out using the Volcano plot utility of MetaboAnalyst 

that screens important metabolites based on fold-change (FC) and FDR-adjusted p-value (q-

value). Metabolites with fold change ≥ 1.5 and q-value ≤ 0.05 were considered significant. In 

addition, metabolite-metabolite correlations were obtained using Pearson’s correlation 

coefficient analysis to identify all the significant correlations (p-value ≤ 0.05). 

Significance Analysis for Microarrays (SAM) method was employed in chapter 4 to 

identify the most discriminant and important metabolites responsible for the separation 

between control and diabetic groups. SAM is a permutation-based (non-parametric) hypothesis 

testing method that uses a moderated t-test, denoted as di, to measure the change in metabolite 

expression between the two groups (Roxas and Li 2008; Zhang 2007). SAM also estimated the 

FDR, and metabolites with SAM-FDR q-value < 0.05 were considered statistically significant. 

Metabolites with observed SAM scores above the upper line are positive significant 

metabolites (upregulated), and metabolites with observed SAM scores below the lower line are 

negative significant metabolites (downregulated).  

To identify the potential candidate biomarkers, the Receiver operating characteristic 

(ROC) curve analysis was carried out in chapter 4 to assess the effectiveness of the differential 

metabolites in discriminating the serum profiles of diabetes patients from healthy patients. In 
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ROC curve specificity of a variable (in x-axis) is plotted against sensitivity (in the y-axis)(Metz 

1978). The area under the curve (AUC) value generated from the ROC curve can be used as a 

criterion for biomarker discovery (Carter et al. 2016; Hajian-Tilaki 2013). The closer the area 

under the ROC curve (AUC) to 1 (maximum value), the more successful the classification 

model is. The classifier is of no practical utility when AUC reaches 0.5, indicating that subject 

classification is random. The most desirable curve has a sharp increase in the true positive rate 

and a slight increase in the false-positive rate. ROC curves were generated using the 

“Biomarker Analysis” module of the MetaboAnalyst (Chong et al., 2018; Xia, Wishart, & 

Valencia, 2011). 

 

2.6 Metabolic pathway analysis  

 After the identification of potential metabolite biomarkers, pathway analysis is 

performed to identify target pathways involved in the mechanism of different biological 

problems. This indeed is the best route to link metabolites to biological functions or biological 

consequences. Metabolic pathway analysis was carried out on a free web-based program, 

Metaboanalyst (www.metaboanalyst.ca) (Chong et al. 2018). MetaboAnalyst encompasses two 

modules for functional analysis, Metabolic Pathway Analysis (MetPA) and Metabolite Set 

Enrichment Analysis (MSEA) (Xia and Wishart 2011). The pathway analysis module (MetPa) 

of MetaboAnalyst 4.0 conducts the metabolic pathway analysis based on the databases of 

HMDB (Wishart et al. 2007) and the Kyoto Encyclopaedia of Genes and Genomes (KEGG) 

(Kanehisa and Goto 2000). The most dysregulated metabolic pathways were identified based 

on the statistical value (p-value) of the pathway enrichment analysis and pathway impact value 

calculated from pathway topological analysis (Xia et al., 2011). The metabolic pathways with 

impact values ≥ 0.1 and p-value ≤ 0.05 were considered as significantly perturbed pathways. 
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Chapter 3  
 

Metabolic signatures suggest o-phosphocholine to UDP-N-

acetylglucosamine ratio as a potential biomarker for high-glucose 

and/or palmitate exposure in pancreatic β‐cells 
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3.1 Introduction 

The increased global prevalence of Diabetes mellitus (DM) – a complex metabolic 

disorder marked by changes in glucose and lipid metabolism – is alarming and has been 

associated with great losses at the social, health, and economical fronts (Alberti et al. 2004; 

Zimmet, Alberti, and Shaw 2001). As per the recent statistics by the International Diabetes 

Federation (IDF; https://www.idf.org/) in 2020, 463 million people are suffering from diabetes 

mellitus worldwide. The numbers from a developing country like India are alarming, as IDF 

reports that 77 million people with diabetes are from India, which means that one in six people 

(17 %) in the world with diabetes belong to India (https://www.diabetesatlas.org/en/). Diabetes 

is generally associated with defects in insulin secretion, insulin action or the signalling of 

insulin, thereby resulting in chronic hyperglycaemia (Association 2009; Sönksen 1984). This 

has been primarily associated with defects in carbohydrate, fat, and protein metabolism 

(Dasgupta and Wahed 2014; Franz 1997). Type 2 Diabetes Mellitus (T2DM, also referred to 

as non-insulin dependent diabetes mellitus (NIDDM), adult onset diabetes mellitus) is the most 

prevalent form of diabetes and accounts for >90% of the cases.  

T2DM is majorly caused due to the dysfunction and/or death of the pancreatic β-cells 

(Meier and Bonadonna 2013). Insulin, a hormone produced by the β-cells of pancreas, regulates 

carbohydrate and fat metabolism by storing excess glucose in the form of glycogen in liver and 

skeletal muscles, and in the form of triglycerides in fat tissue. In T2DM, insulin resistance 

develops in peripheral tissues, such as skeletal muscle, liver, and adipose tissues which fail in 

responding to blood concentrations of glucose. This has been associated with impaired insulin 

secretion and excessive hepatic glucose production, which in turn leads to the development of 

hyperglycemia and hyperlipidaemia (Saltiel and Kahn 2001). With the progression of the 

disease, the levels of advanced glycated end products and reactive oxygen species (ROS) rise, 

leading to severe macro- and micro-vascular complications, including cardiovascular diseases, 

hypertension, retinopathy, nephropathy, neuropathy, etc. (Chawla, Chawla, and Jaggi 2016) 

(Yamagishi and Matsui 2010).  

Under normoglycemic conditions, after a diet, the plasma glucose levels rise gradually. 

Concomitant to this, insulin secretion is stimulated by the simultaneous activation of multiple 

metabolic pathways in response to glucose and other nutrients in the pancreatic b-cell. In vitro 

studies on β-cell lines and isolated islets have suggested that chronic hyperglycaemia 

(glucotoxicity) and dyslipidaemia (lipotoxicity) alone; or in combination (glucolipotoxicity) 

contribute to altered expression of genes involved in the insulin signalling pathway, glucose 
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stimulated insulin secretion (GSIS). This leads to the worsening of β-cell function over time 

(Erion et al. 2015; Kim and Yoon 2011; Mugabo et al. 2017; Somesh et al. 2013; Ward et al. 

2017) and have been known to induce their apoptosis (Cnop et al. 2005). Indeed, increased 

plasma levels of free fatty acids (FFA) or non-esterified fatty acids (NEFAs) and elevated 

glucose levels have also been reported in diabetic and obese subjects (Carlson et al. 2007; Ni 

et al. 2015).  

Metabolic disorders, including T2DM, go unnoticed in subjects for years before being 

clinically observable due to lack of potential prognostic biomarkers (Bhatia et al. 2015; Flowers 

et al. 2017). It has been found that in most of the cases, the development of T2DM is 

irreversible; and once the metabolic syndrome is established, the symptoms of T2DM can only 

be delayed but not entirely removed from the system. Also, the efficacy of the drugs could be 

greatly increased if they could be utilized at an early stage of the disorder before the actual 

metabolic syndrome sets in. Therefore, there exists a dire need to characterize and identify 

early biomarkers and key modulators involved in the initiation and progression of such 

disorders. In this context, Metabolomics – the systematic identification and quantitation of 

small molecule metabolites in a biological system (body fluids, cellular extracts, tissue extracts, 

etc.) at a specific time point – offers an attractive avenue for the identification of novel risk 

associated biomarkers (Molnos et al. 2018; Mugabo et al. 2017; Tam et al. 2017). Importantly, 

metabolomics is the final frontier of the omics cascade and therefore, the changes in the 

metabolome are amplified relative to changes in the transcriptome and the proteome. Thus, it 

has been used frequently either alone or in combination with other omics data (genomics, 

transcriptomics and proteomics) to obtain more insights into the pathophysiology of many 

diseases, including T2DM (Wanichthanarak, Fahrmann, and Grapov 2015; Zheng and Hu 

2015).  

Even though extensive research has been carried out to understand the pathophysiology 

of T2DM, the exact cause of insulin resistance remains unknown. Several mechanisms 

including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, DNA 

damage, etc. have been proposed to play key roles in propagating and worsening T2DM 

conditions by affecting pancreatic b-cell viability and function (Bhandary et al. 2013; Hafizi 

Abu Bakar et al. 2015; Yazıcı and Sezer 2017). However, more studies are warranted to gain 

deeper mechanistic insights. Along these lines, a comprehensive metabolomic analysis of the 

pancreatic b-cells and the target tissues would provide cues into the mechanisms by which 

glucotoxicity, lipotoxicity, and glucolipotoxicity exerts its effect. These investigations would 
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also provide information on the major metabolic pathways affected under these conditions and 

would help in predicting novel drug targets.  

 Here, we aimed to employ metabolomics approach to identify the metabolic signatures 

and metabolic shifts in glucotoxic, lipotoxic, and glucolipotoxic conditions associated with 

T2DM using untargeted proton nuclear magnetic resonance (1H-NMR) spectroscopy (Emwas 

et al. 2019). Using a series of biochemical and cellular experiments, high-glucose and/or 

palmitate (a saturated FFA) induced cytotoxic conditions were established in pancreatic b-

cells. When compared to the control conditions, all three stress conditions were associated with 

elevated mitochondrial and cellular ROS levels. However, exposure to FFA alone (lipotoxicity) 

or in combination with high-glucose (glucolipotoxicity) was associated with increased 

cytotoxicity. A total of 48 abundant aqueous metabolites were identified, quantified, and 

compared across different experimental conditions using NMR spectroscopy. Pair-wise 

analysis was performed to identify distinct metabolic signatures for glucotoxic, lipotoxic, and 

glucolipotoxic conditions. The results from this investigation would aid in the better 

understanding of the metabolic pathways majorly functioning in the different stress conditions 

associated with T2DM.  

 

3.2 Experimental Methods 

3.2.1 Cell culture and establishment of cytotoxic conditions 

The pancreatic rat insulinoma cells - INS-1E were used to perform our current study. 

These cells were obtained as a kind gift from Prof. Claes Wollheim and Prof. Pierre Machler 

from University Medical Centre, Geneva, Switzerland. INS-1E cells have ability to respond to 

glucose changes and has been recognized as a good surrogate for pancreatic b-cells (Merglen 

et al. 2004). Cells between passages 62 and 72 were grown in monolayer cultures in a 

humidified atmosphere containing 5% CO2 at 37°C in complete medium composed of RPMI-

1640 supplemented with 10 mM HEPES, 1 mM pyruvate, 50 μM 2-mercaptoethanol, 10% 

(v/v) heat inactivated FBS, 100 units/ml penicillin and 100 μg/ml streptomycin. The cellular 

and biochemical experiments reported in this chapter were performed by Ms. Devika Sardesai 

in Dr. Shilpy Sharma’s lab at the Department of Biotechnology, Savitribai Phule Pune 

University, Pune.  

The viability of the INS-1E cells under different experimental conditions was 

determined using the MTT assay and lactate dehydrogenase (LDH) release assay (Himedia). 

Briefly, INS-1E cells were seeded onto 96-well plates (Corning) at an initial density of 1 x 104 
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cells/well and were allowed to adhere at 37°C for 24 h. Subsequently, the medium was replaced 

with fresh culture medium (100  µl) containing 5 mM glucose (basal glucose media) and the 

plates were further incubated for 24 hours. Post-incubation, the glucose concentration was 

increased to 16 mM glucose (HG; mimicking glucotoxic conditions) alone and with 0.5 mM 

palmitate (HG/PA; mimicking glucolipotoxic conditions). The basal glucose concentration 5 

mM used in this study corresponds to the fasting blood glucose levels (≤100 mg/dl) in a normal 

individual. On the other hand, the concentration of 16 mM glucose corresponds to plasma 

glucose levels ~300 mg/dl in a diabetic individual (Borg et al. 2010). While there are previous 

studies in the literature that have performed glucotoxicity experiments with glucose 

concentration >20 mM (Mugabo et al. 2017; Nyblom et al. 2008; Wallace, Whelan, and 

Brennan 2013), it is too high when compared to the physiological blood sugar levels. Thus, the 

concentration of 16 mM glucose was selected for HG and HG/PA conditions. For high lipid 

exposure, the basal media was supplemented with 0.5 mM palmitate (PA; mimicking lipotoxic 

conditions). It has been reported that palmitic acid — a saturated FFA, induces significantly 

higher apoptosis; higher oxidative stress; mitochondrial dysfunction, etc. when compared to 

the unsaturated FFAs (Cunha et al. 2008; El-Assaad et al. 2003; Yuzefovych, Wilson, and 

Rachek 2010). Therefore, PA was used for mimicking lipotoxic conditions. Untreated wells 

containing only cells in basal media were evaluated as controls. The different experimental 

conditions used in the study have been listed in Table 3.1.  
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Table 3.1: Experimental conditions used in this study. 

Experimental Condition Abbreviated as Description 

Basal Glucose (5 mM) 5G 

Normal plasma glucose levels in humans 

corresponding to 100 mg/dl in a fasted 

state 

Basal Glucose with BSA 5G+BSA 
Vehicle control for Palmitate under 

normal glucose conditions 

Basal Glucose with 0.5 mM 

Palmitate in BSA 
5G+PA Lipotoxic condition 

High glucose (16 mM) 16G 

Glucotoxic condition wherein 16 mM 

glucose corresponds to 300 mg/dl in a 

diabetic individual 

High glucose with BSA 16G+BSA 
Vehicle control for Palmitate under 

Glucotoxic condition 

High glucose and 0.5 mM 

Palmitate in BSA 
16G+PA Glucolipotoxic condition 

 

 

For MTT assay, media was removed after 24 h of treatment and the plates were 

incubated with 100 µl of MTT solution (0.5 mg/ml in PBS) for 4 h at 37°C. Post-incubation, 

formazan crystals were dissolved with 100 µl SDS/0.1N HCl for 4 h at RT. Absorbance was 

measured at 540 nm using a plate reader (Thermo Scientific). The reduction in cell viability 

was expressed as the percentage for each treatment relative to the control wells (set as 100%).  

LDH release assay was performed using the LDH release assay kit (Himedia) as per the 

manufacturer’s instructions. Briefly, 25 µl of lysis buffer was added to untreated (control) wells 

and incubated at 37°C for 30 min to obtain maximum LDH release. Subsequently, 25 µl of 

supernatant was taken from wells corresponding to different experimental conditions and the 

wells subjected to lysis and 25 µl LDH reagent was added to it. The plate was incubated at 

37°C for 15 min in dark. Post-incubation, 25 µl of stop solution was added and absorbance was 

measured at 450 and 620 nm using a plate reader (Thermo Scientific). The % cytotoxicity was 

calculated as per the formula below: 
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3.2.2 Measurement of lipid accumulation 

For relative quantitation of lipid accumulation inside INS-1E cells, staining was 

performed with Oil red O - a lysochrome, diazo dye used for staining triglycerides and lipids. 

Briefly, cells (0.5 × 105) were seeded in 24 well plates (Corning). The cells were treated with 

the six experimental conditions as described above. After incubation, the cells were washed 

twice with ice cold PBS and fixed with 10% formalin for 30 min. The plates were washed twice 

with 1X PBS twice and stained with oil red O solution (0.5% in isopropanol) for 1 h at RT. 

Cells were washed with water (three-four times) to remove excess stain. The stain was then 

quantified by dissolving in 300 μl isopropanol and measuring the absorbance at 510 nm. 

 

3.2.3 Reactive Oxygen Species (ROS) measurement 

INS-1E cells were plated on 96-well plates (Eppendorf) at an initial density of 1 X 104 

cells/well and were allowed to adhere at 37°C for 24 h. Post-incubation, the cells were treated 

with the six experimental conditions as mentioned before. ROS levels were assessed by 

incubating the cells with either DCFH-DA (10 μmols) or MitoSox (5 μmols) for 30 min at 37°C 

as described previously (Dubey et al. 2017). Simultaneous detection of cell viability was also 

carried out using the MTT assay (as described above). The data was normalized to the number 

of viable cells. 

 

3.2.4 Metabolite extraction and sample preparation for NMR 

INS-1E cells were seeded in 100 mm plates (in duplicate) at a density of 3 x 106 and 

were given different treatments as described above. Post-incubation, the cells were harvested 

by centrifugation for 5 mins at 100 g at 4°C and washed twice with 1X PBS. The cell pellets, 

thus obtained, were stored at -20°C until further use. There were seven replicates for each of 

the six experimental conditions. The cell culture pellets were re-suspended in 300 µl of pre-

chilled 1X PBS and 25 µl was kept separately for protein isolation and estimation using BCA 

reagent (ThermoFisher Scientific). The cell suspension was mixed with two volumes of ice-

cold methanol, vortexed briefly and incubated at -20°C for 30 minutes. Post-incubation, the 

samples were centrifuged at 13,000 g for 30 mins at 4°C. The supernatant was frozen into liquid 

nitrogen and lyophilized to remove residual water and methanol. The final extracts were stored 

at -80°C until NMR data acquisition. The lyophilized extracts were allowed to thaw on ice 

%Cytotoxicity = Treated LDH activity − Spontaneous LDH activity
Maximum LDH activity − Spontaneous LDH activity

×100
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before reconstituting into 580 µl 100% NMR buffer (20 mM sodium phosphate, pH 7.4 in D2O 

containing 0.4 mM DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid)). Briefly, 17.46 ± 0.01 

mg of DSS was weighed (mol wt. 218.32 g/mol) and dissolved in 2000 µl ± 2 µl of phosphate 

buffer. This stock solution was then diluted to 100 fold resulting in a final buffer solution 

containing 87.30 ± 0.16 mg/L of DSS in solution, which corresponds to 399.9 ± 0.7 µM of 

DSS in buffer. The samples were vortexed for 2 min at room temperature and centrifuged at 

4000 g for 2 min. The supernatants were transferred to 5 mm NMR tubes for NMR 

measurements. A total of 42 distinct samples (seven replicates for six experimental conditions) 

were used for NMR data measurement. 

 

3.3 NMR spectroscopy and spectral processing 

All the 1H NMR spectra were acquired at 298 K using the NOESY-presaturation pulse 

sequence noesygppr1d as described in detail in Chapter 2. For each spectrum, a total of 64 

scans were collected into 32K data points with a spectral width of 7200 Hz. 1H-1H total 

correlation spectroscopy (TOCSY) experiment was performed to further assist in the resonance 

assignment of metabolites. All 1H NMR spectra were manually phased, baseline-corrected, and 

referenced with respect to methyl singlet of DSS internal reference using Topspin (v3.5) 

(www.bruker.com/bruker/topspin).  

  

3.4 Spectral assignment and quantitative evaluation 

After spectral processing, annotation of metabolites was carried out with the Chenomx 

NMR Suite 8.1 (Edmonton, AB, Canada) software, which were further confirmed with 

biological magnetic resonance data bank (BMRB) (Ulrich et al. 2008) database and human 

metabolome database (HMDB) (Wishart et al. 2007). In addition, two dimensional   1H -1H 

TOCSY was used for further metabolite confirmation via a semi-automated software – 

MetaboMiner (Xia et al. 2008). All the identified metabolites were then quantified using the 

profiler module of Chenomx software, which enables metabolites quantification relative to an 

internal standard of known concentration (400 µM). The absolute concentrations were 

normalized with respect to the protein concentration obtained using BCA assay. 

 

3.5 Statistical Analysis 

All cellular experiments were conducted in triplicate and the results have been 

presented as mean + SEM (standard error of mean), unless stated otherwise. One-way ANOVA 
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(analysis of variance) and Tukey HSD post-hoc test methods were used to perform statistical 

analysis. p-value ≤ 0.05 was considered to indicate statistically significant differences in 

groups. 

Supervised Partial Least Squares Discriminant Analysis (PLS-DA) was performed 

using a free web server, MetaboAnalyst, to explore clustering patterns of observations, trends 

in the data and outliers. Before subjecting the data for multivariate analysis, row-wise 

normalization of the data matrix [containing N observation row vectors of various samples 

(experimental conditions and replicates) having K variables (metabolites) in columns] was 

performed with respect to the protein concentration of cellular lysate (measured before 

metabolite extraction) in order to normalize the data and reduce the variation within replicates. 

The metabolomics data sets were then subjected to Pareto-scaling prior to chemometric 

analysis. Variable importance of projection (VIP) score plot was generated from PLS-DA 

analysis to identify the metabolites responsible for the differential clustering of score plots in 

the PLS-DA model. Further one way ANOVA analysis followed by Fishers’s least significant 

difference (LSD) post-hoc tests were used to assess the significance of changes in the levels of 

metabolite concentrations in all six experimental conditions used in this study. Pair-wise 

analysis of INS-1E cells cultured in basal glucose with different toxic conditions (HG, PA and 

HG/PA) were carried out using Volcano plot utility of MetaboAnalyst that screens important 

metabolites based on fold-change (FC) and FDR-adjusted p-value (q-value). Metabolites with 

fold change ≥ 1.5 and q-value ≤ 0.05 were considered significant. 

 

3.6 Metabolic pathway analysis  

Metabolic pathway analysis of all the discriminating metabolites was conducted to 

understand the biological significance of the metabolic changes and to identify target pathways 

that predominantly get affected under excess nutrient conditions (HG and/or FFA in INS-1E 

cells. The Metabolic Pathway Analysis (MetPa) was carried out on a free web-based program 

MetaboAnalyst (Chong et al. 2018; Xia, Wishart, and Valencia 2011). The metabolic pathways 

with impact value ≥ 0.1 and p ≤ 0.05 were considered as significantly perturbed pathways. 

 

3.7 Results  

3.7.1 HG and/or PA exposure induces cytotoxicity in INS-1E cells  

INS-1E cells were pre-incubated with media containing basal glucose, HG, PA 

(complexed with BSA), HG/PA and BSA (solvent control for PA) for 24 hours to evaluate the 
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effect of nutrient overload (high-glucose and FFA alone and/or in combination) on these cells. 

Cytotoxicity of INS-1E cells cultured in different conditions was evaluated using MTT (Figure 

3.1A). From the cellular viability assays, we observed ~ 50% reduction in cellular viability of 

INS-1E cells to FFA (0.5 mM PA) exposure either alone or in combination with HG (HG/PA) 

and minimal effect on cellular viability was observed in INS-1E cells cultured in basal glucose 

(5 mM glucose), HG (16 mM glucose) and in BSA (solvent control for PA). The increased 

cytotoxicity in INS-1E cells exposed to PA and HG/PA was attributed to increased intracellular 

triglyceride content (Figure 3.1B) and increased lipid accumulation (as visualized by Oil Red 

O staining; Figure 3.1C and 3.1D). This is in line with earlier studies which report increased 

total FFA, triglyceride, and cholesterol content in rat islets exposed to increasing 

concentrations of glucose (4-25 mM) for 1 hour and INS-1(832/13) cells exposed increasing 

concentrations of glucose (5-20 mM) for 2 h (El-Azzouny et al. 2014; Mugabo et al. 2017).  

Results from previous studies have shown that exposure to chronically elevated 

concentrations of glucose and non-esterified fatty acids (NEFAs) lead to induction of ROS 

levels that in turn mediate apoptosis in pancreatic b-cells (Poitout and Robertson 2008). 

Concomitant with these findings, increased intracellular ROS and mitochondrial superoxide 

levels (as determined by DCFH-DA and MitoSox, respectively; Figure 3.1E) were observed in 

INS-1E cells exposed to glucotoxic, lipotoxic and glucolipotoxic conditions.  

Collectively, our cellular and biochemical data indicates that exposure of INS-1E cells 

to FFA and/or high glucose results in decreased cellular viability, increased ROS production, 

and accumulation of triglycerides and FFA in the pancreatic b-cells. All these results validate 

the establishment of glucotoxic, lipotoxic, and glucolipotoxic conditions in INS-1E cells.  

 



 Page | 61  

 

Figure 3.1: Effect of high glucose (HG), Palmitic acid (PA), and High glucose in combination with Palmitic acid 
(HG/PA) exposure on cellular viability, triglyceride content, lipid accumulation and ROS generation in INS-1E 
cells. (A) INS-1E cells were treated with HG, PA, and HG/PA for 24 h and cell viability was determined by MTT 
assay (N = 4). (B) Increased triglyceride content (in terms of mg% per mg protein) in cells exposed to PA and 
HG/PA (N=3). (C) Visualization of lipids using oil Red O staining in INS-1E cells when subjected to six different 
experimental conditions. Increased Oil Red O staining was observed in cells exposed to glucolipotoxic conditions, 
as quantitated in (D). (E) Measurement of Intracellular and mitochondrial ROS levels by DCFH-DA and Mitosox 
respectively, in INS-1E cells exposed to HG, PA and HG/PA conditions (N = 3). Figure provided by Ms. Devika 
Sardesai (Dr. Shilpy Sharma’s lab at Dept. of Biotechnology, Savitribai Phule Pune University). 
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3.7.2 Global profiling of metabolites using 1H NMR spectroscopy 

Global metabolic profiling of pancreatic rat insulinoma cells - INS-1E cultured under 

basal glucose conditions were carried out and were compared with the metabolic profiles of 

INS-1E cells cultured under excess nutrient conditions (HG and/or FFA). A total of 48 

metabolites were identified from the aqueous phase of the metabolic extracts of all the samples 

using standard one dimensional 1H NMR (Figure 3.2). All the metabolites were identified using 

the profiler module of Chenomx NMR Suite 8.1 (Edmonton, AB, Canada) software. The 

organic phase containing the lipids/steroids/fatty acids and other water insoluble compounds 

were excluded from our analysis as they gave broad signals in 1H NMR. Resonance assignment 

of these metabolites were further confirmed using 2D 1H-1H TOCSY NMR spectroscopy 

(Figure 3.3). The NMR spectra presents signals mainly from amino acids, sugars, 

carbohydrates, and membrane metabolites. All the 48 metabolites and their respective 1H 

chemical shifts (in reference to DSS) have been tabulated in Appendix Table 3.3.  

 

 

 

 



 Page | 63  

 

Figure 3.2: Representative 1H-NMR spectrum of the methanolic extract of INS-1E cells grown in basal glucose 
(5 mM) containing media. 1, Valine; 2, Isoleucine; 3, Leucine; 4, Isopropanol; 5, Ethanol; 6, Lactate; 7, Alanine; 
8, LDL; 9, Acetate; 10, Glutamate; 11, Glutamine; 12, Pyruvate; 13, Succinate; 14, Isocitrate; 15, Citrate; 16, 
Aspartate; 17, Asparagine; 18, Malate ; 19, Choline; 20, o-Phosphocholine; 21, Citrulline; 22, Creatine; 23, Myo-
inositol; 24, proline; 25, Taurine; 26, Glycerol; 27, Glycine; 28, Glucose ; 29, UDP-N-acetylglucosamine; 30, 
UDP-glucose; 31, Uridine; 32, Fumarate; 33, Tyrosine; 34, Phenylalanine; 35, Uracil; 36, Histidine; 37, UMP; 
38, GTP; 39, Hypoxanthine; 40, Inosine; 41, Formate; 42, AMP; 43, IMP; 44, ADP; 45, ATP; 46, NAD; 47, 
Niacinamide; 48, DSS. The chemical shift and multiplicity details of the metabolic in the spectrum have been 
listed in Appendix Table 3.3. 
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Figure 3.3: 1H -1H TOCSY correlation spectrum of the methanolic extract of INS-1E cells cultured in media 
containing basal glucose concentration. Cross-peaks in the TOCSY spectrum were used to re-confirm the 
resonance assignments enlisted in Appendix Table 3.3. 

 

All the identified metabolites were then quantified in the profile module of the 

Chenomx software. The concentration data of all the metabolites were used for feature 

selection and group discrimination using chemometric analysis. Univariate analysis using one-

way ANOVA (followed by post-hoc) identified 24 statistically significant metabolites (Lactate, 

o-Phosphocholine, Taurine, Creatine, Glutamate, Glutathione, UDP-N-acetylglucosamine, 

Myoinositol, UDP-glucose, Niacinamide, ATP, Proline, NAD, ADP, Fumarate, Malate, IMP, 

Choline, Glucose, Glutamine, Isocitrate, Citrate, Asparagine, and Alanine) that display 
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significant differences (FDR corrected p-value ≤ 0.05) in their concentrations across different 

experimental conditions (Figure 3.4). Box-Whisker plots for these metabolites (in the order of 

significance; p-value low to high) have been depicted in Figure 3.5 for a visual interpretation 

of dysregulated metabolites in HG, PA and HG/PA conditions used in this study.  

 

 

Figure 3.4: One-way ANOVA analysis followed by post-hoc analysis showing 24 significantly regulated (q-value 
≤ 0.05, marked in red circles) metabolites. The dotted horizontal line corresponds to threshold of FDR-adjusted 
p-value (q-value ≤ 0.05) on a log10 scale. 

 

In the current study, PLS-DA analyses was conducted to investigate the changes in the 

metabolic profiles of INS-1E cells subjected to gluco-, lipo- and glucolipo-toxic conditions and 

to identify the metabolic signatures associated with different nutrient overload conditions. PLS-

DA analysis has widely been used to represent the difference in data across a large set of 

variables as a smaller set of ‘principal variables’ in the form of scores plot. From the supervised 

PLS-DA analysis, we observed a differential clustering of INS-1E samples in the first and the 

second principal components. The diverged score plots signified a separation between the basal 

glucose and various toxic condition along the axes corresponding to PC 1 and 2 with these two 

principal components accounting for 37.1 % and 22.8% of the variation in the data, respectively 

(Figure 3.6A). The differential separation of clusters on the score plot of the first two principal 

components between INS-1E cells grown in basal glucose with HG, PA, and HG/PA highlights 

the differences in metabolome. A high degree of overlap was observed between the score plots 
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corresponding to BSA control samples, i.e., basal glucose and BSA with basal glucose; and 

HG/BSA with HG indicating no significant changes in the 

 

 
Figure 3.5: Box-Whisker plots displaying the comparative variation in concentration of each individual 
significantly (q-value ≤ 0.05) altered metabolite identified from ANOVA and post-hoc analysis against six 
experimental conditions; namely, G1 (Basal glucose; red); G2 (Basal Glucose with BSA as vehicle control for 
palmitate; green); G3 (High PA; blue); G4 (High glucose; cyan); G5 (High glucose with BSA; magenta); and G6 
(High glucose and PA; yellow). 

 

metabolic profiles of INS-1E cells grown in presence of BSA (vehicle control for palmitate), 

thereby negating the effect of BSA on the metabolic perturbations observed amongst the 

different groups. VIP scores were obtained from PLS-DA model to identify the discriminatory 

metabolites contributed most to the group separation in the PLS-DA models for each growth 

condition (Figure 3.6B). The VIP score is based on PLS loadings and reflects the influence of 

each variable to the overall model, with metabolites having VIP scores ≥ 1 considered 

important in classification. The discriminatory metabolites were organised in the descending 

order of the VIP score in component 1. Based on VIP score (VIP ≥ 1), the key metabolites in 

INS-1E samples discriminating among basal glucose, HG, PA, and HG/PA growth conditions 

were lactate, glutamate, o-phosphocholine, aspartate, myo-inositol, UDP-N-
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acetylglucosamine, creatine, glutathione and ATP. These metabolites are largely contributing 

to the differential clustering of score plots in the PLS-DA analysis. 

 

Figure 3.6: Score plots of PLS-DA (A) and variable importance in projection (VIP) (B) obtained from 
MetaboAnalyst 4.0. PLS-DA score plots of INS-1E samples grown under basal glucose (red, normal growth), 
basal glucose with BSA (vehicle control for palmitate) (green), basal glucose with palmitic acid (blue, lipotoxic), 
high glucose (cyan, glucotoxic), high glucose with BSA (magenta) and high glucose with palmitate (yellow, 
glucolipotoxic). For each of the six growth conditions, N=7 replicates were used. Each ellipse on the scores plot 
represents 95% confidence limits of a normal distribution for each group. VIP plot displays the most significantly 
altered metabolites detected by PLS-DA model analyses arranged in descending order of VIP score in component 
1. The coloured boxes on the right indicate the relative concentrations of the corresponding metabolite in each 
condition used. The relative concentration of metabolites is represented by a coloured scale from green to red 
indicating the low and high, respectively. 
 

3.7.3 Pair-wise analysis of metabolic changes 

Pair-wise analysis of metabolic extracts obtained from INS-1E cells cultured under 

basal glucose; and HG, PA, and HG/PA conditions was performed using: 1) PLS-DA to discern 

the differences in the metabolic profiles between basal versus the nutrient overload condition; 

and 2) Volcano-plot analysis to derive the significantly dysregulated metabolites based on the 

fold change and p-value (Figure 3.7). 

 

3.7.3.1 High-Glucose induced changes 

To investigate the effect of high-glucose, metabolic profiles of INS-1E cells cultured 

under supraphysiological glucose concentration (16 mm) were compared with those cultured 

in media containing basal glucose (5G) for 24 hours. The PLS-DA analysis revealed 

differential clustering between basal glucose and glucotoxicity groups in the score plots 
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accounts for 46% variation in PC1 and 6.2% variation in PC2 (Figure 3.7A). Sixteen 

metabolites were identified to be significantly dysregulated under glucotoxicity condition as 

compared to basal condition (Figure 3.7B). The significantly upregulated metabolites upon HG 

exposure include lactate, UDP-N-acetylglucosamine, ATP, ADP, UDP-glucose, NAD, 

isocitrate, niacinamide, fumarate and citrate. On the other hand, levels of glutamate, 

glutathione, asparagine, o-phosphocholine, IMP and aspartate were found to be significantly 

down-regulated under glucotoxicity condition. Most of the perturbed metabolites under high 

glucose condition belongs to energy metabolism and amino acid metabolism. 

 

3.7.3.2 High-fat induced changes 

The comparison of metabolic profiles of cells grown under basal glucose conditions 

with those exposed to high saturated fatty acid content (PA) showed a 46.5% variation in PC1 

and 19% variation in PC2 in the PLS-DA analysis (Figure 3.7C). Based on the FC ≥ 1.5 and 

FDR-adjusted p-value ≤ 0.05 in the volcano-plot analysis (Figure 3.7D), we observed the level 

of UDP-N-acetylglucosamine was increased under lipotoxic conditions whereas the levels of 

malate, creatine, myoinositol, taurine, glucose and o-phosphocholine were found to be 

significantly down-regulated when cells were grown under PA condition. Moreover, it was 

also observed UDP-N-acetylglucosamine and o-phosphocholine were the only common 

metabolites that were dysregulated significantly under both glucotoxic and lipotoxic 

conditions, indicates the possibility of different pathway perturbations under these two 

conditions. 

 

3.7.3.3 High-Glucose and free fatty acid induced changes 

The combination of elevated glucose (hyperglycemia) and FFA (hyperlipidemia) that 

leads to glucolipotoxicity, is the most detrimental to pancreatic β-cell viability and function 

(El-Assaad et al. 2003; Kim and Yoon 2011; Yazıcı and Sezer 2017). The combined effect of 

elevated glucose and elevated lipid levels have been associated with decreased insulin 

secretion, impaired insulin gene expression, and β-cell death by apoptosis (Cerf 2013). Indeed, 

INS 832/3 cells and human islets have been shown to undergo apoptosis on exposure to 

saturated free fatty acids, such as palmitate and stearate along with high glucose (El-Assaad et 

al. 2003). While there are studies in the literature which have evaluated metabolite alterations 

in response to high glucose and free fatty acids individually, there are no large-scale 

assessments of metabolic perturbations in response to long-term exposure of glucolipotoxic 
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conditions on pancreatic b-cells.  

 PLS-DA score plot analysis of INS-1E cells grown under glucolipotoxic conditions 

revealed a 51.8% variation in PC1 and 21% variation in PC2 in a pairwise comparison with the 

basal glucose conditions (Figure 3.7E). Overall 18 metabolites were found significantly 

dysregulated using volcano-plot analysis (FC ≥ 1.5; q-value ≤ 0.05) under glucolipotoxic 

condition when compared to basal glucose conditions (Figure 3.7F). Out of these, the levels of 

UDP-N-acetylglucosamine, lactate, ATP and UDP-glucose were found to be significantly 

elevated under glucolipotoxicity and the levels of 14 metabolites namely, proline, alanine, 

malate, glutamine, GTP, asparagine, glutamate, choline, glutathione, creatine, taurine, 

myoinositol, aspartate, and o-phosphocholine were found to be significantly downregulated 

under HG condition in comparison with basal glucose condition.  

It is interesting to note that even though there were some common dysregulated 

metabolites identified from HG and FFA conditions with those from glucolipotoxic conditions, 

but the dysregulation of these overlapping metabolites were much more amplified under 

glucolipotoxic conditions as compared to glucotoxic and lipotoxic conditions (Figure 3.5). As 

visualized from the box-whisker plots, the levels of o-phosphocholine, taurine, myoinositol, 

glutathione, creatine, aspartate, glutamate, asparagine, malate were drastically reduced under 

glucolipotoxic conditions when compared to glucotoxic and lipotoxic conditions. Similarly, 

the levels of UDP-N-acetylglucosamine were increased (Figure 3.5) in INS-1E cells under 

glucolipotoxic condition when compared glucotoxic and lipotoxic conditions. In addition, a 

new group of metabolites including proline, GTP, choline, glutamine, and alanine was 

observed to be significantly down-regulated under glucolipotoxic conditions, but not 

significantly altered under glucotoxic and lipotoxic conditions. Similarly, a few metabolites 

including ADP, niacinamide, NAD, fumarate, citrate, and isocitrate which displayed 

substantial upregulation under glucotoxic conditions did not display a major difference under 

glucolipotoxic condition. The presence of differentially altered metabolites under the different 

stress conditions used in the study thereby suggests the involvement of different metabolic 

pathway perturbations in INS-1E cells.  
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Figure 3.7: Pairwise metabolite comparison between INS-1E cells cultured in, basal glucose vs high glucose (HG) 
(A) PLS-DA score plot and (B) volcano plot; basal glucose vs High FFA (PA) (C) PLS-DA score plot and (D) 
volcano plot; and basal glucose vs high glucose and FFA (HG/PA) (E) PLS-DA score plot and (F) volcano plot. 
In all the PLS-DA score plots, basal glucose sample groups were depicted in red colors, whereas toxic-stressed 
sample groups (HG, PA and HG/PA) has been highlighted with green colors in their respective score plots. 
Ellipses on the score plots showing 95% confidence limits of a normal distribution for each group. Each dot on 
the score plot represents an individual sample. In the volcano plot, vertical dotted lines indicate threshold of ± 
1.5-fold changes in concentration of metabolites on a log2 scale and the horizontal dotted line corresponds to 
threshold of p-value significance (p ≤ 0.05) on a log10 scale. Red dot in the volcano plots represents metabolites 
that met both thresholds for significant change, with up-regulated metabolites on the left-hand side of each plot 
and down-regulated metabolites on the right-hand side. 

 

3.8 Metabolic Pathway Analysis 

To gain insights into the metabolic mechanism of T2DM and to assess the biological 

relevance of the changes in metabolite levels, metabolic pathway analysis of substantially 

differential metabolites was carried under glucotoxic, lipotoxic, and glucolipotoxic conditions 

using MetaboAnalyst tool and KEGG pathway database. The metabolites identified through 

Volcano-plot analysis (q-value ≤ 0.05, FC ≥ 1.5) were employed for the detailed analysis of 

the altered pathways in T2DM. These metabolites were then explored for metabolic pathway 

analysis using the Rattus norvegicus (rat) pathway library with parameters “Hypergeometric 
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test” for Over-Representation Analysis and “Relative-between-ness Centrality” for pathway 

topology analysis (Xia et al. 2011). Pathway enrichment analysis was performed to identify all 

significant pathways (p-value ≤ 0.05) based on the fold enrichment ratio (hits/expected) in 

different nutrient overload conditions used in our study. The significantly perturbed pathways 

were then identified based on their pathway impact values calculated from pathway topology 

analysis. All the identified metabolic pathways were plotted with p-value along y-axis and 

pathway impact score along X-axis (Figure 3.8). The metabolic pathways with a p-value ≤ 0.05 

and impact score ≥ 0.1 were deemed as significantly perturbed pathway with great relevance 

to disease mechanism.  

 

 
Figure 3.8: Metabolic Pathway Analysis (MetPa) of significantly altered metabolites displaying significant 
metabolic pathways in INS-1E cells when associated with (A) glucotoxic, (B) lipotoxic, and (C) glucolipotoxic 
conditions. Each node represents a single metabolic pathway with node color corresponding to the –log10(P) value 
(red: higher p-values and yellow: lower p-values) and node size corresponding to the pathway impact score. 
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The major pathways perturbed significantly in the pairwise comparison under 

glucotoxic condition were alanine, aspartate and glutamate metabolism, nicotinate and 

nicotinamide metabolism, citrate cycle, arginine biosynthesis, glutamine-glutamate 

metabolism, arginine and proline metabolism, pyruvate metabolism, glyoxylate and 

dicarboxylate metabolism, glutathione metabolism, purine metabolism, amino sugar and 

nucleotide metabolism and pentose and glucoronate metabolism (Figure 3.8A). Similarly, the 

pathways perturbed significantly under lipotoxic condition were starch and sucrose 

metabolism, taurine and hypotaurine metabolism, galactose metabolism, citrate cycle and 

inositol phosphate metabolism (Figure 3.8B). Significantly pathways perturbed under 

glucolipotoxic condition included alanine, aspartate and glutamate metabolism, glutamine-

glutamate metabolism, arginine-proline metabolism, arginine biosynthesis, pyruvate 

metabolism, aminoacyl-tRNA biosynthesis, glutathione metabolism, glycerophopholipid 

metabolism, amino sugar and nucleotide metabolism, taurine and hypotaurine metabolism 

(Figure 3.8C). Overall the significantly perturbed pathways identified from the current study 

belonged to amino acid metabolism, TCA cycle, nucleotide metabolism, hexosamine pathway 

and energy metabolism. All the identified pathways were then constructed using KEGG 

metabolic network and have been pictorially depicted in Figure 3.9. 

 

3.9 Discussion 

Diabetes mellitus, a chronic metabolic disease is associated with profound changes in the 

energy metabolism in diabetic subjects. The mapping of intracellular metabolites onto 

metabolic pathways under different nutrient overload conditions revealed that the changes were 

majorly focused around amino acid metabolism, TCA cycle, nucleotide metabolism, nitrogen 

metabolism pathways. Chronic exposure of pancreatic b-cells to high glucose results in an 

elevated metabolic flux into the TCA cycle. The increased levels of TCA cycle intermediates 

such as citrate, isocitrate, and fumarate under high glucose conditions indicates the 

upregulation of TCA cycle, a major pathway for the generation of energy and production of 

metabolic precursors for the biosynthesis of non-essential amino acids. This was associated 

with an increase in ATP and NAD+ levels that is required for maintaining glycolytic flux. 

Previous studies have also reported the increased flux of TCA cycle in INS-1 832/13 cells 

cultured in increasing concentrations of glucose (5-20 mM) for 2 h (Mugabo et al. 2017). It has 

been reported that the malate-aspartate shuttle is associated with glucose metabolism in the 

pancreatic beta cells and plays an important role in linking glucose metabolism to insulin 
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secretion in these cell (Yokoi et al. 2016). Indeed, the depleted levels of aspartate, asparagine, 

glutamate, and glutamine under glucotoxic conditions indicate defects in the functioning of the 

malate-aspartate shuttle. Further, a significant reduction in malate levels was observed during 

lipotoxic and glucolipotoxic conditions, thereby indicating a reduction in TCA cycle 

intermediates under these conditions. These observations gain support from previous reports 

where reduced levels of malate have been observed in high-fat fed obese rats (Eccleston et al. 

2011). 

Taurine, a sulphonic acid, plays an important role in numerous biological and 

physiological functions such as maintenance of intracellular osmatic balance, acts as an 

antioxidant in biological systems, involved in modulation of neurotransmitters, etc. (Ripps and 

Shen 2012). In our study, decreased levels of taurine were detected in INS-1E cells cultured 

under lipotoxic and glucolipotoxic conditions. DM is known to be associated with a decrease 

in endogenous taurine levels in a variety of tissues, thereby enhancing the notion that alterations 

in taurine levels could also lead to the severity of ROS-mediated damage. Insulin-like effects 

such as accelerating glucose uptake in tissues and glycogen synthesis in the liver have been 

suggested for taurine (Kim et al. 2009). Several reports have investigated the effects of taurine 

supplementation in alleviating hyperglycemia, plasma HbA1c and dyslipidemia in animal 

models associated with diabetes (Kim et al. 2012a; El Mesallamy et al. 2010). It was also shown 

to improve insulin secretion and insulin sensitivity in acute glucose or lipid infusion models 

(Haber et al. 2003). In addition to this, significantly lower plasma taurine levels have been 

reported in streptozotocin- or alloxan-induced diabetic animals as well as in T2DM patients 

(Ito, Schaffer, and Azuma 2012a; Nakamura et al. 2014; Trachtman et al. 1995). Urinary 

metabolic profile of high-fat fed rats and Zucker obese rats also showed a significant 

differences in the taurine levels (Kim et al. 2009; Williams et al. 2006). In Wistar rats, taurine 

has improved the islet dysfunction induced by free fatty acids (Kim et al. 2012b). These 

important roles of taurine tend to be primarily based on its antioxidant property, as well as on 

various protective effects against high glucose toxicity in pancreatic cells (e.g., the modulation 

of mitochondrial calcium handling and the stabilization of protein folding) (Ito, Schaffer, and 

Azuma 2012b). 

D-myoinositol, a cyclitol present in animal and plant cells has been shown to have 

insulin mimetic effects in insulin resistant animals (Ortmeyer 1996). In fact, dietary 

supplementation of D-myoinositol has also been reported to be effective in improving glycemic 

control in T2DM subjects (Pintaudi, Di Vieste, and Bonomo 2016); and in improving insulin 
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sensitivity and reducing fat accretion in high-fat fed mice (Croze, Géloën, and Soulage 2015). 

In concurrence with these investigations, the current study also reports a significant reduction 

in D-myoinositol levels in lipo-and glucolipo-toxic conditions. 

Glutathione is an important intracellular antioxidant that plays important role in 

resisting the oxidative stress by scavenging the radicles in the cell. Besides serving a protective 

role against ROS formation, glutathione has been primarily involved in triggering the signalling 

pathway to regulate the first phase of GSIS (Liu et al. 2015). Low levels of glutathione was 

observed in the INS-1E cells exposed to glucotoxic and glucolipotoxic conditions in our study. 

Previous studies indicate that chronic exposure of cells to high glucose results in decrease in 

glutathione levels, and thus eventually increases the ROS levels which is detrimental for the 

cells (Kalkan and Suher 2013; Lutchmansingh et al. 2018). This decrease in the level of 

glutathione concentrations could be attributed both as a results of competition between aldose 

reductase and glutathione reductase for NADPH, a cofactor, and increased oxidative stress 

(increased ratio of NADH/NAD) (De Mattia et al. 1994).  

Lactate, an indicator of oxidative capacity, predicts the prevalence of diabetes 

independent of several other risk factors and is closely linked to insulin resistance markers 

(Juraschek et al. 2013). From our metabolomics data, lactate was observed to be the most 

significant metabolite with increased levels during glucotoxicity and glucolipotoxicity 

conditions. Elevated lactate levels have been associated with the development of insulin 

resistance and have been considered to be the primary biological hallmark of diabetes 

progression. Indeed, significantly high lactate levels have been reported from serum and 

plasma of obese and insulin resistant subjects (Doar, Wynn, and Cramp 1968; Lovejoy et al. 

1992). In addition, higher level of expression of Lactate dehydrogenase (LDH), an enzyme that 

facilitates the conversion of pyruvate to lactate, has been reported in diabetic subjects 

(Ainscow, Zhao, and Rutter 2000). 

Creatine, a natural amine, is known to have protective effects against hyperglycaemia 

and has been shown to have antioxidant activity (Ročić et al. 2011; Stefani et al. 2014). 

Decreased levels of creatine were observed in INS-1E cells cultured under lipotoxic and 

glucolipotoxicity conditions. Earlier reports indicate that dietary creatine supplementation 

helps ameliorate hyperglycemia and helps improve glucose metabolism and glycemic control 

in T2DM subjects (Gualano et al. 2011; Op ’T Eijnde et al. 2001); and influences lipid 

metabolism to promote lipid secretion and oxidation and prevents lipid accumulation in 

cultured liver cells and high-fat-fed SD rats (Deminice et al. 2011; da Silva, Leonard, and 

Jacobs 2017). 
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Perturbation in amino acid metabolism was observed in all nutrient overload conditions 

used in the current study. Under suitable conditions, amino acid metabolism stimulates the 

regulation of insulin secretion in the β-cells (Zhang and Li 2013). Both glutamine and alanine 

which are the most abundant amino acid in the blood can regulate β-cell function and enhance 

insulin secretion from the primary islets and pancreatic β-cell line (Newsholme et al. 2005). 

Glutamate can play a pivotal role in triggering insulin secretion directly, either through 

metabolism or via its role in enhancing malate/aspartate shuttle activity (Newsholme, Brennan, 

and Bender 2006). Therefore any chronic changes in the levels of these metabolites could result 

in dysregulated insulin secretion in vivo. 

Uridine diphosphate glucose, also known as UDP-glucose is a nucleotide sugar and is 

a key intermediate in the carbohydrate metabolism. Elevated levels of UDP-glucose were 

detected in INS-1E cells exposed to HG and HG/PA. UDP-glucose is an activated form of 

glucose and serves as the glycosyl donor for the biosynthesis of glycogen (Zois and Harris 

2016). Reduced UDP-glucose flux and glycogen synthesis in the liver has also been reported 

in diabetic subjects when compared to non-diabetic subjects (Basu et al. 2001). The alterations 

in the levels of UDP-glucose under these conditions clearly indicates its known tendency to 

synthesize glycogen in diabetes (Spiro 1984). 

Down regulation of o-phosphocholine, an intermediate in the synthesis of 

phosphatidylcholine, was identified as a common significantly dysregulated metabolite in INS-

1E cells cultured under HG, PA, and HG/PA conditions. The combined effect of elevated 

glucose and elevated FFA results in activation of esterification pathway, leading to generation 

of lipid signalling molecules including phosphatidylcholine, triglyceride, ceramides (Poitout 

and Robertson 2008). These molecules have been directly shown to be involved in β-cell 

dysfunction. Indeed, de novo synthesis of FFAs and upregulation of fatty acid metabolism 

enzymes, followed by remodeling of the lipid composition of the plasma membrane have been 

proposed to be associated with high-glucose exposure associated with glucolipotoxicty in 

pancreatic b-cells (Couté et al. 2010; Nyblom et al. 2008; Wallace et al. 2013). Also, increased 

de novo synthesis of both saturated and unsaturated fatty acids has been reported in INS-1E 

cells exposed to increased glucose concentrations, thereby supporting our results (Nyblom et 

al. 2008).  

Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc), a sensor molecule and high 

energy donor substrate for OGT (O-GlcNAc transferase) is the major end product of 

hexosamine pathway, an important pathway for nutrient sensing. Increased flux of hexosamine 
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pathway, which plays a key role in the production of insulin, has been reported during 

hyperglycemia (McClain 2002a) The excess glucose due to the hyperglycemic conditions 

observed in diabetes is shunted in the hexosamine pathway that leads to increased levels of 

UDP-GlcNAc. It has been hypothesized that an elevated levels of UDP-GlcNAc under 

hyperglycemic conditions is required for post-translational protein O-glycosylation events in 

T2DM and metabolic syndrome (Slawson, Copeland, and Hart 2010). Earlier reports have also 

shown the increased levels of UDP-GlcNAc in streptozotocin-induced hyperglycemic rats 

(Robinson et al. 1995); high fat-fed normal rats (McClain 2002b); normal rats where 

hyperglycemia was induced using glucose (Hawkins et al. 1997; Robinson et al. 1995); in 

animals with prolonged elevation of serum FFA (Hawkins et al. 1997; Robinson et al. 1995); 

and human obese and T2DM sub- jects (Pouwels et al. 2004; Testa et al. 2015). In our study, 

we detected UDP-GlcNAc as a common dysregulated metabolite that showed upregulation 

under all three nutrient-overloaded conditions (Figure 3.7). Interestingly, the fold increase for 

this metabolite was much higher under gluco- (Figure 3.7B) and glucolipo-toxic (Figure 3.7F) 

conditions when compared to lipotoxic (Fig. 5d) conditions alone, thereby hinting towards a 

bigger role played by this metabolite under hyperglycemic conditions. 

In order to find unique metabolic biomarker fingerprint associated with glucotoxicity, 

lipotoxicity, and glucolipotoxicity, a ratio of average normalized concentration of the common 

dysregulated metabolites, namely, o-phosphocholine to UDP-N-acetylglucosamine was 

calculated and compared. These ratios were ~ 5.98 (± 1.78) in HG exposure, ~ 19.09 (± 6.81) 

in the presence of PA and ~ 51.79 (± 24.38) in HG/ PA exposure when compared to basal 

glucose (Table 3.2), thereby suggesting that these ratios can be used to identify the major type 

of metabolic dysregulation associated with pancreatic β-cell death and dysfunction. Thus, o-

phosphocholine to UDP-N-acetylglucosamine ratio can be used as a potential biomarker to 

identify glucotoxic, lipotoxic, and glucolipotoxic metabolic imbalances associated with T2DM. 
Table 3.2: Calculation and comparison of ratio of o-phosphocholine to UDP-N-GlcNAc under gluco-, lipo-, and 
glucolipotoxicity conditions in comparison to basal glucose. 

  Glucotoxic Lipotoxic Glucolipotoxic 

o-phosphocholine 1.80 ± 0.35 11.97 ± 4.22 12.51 ± 2.91 

UDP-N-acetylglucosamine 0.30 ± 0.06 0.62 ± 0.04  0.24 ± 0.09 

Ratio 5.98 ± 1.78 19.09 ± 6.81 51.79 ± 24.38 
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Figure 3.9: Pictorial depiction of the significantly dysregulated metabolites and Metabolomic Pathway Analysis (MetPA) construction of the metabolic pathways 
identified in HG, PA and HG/PA. The description of the arrows has been provided as a legend in which HG is represented by red arrows, PA is represented by green 
arrows and HG/PA is represented by blue arrows. The upward and downward direction of arrows indicates the upregulation and down-regulation of metabolites 
respectively. 
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The use of primary β-cells for most molecular, biochemical, and metabolomics studies has 

largely been limited by the availability of the human pancreatic tissue. Furthermore, the 

isolation and purification of β-cells in large amounts (required for such metabolomics studies) 

and their maintenance becomes technically challenging. In addition to this, primary β-cells do 

not proliferate easily in culture and quickly undergo apoptosis. The research conducted in the 

newly developed human pancreatic insulinomas is still in infancy and need more 

characterization. Therefore, the current studies were performed on INS-1E cells (derived from 

the rat INS-1 insulinoma cells) that are highly glucose responsive. Even though, the 

homogeneity of such clonal b-cells has been questioned lately, they have been widely used for 

mechanistic studies of pancreatic b-cell function. These cell cultures can be expanded in 

sufficient quantities for metabolomics based experiments in contrast to isolated islets which 

actually consist of four distinct cell types and would require pooling from multiple animals. 

However, there are certain drawbacks associated with using these cells that include: (a) 

concerns about homogeneity of clonal β-cells (Fernandez et al. 2008), (b) a low total insulin 

content in INS-1E cells (only 20% of that of the native cells) (Asfari et al. 1992), and (c) the 

requirement of β-mercaptoethanol (which is toxic and irritating, and irreversibly denatures the 

proteins) in the culture media for their propagation and maintenance of important functional 

characteristics (Asfari et al. 1992; Skelin, Rupnik, and Cencic 2010). Despite these drawbacks, 

INS-1E cells have been vigorously used as a model system since they are highly responsive to 

small changes in glucose concentrations (Merglen et al. 2004) and can be expanded in sufficient 

quantities for metabolomics experiments in contrast to isolated islets which actually consist of 

four distinct cell types and would require pooling from multiple animals. In fact, a study by 

Spegel et al. compared glucose metabolism in rat islets and INS-1 832/13 clonal b-cells and 

suggested that the metabolic processes were largely similar in the two systems despite the 

difference in the expression of genes involved in proliferation (Spégel et al. 2015). Indeed, 

most previous studies performed till data (September 2020) have reported the effect of HG 

(ranging from 10 mM to 25 mM) on the metabolic pathways investigated in glucose-responsive 

INS-1 832/13 cells, BRIN-BD11 cells and isolated pancreatic islets (Appendix Table 3.4).  

 

3.10 Conclusions 

In conclusion, our study presented the comprehensive list of the metabolic signatures 

associated with high-glucose (glucotoxicity), FFA (lipotoxicity), and high-glucose and FFA 

(glucoliptoxicity) exposure in pancreatic b-cells. Our analysis reveals that the shift in the 
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metabolic profile was more distinctive for glucotoxic and glucolipotoxic conditions compared 

to lipotoxic conditions. Cellular and biochemical data indicates that exposure of INS-1E cells 

to FFA and/or high glucose was associated with decreased cellular viability, increased ROS 

production, and accumulation of triglycerides and FFA in the pancreatic b-cells. The 

metabolites belonging to the energy metabolism and amino acid metabolism were majorly 

perturbed; and UDP-N-acetylglucosamine and o-phosphocholine were identified as the 

common dysregulated metabolites under all three nutrient excess conditions and their ratio was 

proposed as a biomarker for the three stress conditions tested in this study. It would also be 

interesting in future to carry out dose- and time- dependent studies and to examine how de novo 

lipogenesis pathways and water-insoluble metabolites are affected under these conditions in 

order to get the complete picture of biochemical and metabolic perturbances associated with 

these conditions. In addition to this, NMR spectroscopy was used as a method of choice for the 

current study for identification and quantitation of metabolites over mass spectrometry as these 

measurements are associated with very high analytical reproducibility and ease of molecular 

characterization in small measurement times. However, due to the inherent limitations 

associated with NMR spectroscopy, the effect of these stressors on the low-abundant 

metabolites could have been missed. 
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4.1 Introduction  

Type 2 diabetes mellitus (T2DM) is a progressive metabolic disorder that has been 

characterized by chronic hyperglycemia that occurs due to insulin insufficiency from 

pancreatic b-cells and has been associated with the development of insulin resistance (IR) in 

the insulin-target tissues (Zaccardi et al. 2016)(Defronzo 2009). The prevalence of prediabetes 

and T2DM has increasing globally, with worrying statistics being reported from the children, 

adolescents, and young adults worldwide (Rughani, Friedman, and Tryggestad 2020) and in 

developing countries like India (Shetty 2012; Tabish 2007). As per the International Diabetes 

Federation, ~77 million people, which accounts for one in six people, or 17% of the world 

diabetic population, belongs to India (https://www.diabetesatlas.org/en/). The increased 

prevalence and early onset have been linked with a lack of physical activity and a sedentary 

lifestyle, dietary changes, obesity, and deficiency of micronutrients, including Vitamin B12 in 

an average Indian. In addition to this, the increased susceptibility to diabetes at a younger age 

and lesser BMI in Asian Indians, when compared to the Western equals, has been linked to 

higher body fat and visceral fat; lower skeletal muscle mass; and higher prevalence of IR 

(Chawla et al. 2020; Ramachandran et al. 1997; Ramachandran, Wan Ma, and Snehalatha 

2010). The traditional biomarkers, including fasting and postprandial plasma glucose, glycated 

hemoglobin (HbA1C), C-peptide levels, etc. cannot predict early onset of T2DM and have 

proven to be inefficient, with very little predictive power, for identifying individuals at risk of 

developing T2DM, with prediabetes and with insulin resistance (Bhatia et al. 2015; Chawla et 

al. 2020). This raises the need for the development of novel biomarkers of T2DM that would 

not only help in early diagnosis but will also aid in identifying individuals at risk.  

 Metabolomics – an emerging high-throughput technique – has the potential of 

identification and characterization of low molecular weight biochemicals (referred to as 

metabolites) in biological samples, including tissues, body fluids, etc. (Gowda et al. 2008; 

Zhang et al. 2015). Since these metabolites are the by-products of the major metabolic 

pathways, their analysis performed in different physiological conditions have been used to 

provide a functional readout of a phenotype. Along these lines, several metabolic studies have 

been conducted that have correlated metabolite changes with the development of insulin 

resistance, prediabetes, and T2DM (reviewed extensively in (Arneth, Arneth, and Shams 2019; 

Guasch-Ferré et al. 2016; Klein and Shearer 2016; Satheesh, Ramachandran, and Jaleel 2020a; 

Zhao et al. 2016)) and have been useful in gaining mechanistic insights into their 

pathophysiology. Most of these studies have reported an association of branched-chain amino 
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acids (leucine, isoleucine, and valine) (Del Coco et al. 2019; Qiu et al. 2016; Wang et al. 2011), 

aromatic amino acids (phenylalanine and tyrosine) (Floegel et al. 2013; Qiu et al. 2016; Wang 

et al. 2011), acylcarnitines (Mihalik et al. 2010; Sun et al. 2016), and phospholipids (Ahola-

Olli et al. 2019; Pérez-Matos et al. 2017), to name a few, with an increased incidence of 

prediabetes and established T2DM.  

 Metabolomics studies investigating biomarkers for T2DM from the South-Asian 

population, especially from India, are few (Gogna et al. 2015; Tai et al. 2010), with most being 

conducted in European, German, UK, USA, Dutch, Chinese, and Middle Eastern populations 

(Fikri et al. 2020; Satheesh, Ramachandran, and Jaleel 2020b). A recent study by Gogna et al. 

investigated the serum from diabetic, obese South Indian Asian subjects using NMR-based 

metabolomics. This study proposed a set of 19 significantly altered metabolites, including 

saturated fatty acids, lactate, valine, isoleucine, and phenylalanine, that could be used as 

potential biomarkers for diabetes onset in subjects with high BMI (Gogna et al. 2015). Another 

study performed in Asian-Indian and Chinese individuals from Singapore identified alanine, 

proline, valine, leucine/isoleucine, phenylalanine, tyrosine, glutamate/glutamine, and 

ornithine, and branched-chain amino acids to be correlated with insulin resistance (Tai et al. 

2010). However, none of the studies performed to date (October 2020) aimed to identify 

markers associated with prediabetes, which could be used for disease prognosis in the Indian 

population. Hence, more studies are warranted in this direction from the Indian sub-continent.  

 With this background, in the current study, we aimed to identify unique metabolic 

markers associated with prediabetes and established T2DM in Asian Indians using NMR-based 

metabolomics that could be used as potential biomarkers for prognosis and disease diagnosis. 

Our study identified 36 aqueous metabolites from the methanolic extracts of serum samples, 

of which 24 metabolites showed a statistically significant difference between normal 

individuals (referred to as healthy controls), prediabetic individuals, and subjects with 

established T2DM. Using ROC curve analysis, 12 metabolites in the T2DM subjects (including 

glucose, pyroglutamate, serine, proline, glutamate, methionine, isoleucine, alanine, citrate, 

betaine, glycerol, and o-phosphocholine); and 6 metabolites (including glucose, pyroglutamate, 

o-phosphocholine, serine, snglycero-3-phosphocholine, and methionine) in prediabetic 

subjects, were identified high specificity and sensitivity (AUC > 0.7). On performing 

multivariate ROC curve analysis with the panel of selected 5 metabolites common between 

prediabetes and T2DM samples, AUC values obtained were 0.96 (95% confidence interval (CI) 

= 0.93, 0.98) for established T2DM; and 0.88 (95% CI = 0.81, 0.93) for prediabetes subjects. 

Hence, we propose that this panel of 5 metabolic biomarkers (namely, glucose, pyroglutamate, 



 Page | 94  

o-phosphocholine, serine, and methionine) can be used in the future for clinical diagnosis, 

patient surveillance, and for predicting individuals at risk for developing overt diabetes in the 

future in the South Asian Indians.  

 

4.2 Experimental Procedures 

4.2.1 Study Population, Anthropometric parameters, and biochemical tests 

 A total of 284 individuals (Asian Indians) were recruited for the study from the 

Out-Patient Department of Armed forces medical college, Khirkee, Pune by participating 

physicians and paramedical staff. All enrolled subjects provided their informed consent at the 

time of recruitment. The study protocols were approved by the institutional ethics committees 

of the participating institutions, centers, and hospitals. After obtaining consent, a 

comprehensive case history questionnaire was explained to the participants in English or a local 

language (Marathi/Hindi) in which the subjects felt comfortable. A copy of questionnaire, 

consent form and approvals has been provided in Appendix 2. Data was recorded for each 

participant, including information on the age, sex, education, employment details, and 

occupation; history on the use of alcohol, tobacco chewing, and smoking was also recorded. In 

addition to this, clinical history with information on other co-morbid medical conditions and 

surgeries; medication history; family history about T2DM, metabolic syndrome, hypertension 

(wherever available); physical parameters, such as weight, height, blood pressure, waist-hip 

measurements, body mass index (BMI); diet (lacto-, ovo, non-vegetarian), and physical activity 

and exercise regimen followed; were also recorded. Subjects with a history of malignancy or 

other terminal illness, positive for HIV and/or HBsAg, poor compliance (from whatever cause), 

with insufficient blood samples, and unable to provide informed consent were excluded from 

the study.  

 Subjects between the age of 30 to 75 years were recruited following the guidelines of 

the American diabetes association in three groups: a) Recently diagnosed prediabetic subjects 

(fasting blood glucose levels between 100-125 mg/dl and on low doses of Metformin); b) 

Established diabetic (subjects with established T2D and undergoing treatment with Metformin 

for at least five years, fasting blood glucose levels > 126 mg/dl); and c) age and sex-matched 

controls (fasting blood glucose levels < 100 mg/dl; no history of T2D and metabolic disorders 

in the parents) with no history of diabetes, cardiovascular disease and/or metabolic syndrome. 

Blood samples were collected for routine lab assessment for the test, including fasting blood 
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glucose, postprandial blood glucose, HbA1c, fasting lipid profile (triglycerides, HDL, LDL, and 

total cholesterol). Serum vitamin B12 levels were estimated using ELISA (Calbiochem).  

 

4.2.2 NMR sample preparation 

Serum samples were separated from blood collected in serum separator vacutainers (BD 

Bioscience) incubated at room temperature for 30 minutes to allow clot formation. The tubes 

were spun at 2000 rpm for 5 mins, and the separated serum was collected in fresh 1.5 ml tubes 

and stored in aliquots at -80 °C until further use. For the preparation of metabolic extracts, an 

aliquot containing 300 µl serum was thawed on ice, mixed with two volumes of ice-cold 

methanol, vortexed briefly, and incubated at -20°C for 30 min. This was followed by 

centrifugation at 13,000 g for 30 min at 4°C. The supernatant, thus obtained, was flash-frozen 

into liquid nitrogen and lyophilized to remove residual water and methanol. The final extracts 

were stored at -80°C until NMR acquisition.  

For the NMR sample preparation, the lyophilized extracts were allowed to thaw on ice, 

followed by reconstitution into 550 µl 100% NMR buffer (20 mM sodium phosphate, pH 7.4 

in D2O containing 0.4 mM DSS (2,2-dimethyl-2-silapentane-5-sulfonic acid. The samples were 

vortexed for 2 min at room temperature and centrifuged at 4000 g for 2 min. The supernatants 

were transferred to 5 mm NMR tubes for NMR measurements. NMR measurements were 

recorded on consecutive days with between 15-20 samples (coded) randomly selected samples 

recorded per day.  

 

4.3 NMR spectroscopy and Spectral processing  

All the 1D 1H NMR spectra were recorded at 298 K using water suppression pulse 

sequence noesygppr1d from Bruker library as described in detail in Chapter 2. Typical 

acquisition parameters included a 5 s relaxation delay, 64 transients, 7200 Hz spectral width, 

32-K data points. The 1H NMR spectra of all the serum samples were manually phased, 

baseline-corrected using Bruker’s NMR data processing software Topspin (v3.5) 

(www.bruker.com/bruker/topspin). All the 1H chemical shifts were directly referenced with 

respect to methyl singlet of DSS internal reference, set to a chemical shift (δ) of 0.00 ppm.  

 

4.4 Metabolite Identification and quantitation 

After spectral processing, identification of metabolites was carried out with the 

Chenomx NMR Suite 8.1 (Edmonton, AB, Canada) software and were further confirmed with 
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biological magnetic resonance data bank (BMRB) (Ulrich et al., 2008) database and human 

metabolome database (HMDB) (Wishart et al., 2007). All the identified metabolites were then 

quantified using the profiler module of Chenomx software, which enables metabolites 

quantification relative to an internal standard of known concentration (400 µM). The 

concentration data obtained after metabolite quantification were converted to comma-separated 

values (CSV) format using Microsoft excel format and imported into MetaboAnalyst 4.0 

(Chong et al., 2018), a free web-based program for multivariate analysis. 

 

4.5 Statistical Analysis 

 All clinical parameters have been represented as Mean ± SEM unless stated otherwise, 

where SEM refers to the standard error mean and is expressed as a sample deviation divided 

by the square root of the sample size. The comparison amongst the groups was performed using 

one-way ANOVA; Tukey HSD post-doc test. A p-value < 0.05 was considered to be 

statistically significant when comparing groups.  

Multivariate statistical analysis was performed using the Metaboanalyst web tool 

(www.metabolanalyst.ca). For predicting the metabolite variations among different groups, 

chemometric analysis – Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) 

was carried out. The raw metabolomics data sets were subjected to Pareto-scaling prior to 

chemometric analysis. The quality of the OPLS-DA models was assessed by R2, which defines 

the total explained variance (indicating goodness of fit) and Q2 values, indicating the 

predictability of the model. The permutation statistic was further used with 100 permutations 

to validate the OPLS-DA models. One-way analysis of variance (ANOVA) followed by post-

hoc analyses using Fisher’s LSD was performed to assess the metabolites that showed 

significant variation (p-value < 0.05) in diabetic and prediabetic subjects when compared to 

control subjects. Further box and whisker plots were generated to visualize the comparative 

variation in the levels of discriminating metabolites identified in serum profiles of diabetic, 

prediabetic, and healthy patients.  

Significance Analysis for Microarrays (SAM) method was employed to identify the 

most discriminant and important metabolites responsible for the separation between control 

and diabetic groups. SAM is a permutation-based (non-parametric) hypothesis testing method 

that uses a moderated t-test, denoted as di, to measure the change in metabolite expression 

between the two groups. SAM also provides an estimation of the FDR, and metabolites with 

SAM-FDR q-value < 0.05 were considered statistically significant.  
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4.6 Receiver operating characteristic (ROC) curve  

To identify potential biomarkers for early detection or progression of T2DM, we 

applied classical univariate ROC curve analysis to evaluate the area under the curve (AUC) 

and their 95% confidence intervals. ROC curves were generated using the “Biomarker 

Analysis” module of the MetaboAnalyst 4.0. Multivariate ROC curve analysis was carried out 

to select a panel of biomarkers (multiple-biomarker test) and to evaluate the classification 

performance of the generated models. Balanced sub-sampling-based Monte Carlo cross-

validation (MCCV) was applied to generate the ROC curves for different models using 

different metabolite panels. The Linear Support Vector Machine (SVM) for the classification 

and "Random Forest algorithm" for the feature ranking method was used for the analysis. 

4.7 Metabolic pathway analysis  

 Metabolic Pathway Analysis (MetPa) was carried out on a free web-based program 

Metaboanalyst 4.0 (Chong et al., 2018; Xia, Wishart, & Valencia, 2011). The most 

dysregulated metabolic pathways were identified based on the statistical value (p-value ) of the 

pathway enrichment analysis and pathway impact value calculated from pathway topological 

analysis (Xia et al., 2011). The metabolic pathways with impact value > 0.1 and p < 0.05 were 

considered as significantly perturbed pathways. 

4.8 Results 

4.8.1 Clinical characteristics of the study population 

 The subjects recruited for the study were clinically characterized as healthy volunteers, 

prediabetic subjects, and established T2DM following the recommendations of the American 

diabetes association and WHO guidelines. The fasting and postprandial plasma glucose levels 

for the healthy controls (N = 101) were 99 ± 16 mg/ml and 120 ± 40 mg/dl, respectively; for 

prediabetics were (N = 75) 121 ± 17 mg/dl and 157 ± 27 mg/dl, respectively; and for established 

T2DM subjects (N = 108) were 178 ± 73 mg/dl and 257 ± 82 mg/dl, respectively. The HbA1c 

levels were significantly higher in the T2DM subjects (8 ± 1 %) when compared to the healthy 

controls (5 ± 0.5%) (Tukey HSD post-doc test p = 0.009). The other clinical characteristics of 

the study population have been listed in Table 4.1. 
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Table 4.1: Clinical characteristics of the study population 

 Healthy 
individuals  

Prediabetic 
subjects 

Established type 2 
diabetic subjects 

Total Number 101 75 108 
Age (in years) 50 ±16 55± 12 56 ± 10 

Sex (M:F) 82:19 34:41 60:48 
BMI (kg/m^2) 24.8 ± 3.1 26.2 ± 4.5 26.3 ± 3.85 

Fasting glucose 
(mg/dL) 99 ± 16 121 ± 17 178 ± 73 

Post-prandial 
glucose (mg/dL) 120 ± 40 157 ± 27 257 ± 82 

HbA1c (%) 5.0 ± 0.5 6.21 ± 0.4 8.0 ± 1.0 

Triglyceride 
levels (mg/dL) 116 ± 69 123 ± 62 184 ± 133 

HDL (mg/dL) 47 ± 14 54 ± 14 48 ± 13 
Cholesterol 

(mg/dL) 168 ± 41 186 ± 46 190 ± 57 

Vitamin B12 
(picogram/mL) 425 ± 476 396 ± 317 408 ± 346 

 

 

4.8.2 Resonance Assignment 

Global metabolic profiling of serum samples of healthy controls was performed and 

was compared with the metabolic profiles of serum samples from subjects with prediabetes and 

established T2DM. A total of 36 metabolites, including our internal reference, were identified 

in the serum samples of different cohorts using standard one-dimensional 1H-NMR spectra. A 

single peak at d 3.71 ppm was left unassigned. All the metabolites were identified using the 

profiler module of Chenomx NMR Suite 8.1 (Edmonton, AB, Canada) software. The resonance 

assignment for low-density lipids (LDL) was done using previously reported NMR 

assignments from the literature (Mallol et al. 2013; Rawat et al. 2016). The NMR spectra 

present signals mainly from amino acids, sugars, carbohydrates, lipids, and membrane 

metabolites. All the 36 metabolites and their respective 1H chemical shifts (in reference to DSS) 

have been listed in Appendix Table 4.2. 



 Page | 99  

 

Figure 4.1: Representative 1H NMR spectrum of serum obtained from healthy and diabetic patients. 1, Formate; 
2, Tryptophan; 3, Phenylalanine; 4, Tyrosine; 5, DSS; 6, Glucose; 7, 3-hydroxyisobutyrate; 8, Valine; 9, 
Isoleucine; 10, Leucine; 11, LDL ; 12, Lactate; 13, Proline; 14, Fructose; 15, Alanine; 16, Acetate; 17, Arginine; 
18, Glutamate; 19, Glutamine; 20, Succinate; 21, Citrate; 22, Acetone; 23, Glycerol; 24, Glycine; 25, Choline; 26, 
o-phosphocholine; 27, sn-glycero-3-phosphocholine; 28, Betaine; 29, Creatinine; 30, Lysine; 31, Aspartate; 32, 
Pyroglutamate; 33, Methionine; 34, Isopropanol; 35, Methanol; 36, Serine. 
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4.8.3 Classification and Feature selection 

All the identified metabolites were then quantified in the profile module of the 

Chenomx software. Six metabolites, including succinate, methanol, acetone, isopropanol, 

fructose, and LDL, were excluded from the analysis as their representative peaks were not 

evident in all spectra and may, thus, be vulnerable to over- or under-estimation of 

concentrations. The concentration data of all the metabolites were used for feature selection 

and group discrimination using chemometric analysis. Univariate analysis using one-way 

ANOVA identified 24 statistically significant metabolites (FDR corrected p-value <0.05) 

among healthy controls, prediabetic individuals, and subjects with T2DM. The details of these 

metabolites, along with their p and FDR values, have been listed in Appendix Table 4.3. Box-

Whisker plots for these metabolites have been depicted in Figure 4.2 for a visual interpretation 

of dysregulated metabolites in T2DM and prediabetic subjects. Further, SAM plots were used 

to identify discriminatory metabolites in prediabetic and diabetic subjects compared to healthy 

controls (Figure 4.3). To reduce FDR and false positives, the d(i) values were set to 2 for the 

T2DM group and 1.3 for prediabetic group, respectively. Overall, 23 and 9 metabolites were 

found to be significantly different (SAM-FDR q-value < 0.05) in T2DM (Figure 4.3A) and 

prediabetic subjects (Figure 4.3B), respectively, when compared to healthy controls. The 

details of the d(i) values of these metabolites, along with their p and FDR values, have been 

listed in Appendix Table 4.4a for the T2DM group and Appendix Table 4.4b for prediabetic 

group. 

 The significantly up-regulated and down-regulated metabolites have been represented 

by green and red circles, respectively, in (Figure 4.3). The significantly up-regulated 

metabolites observed in T2DM included glucose, glutamate, proline, methionine, isoleucine, 

citrate, alanine, 3-hydroxyisobutyrate, leucine, valine, lysine, glycerol, and tryptophan. On the 

other hand, serine, pyroglutamate, betaine, o-phosphocholine, formate, choline, glycine, sn-

glycero-3-phosphocholine, aspartate, and arginine were found to be significantly down-

regulated in T2DM subjects. Similarly, in prediabetic patients, glucose was the only up-

regulated metabolite, while pyroglutamate, o-phosphocholine, serine, choline, SN-glycero-3-

phosphocholine, lactate, acetate, and betaine were found significantly down-regulated. 
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Figure 4.2: Box and whisker plots displaying relative normalized concentrations of significantly altered 
metabolites identified from One-way ay ANOVA (q-value <0.05) in control, prediabetic, and T2DM groups. 
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Figure 4.3: Significance analysis of microarray (SAM) plots for the selection of significant metabolites in (A) 
T2DM group, and (B) prediabetic group. The green circles on the top represent up-regulated metabolites, and the 
red circles on the bottom represent down-regulated metabolites. d(i) indicates SAM score. 

 

Supervised OPLS-DA analysis was carried out to discern the alterations in metabolic 

profiles of serum samples between the two groups individually, i.e., T2DM subjects against 

control samples and prediabetic subjects against healthy controls. The score plot in the OPLS-

DA analysis showed a clear separation between healthy controls and T2DM subjects (Figure 

4. 1A). The goodness of fit and predictive ability for the OPLS-DA models between T2DM 

groups and healthy control was revealed in the values of R2 = 0.75, Q2 = 0.74. The permutation 

test (n=100), which was carried out to validate the goodness of these models further, showed 

robustness and high predictability of the model (p-value < 0.05) (Figure 4. 2B). However, a 

slight overlap between the ellipses representing the score plot of the healthy controls and 

prediabetic subjects was observed using OPLS-DA analysis (Figure 4. 3C), with an R2 value 

of 0.38 and a Q2 value of 0.35. Thus, the results from OPLS-DA analysis unveiled good models 

to discriminate healthy individuals from the diabetic and prediabetic subjects with good 

predictive ability. Indeed, the OPLS-DA model distinguishing between T2DM and healthy 

individuals had better predictive performance (R2 value of 0.75 and Q2 value of 0.74) than the 

OPLS-DA model discriminating between healthy and prediabetic patients (R2 value of 0.38 

and Q2 value of 0.35). 
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Figure 4.4: Supervised 2D OPLS-DA analysis of (A) Healthy control versus T2DM patients, (C) Healthy controls 
versus prediabetic patients. OPLS-DA model validation by permutation tests based on the separation between (B) 
Healthy control versus T2DM patients (D) Healthy control versus prediabetic patients. The p-value based on 
permutation is p < 0.01, indicating the significance of both the models. R2 indicating the goodness of fit, 
and Q2 indicating the predictability of the model. 

 

4.8.4 Identification of Metabolite Biomarkers associated with diabetes 

4.8.4.1 Metabolic Biomarkers associated with T2DM 

To identify potential biomarkers for early detection or progression of T2DM, we 

applied classical univariate ROC curve analysis to produce ROC curves to evaluate the area 

under the curve (AUC) and their 95% confidence intervals. Metabolites with AUC >0.7 have 

generally been considered as good biomarkers. As shown in Figure 4.5, twelve metabolites 

with AUC > 0.7 were identified as potential biomarkers for diagnosis, surveillance, and early 

detection of metabolic changes in T2DM patients. These included glucose, pyroglutamate, 

serine, proline, glutamate, methionine, isoleucine, alanine, citrate, betaine, glycerol, and o-

phosphocholine. Glucose was found to have the highest AUC value, and thereby was the 
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metabolite associated with the highest sensitivity and specificity (AUC: 0.95; 0.9, 0.8). This 

was followed by pyroglutamate (AUC: 0.89; 0.9, 0.8) and serine (AUC: 0.83; 0.8, 0.7).  

 

Figure 4.5: Univariate ROC curves of the potential biomarkers (AUC > 0.7) and their respective box-cum-
whisker plots showing discriminatory ability between T2DM patients and healthy controls. AUCs and computed 
confidence intervals have been shown for each biomarker in the figure. AUC: the area under the curve. 

  

4.8.5 Metabolic Biomarkers for prediabetes 

 ROC curve analysis revealed six metabolite biomarkers associated with the prediabetic 

groups based on AUC > 0.7 (Figure 4.6). These metabolites have high discriminating power 

for identifying prediabetic subjects from healthy individuals. These included glucose, 

pyroglutamate, o-phosphocholine, serine, snglycero-3-phosphocholine, and methionine. As in 

the T2DM analysis, glucose had the highest AUC value (AUC: 0.81; 0.8, 0.8), followed by 
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pyroglutamate (AUC: 0.80; 0.7, 0.8) and o-phosphocholine (AUC: 0.75; 0.7, 0.7). The AUC 

values ranging from 0.81-0.71 suggests that these metabolites could be used as potential 

biomarkers for individuals at risk for developing overt diabetes in the future. Interestingly, 

most metabolites were found to follow a similar trend with respect to their concentration in the 

T2DM and prediabetic groups when compared to the healthy individuals (Figure 4.2). 

 

 
Figure 4.6: Univariate ROC curves of the potential biomarkers (AUC > 0.7) along with their respective box-cum-
whisker plots showing discriminatory ability between prediabetic patients and healthy controls. AUCs and 
computed confidence intervals have been shown for each biomarker in the figure. AUC: the area under the curve. 

 

Further, a multivariate ROC curve analysis was carried out to select a panel of 

biomarkers (multiple-biomarker test) and to evaluate the classification performance of the 

generated models. Balanced sub-sampling-based Monte Carlo cross-validation (MCCV) was 

applied to generate the ROC curves for six different models where each model has a different 

number of metabolites (2, 3, 5, 10, 20, and 29) included by sub-sampling. The Linear Support 

Vector Machine (SVM) for the classification and "Random Forest algorithm" for the feature 

ranking method was used for the analysis. From the results of the multivariate ROC curve 

analysis, AUC values were increased with an increased number of variables. Figure 4.7 shows 

that the AUC value ranges from 0.97 for two variables to 0.99 for 29 variables in the T2DM 

group and from 0.81 for two variables to 0.92 for 29 variables in prediabetic group. Thus, the 

more the number of variables in the model, the more was the discriminating potential of the 
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models in distinguishing T2DM and prediabetic subjects from healthy individuals. To further 

compare different classification models, predictive accuracy was evaluated for each model. 

The results from predictive accuracy revealed that the model performance was improved with 

an increasing number of variables, which corresponds to the results obtained from the ROC 

curve analysis. 

 

 
Figure 4.7: Multivariate ROC curve analysis for the evaluation of model prediction using balanced-subsampling 
based Monte-Carlo cross-validation (MCCV). ROC curve based comparative analysis of 6 different models using 
different metabolite panels (2, 3, 5, 10, 20, and 29). The corresponding AUCs and confidence intervals were 
shown for each model in the figure. (A) Metabolite biomarkers detected for T2DM patients, (C) Metabolite 
biomarkers detected for prediabetic patients. Predictive accuracies for the different number of metabolite panels 
in (B) T2DM patients, (D) prediabetic patients. The red dot shows the highest predictive accuracy for the model 
featuring 29 metabolites in both T2DM and prediabetic groups. AUC, the area under the curve; CI, confidence 
interval.  

 

4.8.6 Metabolic Pathway Analysis  
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The metabolites identified through SAM analysis were employed to thoroughly analyze 

the altered pathways in T2DM and prediabetes compared to healthy controls using 

MetaboAnalyst, in order to assess the biological relevance of the changes in metabolite levels.  

 

Figure 4.8: Summary of pathway enrichment analysis in T2DM serum samples. Each node represents a specific 
pathway with node color corresponds to its p-value, and the size of the node corresponds to fold enrichment. Two 
pathways are connected with edges if they shared more than 25 % metabolite of the total number of combined 
metabolites. 

 

 Metabolic pathway analysis was performed using the Homo sapiens pathway library 

with parameters "Hypergeometric test" for Over-Representation Analysis and "Relative-

betweenness Centrality" for pathway topology analysis. Pathway enrichment analysis was 

performed to identify all significant pathways (p <0.05) based on the fold enrichment ratio 

(hits/expected) in T2DM and prediabetic groups when compared to the healthy individuals. 

Each node in the pathway enrichment analysis (Figure 4.8) corresponds to the metabolic 

pathway with its color based on its p-value, and the size of the node corresponds to its fold 

enrichment. The significantly perturbed pathways were then identified based on their pathway 

impact values calculated from pathway topology analysis. All the identified metabolic 
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pathways were plotted with p-value along the y-axis and pathway impact score along the x-

axis (Figure 4.9). The metabolic pathways with a p-value < 0.05 and impact score > 0.1 were 

deemed as a significantly perturbed pathway with great relevance to disease mechanism.  

 

 
Figure 4.9: Metabolic Pathway Analysis (MetPa) of significantly differential metabolites between healthy 
controls and (A) T2DM groups, (B) Prediabetic groups. Each node represents a single with node color 
corresponding to the –log10(P) value (red: higher p-values and red: lower p-values) and node size corresponding 
to the pathway impact score. 

 

The major pathways perturbed significantly in the pairwise comparison between 

healthy individuals and T2DM subjects included glycine-serine-threonine metabolism; alanine, 

aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis; arginine and proline 

metabolism; glyoxylate and dicarboxylate metabolism; glutathione, glycerophospholipid 

metabolism; cysteine and methionine metabolism; galactose metabolism; glutamine-glutamate 

metabolism; and starch and sucrose metabolism (Figure 4.9A). Likewise, the significantly 

perturbed pathways in the prediabetic individuals were glycine-serine-threonine metabolism; 

glycerophospholipid metabolism; pyruvate metabolism; starch, and sucrose metabolism; and 

glyoxylate and dicarboxylate metabolism (Figure 4.9B). Overall the significantly perturbed 

pathways in our study belong to amino-acid metabolism and energy metabolism. All the 

identified pathways were then constructed using the KEGG metabolic network and depicted 

pictorially in Figure 4.10. 
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Figure 4.10: Pictorial depiction of the significantly dysregulated metabolites and Metabolomic Pathway Analysis 
(MetPA) construction of the metabolic pathways identified in T2DM. The cyan colored boxes represent potential 
metabolites with AUC > 0.07. The upward and downward direction of arrows indicates that the metabolites are 
up-regulated or down-regulated in T2DM patients.  

 

4.9 Discussion 

 Using a clinically well-defined cohort of subjects with prediabetes, established T2DM, 

and healthy volunteers from South Asia, 1H NMR-based metabolomics was performed, which 

revealed a clear separation in the serum metabolomes between these groups. Univariate ROC 

curve analysis identified 6 and 12 metabolites from the prediabetic and diabetic groups, 

respectively, with AUC values > 0.7. The five common significantly dysregulated metabolites 

between these groups, namely glucose, pyroglutamate, o-phosphocholine, serine, and 

methionine, were reanalyzed using multivariate ROC curve analysis, and highly significant 

AUC values were obtained. The AUC values obtained were 0.96 (95% CI = 0.93, 0.98) for 

established T2DM (Figure 4. 11A); and 0.88 (95% CI = 0.81, 0.93) for prediabetes subjects 

(Figure 4. 11B), which are highly significant Hence, we propose that this panel of 5 metabolic 

biomarkers can be used in future for predicting individuals at risk for developing overt diabetes 

in the future in the South Asian Indians. 
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Figure 4.11: Multivariate ROC curve analysis of serum samples using the combination of five metabolite 
biomarkers (glucose, pyroglutamate, o-phosphocholine, serine, and methionine) common in T2DM and 
Prediabetic subjects with the AUC >0.7. The Multivariate ROC curve analysis displays a good diagnostic power 
in discriminating healthy controls from T2DM subjects (AUC = 0.964) (A); and healthy controls from Prediabetic 
subjects (AUC = 0.879) (B). AUC, the area under the curve; CI, confidence interval.  

 

Among the five metabolites used for multivariate ROC curve analysis, pyroglutamate 

and methionine levels were significantly increased in the prediabetic and diabetic subjects; and 

the levels of pyroglutamate, o-phosphocholine, and serine showed a significant decrease in 

these individuals when compared to the healthy normal controls.  

 Glucose was the most significantly different metabolite between the prediabetic and 

diabetic subjects compared to the healthy volunteers. This result is not surprising (and worked 

as a positive control for our analysis) as fasting plasma glucose levels and glucose levels during 

an oral glucose tolerance test have routinely been used to diagnose T2DM. However, these 

levels are often detected after T2DM has progressed and metabolic syndrome has already set 

in. In addition to this, increased plasma glucose levels are not specific for T2DM alone and can 

be increased in other metabolic disorders as well (Akter et al. 2017; Jeanes and Reeves 2017). 

As a result, measuring glucose levels alone does not provide sufficient power for predicting 

individuals at risk of developing T2DM in the future and needs to be combined with more 

specific biomarkers. Increased glucose levels play a crucial role in increasing the metabolic 

flux into the glycolytic pathway, thereby leading to elevated lactate levels, an independent risk 

factor identified for the development of T2DM (Crawford et al. 2010; Guo et al. 2012). In 

addition to lactate, pyruvate is also produced during glycolysis, which in the form of acetyl-

CoA can either enter the TCA cycle; or used for lipogenesis; or can be used for the production 
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of dihydroxyacetone phosphate and glycerol-3-phosphate – substrates required for triglyceride 

synthesis (Guo et al. 2012). We observed increased glycerol levels in prediabetic and diabetic 

subjects recruited in the study compared to the healthy controls (Figure 4.2). Increased lipolysis 

that, in turn, leads to the overproduction of glycerol and free fatty acids from triglycerides occur 

during insulin-resistant states in diabetes. Increased glycerol stimulates gluconeogenesis and 

further contributes to hyperglycemia (Anon 1963; Mahendran et al. 2013). Indeed, previous 

studies have proposed the use of glycerol and free fatty acids as a predictor for hyperglycemia 

and T2DM (Ahola-Olli et al. 2019; Mahendran et al. 2013).  

 After glucose, the next significant predictor identified from our study was 

pyroglutamate, a vital metabolite that plays a crucial role in the intracellular transport of free 

amino acids. Studies in diabetic Goto-Kakizaki rats and KK-Ay mice have shown that dietary 

inclusion of pyroglutamic acid modifies glucose and lipid metabolism in these animals and 

potentially contributes to T2DM mitigation (Yoshinari and Igarashi 2011). In addition to this, 

reduced pyroglutamate levels have been reported in patients with isolated post-challenge 

diabetes (IPD) (Chou et al. 2018); in subjects with impaired fasting glucose and diabetes (Xu 

et al. 2013); and T2DM patients with nephropathy (Shao et al. 2020).  

 Levels of o-phosphocholine, an intermediate in the synthesis of phosphatidylcholine – 

a major phospholipid in cellular membranes, were also significantly reduced in patients with 

prediabetes and T2DM. Our previous investigations in pancreatic INS-1E cells exposed to 

gluco-, lipo- and glucolipo-toxic conditions (chapter 3 (Yousf et al. 2019)) and in studies 

conducted in urine samples of diabetic rats (Guan et al. 2013), reduced o-phosphocholine levels 

have been reported. Reduced phosphatidylcholine levels have also been demonstrated in type 

1 diabetes subjects (Artykbaeva and Saatov 2020); while phosphatidylcholine levels in skeletal 

muscles have been linked to altered insulin sensitivity (Lee et al. 2018). 

 Serine, a non-essential amino acid, plays a central role in several crucial biological 

processes. Several studies have suggested a role of serine metabolism in type 1, type 2, and 

gestational diabetes; and supplementation of serine has been associated with increased insulin 

secretion from the pancreatic b-cells, improved insulin sensitivity by the insulin target tissues, 

thereby leading to improved glucose homeostasis; improved mitochondrial function and relief 

of endoplasmic reticulum stress (Bertea et al. 2010; Bervoets et al. 2017; Drábková et al. 2015; 

Holm and Buschard 2019; Vangipurapu et al. 2019). In line with these observations, our study 

also identified reduced serine levels in subjects with prediabetes and established T2DM. 
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 An essential amino acid – methionine – showed significantly increased levels in 

prediabetic and T2DM subjects recruited for our study. Dietary restriction (energy restriction) 

methionine in rodents and humans has been associated with improved glucose homeostasis, 

improved insulin sensitivity, and reduction in weight gain (Brown-Borg and Buffenstein 2017; 

Castaño-Martinez et al. 2019; Miller et al. 2005; Stone et al. 2014; Ying et al. 2017).  

 

4.10 Conclusions 

To conclude, we performed 1H NMR-based metabolomics on serum samples collected 

from age and sex-matched cohort of 284 individuals consisting of sub-groups of healthy 

controls, prediabetic patients, and type 2 diabetic patients. Out of 36 identified and quantified 

metabolites, univariate ROC curve analysis yielded a total of six significantly perturbed 

metabolites in prediabetic patients and twelve in T2DM patients. Further, a set of common five 

metabolites were chosen from prediabetic and T2DM groups having AUC > 0.7 and subjected 

to multivariate ROC curve analysis. Multivariate ROC curve analysis highlighted that the 

selected panel of five metabolites (glucose, pyroglutamate, o-phosphocholine, serine, and 

methionine) could be used as potential biomarkers for more confident detection of prediabetes 

and T2DM, and possibly as early biomarkers for prediction of T2DM in individuals where the 

disease has not set in already. It would also be interesting to analyse the effect of comorbidities, 

including hypertension and obesity on these metabolites in future.  
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Chapter 5  
 

Mapping metabolic perturbations in Mycobacterium smegmatis in 

response to different stress conditions using NMR spectroscopy 
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5.1 Introduction 

Tuberculosis – an infectious disease caused by Mycobacterium tuberculosis – is 

responsible for ~2 million total deaths worldwide (Barberis, Bragazzi, Galluzzo, & Martini, 

2017). M. tuberculosis belongs to the genus Mycobacterium, which consists of many non-

pathogenic mycobacteria, including M. smegmatis (Falkinham, 2009; Yamada et al., 2018). 

These mycobacteria actively engage in maintaining carbon and nutrient balance in several 

ecosystems, including endangered coastal swamps and peat-rich wetlands (Cordero et al., 

2019). The hydrophobicity of the mycobacterial cell surface permits the accumulation at air-

water interfaces and enhances their persistence under various environmental conditions and 

interfaces, including aerosolized droplets (Falkinham, 2009). These diverse habitats constantly 

pose a spectrum of challenges and growth-limiting conditions to the inhabitant mycobacterial 

species, such as pH change, changes in oxygen exposure, and extreme nutrient deprivation. 

Therefore, for survival in such natural habitats, M. smegmatis should possess the ability to 

circumvent hostile fluctuations posed by the different environmental conditions. For example, 

secretory antioxidant enzymes, including superdioxide dismutase, catalase, and peroxidase, in 

M. smegmatis, play a vital role in detoxifying exogenous oxidants. This clearly indicates that 

even in its natural habitat, M. smegmatis is ready to combat the vulnerabilities induced by 

reactive oxygen species (Ehrt & Schnappinger, 2009; Tyagi, Dharmaraja, Bhaskar, 

Chakrapani, & Singh, 2015).  

 Lately, M. smegmatis – though resides in a totally distinct habitat – has been recognized 

as a good surrogate for the pathogenic M. tuberculosis (Altaf, Miller, Bellows, & O’Toole, 

2010; Barry, 2001), largely because of the following reasons: i) it is non-pathogenic in nature; 

ii) has a relatively faster growth rate; iii) shares many features with pathogenic mycobacteria; 

and iv) is easier to handle in laboratory set-ups. Both M. smegmatis and M. tuberculosis possess 

a thick mycolic acid-rich cell wall that helps them in modulating various host immune 

responses – a property which is very crucial for their survival. In addition, they both respond 

to anaerobiosis and substrate deprivation; possess an inducible pH-homeostasis system (to 

tackle the mild acidic conditions); and thus are capable of adaptation and hence, survival at 

otherwise lethal pH conditions (Anes et al., 2006; Drapal, Wheeler, & Fraser, 2016; O’Toole 

et al., 2003; M. Rao, Streur, Aldwell, & Cook, 2001; Vandal, Nathan, & Ehrt, 2009). In addition 

to its role in maintaining environmental homeostasis and as a model system to study pathogenic 

mycobacteria, M. smegmatis lately has been related to opportunistic infections in immune-

compromised hosts (Pierre-Audigier et al., 1997). 
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 Most of the studies that have been performed to date have employed omics approaches 

like genomics, transcriptomics, and proteomics to understand the adaptive physiology 

displayed by mycobacteria for their survival under different hostile conditions, with a particular 

focus on mapping regulatory changes at transcriptional or protein levels (Ganji, Dhali, Rizvi, 

Rapole, & Banerjee, 2016; Xinfeng Li et al., 2017; P. K. Rao & Li, 2009; Roxas & Li, 2009; 

Wang, Prince, & Marcotte, 2005). Metabolomics has been identified as the final frontier of the 

omics cascade. It can broadly be defined as the study of the metabolome in a given biological 

system at a specific point in time, provides extensive information about the metabolic 

alterations that occur during the process, and thus, provides insights into a particular biological 

manipulation (Zhao et al., 2017). Notably, the changes in the metabolome are amplified relative 

to changes in the transcriptome and the proteome, and thus, metabolomic biomarkers can serve 

as biomarkers for an early response to any environmental change. Therefore, metabolomics 

data coupled with proteomics and transcriptomics would help generate a system-wide view of 

the organism or the cell's response (Wanichthanarak, Fahrmann, & Grapov, 2015).  

Previous studies have revealed perturbation in metabolomic profiles of M. smegmatis 

under different conditions. For example, distinct metabolic signatures have been observed in 

mycobacteria at various stages of growth (Drapal, Perez-Fons, Wheeler, & Fraser, 2014); 

during hypoxia (Drapal et al., 2016); and in M. smegmatis treated with anti-mycobacterial 

agents, namely, rifampin, capreomycin (Man et al., 2018), and pretomanid (Baptista, 

Fazakerley, Beckmann, Baillie, & Mur, 2018). From these studies, one may infer that metabolic 

adaptation may be the key to survival and adaptation of mycobacteria when subjected to 

different stress conditions.  

Taking leads from these observations, we aimed to employ a metabolomic approach to 

decipher the distinctive metabolic shifts in M. smegmatis (a surrogate for M. tuberculosis) 

associated with different stresses that have not been reported earlier. Among the various 

techniques used for metabolomics, nuclear magnetic resonance (NMR) spectroscopy has 

emerged as a versatile and powerful approach due to its non-invasiveness, robustness, fast, 

reproducibility, and high precision in metabolic profiling (Fan & Lane, 2016). To this end, an 

untargeted proton nuclear magnetic resonance (1H-NMR) spectroscopy-based metabolomics 

approach was implemented to unravel the unique metabolic signatures in M. smegmatis 

subjected to acidic (pH 5.5) stress (lowering the pH of the medium); oxidative stress (addition 

of hydrogen peroxide); and nutrient starvation (growing mycobacteria in phosphate-buffered 

saline (PBS)) conditions to identify critical metabolites responsible for immediate adaptive 

responses. These three stresses are faced by M. smegmatis, both as environmental mycobacteria 
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and as an opportunistic agent inside the human phagocytic cells (Xiaojing Li, Wu, Han, Hu, & 

Mi, 2015; Pelosi et al., 2012; You, Xu, Yin, & Ye, 2019; Zahrt & Deretic, 2002). In the present 

investigation, a total of 22, 21, and 47 differential metabolites were identified in response to 

acidic, oxidative, and nutrient starvation conditions, respectively. Besides significant 

perturbation in energy metabolism and amino-acid metabolism pathways during different 

abiotic stress conditions, we also detected, for the first time, accumulation of organic osmolytes 

dimethylamine, methylamine, and betaine as early adaptive markers to stress associated with 

nutrient starvation and oxidative stress. These metabolic cues led us to identify possible novel 

pathways of biosynthesis of these secondary metabolites in M. smegmatis similar to those of 

obligate methylotrophs. The expression of the ORFs of these undocumented pathways was 

studied at transcript levels using RT-PCR. 

 

5.2 Experimental Methods 

5.2.1 Bacterial strains and experimental conditions.  

The M. smegmatis mc2155 strain, used in the current study, was cultured using already 

established protocols (24) with few changes in the laboratory of Prof. Dr. Sharmistha Banerjee 

(University of Hyderabad). Briefly, M. smegmatis was grown at 37 °C with shaking at 180 rpm 

in 7H9 media (consisting 0.4% (vol/vol) glycerol and 0.05% (vol/vol) tyloxapol, and 

supplemented with 10% (vol/vol) oleic acid-albumin-dextrose-catalase (OADC)) till its optical 

density at 600 nm (OD600) reached 0.5 - 0.7. The cultures were harvested and then washed with 

1X phosphate-buffered saline (PBS). The cell pellet was then resuspended in media mimicking 

microbicidal stress conditions such as acidic stress (pH 5.5) in Sauton's minimal medium 

(Piddington, Kashkouli, & Buchmeier, 2000); oxidative stress (10 mM H2O2) in Sauton's 

minimal medium (Voskuil, Bartek, Visconti, & Schoolnik, 2011); and nutrient starvation stress 

in 1X PBS (Loebel, Shorr, & Richardson, 1933) for 4 hours. Each of the experimental 

conditions was replicated ten times to obtain a statistically significant number of samples. Each 

sample was checked for contamination using Ziehl-Neelsen (ZN) staining before and after four 

hours of stress, intracellular metabolites were extracted and subjected to untargeted 

metabolomics using nuclear magnetic resonance (NMR) spectroscopy.  

 

5.2.2 Metabolite Extraction. 

Intracellular metabolites from M. smegmatis cultures were extracted using a modified 

version of extraction previously described by Nicolas P. Tambellini et al (Tambellini, 
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Zaremberg, Turner, & Weljie, 2013). After 4 h of stress, OD600 was measured, and M. 

smegmatis cultures were harvested at 5000 rpm (4°C) for 10 mins. The cell pellet was rapidly 

frozen in liquid nitrogen to quench any enzymatic or chemical reaction. Subsequently, the cells 

pellets were allowed to thaw on ice for 5 min and then were resuspended in 500 µl of pre-

chilled methanol:chloroform (2:1), and homogenized with bead beating (using 0.1 mm zirconia 

beads for ten cycles with an interval of 1 min on ice) to lyse the cells. The supernatant was 

collected after centrifuging at 1000 rpm for 45 sec and then vortexed for 30 sec after the 

addition of 500 µl of distilled water and 500 µl of chloroform. The suspension was then 

centrifuged at 12,000 rpm for 30 min at 4°C to separate the phases. The upper aqueous phase 

and lower organic phase were carefully transferred into separate 1.5 ml microcentrifuge tubes, 

followed by centrifugation at 12,000 rpm for 2 mins at 4°C to remove any residual solvent from 

other phase. The upper aqueous phase samples were lyophilized and then transported to IISER-

Pune on dry ice. At IISER Pune, the samples were reconstituted in 600 µl of 20 mM sodium 

phosphate NMR buffer, pH 7.4 in D2O containing 400 µM DSS (2,2-dimethyl-2-silapentane-

5-sulfonic acid). The samples were vortexed for 2 min at room temperature and centrifuged at 

4000 g for 5 min. The supernatants were transferred to 5 mm NMR tubes for NMR analysis. 

 

5.3 NMR acquisition and spectral processing 

Water-suppression pulse sequence from Bruker library (noesygppr1d) was used to 

record all the 1H NMR data at 298 K as described in detail in Chapter 2. For a given sample, a 

total of 64 transients were collected into 32K data points for each spectrum with a spectral 

width of 7200 Hz. The acquired spectra were manually corrected for phase and baseline 

distortions using Topspin (v3.5) software (www.bruker.com/bruker/topspin) and were 

referenced to the DSS resonance at 0.0 ppm. Additionally, 1H-1H total correlation spectroscopy 

(TOCSY) was performed for chemical shift assignments and verification. 

 

5.4 Metabolite identification and quantification 

All 1H NMR spectra were imported into Chenomx NMR Suite 8.1 (Edmonton, AB, 

Canada) for identification and quantification of metabolites as described in detail in Chapter 2. 

All the identified metabolites were further cross checked from the biological magnetic 

resonance data bank (BMRB) (Ulrich et al., 2008) and human metabolome database (HMDB) 

(Wishart et al., 2007). In addition, two-dimensional 1H-1H TOCSY was used for further 
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metabolite confirmation via a semi-automated software – MetaboMiner (Xia, Bjorndahl, Tang, 

& Wishart, 2008).  

The identified metabolites were then quantified using the profiler module of Chenomx 

software, which enables metabolites quantification relative to an internal standard of known 

concentration (400 µM). The concentration data obtained after metabolite quantification were 

converted to comma-separated values (CSV) format using Microsoft excel format and imported 

into MetaboAnalyst 4.0 (Chong et al., 2018), a free web-based program for multivariate 

analysis. 

 

5.5 Statistical analysis  

 Due to the high dimensionality and enormous complexity of NMR data (N = 10 for four 

experimental conditions), multivariate and univariate statistical analysis was carried out to 

analyze the effect of acidic, oxidative, and nutrient starvation stresses on M. smegmatis. PLS-

DA were conducted using normalized concentration data of metabolites as input in the 

MetaboAnalyst 4.0 web tool (Chong et al., 2018) to demonstrate the metabolite patterns and 

selection of important features. The raw metabolomics data sets were subjected to Pareto-

scaling prior to chemometric analysis. VIP scores were generated from PLS-DA analysis to 

identify the discriminatory metabolites responsible for the differential clustering of score plots 

in the PLS-DA model. VIP score measures the contribution of a variable to the PLS-DA model 

and identifies the important metabolites that vary significantly between the groups and better 

describes the intergroup variation. Further, pairwise analysis between control and different 

stresses were carried out to identify significantly altered compounds. Thus, volcano plot 

analysis was performed to identify important metabolites based on fold change analysis and t-

test. Metabolites with fold change >1.5 and FDR adjusted p-value < 0.05 were considered to 

be significantly different (Yousf et al., 2019).  

 

5.6 Metabolic pathway analysis  

Metabolic pathway analysis of all the discriminating metabolites was conducted to 

understand the biological significance of the metabolic changes and to identify the most 

important pathways involved in M. smegmatis when subjected to various stresses conditions 

studied in this work. Metabolic Pathway Analysis (MetPa) was carried out on a free web-

based program Metaboanalyst 4.0 (Chong et al., 2018; Xia, Wishart, & Valencia, 2011). The 
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metabolic pathways with impact value > 0.1 and p < 0.05 were considered as significantly 

perturbed pathways. 

 

5.7 RNA isolation and semi-quantitative RT-PCR  

RNA isolation was carried out using Trizol method with certain modification. After 

growing the cells after under respective stress conditions, the samples were harvested. The 

collected pellet was snap frozen in liquid nitrogen and stored at -80 oC until RNA extraction. 

The bacterial pellet was resuspended in Trizol reagent (Invitrogen, CA, USA) along with 0.1 

mm glass beads and lysed by bead beating - pulse on: 1 min and pulse off: 2 min on ice. After 

lysis, glycogen was added to a final concentration of 200 μg/mL and incubated at room 

temperature (RT) for 10 min. The samples were vortexed vigorously after adding chloroform 

and incubate at RT for a further 10 min. The samples were centrifuged at 10,000 rpm and 4°C 

for 20 min and the upper aqueous layer was collected and transferred to a new tube. The RNA 

was precipitated using isopropanol in presence of glycogen (200 μg/mL). The obtained pellet 

was washed with 75% ethanol, air-dried at RT and resuspended in RNase-free water (Qiagen, 

Hilden, Germany). Prior to reverse transcription the RNA was subjected to DNase treatment to 

eliminate any residual DNA contamination. The DNase treated RNA was reverse transcribed 

with random hexamers as a primer to synthesize cDNA using Superscript III Reverse 

Transcriptase (Invitrogen). The reverse transcribed RNA was used for Real-time PCR. RT-

PCR was carried out with 1:10 diluted cDNA for 30 cycles with respective primers. The details 

of the primers are provided in Table 5.4. The PCR cycling parameters were (i) initial 

denaturation 95°C for 3 min, (ii) 30 amplification cycles (95°C for 15 s, annealing temperature 

[as given in Appendix Table 5.4] for 20 s, and 72°C for 20 s), and (iii) final extension at 72°C 

for 10 min. A 1.5% agarose gel was used to visualize the RT-PCR product.  

 

5.8 Identification of putative pathway using in silico tools 

In silico analysis of the M. smegmatis mc2155 strain genome was carried out to identify 

putative pathway in Mycobacterium smegmatis. The primary amino acid sequence of 2,4-

dienoyl-coA reductase [M. smegmatis mc2155 strain] MSMEG_5124 was obtained from 

Mycobrowser (Kapopoulou, Lew, & Cole, 2011; Lew, Kapopoulou, Jones, & Cole, 2011) and 

subjected to domain analysis tools to predict conserved domains in the 2,4-dienoyl-coA 

reductase [M. smegmatis mc2155 strain] MSMEG_5124. These include MOTIF 

(http://www.genome.jp/tools/motif/) and SMART (http://smart.embl- heidelberg.de/). Protein 
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sequence similarity search was carried out using PSI-BLAST 

(https://www.ebi.ac.uk/Tools/sss/psiblast/). In silico analysis and transcriptomic experiments 

reported in this chapter were performed by Dr. Arshad in Dr. Sharmistha Banerjee’s lab at 

University of Hyderabad. 

 

5.9 Results  

5.9.1 Global metabolome profiling and metabolic alterations of M. smegmatis.  

Global metabolic profiling of M. smegmatis (MC2155) grown in Sauton minimal media was 

performed and compared with M. smegmatis subjected to three stress conditions used in the 

study - acidic stress (pH 5.5), oxidative stress (10 mM H2O2) in Sauton minimal media, and 

nutrient starvation stress in PBS. A total of 56 abundant metabolites were identified from the 

methanolic extracts using 1D 1H-NMR (Figure 5.1). Six NMR peaks remain unassigned and 

have been annotated by an asterisk (*) in Figure 5.1. The resonance assignment of these 

metabolites were further confirmed using 2D 1H-1H TOCSY NMR spectroscopy (Figure 5.2). 

Five metabolites (GTP, CDP, tryptophan, fructose-1-6 biphosphate, fumarate) were excluded 

as their representative peaks were not evident in all spectra. The organic phase containing the 

lipids/steroids/fatty acids and other water-insoluble compounds gave very broad signals in 1H 

NMR and, thus, were excluded from the analysis. All the 56 metabolites and their respective
 

1H chemical shifts (in reference to DSS) have been listed in Appendix Table 5.2.  
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Figure 5.1: Representative 1H-NMR spectrum of the methanolic extract of M. smegmatis grown in Sauton media. 
The representation of the different metabolites identified from the 1H NMR spectrum of M. smegmatis. Key: 1, 
Valine; 2, Alanine; 3,ATP; 4, Acetate; 5, Glutamate; 6, Glutamine; 7, Citrulline; 8, Succinate; 9, Citrate; 10, 
Aspartate; 11, Asparagine; 12, Homoserine; 13, Tyrosine; 14, beta-alanine; 15, Phenylalanine; 16, 
Dimethylamine; 17, Maltose; 18, Trehalose ; 19, Glycerol; 20, UDP-glucose; 21, UDP-galactose; 22, DSS; 23, 
AMP; 24, ADP; 25, IMP; 26, Glucose-1- phosphate; 27, fumarate ; 28, Formate; 29, CDP; 30, Leucine; 31, Lysine; 
32, Fructose 1-6, bisphosphate; 33, dTTP; 34, NAD+; 35, N-acetyl glucosamine; 36, UMP; 37, NADPH; 38, 
NADP+; 39, UDP-N- acetylglucosamine; 40, Threonine; 41, Betaine; 42, Methanol; 43, Tryptophan; 44, Acetone; 
45, 2- aminobutyrate; 46, Caprate; 47, Cholate; 48, Lactate 49, 3-hydroxyisovalerate; 50, 3-methyl-2- oxovalerate; 
51, 2-hydroxy-3-methylvalerate; 52, Isoleucine; 53, Ethanol; 54, Methylamine; 55, GTP; and 56, Malonate. 
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Figure 5.2: Two-dimensional (2D) 1H-1H TOCSY correlation spectrum of the methanolic extract of M. 
smegmatis grown in Sauton media. Cross-peaks in the TOCSY spectrum were used to re-confirm the resonance 
assignments shown in Figure 5.1 and listed in Appendix Table 5.2. 

PLS-DA analysis was performed to discern the differences in metabolic profiles in M. 

smegmatis when exposed to various stresses. The PLS-DA analysis between control and the 

three stress conditions used in the study showed distinct clustering of groups on their respective 

score plots with 59.4 percent variance in PC1 and 16.9 percent variance in PC2 for acidic stress 

(Figure 5.3A), 43.1 percent variance in PC1 and 6.7 percent variance in PC2 for oxidative stress 

(Figure 5.3B), and 70.6 percent variance in PC1 and 12.8 percent variance in PC2 for starvation 

stress (Figure 5.3C), respectively.  
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Figure 5.3: PLS-DA score plots for M. smegmatis samples grown in different stress conditions showing model 
discrimination between (A) acidic stress versus control; (B) oxidative stress versus control; (C) nutrient starvation 
versus control; (D) Acidic, oxidative, and nutrient starvation versus the control. Ten replicates were used for each 
growth condition. Ellipses showing 95% confidence limits of a normal distribution for each group of the samples 
have been marked in respective colors, as mentioned above. The dots inside all the plots correspond to biological 
replicates under each category. 

 
PLS-DA model analysis demonstrates the maximum segregation between control and 

nutrient-deprived condition, while oxidative stress showed the least segregation from the 

control. This group separation was based on first two components, which displays a distinct 

demarcation between the control and stress groups. VIP scores were obtained from PLS-DA 

model to identify the discriminatory metabolites that contributed most to the group separation 

in the PLS-DA models for each stress condition: acidic vs control (Table 5.1), oxidative vs 

control (Table 5.1), and nutrient starvation vs control (Table 5.1). The VIP score which is based 
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on PLS loadings reflects the influence of each variable to the overall model, with metabolites 

VIP scores > 1 considered important in classification. The discriminatory metabolites were 

organised in the descending order of the VIP score in component 1. Based on VIP score (VIP 

> 1), the key metabolites discriminating control from acidic stress were glutamic acid, 

homoserine, asparagine, aspartic acid, glutamine, b-alanine, threonine, alanine, and trehalose. 

While aspartic acid, glutamic acid, lysine, NADP, betaine, AMP, methylamine, NAD, UDP-

N-acetylglucosamine (UDP-GlcNAc), 1-methylnicotinamide, capric acid, maltose, ATP, 2-

hydroxy-3-methylvalerate (HMVA), and betaine were the most important metabolites that 

altered significantly during oxidative stress. Similarly, during the nutrient-deprived condition, 

the discriminatory metabolites (VIP >1) identified were asparagine, glutamic acid, aspartic 

acid, trehalose, glutamine, citric acid, malonic acid, b-alanine, ethanol, homoserine, and 

HMVA. We observed most of the discriminating metabolites majorly fall in amino acid 

metabolism and energy metabolism pathways. Common discriminatory metabolites 

distinguishing control, acidic stress, oxidative stress, and nutrient starvation included AMP, 

asparagine, NADP, NAD, lysine, tyrosine, citric acid, ADP, maltose, UDP, acetone, UDP-

galactose, 2-Hydroxy-3-methylpentanoic acid (HMVA), sucrose, betaine, leucine, glutamate, 

UMP, formate, glucose-1-phosphate, 3-hydroxyisovaleric acid, ATP, acetone, and inosinic 

acid (Table 5.1). 

Univariate analysis was applied to identify differential metabolites significantly altered 

in M. smegmatis grown under different experimental conditions. Volcano plot analysis (Figure 

5.4) showed differential regulation of 22, 21, and 47 metabolites in case of acidic stress (Figure 

5.4A), oxidative stress (Figure 5.4B), and starvation stress (Figure 5.4C) in a pairwise 

comparison with the control experiment with a cut-off of fold change (FC >1.5), p-value (P < 

0.05) and false discovery rate (FDR< 0.05). Red and green dots indicate metabolites that are 

significantly upregulated and downregulated, respectively, in control compared to other 

stresses used in our study. The fold change, p-value and FDR value for all these differential 

metabolites under different stress conditions have been shown in Appendix Table 5.3 (a, b, and 

c for acidic, oxidative, and nutrient starvation stresses, respectively).  

Further, box and whisker plots were generated for visual interpretation of 

discriminating metabolites identified from the PLS-DA and the VIP score plot for all the stress 

conditions used in our study. After data normalization and scaling, the discriminatory 

metabolites were selected individually, and the relative concentrations of each of these were 

plotted along y-axis against different experimental growth condition; namely, Control (green); 



 Page | 131  

Acidic (red), Oxidative (blue), and Nutrient deprivation (represented as Starvation, cyan), have 

been depicted in Figure 5.5. 

 

 
Figure 5.4: Volcano plot, where a dotted horizontal line corresponded to FDR-correct p-value 0.05 on a log10 
scale and dotted vertical lines represent a 1.5-fold change in concentration of metabolites on a log2 scale. Red and 
green dots indicate metabolites that are significantly upregulated and downregulated, respectively, in the control 
experiment when compared to A) acidic, B) oxidative, and C) nutrient starvation stresses, respectively. Overall 
differentially regulated metabolites were 22, 21, and 47 for acidic, oxidative, and nutrient starvation stresses, 
respectively, when as compared to normal growth conditions with a cut-off of fold change (FC >1.5), p-value (P 
< 0.05), and false discovery rate (FDR < 0.05). These metabolites have also been listed in Appendix Table 5.3 (a, 
b, and c for acidic, oxidative, and nutrient starvation stresses, respectively). 
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Table 5.1: VIP value obtained from PLS-DA models for Control vs Acidic stress, Control vs Oxidative stress, 
Control vs Starvation stress, and Control vs all stresses (Acidic, Oxidative and Starvation). 

Metabolites 
VIP 

(Control/Acidic) 
VIP 

(Control/Oxidative) 
VIP 

(Control/Starvation) 
VIP 

(Control/all) 
1-Methylnicotinamide 0.42 1.38 0.40 0.93 

HMVA 0.25 1.21 1.05 1.20 
3-Hydroxyisovaleric acid 0.00 0.34 0.40 1.04 

Acetic acid 0.41 0.80 0.48 1.01 
Acetone 0.25 0.30 0.50 1.21 

AMP 0.55 1.61 0.93 1.52 
ATP 0.20 1.34 0.35 1.04 
ADP 0.15 0.51 0.31 1.30 

Alanine 1.19 0.42 0.83 0.23 
b-Alanine 1.34 0.09 1.32 0.54 
Betaine 0.04 1.68 0.40 1.17 

Capric acid 0.47 1.38 0.62 0.85 
Citric acid 0.63 0.30 1.65 1.34 

Glutamic acid 4.71 2.13 2.27 1.16 
D-Maltose 0.65 1.36 0.35 1.30 

Ethanol 0.01 0.20 1.14 0.98 
Formic acid 0.28 0.29 0.29 1.08 

Glucose 1-phosphate 0.25 0.55 0.41 1.07 
Inosinic acid 0.12 0.60 0.15 1.01 
Asparagine 1.78 0.60 3.60 1.49 

Aspartic acid 1.73 2.67 2.06 0.08 
Glutamine 1.73 0.94 1.87 0.68 

Homoserine 2.61 0.47 1.06 0.94 
Leucine 0.28 0.24 0.84 1.17 
Lysine 0.29 1.94 0.62 1.35 

Threonine 1.25 0.01 0.61 0.69 
Tyrosine 0.54 0.40 0.66 1.35 

Malonic acid 0.73 1.07 1.65 0.74 
Methylamine 0.22 1.55 0.48 0.71 

NAD 0.39 1.46 0.70 1.39 
NADP 0.03 1.69 0.23 1.39 
Sucrose 0.17 0.34 0.36 1.18 

Trehalose 1.15 0.28 2.02 0.99 
UMP 0.30 0.50 0.38 1.09 

UDP glucose 0.11 0.41 0.40 1.27 
UDP-GlcNAc 0.13 1.39 0.29 0.34 
UDP galactose 0.20 0.29 0.29 1.21 
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Figure 5.5: Box and whisker plots of relative concentrations for significantly differential metabolites identified 
from the VIP score plot (VIP >1) in M. smegmatis grown under different stress conditions. Data were normalized 
and scaled in the Y-axes. The concentrations have been represented as relative units. Dysregulated metabolites 
were selected individually, and the relative concentrations of each of these were plotted against different 
experimental growth conditions; namely, Control (green); Acidic (red), Oxidative (blue), and nutrient deprivation 
(represented as Starvation, cyan), respectively. 
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5.10 Pathway analysis  

 To identify metabolic pathways that showed the most significant perturbation in M. 

smegmatis cultured in the different experimental conditions used in the study and to assess the 

biological relevance of the changes in metabolite levels, metabolic pathway analysis of 

significantly altered metabolites (VIP >1) was carried out for pairwise comparison using 

MetaboAnalyst. Of all the perturbed pathways, those with an impact value > 0.1 and p < 0.05 

were identified as significantly perturbed pathways under respective stresses. Results from the 

pathway analysis have been depicted in Figure 5.6, where each node represents a unique 

metabolic pathway. The color and radius of the node are based on its p-value and pathway 

impact values, respectively.  

 The major pathways perturbed significantly in the pairwise comparison of control 

versus acidic stress were alanine, aspartate and glutamate metabolism, beta-alanine 

metabolism, glutamine-glutamate metabolism and glycine-serine-threonine metabolism. These 

pathways have an important role in nitrogen assimilation and storage. It is reported in the 

literature that nitrogen assimilation helps the mycobacteria in abating acidic stress by releasing 

ammonia (Borah et al., 2019; Gouzy et al., 2014). In the control versus oxidative stress, 

pathways perturbed with significant scores were nicotinate-nicotinamide metabolism, 

glutamine-glutamate metabolism and lysine biosynthesis. The pathway nicotinate-

nicotinamide metabolism have an important role in maintaining homeostasis for redox cofactor 

in oxidative stress (Nambi et al., 2015). 

Similarly, under the nutrient starvation condition, the major pathways perturbed were 

b-alanine metabolism, alanine, aspartate and glutamate metabolism and glutamine and 

glutamate metabolism. All the pathways were constructed using KEGG metabolic network and 

the pictorial representation of these metabolic pathways affecting during various stress 

conditions have been shown in Figure 5.7. The significantly differential metabolites perturbed 

under respective stresses against control have been marked with arrows wherein an upward 

arrow indicates upregulated metabolites, and the downward arrow indicates down-regulated 

metabolites. Overall the significantly perturbed pathways in our study belongs to amino acid 

metabolism, nucleotide metabolism and central carbon metabolism. 
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Figure 5.6: Metabolic Pathway Analysis (MetPa) of significantly altered metabolites under (A) acidic, (B) 
oxidative, and (C) Starvation stress. Each node represents a single metabolic pathway, with node color 
corresponding to the –log10(P) value (yellow: higher p-values and red: lower p-values) and node size 
corresponding to the pathway impact score. 

  
5.11 Discussion 

 Nitrogen metabolism is an essential process in all mycobacteria for their survival under 

different hostile conditions. M. tuberculosis utilizes multiple amino acids as nitrogen sources 

in human macrophages (Borah et al., 2019). In our study, the amino acids that are significantly 

dysregulated under the different stress conditions include asparagine, aspartate, glutamine, 

glutamate, citrate, alanine, lysine, and threonine. Asparagine and also aspartate are an 

important nitrogen source for mycobacteria inside the host cells. Besides playing an important 

role in nitrogen assimilation and determining M. tuberculosis virulence, asparagine also 

mediates resistance to acid stress during infection (Gouzy et al., 2014). From our NMR data, 

asparagine was found to be the only detected amino acid whose concentration was elevated 
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during early adaptation to acidic stress (Figure 5.5). One of the suggested mechanisms is that 

it gets assimilated by enzyme asparaginase, which hydrolyzes this amino acid into aspartate 

and ammonia, thereby alkalizing the acidic environment. Aspartate was noticed to be 

significantly dysregulated amino acid in all stress conditions. It is known that aspartate is the 

primary nitrogen source for M. tuberculosis for host colonization and is the precursor for many 

amino acids, including b-alanine, lysine, threonine, and isoleucine (Gouzy et al., 2013). 

 

 
Figure 5.7: Pictorial depiction of the significantly dysregulated metabolites and Metabolomic Pathway Analysis 
(MetPA) construction of the metabolic pathways identified in M. smegmatis. The description of the arrows has 
been provided as a legend wherein Red arrows represent oxidative stress, Green arrows represent acidic and blue 
arrows represent starvation, respectively. The upward and downward direction of arrows indicates that the 
metabolites are upregulated or down-regulated during respective stresses compared to the experimental control 
condition.  

 
It is important to mention here that the glutamine and glutamate metabolism pathway 

was perturbed significantly under all three abiotic stresses. Both glutamate and glutamine are 

central molecules in nitrogen metabolism. Glutamine, a predominant source of nitrogen for the 

synthesis of nitrogen bases, number of amino acids, amino sugars, is responsible for 85% of 

nitrogenous compounds in a cell. In addition to nitrogen donor, glutamine can also be used as 

an additional source of carbon to fuel the Krebs cycle, by a process called glutaminolysis 

(Koeken et al., 2019). In this process, glutamine is metabolized to glutamate via glutaminase, 

and the enzyme glutamate dehydrogenase (GDH) facilitates the conversion of glutamate to α-
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ketoglutarate, which is a substrate for the Krebs cycle. Catriona et al. reported the transcription 

regulation of genes encoding for the glutamate dehydrogenase enzyme in M. smegmatis 

(Harper, Hayward, Kidd, Wiid, & van Helden, 2010). The production of ammonia, ATP, and 

NADH during glutaminolysis may serve as an early metabolic adaptation during stresses and 

thereby helping mycobacteria to adapt to acidic, oxidative, and nutrient starvation stresses.  

β-alanine, a key precursor for the biosynthesis of pantothenate, was identified as a 

common dysregulated metabolite in acidic and starvation stresses with significantly reduced 

levels. Pantothenate (or vitamin B5) is the primary precursor for the biosynthesis of Coenzyme 

A, which is vital for the production of fatty acids and peptidoglycan (Leonardi & Jackowski, 

2007). It was also seen that the levels of malonate were upregulated during nutrient starvation, 

thereby suggesting the utilization of b-alanine to malonate, which can be converted to malonyl-

CoA and enter fatty acid metabolism. Altered levels of lysine, a precursor for peptidoglycan 

was also detected during oxidative stress (Pavelka & Jacobs, 1996). We also observed the 

drastic reduction of citrate levels in starvation condition, that infers the slowed down of the 

TCA cycle in mycobacteria under nutrient starvation stress. Furthermore, accumulation of 

acetone was seen during starvation stress, which depicts M. smegmatis are utilizing acetone as 

a source of carbon and energy, as previously reported by Furuya et al. (Furuya, Nakao, & Kino, 

2015). Low levels of ATP production during nutrient starvation were apparent and expected, 

resulting in low levels of ADP and AMP accumulation. 

A unique set of the metabolites associated with the GlgE pathway, such as s, D-maltose, 

UDP-glucose, Glucose-1-phosphate, etc. to be remarkably differential under different stress 

conditions. The GlgE pathway, presented schematically in Figure 5.8A, is linked to the 

biosynthesis of capsular a-glycan and is hypothesized to play a key role in M. tuberculosis 

virulence and immune responses (Koliwer-Brandl et al., 2016). The expression of genes 

involved in the GlgE pathway at transcription levels was evaluated using RT-PCR. It was 

observed that the expression level for maltose transferase (GlgE) was upregulated, and 

trehalase (TreH) was downregulated under oxidative stress when compared with others (Figure 

5.8B). It may be concluded that this pathway is directed towards biosynthesis of capsular a-

glycan for early adaptation against various stresses. Furthermore, the levels of disaccharide 

trehalose, which is abundantly present in M. smegmatis, sucrose, and maltose, were very low 

during nutrient deprivation conditions, thereby implying the utilization of these metabolites 

during starvation stress. It was also apparent from the TreH expression level (Figure 5.8C) that 
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was slightly higher during starvation stress, suggesting the utilization of trehalose to glucose 

as bacteria are deprived of nutrients. 

Moreover, we also observed significantly altered levels of organic osmolytes, such as 

methylamine and betaine, in M. smegmatis cultures exposed to various stresses. However, the 

metabolic pathway analysis did not reflect any pathway associated with these osmolytes. 

Therefore we assumed that this might have been due to the absence of an annotated pathway 

of methylated amines in M. smegmatis.  

 

Figure 5.8: Metabolic pathways associated with biosynthesis of capsular α-glucan via GlgE pathway: A) GlgE 
pathway for the biosynthesis of α-glucan. B) RT-PCR of genes taking part in a-glucan pathway and their possible 
regulation at transcription levels. C) Densitometric analysis of TreH. Note: Picture B and C were provided by Dr. 
Sharmistha Banerjee' Lab (University of Hyderabad). 

 

5.11.1 Putative pathway of biosynthesis of methylated amines in M. smegmatis.  

 As described above, our metabolomics data showed altered levels of the osmolytes such 

as betaine, methylamine, and dimethylamine that are known to play an important role in 

adaptation to various stresses, besides protecting osmotic imbalances (Burg & Ferraris, 2008; 

Holmström et al., 1994; Whatmore, Chudek, & Reed, 1990; Paul H. Yancey, Blake, & Conley, 

2002). Price et al. reported that M. tuberculosis acquires betaine from host macrophages for 

maintaining osmotic balance (Price, Bukka, Cynamon, & Graham, 2008). Further, tracing the 

differential levels of these osmolytes through computational search tools, gene expression 

studies (using reverse transcription-PCR [RT-PCR]) of all the hypothetical ORFs from M. 

smegmatis and the presence of intermediate metabolites, we propose the existence of a putative 
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pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in 

Mycobacterium smegmatis (Figure 5.9A).  

In methylotrophic bacteria, methylamine is formed from dimethylamine using 

dimethylamine dehydrogenase (DMD), and trimethylamine produces dimethylamine in the 

presence of trimethylamine dehydrogenase (TMD). In some bacteria, both processes are 

regulated by single dehydrogenase, which shares similar physical, chemical, and kinetic 

properties (McIntire, 1990). However, an open reading frame (ORF) or a gene by this name 

could not be located within the annotated M. smegmatis genome (https:// 

mycobrowser.epfl.ch/). Using the sequence of trimethylamine dehydrogenase (TMD) of 

methylotroph Methylophilus methylotrophs, a protein sequence similarity search was 

conducted, and it was observed MSMEG_5124, annotated as 2,4-dienoyl-coA reductase 

(DCR) shows sequence identity of 26% with the TMD of Methylophilus methylotrophs, and 

hence suggests that there is a possibility that MSMEG_5124 may also function as TMD for M. 

smegmatis. With the confirmation of expression of MSMEG_5124, a possible TMD in M. 

smegmatis using RT-PCR (Figure 5.9B), and the presence of intermediate metabolites, 

dimethylamine, and methylamine from the metabolomics data, we were able to propose the 

company of the pathway converting trimethylamine to dimethylamine and methylamine. 

Reported in many bacteria, also those associated with gut microbiota, carnitine 

monooxygenase reductase subunit (YeaX) functions as a complex with an oxygenase 

component [Rieske (2Fe-2S) (YeaW) region] of E. coli K-12 and can use carnitine, γ-

butyrobetain, choline, and betaine as substrates to produce trimethylamine (Koeth et al., 2014). 

Using protein sequence similarity search with these E. coli genes using PSI-BLAST, we could 

identify two orthologs, MSMEG_4371, and MSMEG_0657, with similarity to YeaX (38% 

identity) and YeaW (37% identity), respectively. From our data, we have seen the accumulation 

of betaine during oxidative and nutrient-deprived conditions. With the confirmation of 

expression of MSMEG_4371 and MSMEG_0657 (Figure 5.9B) in M. smegmatis during 

different growth conditions and the presence of betaine from the metabolomics data, it could 

be inferred that betaine is the possible intracellular source for the synthesis of trimethylamine, 

catalyzed by MSMEG_4371 and MSMEG_0657.  

With the evidence of expression of all these hypothetical ORFs from the M. smegmatis 

genome and the presence of intermediate metabolites that are catalyzed by these ORFs, we 

propose the existence of a putative pathway of biosynthesis of methylamines in M. smegmatis. 

It is reported that methylamines are used to synthesize formaldehyde and ammonia, which can 

be an advantage to pathogenic mycobacteria, particularly during acidic stress (Kim, Bae, & 
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Lee, 2001). Several in vitro biochemical studies have shown that methylamines can provide 

stability to proteins, a property by which they may function as osmolytes, giving protection 

from osmotic stress (P. H. Yancey & Somero, 1979). One would expect that a similar feature 

of methylamine may provide an adaptive advantage during oxidative stress.  

 

Figure 5.9: A putative pathway of biosynthesis of methylated amines in M. smegmatis. (A) Putative methylamine 
pathway showing the presence of intermediate metabolites (inside boxes) identified in our study. The numbers 
indicate the orthologues of M. smegmatis genes identified in this study. (B) RT-PCR of orthologue ORFs and 
their existence at the transcript level in M. smegmatis.; a negative (-ive) control containing RNA instead of cDNA 
was used to rule out genomic DNA contamination. Note: Picture B was provided by Dr. Sharmistha Banerjee 
from University of Hyderabad. 

 

5.12 Conclusion 

In this chapter, we have presented the first comprehensive list of differential levels of 

metabolites in response to three microbicidal stresses in M. smegmatis. The comparative 

metabolomics profiles resulted from differential levels of biochemical products validated that 

these stresses induce a substantial metabolic shift in M. smegmatis. Our analysis reveals that 

the shift in the metabolic profile was more distinctive for nutrient starvation compared to other 

stresses. We have also listed all the stress-specific metabolites using the VIP score that plays a 

key role during various cellular stresses. It was noted that while the glutamine-glutamate 

metabolism pathway was perturbed significantly under all stress conditions, perturbation of the 

nicotinate-nicotinamide pathway was more significant in oxidative stress; and alanine-

aspartate-glutamate metabolism and beta-alanine metabolism were more significant for the 

nutrient starvation response. 
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Additionally, we have found the accumulation of osmolytes such as methylamine and 

betaine that led us to unveil the presence of an unreported putative methylamine biosynthesis 

pathway in M. smegmatis. Capsular α-Glucan biosynthesis was observed to be affected by 

differential transcriptional regulation of selected enzymes of the pathway. The orthologs of 

these new pathways can be traced in pathogenic mycobacteria, and their significance may be 

studied to understand mycobacterial strategies for host invasion. 



 Page | 142  

References 

Altaf, M., Miller, C. H., Bellows, D. S., & O’Toole, R. (2010). Evaluation of the 

Mycobacterium smegmatis and BCG models for the discovery of Mycobacterium 

tuberculosis inhibitors. Tuberculosis, 90(6), 333–337. 

https://doi.org/10.1016/j.tube.2010.09.002 

Anes, E., Peyron, P., Staali, L., Jordao, L., Gutierrez, M. G., Kress, H., … Griffiths, G. 

(2006). Dynamic life and death interactions between mycobacterium smegmatis and 

J774 macrophages. Cellular Microbiology, 8(6), 939–960. 

https://doi.org/10.1111/j.1462-5822.2005.00675.x 

Baptista, R., Fazakerley, D. M., Beckmann, M., Baillie, L., & Mur, L. A. J. (2018). 

Untargeted metabolomics reveals a new mode of action of pretomanid (PA-824). 

Scientific Reports, 8(1), 5084. https://doi.org/10.1038/s41598-018-23110-1 

Barberis, I., Bragazzi, N. L., Galluzzo, L., & Martini, M. (2017). The history of tuberculosis: 

From the first historical records to the isolation of Koch’s bacillus. Journal of Preventive 

Medicine and Hygiene. Pacini Editore S.p.A. https://doi.org/10.15167/2421-

4248/jpmh2017.58.1.728 

Barry, C. E. (2001). Mycobacterium smegmatis: an absurd model for tuberculosis? Trends in 

Microbiology, 9(10), 473–474. https://doi.org/10.1016/s0966-842x(01)02169-2 

Borah, K., Beyß, M., Theorell, A., Wu, H., Basu, P., Mendum, T. A., … McFadden, J. 

(2019). Intracellular Mycobacterium tuberculosis Exploits Multiple Host Nitrogen 

Sources during Growth in Human Macrophages. Cell Reports, 29(11), 3580-3591.e4. 

https://doi.org/10.1016/j.celrep.2019.11.037 

Burg, M. B., & Ferraris, J. D. (2008, March 21). Intracellular organic osmolytes: Function 

and regulation. Journal of Biological Chemistry. 

https://doi.org/10.1074/jbc.R700042200 

Chong, J., Soufan, O., Li, C., Caraus, I., Li, S., Bourque, G., … Xia, J. (2018). 

MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. 

Nucleic Acids Research, 46(W1), W486–W494. https://doi.org/10.1093/nar/gky310 

Cordero, P. R. F., Bayly, K., Man Leung, P., Huang, C., Islam, Z. F., Schittenhelm, R. B., … 

Greening, C. (2019). Atmospheric carbon monoxide oxidation is a widespread 

mechanism supporting microbial survival. ISME Journal, 13(11), 2868–2881. 



 Page | 143  

https://doi.org/10.1038/s41396-019-0479-8 

Drapal, M., Perez-Fons, L., Wheeler, P. R., & Fraser, P. D. (2014). The application of 

metabolite profiling to Mycobacterium spp.: Determination of metabolite changes 

associated with growth. Journal of Microbiological Methods, 106, 23–32. 

https://doi.org/10.1016/j.mimet.2014.07.037 

Drapal, M., Wheeler, P. R., & Fraser, P. D. (2016). Metabolite analysis of Mycobacterium 

species under aerobic and hypoxic conditions reveals common metabolic traits. 

Microbiology (United Kingdom), 162(8), 1456–1467. 

https://doi.org/10.1099/mic.0.000325 

Ehrt, S., & Schnappinger, D. (2009). Mycobacterial survival strategies in the phagosome: 

Defence against host stresses. Cellular Microbiology. https://doi.org/10.1111/j.1462-

5822.2009.01335.x 

Falkinham, J. O. (2009). The biology of environmental mycobacteria. Environmental 

Microbiology Reports. https://doi.org/10.1111/j.1758-2229.2009.00054.x 

Fan, T. W. M., & Lane, A. N. (2016, February 1). Applications of NMR spectroscopy to 

systems biochemistry. Progress in Nuclear Magnetic Resonance Spectroscopy. Elsevier 

B.V. https://doi.org/10.1016/j.pnmrs.2016.01.005 

Furuya, T., Nakao, T., & Kino, K. (2015). Catalytic function of the mycobacterial binuclear 

iron monooxygenase in acetone metabolism. FEMS Microbiology Letters, 362(19). 

https://doi.org/10.1093/femsle/fnv136 

Ganji, R., Dhali, S., Rizvi, A., Rapole, S., & Banerjee, S. (2016). Understanding HIV-

Mycobacteria synergism through comparative proteomics of intra-phagosomal 

mycobacteria during mono- and HIV co-infection. Scientific Reports, 6, 22060. 

https://doi.org/10.1038/srep22060 

Gouzy, A., Larrouy-Maumus, G., Bottai, D., Levillain, F., Dumas, A., Wallach, J. B., … 

Neyrolles, O. (2014). Mycobacterium tuberculosis Exploits Asparagine to Assimilate 

Nitrogen and Resist Acid Stress during Infection. PLoS Pathogens, 10(2). 

https://doi.org/10.1371/journal.ppat.1003928 

Gouzy, A., Larrouy-Maumus, G., Wu, T. Di, Peixoto, A., Levillain, F., Lugo-Villarino, G., 

… Neyrolles, O. (2013). Mycobacterium tuberculosis nitrogen assimilation and host 

colonization require aspartate. Nature Chemical Biology, 9(11), 674–676. 



 Page | 144  

https://doi.org/10.1038/nchembio.1355 

Harper, C. J., Hayward, D., Kidd, M., Wiid, I., & van Helden, P. (2010). Glutamate 

dehydrogenase and glutamine synthetase are regulated in response to nitrogen 

availability in Myocbacterium smegmatis. BMC Microbiology, 10, 138. 

https://doi.org/10.1186/1471-2180-10-138 

Holmström, K. ‐O, Welin, B., Mandal, A., Kristiansdottir, I., Teeri, T. H., Lamark, T., … 

Palva, E. T. (1994). Production of the Escherichia coli betaine‐aldehyde dehydrogenase, 

an enzyme required for the synthesis of the osmoprotectant glycine betaine, in 

transgenic plants. The Plant Journal, 6(5), 749–758. https://doi.org/10.1046/j.1365-

313X.1994.6050749.x 

Kanehisa, M., & Goto, S. (2000, January 1). KEGG: Kyoto Encyclopedia of Genes and 

Genomes. Nucleic Acids Research. Oxford University Press. 

https://doi.org/10.1093/nar/28.1.27 

Kapopoulou, A., Lew, J. M., & Cole, S. T. (2011). The MycoBrowser portal: A 

comprehensive and manually annotated resource for mycobacterial genomes. 

Tuberculosis, 91(1), 8–13. https://doi.org/10.1016/j.tube.2010.09.006 

Kim, S. G., Bae, H. S., & Lee, S. T. (2001). A novel denitrifying bacterial isolate that 

degrades trimethylamine both aerobically and anaerobically via two different pathways. 

Archives of Microbiology, 176(4), 271–277. https://doi.org/10.1007/s002030100319 

Koeken, V. A. C. M., Lachmandas, E., Riza, A., Matzaraki, V., Li, Y., Kumar, V., … Van 

Crevel, R. (2019). Role of Glutamine Metabolism in Host Defense against 

Mycobacterium tuberculosis Infection. Journal of Infectious Diseases, 219(10), 1662–

1670. https://doi.org/10.1093/infdis/jiy709 

Koeth, R. A., Levison, B. S., Culley, M. K., Buffa, J. A., Wang, Z., Gregory, J. C., … Hazen, 

S. L. (2014). γ-butyrobetaine is a proatherogenic intermediate in gut microbial 

metabolism of L-carnitine to TMAO. Cell Metabolism, 20(5), 799–812. 

https://doi.org/10.1016/j.cmet.2014.10.006 

Koliwer-Brandl, H., Syson, K., van de Weerd, R., Chandra, G., Appelmelk, B., Alber, M., … 

Kalscheuer, R. (2016). Metabolic Network for the Biosynthesis of Intra- and 

Extracellular α-Glucans Required for Virulence of Mycobacterium tuberculosis. PLoS 

Pathogens, 12(8). https://doi.org/10.1371/journal.ppat.1005768 



 Page | 145  

Leonardi, R., & Jackowski, S. (2007). Biosynthesis of Pantothenic Acid and Coenzyme A. 

EcoSal Plus, 2(2). https://doi.org/10.1128/ecosalplus.3.6.3.4 

Lew, J. M., Kapopoulou, A., Jones, L. M., & Cole, S. T. (2011). TubercuList - 10 years after. 

Tuberculosis, 91(1), 1–7. https://doi.org/10.1016/j.tube.2010.09.008 

Li, Xiaojing, Wu, J., Han, J., Hu, Y., & Mi, K. (2015). Distinct responses of mycobacterium 

smegmatis to exposure to low and high levels of hydrogen peroxide. PLoS ONE. 

https://doi.org/10.1371/journal.pone.0134595 

Li, Xinfeng, Mei, H., Chen, F., Tang, Q., Yu, Z., Cao, X., … He, J. (2017). Transcriptome 

landscape of Mycobacterium smegmatis. Frontiers in Microbiology, 8(DEC), 2505. 

https://doi.org/10.3389/fmicb.2017.02505 

Loebel, R. O., Shorr, E., & Richardson, H. B. (1933). The Influence of Adverse Conditions 

upon the Respiratory Metabolism and Growth of Human Tubercle Bacilli 1. Journal of 

Bacteriology, 26(2), 167–200. https://doi.org/10.1128/jb.26.2.167-200.1933 

Man, D. K.-W., Kanno, T., Manzo, G., Robertson, B. D., Lam, J. K. W., & Mason, A. J. 

(2018). Rifampin- or Capreomycin-Induced Remodeling of the Mycobacterium 

smegmatis Mycolic Acid Layer Is Mitigated in Synergistic Combinations with Cationic 

Antimicrobial Peptides . MSphere, 3(4), e00218-18. 

https://doi.org/10.1128/msphere.00218-18 

McIntire, W. S. (1990). Trimethylamine dehydrogenase from bacterium W3A1. Methods in 

Enzymology, 188(C), 250–260. https://doi.org/10.1016/0076-6879(90)88042-9 

Nambi, S., Long, J. E., Mishra, B. B., Baker, R., Murphy, K. C., Olive, A. J., … Sassetti, C. 

M. (2015). The Oxidative Stress Network of Mycobacterium tuberculosis Reveals 

Coordination between Radical Detoxification Systems. Cell Host and Microbe, 17(6), 

829–837. https://doi.org/10.1016/j.chom.2015.05.008 

O’Toole, R., Smeulders, M. J., Blokpoel, M. C., Kay, E. J., Lougheed, K., & Williams, H. D. 

(2003). A two-component regulator of universal stress protein expression and adaptation 

to oxygen starvation in Mycobacterium smegmatis. Journal of Bacteriology, 185(5), 

1543–1554. https://doi.org/10.1128/JB.185.5.1543-1554.2003 

Pavelka, M. S., & Jacobs, W. R. (1996). Biosynthesis of diaminopimelate, the precursor of 

lysine and a component of peptidoglycan, is an essential function of Mycobacterium 

smegmatis. Journal of Bacteriology, 178(22), 6496–6507. 



 Page | 146  

https://doi.org/10.1128/jb.178.22.6496-6507.1996 

Pelosi, A., Smith, D., Brammananth, R., Topolska, A., Billman-Jacobe, H., Nagley, P., … 

Coppel, R. L. (2012). Identification of a novel gene product that promotes survival of 

mycobacterium smegmatis in macrophages. PLoS ONE. 

https://doi.org/10.1371/journal.pone.0031788 

Piddington, D. L., Kashkouli, A., & Buchmeier, N. A. (2000). Growth of Mycobacterium 

tuberculosis in a defined medium is very restricted by acid pH and Mg2+ levels. 

Infection and Immunity, 68(8), 4518–4522. https://doi.org/10.1128/IAI.68.8.4518-

4522.2000 

Pierre-Audigier, C., Jouanguy, E., Lamhamedi, S., Altare, F., Rauzier, J., Vincent, V., … 

Casanova, J. L. (1997). Fatal disseminated Mycobacterium smegmatis infection in a 

child with inherited interferon γ receptor deficiency. Clinical Infectious Diseases, 24(5), 

982–984. https://doi.org/10.1093/clinids/24.5.982 

Price, C. T. D., Bukka, A., Cynamon, M., & Graham, J. E. (2008). Glycine betaine uptake by 

the proXVWZ ABC transporter contributes to the ability of Mycobacterium tuberculosis 

to initiate growth in human macrophages. Journal of Bacteriology, 190(11), 3955–3961. 

https://doi.org/10.1128/JB.01476-07 

Rao, M., Streur, T. L., Aldwell, F. E., & Cook, G. M. (2001). Intracellular pH regulation by 

Mycobacterium smegmatis and Mycobacterium bovis BCG. Microbiology, 147(4), 

1017–1024. https://doi.org/10.1099/00221287-147-4-1017 

Rao, P. K., & Li, Q. (2009, September). Protein turnover in mycobacterial proteomics. 

Molecules. https://doi.org/10.3390/molecules14093237 

Roxas, B. A., & Li, Q. (2009). Acid stress response of a mycobacterial proteome: insight 

from a gene ontology analysis. International Journal of Clinical and Experimental 

Medicine, 2(4), 309–328. Retrieved from 

http://www.ncbi.nlm.nih.gov/pubmed/20057975 

Tambellini, N., Zaremberg, V., Turner, R., & Weljie, A. (2013). Evaluation of Extraction 

Protocols for Simultaneous Polar and Non-Polar Yeast Metabolite Analysis Using 

Multivariate Projection Methods. Metabolites, 3(3), 592–605. 

https://doi.org/10.3390/metabo3030592 

Tyagi, P., Dharmaraja, A. T., Bhaskar, A., Chakrapani, H., & Singh, A. (2015). 



 Page | 147  

Mycobacterium tuberculosis has diminished capacity to counteract redox stress induced 

by elevated levels of endogenous superoxide. Free Radical Biology and Medicine, 84, 

344–354. https://doi.org/10.1016/j.freeradbiomed.2015.03.008 

Ulrich, E. L., Akutsu, H., Doreleijers, J. F., Harano, Y., Ioannidis, Y. E., Lin, J., … Markley, 

J. L. (2008). BioMagResBank. Nucleic Acids Research, 36(SUPPL. 1), D402-408. 

https://doi.org/10.1093/nar/gkm957 

Vandal, O. H., Nathan, C. F., & Ehrt, S. (2009, August 1). Acid resistance in Mycobacterium 

tuberculosis. Journal of Bacteriology. American Society for Microbiology Journals. 

https://doi.org/10.1128/JB.00305-09 

Voskuil, M. I., Bartek, I. L., Visconti, K., & Schoolnik, G. K. (2011). The response of 

Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Frontiers in 

Microbiology, 2(MAY). https://doi.org/10.3389/fmicb.2011.00105 

Wang, R., Prince, J. T., & Marcotte, E. M. (2005). Mass spectrometry of the M. smegmatis 

proteome: Protein expression levels correlate with function, operons, and codon bias. 

Genome Research, 15(8), 1118–1126. https://doi.org/10.1101/gr.3994105 

Wanichthanarak, K., Fahrmann, J. F., & Grapov, D. (2015). Genomic, Proteomic, and 

Metabolomic Data Integration Strategies. Biomarker Insights, 10s4(Suppl 4), 

BMI.S29511. https://doi.org/10.4137/BMI.S29511 

Weljie, A. M., Newton, J., Mercier, P., Carlson, E., & Slupsky, C. M. (2006). Targeted 

pofiling: Quantitative analysis of1H NMR metabolomics data. Analytical Chemistry, 

78(13), 4430–4442. https://doi.org/10.1021/ac060209g 

Whatmore, A. M., Chudek, J. A., & Reed, R. H. (1990). The effects of osmotic upshock on 

the intracellular solute pools of Bacillus subtilis. Journal of General Microbiology, 

136(12), 2527–2535. https://doi.org/10.1099/00221287-136-12-2527 

Wishart, D. S., Tzur, D., Knox, C., Eisner, R., Guo, A. C., Young, N., … Querengesser, L. 

(2007). HMDB: The human metabolome database. Nucleic Acids Research, 35(SUPPL. 

1), D521-526. https://doi.org/10.1093/nar/gkl923 

Worley, B., & Powers, R. (2013). Multivariate Analysis in Metabolomics. Current 

Metabolomics, 1(1), 92–107. https://doi.org/10.2174/2213235x11301010092 

Xia, J., Bjorndahl, T. C., Tang, P., & Wishart, D. S. (2008). MetaboMiner - Semi-automated 

identification of metabolites from 2D NMR spectra of complex biofluids. BMC 



 Page | 148  

Bioinformatics, 9, 507. https://doi.org/10.1186/1471-2105-9-507 

Xia, J., Wishart, D. S., & Valencia, A. (2011). MetPA: A web-based metabolomics tool for 

pathway analysis and visualization. In Bioinformatics (Vol. 27, pp. 2342–2344). Oxford 

University Press. https://doi.org/10.1093/bioinformatics/btq418 

Yamada, H., Yamaguchi, M., Igarashi, Y., Chikamatsu, K., Aono, A., Murase, Y., … Mitarai, 

S. (2018). Mycolicibacterium smegmatis, Basonym Mycobacterium smegmatis, 

Expresses Morphological Phenotypes Much More Similar to Escherichia coli Than 

Mycobacterium tuberculosis in Quantitative Structome Analysis and CryoTEM 

Examination. Frontiers in Microbiology, 9(SEP). 

https://doi.org/10.3389/fmicb.2018.01992 

Yancey, P. H., & Somero, G. N. (1979). Counteraction of urea destabilization of protein 

structure by methylamine osmoregulatory compounds of elasmobranch fishes. 

Biochemical Journal, 183(2), 317–323. https://doi.org/10.1042/bj1830317 

Yancey, Paul H., Blake, W. R., & Conley, J. (2002). Unusual organic osmolytes in deep-sea 

animals: Adaptations to hydrostatic pressure and other perturbants. In Comparative 

Biochemistry and Physiology - A Molecular and Integrative Physiology (Vol. 133, pp. 

667–676). Elsevier Inc. https://doi.org/10.1016/S1095-6433(02)00182-4 

You, D., Xu, Y., Yin, B. C., & Ye, B. C. (2019). Nitrogen regulator GlnR controls redox 

sensing and lipids anabolism by directly activating the whiB3 in Mycobacterium 

smegmatis. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00074 

Yousf, S., Sardesai, D. M., Mathew, A. B., Khandelwal, R., Acharya, J. D., Sharma, S., & 

Chugh, J. (2019). Metabolic signatures suggest o-phosphocholine to UDP-N-

acetylglucosamine ratio as a potential biomarker for high-glucose and/or palmitate 

exposure in pancreatic β-cells. Metabolomics, 15(4). https://doi.org/10.1007/s11306-

019-1516-3 

Zahrt, T. C., & Deretic, V. (2002). Reactive nitrogen and oxygen intermediates and bacterial 

defenses: Unusual adaptations in Mycobacterium tuberculosis. Antioxidants and Redox 

Signaling. https://doi.org/10.1089/152308602753625924 

Zhao, P., Li, J., Li, Y., Tian, Y., Yang, L., & Li, S. (2017). Integrating Transcriptomics, 

Proteomics, and Metabolomics Profiling with System Pharmacology for the Delineation 

of Long-Term Therapeutic Mechanisms of Bufei Jianpi Formula in Treating COPD. 

BioMed Research International, 2017. https://doi.org/10.1155/2017/7091087  



 Page | 149  

 

 

 

 

 

 

 

 

 

 

 

Chapter 6  
 

Cold storage reveals distinct metabolic perturbations in processing 

and non-processing cultivars of potato (Solanum tuberosum L.)  
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6.1 Introduction  

Potato (Solanum tuberosum), the largest popular non-grain vegetable food crop 

worldwide (Hardigan et al., 2017), belongs to the Solanaceae family and ranks third most 

wanted food crop after wheat and rice. Potatoes can be cultivated in diverse environments and 

are currently grown in more than 100 different countries (Mankotia & Sharma, 2020). As per 

the recent estimates of the UN-FAO (Food and Agriculture Organizations of the United 

Nations), the global potato production was over 368 million metric tonnes in the year 2018 

alone (www.fao.org/). India ranks as the second-largest potato producing nation of the world, 

with the reported production of around 52 million metric tons in 2019 (www.indiastat.com/). 

The majority of potato cultivation in India happens in the states of Uttar Pradesh, West Bengal, 

Punjab, Karnataka, Bihar, Assam, and Madhya Pradesh. Potatoes are not cultivated only as a 

vegetable for cooking purposes but are processed into a variety of forms such as potato chips, 

French fries and are also used for the production of starch.  

Amongst all major food crops, potato is nutritionally superior in producing the highest 

amount of food, dry matter, protein, and other nutrients per unit land and time (growing time) 

(Rajiv & Kawar, 2016). After harvest, potato tubers need to be stored under cold conditions to 

suppress sprouting, prevent the growth of tuber-borne pathogens, avoid losses due to shrinkage, 

retention of dry matter, extend post-harvest shelf life, and to maintain a year-round supply for 

consumption purpose (Bianchi, Scalzo, Testoni, & Maestrelli, 2014; Hou et al., 2017; Singh & 

Saldaña, 2011; D. Zhang, Mu, Sun, Chen, & Zhang, 2017). However, cold-stored potato tubers 

exhibit a phenomenon called as cold-induced sweetening (CIS) in which starch is rapidly 

degraded and reducing sugars (RS) such as glucose and fructose are formed via hydrolysis of 

sucrose (Dale & Bradshaw, 2003; Galani Yamdeu, Gupta, Patel, Shah, & Talati, 2016).  

CIS is a complex phenomenon, wherein the accumulation of RS is regulated by several 

metabolic pathways, such as starch synthesis and degradation, hexogenesis, glycolysis, and 

anaerobic respiration (Liu et al., 2017; Malone, Mittova, Ratcliffe, & Kruger, 2006a; J. R. 

Sowokinos, 2001a). During cold storage, the starch in amyloplast undergoes either hydrolytic 

or phosphorolytic degradation to produce hexose phosphates (hexose-P) or free sugars, which 

are then exported into the cytoplasm (Smith, Zeeman, & Smith, 2005; Weber, 2004). In the 

cytosol, these metabolites follow either hexogenesis pathway leading to the formation of 

sucrose or undergo glycolysis, which further enter into mitochondrial respiration (Xia Chen et 

al., 2012; Greiner, Rausch, Sonnewald, & Herbers, 1999; J. R. Sowokinos, 2001b). However, 

it has been suggested that at low temperatures, the entry of hexose-P into glycolysis is 

restricted, diverting the products of starch breakdown into sucrose synthesis (Malone, Mittova, 
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Ratcliffe, & Kruger, 2006b). The sucrose, thus formed, is then transported into vacuole where 

enzyme invertase hydrolyses sucrose into glucose and fructose, the two reducing sugars 

primarily responsible for cold-induced sweetening in potato. 

The increase in RS content in potato tubers during storage poses severe problems for 

processors. Exposure of RS to high temperatures during frying results in a non-enzymatic 

chemical reaction – the Maillard reaction – between reducing sugars and amino acids, which 

leads to the formation of different flavours and dark-pigmented products (Amjad, Javed, 

Hameed, Hussain, & Ismail, 2020; Dale & Bradshaw, 2003; J. R. Sowokinos, 2001b; Tamanna 

& Mahmood, 2015). This process has attracted more attention because of the formation of 

acrylamide, a potential neurotoxin and carcinogen, through the Maillard reaction between the 

amino group of asparagine and carbonyl group of sugars via an N-glycoside intermediate 

(Mottram, Wedzicha, & Dodson, 2002). Thus, the acrylamide levels in fried potato products 

are directly proportional to the RS content in the potato tubers and are increased by prior storage 

of the potatoes at low temperatures (Jin et al., 2016).  

The potato industry faces a massive loss due to CIS as chips and French fries get 

discolored, a parameter which is primarily determined by RS content in potato tubers. As a 

result, CIS is known to be one of the critical parameters in potato cultivation; the selection and 

breeding of CIS-resistant potato tubers have become a priority in potato breeding programs 

(Colman, Massa, Carboni, & Feingold, 2017; Hamernik, Hanneman, & Jansky, 2009; Xiong, 

Tai, & Seabrook, 2002). Potato cultivars resistant to CIS can deliver a wide range of 

advantages, such as the reduced requirement for sprout inhibitors, decreased dry matter (DM) 

losses, reduced pathogen levels during storage, and reduced chilling injury during handling, 

harvest, transport, and storage (Ali et al., 2016). However, potato breeding programs are often 

complicated due to tetrasomic inheritance and high-level heterozygosity of cultivated potato 

(Muthoni, Kabira, Shimelis, & Melis, 2015). In this regard, the metabolic stability of potato 

tubers over the long-term cold storage has been regarded as one of the prime traits to be 

examined for breeding programs worldwide (Brummell et al., 2011), wherein the selection of 

potato genotypes at early generations, using biochemical information through marker-trait 

associations are advantageous (Slater et al., 2014). Although CIS is well studied, only the genes 

operating in carbohydrate metabolism pathway have been cloned and functionally 

characterized (Baldwin et al., 2011; Datir et al., 2012a; Draffehn, Meller, Li, & Gebhardt, 2010; 

Li et al., 2008; C. M. Menéndez et al., 2002). In addition to this, little information is available 

about the metabolic events associated with the CIS process under cold storage conditions.  
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Metabolomics has been identified as a powerful technique to characterize crop plants 

as it detects a broad range of metabolites from a single extract and can expedite the selection 

of elite crop traits and improve breeding materials (Kumar, Bohra, Pandey, Pandey, & Kumar, 

2017a). In potato breeding, metabolomic studies have been crucial primarily because tuber 

quality traits such as content and quality of starch, chipping quality, flesh colour, flavour, and 

glycoalkaloid content, etc., are related to a diverse set of metabolites and changes in metabolic 

networks (Carreno-Quintero et al., 2012; Chaparro, Holm, Broeckling, Prenni, & Heuberger, 

2018; Dobson et al., 2008). Indeed, metabolomics approaches have previously been used to 

detect various metabolites present in potato tubers to assess the changes in composition that 

occur in genetically modified potato tubers, to understand the potato tuber life cycle, and to 

detect anthocyanin and polyphenol profiles of colored potato varieties (Defernez et al., 2004; 

Oertel et al., 2017; Shepherd et al., 2010a; Uri, Juhász, Polgár, & Bánfalvi, 2014). For instance, 

metabolic profiles in different life cycle stages of potato tubers have been characterized to link 

temporal changes in metabolites to their acrylamide-forming potential (Shepherd et al., 2010b). 

Likewise, metabolite characterization of six Hungarian commercial potato cultivars 

representing three major cooking types mainly differing in their starch contents and dormancy 

periods at harvest and storage (20–22°C) in the dark has revealed changes in the metabolite 

levels (Uri et al., 2014). Therefore, variations in metabolite profiling among different potato 

cultivars offer the potential to develop potato cultivars with improved processing 

characteristics.  

Potato processing is fast emerging as an important industry in India, and therefore, the 

demand for processed potato products such as chips, wedges, French fries, cutlets, flakes, etc. 

is continuously growing (Marwaha, Pandey, Kumar, Singh, & Kumar, 2010). To meet the 

requirement for processing potatoes, specific morphological and biochemical attributes are 

necessary for potato varieties. Morphological traits mainly include the size and shape of tubers, 

internal and external defects, whereas biochemical markers include dry matter, specific gravity, 

reducing sugars, free amino acids, phenol content, etc. Potato cultivars with good resistance to 

CIS, high specific gravity, and dry matter (DM) content along with low RS content are ideal 

for processing purposes (R Rana, 2007; S Kaur, 2014). In this regard, Atlantic and Frito Lay-

1533, which are commercially grown processing cultivars, have been ranked as the best 

varieties for processing purpose, primarily due to high specific gravity and DM content and 

low RS content (R Rana, 2007; Raigond, Mehta, & Singh, 2018). 

On the other hand, Indian popular potato cultivars Kufri Pukhraj and Kufri Jyoti, along 

with one locally grown table purpose cultivar (PU1), have been found inferior for processing 
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purpose due to high RS and DM content (Kaur, 2017; P Aggarwal, 2017; Raigond et al., 2018; 

S Kaur, 2014). Kufri Pukhraj and Kufri Jyoti are the most popular potato cultivars among 

Indian farmers due to their medium and average storability. Therefore, to advance our 

knowledge about the biochemical variation and the metabolic events associated with the CIS 

process of potato tubers under cold storage, a comprehensive analysis needs to be carried out 

in potato cultivars differing in their storability as well as processing attributes. 

In this study, an untargeted 1H nuclear magnetic resonance (NMR)-based approach was 

conducted to assess the alterations in the metabolic profiles of five different potato cultivars 

namely, Atlantic, Frito Lay-1533, Kufri Pukhraj, Kufri Jyoti, and PU1, under cold storage at 4 

°C. These potato cultivars are differing in their CIS abilities and processing characteristics. The 

key purpose of this work was to investigate the variations in metabolic profiles of different 

potato cultivars at fresh harvest and after cold storage to further advance the knowledge of 

metabolic events associated with the CIS phenomenon. From this study, key metabolites were 

identified that could potentially be used in breeding programs for the development of CIS-

resistant cultivars with improved processing characteristics and thereby would enhance the 

quality of potato tubers. 

 

6.2 Materials and Methods 

6.2.1 Plant Material 

Two readily available exotic potato cultivars – Frito Lay-1533 and Atlantic (Pepsi 

Foods Pvt. Ltd. Channo, Sangrur) – suitable for processing purpose; and two Indian non-

processing cultivars – Kufri Jyoti and Kufri Pukhraj (Central Potato Research Institute, Shimla) 

(Kaur, 2017; P Aggarwal, 2017; RS Marwaha, 2005; S Kaur, 2014; Sharma, 2012); along with 

one locally grown potato cultivar – (PU1), which is reported to possess poor storability and 

contain high RS content after cold storage (Datir, Mirikar, & RaviKumar, 2019) were used in 

the current study. These cultivars were obtained from BT Company and Jai Kisan Farm 

Products and Cold Chains Pvt. Ltd, India, Pune. All these cultivars vary in their CIS abilities 

and processing characteristics (Raigond et al., 2018; RS Marwaha, 2005; Sharma, 2012). The 

physiological information of these potato varieties has been tabulated in Table 6.1. 

 

6.2.2 Potato Plantation and Harvesting 

Tubers from all the five different potato cultivars (listed above) were grown in 

triplicates under open-door conditions (natural conditions and sunlight) in PB5 Polythene bags 
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containing potting mix (50% shredded pine bark, 20% crusher dust, 10% cow dung, 20% soil 

supplemented with sand and slow-release fertilizer) on 20th November 2017, at the Department 

of Biotechnology, SPPU, Pune, India. The plants were watered regularly, and on 5th March 

2018, the tubers were harvested after full senescence. In each replicate, two medium to large-

sized potato tubers were selected randomly for each cultivar and were placed in a paper bag for 

analysis. The tubers were cleaned under running tap water, cored and de-skinned. The three 

freshly harvested (FH) tubers (one from each replication) from each cultivar were immediately 

processed for the analysis (referred to as treatment (a)). The remaining three freshly harvested 

tubers were kept in the dark location for one month at 4 °C in paper bags (referred to as 

treatment (b)). After one month of cold storage (CS), these tubers from each cultivar were 

processed for the metabolite extraction for NMR analysis. Prior to metabolite extraction, all 

potato tuber samples were subjected to freeze-drying (Operon, FDB-5503, Korea) for one 

week. 
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Table 6.1: information on potato cultivars. 

 
Variety 

/Cultivar 

 
Source 

 
Type 

 
Shape 

Colour  
Storage 

behaviour  
Skin 

 
Flesh 

Frito Lay- 
1533 

Pepsi Foods 
Pvt. Ltd. 
Channo, 
Sangrur 

Processing Oval Light 
russet White Good 

Atlantic 
Pepsi Foods 

Pvt. Ltd. 
Channo, 
Sangrur 

Processing Round Brownish-
yellow White Good 

Kufri 
Pukhraj 

Central 
Potato 

Research 
Institute, 
Shimla 

Non- 
processing/Table 

purpose 
Oval Brown Cream Average 

Kufri Jyoti 

Central 
Potato 

Research 
Institute, 

Shimla 

Non-processing/ 
Table purpose Round Brownish 

yellow Cream Medium 

PU1 No 
information 

Non-processing/ 
Table purpose Oval Brownish 

yellow Cream Medium 
 
The information is adapted from Kaur and Aggarwal, 2014; Kaur and Khurana, 2017; Marwaha, et al., 2005; Raigond et al., 
2018. The storage behaviour of local potato cultivar PU1 was medium/poor (noted during this study). 
 

6.2.3 Metabolite extraction 

After freeze-drying, peeled potato tubers were grounded into a very fine powder. 

Approximately 200 mg of freeze-dried powdered sample was homogenized in 200 µl 

Phosphate Buffer Saline (PBS) in 2 ml of Eppendorf tubes. After vortexing for 5 min, 400 µl 

ice-cold methanol (Sigma, HPLC grade) was added to each tube and then vortexed again for 5 

min. After a 12 h incubation period at −20°C, followed by centrifugation at 16,000 ×g 

(Eppendorf centrifuge 5415 C, Hamburg, Germany) for 20 min at 4 °C, the supernatants were 

collected and transferred to new 1.5ml Eppendorf tubes and were subjected to lyophilization 

(Operon, FDB-5503, Korea). A total of 30 distinct samples (three replicates for each freshly 

harvested and cold storage tubers for all five different cultivars) were used for NMR data 

measurement. The lyophilized tuber samples were reconstituted into 580 µl 100% NMR buffer 

(20 mM sodium phosphate, pH 7.4 in D2O containing 0.4 mM DSS (2,2-dimethyl-2-

silapentane-5-sulfonic acid). After vortexing and centrifugation (4000 g for 2 min) at room 

temperature, the supernatants were transferred to 5mm NMR tubes for NMR analysis. 
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6.3 NMR spectroscopy and spectral processing 

All the NMR spectra were acquired at 298 K using the NOESY-presaturation pulse 

sequence noesygppr1d as described in detail in Chapter 2. A total of 64 scans were acquired in 

32K data points using a spectral width of 7200 Hz and an acquisition period of 6.95 s for each 

spectrum. 1H-1H total correlation spectroscopy (TOCSY) experiment was performed to further 

assist in the resonance assignment of metabolites. The 1H NMR spectra of all the potato 

samples were processed using Bruker’s NMR data processing software Topspin (v3.5) 

(www.bruker.com/bruker/topspin). Standard pre-processing steps such as phasing, baseline 

correction, line broadening was carried out for all the individual 1H NMR spectra. All the 1H 

chemical shifts were directly referenced with respect to the chemical shift of methyl singlet of 

DSS internal reference. 

 

6.4 Quantification assessment and statistical analysis 

After spectral processing, identification and quantification of metabolites were carried 

out with the Chenomx NMR Suite 8.1 (Edmonton, AB, Canada) software as described in detail 

in Chapter 2. All the identified metabolites were further confirmed with biological magnetic 

resonance data bank (BMRB) (Ulrich et al., 2008) and human metabolome database (HMDB) 

(Wishart et al., 2007). In addition, two-dimensional 1H-1H TOCSY was used for further 

metabolite confirmation via a semi-automated software – MetaboMiner (Xia, Bjorndahl, Tang, 

& Wishart, 2008). All the identified metabolites were then quantified using the profiler module 

of Chenomx software, which enables metabolites quantification relative to an internal standard 

of known concentration (400 µM).  

To assess the effect of cold-treatment on the metabolic profiles of different potato 

cultivars differing in their CIS trait multivariate statistical analysis was carried out to discern 

the differences between metabolic profiles of fresh and cold storage potato tubers. Supervised 

Partial Least Squares Discriminant Analysis (PLS-DA) was performed using a free web server, 

MetaboAnalyst, to identify the metabolites that significantly alter between FH and CS tubers 

in all five cultivars studied and are responsible for the intergroup discrimination. Prior to 

chemometric analysis, the metabolomics data were subjected to the Pareto-scaling approach. 

To identify the key metabolites responsible for the differential clustering of score plots in the 

PLS-DA model, the variable importance of projection (VIP) score plot was generated from 

PLS-DA analysis. Further, one-way ANOVA analysis followed by Fishers’s least significant 

difference (LSD) post-hoc tests were used to assess the significance of changes in the levels of 
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metabolite concentrations for both the treatments in all potato cultivars simultaneously. In 

ANOVA, q-value ≤ 0.05 has been to determine the significance of differences in metabolite 

levels. Pair-wise analysis of all five cultivars in FH and CS treatments were carried out using 

Volcano plot utility of MetaboAnalyst that screens significant metabolites based on fold-

change (FC) and FDR-adjusted p-value (q-value). A union set of significant metabolites 

identified from volcano plot analysis and VIP score were used to shor-list critical metabolites 

associated with CS treatment in each cultivar to reduce the chances of losing any important 

metabolites of interest. Box and Whisker plots were generated for all discriminatory 

metabolites identified from VIP score plot and volcano plot analysis was used to visualise the 

comparative alteration of a particular metabolite for both freshly harvested and cold storage 

tuber samples across replicates and in different potato cultivars. Metabolites, e.g., ascorbate, 

with low signal-to-noise (s/n ≤ 15) in NMR analysis, although identified with confidence, were 

excluded from box and whisker plot analysis. In addition, metabolite-metabolite correlations 

were obtained using Pearson’s correlation coefficient analysis to identify all the significant 

correlations (p-value ≤ 0.05) in freshly harvested and cold storage tuber samples for each 

cultivar. 

  

6.5 Metabolic pathway analysis  

Metabolic pathway analysis of all the discriminating metabolites was conducted to 

understand the biological significance of the metabolic changes and to identify target pathways 

that predominantly get affected under cold stress in all five cultivars. Metabolic pathway 

analysis of significantly differential metabolites identified through volcano plot analysis (q-

value ≤ 0.05, FC ≥ 1.5) and VIP score plot (VIP ≥ 1) was performed using KEGG, 

MetaboAnalyst, and reference pathways from the previous literature (Malone et al., 2006b; J. 

R. Sowokinos, 2001b). Metabolic Pathway Analysis (MetPa) was carried out using 

MetaboAnalyst (Chong et al., 2018; Xia, Wishart, & Valencia, 2011).  

 

6.6 Results  

6.6.1 Global profiling of metabolites in different potato cultivars – Processing versus non-

processing cultivars 

Untargeted NMR-based metabolic profiling was performed on 30 potato samples 

spanning five different potato cultivars: Atlantic, FL-1533, Kufri Pukhraj, Kufri Jyoti, and 

PU1, which differ in their CIS abilities and processing characteristics. A total of 41 metabolites 
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were detected from the aqueous phase of the metabolic extracts of all the samples using 

standard one dimensional 1H NMR. All the metabolites were identified using the profiler 

module of Chenomx NMR Suite 8.1 (Edmonton, AB, Canada) software. The organic phase 

and water-insoluble compounds were excluded from our analysis as they gave broad signals in 
1H NMR. Six NMR peaks remained unassigned and have been annotated as unknowns - U1, 

U2, U3, U4, and U5 in Figure 6.1. Resonance assignment of these metabolites was further 

confirmed using 2D 1H-1H TOCSY NMR spectroscopy (Figure 6.2). The NMR spectra 

displayed signals mainly from amino acids, sugars, sugar alcohol, and organic acids. Further, 

secondary metabolites such as phenolic compound 5-caffeoylquinic acid (chlorogenic acid) 

and alkaloid trigonelline were also identified from the 1H NMR spectra. All the 41 metabolites 

and their respective 1H chemical shifts (in reference to DSS) have been tabulated in Appendix 

Table 6.4.  
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Figure 6.1: 1H-NMR spectrum of the methanolic extract of Kufri Pukhraj potato cultivar (cold storage); 1, 
Trigonelline; 2, Formate; 3, Uridine; 4, Trypotophan; 5, Phenylalanine; 6, Tyrosine; 7, Fumarate; 8, Sucrose; 9, 
Allantoin; 10, Glucose; 11, Galactose; 12, Mannose; 13, Valine; 14, Isoleucine; 15, Leucine; 16, 3-
hydroxyisobutyrate; 17, Threonine; 18, Alanine; 19, Lysine; 20, Arginine; 21, 4-Aminobutyrate; 22, Glutamine; 
23, Pyroglutamate; 24, Citrate; 25, Methionine; 26, Malate; 27, Aspartate; 28, Asparagine; 29, Choline; 30, sn-
glycero-3-phosphocholine; 31, Proline; 32, Myo-inositol; 33, Serine; 34, Glutamate; 35, Adenosine; 36, 
Ascorbate; 37, Glycine; 38, Fructose; 39, Methanol; 40, Chlorogenate; 41, LDL; 42, DSS; 43, U1; 44, U2; 45, 
U3; 46, U4; 47, U5. 
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Figure 6.2: 1H-1H TOCSY correlation spectrum of the methanolic extract of Kufri Pukhraj potato cultivar (cold 
storage). Cross-peaks in the TOCSY spectrum were used to re-confirm the resonance assignments enlisted in 
Appendix Table 6.4. Representative peaks have been labelled in the spectrum. 

 
6.6.2 Cold treatment influences the metabolome of potato cultivars 

Multivariate data analysis was conducted to explore the effect of cold-treatment on the 

metabolome of different cultivars. PLS-DA analysis, which was applied to the data matrix 

consisting of 38 columns and 30 rows, displays a clear separation on the scores plot, accounting 

for a 48.1% of total variance along PC1 and 28.5% of total data variance along PC2. The scores 

corresponding to treatment-a (fresh harvest) and treatment-b (cold storage) for each cultivar 

were grouped separately in PLS-DA analysis, indicating discrimination of samples upon cold 

treatment. It was also observed from the PLS-DA score plot analysis that the samples 

corresponding to FH tubers of Atlantic and FL-1533 processing cultivars were clustered 

together while samples from FH tubers of non-processing cultivars (Kufri Jyoti and Kufri 

Pukhraj) were more similar to each other (Figure 6.3).  
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Figure 6.3: Scores plot of PLS-DA generated from MetaboAnalyst software for the different potato cultivars – 
Atlantic (G1, G2), Frito Lay-1533 (G3, G4), Kufri Pukhraj (G5, G6), Kufri Jyoti (G7, G8), and PU1 (G9, G10) at 
fresh harvest and one-month cold storage at 4°C. Three replicates were used for each treatment in all five different 
potato cultivar. Each ellipse on the score plot represents 95% confidence limits of a normal distribution for each 
group. Colour legends have been mentioned in the figure. 

 

Further pair-wise comparison was performed to explore the effect of cold storage on 

the metabolic profiles of each cultivar separately. PLS-DA analysis between fresh harvest and 

cold-stressed tubers in processing cultivars showed a differential clustering of groups on their 

respective score plots with 84.2% variation in PC1 and 10% variation in PC2 for Atlantic 

cultivar (Figure 6.4A), 84.4% variation in PC1, and 9.5% variation in PC2 for Frito Lay 1533 

cultivar. (Figure 6.4B). Similarly, pairwise PLS-DA analysis of non-processing cultivars 

between FH and CS showed 92.8% variation in PC1 and 3.8% variation in PC2 for Kufri Jyoti 

(Figure 6.4C), 90.4% variation in PC1 and 6.1% variation in PC2 for Kufri Pukhraj (Figure 
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6.4D), and 92.9% variation in PC1 and 3.4% variation in PC2 for local cultivar PU1 (Figure 

6.4E). Such large differences observed due to variation in the metabolite content in the different 

cultivars at the two time-points could be attributed to the genetic make-up of each cultivar used 

in the present study. From the PLS-DA model analysis, maximum segregation was observed 

between FH and CS classes in non-processing cultivars compared to processing cultivars. This 

group separation was based on the first two components, which display a distinct demarcation 

between the FH and CS groups. VIP scores obtained from the PLS-DA model were used to 

identify the discriminatory metabolites contributed most to the group separation in the PLS-

DA models for each cultivar under FH and CS conditions. The VIP score plot, which is based 

on PLS loadings, reflects the influence of each variable on the overall model. The metabolites 

having a VIP score ≥ 1 were considered important in classification. The discriminatory 

metabolites were organised in the descending order of the VIP score in component 1. Based on 

the VIP score (VIP ≥ 1), the key metabolites discriminating FH from CS tubers in Atlantic 

cultivar were fructose, glucose, sucrose, asparagine, and methanol (Figure 6.5A). While 

sucrose, citrate, glucose, fructose, and glutamine were the most important metabolites that 

altered significantly in Frito Lay-1533 (Figure 6.5B) upon cold storage. The discriminatory 

metabolites (VIP ≥ 1) altered significantly under cold storage in Kufri Jyoti (Figure 6.5C) 

include fructose, glucose, sucrose, malate, and asparagine. In Kufri Pukhraj (Figure 6.5D), the 

discriminatory metabolites identified were fructose, glucose, malate, asparagine, methanol, 

proline, and glutamine. Similarly, in PU1 cultivar (Figure 6.5E), the discriminatory metabolites 

include methanol, fructose, sucrose, glucose, 4-aminobutyrate, and proline. We observed most 

of the discriminating metabolites majorly belong to starch and amino acid metabolism 

pathways. These metabolites are largely contributing to the differential clustering of score plots 

in the PLS-DA analysis. 
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Figure 6.4: PLS-DA scores plots for pair-wise comparison analysis of metabolites between potato tubers samples 
at fresh harvest (Red) and cold storage at 4°C for 1 month (Green) in A) Atlantic, B) Frito Lay-1533, C) Kufri 
Jyoti, D) Kufri Pukhraj, and E) PU1. Each ellipse on the score plot represents 95% confidence limits of a normal 
distribution for each group. 

 

Figure 6.5: VIP scores obtained after pair-wise PLS-DA analysis for A) Atlantic, B) Frito Lay-1533, C) Kufri 
Jyoti, D) Kufri Pukhraj, and E) PU1. A VIP score of ≥ 1.0 is considered significant. VIP plots display the most 
significantly altered metabolites detected by PLS-DA model analyses arranged in descending order of VIP score 
in component 1. The coloured boxes on the right indicate the relative concentrations of the corresponding 
metabolite in each condition used. The relative concentration of metabolites has been represented by a coloured 
scale from green to red, indicating the low and high. 

 
6.6.3 Metabolic perturbations in processing, non-processing, and local cultivars under CS 

treatments. 

The effects of CS treatment were further evaluated for each cultivar with a volcano plot 

analysis to identify the metabolites whose levels vary significantly under CS condition. 
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Volcano plot analysis uses fold change and p-values to derive the significantly dysregulated 

metabolites.  

Cold storage of Atlantic cultivar resulted in significant up-regulation of fructose, 

glucose, galactose, and methanol, while fumarate and glutamate (Figure 6.6A) were found to 

be significantly downregulated in cold storage treatment. Increased levels of fructose, glucose, 

sucrose, galactose, fumarate, trigonelline, citrate, aspartate, and glutamate were observed in 

Frito lay upon CS treatment, whereas the levels of mannose and 3-hydroxyisobutyrate (Figure 

6.6B) were reduced substantially. Similarly, in non-processing Kufri Jyoti cultivar, the levels 

of glucose, fructose, ascorbate, mannose, galactose, aspartate, malate, fumarate, leucine, 

proline, and serine were increased, while sucrose and alanine (Figure 6.6C) decreased in CS 

treatment. CS treatment in Kufri Pukhraj cultivar was associated with significantly elevated 

fructose, glucose, 3-hydroxyisobutyrate, ascorbate, mannose, malate, leucine, aspartate, serine, 

proline, isoleucine, adenosine, and arginine; while as chlorogenate and formate (Figure 6.6D) 

levels undergo down-regulation. In PU1, cultivar, formate, tryptophan, and sucrose were 

significantly decreased while 3-hydroxyisobutyrate, methanol, fructose, glucose, proline, 4-

aminobutyrate, trigonelline, myo-inositol, arginine, aspartate, uridine, and sn-glycero-3-

phosphocholine (Figure 6.6E) were increased upon cold storage treatment. 

From the volcano plots and VIP score plots, it was apparent that the number of 

significantly dysregulated metabolites varies in each cultivar under CS condition, with mostly 

metabolites showing upregulation in their concentration levels under CS conditions. Further, it 

was also observed that non-processing cultivars exhibit more metabolite alteration than 

processing cultivars. All these results indicate a large change in metabolite content occurs 

during cold storage. A union set of significant metabolites identified from volcano plot analysis 

(Figure 6.6) and VIP score (Figure 6.5) were used to culminate critical metabolites (Figure 6.7) 

associated with CS treatment in each cultivar to reduce the chances of losing any important 

metabolites of interest (Feng et al., 2016). The levels of specific metabolites were observed to 

be varying distinctly depending on potato cultivars (Figure 6.7), suggesting that the particular 

metabolite could play a crucial role in predicting the CIS potential of potato cultivars. The 

molecular events controlling such metabolic perturbations in potato tubers after cold storage 

need to be investigated in further detail in the future.  
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Figure 6.6: Volcano plots pairwise metabolite comparison between freshly harvested (FH) and cold storage (CS) 
tubers. The different cultivars used for the study have been depicted as A) Atlantic, B) Frito Lay-1533, C) Kufri 
Jyoti, D) Kufri Pukhraj, and E) PU1. In the volcano plot, vertical dotted lines indicate the threshold of ± 1.5-fold 
changes in concentration of metabolites on a log2 scale, and the horizontal dotted line corresponds to the threshold 
of FDR-corrected p-value significance (p-value ≤ 0.05) on a log10 scale. The significantly down-regulated 
metabolites upon cold storage have been marked in red and the ones up-regulated have been marked in green. 

 

Cold storage has been known to induce modifications in plants metabolome 

(Bustamante et al., 2016; Hatoum, Annaratone, Hertog, Geeraerd, & Nicolai, 2014). The 

alterations in the levels of metabolites upon cold storage treatment can be correlated with the 

differential enzyme activities or cold signalling and altered gene expression patterns. For 

instance, cold storage induced alterations in metabolite levels observed in six peach fruits were 

reflected as transcriptional and/or posttranscriptional responses (Bustamante et al., 2016). 

Integration of metabolomics with quantitative genetics found an effective approach to identify 

the candidate genes underlying metabolite variations, which offers trait-specific markers to 
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improve commercially important traits (Kumar, Bohra, Pandey, Pandey, & Kumar, 2017b). 

Previous studies have reported the association of phenotypic traits with primary metabolites in 

potatoes through metabolic quantitative trait loci (QTL) analyses and have revealed that the 

CIS trait is expected to be associated with primary metabolites (Carreno-Quintero et al., 2012). 

Untargeted GC-MS metabolic profiling for 26 starch and CIS-related traits on 97 potato 

genotypes detected 139 polar metabolites, of which QTL were identified for 72 % of the 

detected compounds. It was also observed that the QTLs for starch phosphorylation co-localize 

with mQTLs of few amino acids (Carreno-Quintero et al., 2012). Therefore, we propose that 

the metabolite variability obtained in the present study, when combined with the genetic 

information, would facilitate in the discovery of metabolite biomarkers for CIS and help in 

determining potato processing related traits in the cultivars used in the study. 
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Figure 6.7: Box-Whisker plots displaying the comparative alteration in the concentration of discriminating 
metabolites (identified from VIP score plot and Volcano plot analysis) for both freshly harvested and cold storage 
tuber samples across replicates and in different potato cultivars used in the study. FH – fresh harvest and CS – 
cold storage at 4 °C.  

 

6.6.4 Metabolic correlation network analysis  

Metabolite-metabolite correlation analysis (MMCA) among the identified metabolites 

was conducted in all potato cultivars using Pearson’s correlation coefficient analysis at both 

the time points – fresh harvest and cold storage. The aim of this correlation analysis was to 
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identify metabolites that are correlated to each other in a given treatment. Specifically, 

metabolite-metabolite correlations within FH and CS samples were compared for each 

cultivar. The correlation plots for each treatment within a particular cultivar were combined in 

a single plot (separated by the diagonal) to visualize the differences in metabolite-metabolite 

correlations within FH and CS conditions, with the upper-right half of the plot marked in white 

corresponding to correlations in FH samples while lower-left half of the plot marked in light 

blue corresponding to metabolite-metabolite correlations under CS condition for each cultivar. 

A total of 1444 correlations were analysed in each treatment within each cultivar. The 

number of significant correlation (p-value ≤ 0.05) for each treatment within each cultivar 

has been tabulated in Table 6.2. Overall 49, 51, 36, 48, and 45 significant metabolite-

metabolite correlation were identified in fresh harvest tuber samples for Atlantic, FL-1533, 

Kufri Pukhraj, Kufri Jyoti, and PU1, respectively (upper-right half of the plot marked with 

a white triangle in Figure 6.8). Upon CS treatment, the number of significant correlations 

for Atlantic, Frito Lay 1533, Kufri Pukhraj, Kufri Jyoti, and PU1 changed to 55, 53, 52, 53, 

and 31 (lower-left half of the plot marked with a blue triangle in Figure 6.8). The number of 

positive versus negative correlations also changed upon CS treatment in all cultivars (Table 

6.2). Amino acids and sugars display the most number of significant metabolite-metabolite 

correlations, most probably indicating their centrality in primary metabolism. Combining 

significant metabolic correlations and metabolic alterations in FH and CS tuber profiling 

might help to predict the CIS status of the particular potato genotype. Previous studies have 

shown that the metabolic variability and metabolite-metabolite correlations associate with 

market classes such as russet, red, yellow, chip, and specialty in 60 unique potato genotypes. 

These investigations concluded that metabolite diversity and correlations data can support 

the potential to breed new cultivars for improved health traits (Y. Lin et al., 2013). Thus, the 

metabolite alterations (Figure 6.7) and metabolite-metabolite correlations (Figure 6.8) 

obtained, especially after cold storage combined with the correlative behaviour of genes at the 

transcript level, will further help in validating the role of a specific group of metabolites in the 

CIS phenomenon.  
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Figure 6.8: Correlation plots between fresh harvest (FH; upper-right half of the plot marked in white) and cold 
storage (CS; lower-left half of the plot marked in light blue) metabolites for A) Atlantic, B) Frito Lay-1533, C) 
Kufri Jyoti, D) Kufri Pukhraj, and E) PU1. Both the upper half and lower half diagonal correlation plots are 
independent and must be read independently. Blue and red circles represent positively and negatively significant 
(p-value ≤ 0.05) metabolite-metabolite correlations, respectively. 
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         Table 6.2: The number of correlation observed for the metabolites in the different cultivars. 

Cultivar – time point Positive Negative Total 
Atlantic FH 40 9 49 
Atlantic CS 51 4 55 
Frito Lay 1533 FH 46 5 51 
Frito Lay 1533 CS 44 9 53 
Kufri Pukhraj FH 31 5 36 
Kufri Pukhraj CS 37 15 52 
Kufri Jyoti FH 43 5 48 
Kufri Jyoti CS 38 15 53 
PU1 FH 42 3 45 
PU1 CS 18 13 31 

 

6.7 Metabolic pathway analysis and potential metabolite insights of CIS 

CIS, caused by the accumulation of reducing sugars, is a complex genetic trait that 

involves several metabolic pathways regulated by multiple candidate genes. This suggests that 

a group of metabolites could be involved in the regulation of the CIS phenomenon. To gain 

insight into the metabolic mechanism of CIS in potatoes, metabolic pathway analysis of 

significantly differential metabolites identified through volcano plot analysis (q-value ≤ 0.05, 

FC ≥ 1.5) and VIP scores plot (VIP ≥ 1) were performed using KEGG, MetaboAnalyst, and 

reference pathways (Malone et al., 2006b; J. R. Sowokinos, 2001b) from the previous literature. 

Several physiological and biochemical mechanisms occur in potatoes during CIS, and the 

amount of sugar in potato tubers is influenced by several candidate genes operating in starch 

degradation, hexogenesis, and anaerobic respiration (J. R. Sowokinos, 2001b; H. Zhang et al., 

2017). Metabolic pathway analysis (MetPa) of significantly altered metabolites revealed the 

metabolic pathways perturbed under CS in potato cultivars were alanine, aspartate, and 

glutamate metabolism; glyoxylate and dicarboxylate metabolism; amino acid metabolism; 

arginine and proline metabolism; glycine, serine, and threonine metabolism; the TCA cycle, 

fructose, and mannose metabolism, galactose metabolism, Tryptophan metabolism, 

glycolysis; Starch and sucrose metabolism; and Inositol phosphate metabolism (Table 6.3). All 

the identified pathways were then constructed using the KEGG metabolic network and have 

been pictorially depicted in Figure 6.9. 
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Table 6.3: Metabolic pathway analysis revealing the significantly impacted metabolic pathways in potato tubers 
under cold storage 

Metabolic Pathways Hits Raw p -log10(p) FDR Impact 
Alanine, aspartate, and glutamate metabolism 7 1.33E-07 6.8748 6.34E-06 0.777 

Starch and sucrose metabolism 2 0.078372 1.1058 0.43796 0.391 

Arginine and proline metabolism 4 0.0024371 2.6131 0.033075 0.246 

Fructose and mannose metabolism 1 0.35292 0.45233 1 0.037 

Glycine, serine, and threonine metabolism 3 0.031243 1.5052 0.26983 0.181 

Citrate cycle (TCA cycle) 3 0.0078731 2.1039 0.093493 0.178 

Tryptophan metabolism 1 0.39415 0.40434 1 0.172 

Arginine biosynthesis 5 2.23E-05 4.6512 0.00053029 0.170 

Pyruvate metabolism 2 0.078372 1.1058 0.43796 0.155 

Glyoxylate and dicarboxylate metabolism 6 1.91E-05 4.7187 0.00053029 0.138 

Butanoate metabolism 2 0.049273 1.3074 0.36007 0.136 

Aminoacyl-tRNA biosynthesis 11 4.68E-10 9.3301 4.44E-08 0.111 

Inositol phosphate metabolism 1 0.45729 0.33981 1 0.103 

Tyrosine metabolism 1 0.32394 0.48954 1 0.070 

Glycerophospholipid metabolism 1 0.55528 0.25549 1 0.059 

Carbon fixation in photosynthetic organisms 3 0.0090535 2.0432 0.095564 0.058 

Glutathione metabolism 2 0.11157 0.95247 0.58882 0.050 

Galactose metabolism 5 0.00018372 3.7358 0.0034907 0.049 

Phenylpropanoid biosynthesis 1 0.5351 0.27156 1 0.047 

Phosphatidylinositol signalling system 1 0.43284 0.36368 1 0.033 

Valine, leucine and isoleucine degradation 3 0.042013 1.3766 0.33261 0.028 

Pyrimidine metabolism 2 0.1939 0.71243 0.87715 0.028 

Flavonoid biosynthesis 1 0.6441 0.19105 1 0.021 

Purine metabolism 2 0.39372 0.40481 1 0.001 

Nitrogen metabolism 3 0.0017061 2.768 0.027013 0.000 

Cyanoamino acid metabolism 3 0.016466 1.7834 0.15643 0.000 

Valine, leucine, and isoleucine biosynthesis 2 0.078372 1.1058 0.43796 0.000 

Monobactam biosynthesis 1 0.15916 0.79816 0.7958 0.000 

Lysine biosynthesis 1 0.17724 0.75143 0.84191 0.000 

Nicotinate and nicotinamide metabolism 1 0.24589 0.60926 0.9733 0.000 

Cysteine and methionine metabolism 2 0.25786 0.58861 0.97987 0.000 

Sulfur metabolism 1 0.2781 0.5558 1 0.000 

Amino sugar and nucleotide sugar metabolism 2 0.29021 0.53729 1 0.000 

Sphingolipid metabolism 1 0.30898 0.51007 1 0.000 

beta-Alanine metabolism 1 0.32394 0.48954 1 0.000 
Phenylalanine, tyrosine, and tryptophan 
biosynthesis 1 0.3807 0.41942 1 0.000 

Ascorbate and aldarate metabolism 2 0.054707 1.262 0.37122 0.216 
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6.8 Discussion 

6.8.1 Sugar metabolism under cold storage condition 

Previous studies report that the low temperature mediated accumulation reducing of 

sugars in potato tubers is derived mostly from the degradation of starch, thereby leading to an 

imbalance between starch degradation and sucrose metabolism in tubers. The enzymes 

associated with these processes such as starch synthases, pyruvate kinase, invertase, AGPase, 

sucrose synthase, alpha-amylase, beta-amylase, sucrose phosphate synthase, etc., have been 

studied extensively at both biochemical and transcript levels (Brummell et al., 2011; X. Chen, 

Salamini, & Gebhardt, 2001; Datir et al., 2019; Jansky & Fajardo, 2014; C. Menéndez, 2002; 

J. R. Sowokinos, 2001b; Joseph R. Sowokinos, Hayes, & Thill, 2018; H. Zhang et al., 2017). 

The increased levels of sucrose, glucose, and fructose in Atlantic and Frito Lay 1533 tubers 

under cold storage condition indicates that sucrose has been broken down; however, the 

replenishing of sucrose concentrations through the breakdown of starch was occurring more 

rapidly in these cultivars. The sucrose concentration was significantly reduced in Kufri Jyoti, 

and local cultivar PU1 and slightly decreased in Kufri Pukhraj (Figure 6.7).  

While cold-treatment largely enhances the levels of reducing sugars in all cultivars, the 

increase was significantly prominent in the non-processing cultivars, which was quite apparent 

compared to processing cultivars used in this study. Previous studies have also shown that the 

accumulation of reducing sugars in tubers of cold-sweetening susceptible and cold-sweetening 

resistant potato cultivars was found to be under the control of vacuolar invertase and invertase 

inhibitor (Brummell et al., 2011; Datir et al., 2012b, 2019). The significantly increased levels 

of reducing sugars (glucose and fructose) and decreased levels of sucrose in the non-processing 

cultivars – Kufri Pukhraj, Kufri Jyoti, and PU1 under CS condition (Figure 6.7)- suggest 

enhanced vacuolar invertase activity in these cultivars (Y. Lin et al., 2013). Indeed, decreased 

levels of RS in cold-sweetening resistant cultivars upon cold storage have been previously 

reported, which was accompanied by enhanced expression of the vacuolar invertase inhibitor 

(Datir et al., 2019). The difference in levels of reducing sugars in different cultivars after CS 

conditions could also be attributed to allelic variations in the vacuolar invertase inhibitor gene 

in these cultivars (Datir et al., 2019). However, these observations need to be further validated 

at the transcript level using a qRT-PCR expression of vacuolar invertase inhibitor gene before 

and after cold storage in these cultivars. 
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6.8.2 Amino acid metabolism under cold storage condition 

Amino acid metabolism plays a crucial role during abiotic stress conditions (heat, cold, 

and drought) in plants and has been found to minimize the adverse effects of cold temperature 

(Hasanuzzaman et al., 2019; Krasensky & Jonak, 2012; Zhao et al., 2009). We also observed 

the dominance of amino acids in the metabolite-metabolite correlation analysis, where 

maximum significant correlations were shown by amino acids, thereby hinting towards an 

important role of amino acids in potato tubers under cold storage conditions. The amino acids 

that were found to be significantly dysregulated under CS conditions were isoleucine, 

glutamate, glutamine, leucine, alanine, arginine, proline, tryptophan, aspartate, asparagine, and 

serine. Accumulation of organic osmolytes such as proline and 4-aminobutyrate (GABA) was 

observed in all cultivars under CS condition, but tubers of non-processing cultivars (Kufri Jyoti, 

Kufri Pukhraj, and PU1) exhibited relatively higher levels of both these metabolites (Figure 

6.7) compared to processing cultivars (Atlantic and Frito Lay 1533). Previously it has been 

reported that cold-stress induced accumulation of proline and GABA is associated with 

increased resistance to chilling stress in some fruits species (Mazzucotelli, Tartari, Cattivelli, 

& Forlani, 2006; Shang, Cao, Yang, Cai, & Zheng, 2011; Z. Zhang et al., 2017). Besides acting 

as an osmoprotectant, proline also acts as a metal chelator, antioxidative defense molecule, and 

signaling molecule during stress (Hayat et al., 2012; Liang, Zhang, Natarajan, & Becker, 2013). 

The GABA shunt pathway was up-regulated under CS condition, as seen by the elevated levels 

of GABA and glutamate (a predominant source of GABA in plants). GABA treatment has been 

demonstrated as a promising approach not only for reducing the enzymatic browning but also 

for maintaining the quality of fresh-cut potatoes (Gao, Zeng, Ren, Li, & Xu, 2018).  

Arginine metabolism is known to be involved in abiotic stress conditions in potato 

tubers. Arginine levels showed a significant increase in all potato cultivars under CS condition 

(Figure 6.7). Putrescine, an arginine derived molecule, is known to play an important role in 

inducing cold-acclimated freezing tolerance in potatoes (Kou et al., 2018). The branched-chain 

amino acids – leucine and isoleucine – also showed an accumulated in all cultivars after cold 

storage. Previous studies report the accumulation of branched-chain amino acids under abiotic 

stress conditions, including cold stress (Obata & Fernie, 2012). However, to date, there has 

been no conclusive evidence on the role of several of these metabolites in the CIS process of 

potato tubers. This is particularly important because a comprehensive analysis of the 

biochemical pathways affected during CIS remains had not been performed earlier. 

From the metabolomics data, significantly elevated levels of glutamine and asparagine 

(one of the precursors for Maillard reaction) were observed in non-processing cultivars – Kufri 
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Pukhraj, Kufri Jyoti, and PU1 after cold storage. Among all cultivars, Kufri Pukhraj displayed 

higher levels of glutamine and asparagine after CS. The increased levels of glutamine can be 

attributed to the enhanced expression of glutamine synthetase (Roessner-Tunali et al., 2003). 

Enzymes, branched-chain amino acid aminotransferase and glutamine synthetase, involved in 

glutamine biosynthesis have been found to be potentially involved in governing potato tuber 

quality traits. The alterations in the contents of amino acid metabolite have also been shown to 

be distinct in different potato cultivars. In addition to RS content, the total and individual amino 

acid content, the asparagine content, organic acid levels, and other metabolites have been found 

to be essential processing parameters in potatoes (Muttucumaru et al., 2017). Levels of 

acrylamide have previously been associated with RS and free-asparagine content (Raffan & 

Halford, 2019). Breeders aim to select potato cultivars with low concentrations of RS and are 

asparagine-free for processing purposes to mitigate the health concerns related to acrylamide. 

In this regard, Frito Lay 1533 was found to be the best cultivar for processing purposes with 

the lowest amount of reducing sugars and asparagine under CS condition. Similarly, Kufri 

Pukhraj was found with the highest content of RS and asparagine upon cold storage as 

compared to other cultivars. 

 

6.8.3 TCA cycle metabolites under cold storage condition 

Organic acids, particularly TCA cycle intermediates, are known to play numerous and 

diverse functions within and beyond cellular metabolism in plants (W. F. Zhang et al., 2019; 

Y. Zhang & Fernie, 2018). From our metabolomics data, the TCA cycle intermediates, namely, 

citrate, malate, and fumarate were observed to be significantly dysregulated upon CS. The 

levels of citrate and fumarate were significantly up-regulated in Frito Lay 1533, whereas malate 

levels were significantly increased in Kufri Jyoti and Kufri Pukhraj upon CS (Figure 6.7). 

Previous reports have shown the citrate levels are enhanced during low-temperature exposure 

in banana, tomato, and Ponkan fruits, thereby suggesting that accumulation of citrate may be 

involved in cold tolerance in these fruits (Bugaud, Alter, Daribo, & Brillouet, 2009; Q. Lin et 

al., 2016; W. F. Zhang et al., 2019). The increased expression of ATP-citrate synthase and 

isocitrate dehydrogenase promoted by cold stress and hence the increased content of citrate 

after cold storage at 4°C for 28 days has been reported in tomato fruits (W. F. Zhang et al., 

2019). Cold storage resulted in an increase in multiple isoforms of malate dehydrogenase, 

isocitrate dehydrogenase, and 2-oxoglutarate dehydrogenase genes in cold-stored (4°C) litchi 

fruit, which accelerated the fruit senescence and hence, might be associated with cold 

susceptibility or respiratory burst (Yun et al., 2016). Besides having an important role in cold 
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tolerance, citrate and malate have been commonly used in the food industry as chemical 

inhibitors to prevent or reduce enzymatic browning. The discoloration (brown color) of fresh-

cut potato slices after mechanical operations has been attributed to the action of a group of 

enzymes called polyphenol oxidases (PPO) (Severini, Baiano, De Pilli, Romaniello, & Derossi, 

2003). Citric acid is a popular anti-browning agent due to its inhibitory effect on PPO via a 

reduction in pH. In addition to this, citrate chelates copper at the active site of PPO and thereby 

inhibits its activity (Suttirak & Manurakchinakorn, 2010). Since the levels of citrate were 

significantly elevated in Frito Lay 1533 compared to other cultivars under CS, it implies that 

increased citrate levels in FL-1533 might be possibly associated with CIS resistance with good 

processing attributes. Therefore, potato cultivars varying in their CIS ability could be further 

examined for the quantitative variations in citrate and malate levels. 

 Our analysis revealed several metabolites such as fumarate, adenosine, sn-glycero-3-

phosphocholine, 3-hydroxyisobutyrate, trigonelline, and chlorogenate were significantly 

dysregulated under cold storage conditions, indicating the important effect of these metabolites 

in cold stress and CIS process. Significantly elevated levels of methanol were observed in PU1, 

Kufri Pukhraj, and Atlantic cultivar after CS. Processed potato tuber textural properties are 

affected by several factors, including starch content and distribution within the tuber, cell size, 

cell-wall structure and composition, the breakdown of the cell wall middle lamella during 

cooking, and the correlation between pectin methylesterase activity and level of pectin methyl 

esterification (Ross et al., 2011). After saponification, the proportion of released methanol 

content is the measure of the degree of pectin methylation for the cell wall and was found 

indirectly associated with the textural properties of potato tuber (Ross et al., 2011). Therefore, 

the methanol content can be used as a potential marker for textural differences in potato tubers. 

However, we cannot rule out the possibility that because methanolic extracts have been used 

for the metabolomics studies, the methanol content found in these tubers might represent the 

exogenous levels in NMR. Levels of Myo-inositol, which is known to play important roles in 

abiotic stresses, including cold stress in plants, was significantly up-regulated in local cultivar 

PU1 upon CS (Valluru & Van den Ende, 2011). However, more studies are required to 

understand further the function of these metabolites in the CIS process. 

CIS is a complex trait involving a specific group of metabolites in a network of intricate 

metabolic pathways. To gain further insights into the CIS phenomenon, the importance and the 

expression pattern of these metabolites in these cultivars after CS should be investigated further 

by identifying candidate genes that are putatively associated with the biosynthesis of these 

metabolites. Further, it is important to determine the chemical composition of tubers to identify 
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and develop potato genotypes with good processing attributes (Pal, Bhattacharya, Konar, 

Mazumdar, & Das, 2008). Earlier reports have mentioned that different primary metabolites 

have been used as biomarkers in quality assessment analysis for predicting agronomically 

essential phenotypes such as black spot bruising and chip quality (Inostroza-Blancheteau et al., 

2018; Steinfath et al., 2010). 

One of the current and significant challenges in the potato industry is the maintenance 

of tuber quality during storage. Thus, the biochemical information and metabolite accumulation 

in response to cold stress in potato tubers could be used to select candidate metabolites for 

predicting the magnitude of cold-induced sweetening of different potato genotypes. Moreover, 

such predictive candidate metabolites can be used in selection for potato breeding and for 

tailoring storage conditions for the harvested tubers. 

 

 
Figure 6.9: Pictorial depiction of metabolic pathways affected during cold-induced sweetening in the different 
cultivars of potato. The significant metabolites altered under cold storage have been marked with arrows wherein 
an ↑ indicates upregulated metabolites, and the ↓ arrow indicates down-regulated metabolites. TCA – tricarboxylic 
acid. 
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6.9 Conclusions 

In this study, we have identified the alterations in metabolic events in different potato 

cultivars after cold storage conditions. Cold-treatment has a major influence on the overall 

content of several metabolites such as glucose, fructose, sucrose, asparagine, glutamine, citrate, 

malate, proline, GABA, etc. These candidate metabolites can serve as ideal targets to unravel 

the biological basis of CIS trait in potato tubers and could thus help in improving the 

agronomically important phenotypes. For instance, the low levels of acrylamide precursors 

(glucose, fructose, and asparagine) accompanied by a high level of citrate (anti-browning 

agent) observed in processing cultivar (FL-1533) and high levels of acrylamide precursors 

observed in non-processing cultivars (Kufri Pukhraj and Kufri Jyoti) can be used for the 

selection and breeding of potato tubers with good health benefits and well processing 

characteristics. Similarly, the alterations in the contents of GABA and glutamine can be utilized 

in determining the enzymatic browning of fresh-cut potatoes and tuber quality, respectively. 

The metabolite-metabolite correlations observed between sugars, amino acids, and organic 

acids suggest the close biochemical relationship and the interdependence of their associated 

metabolic pathways such as glycolysis, amino acid metabolism, and the tricarboxylic acid 

(TCA) cycle in the CIS process of potato tubers. The phenomenon of CIS is associated with 

the presence or absence of a specific group of metabolites, and the relative content of these 

metabolites may have a substantial effect on the CIS status of potato tubers. Taken together, 

the results from our study have helped in the identification of metabolic events that can be 

potentially used in the selection and development of CIS resistant potato genotypes with good 

processing attributes and health benefits. 
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Table 3.3: List of chemical shift assignment of abundant water-soluble metabolites as 

extracted from INS-1E cells 

S. No. 
Metabolite  

(PubChem CID Code) 

Chemical shift 

(multiplicity) 
Assignment 

1 Acetate (175) 1.90 (s) CH3 

2 Alanine (5950)  3.805 (q)  α-CH 

    1.46 (d) β-CH3 

3 ADP (6022) 8.534 (s) C7H 

    8.261 (s) C12H 

    6.122 (d) C2H 

    4.52 (m) C3H 

    4.35 (m) C5H 

     4.00 (m) C17H 

4 AMP (6083) 8.596 (s) C7H 

    8.25 (s) C12H 

    6.12 (d) C2H 

    4.49 (dd) C3H 

    4.355 (dd) C5H 

    4.02 (dd) C17H 

5 Aspartate (5960) 2.66 (dd) β-CH2 

    2.79 (dd) β-CH2 

    3.916 (dd) α-CH 

6 Asparagine (6267) 2.84 (m) β-CH2 

    2.94 (m) β-CH2 

    3.99 (dd) α-CH 

7 ATP (5957) 8.52 (s) C7H 

    8.25 (s) C12H 

    6.128 (d) C2H 

    4.56 (t) C3H 

    4.4 1 (m) C4H 

    4.23 (m) C17H 

8 Choline (305) 3.2 (s) N(CH3)3 

    3.52 (m) NCH2 

    4.06 (m) OCH2 

9 Citrate (311) 2.67 (d) CH2 
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    2.76 (d) CH2 

10 Citrulline (9750) 1.556 (m) γ-CH2 

    1.86 (m) β-CH2 

    3.126 (m) α-CH2 

    3.74 (m) α-CH 

11 Creatine (586) 3.02 (s) CH3 

    3.90 (s) CH2 

12 DSS (74873) 0 Si(CH3)3 

    0.62 (t) γ-CH2 

    1.75 (m) β-CH2 

    2.91 (t) α-CH2 

13 Ethanol (702) 1.18 (t) CH3 

    3.64 (q) CH2 

14 Formate (283) 8.44 (s) CH 

15 Fumarate (5460307) 6.50 (s) CH 

16 Glucose (5793) 3.23 (dd) C3H 

    3.398 (m) C5H 

    3.458 (m) C6H 

    3.524 (m) C3H 

    3.728 (m) C4H/C11H 

    3.824 (m) C11H/C6H 

    3.889 (dd) C11H 

    4.634 (d) C2H 

    5.226 (d) C2H 

17 Glutamate (33032) 2.03 (m)  β-CH2 

    2.10 (m) β-CH2 

     2.34 (m) γ-CH2 

    3.75 (dd) α-CH 

18 Glutamine (5961) 2.14 (m) β-CH2 

    2.459 (m) γ-CH2 

    3.76 (t) α-CH 

19 Glutathione (124886) 4.56 (q) C3H 

    3.78 (m) C14H/C11H 

    2.97 (dd) C2H 

    2.54 (m) C9H 
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    2.15 (m) C10H 

20 Glycerol (753) 3.55 (dd) CH2 

    3.64 (dd) CH2 

    3.77 (dd) CH2 

21 Glycine (750) 3.56 (s) CH2 

22 GTP (6830) 4.18 (m) C17H 

    4.24 (m) C17H 

    4.36 (m) C5H 

    4.58 (dd) C4H 

    5.92 (d) C2H 

    8.13 (s) C7H 

23 Histidine (6274) 7.874 (s) C2H 

    7.10 (s) C5H 

    3.98 (dd) α-CH 

    3.21 (dd) β-CH2 

    3.11 (dd) β-CH2 

24 Hypoxanthine (790) 8.20 (s) C7H 

    8.195 (s) C2H 

25 IMP (8582) 8.55 (s) C7H 

    8.21 (s) C12H 

    6.13 (d) C2H 

    4.5 (m) C4H 

    4.35 (m) C5H 

    4.02 (m) C17H 

26 Inosine (6021) 8.34 (s) C12H 

    8.23 (s) C7H 

    6.09 (d) C2H 

    4.77 (dd) C3H 

    4.427 (dd) C4H 

    4.257 (dd) C5H 

    3.90 (dd) C17H 

    3.84 (dd) C17H 

27 Isocitrate (1198) 2.5 (dq) γ-CH2 

    2.99 (m) β-CH 

    4.05 (d) α-CH 
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28 Isoleucine (6306) 0.926 (t) δ-CH3 

    0.992 (d) β-CH3 

    1.248 (m) γ-CH2 

    1.457 (m) γ-CH2 

    1.968 (m) β-CH 

    3.661 (d) α-CH 

29 Isopropanol (3776) 1.16 (m) CH3 

    4.01 (m) CH 

30 Lactate (612) 4.096 (q) CH 

    1.313 (d) γ-CH3 

31 LDL 0.84 (t) CH3(CH2)n 

    1.25 (m) (CH2)n 

32 Leucine (6106) 0.942 (d) δ-CH3 

    0.954 (d) δ-CH3 

    1.68 (m) β-CH2 

    1.70 (m) γ-CH 

    3.71 (t) α-CH 

33 Malate (525) 2.37 (dd) β-CH2 

    2.66 (dd) β-CH2 

    4.29 (dd) α-CH 

34 Myo-inositol (892) 3.27 (t) C5H 

    3.54 (dd) C1H/C3H 

    3.62 (dd) C4H/C6H 

    4.05 (t) C2H 

35 NAD (5892) 4.22 (m) C25H 

    4.35 (m) C17H 

    4.37 (m) C3H 

    4.43 (m) C30H 

    4.49 (m) C29H 

    4.53 (m) C26H 

    6.02 (d) C2H 

    6.08 (d) C28H 

    6.12 (d) C2H 

    8.14 (s) C12H 

    8.20 (m) C38H 
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    8.40 (s) C7H 

    8.83 (d) C39H 

    9.15 (d) C37H 

    9.33 (s) C35H 

        

36 Niacinamide (936) 7.58 (dd) C5H 

    8.24 (dd) C4H 

    8.7 (dd) C6H 

    8.92 (s) C2H 

37 o-Phosphocholine (1014) 3.685 (s) N(CH3)3 

    3.58 (m) NCH2 

    4.15 (m) OCH2 

38 Proline (145742) 4.116 (t) α-CH 

    3.405 (m) δ-CH2 

    3.33 (m) δ-CH2 

    2.339 (m) β-CH2 

    2.07 (m) β-CH2 

    2.01 (m) γ-CH2 

39 Phenylalanine (6140) 7.42 (m) C3H/C5H 

    7.36 (m) C2H/C6H 

     7.32 (m) C4H 

    3.98 (dd) α-CH 

    3.27 (m) β-CH2 

    3.13 (m) β-CH2 

40 Pyruvate (107735) 2.36 (s) CH2 

41 Succinate (160419) 2.385 (s) CH 

42 Taurine (1123) 3.25 (t) S-CH2 

    3.42 (t) N-CH2 

43 Tyrosine (6057) 7.17 (d) C2H/C6H 

    6.87 (d) C3H/C5H 

    3.93 (dd) α-CH 

    3.18 (dd) β-CH2 

    3.04 (dd) β-CH2 

44 UDP-Glucose (8629) 7.931 (d) C32H 

    5.988 (d) C31H 
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    5.988 (d) C21H 

    5.595 (dd) C2H 

    4.36 (m) C22H 

    4.23 (m) C18H 

    3.91 (m) C4H 

    3.54 (dd) C3H 

45 
UDP-N-Acetylglucosamine 

(445675) 
7.931 (d) C35H 

    5.988 (d) C26H 

    5.988 (d) C34H 

    5.505 (dd) C2H 

    4.35 (m) C27H 

    4.23 (m) C23H 

    3.91 (m) C6H 

    3.54 (dd) C5H 

    2.06 (s) C21H 

46 UMP (6030) 8.07 (d) C10H 

     5.98 (d) C11H 

     5.98 (d) C2H 

    4.41 (t) C3H 

    4.34 (t) C4H 

    4.26 (m) C5H 

    3.97 (m) C14H 

47 Uracil (1174) 5.79 (d) C6H 

    7.54 (d) C5H 

48 Uridine (6029) 7.85 (d) C11H 

    5.9 (d) C2H 

    5.89 (d) C10H 

    4.34 (dd) C3H 

    4.22 (dd) C4H 

    4.12 (m) C5H 

    3.9 (dd) C14H 

    3.8 (dd) C14H 

49 Valine (6287) 0.996 (d) CH3 

    1.047 (d) CH3 
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Table 3.4: Summary of metabolic studies performed in pancreatic b-cells following high-glucose and FFA 
exposure 

Cellular 

system 

Stimulation 

conditions using 

glucose 

Extraction 

protocol 

Platform 

used 

Major metabolites identified 

INS 832/13 

(Fernandez 

et al. 2008) 

2.8 mM or 16.7 mM 

glucose for 48 h 

Methanol- 

chloroform 

extraction 

GC/MS 

(2008) 

Alanine; TCA cycle intermediates: 

Citrate, malate, fumarate increase; 

Pentose phosphate pathway: Ribose-

5-phosphate; Amino acids: Alanine, 

hydroxyproline increase; Glutamine, 

serine and ornithine decrease 

INS-1E 

(Nyblom et 

al. 2008) 

 

5.5, 11, 20 and 27 

mM glucose for 5 

days 

Lipid 

extraction 

using 0.88% 

KCl and 

Methanol-

chloroform 

(2:1) 

extraction 

HR-MAS 

NMR and 

GC/MS 

(2008) 

De novo synthesis of fatty acid 

accumulation (oleate, palmitate, 

stearate, octadecenoate, and 

palmioleate); Decrease in o-

phosphocholine and 

glycerophosphocholine 

INS-1 

832/13 

(Spégel et al. 

2011)   

2.8 or 16.7 mM 

glucose for 1 h 

Methanol- 

chloroform 

extraction 

GC/MS 

(2011) 

Increase in late glycolytic and TCA 

cycle intermediates like fumarate, 

malate; lactate 

INS-1E and 

Human 

Islets 

(Goehring et 

al. 2011) 

3 or 16 mM glucose 

for 5 m, 45 m, 2 h, 4 

h, 8 h, 24 h and 48 h 

Methanol: 

Chloroform:W

ater (2.5:1:1) 

GC (TOF) 

- MS 

(2011) 

Increase in glycolysis, TCA cycle, 

Polyol synthesis, metabolites from 

pentose phosphate pathway, 

DNA/RNA synthesis pathway and 

glycerol synthesis pathway 

meabolites. 

 

INS-1 

832/13 

(Huang and 

Joseph 

2012)  

2 h in KRB 

supplemented with 2 

mM glucose for 2 h 

followed by 2 mM or 

Methanol 

extraction 

GC/MS 

(2012) 

Glycolytic, TCA pathway, pentose 

phosphate, sorbitol-aldose reductase 

pathways intermediates increase; 

NAPDH/NADP+ ratio increase; 

leucine, lysine, tyrosine, alanine, and 

    2.281 (m) β-CH 

    3.617 (d) α-CH 
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16.7 mM glucose for 

2 h 

serine were increased; aspartate 

decreased; palmitic acid, oleic acid 

increase 

 

INS-1 

832/13 and 

rat islets 

(Spégel et al. 

2013)  

2.8 mM glucose for 2 

h followed by 

stimulation for 0, 3, 

6, 10 and 15 min in 

16.7 mM glucose 

Methanol: 

water 

extraction 

GC/MS 

(2013) 

Increase in glycolytic and TCA cycle 

intermediates like lactate, fumarate, 

malate, a-KG, succinate; aspartate, 

serine decrease; glutamate alanine 

increase; ribose-5P increase; 

Increase NADPH/NADP+ ratio 

INS-1 

832/13 

(Lorenz et 

al. 2013) 

3 mM glucose for 20 

h followed by 0, 2, 5, 

10 and 20 mM 

glucose for 30 min; 

U-13C Glucose was 

used to probe flux in 

specific pathways. 

Methanol-

chloroform-

water based 

extraction 

LC-TOF-

MS (2013) 

16:0 CoA, Acetyl CoA, Malonyl 

CoA increase; Increase in glycolytic 

and TCA intermediates like citrate, 

isocitrate, succinate, a-KG, malate; 

decrease in glutamate, aspartate 

BRIN-BD11 

and INS-1E 

(Wallace et 

al. 2013) 

11.1 for 20 min 

followed by 25 mM 

glucose for 20 h 

Methanol-

chloroform 

extraction for 

GC/MS and 

perchloric acid 

extraction for 

NMR 

GC/MS, 
1H NMR 

and 13C 

NMR 

(2013) 

Reduction in pyruvate oxidation; 

reduced arachidonic acid, EPA, cis-

8,11,14-eicosatrienoic and 

polyunsaturated fatty acids (PUFA); 

decrease in phospho-choline, 

creatine, aspartate, and alanine and 

an increase in glycine and glucose; 

decrease in TCA cycle metabolism; 

glutathione 

INS-1 

832/13 

(Göhring et 

al. 2014) 

2.8 mM and 16 mM 

glucose for 48 h 

Methanol 

extraction 

GC/MS 

(2014) 

Increase in Glycolytic and TCA 

cycle intermediates like lactate, 

Alanine, Malate, citrate, isocitrate; 

INS-1 

832/13 

(Spégel et al. 

2015) 

 

2.8 mM glucose for 2 

h followed by 0 and 

60 min after 

stimulation with 16.7 

mM glucose 

Methanol-

chloroform 

extraction 

GC/MS 

(2015) 

Increase in glycolysis and TCA 

cycle intermediates (citrate, 

isocitrate, a-KG, fumarate, and 

malate); Glutamate Increased; 

aspartate decrease; branched chain 

amino acids 

INS-1 

832/13 

(Mugabo et 

al. 2017) 

2 mM glucose and 2 

mM glutamine for 2 h 

followed by different 

concentrations of 

80% 

methanol, 13.7 

mM 

ammonium 

LC-ESI-

MS/MS 

Increase in glycolysis-related and 

Krebs cycle intermediates 

(citrate/isocitrate, fumarate, malate); 

Increase in NADH, ATP; Decrease 
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glucose (5-20 mM) 

for 1 h 

acetate pH 

9.0; Polar 

metabolites - 

chloroform:he

ptane (3:1, 

v/v) 

in aspartate; Increase production and 

release of FFA; Increase glycerol, 

Triglycerides, glycogen 

INS-1E 

(Yousf et al. 

2019) 

5 mM glucose for 24 

h followed by 

stimulation for 24 h 

in 16 mM glucose 

and 0.5 mM palmitate  

Methanol-

extraction 

NMR  

(2019) 

Increase in glycolysis-related and 

Krebs cycle intermediates (lactate, 

citrate/isocitrate, fumarate); 

Increased flux of Hexosamine 

pathway; Decrease in aspartate, 

glutathione, o-phosphocholine, 

taurine. 

Cellular 

system 

Stimulation 

conditions using 

lipids 

Extraction 

protocol 

Platform 

used 

Major metabolites identified 

MIN6 

(Boslem et 

al. 2011) 

48 h with 0.4 mM 

palmitate 

Lipid 

extraction 

using 

chloroform/me

thanol 

MS (2011) Metabolites of sphingolipids like 

Phosphatidylethanolamine, 

glucosylceramine; ceramide increase 

INS-1 (El-

Azzouny et 

al. 2014) 

Glucose-free media 

with BSA or 

palmitate for 30 min 

followed by 

stimulation with 16.6 

mM glucose for 5-60 

min. 

Methanol:chlo

roform:water 

LC/MS 

(2014) 

A decrease in glycolytic and TCA 

cycle intermediates (Malonyl CoA); 

reduction in NADH/NAD+; Increase 

in de novo synthesized glycerolipids 

(Diacylglycerol); increase in 

sphingosine-1-phosphate and N-acyl 

amide levels 
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Table 4.2: Serum metabolites (as identified from Figure 4.1) were assigned to their respective proton chemical 
shifts (ppm) 

Metabolite (Pubchem 
CID) 

1H Chemical shift (ppm) and Multiplicity 

3-hydroxyisobutyrate (87) 1.07(d), 2.47(m) 
Acetate (175) 1.90(s) 
Acetone (180) 2.221(s) 
Alanine (5950) 1.46(d), 3.805(q) 
Arginine (6322) 1.64(m), 1.72(m), 1.89(m), 3.23(t) 
Aspartate (5960) 2.66(dd), 2.79(dd), 3.916(dd) 

Betaine (247) 3.263(s), 3.885(s) 
Choline (305) 3.2(s), 3.52(m), 4.06(m) 
Citrate (311) 2.67(d), 2.76(d) 

Creatinine (588) 3.03 (s), 4.05 (s) 
DSS (74873) 0(s), 0.62(t), 1.75(m), 2.91(t) 
Formate (283) 8.44(s) 

Fructose (2723872) 4.11(d), 4.01(m), 3.886(dd), 3.78(m), 3.70(m), 3.54(m) 

Glucose (5793) 5.22(d), 4.634(d), 3.398(m), 3.889(dd), 3.824(m), 3.728(m), 3.524(m), 3.458 (m), 
3.23(dd) 

Glutamate (33032) 2.03(m), 2.10(m), 2.34(m), 3.75(dd) 
Glutamine (5961) 2.14(m), 2.459(m), 3.76(t) 

Glycerol 3.768 (tt), 3.64 (dd), 3.546 (dd) 
Glycine (750) 3.56(s) 

Isoleucine (6306) 0.926(t), 0.992(d), 1.248(m), 1.457(m), 1.968(m), 3.661 (d) 
Isopropanol (3776) 1.16 (d), 4.01 (m) 

Lactate (612) 4.096(q), 1.313(d) 
LDL 0.87(m), 1.25 (m) 

Leucine (6106) 0.942(d), 0.954(d), 1.68(m), 1.70(m), 3.71(t) 
Lysine (5962) 3.75(t), 3.01(t) 1.91(m), 1.72(m), 1.49(m), 1.42(m) 

Methanol (887) 3.34(s) 
Methionine (6137) 3.85(t), 2.17(m), 2.63(t), 2.12(s) 
o-Phosphocholine 3.21 (s), 3.58 (m), 4.15 (m) 

Phenylalanine (6140) 7.32(m), 7.42(m), 7.36(m), 3.98(dd), 3.27(m), 3.13(m) 
Proline (145742 ) 4.116(t), 3.405(m), 3.33(m), 2.339(m), 2.07(m), 2.01(m) 

Pyroglutamate (7405) 2.02(m), 2.40(m), 2.49(m), 4.16(m) 
Serine (5951) 3.98(m), 3.94(m), 3.83(m) 
SN-glycero-3-

phosphocholine (657272) 3.21(s), 4.31(m) 

Succinate (160419) 2.385(s) 
Tryptophan (6305) 7.72(d), 7.53(d), 7.31(s), 7.27(t), 7.19(t), 4.05(m), 3.29(m) 

Tyrosine (6057) 7.18(d), 6.89(d), 3.18(dd), 3.04(dd) 
Valine (6287) 3.60(d), 2.26(m), 1.03(d), 0.97(d) 
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          Table 4.3: p-values and FDR-values of Control vs. T2DM group obtained from ANOVA. 

Metabolite p-value -log10(p) FDR 

Glucose 2.16E-33 32.666 6.26E-32 
Serine 1.99E-16 15.701 2.89E-15 
Pyroglutamate 4.83E-16 15.316 4.67E-15 
Proline 1.21E-12 11.918 8.77E-12 
Glutamate 3.80E-12 11.421 2.20E-11 
Isoleucine 6.35E-12 11.197 3.07E-11 
Methionine 1.25E-10 9.903 5.19E-10 
o-Phosphocholine 5.74E-10 9.241 2.08E-09 
Citrate 8.27E-08 7.083 2.66E-07 
Choline 2.06E-07 6.686 5.98E-07 
Betaine 2.48E-07 6.605 6.55E-07 
Alanine 3.04E-07 6.517 7.35E-07 
Leucine 1.48E-06 5.831 3.29E-06 
Glycerol 8.05E-06 5.094 1.67E-05 
3-hydroxyisobutyrate 8.96E-06 5.048 1.73E-05 
Valine 5.21E-05 4.283 9.44E-05 
SN-glycero-3-phosphocholine 0.00028953 3.538 0.0004939 
Glycine 0.00062976 3.201 0.0010146 
Formate 0.0015834 2.800 0.0024168 
Lysine 0.001731 2.762 0.0025099 
Aspartate 0.0042584 2.371 0.0058807 
Arginine 0.018809 1.726 0.024793 
Lactate 0.039626 1.402 0.04831 
Tryptophan 0.039981 1.398 0.04831 
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Table 4.4a: d(i) values, p-values and FDR-values of Control vs. T2DM group obtained from SAM analysis 

Metabolite d.value p-value q.value 
Glucose 12.4 0 0 
Serine -8.8 0 0 
Pyroglutamate -8.1 0 0 
Glutamate 7.4 0 0 
Proline 7.2 0 0 
Methionine 6.9 0 0 
Isoleucine 6.9 0 0 
Citrate 5.7 0 0 
Betaine -5.6 0 0 
o-Phosphocholine -4.9 0 0 
Alanine 4.9 0 0 
3-hydroxyisobutyrate 4.6 0 0 
Formate -4 0 0 
Choline -4 0 0 
Leucine 3.9 0 0 
Glycine -3.7 0 0 
Valine 3.7 0 0 
Lysine 3.5 0 0 
SN-glycero-3-phosphocholine -3.5 0.00034483 1.65E-05 
Glycerol 3.3 0.0010345 4.70E-05 
Aspartate -3 0.0037931 0.0001643 
Arginine -2.4 0.016897 0.0006986 
Tryptophan 2.3 0.024483 0.00096825 

 

 

Table 4.4b: d(i) values, p-values, and FDR-values of Control vs. Prediabetic group obtained from SAM 
analysis. 

Metabolite d.value p-value q.value 
Glucose 6.9 0 0 
Pyroglutamate -4.7 0 0 
o-Phosphocholine -4 0 0 
Serine -3.9 0 0 
Choline -3.6 0 0 
SN-glycero-3-phosphocholine -2.4 0.0034483 0.00037104 
Lactate -2.1 0.0086207 0.0006184 
Acetate -1.8 0.02069 0.0013357 
Betaine -1.8 0.022759 0.0013357 
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Table 5.2: Mycobacterium smegmatis metabolites (as identified from Figure 5.1) were assigned to their respective 
proton chemical shifts (ppm) 

S.No  Metabolites Chemical shift (ppm) 
1      1-Methylnicotinamide 9.27(s), 8.96(d), 8.89(d), 8.17(t) 

2      2-Aminobutyrate 3.706(t), 1.887(m), 0.968(t) 

3 2-Hydroxy-3-methylvalerate (HMVA) 3.88(d), 1.705(m), 1.351(m), 1.162(m), 0.932(d), 0.872(t) 

4 3-Hydroxyisovalerate 1.233(s), 2.35(s) 

5 3-Methyl-2-Oxovalerate 0.88(t), 1.086(d), 1.444(m), 1.687(m), 2.922(m) 

6 Acetate 1.90(s) 

7 Acetone 2.221(s) 

8 ADP 8.534(s), 8.261(s), 6.122(d), 4.52(m), 4.35(m), 4.00(m) 

9 Alanine 1.46(d), 3.805(q) 

10 AMP 8.596(s), 8.25(s), 6.12(d), 4.49(t), 4.355(m), 4.02(m) 

11 Aspargine 2.777(dd), 2.89(dd),3.98(dd) 

12 Aspartate 2.66(dd), 2.79(dd), 3.916(dd) 

13 ATP 8.52(s),8.25(s), 6.128(d), 4.56(t), 4.41(m), 4.23(m), 4.30(m) 

14 Beta-alanine 3.16(t), 2.54(t) 

15 Betaine 3.263(s), 3.885(s) 

16 Caprate 0.839(t), 1.281(m), 1.528(m), 2.519(m) 

17 Cholate 
0.711(s), 0.905(s), 0.960(d), 1.00(m), 1.16(m), 1.130(m), 

1.140(m), 1.491(m), 1.568(m), 1.623(m), 1.75(m),1.89(m), 
2.01(m), 2.05(m), 2.23(m), 3.501(m), 3.39(m),4.06(m) 

18 CDP 8.083 (s), 7.987 (s), 6.102 (d), 5.99 (d) 

19 Citrate 2.53(d), 2.666(d) 

20 Citrulline 1.526(m), 1.59(m), 1.84(m), 1.889(m), 3.147(m), 
3.126(m),3.74(m) 

21 Dimethylamine 2.718(s) 

22 DSS 0.0(s), 0.62(t),1.75(m), 2.91(t) 

23 dTTP 7.68(s), 6.333(m), 4.618(m), 4.22(m), 4.17(m), 2.38(m), 
1.918(s) 

24 Ethanol 1.185(t), 3.664(q) 

25 Fructose 1,6-biphosphate 4.19 (m), 3.80 (m), 3.70 (m) 

26 Formate 8.44(s) 

27 Fumarate 6.50(s) 

28 Glucose-1-Phosphate 5.45(dd), 3.908(m), 3.86(m), 3.76(m), 3.487(m), 3.398(t) 

29 Glutamate 2.03(m),2.10(m), 2.34(m), 3.75(dd) 
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30 Glutamine 2.141(m), 2.459(m), 3.76(t) 

31 Glycerol 3.768 (tt), 3.64 (dd), 3.546 (dd) 

32 GTP 8.110(s), 6.12(s),5.96(s), 4.54(m), 4.35(m), 4.24(m) 

33 Homoserine 2.01(m), 2.16(m), 3.77(m), 3.85(dd) 

34 IMP 8.553(s), 8.231(s), 6.136(d), 4.51(m), 4.36(m), 4.01(m) 

35 isoleucine 0.926(t), 0.992(d), 1.248(m), 1.457(m), 1.968(m), 3.661(d) 

36 Lactate 4.096(q), 1.313(d) 

37 Leucine 3.721(m), 1.701(m), 0.94(m) 

38 Lysine 3.74(t), 3.02(t), 1.89(m), 1.71(m), 1.46(m) 

39 Malonate  3.09(s) 

40 Maltose 5.41(d), 5.39(d), 5.211(d), 3.96(m), 3.93(m), 3.84(m), 
3.76(m), 3.70(m), 3.66(m),3.62(m), 

41 Methylamine 2.573(s) 

42 N-Acetyl-glucosamine 8.177(d), 8.077(m), 5.19(d), 3.90(m), 2.05(s), 2.03(s) 

43 NAD 9.314(s), 9.121(d), 8.824(d), 8.406(s), 8.184(m), 8.154(s), 
6.07(d), 6.021(d), 4.522(m), 

44 NADP+ 9.281(s), 9.08(d), 8.80(d), 8.41(s), 8.18(m), 8.13(s), 
6.112(d), 6.022(d), 4.99(q), 4.60(t),  

45 NADPH 8.459 (s), 8.248 (s), 6.96 (s), 6.61 (br), 6.18 (d), 5.965 (d), 
4.597 (t) 

46 Phenyl alanine 7.42(m), 7.36(m), 7.32(m), 3.98(dd), 3.27(m), 3.13(m) 

47 Succinate  2.385(s) 

48 Threonine 4.244(m), 3.582(d), 1.313(d) 

49 Trehalose 5.18(d), 3.84(m), 3.80(m), 3.76(m), 3.64(dd),3.43(t) 

50 Tryptophan 7.72(d), 7.53(d), 7.32(s), 7.24(m), 7.19(m0, 4.04(dd), 
3.47(dd), 3.29(dd) 

51 Tyrosine 7.17(d), 6.87(d), 3.93(dd), 3.18(dd),3.04(dd) 

52 UDP Galactose 7.93(d), 5.97(m), 5.63(dd), 4.36(m), 4.25(m), 
4.15(m),4.02(d), 3.90(dd), 3.805(dt), 3.75(m) 

53 UDP-Glucose 7.925(d), 5.977(m), 5.593(dd), 4.36(m), 4.27(m), 4.24(m), 
4.189(m), 3.877(m), 3.77(m),  

54 UDP-N-Acetylglucosamine 8.177(d), 8.077(m), 5.19(d), 4.70(d), 3.904(m), 3.841(m), 
3.784(m), 3.74(m), 

55 UMP 8.07(d), 5.98(m), 4.41(t), 4.34(t), 4.26(m), 3.97(m) 

56 Valine 0.996(d), 1.047(d), 2.281(m),3.617(d) 
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         Table 5.3a: Fold change (FC), p-values and FDR-values of Control vs Acidic stress. 

S.No Metabolite log2(FC) FDR -log10(p) 
1 Alanine 1.97 1.52E-09 8.82 
2 L-Tyrosine 1.83 1.52E-09 8.82 
3 L-Phenylalanine 0.62 1.52E-09 8.82 
4 D-Maltose -1.62 1.31E-08 7.88 
5 L-Valine 1.76 4.36E-08 7.36 
6 L-Homoserine 1.03 9.03E-08 7.04 
7 D-Glutamic acid 0.87 9.03E-08 7.04 
8 /--erythro-Isoleucine 1.43 2.43E-07 6.61 
9 1-Methylnicotinamide 1.60 4.54E-07 6.34 
10 Beta-Alanine 1.67 1.04E-05 4.98 
11 L-Glutamine 0.77 1.04E-05 4.98 
12 L-Threonine 1.70 1.86E-05 4.73 
13 Thymidine 5'-triphosphate 0.76 3.35E-05 4.47 
14 Succinic acid 0.73 3.38E-05 4.47 
15 Uridine diphosphate galactose 0.60 7.73E-05 4.11 
16 Taurine -0.82 0.00010462 3.98 
17 L-Aspartic acid 0.82 0.0001951 3.71 
18 Capric acid -1.12 0.00019709 3.71 
19 Uridine 5'-monophosphate 0.71 0.00027747 3.56 
20 L-Alpha-aminobutyric acid 0.81 0.0013696 2.86 
21 L-Leucine 0.59 0.0034988 2.46 
22 Cholic acid 0.75 0.0072496 2.14 
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          Table 5.3b: Fold change (FC), p-values, and FDR-values of Control vs. Oxidative stress. 

S.No Metabolite log2(FC) FDR -log10(p) 
1 NADP 8.84 1.05E-10 9.98 
2 Betaine -8.88 7.91E-08 7.10 
3 D-Maltose -8.54 4.19E-07 6.38 
4 Adenosine monophosphate 8.77 6.49E-07 6.19 
5 1-Methylnicotinamide 8.56 6.49E-07 6.19 
6 D-Glutamic acid 9.19 7.41E-07 6.13 
7 L-Aspartic acid -5.87 8.73E-07 6.06 
8 L-Lysine -9.05 1.09E-06 5.96 
9 3-Methyl-2-oxovaleric acid -8.00 1.27E-06 5.90 
10 UDP-N-acetylglucosamine -8.63 1.71E-06 5.77 
11 NAD 6.11 7.46E-06 5.13 
12 Adenosine triphosphate 3.86 1.87E-05 4.73 
13 Capric acid -3.53 2.99E-05 4.52 
14 Methylamine -8.72 6.51E-05 4.19 

15 
2-Hydroxy-3-methylpentanoic 

acid -7.65 0.00014706 3.83 
16 Nicotinamide N-oxide 3.65 0.00024024 3.62 
17 Isoleucine -4.00 0.0035162 2.45 
18 Dimethylamine -2.01 0.0064698 2.19 
19 L-Glutamine -2.23 0.0086985 2.06 
20 Malonic acid 2.29 0.030726 1.51 
21 Inosinic acid 1.27 0.038132 1.42 
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   Table 5.3c: Fold change (FC), p-values, and FDR-values of Control vs. starvation stress. 

S.No Metabolite log2(FC) FDR -log10(p) 
1 3-Hydroxyisovaleric acid -10.05 2.14E-14 13.67 
2 L-Phenylalanine 9.30 1.02E-13 12.99 
3 D-Maltose 9.87 3.95E-13 12.40 
4 L-Asparagine 13.23 4.96E-13 12.31 
5 Uridine diphosphategalactose 9.59 8.91E-13 12.05 
6 Ethanol -11.57 2.58E-12 11.59 
7 Adenosine monophosphate 11.28 4.58E-12 11.34 
8 Thymidine 5'-triphosphate 9.96 4.85E-12 11.32 
9 Acetone -10.38 4.15E-11 10.38 
10 1-Methylnicotinamide 10.08 5.63E-10 9.25 
11 Taurine -11.47 8.78E-10 9.06 
12 Uridine diphosphate-N-acetylglucosamine 9.62 1.81E-09 8.74 
13 Uridine 5'-monophosphate 9.97 5.81E-09 8.24 
14 L-Aspartic acid 12.42 6.92E-09 8.16 
15 Beta-Alanine 11.79 1.17E-08 7.93 
16 L-Glutamine 12.29 1.67E-08 7.78 
17 Alanine 11.11 2.31E-08 7.64 
18 L-Tyrosine -10.78 5.26E-08 7.28 
19 Malonic acid -12.12 2.01E-07 6.70 
20 Capric acid -10.70 2.01E-07 6.70 
21 NADP 9.28 2.43E-07 6.61 
22 L-Lysine -10.72 2.71E-07 6.57 
23 Citric acid 12.11 3.13E-07 6.50 
24 Succinic acid 11.20 5.05E-07 6.30 
25 NAD 10.87 5.28E-07 6.28 
26 2-Hydroxy-3-methylpentanoic acid -11.45 5.35E-07 6.27 
27 Uridine diphosphate glucose 10.05 1.30E-06 5.89 
28 Glucose 1-phosphate 10.11 6.70E-06 5.17 
29 ADP 7.67 7.19E-06 5.14 
30 Betaine -5.11 1.23E-05 4.91 
31 Inosinic acid 8.74 1.25E-05 4.90 
32 Adenosine triphosphate 9.86 2.34E-05 4.63 
33 /--erythro-Isoleucine 3.67 2.34E-05 4.63 
34 L-Leucine -11.25 2.66E-05 4.58 
35 Sucrose 9.95 0.00010247 3.99 
36 Nicotinamide N-oxide 2.18 0.00040799 3.39 
37 3-Methyl-2-oxovaleric acid -8.53 0.00047503 3.32 
38 Formic acid -9.65 0.00062956 3.20 
39 D-Glutamic acid -4.25 0.00063653 3.20 
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40 Trehalose 5.66 0.0024417 2.61 
41 Methylamine -10.65 0.0025862 2.59 
42 L-Homoserine 2.50 0.0054186 2.27 
43 L-Threonine 10.75 0.0056602 2.25 
44 Acetic acid -1.76 0.0062837 2.20 
45 L-Valine 1.34 0.028662 1.54 
46 Citrulline -1.06 0.047419 1.32 
47 L-Lactic acid -2.16 0.049403 1.31 

 

Table 5.4: Primers used in the study 

Gene name Sequence (5’-3’) Annealing Temperature (°C) 

      

Trehalose biosynthesis and utilization pathway in Mycobacterium smegmatis 
MSMEG_6515treSRTFp TCGGTATCGACGGTTTCC 57 

MSMEG_6515treSRTRp GGAAGTGGAACGCCATGT 57 

MSMEG_4916glgERTFp AGATCCTGCAGATGTCGAA 57 

MSMEG_4916glgERTRp AACTGCTGCGCGGCCTCCA 59 

MSMEG_4918glgBRTFp AACCTCATCGACTACCGC 59 

MSMEG_4918glgBRTRp AGTGGTTGAACTCGCCGAT 57 

MSMEG_6514Mak-Pep2RTFp ACGCCATCTTCAAGCTCTT 57 

MSMEG_6514Mak-Pep2RTRp TGCTGGTGGTCGCCATGT 57 

MSMEG_4535TreHRTFP CAGTGGATCAACGTCGGTG 57 

MSMEG_4535TreHRTRP GACAGGTGGTGCAGCTCTTC 57 

      

Endogenous controls Mycobacterium smegmatis 
MSMEG_2758 sigAFP GAAGACACCGACCTGGAACT 55 

MSMEG_2758 sigA RP GACTCTTCCTCGTCCCACAC 55 

      
Trimethylamine Biosynthesis synthesis pathways in Mycobacterium smegmatis 

2,4-DCA MSMEG5124FP AGATCGTCTGTTTGGCAAC 58 

2,4-DCAMSMEG5124RP GATCACTCAGCAGCGGAC 58 

YeaXMSMEG_4371RTFP AGAGATCCACGAGCAGTT 57 

YeaXMSMEG_4371RTRP CTGCGGGAGCACCTCGAC 57 

TR2Fe-2SMSMEG_0657FP TGCTCGTCCATCCATCCCG 57 

TR2Fe-2SMSMEG_0657RP GACGGCCAGCGGTGTCAT 57 
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Table 6.4: List of chemical shift assignment of abundant water-soluble metabolites extracted from potato tuber 
samples 

S. No. Metabolite CID Code Chemical shift Assignment 

1 3-hydroxyisobutyrate 87 1.07 (d) β-CH3 
      2.47 (m) α-CH 
2 4-Aminobutyrate 119  1.89 (m) β-CH2 
      2.29 (t) α-CH2 
      3.00 (t) γ-CH2 
3 Adenosine 60961  6.07 (d) C2H 
4 Alanine 5950  3.80 (q)  α-CH 
      1.46 (d) β-CH3 
5 Allantoin 204 5.37 (s) CH 
6 Arginine 6322 1.68 (m)  γ-CH2 
      1.89 (m) β-CH2 
      3.23 (t) δ-CH2 
      3.76 (t) α-CH 
7 Ascorbate 54670067  4.51 (d) C4H 
8 Asparagine 6267 2.84 (m) β-CH2 
      2.94 (m) β-CH2 
      3.99 (dd) α-CH 
9 Aspartate 5960 2.66 (dd) β-CH2 
      2.79 (dd) β-CH2 
      3.91 (dd) α-CH 

10 Chlorogenate 1794427  6.40 (d) C15H 
      6.95 (d) C21H 
      7.13 (dd) C22H 
      7.19 (d) C18H 
      7.66 (d) C16H 

11 Choline 305 3.20 (s) N(CH3)3 
      3.52 (m) NCH2 
      4.06 (m) OCH2 

12 Citrate 311 2.67 (d) CH2 
      2.76 (d) CH2 

13 DSS 74873  0.00 (s) Si(CH3)3 
      0.62 (t) γ-CH2 
      1.75 (m) β-CH2 
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      2.91 (t) α-CH2 
14 Formate 283 8.44 (s) CH 
15 Fructose 2723872   3.54 (m) C1H 
      3.70 (m) C1H 
      3.88 (dd) C3H 
      4.01 (m) C4H 
      4.11 (d) C5H 

16 Fumarate 5460307  6.50 (s) CH 
17 Galactose 6036  4.57 (d) C2H 
      5.25 (d) C2H 

18 Glucose 5793 3.23 (dd) C3H 
      3.39 (m) C5H 
      3.45 (m) C6H 
      3.52 (m) C3H 
      3.72 (m) C4H/C11H 
      3.82 (m) C11H/C6H 
      3.88 (dd) C11H 
      4.63 (d) C2H 
      5.22 (d) C2H 

19 Glutamate 33032  2.03 (m)  β-CH2 
      2.10 (m) β-CH2 
       2.34 (m) γ-CH2 
      3.75 (dd) α-CH 

20 Glutamine 5961 2.14 (m) β-CH2 
      2.459 (m) γ-CH2 
      3.76 (t) α-CH 

21 Glycine  750 3.56 (s) CH2 
22 Isoleucine 6306 0.92 (t) δ-CH3 
      0.99 (d) β-CH3 
      1.24 (m) γ-CH2 
      1.45 (m) γ-CH2 
      1.97 (m) β-CH 
      3.66 (d) α-CH 

23 LDL   0.84 (t) CH3(CH2)n 
      1.25 (m) (CH2)n 

24 Leucine 6106 0.94 (d) δ-CH3 
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      0.95 (d) δ-CH3 
      1.68 (m) β-CH2 
      1.70 (m) γ-CH 
      3.71 (t) α-CH 

25 Lysine 5962 1.49 (m) γ-CH2 
      1.72 (m) δ-CH2 
      1.89 (m) β-CH2 
      3.01 (t) e-CH2 
      3.74 (t) α-CH 

26 Malate 525 2.37 (dd) β-CH2 
      2.66 (dd) β-CH2 
      4.29 (dd) α-CH 

27 Mannose 18950  4.89 (d) C2H 
      5.17 (d) C2H 

28 Methanol 887 3.34 (s) CH3 
29 Methionine 6137 2.12 (s) S-CH3 
      2.17 (m) β-CH2 
      2.63 (t) S-CH2 
      3.85 (t) α-CH 

30 Myo-inositol 892 3.27 (t) C5H 
      3.54 (dd) C1H/C3H 
      3.62 (dd) C4H/C6H 
      4.05 (t) C2H 

31 Phenylalanine 6140 7.42 (m) C3H/C5H 
      7.36 (m) C2H/C6H 
       7.32 (m) C4H 
      3.98 (dd) α-CH 
      3.27 (m) β-CH2 

32 Proline 145742  4.11 (t) α-CH 
      3.40 (m) δ-CH2 
      3.33 (m) δ-CH2 
      2.34 (m) β-CH2 
      2.07 (m) β-CH2 
      2.01 (m) γ-CH2 

33 Pyroglutamate 7405 2.02 (m)  C4H 
      2.40 (m) C3H 
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      2.49 (m) C4H 
      4.16 (m) C5H 

34 Serine 5951 3.83 (m) α-CH 
      3.94 (m) β-CH2 
      3.98 (m) β-CH2 

35 sn-glycero-3-phosphocholine 657272  3.21 (s) C13H/C14H 
      4.31 (m) C3H 

36 Sucrose 5988 3.46 (t) C10H 
      3.55 (m) C12H 
      3.75 (m) C11H 
      3.81 (m) C17H/C19H 
      3.88 (m) C5H 
      4.04 (t) C4H 
      4.20 (d) C3H 
      5.40 (d) C7H 

37 Threonine 6288 1.32 (d) γ-CH3 
      3.58 (d) α-CH 
      4.24 (m) β-CH2 

38 Trigonelline 5570  4.42 (s) C9H 
      8.07 (t) C4H 
      8.82 (m) C5H/C3H 
      9.11 (s) C1H 

39 Trypotophan 6305 3.29 (m) CH2 
      4.05 (m) CH 
      7.19 (t) C5H/C6H 
      7.27 (t) C5H/C6H 
      7.31 (s) C2H 
      7.53 (d) C7H 
      7.72 (d) C4H 

40 Tyrosine 6057 7.17 (d) C2H/C6H 
      6.87 (d) C3H/C5H 
      3.93 (dd) α-CH 
      3.18 (dd) β-CH2 
      3.04 (dd) β-CH2 

41 Uridine 6029 7.85 (d) C11H 
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      5.9 (d) C2H 
      5.89 (d) C10H 
      4.34 (dd) C3H 
      4.22 (dd) C4H 
      4.12 (m) C5H 
      3.9 (dd) C14H 
      3.8 (dd) C14H 

42 Valine 6287 0.99 (d) CH3 
      1.04 (d) CH3 
      2.28 (m) β-CH 
      3.61 (d) α-CH 

43 U1   8.22 (m)   
      9.00 (d)   
      9.10 (d)   
      9.33 (s)   

44 U2   7.27 (s)   
      8.39 (s)   

45 U3   3.85   
      3.95   
      4.02   
      5.14 (d)   

46 U4   3.82   
      3.89   
      3.97   
      4.03   
      4.99   

47 U5   3.66   
      4.29 (dd)   
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CONSENT FORM 
 

I have been fully informed about the studies regarding “Micronutrient Deficiency and 

Type 2 Diabetes in the Indian population” conducted by Armed Forces Medical College, 

Pune and University of Pune. I have agreed to participate in the study voluntarily, of my own 

free will, without any pressure or monetary inducement. It has been explained to me that if I 

decide to opt out of the study at a later date for any reason, I may do so and will not affect the 

routine care given to me in anyway.  

I understand that apart from routine checkups such as height, weight, waist-hip 

circumference, blood pressure, etc., I will have to undergo urine examination and several blood 

test including miRNA and DNA studies. I may in the future be asked to attend for additional 

investigations but will be free to refuse these if I do not want to take part. 

It is understood that  

• these studies would only be for biochemical and epigenetic analysis of diabetes and diabetes 

related conditions; 

• that studies will all be done anonymously; and 

• the results of the studies will not be available to me. 

The cost of tests to be carried out at Department of Biotechnology and Armed Forces 

Medical College will be borne by Department of Biotechnology, University of Pune. 

I have read the consent form carefully. All my queries and doubts have been satisfied. 

I am willing to participate in the study voluntarily and will cooperate fully for the various tests 

that will be conducted during the study.  

 

Name ____________________     Name of the witness_____________________ 

 

 

 

Signature & date      Signature & date 
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I. GENERAL INFORMATION 
 

1. Name of the subject: _______________________________________ 
 

2. Sample Code: __________   _____Patient   ____Control 
 

3. Address: ________________________________________________ 

      __________________________________________________________ 
      __________________________________________________________ 
  

4. Mobile: _____________________   
 

5. E-mail Address: __________________________________________ 
 

6. Date of Birth: ______ (Known / derived)  ____/____/_________ 
 

7. Occupation details: ________________________________________ 
 

8.  Gender: ________ Male     _________ Female 

II. PERSONAL INFORMATION 
 

1. Weight ________ Kgs 

2. Height ________ Ft ______ Inches 

3. Waist Mesurement _______ Inches 

4. BMI ________ 

5. Diet 

a. Lacto-vegetarian _____ Yes   _____ No 

b. Ovo-vegetarian _____ Yes   _____ No 

c. Non-vegetarian    _____ Yes   _____ No 

d. Smoking   _____ Yes   _____ No 

e. Tobacco  _____ Yes   _____ No 
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f. Alcohol   _____ Yes   _____ No  

g. Drugs    _____ Yes   _____ No 

6. Family History of Diabetes: ____Yes ____ No ____ Don’t Know 

 Alive  Diabetes  Age at Diagnosis (y) 
1. Father 
2. Mother 
3. Brother (s) 
4. Sister (s) 
5. Children 

a. Son 
b. Daughter 

6. Paternal Grandfather 
7. Paternal Grandmother 
8. Paternal Uncle 
9. Paternal Aunt 
10. Maternal Grandfather 
11. Maternal Grandmother 
12. Maternal Uncle 
13. Maternal Aunt 
14. Spouse 

8. Exposure to sunlight  ___________ Hours 
 
9. Any other illness in the past _____ Yes   _____ No 
 
Doctor’s Name:  
Name of the person taking information: 
Date: 
Place: 
Signature: 
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III. BIOCHEMICAL PARAMETERS 
Laboratory Investigations 
 

1. Fasting Glucose: 

2. 2 hr post-plasma prandial glucose: 

3. Hemoglobin: 

4. Fasting serum Cholesterol: 

5. Fasting Triglycerides: 

6. Fasting HDL Cholesterol: 

7. HbA1c 

8. Creatinine 

9. Fasting Urine Glucose: 

10. Fasting Urine Protein: 

11. HOMA-IR 

12. Plasma Insulin 

13. Vitamin B12 

14. Vitamin D3 

15. Folate 

 

Name of the Laboratory: 
Name of pathologist performing the assay: 
 
Recoder’s name:   Recorder’s Signature: 
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IV. MOLECULAR STUDIES 
1. DNA 

a. Concentration _______________ ng/ul 

 

b. 260/280     _______________ 

 

 

2. PLASMA __________ ul 
 
3. SERUM  __________ ul 
 
4. RNA 

a. Concentration _______________ ng/ul 

 

b. 260/280     _______________ 

 

5. miRNA 
a. Concentration _______________ ng/ul 

 

b. 260/280     _______________ 
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