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Thesis Outlook 

The molecular aspect of a reaction governs the applied methodology and the corresponding 

properties of a reaction under investigation. Unlike ensemble measurement techniques, single-

molecule (SM) studies provide platforms for analysing individual molecular activities and 

accessing several dynamics aspects like as the lifetime of intermediates, the temporal 

fluctuations in the reaction rates, the rate-determining step, predicting reaction mechanisms, 

the correlation between events, the probability distribution function (PDF) associated with a 

stochastic process and related statistical measurements. For analytically analysing these 

stochastic networks, one requires appropriate theoretical frameworks for constructing the PDF 

of interest. 

                   The thesis titled ‘Probing Dynamic Disorder in Single-Molecule Event Statistics’ 

emphasises on some applications of the theoretical formalisms (the first-passage time 

distribution formalism and the waiting-time distribution formalism) for mathematically 

modelling SM reaction networks associated with an enzyme and a nanoparticle (NP). We have 

implemented discrete state models on enzymatic systems undergoing reversible 

interconversions between different conformational states and calculated the noise. We have 

also applied these frameworks on NP catalysed reactions for exploring the underlying 

dynamics of chemical reactions and quantifying the temporal activity fluctuations.  

               Stochastic processes can also be modelled using continuous modelling methods. We 

have developed a theoretical method to derive the PDF of time taken by a molecule in crossing 

a barrier (the transit time distribution) using a generalized Langevin Equation (GLE) 

comprising different force components.  

All these theoretical investigations and numerical analyses provide platforms for a better 

understanding of biochemical/biophysical processes. 
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1.1 SM measurements and their relevance: 

Scientific experimentation, methodology and associated analyses provide signatures of the 

system constituents and its environment. Obtained inferences enhance the existing 

fundamentals and provide new platforms for future developments. Along with the details 

describing a system under investigation like as the starting material, reactant, catalyst, 

prerequisite experimental conditions for the reaction initiation and so on, the molecular aspect 

of a measurement also regulates the consequent characterization and observation. For example, 

the bulk measurement techniques give ensemble-average reaction properties of a set of 

molecules subjected to similar physio-co-chemical constraints and variables. These averages 

do not reflect the individual contribution from each molecule.1-5 Discrete molecular activity in 

the course of a reaction remains hidden due to the cumulative nature of the outcome. For 

instance, a fraction of molecule behaving differently from the rest of the bulk can either 

facilitate or hamper the kinetics and dynamics of an ongoing process. The heterogeneity of 

reaction environment can play crucial roles in determining properties dependent on the local 

surrounding of molecules.6-8 Therefore, for exploring the individual molecular properties and 

addressing dynamical aspects, single-molecule (SM) measurement techniques are required.  

                 Beginning from the initial historical developments to the current advancements in 

the field of single molecule detection (SMD) and single molecule spectroscopy (SMS), a lot 

changed in regards to the instrumentation, designing and characterization.9-16 In the year 2014, 

the Nobel Prize in Chemistry went to the three pioneer scientists namely, William E Moerner, 

Eric Betzig and Stefan W Hell for their remarkable contribution in the field of single molecule 

detection (SMD) and high-resolution microscopic techniques.17-20 Single molecule 

spectroscopy (SMS) can unravel several dynamical aspects like as conformational fluctuations 

of a protein in a heterogeneous environment, detecting short-lived intermediates, suggesting 

suitable mechanisms as per the experimental evidence obtained by examining literally ‘one 
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molecule’ at a time.21-24 SM measurements are free from the ensemble and time averages and 

additionally provide tools for the quantification of the static and dynamic changes. When 

compared to the bulk measures, SM data shows enhanced activity with better spatial and 

temporal resolutions of the spectral fingerprints of a sample.25 SM experiments are the 

platforms for clarifying the effects of interactions between the molecular species, dynamics of 

conformational transitions and many more photo-physical and photochemical aspects, which 

were once inaccessible using the ensemble measurement techniques. 26,27 

1.2 Experimental techniques and applied methodology: 

          SM can be analysed either by observing the fluorescence phenomenon or by applying 

force microscopic measurements. To refer a few, scanning probe microscopic techniques like 

the atomic force microscopy (AFM), scanning electron microscopy (SEM), tunnelling electron 

microscopy (TEM) and many more provide measures for the characterization of sample 

surfaces using an efficient probe.26,28-33 Another, category of structural characterization 

incorporates the use of optical and magnetic tweezers for trapping the biomolecules of interest 

and determining changes in the physical and chemical properties as a response to an applied 

external force. Usually, proteins have stable thermodynamic structures but many proteins exist 

in their near-native/partially unfolded structures and undergo rapid conformational 

transitions.34,35 The applied force on protein introduces conformational modifications. Using 

optical trapping techniques, one can study the formation of RNA from a DNA template 

catalysed by the RNA polymerase and other force pulling experiments.36,37 These structural 

changes facilitate an ongoing biochemical process by ensuring easier accessibility of ligand to 

the active site of a protein. 

                   SMD techniques based on the fluorescence spectroscopy like fluorescence 

resonance energy transfer (FRET) employs determination of the structural 38 and 
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thermodynamic properties of different protein conformers.26,39,40 This energy transfer depends 

on the distance between the donor and acceptor moieties present in a bio-molecule. The 

conformational change from a folded to an unfolded state modifies the intra and inter-molecular 

distance and hence affects the fluorescence intensity. The confocal fluorescence microscopy 

enables the SMD of molecules in the solution phase at room temperature. In this microscopy, 

molecular diffusion in and out of the focal volume leads to fluctuations in the fluorescence 

intensity. The timescales of conformational interconversions between different protein 

subpopulations (states) shorter than the residence time inside the confocal volume are 

tweakable using the viscogenic solvents under controlled experimental measures.41,42 It enables 

the measurement of translational diffusion by combing it with the fluorescence correlation 

spectroscopy (FCS). The dependence of functional properties of a protein on its state (native, 

denatured, globular), can be examined using FCS.43-45 It has several other applications like 

determining the size and growth of nanoparticles. Therefore, SM measurements and associated 

analyses are quite advantageous when subjected to chemical, biophysical and biochemical 

systems. The change in the protein conformation modifies the binding affinity, path selectivity, 

mechanistic pathways and intermediates. Ensemble averaged solution-phase measurements 

cannot capture the protein fluctuation dynamics, the coexistence of the structure dependent 

sub-populations and associated inhomogeneous aspects contributed by the reaction 

environment in complex multi-step reactions.46-49 There are theoretical studies based on the 

stochastic description of different states of protein for explaining the long-time tails in 

experimental observations. These mechanisms either supported discrete transitions between 

multiple intermediate states to reach the folded conformer or simple two state stochastic model 

descriptions characterized by the high activation energy barriers.50-53 Many experiments and 

theoretical frameworks have shown the existence of correlated events at the SM level.54-56  
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Analysing a single molecule under specific physiological conditions, one can 

characterize the spatial and temporal fluctuations in the reaction rates. These data give relevant 

information related to the mechanism like as the rate-determining step, number of intermediates 

and the conformational transitions between them, the complete distribution of the 

experimentally measured reaction times and the correlation between events.57-60 The stochastic 

fluctuations in biochemical processes reflect kinetic details of the underlying reaction 

pathways. For example, two biochemical processes may report the same average rates but have 

different variances (fluctuations about the mean value) that depend on the number, lifetime of 

intermediates and conformational interconversions between them.  

1.3   Conventional enzyme catalysis:  

              Catalysis received a lot of scientific attention and investigation for centuries. Enzymes 

are the biocatalysts performing processes at the intra and intercellular level necessary for the 

sustenance of life like as nerve impulse transmission, transportation of chemical substances, 

oxidation of biomolecules and many more.61 For instance, the well-known Michaelis-Menten 

(MM) mechanism 𝐸 + 𝑆 ⇌ 𝐸𝑆 → 𝐸 + 𝑃, describes enzyme kinetics by considering reversible 

substrate-binding event leading to an enzyme-substrate complex formation.62 This complex can 

either irreversibly dissociate to give the product with the regeneration of free-enzyme or can 

simply revert to the free enzymatic state without undergoing turnover. The substrate binding, 

reversion and product formation events are respectively, denoted by the rate constants 𝑘1, 𝑘−1 

and 𝑘2. Applying the quasi-steady-state approximation (QSSA), the reaction rate shows a 

hyperbolic substrate dependence indicated by an initial linear rise followed by the saturation at 

higher substrate concentrations. The Michaelis-Menten constant and maximum rate of reaction 

can be determined from the curve. 

𝑣 = 𝑘2[𝐸0][𝑆]
[𝑆]+𝐾𝑀

                                                                                                                             (1.1) 
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where [𝐸0] = [𝐸] + [𝐸𝑆] represents the total enzyme concentration, [𝑆] is the substrate 

concentration and 𝐾𝑀 = 𝑘−1+𝑘2
𝑘1

, is the Michaelis-Menten constant. Another more efficient way 

of representing the reaction time for enzymatic reactions is the Line-Weaver-Burke (LWB) 

plot where one can determine the variation in reaction time against the reciprocal of substrate 

concentration, which follows a straight-line curve. 

1
𝑣

= 1
𝑘2[𝐸0] +

𝐾𝑀
𝑘2[𝐸0][𝑆]                                                                                                               (1.2) 

 In this double reciprocal plot, slope and intercept of the curve directly give the kinetics 

parameters unlike the velocity versus [𝑆] plot. All these conventional methods employed for 

studying kinetics at the classical ensemble level, are for a particular enzymatic concentration 

(number per unit volume). This is why the properties obtained represent an average effect of a 

certain number of molecules subjected to the same physical-chemical conditions. 

Consequently, masking individual contributions. 

1.4 Analyses at the SM level and fluctuation measurements: 

                      Enzymes are dynamic entities. Owing to the small dynamic range of data 

obtained from the classical measurements, asynchronous enzyme activities remain hidden. The 

observation of individual enzyme molecules enables one to capture dynamical aspects 

inaccessible from the ensemble studies. The probability distribution function (PDF) of the 

stochastic waiting times, obtained from the long SM trajectories on enzyme β-galactosidase, 

shows significant deviation from the expected exponential behaviour at higher substrate 

concentrations.63,64 Additionally, the catalytic rate constant attains a distribution rather than a 

specific value. Single molecule fluorescence resonance energy transfer (FRET) measurements 

revealed protein conformational changes on a broad range of time scales.65 Fluorescence 

intensity profiles exhibit multiexponentiality because the equilibrium distance between the 
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donor-acceptor pair fluctuates with the fluorescence lifetime measurements. If these 

conformational fluctuations are slower or comparable to the timescale of the product formation 

event, then it will lead to a distribution of the catalytic rate constants. The phenomenon 

describing these temporal activity fluctuations is termed as dynamic disorder.66 As pointed by 

several studies, fluctuations can be static as well as dynamic in nature depending upon the 

heterogeneity type.58,67-69  

                 Dynamic disorder varies from the static heterogeneity, usually observed between 

different molecules exhibiting different molecular activities due to the change in the activation 

energy barriers and the reaction rate constants. SM studies have shown the memory effects, 

unusual statistical data attributed to rare events and different reaction timescales confirmed 

from the autocorrelation functions.43,55,70 The inhomogeneity observed in the reaction rates of 

an individual molecule signifies dynamic disorder. One can employ the rate formalisms and 

classical Newtonian treatments to probe dynamic disorder characterized by a discrete and 

continuous random variables, respectively.66 For modelling the kinetics of SM reactions, 

discrete stochastic approaches were formulated which comprised distinct intermediates. A 

biomolecule traverses the entire continuum of internal states (conformers) before 

accomplishing the target state (turnover event in case of enzymes), which leads to a distribution 

of the reaction rates. Studies related to dynamic disorder involved protein structural dynamics 

explained through the fluctuating bottleneck model.71,72 Dynamics of a physical process, 

involving crossing of a cellular membrane by a biomolecule like RNA, DNA or polypeptide, 

starting from a specific entry point to reach a defined target are prone to the stochastic 

fluctuations of the reaction coordinate. These fluctuations regulate the reaction properties like 

as the residence time, translocation probability and event correlations.73,74  

                The physics and chemical principles associated with an experimental observation 

revolve around the fundamental concepts of diffusion of molecular species during the course 
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of reaction, surface absorption/adsorption of the reactant (promotor/inhibitor/catalyst) and its 

chemical property, reaction kinetics and catalysis. Catalysts can be homogenous as well as 

heterogeneous. Unlike enzymes, reactions catalysed by nanoparticles are associated with 

intrinsic heterogeneity due to the structural dispersions, non-uniform distribution of surface 

sites and dynamic surface restructuring.75 Experiments have shown preference of a particular 

pathway depending upon the physical conditions, variations in the binding affinities for 

different NPs and change in the adsorption equilibrium dynamics, which are prone to the 

spontaneous or catalysis induced surface restructuring.76-78 Thus there is heterogeneity 

associated with NP catalysed reactions. The autocorrelation functions of the stochastic waiting 

times indicate the presence of activity fluctuations. The timescales of these fluctuations are 

different for different NPs. Thus, catalysis associated with stochastic SM systems are 

susceptible to fluctuations and using statistical treatments one can characterize them.79,80  

These fluctuations observed in single molecule measurements can provide insights into 

the underlying kinetics and hidden intermediates. Such inferences are unobtainable from the 

average rate measurements. In SM confocal microscopy measurements, a single immobilized 

enzyme catalyses the conversion of a non-fluorescent reactant to a fluorescent product.21,64 The 

fluorescence burst from product marks the turnover event with the regeneration of the free 

enzyme. In this way, recording multiple realizations in a definite time window gives a set of 

data. Actually, experiments yield the waiting times between two consecutive events. From the 

histogram of occurrences divided into a certain number of time bins, one can obtain the 

corresponding waiting time distribution. SM data analyses have shown that PDFs of the 

stochastic waiting times exhibit non-Poissonian behaviour at higher substrate concentrations. 

Slower conformational fluctuations between different protein states lead to deviation from the 

mono-exponential behaviour. To address the phenomenon describing the distribution of 

catalytic rates, scientists extended the simple MM reaction model to a discrete state stochastic 
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model comprising N number of free and bound enzymatic states where each bound conformer 

can potentially lead to a turnover.63-65 Different free and bound enzymatic states are mutually 

interconverting in a reversible manner. The first moment of PDF gives the mean reaction time 

for a single product formation. The LWB plot analysis shows linearity even in the presence of 

temporal fluctuations. Thus, the rate measurements cannot capture the fluctuation 

characteristics. How to quantify these fluctuations? 

  The PDF (𝑓(𝑡)) contains signatures of the stochastic system. Noise present can be 

quantified using higher moments of the PDF like as variance, skewness, kurtosis and many 

other measures of the central tendency.  

〈𝑡𝑛〉 = ∫ 𝑡𝑛∞
0 𝑓(𝑡) 𝑑𝑡                                                                                                              (1.3) 

For stochastic model systems, statistical quantities like the Fano factor, Poisson indicator, 

Mandel’s parameter, randomness parameter were calculated which emphasized on exploring 

the mechanistic details, determination of the statistical nature of data and quantification of the 

temporal fluctuations.81-83 For example, a widely used measure for characterizing these 

fluctuations in enzymatic behaviour is the randomness parameter, R, represented as a 

dimensionless ratio of the variance of PDF to the mean square. It qualitatively predicts the 

shape of the catalytic time distribution and indicates multiple competing reaction timescales. 

𝑅 = 〈𝑡2〉−〈𝑡〉2

〈𝑡〉2
                                                                                                                            (1.4) 

Here 𝑡 is the time between two consecutive turnover events. 

If a distribution shows a mono-exponential behavior then a single rate-determining step 

dominates the reaction. The numerical value of R will be unity in this case. If a kinetic process 

has multiple rate-determining steps (dynamic disorder) then the distribution profile becomes 

non-exponential and R deviates from unity. In the context of single enzyme reactions, at low 
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and high substrate concentrations, the substrate binding and product formation event become 

the rate-determining step, respectively. Thus in these scenarios, the value of R saturates to 

unity. At intermediate substrate concentrations, multiple transitions from the bound enzymatic 

states lead to significant deviation in the value of R from unity.63-65 If the PDF has a peak 

followed by a decay, then the randomness parameter will be less than one. On the other hand, 

if the distribution has long multi-exponential tails, the randomness parameter’s magnitude 

would exceed from unity due to higher dispersions. For simple exponentially distributed 

functions, the randomness parameter equates to one. Thus, this parameter allows one to predict 

the shape of the catalytic time distribution. Earlier studies have confirmed that the numerical 

value of R also provides information about the number of steps (intermediates) present in a 

stochastic system.84-86 Any deviation in the value of R from unity is a manifestation of dynamic 

disorder. Another common statistical parameter, widely used to quantify fluctuations 

associated with the flux production from the stochastic networks is the Fano factor.87 Its 

functional form is  

𝐹 = 〈𝑛2〉−〈𝑛〉2

〈𝑛〉 .                                                                                                                          (1.5) 

Here ‘n’ represents the number of molecules produced (flux) during a definite course of 

reaction. For example, in the context of molecular motors, one can measure the physical 

distance moved by the motor to obtain the number of products in a given time window. On the 

similar grounds, computing a parameter called as the Poisson indicator can mark the statistical 

behavior of data as Poissonian or non-Poissonian. Its mathematical representation is as follows 

𝑃 = 〈𝑡2〉−2 〈𝑡〉2

〈𝑡〉2
.                                                                                                                        (1.6) 

If the numerical value of 𝑃 is zero, then the expectation value of the distribution will be equal 

to the variance.82 Any other value corresponds to multiple competing reaction timescales. 
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Thus, fluctuation analysis is a valuable tool for the characterization of SM kinetics. The 

implementation of a statistical approach adopted for obtaining the distribution of the reaction 

completion times for a complex scheme incorporating different reactions pathways, can be 

challenging. Using appropriate analytical methods one can determine the dependence of the 

statistical quantities on input kinetic parameters. For example, analytical solutions can be 

especially good for the examination of limiting cases where a single event governs the reaction. 

To date, many analytical approaches have had been developed to find the distribution 

of reaction times. In this thesis, we describe theoretical frameworks employed to obtain PDFs 

of the stochastic model systems related to enzyme and NP catalyses at the SM level.63,79 As 

discussed in the former paragraphs, we focus on obtaining the analytical expression of the PDF. 

The mean reaction time, randomness parameter or any other statistical quantities of interest are 

derivable from the moments of PDF. We have used two approaches to model the reaction 

kinetics at the SM level, namely, the first passage-time distribution formalism and the waiting-

time distribution formalism. 

1.5 Theoretical formalisms for constructing the PDF: 

      1.5.1 The first-passage time distribution formalism:  

A catalyst accelerates the rate of a reaction by providing an alternative path for its completion 

with a lower activation energy requirement. It does not alter the position of equilibrium. After 

one turnover, the enzymatic concentration (or number) remains the same and this will lead to 

the commencement of the next cycle. The probability distribution function is a fundamental 

quantity to measure in any renewal process.  

To understand how to formulate the first-passage time distribution function, let us consider a 

discrete state stochastic model comprising an arbitrary finite number of internal states, n.  
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Figure 1: Schematic representing a discrete state stochastic model. 

One state can reversibly interconvert to its adjacent state. An irreversible step characterizes 

reaching the final state from the last but one state.82 This step in modelling is equivalent to 

fluorescence product formation. The first passage time distribution function represents PDF for 

reaching the nth state at time t for the first time, provided the process began from the zeroth 

state. It is possible for the process to start and reach the target state successfully in one ultimate 

go without any reversions. However, reversions are probable to happen from any of the existing 

intermediates. In these scenarios, the process will begin again to accomplish the monitored 

event i.e. reaching the target state. In this manner, the process continues reaching the 𝑛𝑡ℎ state 

at once or by reverting-back to the starting state for once, twice, thrice and so on. The 

distribution of these stochastic times gives the first passage time distribution. 

𝑓(𝑠) = 𝑄̂1→𝑛(𝑠) + 𝑄̂1→1(𝑠)𝑄̂1→𝑛(𝑠) + (𝑄̂1→1(𝑠))
2
𝑄̂1→𝑛(𝑠) + (𝑄̂1→1(𝑠))

3
𝑄̂1→𝑛(𝑠)

+ ⋯     (𝑄̂1→1(𝑠))
𝑛
𝑄̂1→𝑛(𝑠)   

                                                                                                                                              (1.7) 

 Performing some mathematical modifications leads to 

𝑓(𝑠) = 𝑄̂1→𝑛(𝑠)(1 + (−1)
(−𝑄̂1→1(𝑠))

1!
+ (−1)(−1 − 1)

(−𝑄̂1→1(𝑠))
2

2!

+ (−1)(−1 − 1)(−1 − 2)
(−𝑄̂1→1(𝑠))

3

3!
+ ⋯𝑛!

(−𝑄̂1→1(𝑠))
𝑛

𝑛!
). 

                                                                                                                                              (1.8) 
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Further, rearranging in the form of a binomial series we get 

𝑓(𝑠) = 𝑄̂1→𝑛(𝑠)
1−𝑄̂1→1(𝑠)

.                                                                                                                   (1.9) 

Here 𝑓(𝑠) is the Laplace transform of 𝑓(𝑡); 𝑓(𝑠) = ∫ 𝑒−𝑠 𝑡𝑓(𝑡)𝑑𝑡∞
0 . 

𝑄̂1→𝑛(𝑠) represents the convoluted waiting probabilities for the monitored event and 𝑄̂1→1(𝑠) 

corresponds to the probability per unit for the unmonitored transitions. For the simple MM 

reaction, where the free enzyme state 𝐸 forms the product P via the enzyme-substrate complex 

𝐸𝑆, it is probable that 𝐸𝑆 complex reverts to 𝐸 without leading to an enzymatic turnover event. 

The first passage time distribution will have the following functional form 

𝑓(𝑠) = 𝑄̂𝐸→𝐸𝑆(𝑠)𝑄̂𝐸𝑆→𝑃(𝑠)
1−𝑄̂𝐸→𝐸𝑆(𝑠)𝑄̂𝐸𝑆→𝐸(𝑠)

.                                                                                                   (1.10) 

Here the substrate-binding event is the only transition dependent on [𝑆], represented as an 

exponentially distributed function,𝑄𝐸→𝐸𝑆(𝑡) = 𝑘1[𝑆]𝑒−𝑘1[𝑆]𝑡. The catalytic step and reversions 

are independent of [𝑆]  and their explicit forms are not important. From the moment generation 

formula, we can find out the mean reaction time and higher moments of the first passage time 

distribution to quantify the temporal fluctuations. 

〈𝑡𝑛〉 = (−1)𝑛 (𝜕𝑛𝑓̂(𝑠)
𝜕𝑠𝑛 )

𝑠=0
                                                                                                   (1.11) 

As discussed earlier, similar systems can show the same substrate dependence in the mean 

reaction time.81,82 Variance calculation can give information about the internal kinetic states 

and temporal fluctuations in different systems. This was our first approach of deriving PDF of 

the stochastic processes. Next, we describe another framework to formulate the distributions. 

        1.5.2 The waiting-time distribution formalism: 

SM fluorescence microscopy measurements record the waiting time between two consecutive 

turnover events. To understand and apply the waiting formalism theoretically, we need to 
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construct the chemical master equation (CME) which represents the time evolution of the joint 

probability distribution. This distribution incorporates the change in the number of all species 

present in a reaction system.  

Consider a simple reversible reaction, where 𝑋 transforms to 𝑌; 𝑋 ⇌ 𝑌. Rate constants 

𝑘𝑓 and 𝑘𝑏, respectively characterize the forward and backward transitions. The forward step 

will lead to decrement in the number of X units by unity (𝑥 → 𝑥 − 1) and the backward 

transition corresponds to one unit increment (𝑥 → 𝑥 + 1). For simplicity and understanding 

purposes, consider changes in 𝑋 only. For determining the probability of finding a certain 

number of 𝑋 (𝑥) at some higher time (𝑡 + 𝑑𝑡), provided there were already some numbers of 

𝑋 (𝑥′) at a prior time (𝑡′), one needs to consider probabilities of all possible stochastic 

transitions.88 

𝑃[𝑥, 𝑡 + 𝑑𝑡|𝑥′, 𝑡′]

= 𝑡−(𝑥 + 1) 𝑑𝑡 𝑃[𝑥 + 1, 𝑡|𝑥′, 𝑡′] + 𝑡+(𝑥 − 1) 𝑑𝑡 𝑃[𝑥 − 1, 𝑡|𝑥′, 𝑡′]

+ {1 − (𝑡+(𝑥) + 𝑡−(𝑥)) 𝑑𝑡} 𝑃[𝑥, 𝑡|𝑥′, 𝑡′] 

                                                                                                                                       (1.12) 

In the above equation, the first term represents the probability of decrement in x by one unit, 

associated with decomposition transition probability per unit time (𝑡−(𝑥 + 1)). The second 

term corresponds to increment in x by unity, involving the formation transition probability 

(𝑡+(𝑥 − 1)) and the third term describes the probability of not undergoing any such transition. 

Further, simplification using the First Principle gives 

𝑑𝑃[𝑥, 𝑡|𝑥′, 𝑡′]
𝑑𝑡

= 𝑡−(𝑥 + 1)  𝑃[𝑥 + 1, 𝑡|𝑥′, 𝑡′] + 𝑡+(𝑥 − 1)  𝑃[𝑥 − 1, 𝑡|𝑥′, 𝑡′]

− (𝑡+(𝑥) + 𝑡−(𝑥)) 𝑃[𝑥, 𝑡|𝑥′, 𝑡′]. 

                                                                                                                                  (1.13) 
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The rate of change in the probability density represents its evolution in the forward time. Thus, 

the name forward chemical master equation. Following the similar rational, one can also 

construct the equivalent backward CME. 

The CME for the MM model, 𝐸 + 𝑆 ⇌ 𝐸𝑆 → 𝐸(0) + 𝑃; 𝐸(0) → 𝐸 can be written as 

𝜕𝑃[𝑛𝐸, 𝑛𝐸𝑆, 𝑛𝐸(0), 𝑛𝑃; 𝑡]
𝜕𝑡

= [𝑘1[𝑆](𝑛𝐸 + 1)𝑌𝑛𝐸𝑌𝑛𝐸𝑆
− + 𝑘−1(𝑛𝐸𝑆 + 1)𝑌𝑛𝐸

− 𝑌𝑛𝐸𝑆

+ 𝑘2(𝑛𝐸𝑆 + 1)𝑌𝑛𝐸𝑆𝑌𝑛
𝐸(0)

− 𝑌𝑛𝑃
−

− {𝑘1[𝑆]𝑛𝐸 + (𝑘−1 + 𝑘2)𝑛𝐸𝑆}] 𝑃[𝑛𝐸, 𝑛𝐸𝑆, 𝑛𝐸(0), 𝑛𝑃; 𝑡] 

                                                                                                                                           (1.14) 

Rate constants 𝑘1,  𝑘−1 and 𝑘2 characterize the substrate binding, reversion and product 

formation events, respectively. Kinetic rate constant 𝛿0 represents the instantaneous step 

leading to regeneration of the free enzyme(𝐸(0) → 𝐸 ). The step operator 𝑌 relates the change 

in the number of species involved in a particular step.89 For example, 

𝑌𝑛𝐸𝑌𝑛𝐸𝑆
− 𝑃[𝑛𝐸, 𝑛𝐸𝑆, 𝑛𝐸(0), 𝑛𝑃; 𝑡] gives 𝑃[𝑛𝐸 + 1, 𝑛𝐸𝑆 − 1, 𝑛𝐸(0) , 𝑛𝑃; 𝑡].  

The above equation holds only under the substrate abundance assumption. Thus, the joint 

probability distribution does not reflect any change in the substrate number. Owing to the 

mutual exclusivity of different enzymatic states i.e. at a particular instant of time, the enzyme 

would exist in a particular conformer. CME reduces to a set of ordinary differential equations. 

𝜕𝑃𝐸(𝑡)
𝜕𝑡

= −𝑘1[𝑆]𝑃𝐸(𝑡) + 𝑘−1𝑃𝐸𝑆(𝑡) + 𝛿0𝑃𝐸(0)(𝑡)                                                           (1.15.a) 

𝜕𝑃𝐸𝑆(𝑡)
𝜕𝑡

= 𝑘1[𝑆]𝑃𝐸(𝑡) − (𝑘−1 + 𝑘2)𝑃𝐸𝑆(𝑡)                                                                      (1.15.b) 
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𝜕𝑃
𝐸(0)(𝑡)

𝜕𝑡
= 𝑘2𝑃𝐸𝑆(𝑡) − 𝛿0𝑃𝐸(0)(𝑡)                                                                                     (1.15.c) 

The instantaneous step associated with the free enzyme regeneration is very fast (𝛿0 →  ∞). 

Thus, 
𝜕𝑃

𝐸(0)(𝑡)

𝜕𝑡
≈ 0. The corresponding waiting time distribution function, 𝑓(𝑡) represents the 

rate of change in the probability density of the product state.90 

𝑓(𝑡) = 𝜕𝑃𝑃(𝑡)
𝜕𝑡

= 𝑘2𝑃𝐸𝑆(𝑡)                                                                                                   (1.16) 

To obtain the required PDF, one needs to solve these differential equations by taking their 

Laplace transforms(𝑓(𝑠) = ∫ 𝑒−𝑠 𝑡𝑓(𝑡)𝑑𝑡∞
0 ). 

(𝑠 + 𝑘1[𝑆])𝑃̂𝐸(𝑠) − 𝑘−1𝑃̂𝐸𝑆(𝑠) − 𝛿0𝑃̂𝐸(0)(𝑠) = 1                                                            (1.17.a) 

−𝑘1[𝑆]𝑃̂𝐸(𝑠) − (𝑠 + 𝑘−1 + 𝑘2)𝑃̂𝐸𝑆(𝑠) = 0                                                                     (1.17.b) 

𝑠 𝑃̂𝐸(0)(𝑠) = 1                                                                                                                   (1.17.c) 

Further, the application of appropriate initial conditions and normalization constraints would 

yield the probability density of each state. At the beginning of the reaction, the enzyme would 

be exclusively present as 𝐸 because neither the product nor bound-enzymatic state would exist. 

At any time, the sum of these probability densities should always be unity. 

𝑃𝐸(0) = 1, 𝑃𝐸𝑆(0) = 0, 𝑃𝐸(0)(0) = 0, 𝑃𝑃(0) = 0                                                             (1.18) 

𝑃𝐸(𝑡) + 𝑃𝐸𝑆(𝑡) + 𝑃𝐸(0)(𝑡) = 1                                                                                          (1.19) 

Arranging in the form of a matrix we get 

[
𝑠 + 𝑘1[𝑆] −𝑘−1 −𝛿0
−𝑘1[𝑆] (𝑠 + 𝑘−1 + 𝑘2) 0

0 0 𝑠
] [

𝑃̂𝐸(𝑠)
𝑃̂𝐸𝑆(𝑠)
𝑃̂𝐸(0)(𝑠)

] = [
1
0
0
]                                                     (1.20) 

Further, taking the inverse and performing the matrix multiplication one can obtain 
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[
𝑃̂𝐸(𝑠)
𝑃̂𝐸𝑆(𝑠)
𝑃̂𝐸(0)(𝑠)

] =

[
 
 
 

𝑘−1+𝑘2+𝑠
𝑘−1𝑠+(𝑘2+𝑠)(𝑠+𝑘1[𝑆])

𝑘1[𝑆]
𝑘−1𝑠+(𝑘2+𝑠)(𝑠+𝑘1[𝑆])

0 ]
 
 
 
.                                                                                    (1.21) 

Using the probability density of the bound enzymatic state, we obtain PDF for the turnover 

event. 

𝑓(𝑠) = 𝑘2 ∗ 𝑃̂𝐸𝑆(𝑠) = 𝑘1𝑘2[𝑆]
𝑘−1𝑠+(𝑘2+𝑠)(𝑠+𝑘1[𝑆])                                                                           (1.22) 

In this way, one can derive the waiting time distribution for a catalytic system by constructing 

the CME, fragmenting it to obtain the rate of change in density of respective states and solving 

the coupled differential equations using the initial and normalization conditions.  

16.1 Thesis chapters in brief: 

This thesis covers some applications of the first-passage time distribution formalism 

and the waiting-time distribution formalism on enzyme and NP catalytic systems with varying 

number of internal states (discrete) and interconversions at the SM level. Stochastic processes 

can also be modelled using continuous modelling methods. We have developed a theoretical 

method to derive the PDF of time taken by a molecule in crossing a barrier (the transit time 

distribution) using a generalized Langevin Equation (GLE) comprising different force 

components.  The obtainable PDFs provide us a measure of significant statistical quantities for 

characterizing the systems, providing molecular mechanistic details and capturing stochastic 

behaviour inaccessible from ensemble rate measurements. The succeeding sections comprise 

respective thesis chapters, briefed below. 

Chapter 2:  

Experiments have already shown that the temporal effects like as the distribution of catalytic 

rates, molecular memory and correlation between the stochastic events attributed to the 
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conformational fluctuations in SM reaction systems.23,36,63,65,68,69 To understand such 

fluctuations from a theoretical point of view, several discrete state models consisting of many 

free and bound enzymatic conformers were constructed. We wanted to build up some minimal 

models, which are capable of capturing these experimental observations. Using the first-

passage time distribution formalism, we examined the effect of different types of enzymatic 

interconversions between the free and bound states. We have studied the statistical properties 

of a fluctuating enzyme existing in multiple conformers, exhibiting dynamic cooperativity and 

dynamic disorder due to many competing reaction timescales. 

Chapter 3: 

The reaction rate studies usually involve the change in the rate of product formation with 

respect to the binding rate or in terms of the catalytic rate constant. If one examines the classical 

turnover expression obtained under the QSSA, it is quite evident that with an increase in the 

magnitude of unbinding rate, the velocity decreases. Study based on mathematical arguments 

and analytical reasoning, confirms that the turnover rate can show an occasional rise with the 

unbinding rate, which was restricted to some prerequisite conditions.91 Further modifications 

in the mechanistic models, involved incorporation of the bound-enzyme conformational 

dynamics. It also led to the reaction-rate acceleration effect pertaining to certain limits.92  

       In the previous model, owing to the conformational equilibrium between the free-

enzymatic states, there is a single free state. It had has been reported that free-enzyme 

fluctuations lead to the dynamic cooperative effect. We modified the existing mechanisms by 

incorporating the free-enzyme interconversions along with the substrate-bound fluctuations 

and formulated the CME for different reaction models. In general, the reaction rate decreases 

monotonically with the unbinding rate. The conditional non-monotonicity is obtainable under 
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special limits corresponding to a particular parameter space, which shows an initial rate 

enhancement followed by a maximum value and ultimately, a gradual fall. 

Chapter 4: 

Previous chapters dealt with the SM enzyme kinetics in the presence of a single type of 

substrate. There are several reactions in the organic Chemistry involving binding with multiple 

substrates. For these mechanisms, along with the binding site, the sequence of binding also 

governs the reaction kinetics. Based on the binding sequence, they have been classified into 

two categories, namely, the sequential and non-sequential binding mechanisms.93 The 

deterministic treatments cannot differentiate between these mechanisms as the functional form 

of the velocity shows similar substrate dependence. Using a stochastic approach for 

determining the mean reaction time and other statistical quantities to characterize multiple-

substrate binding models, one can mark the clear distinction. We apply the waiting-time 

distribution formalism to obtain the PDF for the turnover event and quantify the fluctuations 

present in the multi-substrate binding reactions occurring at the SM level. 

Chapter 5: 

In the classical chemical kinetics, the substrate concentration is significantly greater than that 

of the enzyme catalysing the reaction. Even in the SM enzyme catalysed reactions, the substrate 

concentration is quasi-statically fixed. This is equivalent to experiments where one monitors 

the turnover event during the initial transient phase of the reaction. However, for intracellular 

compartment reactions, the substrate abundance assumption breaks down due to the 

comparable concentrations of the substrate and enzyme involved.94,95 To model the kinetics of 

intracellular reactions constituting irreversible or bidirectional substrate flow, we incorporated 

the substrate number fluctuations in the CME. For different systems comprising a varying 

number of intermediates, we deduced the velocity under the SSA, which shows a non-MM 
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behaviour and calculated the coefficient of variation (CV) representing fluctuations in the 

substrate numbers. The noise present in such systems depend on its internal states and the 

associated steady substrate flow. 

Chapter 6: 

Enzymes perform several vital functions necessary for the sustenance of life. ERK II is a 

mitogen-activated protein kinase enzyme involved in the extracellular cell signalling pathways 

and phosphorylation of the targeted substrate molecules.96 Many experimental and theoretical 

studies have shed light on its mechanism.97. Recent experimental data have shown an enhanced 

enzymatic activity due to some mutations in the docking sites.98 For theoretically modelling 

this effect, a network comprising three coupled MM pathways was analysed where the mean 

time followed the MM law.99  

We wanted to investigate the temporal fluctuations present in such phosphorylation and de-

phosphorylation networks by incorporating more internal states and associated transitions in 

the mechanism. Using the waiting-time distribution formalism, one can also examine the effect 

of activity or inactivity of an intermediate. The rate-determining step changes under different 

physical scenarios depending on the concentration of species involved. We have studied 

randomness present in different networks as a function of the substrate concentration for 

different values of the activator and deactivator concentrations. 

Chapter 7: 

All of the above thesis chapters based on SM enzyme catalysis with one/multiple substrate 

types, with/without the substrate number fluctuations, deal with homogenous catalysis. On the 

contrary, nanoparticles (NPs) are intrinsically heterogeneous and show the temporal 

fluctuations in the rates.75,77,100 As observed from the single molecule experiments, a catalytic 

cycle constitutes an off and an on event, respectively representing the fluorescent product 
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formation and dissociation processes. Based on these experimental observations, the proposed 

mechanism (modified MM) consisted of two product dissociation pathways. Theoretical 

studies have quantified the temporal fluctuations in the activity of NPs.79,80  

Experiments have also shown the size-dependent metal NP catalysis.76 An increase in NP’s 

dimension enhanced the reaction rates for the fluorescent product formation and dissociation 

events. The effect of size on several physical properties like as the binding affinity, adsorption 

equilibrium constants, fractional-coverage of the active sites, spontaneous and induced surface 

restructuring, was illustrated. We wanted to examine the size-dependent catalysis theoretically 

by including the effects from all sites. Using a stochastic approach based on the superposition 

of renewal processes, we could obtain the first-passage time distribution for the off and on 

events with a certain number of sites. The size of a NP is directly proportional to the number 

of active sites. This was the rationale behind the applied concept. From the moments of the 

PDF, we obtained the exact analytical expression for the mean time and randomness parameter.  

Chapter 8: 

NPs have a multitude of surface sites on which chemical reactions occur simultaneously. In the 

previous theoretical model, the PDF for a system with a given number of catalytic sites depends 

on the distribution of one site, corresponding to the respective off and on events. The 

methodology applied involves recording the statistical output from a pool of events. 

Considering the realistic picture of heterogeneous catalysis with an aim of capturing 

stochasticity, one needs to establish a connection between the experimentally measured time 

between the two consecutive product formation events and the corresponding distribution of 

time obtained from the analytical methods.75,77  

To model such heterogeneous systems with multitude of active sites, one must focus on the 

mechanistic details of the chemical reaction. We construct a model comprising N number of 
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independent identical catalytic sites. These reactions can have an arbitrary number of 

intermediates and for the product formation to happen from multiple sites, the system will be 

in a particular bound state. Here we apply the first-passage time distribution formalism to 

determine the PDF for an event to happen from any possible site. The statistical measurements 

successfully captured the stochastic effects, which depend on the mechanism.  

Chapter 9: 

In our previous thesis chapters, we have implemented different discrete state stochastic 

approaches for determining the statistical quantities related to the catalytic reaction networks 

at the SM level. The PDF constructed for various model systems emphasized on the occurrence 

of a particular event (reaching a definite state for the first time; marking the monitored 

transition). This gives the first-passage distribution. We have also employed the waiting-time 

distribution formalism to determine the catalytic turnover time distribution by taking into 

consideration the change in the number of different species participating in a reaction.  

                Apart from these approaches, one can also implement the continuous modelling 

methods to obtain the PDF. The methodology involves the use of a generalized Langevin 

equation (GLE), which comprises different forces subjected on a particle crossing a 

barrier.101,102  By examining the change in the position of the reaction co-ordinate of the system, 

one can model its dynamics. From this GLE, we can obtain the corresponding Fokker Planck 

equation (FPE), whose solution gives the required PDF (the first-passage time distribution). 

With advancements in the SM techniques, one can explicitly measure the time taken by a 

molecule in crossing a biological pore. This only takes into account the successful trajectories 

and gives the corresponding transit time distribution (TTD).103,104 Previous theoretical studies 

covered Markovian systems with/without the inertial effect.105,106 However, studies related to 

protein folding-unfolding dynamics and conformational rearrangements have shown 

anomalous diffusion.41,107 There are studies describing the dynamics of non-Markovian 
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systems in the overdamped limit.108,109 It is important to include the inertial contribution along 

with the memory effect. In this chapter, we describe a theoretical method for deriving the TTD 

for a particle crossing an inverted parabolic potential, subjected to a frictional force associated 

with a power-law memory kernel, and a correlated random force (coloured noise). 

            All these theoretical investigations and numerical analyses provide platforms for a 

better understanding of biochemical/biophysical processes. 
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2. Statistical properties of fluctuating        
enzymes with dynamic cooperativity 
using a first passage time distribution 
formalism 
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2.1 Introduction: 

According to the classical Michaelis-Menten (MM) reaction, the mean turnover time depends linearly 

on the inverse of the substrate concentration.1 However, enzymatic reactions can be much more 

complex.2-4 Recent advances in single molecule spectroscopy allow us to study the dynamic behaviour 

of individual enzyme molecules in real-time.5,6 Single-molecule fluorescence studies on the enzyme 

beta-galactosidase7 show that the turnover time distributions follow a multi-exponential decay at high 

substrate concentrations.  This experimental observation was explained theoretically with a discrete 

two-state model where the enzyme can exist in multiple conformations and switch reversibly between 

them.8 Such conformational fluctuations lead to dynamic disorder.9,10 In general, for this two-state 

model with slow enzymatic conformational fluctuations, the mean turnover time, does not follow the 

classical MM equation.4 Such a deviation in the MM behaviour can lead to dynamic cooperativity in a 

single enzyme.  Cooperativity is the effect of multiple binding sites for a single enzyme.  But under 

certain limiting conditions, for example in the quasi-static limit, when fluctuations between the free 

enzyme conformers are absent and only slow fluctuations between the enzyme-substrate conformers 

exist, the rate equation reduces to the ensemble MM equation.8,11 In complex enzymatic reactions with 

interconversion between several enzymatic states, the hyperbolic form of the MM relation is valid 

provided the detailed balance condition holds good.12 Hence the measurement of the mean turnover 

time may not be sufficient to provide dynamic insights.  

            As described in the chapter I of the thesis, we calculate the randomness parameter to quantify 

the noise present in the catalytic systems, expressed in terms of the moments of the catalytic time 

distribution.11-14 The randomness and its inverse provides qualitative information about the nature of 

the probability distribution.15 The measurement of 𝑅, gives the mechanistic insights.16 For a single 

substrate enzymatic reaction with multiple conformations, randomness parameter has been studied 

theoretically by Kou et al..8 Assuming that the inter-conversion between the free enzymes is absent and 

the inter-conversion among the two enzyme-substrate conformers is slow compared to the product 

formation rates (quasi-steady state approximation gives 𝑅 = 1 at low [𝑆], but its value deviates from 

unity at intermediate to high substrate concentration.  Many theoretical studies employed the chemical 

master equation (CME) approach to obtain the steady-state probabilities for different enzymatic states.  
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Kumar et al. have used the same approach for single enzyme reactions where product formation can 

occur through either parallel or off-pathway mechanisms.17 This study confirmed that free enzyme 

conformational fluctuations do not contribute to dynamic disorder.  

In this chapter, we consider an alternative theoretical model based on the first-passage time 

distribution formalism to obtain the reaction time and the randomness parameter for a catalytic reaction 

with multiple inter-convertible states. This method has been used earlier to obtain the first passage time 

distribution for a simple MM reaction.18 Within this theoretical framework, one can obtain the closed-

form analytical expressions for the statistical measures in the context of ion channel statistics and even 

for single nanoparticle catalysis.16,18 All the reaction motifs studied earlier using the first passage 

formalism correspond to a renewal process19 with a single substrate binding site. A fundamental 

measurable quantity in any renewal process is the first passage time distribution function between 

successive catalytic turnover events, which are referred to as monitored transitions.20,21 These events 

can be detected in single molecule fluorescence experiments owing to the fluorescent nature of the 

product. 7 Earlier studies based on the first passage approach, covered renewal processes22 with only 

one active site.16,18 In this chapter, we consider complex kinetic schemes with multiple inter-convertible 

states by applying this formalism.   

In section 2.2, we describe our different enzymatic reaction models with multiple interconvertible states 

and explain respective observations. We first consider two simple models of single enzymatic reaction 

with two active sites wherein fluctuations exists only between the free enzyme conformers. Both these 

reaction mechanisms can serve as minimal models to understand the effect of dynamic cooperativity. 

Next we consider a minimal model for the off-pathway mechanism that has been discussed earlier by 

Kumar et al.17, where conformational fluctuations are present only between the enzyme-substrate 

conformers. This model could rationalize the experimental findings, on single turnover statistics.   

2.2 Reaction Models and Analyses 
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Figure 2.1: Reaction model for single enzyme catalysis with two interconvertible free conformers 
𝑬𝟏 and 𝑬𝟐.  

We consider a very simple enzymatic reaction scheme as described in Figure 2.1. The enzyme can exist 

as two inter-convertible conformers 𝐸1 and  𝐸2. Both these conformers can bind reversibly to the 

substrate 𝑆 to form the 𝐸𝑆 complex, which can dissociate via two pathways forming the product 𝑃 and 

𝐸1 and 𝐸2 are regenerated. The first passage time distribution 𝜙̂(𝑠) for this reaction scheme is an 

algebraic sum of four distributions given as 

𝜙̂(𝑠) = 𝑃1𝜙̂𝐸1→𝐸𝑆(𝑠) + 𝑃2𝜙̂𝐸2→𝐸𝑆(𝑠) + 𝑄̂𝐸𝑆→𝐸1(𝑠) + 𝑄̂𝐸𝑆→𝐸2(𝑠).                (2.1)                  

Here the first two terms correspond to the probability of forming 𝐸𝑆 starting 𝐸1 and 𝐸2 respectively and 

𝑃1 and 𝑃2 are the corresponding weights such that 𝑃1 + 𝑃2 = 1. However, the expressions for these 

weights can be determined from normalized stationary fluxes. 23,24 For Figure 2.1, 𝑃1 and 𝑃2 are 

constants and are independent of the substrate concentration. 𝜙̂𝐸1→𝐸𝑆(𝑠) has a contribution from two 

reaction pathways (a) 𝐸1 → 𝐸𝑆 and (b) 𝐸1 ⇄ 𝐸2 → 𝐸𝑆. Similarly, 𝜙̂𝐸2→𝐸𝑆(𝑠) will also have two 

contributions (a) 𝐸2 → 𝐸𝑆 and (b) 𝐸2 ⇆ 𝐸1 → 𝐸𝑆. 

 𝜙̂𝐸1→𝐸𝑆(𝑠) = 𝑄̂𝐸1→𝐸𝑆(𝑠)+𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸𝑆(𝑠)
1−𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸1(𝑠)

                                                      (2.2)          

𝜙̂𝐸2→𝐸𝑆(𝑠) = 𝑄̂𝐸2→𝐸𝑆(𝑠)+𝑄̂𝐸2→𝐸1(𝑠)𝑄̂𝐸1→𝐸𝑆(𝑠)
1−𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸1(𝑠)

                                                      (2.3) 

𝑄̂𝐸𝑆→𝐸1(𝑠) and 𝑄̂𝐸𝑆→𝐸2(𝑠) in Eq. 1 are the probabilities of regenerating 𝐸1 and 𝐸2, respectively starting 

from ES. The equation set below shows the explicit form of the waiting time probabilities for each 

transition. 

𝑄̂𝐸1→𝐸𝑆(𝑠) = 𝑘1[𝑆]
𝑠+𝑘1[𝑆]+𝑏

                                                                                                                     (2.4a) 
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𝑄̂𝐸2→𝐸𝑆(𝑠) = 𝑘2[𝑆]
𝑠+𝑘2[𝑆]+𝑎

                                                                                                                     (2.4b) 

𝑄̂𝐸1→𝐸2(𝑠) = 𝑏
𝑠+𝑏+𝑘1[𝑆]                                                                                                                      (2.4c) 

𝑄̂𝐸2→𝐸1(𝑠) = 𝑎
𝑠+𝑎+𝑘2[𝑆]                                                                                                                     (2.4d) 

𝑄̂𝐸𝑆→𝐸1(𝑠) = 𝑘−1 +𝑘3 
𝑠+𝑘−1 +𝑘−2 +𝑘3 +𝑘4

                                                                                                        (2.4e) 

𝑄̂𝐸𝑆→𝐸2(𝑠) = 𝑘−2 +𝑘4
𝑠+𝑘−1 +𝑘−2 +𝑘3 +𝑘4

                                                                                                         (2.4f) 

Using the moment generation formula, we derive the average reaction time from Eq. 1. 

  〈𝑡〉 = 𝐹[𝑆]2+𝐻[𝑆]+𝐵
𝐸[𝑆]2+𝐷[𝑆]  .                                                                                                                           (2.5) 

Here 𝐹 = 𝑘1𝑘2
𝑘−1+𝑘−2+𝑘3+𝑘4

, 𝐻 = (𝑎𝑘1+𝑏𝑘2)
𝑘−1+𝑘−2+𝑘3+𝑘4

+ (𝑘1𝑃2 + 𝑘2𝑃1), 𝐵 = 𝑎 + 𝑏, 𝐸 = 𝑘1𝑘2 and 𝐷 = 𝑎𝑘1 +

𝑏𝑘2. According to Eq. 5, the reaction rate does not follow the classical MM relation. Analysing the rate 

of reaction in the quasi-static limit(𝑎 → 0 and 𝑏 → 0), Eq. 5 reduces to the simple MM kind of 

equation, 〈𝑡〉 = 𝐴 + 𝐼
[𝑆]. Here𝐴 = 1

𝑘−1+𝑘−2+𝑘3+𝑘4
, I = 𝑘1𝑃2+𝑘2𝑃1

𝐸
. Figure 2a shows the dependence of the 

reaction rate as a function of the substrate concentration, [𝑆]. When the binding of the substrate to one 

enzyme conformer influences the substrate binding to another conformer (𝑘1 > 𝑘2), there are 

deviations from the MM equation. This indicates the emergence of dynamic cooperativity. In the 

absence of conformation fluctuations(𝑎 = 𝑏 = 0), the MM equation recovers. For the given set of 

parameter values chosen in Figure 2a, in the presence of conformational fluctuations between 𝐸1 and 

𝐸2, there is a steeper increase in the reaction rate with increasing [𝑆] than obtained in classical MM 

kinetics indicating the presence of positive cooperativity.
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Figure 2.2: (a) Single molecule rate plot for the scheme shown in Figure 1, as a function of 
substrate concentration [S] in non-dimensional units showing deviation from the MM equation 
and positive cooperativity at 𝒂 =  𝒃 =  𝟏, (solid line). The MM relation recovers in the absence of 
enzyme conformational fluctuations 𝒂 =  𝒃 =  𝟎 (dashed line). Common parameter values are 
𝒌𝟏 = 𝒌−𝟏 = 𝒌−𝟐 = 𝟎. 𝟓, 𝒌𝟐 =  𝟎. 𝟎𝟏, 𝒌𝟑 = 𝟓, 𝒌𝟒 = 𝟏,𝑷𝟏 = 𝟎. 𝟖, 𝑷𝟐 = 𝟎. 𝟐. (b) Randomness 
parameter R as a function of [S] for the same model with 𝒌𝟏 = 𝒌−𝟏 = 𝒌𝟐 =  𝒌−𝟐 = 𝟎. 𝟓, 𝒂 =  𝒃 =
 𝟏, 𝒌𝟑 = 𝟓, 𝒌𝟒 = 𝟏, 𝑷𝟏 = 𝟎. 𝟖, 𝑷𝟐 = 𝟎. 𝟐. 

           Figure 2.2b shows the randomness parameter as a function of the substrate concentration, [𝑆]. In 

the presence of slow fluctuations between 𝐸1 and 𝐸2 conformers, the randomness parameter is equal to 

unity at low substrate concentration. At intermediate [𝑆], 𝑅 deviates from unity due to the presence of 

multiple timescales of binding and dissociation events. Finally, at infinite substrate concentrations, 𝑅 

reduces to unity. Thus, the slow enzymatic conformational fluctuations do not affect the product 

formation step. 

Unlike Figure 2.1, Figure 2.3 has two enzyme-substrate complexes, 𝐸1𝑆 and 𝐸2𝑆.  

 

Figure 2.3: Reaction scheme for single enzyme catalysis with two interconvertible free conformers 
𝑬𝟏 and 𝑬𝟐.  Both of them can bind with 𝑺 to form different enzyme-substrate complexes. 

 Eq. 6 represents the first passage time distribution for the model presented in Figure 2.3.  

𝜙̂(𝑠) = 𝜙̂𝐸1𝑆(𝑠) + 𝜙̂𝐸2𝑆(𝑠) + 𝑃5𝑄̂𝐸1𝑆→𝐸1(𝑠) + 𝑃6𝑄̂𝐸2𝑆→𝐸2(𝑠)                                                           (2.6)           

𝜙̂𝐸1𝑆(𝑠) and 𝜙̂𝐸2𝑆(𝑠) are the probability distributions for forming 𝐸1𝑆 and 𝐸2𝑆 from either 𝐸1 and 𝐸2 

respectively. 𝜙̂𝐸1𝑆(𝑠) has two contributions starting from 𝐸1 and 𝐸2, respectively given as (a) 𝐸1 →

𝐸1𝑆 and (b) 𝐸2 ⇆ 𝐸1 → 𝐸1𝑆 with corresponding weights 𝑃1 and 𝑃2. Similarly, 𝜙̂𝐸2𝑆(𝑠) will include 

two routes for the formation of 𝐸2𝑆 via (a) 𝐸2 → 𝐸2𝑆 and (b) 𝐸1 ⇆ 𝐸2 → 𝐸2𝑆 from 𝐸1 and 𝐸2 

respectively with corresponding weights 𝑃3 and 𝑃4. 

𝜙̂𝐸1𝑆(𝑠) = 𝑃1
𝑄̂𝐸1→𝐸1𝑆(𝑠)

1−𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸1(𝑠)
+ 𝑃2

𝑄̂𝐸2→𝐸1(𝑠)𝑄̂𝐸1→𝐸1𝑆(𝑠)
1−𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸1(𝑠)

                                                          (2.7) 
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𝜙̂𝐸2𝑆(𝑠) = 𝑃3
𝑄̂𝐸2→𝐸2𝑆(𝑠)

1−𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸1(𝑠)
+ 𝑃4

𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸2𝑆(𝑠)
1−𝑄̂𝐸1→𝐸2(𝑠)𝑄̂𝐸2→𝐸1(𝑠)

                                                              (2.8) 

The free enzymes regenerates from 𝐸1𝑆 and 𝐸2𝑆 conformers with probabilities 𝑄̂𝐸1𝑆→𝐸1(𝑠)and 

 𝑄̂𝐸2𝑆→𝐸2(𝑠). 𝑃5 and 𝑃6 are the corresponding weight factors. The set of equations listed below shows 

the functional form of the probability per unit time for each event. 

𝑄̂𝐸1→𝐸1𝑆(𝑠) = 𝑘1[𝑆]
𝑠+ 𝑘1[𝑆]+𝑏

                                                                                                                  (2.9a) 

𝑄̂𝐸2→𝐸2𝑆(𝑠) = 𝑘2[𝑆]
𝑠+ 𝑘2[𝑆]+𝑎

                                                                                                                   (2.9b) 

𝑄̂𝐸1→𝐸2(𝑠) = 𝑏
𝑠 + 𝑘1[𝑆] +𝑏

                                                                                                                    (2.9c) 

𝑄̂𝐸2→𝐸1(𝑠) = 𝑎
𝑠 + 𝑘2[𝑆] + 𝑎

                                                                                                                   (2.9d) 

𝑄̂𝐸1𝑆→𝐸1(𝑠) = 𝑘−1+ 𝑘3
𝑠 + 𝑘−1+ 𝑘3

                                                                                                           (2.9e) 

𝑄̂𝐸2𝑆→𝐸2(𝑠) = 𝑘−2+ 𝑘4
𝑠 + 𝑘−2 + 𝑘4

                                                                                  (2.9f) 

Using Eq. 6, the first moment of 𝜙̂(𝑠) gives the mean reaction time. 

〈𝑡〉 = 𝑈[𝑆]3+𝑋[𝑆]2+𝑌[𝑆]+𝑍
𝐸0[𝑆]3+𝐹0[𝑆]2+𝐷0[𝑆]                                                                   (2.10) 

Here    𝑈 = 𝑘1
2𝑘2

2[(𝑘−1 + 𝑘3)𝑃6 + (𝑘−2 + 𝑘4)𝑃5], 

𝑋 = 𝑘1𝑘2(𝑘−1 + 𝑘3)(𝑘−2 + 𝑘4)(𝑘1𝑃3 + 𝑘2𝑃1) + 2𝑘1𝑘2(𝑎𝑘1

+ 𝑏𝑘2)[(𝑘−1 + 𝑘3)𝑃6 + (𝑘−2 + 𝑘4)𝑃5], 

𝑌 = (𝑎𝑘1(𝑎𝑘1 + 2𝑏𝑘2) + 𝑏2𝑘2
2) [(𝑘−1 + 𝑘3)𝑃6 + (𝑘−2 + 𝑘4)𝑃5] + ((𝑘−1 + 𝑘3)(𝑘−2 +

𝑘4))[2𝑘1𝑘2(𝑎𝑃1 + 𝑏𝑃3) + (𝑘1 + 𝑘2)(𝑎𝑘1𝑃2 + 𝑏𝑘2𝑃4)], 

𝑍 = ((𝑘−1 + 𝑘3)(𝑘−2 + 𝑘4))[𝑎2𝑘1 + 𝑎𝑏(𝑘1 + 𝑘2)]. 
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This expression does not follow the MM relation. If the conformational transitions between 𝐸1 and 𝐸2 

are absent (i.e. 𝑎 = 𝑏 = 0) the mean reaction time reduces to a MM like equation, 

〈𝑡〉 = 𝐽0 + 𝐼0
[𝑆] , where  𝐽0 = 𝑃5

𝑘−1+𝑘3
+ 𝑃6

𝑘−2+𝑘4
 and 𝐼0 = 𝑘1𝑃3+𝑘2𝑃1

𝑘1𝑘2
 . Figure 2.4a shows the reaction 

velocity as a function of [𝑆] where a less steep increase in the reaction velocity is observed in the 

presence of free enzyme fluctuations than allowed by a MM scheme.  With the given set of parameters, 

slow enzyme conformational fluctuations lead to positive cooperativity. 

 

Figure 2.4: (a) Single molecule rate plot for the model presented in Figure 2.3 as a function of 
substrate concentration [S] in non-dimensional units showing deviation from the MM equation 
and positive cooperativity at 𝒂 =  𝒃 =  𝟏 (solid line). The MM relation recovers in the absence of 
enzyme conformational fluctuations, 𝒂 =  𝒃 =  𝟎 (dashed line). (b) Randomness parameter R as 
a function of [𝑺], 𝒌𝟑 = 𝒌𝟒 = 𝟓,𝑷𝟓 = 𝑷𝟔 = 𝟎. 𝟓 (dashed line), 𝒌𝟑 = 𝟎. 𝟓, 𝒌𝟒 = 𝟎. 𝟏, 𝑷𝟓 = 𝟎. 𝟖, 𝑷𝟔 =
𝟎. 𝟐 (solid line). Common parameters are 𝒌𝟏 = 𝒌−𝟏 = 𝒌𝟐 =  𝒌−𝟐 = 𝟎. 𝟓, 𝑷𝟏 = 𝑷𝟐 = 𝑷𝟑 = 𝑷𝟒 =
𝟎. 𝟓, 𝒂 = 𝒃 =  𝟎. 𝟏. 

        Figure 2.4b shows the effect of enzyme conformational fluctuations on R for the schematic shown 

in Figure 2.3. At high substrate concentrations, when 𝑘3  =  𝑘4, 𝑅 is equal to unity (dashed line in 

Figure 2.4b). If conformational fluctuations are present between the enzyme-substrate complexes at 

timescales comparable to catalytic step, the relative rates of product formation are different (𝑃5 ≠

𝑃6, 𝑘3 ≠ 𝑘4) and dynamic disorder arises at high substrate concentration (solid line). From both these 

schemes (Figure 2.1 and 2.3) discussed, we can conclude that slow fluctuations only between free 

enzyme conformers (𝐸1 and 𝐸2) do not lead to dynamic disorder. 17 

             Kumar et al. showed analytically that R is greater than unity at high substrate concentration 

when the catalytic rate constants are not equal (𝑘3 ≠ 𝑘4) or even when product formation occurs from 

only one enzyme-substrate conformer (𝑘4 = 0).17 This result indicates that we can consider a simpler 

mechanism where the free enzyme exists in only one active state(𝑘2 = 𝑘−2 = 0) and slow 
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conformational fluctuations are present between 𝐸1𝑆 and 𝐸2𝑆, with only a single product formation 

pathway from 𝐸1𝑆 (k4 = 0). Figure 2.5a represents the reaction pathway, commonly known as the off-

pathway mechanism. 

 

Figure 2.5: (a) Reaction model for single enzyme catalysis with interconversion between enzyme 
substrate conformers and only one product formation pathway. (b) Randomness parameter 𝑹 as 
a function of [𝑺] in non-dimensional units with 𝒄 = 𝒅 = 𝟎. 𝟏 (solid line) and 𝒄 = 𝒅 = 𝟎. 𝟑 (dashed 
line). Common parameters are k1 = k-1 = 0.5, k2 = 0.1. (c) Comparison of randomness 
parameter with experimental data in Reference 7. Black circles represent experimental data 
points. The substrate concentration, [S] on the x-axis is in micro-molar concentration. The solid 
line is the theoretical fit of Eq. 15 with parameter values with parameters 𝒌𝟏 = 𝟑. 𝟖𝟗 ∗
𝟏𝟎𝟑𝒔−𝟏, 𝒌−𝟏 = 𝟓 ∗ 𝟏𝟎𝟑𝒔−𝟏, 𝒌𝟐 = 𝟓 ∗ 𝟏𝟎𝟒𝒔−𝟏, 𝒄 = 𝟐 ∗ 𝟏𝟎𝟒𝒔−𝟏, 𝒅 =  𝟐. 𝟐 ∗ 𝟏𝟎𝟒𝒔−𝟏.  

The first-passage time distribution for this reaction mechanism is 

 ∅̂(s) = Q̂E1→E1S(s)Q̂E1S→P(s)
1-Q̂E1→E1S(s) Q̂E1S→E1(s)-Q̂E1S→E2S(s)Q̂E2S→E1S(s)

.                                                                       (2.12)                              

The waiting time distributions for each step are as follows:  

 Q̂E1→E1S(s) = k1[S]p
s+k1[S]                                                          (2.13a) 

 𝑄̂𝐸1𝑆→𝐸1(𝑠) = 𝑘−1
𝑠+𝑑+𝑘−1+𝑘2

                                                                            (2.13b) 

Q̂E1S→P(s) = k2
s+d+k-1+k2

                                           (2.13c) 

Q̂E1S→E2S(s) = d
s+d+k-1+k2

                                                                                                                (2.13d) 

Q̂E2S→E1S(s) = c
s+c

                                                                                                                            (2.13e) 

Using Eq. 2.12, we can obtain the mean reaction time. 

〈t〉 = A+B[S]
C[S] .                                                            (14) 
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Here,  𝐴 = 𝑐(𝑘−1 + 𝑘2),  𝐵 = (𝑐 + 𝑑) 𝑘1 and   𝐶 = 𝑘1𝑘2𝑐. Eq. 2.14 obeys the MM type of relation. 

The randomness parameter for the off-pathway mechanism has the following form. 

R = [1 + [S][(j[S]-l)]

[m+[S]]
2 ]                                                                                                                           (2.15) 

Here,  𝑗 = 2𝑘2𝑑
(𝑐+𝑑)2 , 𝑙 = 2𝑘2𝑐

(𝑐+𝑑)𝑘1
  and m = c(k-1+k2)

k1(c+d) . Figure 2.5b shows the dependence of the randomness 

parameter on [𝑆]. Due to the competition between timescales of enzyme-substrate conformational 

fluctuations and the product formation step, dynamic disorder is present at intermediate to high 

substrate concentrations. A small increase in the timescale of the enzyme-substrate conformational 

fluctuations can suppress the magnitude of temporal fluctuations and can reduce the value of 𝑅 at high 

substrate concentrations (dashed line). At [S] → 0, the rate determining step corresponds to the binding 

of the substrate only to 𝐸1 and 𝑅 = 1. In Figure 2.5c we compare the randomness parameter obtained 

from Eq. 2.15 with the experimental data on beta-galactosidase.7 By considering the case that the 

conformational fluctuations of the enzyme-substrate are slower than the catalytic step, and choosing 

suitable parameter values, we obtain an excellent agreement with the experimental data. 

2.3 Conclusions: 

  In this chapter, we use the first-passage time distribution formalism to model the kinetics of a 

single enzyme that fluctuating between multiple conformations. We obtain exact expressions for the 

mean reaction time and the randomness parameter. In different schemes described above, 

conformational fluctuations of the free enzyme lead to dynamic cooperativity. In the absence of 

enzymatic conformational fluctuations, the MM relation holds. Thus, dynamic cooperativity in single 

enzyme arises due to the slow enzymatic (free enzyme) conformational fluctuations. The variation of 

the randomness parameter with [𝑆] provides information about the role of dynamic disorder in different 

reaction models with conformational fluctuations. In this chapter, for both the models based on free 

enzyme fluctuations, the randomness parameter is equal to unity at low and high [𝑆].  On the contrary, 

the off-pathway mechanism obeys the MM kinetics and the randomness parameter is greater than unity 

at high substrate concentrations. A small increase in the timescale of the enzyme-substrate 

conformational fluctuations can suppress the magnitude of temporal fluctuations at high substrate 
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concentrations. All these studies indicate that randomness parameter at high substrate concentrations is 

determined only by the slow fluctuations of the enzyme–substrate conformers. 
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3. Theoretical study of the conditional 
non-monotonic off rate dependence of 
catalytic reaction rates in single 
enzymes in the presence of 
conformational fluctuations 
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3.1 Introduction 

With the advancements in single molecule fluorescence measurements, one can explore the 

behaviour of individual molecules in time.1,2 The role of enzymatic conformational fluctuations 

affecting the dynamic properties of a reaction has also been studied theoretically.3-5 In the 

second chapter of the thesis, we have already discussed the effect of enzymatic interconversions 

for different reaction models. Systems with slow free enzyme conformational fluctuations show 

deviation from the classical MM behaviour and this effect vanishes in the quasi-static limit. 

Thus, the turnover rate showed the substrate hyperbolic dependence only under certain 

assumptions. In this chapter, we discuss the role of substrate unbinding using theoretical tools. 

According to the well-known Michaelis–Menten equation, an increase in the rate of substrate 

unbinding will decrease the rate of enzymatic turnover. However, Klafter and co-workers 6 have 

analytically studied the role of substrate unbinding and demonstrated that reaction velocity can 

be accelerated by increasing the off dissociation rate under certain conditions. For 

understanding the unbinding-catalytic turnover relationship, they transformed the catalytic time 

distribution in terms of the unbinding rate (𝑓𝑐𝑎𝑡(𝑘𝑜𝑓𝑓) = ∫ 𝑓𝑐𝑎𝑡(𝑡) 𝑒−𝑘𝑜𝑓𝑓 𝑡𝑑𝑡∞
0 ) and classified 

the parameter space into monotonic/non-monotonic regimes. The rationale and physical 

arguments related to this study motivates experimental studies using single molecule techniques 

to achieve the unexpected rate enhancement effect by controlled variation of the unbinding 

rates. However, their analytical model did not cover the dynamical fluctuations between the 

enzyme-substrate complexes, which are evident in previous experimental and theoretical 

studies.  

             Recently, Kolomeisky and co-workers have employed a theoretical 7,8 method that 

gives more physical understanding related to such observations. For examining the non-

monotonic dependence of the velocity on the off dissociation rate, they have applied a 

theoretical formalism to a discrete two-state model where the enzyme-substrate complex 
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conformers can mutually interconvert. This mechanism serves as a minimal model to capture 

the effects of conformational fluctuation dynamics for the MM reaction at the SM level.5,9,10 If 

one of the substrate bound state is unproductive, then increasing the off dissociation rates gives 

the enzyme another chance to form the productive enzyme-substrate complex. In this study,7 

reaction velocities for different schemes have been calculated assuming that the free enzyme 

conformers are in the state of conformational equilibrium. 

             However, it is probable that the free enzymes conformers are slowly interconverting 

among themselves. There are reported studies clarifying the effect of the free enzyme 

conformational fluctuations leading to dynamic cooperativity.10,11 Since, the mean time 

measurements do not capture the fluctuation characteristics present in the SM reaction 

networks, one requires to calculate the randomness parameter to quantify the temporal 

fluctuations. 5,10,12,13  

In this chapter, we study the dependence of the enzymatic rate on the substrate unbinding rate 

for different reaction mechanisms comprising free and bound enzyme conformational 

fluctuations as shown in Figure 3.1(a) and 3.1(b). We consider a two-state discrete model that 

includes the conformational interconversions between the free enzyme (𝐸1 and 𝐸2) and enzyme-

substrate conformers (𝐸1𝑆 and 𝐸2𝑆) and assume that 𝐸2𝑆 is an unproductive state and product 

formation can only take place from 𝐸1𝑆. The reaction schemes taken under consideration 

correspond to renewal kinetics with a single productive state.  For a given scheme, we construct 

the chemical master equation (CME) 14 and derive an exact analytical expression for the 

turnover velocity. We use these analytical results to mark a certain region of parameter space 

where it is probable to show a non-monotonic velocity dependence on the off dissociation rate. 

We also determine the randomness parameter and examine its dependence on the off rate at 

high substrate concentration. 
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3.2 Reaction Models and Analyses 

 

Figure 3.1: Schematic representation of the reaction schemes constituting discrete free and bound-
enzyme conformers when (a) 𝒌𝒐𝒇𝒇

(𝟏) = 𝒌𝒐𝒇𝒇
(𝟐) = 𝒌𝒐𝒇𝒇 and (b) 𝒌𝒐𝒇𝒇

(𝟏) ≠ 𝒌𝒐𝒇𝒇
(𝟐) . 

In Figure 3.1(a), the two enzyme conformers 𝐸1 and 𝐸2 can bind to the substrate to form the 

complexes 𝐸1𝑆 and 𝐸2𝑆, respectively or can interconvert among themselves. The rate constants 

characterizing these two processes are 𝑘𝑜𝑛, and 𝛼, respectively. The second state 𝐸2𝑆 is 

unproductive and can only dissociate to the free enzyme with the rate constant 𝑘𝑜𝑓𝑓 or can be 

converted to 𝐸1𝑆 with a rate constant 𝛽. The 𝐸1𝑆 state can decay to the free enzyme 𝐸1 via the 

dissociation or the catalytic pathway or can be converted to 𝐸2𝑆 with rate constants 𝑘𝑜𝑓𝑓, 𝑘𝑐𝑎𝑡, 

and 𝛽, respectively. Initially, we assume the off dissociation rate is same for both the enzyme–

substrate states. In order to consider the effect of conformational fluctuation of the enzyme-

substrate complexes, one has to assume that the timescale characterizing these interconversions 

is longer than or comparable to the catalytic timescales. The chemical master equation (CME) 

9,10,15 for a Michaelis-Menten reaction includes the effect of stochasticity with discrete integer 

jump in the number of enzymes (𝑛𝐸1, 𝑛𝐸2) and enzyme-substrate complexes (𝑛𝐸1𝑆, 𝑛𝐸2𝑆), 

regenerated enzymes (𝑛𝐸1
(0)) and products (𝑛𝑃). Grima and Leier have used the chemical master 

equation to calculate the mean time to produce one product molecule and also the average 

reaction rate at long times.16 In this chapter, we assume that the substrate is always present in 
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abundance. As pointed out in many works,17 18 this substrate abundance assumption holds good 

when the product formation rate is measured for a short period of time.  

According to the chemical master equation formalism,19 if 𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1
(0), 𝑛𝑃 are 

discrete random variables that can take finite number of positive integral values, at any time 𝑡, 

the time evolution of the joint probability 𝑃 [𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1
(0), 𝑛𝑃; 𝑡] for Figure 3.1(a) 

is given   

𝜕𝑡𝑃 [𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1
(0), 𝑛𝑃; 𝑡]

= (𝑘𝑜𝑛[𝑆](𝑛𝐸1 + 1)(𝑌𝐸1𝑌𝐸1𝑆
−1) + 𝛼(𝑛𝐸1 + 1)(𝑌𝐸1𝑌𝐸2

−1)

+ 𝑘𝑜𝑓𝑓(𝑛𝐸1𝑆 + 1)(𝑌𝐸1
−1𝑌𝐸1𝑆) + 𝛽(𝑛𝐸1𝑆 + 1)(𝑌𝐸1𝑆 𝑌𝐸2𝑆

−1)

+ 𝑘𝑐𝑎𝑡(𝑛𝐸1𝑆 + 1) (𝑌𝐸1𝑆 𝑌𝐸1
(0)

−1 𝑌𝑃
−1) + 𝑘𝑜𝑛[𝑆](𝑛𝐸2 + 1)(𝑌𝐸2𝑌𝐸2𝑆

−1)

+ 𝛼(𝑛𝐸2 + 1)(𝑌𝐸1
−1𝑌𝐸2) + 𝑘𝑜𝑓𝑓(𝑛𝐸2𝑆 + 1)(𝑌𝐸2

−1𝑌𝐸2𝑆)

+ 𝛽(𝑛𝐸2𝑆 + 1)( 𝑌𝐸1𝑆
−1  𝑌𝐸2𝑆)

− [(𝑘𝑜𝑛[𝑆] + 𝛼)𝑛𝐸1 + (𝛽 + 𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡)𝑛𝐸1𝑆 + (𝑘𝑜𝑛[𝑆] + 𝛼)𝑛𝐸2

+ (𝑘𝑜𝑓𝑓 + 𝛽) 𝑛𝐸2𝑆]) 𝑃 [𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1
(0), 𝑛𝑃; 𝑡] 

                                                                                                                                               (3.1)                                                                                                                                                                                                                                                                                 

Due to the mutually exclusivity of different states, the CME reduces to a set of coupled 

differential equations listed below. 

𝜕𝑃𝐸1(𝑡)
𝜕𝑡

= −(𝑘𝑜𝑛[𝑆] + 𝛼)𝑃𝐸1(𝑡) + 𝑘𝑜𝑓𝑓𝑃𝐸1𝑆(𝑡) + 𝛼𝑃𝐸2(𝑡) + 𝛿0𝑃𝐸1
(0)(𝑡)                             (3.2.a)                         

𝜕𝑃𝐸1𝑆(𝑡)
𝜕𝑡

= 𝑘𝑜𝑛[𝑆]𝑃𝐸1(𝑡) − (𝛽 + 𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡)𝑃𝐸1𝑆(𝑡) + 𝛽𝑃𝐸2𝑆(𝑡)                                       (3.2.b)                     

𝜕𝑃𝐸2(𝑡)
𝜕𝑡

= 𝛼𝑃𝐸1(𝑡) − (𝑘𝑜𝑛[𝑆] + 𝛼)𝑃𝐸2(𝑡) + 𝑘𝑜𝑓𝑓𝑃𝐸2𝑆(𝑡)                                                      (3.2.c)                         
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𝜕𝑃𝐸2𝑆(𝑡)
𝜕𝑡

= 𝛽𝑃𝐸1𝑆(𝑡) + 𝑘𝑜𝑛[𝑆]𝑃𝐸2(𝑡) − (𝛽 + 𝑘𝑜𝑓𝑓)𝑃𝐸2𝑆(𝑡)                                                    (3.2.d)                         

𝜕𝑃
𝐸1

(0)(𝑡)

𝜕𝑡
= 𝑘𝑐𝑎𝑡𝑃𝐸1𝑆(𝑡) − 𝛿0𝑃𝐸1

(0)(𝑡)                                                                                   (3.2.e)                         

At the beginning of the reaction, the enzyme exists in the free-state conformer 𝐸1. Also, at any 

instant of time the condition 𝑃𝐸1(𝑡) + 𝑃𝐸1𝑆(𝑡) + 𝑃𝐸2(𝑡) + 𝑃𝐸2𝑆(𝑡) = 1 should always be 

satisfied. We can solve these coupled differential equations following the methodology 

described in chapter I of the thesis.  

(𝑠 + 𝑘𝑜𝑛[𝑆] + 𝛼)𝑃̂𝐸1(𝑠) − 𝑘𝑜𝑓𝑓𝑃̂𝐸1𝑆(𝑠) − 𝛼𝑃̂𝐸2(𝑠) − 𝛿0𝑃̂𝐸1
(0)(𝑠) = 1                                  (3.3.a) 

−𝑘𝑜𝑛[𝑆]𝑃̂𝐸1(𝑠) + (𝑠 + 𝛽 + 𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡)𝑃̂𝐸1𝑆(𝑠) − 𝛽𝑃̂𝐸2𝑆(𝑠) = 0                                       (3.3.b) 

−𝛼𝑃̂𝐸1(𝑠) + (𝑠 + 𝑘𝑜𝑛[𝑆] + 𝛼)𝑃̂𝐸2(𝑠) − 𝑘𝑜𝑓𝑓𝑃̂𝐸2𝑆(𝑠) = 0                                                      (3.3.c) 

−𝛽𝑃̂𝐸1𝑆(𝑠) − 𝑘𝑜𝑛[𝑆]𝑃̂𝐸2(𝑠) + (𝑠 + 𝛽 + 𝑘𝑜𝑓𝑓)𝑃̂𝐸2𝑆(𝑠) = 0                                                    (3.3.d) 

𝑠𝑃̂𝐸1
(0)(𝑠) = 0                                                                                                                       (3.3.e) 

Arranging them in the form of a matrix, we get Eq. 4. 

[
 
 
 
 𝑠 + 𝑘𝑜𝑛[𝑆] + 𝛼

−𝑘𝑜𝑛[𝑆]
 −𝛼

  

0
0

    

  −𝑘𝑜𝑓𝑓
    𝑠 + 𝛽 + 𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡

 0
−𝛽
 0

    
  

 −𝛼
   0

   𝑠 + 𝑘𝑜𝑛[𝑆] + 𝛼
   −𝑘𝑜𝑛[𝑆]

     0

    

  0
−𝛽

     −𝑘𝑜𝑓𝑓    

  

𝑠 + 𝛽 + 𝑘𝑜𝑓𝑓
0

    

−𝛿0
0
0
0
𝑠 ]

 
 
 
 

[
 
 
 
 
 
 𝑃̂𝐸1(𝑠)
𝑃̂𝐸1𝑆(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸1

(0)(𝑠)]
 
 
 
 
 
 

=

[
 
 
 
 
1
0
0
0
0]
 
 
 
 
                                                                                                                                          (3.4)                                                                                                                                             

Further rearrangement and taking an inverse gives Eq. 3.5. 
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[
 
 
 
 
 
 𝑃̂𝐸1(𝑠)
𝑃̂𝐸1𝑆(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸1

(0)(𝑠)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑠3+𝜇1𝑠2+𝜇3𝑠+𝜇4
𝑠4+𝜇5𝑠3+𝜇6𝑠2+𝜇7𝑠+𝜇9

𝑘𝑜𝑛[𝑆]𝑠2+𝜇10𝑠+𝜇8
𝑠4+𝜇5𝑠3+𝜇6𝑠2+𝜇7𝑠+𝜇9

𝛼𝑠2+𝜇2𝑠+𝜎1
𝑠4+𝜇5𝑠3+𝜇6𝑠2+𝜇7𝑠+𝜇9

𝜎2𝑠+𝜎3
𝑠4+𝜇5𝑠3+𝜇6𝑠2+𝜇7𝑠+𝜇9

0 ]
 
 
 
 
 
 
 

.                                                                                     (3.5)                                                                             

where  𝜇1 = 𝑘𝑜𝑛[𝑆] + 𝛼 + 2𝛽 + 2𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡, 𝜇2 = 𝛼(2 𝛽 + 2𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡),  

𝜇3 = 𝛼𝛽𝑘𝑐𝑎𝑡 + 𝑘𝑜𝑓𝑓(𝜇2 − 𝛼𝑘𝑜𝑓𝑓 + 𝑘𝑜𝑛[𝑆]) + 𝑘𝑜𝑛[𝑆](2 𝛽 + 𝑘𝑐𝑎𝑡) + 𝜇2,  

𝜇4 = 𝛽𝑘𝑜𝑛[𝑆]𝑘𝑐𝑎𝑡 + σ1, 𝜇5 =  𝜇1+𝑘𝑜𝑛[𝑆] + 𝛼,  

𝜇6 = 𝛽𝑘𝑐𝑎𝑡 + 𝑘𝑜𝑓𝑓(2𝛽 + 𝑘𝑜𝑓𝑓 + 𝑘𝑐𝑎𝑡) + 𝑘𝑜𝑛[𝑆]( 𝜇1 + 2𝛽 + 𝛼 + 𝑘𝑐𝑎𝑡) + 2𝜇2,  

𝜇7 = 2𝜇4 + 𝑘𝑜𝑛[𝑆]𝑘𝑐𝑎𝑡(𝑘𝑜𝑓𝑓 + 𝑘𝑜𝑛[𝑆]) + 2σ3,  

𝜇8 = 𝛽𝑘𝑜𝑛[𝑆](𝑘𝑜𝑛[𝑆] + 2𝛼) + 𝛼𝑘𝑜𝑛[𝑆]𝑘𝑜𝑓𝑓, 𝜇9 = 𝑘𝑐𝑎𝑡𝜇8,  

𝜇10 = 𝑘𝑜𝑛[𝑆](𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓) + σ2,  

σ1 = 𝑘𝑜𝑓𝑓(𝜇2 − 𝛼𝑘𝑜𝑓𝑓 + 𝛽𝑘𝑜𝑛[𝑆]) + 𝛼𝛽𝑘𝑐𝑎𝑡, σ2 = 𝑘𝑜𝑛[𝑆](𝛼 + 𝛽) and 

σ3 = 𝑘𝑜𝑛[𝑆](𝜇2 − 𝛼𝑘𝑜𝑓𝑓 + 𝛽𝑘𝑜𝑛[𝑆]).  

Eq. 7 represents the turnover time distribution for the scheme shown in Figure 3.1(a).                                                           

𝑓(𝑠) = 𝑘𝑐𝑎𝑡𝑃̂𝐸1𝑆(𝑠) = 𝑘𝑐𝑎𝑡(𝑘𝑜𝑛[𝑆]𝑠2+𝜇10𝑠+𝜇8)
𝑠4+𝜇5𝑠3+𝜇6𝑠2+𝜇7𝑠+𝜇9

                                                                             (3.6)                                                                

The first moment of Eq.6 gives the mean waiting time and its reciprocal gives the rate. 

𝑣1 = 𝑘𝑜𝑛[𝑆]𝑘𝑐𝑎𝑡(𝛼(2𝛽+𝑘𝑜𝑓𝑓)+𝛽𝑘𝑜𝑛[𝑆])

2𝛼(𝑘𝑜𝑓𝑓(𝑘𝑐𝑎𝑡+𝑘𝑜𝑓𝑓)+𝛽(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓))+𝑘𝑜𝑛[𝑆](𝛼(4𝛽+𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓)+𝛽(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓))+2𝛽𝑘𝑜𝑛
2 [𝑆]2

      (3.7)        

Eq. 3.7 does not  follow the Michaelis–Menten relation in the presence of enzymatic 

conformational fluctuations.10 If the free enzyme conformers interconvert quickly(𝛼 → ∞), 

then Eq. 3.7 reduces to  
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𝑣1(𝛼 → ∞) = 𝑘𝑜𝑛[𝑆]𝑘𝑐𝑎𝑡(2𝛽+𝑘𝑜𝑓𝑓)

2(𝑘𝑜𝑓𝑓(𝑘𝑐𝑎𝑡+𝑘𝑜𝑓𝑓)+𝛽(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓))+𝑘𝑜𝑛[𝑆](4𝛽+𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓)
.    

This expression resembles the form of the enzymatic velocity for the three state model discussed 

in Ref. 7. The limit 𝛼 = 0 yields the Michaelis–Menten-like equation. 

 𝑣1(𝛼 → 0) = 𝑘𝑜𝑛[𝑆]𝑘𝑐𝑎𝑡(𝑘𝑜𝑛)
(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓)+2𝑘𝑜𝑛[𝑆]. 

Eq. 3.8 shows the normalized reaction velocity for the scheme shown in Figure 3.1 (a). 

𝑣𝑟𝑎𝑡𝑖𝑜 = (𝛼 (2𝛽+𝑘𝑜𝑓𝑓)+𝛽𝑘𝑜𝑛[𝑆])(2𝛼𝛽𝑘𝑐𝑎𝑡+𝛼𝑘𝑜𝑛[𝑆](4𝛽+𝑘𝑐𝑎𝑡)+𝛽𝑘𝑜𝑛[𝑆](𝑘𝑐𝑎𝑡+2𝑘𝑜𝑛[𝑆]))
𝛽(2𝛼+𝑘𝑜𝑛[𝑆])(2𝛼 (𝑘𝑜𝑓𝑓(𝑘𝑐𝑎𝑡+𝑘𝑜𝑓𝑓)+𝛽 (𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓))+𝛼𝑘𝑜𝑛[𝑆](4𝛽+𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓)+
                                                                                                           𝛽𝑘𝑜𝑛[𝑆](𝑘𝑐𝑎𝑡+2(𝑘𝑜𝑓𝑓+𝑘𝑜𝑛[𝑆])))

                  (3.8) 

In Figure 3.1(b), the state 𝐸2𝑆 is unproductive and can only dissociate to the free enzyme with 

𝑘𝑜𝑓𝑓
(2) . It can also undergo a conformational transition to the state 𝐸1𝑆 which is characterized by 

the rate constant 𝛽2. The 𝐸1𝑆 state can decay to the free enzyme 𝐸1 via the dissociation or 

catalytic pathway or can be converted to 𝐸2𝑆 with rate constants 𝑘𝑜𝑓𝑓
(1) , 𝑘𝑐𝑎𝑡 and 𝛽1, respectively. 

In this model we assume the off dissociation rate constants are different for both the enzyme–

substrate states. The variables constituting the probability distributions are 

𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1
(0), 𝑛𝑃 representing the number of enzyme molecules present in the state 

𝐸1, 𝐸2, 𝐸1𝑆, 𝐸2𝑆, 𝐸1
(0), respectively and 𝑛𝑃 is the number of product molecules formed at a time 

t. Eq. 3.9 represents the CME for Figure 3.1(b). 
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𝜕𝑡𝑃 [𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1
(0) , 𝑛𝑃; 𝑡]

= (𝑘𝑜𝑛[𝑆](𝑛𝐸1 + 1)(𝑌𝐸1𝑌𝐸1𝑆
−1) + 𝛼(𝑛𝐸1 + 1)(𝑌𝐸1𝑌𝐸2

−1)

+ 𝑘𝑜𝑓𝑓
(1) (𝑛𝐸1𝑆 + 1)(𝑌𝐸1

−1𝑌𝐸1𝑆) + 𝛽1(𝑛𝐸1𝑆 + 1)(𝑌𝐸1𝑆 𝑌𝐸2𝑆
−1)

+ 𝑘𝑐𝑎𝑡(𝑛𝐸1𝑆 + 1) (𝑌𝐸1𝑆 𝑌𝐸1
(0)

−1 𝑌𝑃
−1) + 𝑘𝑜𝑛[𝑆](𝑛𝐸2 + 1)(𝑌𝐸2𝑌𝐸2𝑆

−1)

+ 𝛼(𝑛𝐸2 + 1)(𝑌𝐸1
−1𝑌𝐸2) + 𝑘𝑜𝑓𝑓

(2) (𝑛𝐸2𝑆 + 1)(𝑌𝐸2
−1𝑌𝐸2𝑆)

+ 𝛽2(𝑛𝐸2𝑆 + 1)( 𝑌𝐸1𝑆
−1  𝑌𝐸2𝑆)

− [(𝑘𝑜𝑛[𝑆] + 𝛼)𝑛𝐸1 + (𝛽1 + 𝑘𝑜𝑓𝑓
(1) + 𝑘𝑐𝑎𝑡)𝑛𝐸1𝑆 + (𝑘𝑜𝑛[𝑆] + 𝛼)𝑛𝐸2

+ (𝑘𝑜𝑓𝑓
(2) + 𝛽2) 𝑛𝐸2𝑆])𝑃 [𝑛𝐸1, 𝑛𝐸1𝑆, 𝑛𝐸2, 𝑛𝐸2𝑆, 𝑛𝐸1

(0), 𝑛𝑃; 𝑡] . 

                                                                                                                                               (3.9)                                                                                                                            

Since for a single enzyme the different enzymatic states are mutually exclusive, the CME 

reduces to these coupled differential equations 

𝜕𝑃𝐸1(𝑡)
𝜕𝑡

= −(𝑘𝑜𝑛[𝑆] + 𝛼)𝑃𝐸1(𝑡) + 𝑘𝑜𝑓𝑓
(1) 𝑃𝐸1𝑆(𝑡) + 𝛼𝑃𝐸2(𝑡) + 𝛿0𝑃𝐸1

(0)(𝑡)                          (3.10a) 

𝜕𝑃𝐸1𝑆(𝑡)
𝜕𝑡

= 𝑘𝑜𝑛[𝑆]𝑃𝐸1(𝑡) − (𝛽1 + 𝑘𝑜𝑓𝑓
(1) + 𝑘𝑐𝑎𝑡)𝑃𝐸1𝑆(𝑡) + 𝛽2𝑃𝐸2𝑆(𝑡)                                (3.10b) 

𝜕𝑃𝐸2(𝑡)
𝜕𝑡

= 𝛼𝑃𝐸1(𝑡) − (𝑘𝑜𝑛[𝑆] + 𝛼)𝑃𝐸2(𝑡) + 𝑘𝑜𝑓𝑓
(2)  𝑃𝐸2𝑆(𝑡)                                                   (3.10c) 

𝜕𝑃𝐸2𝑆(𝑡)
𝜕𝑡

= 𝛽1𝑃𝐸1𝑆(𝑡) + 𝑘𝑜𝑛[𝑆]𝑃𝐸2(𝑡) − (𝛽2 + 𝑘𝑜𝑓𝑓
(2) )𝑃𝐸2𝑆(𝑡)                                             (3.10d) 

𝜕𝑃
𝐸1

(0)(𝑡)

𝜕𝑡
= 𝑘𝑐𝑎𝑡𝑃𝐸1𝑆(𝑡) − 𝛿0𝑃𝐸1

(0)(𝑡)                                                                                   (3.10e) 

Let  𝑘𝑜𝑛[𝑆] + 𝛼 = 𝜇, 𝛽1 + 𝑘𝑜𝑓𝑓
(1) + 𝑘𝑐𝑎𝑡 = 𝜉 and 𝛽2 + 𝑘𝑜𝑓𝑓

(2) = 𝜀.  

Following the same steps and methodology adopted for Figure 3.1(a), we get Eq. 3.11. 
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[
 
 
 
 
 
 𝑃̂𝐸1(𝑠)
𝑃̂𝐸1𝑆(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸1

(0)(𝑠)]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑠3+𝜉1𝑠2+𝜉2𝑠+𝜉3
𝑠4+𝜉4𝑠3+𝜉5𝑠2+𝜉6𝑠+𝜉7

𝑘𝑜𝑛[𝑆]𝑠2+𝜉8𝑠+𝜉9
𝑠4+𝜉4𝑠3+𝜉5𝑠2+𝜉6𝑠+𝜉7

𝛼𝑠2+𝜉10𝑠+𝜀1
𝑠4+𝜉4𝑠3+𝜉5𝑠2+𝜉6𝑠+𝜉7

𝜀2𝑠+𝜀3
𝑠4+𝜉4𝑠3+𝜉5𝑠2+𝜉6𝑠+𝜉7

0 ]
 
 
 
 
 
 
 

                                                                                      (3.11)    

Eq. 12 shows the turnover time distribution for the scheme represented in Figure 3.1 (b).                                                                     

𝑓(𝑠) = 𝑘𝑐𝑎𝑡𝑃̂𝐸1𝑆(𝑠) = 𝑘𝑐𝑎𝑡(𝑘𝑜𝑛[𝑆]𝑠2+𝜉8𝑠+𝜉9)
𝑠4+𝜉4𝑠3+𝜉5𝑠2+𝜉6𝑠+𝜉7

.                                                                          (3.12) 

Here, 𝜉1 = 𝜇 + 𝜀 + 𝜉, 𝜉2 = 𝛼(𝜉 + 𝜀) + 𝛽2(𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓
(1) + 𝑘𝑐𝑎𝑡) + 𝜉(𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓

(2) ), 

𝜉3 = 𝛽2(𝑘𝑜𝑓𝑓
(1) + 𝑘𝑐𝑎𝑡)𝜇 + 𝛼𝜉𝑘𝑜𝑓𝑓

(2) ,  𝜉4 = 𝜇 + 𝜉1,  

𝜉5 = 2𝛼(𝜉 + 𝜀) + 𝑘𝑜𝑛[𝑆](2𝛼 + 𝛽1 + 𝛽2 + 𝑘𝑐𝑎𝑡) + 𝛽2(𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓
(1) + 𝑘𝑐𝑎𝑡) +

(𝜉 + 𝑘𝑜𝑛[𝑆])(𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓
(2) ),  

𝜉6 = 2𝛼 (𝛽1𝑘𝑜𝑓𝑓
(2) + (𝑘𝑜𝑓𝑓

(1) + 𝑘𝑐𝑎𝑡)(𝛽2 + 𝑘𝑜𝑓𝑓
(2) )) + 𝛼𝑘𝑜𝑛[𝑆](𝜀 + 𝜉 + 𝛽1 + 𝛽2 + 𝑘𝑐𝑎𝑡) +

𝑘𝑜𝑛[𝑆] (𝛽2(𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓
(1) + 2𝑘𝑐𝑎𝑡) + (𝛽1 + 𝑘𝑐𝑎𝑡)(𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑓𝑓

(2) )),  

 𝜉7 = 𝑘𝑜𝑛[𝑆]𝑘𝑐𝑎𝑡(𝛼(𝜀 + 𝛽2) + 𝑘𝑜𝑛[𝑆]𝛽2), 𝜉8 = 𝑘𝑜𝑛[𝑆](𝜇 + 𝜀),  

𝜉9 = 𝑘𝑜𝑛[𝑆](𝛼𝛽2 − 𝑘𝑜𝑛[𝑆]𝑘𝑜𝑓𝑓
(2) + 𝜀𝜇), 𝜉10 = 𝛼(𝜉 + 𝜀),  

𝜀1 = 𝛼 (𝛽1𝑘𝑜𝑓𝑓
(2) + 𝜀(𝑘𝑜𝑓𝑓

(1) + 𝑘𝑐𝑎𝑡)) + 𝛽1𝑘𝑜𝑓𝑓
(2) 𝑘𝑜𝑛[𝑆], 𝜀2 = 𝑘𝑜𝑛[𝑆](𝛼 + 𝛽1) and  

𝜀3 = 𝑘𝑜𝑛[𝑆](𝛼𝜉 + 𝛽1𝜇).  

In order to satisfy the detailed balance condition, the following relation must be 

satisfied 𝛽1𝑘𝑜𝑓𝑓
(2) = 𝑘𝑜𝑓𝑓

(1)  𝛽2. We use this relation to eliminate 𝑘𝑜𝑓𝑓
(2)  from the velocity expression  
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𝑣2 =
𝑘𝑜𝑛[𝑆]𝛽2𝑘𝑐𝑎𝑡(𝛼(2𝛽1+𝑘𝑜𝑓𝑓

(1) )+𝛽1𝑘𝑜𝑛[𝑆])

2𝛼𝛽2(𝑘𝑜𝑓𝑓
(1) (𝑘𝑐𝑎𝑡+𝑘𝑜𝑓𝑓

(1) )+𝛽1(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓
(1) ))+𝛼𝑘𝑜𝑛[𝑆](𝛽1(2(𝛽1+𝛽2)+𝑘𝑐𝑎𝑡)+(𝛽1+𝛽2)𝑘𝑜𝑓𝑓

(1) )

                                                                               +𝛽1𝑘𝑜𝑛[𝑆](𝛽2(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓
(1) )+(𝛽1+𝛽2)𝑘𝑜𝑛[𝑆])

                (3.13)                        

Eq. 14 represents the normalized reaction velocity.  

𝑣𝑟𝑎𝑡𝑖𝑜 = 𝑣2
𝑣2(𝑘𝑜𝑓𝑓→0)

=

(𝛼(2𝛽1+𝑘𝑜𝑓𝑓
(1) )+𝛽1𝑘𝑜𝑛[𝑆])(2𝛼𝛽2𝑘𝑐𝑎𝑡+𝛼𝑘𝑜𝑛[𝑆](2(𝛽1+𝛽2)+𝑘𝑐𝑎𝑡)+𝑘𝑜𝑛[𝑆](𝛽2𝑘𝑐𝑎𝑡+(𝛽1+𝛽2)𝑘𝑜𝑛[𝑆]))

(2𝛼+𝑘𝑜𝑛[𝑆])(2𝛼𝛽2(𝑘𝑜𝑓𝑓
(1) (𝑘𝑐𝑎𝑡+𝑘𝑜𝑓𝑓

(1) )+𝛽1(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓
(1) ))+

                           αk𝑜𝑛[𝑆](𝛽1(2(𝛽1+𝛽2)+𝑘𝑐𝑎𝑡)+(𝛽1+𝛽2)𝑘𝑜𝑓𝑓
(1) )+

                          𝛽1𝑘𝑜𝑛[𝑆](𝛽2(𝑘𝑐𝑎𝑡+2𝑘𝑜𝑓𝑓
(1) )+(𝛽1+𝛽2)𝑘𝑜𝑛[𝑆]))

              (3.14)  

In Figures 3.2 and 3.3, we plot the normalized velocity given in Eq. 8 and Eq. 14, respectively 

at various [S] with the assumption of zero substrate fluctuations. In order to examine the effect 

of substrate fluctuations, we have performed a few sets of Gillespie stochastic simulations 20 

and compared our theoretical expressions for the normalized velocity. It shows that when there 

are no fluctuations in the [S] our theoretical and simulation results are in excellent agreement. 

In the presence of substrate fluctuations, the average rate of product formation is found to be 

less than that predicted at a constant substrate concentration.21 

 

Figure 3.2: (a) Normalized reaction velocity (Eq. 4.8) showing a monotonic behaviour when plotted 
as a function of 𝒌𝒐𝒇𝒇 for the reaction scheme represented in Figure 3.1(a) at different values of 
substrate concentrations 𝟎. 𝟏, 𝟐, 𝟏𝟎 and 𝟓𝟎 represented by red, green, blue and black solid lines, 
respectively. The common set of reaction rate constants are 𝒌𝒐𝒏 = 𝟏, 𝜶 = 𝟏, 𝜷 = 𝟐, and 𝒌𝒄𝒂𝒕 = 𝟓. 
(b) Normalized reaction velocity showing a non-monotonic behavior under the specified 
limits(𝒌𝒄𝒂𝒕 > 𝟏𝟔 𝜶𝜷𝟐

(𝜶−𝜷)𝟐 , 𝜶 > 𝜷) when plotted as a function of 𝒌𝒐𝒇𝒇 for the reaction scheme 
represented in Figure 3.1(a) at different substrate concentrations 7, 10 and 15 represented by red, 
green, and blue solid lines, respectively. Beyond this determined range of substrate concentration 
the non-monotonicity vanishes which is represented by the black solid line at [𝑺] = 𝟓𝟎.  The 
common set of reaction rate constants are 𝒌𝒐𝒏 = 𝟏, 𝜶 = 𝟑, 𝜷 = 𝟏, and 𝒌𝒄𝒂𝒕 = 𝟐𝟎. 
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As shown in Figure 3.2(a) the enzymatic velocity (Eq. 8) for the kinetic scheme described in 

Figure 3.1(a) decreases with an increase in the off dissociation rate 𝑘𝑜𝑓𝑓. On differentiating Eq. 

8 with respect to 𝑘𝑜𝑓𝑓 and equating it to zero, we obtain a quadratic relation of [𝑆]. The velocity 

is a non-monotonic function of 𝑘𝑜𝑓𝑓 only when the rate constants satisfy the following 

inequality 

 𝛼2𝑘𝑐𝑎𝑡𝑘𝑜𝑛[𝑆] > 2𝛼2𝛽(4𝛽 + 𝑘𝑐𝑎𝑡) + 𝛼𝛽(8𝛽 + 𝑘𝑐𝑎𝑡)𝑘𝑜𝑛[𝑆] + 2𝛽2𝑘𝑜𝑛
2 [𝑆]2.                   (3.15) 

At low substrate concentration, the terms 𝛼𝛽(8𝛽 + 𝑘𝑐𝑎𝑡)𝑘𝑜𝑛[𝑆] and 2𝛽2𝑘𝑜𝑛
2[𝑆]2 on RHS of 

the inequality are very small compared to 2𝛼2𝛽(4𝛽 + 𝑘𝑐𝑎𝑡). For standard values of all other 

kinetic rate constants, the LHS of Eq. 15 will always be smaller than 2𝛼2𝛽(4𝛽 + 𝑘𝑐𝑎𝑡). At 

intermediate to high substrate concentrations, we look for a certain region in the parameter space 

in which the inequality in Eq. 15 is satisfied. Solving this inequality gives the following roots: 

[𝑆1] =
𝛼(𝛼𝑘𝑐𝑎𝑡−𝛽(8𝛽+𝑘𝑐𝑎𝑡)+√−𝑘𝑐𝑎𝑡√16𝛼𝛽2−(𝛼−𝛽)2𝑘𝑐𝑎𝑡)

4𝛽2𝑘𝑜𝑛
  

[𝑆2] =
𝛼(𝛼𝑘𝑐𝑎𝑡−𝛽(8𝛽+𝑘𝑐𝑎𝑡)−√−𝑘𝑐𝑎𝑡√16𝛼𝛽2−(𝛼−𝛽)2𝑘𝑐𝑎𝑡)

4𝛽2𝑘𝑜𝑛
  

Thus, these two roots represent a range of substrate concentration within which one can observe 

non-monotonicity. For these two roots to be real and positive, the following conditions need to 

be satisfied. 

Limit 1: 𝑘𝑐𝑎𝑡 > 16 𝛼𝛽2

(𝛼−𝛽)2  (for the roots to be real)                                                                (3.16a)                                                  

  

Limit 2: 𝑘𝑐𝑎𝑡 > 8 𝛽2

𝛼−𝛽
 (for the roots to be positive).                                                            (3.16b)                                  

Figure 3.2(b) shows the non-monotonic behaviour of the enzymatic velocity as a function of 

𝑘𝑜𝑓𝑓 within a range of [𝑆] for a certain set of parameter values. At higher [S], the third term on 

the RHS of Eq. 16 that is quadratic in the substrate concentration [S] will always dominate. 



60 
 

Hence, the inequality does not hold. Thus, the normalized velocity will always decrease with 

the increase in 𝑘𝑜𝑓𝑓. 

 

Figure 3.3: (a) Normalized reaction velocity (from Eq. 14) showing a monotonic behaviour when 
plotted as a function of 𝒌𝒐𝒇𝒇

(𝟏)  for the reaction scheme represented in Figure 3.1(b) at different values 
of substrate concentrations 𝟎. 𝟏, 𝟐, 𝟏𝟎 and 𝟓𝟎 represented by red, green, blue and black solid lines, 
respectively. The common set of reaction rate constants are 𝒌𝒐𝒏 = 𝟏, 𝜶 = 𝟏, 𝜷𝟏 = 𝟐, 𝜷𝟐 = 𝟒, and 
𝒌𝒄𝒂𝒕 = 𝟓. (b) Normalized reaction velocity showing a non-monotonic behavior under specified 
limits (𝒌𝒄𝒂𝒕 > 𝟏𝟔 𝜶𝜷𝟏𝜷𝟐

(𝜶−𝜷𝟐)𝟐 , 𝜶 > 𝜷𝟐) when plotted as a function of 𝒌𝒐𝒇𝒇
(𝟏)  for the reaction scheme 

represented in Figure 3.1(b) at different substrate concentrations 8, 12 and 15 represented by red, 
green, and blue solid lines, respectively. Beyond this determined range of substrate concentration 
the non-monotonicity vanishes which is represented by the black solid line at [𝑺] = 𝟔𝟎. The 
common set of reaction rate constants are 𝒌𝒐𝒏 = 𝟏, 𝜶 = 𝟒, 𝜷𝟏 = 𝟐, 𝜷𝟐 = 𝟏 and 𝒌𝒄𝒂𝒕 = 𝟐𝟓. 
 
Figure 3.3(a) describes the behaviour of the enzymatic velocity as obtained in Eq. 14 for the 

kinetic scheme described in Figure 3.1(b). The velocity will show a non-monotonic behaviour 

with respect to 𝑘𝑜𝑓𝑓
(1)  only when the following inequality is satisfied. 

 𝛼2𝑘𝑐𝑎𝑡𝑘𝑜𝑛[𝑆] > 2𝛼2𝛽2(4𝛽1 + 𝑘𝑐𝑎𝑡) + 𝛼𝛽2(8𝛽1 + 𝑘𝑐𝑎𝑡)𝑘𝑜𝑛[𝑆] + 2𝛽1𝛽2𝑘𝑜𝑛
2[𝑆]2          (3.17) 

At low [S], the contribution of the last two terms on RHS of the inequality is insignificant as 

compared to 2𝛼2𝛽2(4𝛽1 + 𝑘𝑐𝑎𝑡). At intermediate to high substrate concentrations, by solving 

the quadratic inequality we can obtain a range of substrate concentration within which the non-

monotonic behaviour would be observed. The inequality gives the following roots 

[𝑆1] =
𝛼(𝛼𝑘𝑐𝑎𝑡−𝛽2(8𝛽1+𝑘𝑐𝑎𝑡)+√−𝑘𝑐𝑎𝑡√−16𝛼𝛽1𝛽2+(𝛼−𝛽2)2kcat)

4𝛽1𝛽2𝑘𝑜𝑛
  

[𝑆2] =
𝛼(𝛼𝑘𝑐𝑎𝑡−𝛽2(8𝛽1+𝑘𝑐𝑎𝑡)−√−𝑘𝑐𝑎𝑡√−16𝛼𝛽1𝛽2+(𝛼−𝛽2)2kcat)

4𝛽1𝛽2𝑘𝑜𝑛
  

Since the roots represent substrate concentration, they should be real and positive.  



61 
 

Limit 1: 𝑘𝑐𝑎𝑡 > 16 𝛼𝛽1𝛽2
(𝛼−𝛽2)2   (for real values)                                                                          (3.18a) 

Limit 2: 𝑘𝑐𝑎𝑡 > 8 𝛽1𝛽2
𝛼−𝛽2

, 𝛼 > 𝛽2 (for positive values).                                                        (3.18b) 

We have compared our theoretical results plotted in Figure 3.2(b) and 3.3(b) showing the non-

monotonic behaviour with stochastic simulations at zero substrate fluctuations as shown in 

Figure 2 of Ref 21.21 As studied by Cao and co-workers 22 we have also constructed a phase 

diagram (Figure 3 of Ref 21) for the reaction scheme represented in Figure 3.1(a) and 3.1(b) 

that identify the regimes of the monotonic and the conditional non-monotonic behaviours of the 

reaction velocity as a function of the dissociation rate constant.21 

                 To measure the temporal fluctuations we compute the randomness parameter.23 For 

single-molecule fluorescence measurements, dynamic disorder was reported at high substrate 

concentrations.2 For the kinetic scheme shown in Figure 3.1(a) and 3.1(b), from the higher 

moments of the distribution, we can calculate the randomness parameter. Eq. 19 shows the 

randomness expression for the reaction scheme shown in Figure 3.1(a). 

𝑅 = 4𝛼2𝑘𝑜𝑓𝑓
4+𝐴𝑘𝑜𝑓𝑓

3+𝐵𝑘𝑜𝑓𝑓
2+𝐶𝑘𝑜𝑓𝑓+𝐷

4𝛼2𝑘𝑜𝑓𝑓
4+4𝛼𝐸𝑘𝑜𝑓𝑓

3+𝐺𝑘𝑜𝑓𝑓
2+2𝐸𝐹𝑘𝑜𝑓𝑓+𝐹2                                                                          (3.19) 

Here, 𝛺 = (𝑘𝑐𝑎𝑡 + 2𝛽), 𝜆 = 𝑘𝑐𝑎𝑡 + 𝑘𝑜𝑛[𝑆], 𝐴 = 2𝛼(4𝛺𝛼 + (4(𝛼 + 𝛽) + 𝑘𝑐𝑎𝑡)𝑘𝑜𝑛[𝑆]),   

𝐵 = 2(𝛽𝛺𝑘𝑜𝑛
2[𝑆]2 + 𝛼𝑘𝑜𝑛[𝑆](8𝛽(𝜆 + 𝛽) + 𝑘𝑐𝑎𝑡(𝜆 + 𝑘𝑜𝑛[𝑆])) + 2𝛼2(4𝛽2 + 𝜆2 +

𝛽(6𝜆 + 2𝑘𝑜𝑛[𝑆]))),  

𝐶 = 4𝛽𝑘𝑜𝑛
2[𝑆]2(𝑘𝑜𝑛[𝑆]𝛺 + 𝛽𝑘𝑐𝑎𝑡) + 4𝛼2(2𝛽 + 𝑘𝑜𝑛[𝑆])(𝑘𝑐𝑎𝑡𝛺 + (𝛺 + 2𝛽)𝑘𝑜𝑛[𝑆]) +

2𝛼𝑘𝑜𝑛[𝑆]((𝑘𝑐𝑎𝑡 + 𝜆)𝑘𝑐𝑎𝑡𝑘𝑜𝑛[𝑆] + 8𝛽2(𝜆 + 𝑘𝑜𝑛[𝑆]) + 𝛽(𝜆 + 𝑘𝑜𝑛[𝑆])(2𝜆 + 𝑘𝑐𝑎𝑡)),  

𝐷 = 4𝛼2𝛽2𝑘𝑐𝑎𝑡
2𝜇 + 4𝛼𝛽2𝑘𝑐𝑎𝑡

2𝑘𝑜𝑛[𝑆] + 𝑘𝑜𝑛
2[𝑆]2(16𝛼2𝛽2 + 8𝛼2𝛽𝑘𝑐𝑎𝑡 + (3𝛼2 + 2𝛼𝛽 +

𝛽2)𝑘𝑐𝑎𝑡
2) + 2𝛼 𝑘𝑜𝑛

3[𝑆]3(8𝛽2 + 4𝛽𝑘𝑐𝑎𝑡 + 𝑘𝑐𝑎𝑡
2) +  2𝛽𝛺𝑘𝑜𝑛

4[𝑆]4,  
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𝐸 = 2(𝛼𝛺 + (𝛼 + 𝛽)𝑘𝑜𝑛[𝑆]), 𝐹 = 2𝛼𝛽𝑘𝑐𝑎𝑡 + 𝛼𝑘𝑜𝑛[𝑆](𝛺 + 2𝛽) + 𝛽𝑘𝑜𝑛[𝑆](𝜆 + 𝑘𝑜𝑛[𝑆]) and 

𝐺 = 𝐸2 + 4𝛼𝐹.  

For the reaction scheme shown in Figure 3.1(b), Eq. 20 represents the analytical form of 𝑅. 

𝑅 =
4𝛼2𝛽2

2(𝑘𝑜𝑓𝑓
(1) )

4
+𝐻(𝑘𝑜𝑓𝑓

(1) )
3
+𝐼(𝑘𝑜𝑓𝑓

(1) )
2
+𝐽 𝑘𝑜𝑓𝑓

(1) +𝐿

4𝛼2𝛽2
2(𝑘𝑜𝑓𝑓

(1) )
4
+4𝛼 𝛽2𝑀 (𝑘𝑜𝑓𝑓

(1) )
3
+𝑃(𝑘𝑜𝑓𝑓

(1) )
2
+2𝑀𝑁 𝑘𝑜𝑓𝑓

(1) +𝑁2
                                                      (3.20) 

Here, 𝜒 = 𝑘𝑐𝑎𝑡 + 2𝛽1, θ = 𝛽1 + 𝛽2, 𝜌 = 2𝛽1 + 𝜒, 𝛬 = 2𝛽2 + 𝜒,  

𝐻 = 2𝛼𝛽2(4𝛼𝛽2𝜒 + (2𝛼θ + 𝛽2𝜌)𝑘𝑜𝑛[𝑆]),  

𝐼 = 4𝛼2𝛽2
2(2𝛽1(𝜒 + 2𝑘𝑐𝑎𝑡) + 𝑘𝑐𝑎𝑡

2) + 2 𝛼𝛽2𝑘𝑜𝑛[𝑆] (4𝛼𝛽1𝛬 + 𝛽2(8𝛽1(𝛽1 + 𝑘𝑐𝑎𝑡) +

𝑘𝑐𝑎𝑡
2)) + 𝑘𝑜𝑛

2[𝑆]2(𝛼2θ2 + 2𝛽1𝛽2
2𝜒 + 4𝛼𝛽1𝛽2𝛬),  

𝐽 = 2𝛽1 (4𝛼2𝛽2
2𝑘𝑐𝑎𝑡𝜒 + 𝛼𝛽2𝑘𝑜𝑛[𝑆](8𝛽1(𝛼θ + (𝛼 + 𝛽2)𝑘𝑐𝑎𝑡) + (2𝛼 + 3𝛽2)𝑘𝑐𝑎𝑡

2) +

2𝑘𝑜𝑛
2[𝑆]2(𝛼θ(4𝛽1𝛽2 + 𝛼θ) + 𝛽1𝑘𝑐𝑎𝑡(𝛼2 + 4𝛼𝛽2 + 𝛽2

2) + 𝛼𝛽2𝑘𝑐𝑎𝑡
2) +

𝑘𝑜𝑛
3[𝑆]3(2𝛽1𝛽2(θ + 𝑘𝑐𝑎𝑡) + 𝛼(θ2 + 𝛽1𝑘𝑐𝑎𝑡))),  

𝐿 = 𝛽1
2 (4𝛼𝛽2

2𝑘𝑐𝑎𝑡
2𝜇 + 𝑘𝑜𝑛

2[𝑆]2(4𝛼2θ2 + 8𝛼2𝛽1𝑘𝑐𝑎𝑡 + (3𝛼2 + 2𝛼𝛽2 + 𝛽2
2)𝑘𝑐𝑎𝑡

2) +

2𝛼𝑘𝑜𝑛
3[𝑆]3(2θ2 + 4𝛽1𝑘𝑐𝑎𝑡 + 𝑘𝑐𝑎𝑡

2) + 𝑘𝑜𝑛
4[𝑆]4(θ2 + 2𝛽1𝑘𝑐𝑎𝑡)),  

𝑀 = 2𝛼𝛽2(𝑘𝑐𝑎𝑡 + 2𝛽1) + 𝑘𝑜𝑛[𝑆](𝛼θ + 2𝛽1𝛽2),  

𝑁 = 2𝛼𝛽1𝛽2𝑘𝑐𝑎𝑡 + 𝛽1𝑘𝑜𝑛[𝑆]((𝜇 + 𝛼)θ + (𝛼 + 𝛽2)𝑘𝑐𝑎𝑡) and 𝑃 = 𝑀2 + 4𝛼𝛽2𝑁. 

Eq. 3.19 and Eq. 3.20 show that the randomness parameter is equal to unity at low substrate 

concentration and deviates from one at high substrate concentration. The value of R is a measure 

of the dynamic disorder present in the system. In Figure 3.4(a) and 3.4(b) we study the 

dependence of the randomness parameter on the off dissociation rate, 𝑘𝑜𝑓𝑓. At moderate to high 
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substrate concentration, mostly the enzyme exists in the substrate-bound state 𝐸1𝑆 or 𝐸2𝑆. As 

𝑘𝑜𝑓𝑓 increases, and when it is comparable to 𝑘𝑐𝑎𝑡, the enzymatic reaction follows a multistep 

process and the waiting time distribution is a multiexponential distribution. The 𝐸2𝑆 state can 

dissociate to 𝐸2 and undergo a conformational change to 𝐸1 but can again quickly get converted 

to the 𝐸1𝑆 complex. Such multiple reaction pathways lead to an increase in randomness in the 

system and reach a peak at a certain value of 𝑘𝑜𝑓𝑓. When 𝑘𝑜𝑓𝑓 is very high, the unbinding of 

the substrate from the enzyme-substrate complex is highly favorable and the product formation 

step is the rate-determining step. This leads to a decrease in the value of R since the reaction 

switches to a single-pathway mechanism and the randomness parameter finally saturates to 

unity at very high values of 𝑘𝑜𝑓𝑓. This is also evident from Eq. 19 and Eq. 20. In both cases, 𝑅 

saturates to one at high values of 𝑘𝑜𝑓𝑓.  

 

Figure 3.4: (a) Randomness parameter (from Eq. 3.19) plotted as a function of 𝒌𝒐𝒇𝒇 for the reaction 
scheme represented in Figure 3.1(a) at different values of substrate concentrations 2, 5 and 10 
represented by red, green, and blue solid lines, respectively. The common set of reaction rate 
constants are 𝒌𝒐𝒏 = 𝟏, 𝜶 = 𝟏, 𝜷 = 𝟐, and 𝒌𝒄𝒂𝒕 = 𝟓. (b) Randomness parameter (from Eq. 20) 
plotted as a function of 𝒌𝒐𝒇𝒇

(𝟏)  for the reaction scheme represented in Figure 3.1(b) at different 
values of substrate concentrations 2, 5 and 10 represented by red, green, and blue solid lines, 
respectively. The common set of reaction rate constants are 𝒌𝒐𝒏 = 𝟏, 𝜶 = 𝟏, 𝜷𝟏 = 𝟐, 𝜷𝟐 = 𝟒, and 
𝒌𝒄𝒂𝒕 = 𝟓. 

 

3.3 Conclusions: 

In this chapter, we calculate the velocity of a single enzyme using the chemical master equation 

approach. We consider two discrete conformations of the free enzyme and the enzyme-substrate 
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complex. The rate equation does not follow the MM law. When the reaction rate is studied as a 

function of 𝑘𝑜𝑓𝑓, an increase in the off dissociation rate assists the system to escape from the 

unproductive 𝐸2𝑆 state. The non-monotonic dependence of the enzymatic velocity on the off 

dissociation rate is observed only within a certain concentration range of [𝑆] and this range is 

defined by a specific parameter space that satisfies a set of limiting conditions. From our 

enzymatic velocity expression, we can calculate these limiting conditions for both the cases 

when the off-rate constants are identical as well as different.  The randomness parameter 

computed for different models indicates the time-dependent fluctuations in the catalytic rates 

and its dependence on the off rate at high substrate concentrations. 

3.4 References: 

 (1) Lu, H. P.; Xun, L.; Xie, X. S. Science 1998, 282, 1877. 
 (2) English, B. P.; Min, W.; van Oijen, A. M.; Lee, K. T.; Luo, G.; Sun, H.; Cherayil, B. J.; Kou, S. C.; 
Xie, X. S. Nat. Chem. Biol. 2006, 2, 87. 
 (3) Min, W.; Gopich, I. V.; English, B. P.; Kou, S. C.; Xie, X. S.; Szabo, A. J. Phys. Chem. B. Lett. 2006, 
110, 20093. 
 (4) Kolomeisky, A. B. J. Chem. Phys. 2011, 134, 155101. 
 (5) Kou, S. C.; Cherayil, B. J.; Min, W.; English, B. P.; Xie, X. S. J. Phys. Chem. B 2005, 109, 19068. 
 (6) Reuveni, S.; Urbakh, M.; Klafter, J. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 4391. 
 (7) Berezhkovskii, A. M.; Szabo, A.; Rotbart, T.; Urbakh, M.; Kolomeisky, A. B. J. Phys. Chem. B 
2017, 121, 3437. 
 (8) Gopich, I. V.; Szabo, A. J. Chem. Phys. 2006, 124, 154712. 
 (9) Kumar, A.; Maity, H.; Dua, A. J. Phys. Chem. B 2015, 119, 8490. 
 (10) Singh, D.; Chaudhury, S. J. Chem. Phys. 2017, 146, 145103. 
 (11) Qian, H. Biophys. J. 2008, 95, 10. 
 (12) Chaudhury, S.; Cao, J.; Sinitsyn, N. A. J. Phys. Chem. B 2013, 117, 503. 
 (13) Chaudhury, S. J. Phys. Chem. B 2014, 118, 10405. 
 (14) Gardiner, C. W. Handbook of Stochastic Methods: for Physics, Chemistry, and the Natural 
Sciences; Springer: New York, 1996. 
 (15) Qian, H.; Bishop, L. M. Int. J. Mol. Sci. 2010, 11, 3472. 
 (16) Grima, R.; Leier, A. J. Phys. Chem. B 2016, 121, 13. 
 (17) Grima, R.; Walter, N. G.; Schnell, S. FEBS J. 2014, 281, 518. 
 (18) Stéfanini, M. O.; McKane, A. J.; Newman, T. J. Nonlinearity 2005, 18, 1575. 
 (19) Van Kampen, N. G. Stochastic Processes in Physics and Chemistry; 3rd Edition ed.; Elseiver: 
North Holland, 2007. 
 (20) Gillespie, D. T. J. Phys. Chem. 1977, 81, 2340. 
 (21) Singh, D.; Chaudhury, S. Data in Brief 2019, 25, 104211. 
 (22) Piephoff, D. E.; Wu, J.; Cao, J. J.  Phys. Chem. Lett. 2017, 8, 3619. 
 (23) Moffitt, J. R.; Bustamante, C. FEBS J. 2014, 281, 498. 

 



65 
 

4. Single molecule kinetics of an 
enzyme in the presence of multiple 
substrates 
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4.1 Introduction: 

In our previous thesis chapters (2 and 3), we have considered different enzymatic models where 

a single enzyme exists in multiple free and bound states. These reaction mechanisms have only 

one kind of substrate, which can reversibly bind with any of the existing free enzyme 

conformers and form the enzyme-substrate complexes. For the classical MM reaction model 

also, there is a single type of the substrate-binding event.1 However, there are biochemical 

reactions involving different types of substrates. Various substrate-binding events complicates 

the network and affect the overall dynamics of the catalytic process. For the multi-substrate 

reactions, the mechanism is complex since it depends on the binding site specifications as well 

as on the sequence of binding.2 Based on these factors, the multiple substrate reactions are 

broadly classified into the sequential and the non-sequential pathways.3,4 For a reaction 

involving two substrates, in the sequential mechanism, both the substrates bind to the enzyme 

either in a random or ordered manner to form a ternary complex which forms the product. In 

the random mechanism, the order of binding of the two substrates is unimportant. In the non-

sequential mechanism, commonly known as ping-pong mechanism, both the substrates do not 

bind before the release of the product. 

At the deterministic level, using the quasi-steady state approximation (QSSA), one can 

obtain the initial rate of product formation. The functional form of the reaction velocity follows 

the MM type of equation. By measuring the initial rate as a function of [𝑆1] and varying the 

concentration of [𝑆2], the Lineweaver-Burk plot (1/𝑣 versus 1/[𝑆1]) enables one to distinguish 

between the sequential and ping-pong mechanisms. Though the rate equation follows a MM 

form, for a sequential reaction, change in the concentration of substrate [𝑆2], changes the slope 

and intercept of the Lineweaver-Burk plot, whereas, in the non-sequential (ping-pong) reaction, 

there is a change in the intercept but not the slope of the plot.4 Using a stochastic chemical 

master equation approach involving substrate number changes (attributed to limiting [𝑆]), 
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Grima and Leier have also studied single enzyme kinetics for multiple substrate bindings.5 

Although in SM experiments, excess substrate availability is approximately justified because 

here an enzyme is immobilized on a surface and there is a steady flow of substrate.6,7  

      In this chapter, we study the stochastic single molecule enzyme kinetics for the 

multi-substrate reactions under the excess substrate availability.8 We ask the following 

questions. Can we get any further information about the kinetics of multi substrate reactions 

by measuring the higher moments of the waiting time distribution?  Can we differentiate 

between different bisubstrate binding mechanisms at the single molecule level? In previous 

theoretical studies, the stochastic SM reaction kinetics have been described for different type 

of chain and branching reactions 9 and a first passage time distribution formalism10 for generic 

reaction schemes. Here, we consider a chemical master equation approach11 to obtain the 

probability for the enzyme to exist in one or more substrate bound states for bisubstrate binding 

reaction mechanisms. 

Provided, the detailed balance condition holds, the MM behaviour would be followed 

even for complex reaction systems.12,13 Therefore, one needs to quantify the temporal 

fluctuations in the reaction rates. For probing the noise, we calculate the randomness parameter 

from the higher moments of the probability distribution function. 

4.2 Reaction Models and Analyses: 

 



68 
 

Figure 4.1: Schemes for bisubstrate binding in enzyme catalysis (a) ordered (b) random (c) ping- 
pong mechanism. 
 
As shown in Fig. 4.1(a), in the ordered mechanism, the substrate 𝑆1 binds first to the enzyme 

𝐸 to form the 𝐸𝑆1 complex followed by the binding of substrate 𝑆2 to form the ternary complex, 

𝐸𝑆1𝑆2. In the random sequential mechanism as shown in Fig. 4.1b, there is no preference for 

binding of 𝑆1 and 𝑆2 to the enzyme, 𝐸. The formation of the same ternary complex 𝐸𝑆1𝑆2  

occurs irrespective of the order in which the substrate binds. In Fig. 4.1(c), first substrate 𝑆1  

binds to 𝐸, followed by product release 𝑃 and along with a new form of the enzyme, 𝐸∗. Then 

the second substrate 𝑆2  binds reversibly to 𝐸∗ and the reaction takes place to form the product 

𝑄 with the regeneration of the free enzyme.  

For an ordered sequential substrate binding mechanism, if 𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃 are the 

number of enzyme, enzyme-substrate complex, ternary complex, regenerated enzyme, and 

products at any time t, the chemical master equation can be written as14  

𝜕𝑡𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

= 𝑘1[𝑆1](𝑛𝐸 + 1)𝑃(𝑛𝐸 + 1, 𝑛𝐸𝑆1 − 1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘−1(𝑛𝐸𝑆1 + 1)𝑃(𝑛𝐸 − 1, 𝑛𝐸𝑆1 + 1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘2[𝑆2](𝑛𝐸𝑆1 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1 + 1, 𝑛𝐸𝑆1𝑆2 − 1, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘−2(𝑛𝐸𝑆1𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1 − 1, 𝑛𝐸𝑆1𝑆2 + 1, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘3(𝑛𝐸𝑆1𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆1𝑆2 + 1, 𝑛𝐸0 − 1, 𝑛𝑃 − 1; 𝑡)

− (𝑘1[𝑆1]𝑛𝐸 + (𝑘−1 + 𝑘2[𝑆2])𝑛𝐸𝑆1

+ (𝑘−2 + 𝑘3)𝑛𝐸𝑆1𝑆2)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡). 

                                                                                                                                              (4.1)      

Because of the mutually exclusive of different enzymatic states, the CME reduces to the 

following set of coupled differential equations.  
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𝜕𝑃𝐸(𝑡)
𝜕𝑡

= −𝑘1[𝑆1]𝑃𝐸(𝑡) + 𝑘−1𝑃𝐸𝑆1(𝑡) + 𝛿0𝑃𝐸0(𝑡)                                                        (4.2.a)           

𝜕𝑃𝐸𝑆1(𝑡)

𝜕𝑡
= 𝑘1[𝑆1]𝑃𝐸(𝑡) − (𝑘−1 + 𝑘2[𝑆2])𝑃𝐸𝑆1(𝑡) + 𝑘−2𝑃𝐸𝑆1𝑆2(𝑡)                                (4.2.b) 

𝜕𝑃𝐸𝑆1𝑆2(𝑡)

𝜕𝑡
= 𝑘2[𝑆2]𝑃𝐸𝑆1(𝑡) − (𝑘−2 + 𝑘3)𝑃𝐸𝑆1𝑆2(𝑡)                                  (4.2.c) 

𝜕𝑃𝐸0(𝑡)

𝜕𝑡
= 𝑘3𝑃𝐸𝑆1𝑆2(𝑡) − 𝛿0𝑃𝐸0(𝑡)                                                 (4.2.d) 

We solve these differential equations by taking their Laplace transforms. At 𝑡 = 0, 𝑃𝐸(0) =

1, 𝑃𝐸𝑆1(0) = 0, 𝑃𝐸𝑆1𝑆2(0) = 0, and 𝑃𝐸0(0) = 0   holds and at any time sum of all the 

probability densities should be giving unity. Chapter I of the thesis describes all other details 

of the waiting-time distribution formalism.  

(𝑠 + 𝑘1[𝑆1])𝑃̂𝐸(𝑠) − 𝑘−1𝑃̂𝐸𝑆1(𝑠) − 𝛿0𝑃̂𝐸0(𝑠) = 1                                                         (4.3a) 

−𝑘1[𝑆1]𝑃̂𝐸(𝑠) + (𝑠 + 𝑘−1 + 𝑘2[𝑆2])𝑃̂𝐸𝑆1(𝑠) − 𝑘−2𝑃̂𝐸𝑆1𝑆2(𝑠) = 0                                           (4.3b) 

−𝑘2[𝑆2]𝑃̂𝐸𝑆1(𝑠) + (𝑠 + 𝑘−2 + 𝑘3)𝑃̂𝐸𝑆1𝑆2(𝑠) = 0                                                                      (4.3c) 

 𝑠𝑃̂𝐸0(𝑠) = 0                                                          (4.3d) 

Arranging in the form of matrix and simplifying gives Eq.4. 

  

[
 
 
 
 𝑃̂𝐸(𝑠)

𝑃̂𝐸𝑆1(𝑠)
𝑃̂𝐸𝑆1𝑆2(𝑠)
𝑃̂𝐸0(𝑠) ]

 
 
 
 
=

[
 
 
 
 
 

𝑠2+𝑎𝑠+𝑏
𝑠3+𝑒𝑠2+𝑓𝑠+𝑔

𝑜𝑠+ℎ
𝑠3+𝑒𝑠2+𝑓𝑠+𝑔

𝑗
𝑠3+𝑒𝑠2+𝑓𝑠+𝑔

0 ]
 
 
 
 
 

                                                                         (4.4) 

Here 𝑎 = 𝑘−1 + 𝑘−2 + 𝑘3 + 𝑘2[𝑆2], 𝑏 = 𝑘−1𝑘−2 + 𝑘−1𝑘3 + 𝑘2𝑘3[𝑆2], 𝑒 = 𝑎 + 𝑘1[𝑆1],  

 j = 𝑘1𝑘2[𝑆1][𝑆2], 𝑓 = (𝑘−2 + 𝑘3)(𝑘−1 + 𝑘1[𝑆1] + 𝑘2[𝑆2]) + 𝑗, 𝑔 = (𝑘−2 + 𝑘3)𝑗,  

ℎ = (𝑘−2 + 𝑘3)𝑜 and 𝑜 = 𝑘1[𝑆1]. 
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Eq.5 represents the waiting-time distribution function 𝑓(𝑠) for the sequential ordered pathway. 

 𝑓(𝑠) = 𝑘3𝑃̂𝐸𝑆1𝑆2(𝑠) = 𝑘3𝑗
𝑠3+𝑒𝑠2+𝑓𝑠+𝑔

                                                                                     (4.5) 

 
Figure 4.2: Plot of the dimensionless waiting time distribution as a function of the dimensionless 
time for the ordered sequential mechanism at (a) moderate concentration [𝑺𝟏] = 𝟏𝟎 and (b) high 
concentration [𝑺𝟏] =  𝟓𝟎𝟎𝟎 at three concentrations of the second substrate, [𝑺𝟐] =  𝟏(blue line), 
[𝑺𝟐] = 𝟏𝟎 (green line), and [𝑺𝟐] =  𝟏𝟎𝟎𝟎 (red line).  Parameter values chosen are 𝒌𝟏 =  𝒌−𝟏 =
 𝒌𝟐 =  𝒌−𝟐 =  𝟎. 𝟓 and 𝒌𝟑  =  𝟓. 
 

The first moment of Eq. 4.5 gives the mean waiting time. 

〈𝑡〉𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 𝐴
[𝑆1][𝑆2] +

𝐵
[𝑆2] +

𝐶
[𝑆1] + 𝐷                                                  (4.6) 

Here, 𝐴 = 𝐵𝑘−1
𝑘1

, 𝐵 = (𝑘−2+𝑘3)
𝑘2𝑘3

, 𝐶 = 1
𝑘1

 and 𝐷 = 1
𝑘3

. From Eq. 4.6, at a constant [𝑆2], the 

expression for average time reduces to a MM type equation.  

〈𝑡〉𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 𝐹 + 𝐸
[𝑆1]                                                    (4.7)  

Here, 𝐹 = ( 𝐵
[𝑆2] + 𝐷) , 𝐸 = ( 𝐴

[𝑆2] + 𝐶). Similarly, for a random substrate binding mechanism 

(Figure 4.1b) the CME can be written as  
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𝜕𝑡𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; , 𝑡)

= 𝑘1[𝑆1](𝑛𝐸 + 1)𝑃(𝑛𝐸 + 1, 𝑛𝐸𝑆1 − 1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘−1(𝑛𝐸𝑆1 + 1)𝑃(𝑛𝐸 − 1, 𝑛𝐸𝑆1 + 1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘2[𝑆2](𝑛𝐸 + 1)𝑃(𝑛𝐸 + 1, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2 − 1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘−2(𝑛𝐸𝑆2 + 1)𝑃(𝑛𝐸 − 1, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2 + 1, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘3[𝑆1](𝑛𝐸𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2 + 1, 𝑛𝐸𝑆1𝑆2 − 1, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘−3(𝑛𝐸𝑆1𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2 − 1, 𝑛𝐸𝑆1𝑆2 + 1, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘4[𝑆2](𝑛𝐸𝑆1 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1 + 1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2 − 1, 𝑛𝐸0, 𝑛𝑃; 𝑡)

+ 𝑘−4(𝑛𝐸𝑆1𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1 − 1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2 + 1, 𝑛𝐸0, 𝑛𝑃, 𝑡)

+ 𝑘5(𝑛𝐸𝑆1𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2 + 1, 𝑛𝐸0 − 1, 𝑛𝑃 − 1; 𝑡)

− [(𝑘1[𝑆1]+𝑘2[𝑆2])𝑛𝐸 + (𝑘−1+𝑘4[𝑆2])𝑛𝐸𝑆1 + (𝑘−2 + 𝑘3[𝑆1])𝑛𝐸𝑆2 + (𝑘−3

+ 𝑘−4 + 𝑘5)𝑛𝐸𝑆1𝑆2]𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸𝑆2, 𝑛𝐸𝑆1𝑆2, 𝑛𝐸0, 𝑛𝑃; 𝑡).         

                                                                                                                                              (4.8)                                                                       

 Following the same mathematical procedure as used for the sequential ordered pathway, we 

can obtained the following set of equations. 

  𝜕𝑃𝐸(𝑡)
𝜕𝑡

= −(𝑘1[𝑆1] + 𝑘2[𝑆2])𝑃𝐸(𝑡) + 𝑘−1𝑃𝐸𝑆1(𝑡) + 𝑘−2𝑃𝐸𝑆2(𝑡) − 𝛿0𝑃𝐸0(𝑡)                 (4.9.a) 

 
𝜕𝑃𝐸𝑆1(𝑡)

𝜕𝑡
= 𝑘1[𝑆1]𝑃𝐸(𝑡) − (𝑘−1 + 𝑘4[𝑆2])𝑃𝐸𝑆1(𝑡) + 𝑘−4𝑃𝐸𝑆1𝑆2(𝑡)                     (4.9.b) 

 𝜕𝑃𝐸𝑆2(𝑡)

𝜕𝑡
= 𝑘2[𝑆2]𝑃𝐸(𝑡) − (𝑘−2 + 𝑘3[𝑆1])𝑃𝐸𝑆2(𝑡) + 𝑘−3𝑃𝐸𝑆1𝑆2(𝑡)                                  (4.9.c) 

𝜕𝑃𝐸𝑆1𝑆2(𝑡)

𝜕𝑡
= 𝑘4[𝑆2]𝑃𝐸𝑆1(𝑡) + 𝑘3[𝑆1]𝑃𝐸𝑆2(𝑡) − (𝑘−3 + 𝑘−4 + 𝑘5)𝑃𝐸𝑆1𝑆2(𝑡)                    (4.9.d) 

 
𝜕𝑃𝐸0(𝑡)

𝜕𝑡
= 𝑘5𝑃𝐸𝑆1𝑆2(𝑡) − 𝛿0𝑃𝐸0(𝑡)                                                (4.9.e) 

Taking the Laplace transform and performing the matrix algebra gives Eq. 4.10.  
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[
 
 
 
 
 𝑃̂𝐸(𝑠)

𝑃̂𝐸𝑆1(𝑠)
𝑃̂𝐸𝑆2(𝑠)

𝑃̂𝐸𝑆1𝑆2(𝑠)
𝑃̂𝐸0(𝑠) ]

 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑠3+µ1𝑠2+µ2𝑠+µ3
𝑠4+𝜃5𝑠3+𝜃9𝑠2+𝜃10𝑠+𝜃11

𝜎1𝑠2+𝜎2𝑠+𝜎4
𝑠4+𝜃5𝑠3+𝜃9𝑠2+𝜃10𝑠+𝜃11

𝜎5𝑠2+𝜎6𝑠+𝜎7
𝑠4+𝜃5𝑠3+𝜃9𝑠2+𝜃10𝑠+𝜃11

𝜎8𝑠+𝜎9
𝑠4+𝜃5𝑠3+𝜃9𝑠2+𝜃10𝑠+𝜃11

0 ]
 
 
 
 
 
 
 

                                                                (4.10) 

Here,  𝜖1 = 𝑘1[𝑆1] + 𝑘2[𝑆2], 𝜖2 = 𝑘−1 + 𝑘4[𝑆2], 𝜖3 = 𝑘−2 + 𝑘3[𝑆1], 𝜖4 = 𝑘−3 + 𝑘−4 + 𝑘5, 

 µ1 =  𝜖2 +  𝜖3 +  𝜖4, µ2 = 𝑘3𝑘4[𝑆2]2 + 𝑘3(𝑘−4 + 𝑘5)[𝑆1] + (𝑘4(𝑘−2 + 𝑘−3 + 𝑘5) +

𝑘−1𝑘3)[𝑆2] +  𝜖4(𝑘−1 + 𝑘−2) + 𝑘−1𝑘5, 

 µ3 = 𝑘3(−𝑘3𝑘−4 + 𝑘4𝑘−4 + 𝑘4𝑘5)[𝑆1][𝑆2] + (𝑘−1 𝜖4 − 𝑘3𝑘−3𝑘4)[𝑆1] + 𝑘−2(𝑘−4(𝑘4 −

𝑘3) + 𝑘4(𝑘−4 + 𝑘5))[𝑆2] + 𝑘−1𝑘−2 𝜖4,  

𝜃5 = µ1 +  𝜖1, 𝜃9 = 𝑘2(𝑘−1 − 𝑘2)[𝑆2] + 𝑘4 𝜖1[𝑆2] + (µ1 −  𝜖2)(1 +  𝜖2 +  𝜖1), 𝜌1 =   𝜖3 𝜖4, 

𝜃10 = −𝑘1𝑘−1[𝑆1](µ1 −  𝜖2 + 𝜌1) − 𝑘2𝑘−2[𝑆2](µ1 −  𝜖3) + (𝜌1 + µ1 −  𝜖2)( 𝜖2 +  𝜖1), 

𝜌2 =  𝜖2 𝜖4, 𝜃11 = −𝑘2𝑘−2[𝑆2]𝜌2 + 𝜌1 𝜖1 𝜖2, 𝜎1 = 𝑘1[𝑆1], 𝜎3 = 𝜎1(µ1 −  𝜖2), 𝜎4 =

𝜎1[𝑘−2 𝜖4 + 𝑘3[𝑆1](𝑘−4 + 𝑘5)] + 𝑘2𝑘3𝑘4[𝑆1][𝑆2], 𝜎5 = 𝑘2[𝑆2],  

𝜎6 = 𝜎5(µ1 −  𝜖3),  𝜎7 = 𝜎5𝜌2 + 𝑘4[𝑆2](𝑘1𝑘−3[𝑆1] − 𝑘2𝑘−4[𝑆2]), 𝜎8 = [𝑆1](𝑘1𝑘4 +

𝑘2𝑘3[𝑆2]), 

 𝜎9 = 𝑘1𝑘4 𝜖3[𝑆1] + 𝑘2𝑘3[𝑆1][𝑆2](𝑘−1 + 𝑘3[𝑆1]). 

Eq. 4.11 represents the waiting time distribution for the random sequential mechanism. 

𝑓(𝑠) = 𝑘5 ∗ 𝑃̂𝐸𝑆1𝑆2(𝑠) = 𝑘5(𝜎8𝑠+𝜎9)
𝑠4+𝜃5𝑠3+𝜃9𝑠2+𝜃10𝑠+𝜃11

                                                                         (4.11) 

 

Figure 4.3: Plot of the dimensionless waiting time distribution as a function of the dimensionless 
time for the random mechanism at (a) moderate concentration [𝑺𝟏]  = 𝟓, [𝑺𝟐] =  𝟏(blue line), 
[𝑺𝟐]  = 𝟏𝟎 (green line) and (b) high concentration [𝑺𝟏] =  𝟐𝟎𝟎𝟎 at [𝑺𝟐] =  𝟏(blue line), [𝑺𝟐]  =



73 
 

𝟏𝟎 (green line), and [𝑺𝟐] =  𝟏𝟎𝟎𝟎 (red line). Parameter values chosen are 𝒌𝟏 =  𝒌−𝟏 =  𝒌𝟐 =
 𝒌−𝟐 =  𝒌𝟑 =  𝒌−𝟑 =  𝒌𝟒 =  𝒌−𝟒 =  𝟎. 𝟓 and 𝒌𝟓  =  𝟓. 

 
Figures 4.2 and 4.3 show the temporal variation of the waiting time distribution for the ordered 

and the random mechanism of bisubstrate reaction respectively as a function of the substrate 

concentration, [𝑆1]. At low [𝑆1], the binding of the substrate to the free enzyme E is the rate-

determining step and the waiting time shows a mono-exponential decay irrespective of the 

concentration of the second substrate, [S2]. At intermediate concentration [𝑆1],  the distribution 

is multi-exponential, an exponential rise followed by an exponential decay at a constant value 

of [𝑆2]. As shown in Figures 4.2(a) and 4.3(a), at an intermediate [𝑆1], the distribution becomes 

increasingly narrower, with increasing value of [𝑆2]. At high [𝑆1], the distribution of the 

waiting times decays multi-exponentially (Figures 4.2(b) and 4.3(b)), but finally becomes 

steeper and mono-exponential at very high [𝑆2] (red line in Figures 4.2(b) and 4.3(b)). The 

increase in the substrate concentration [𝑆2] leads to only one rate-determining step, which 

corresponds to the product formation step. Thus in both the sequential reaction pathways the 

distribution is characterized by multiple relaxation time scales, arising due to the presence of 

multiple competing chemical steps. 

Eq. 4.12 represents the mean waiting time (first moment of Eq. 4.11) for the random 

mechanism. 

〈𝑡〉𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑎0+𝑒0[𝑆1]+𝑙0[𝑆2]+𝑑0[𝑆1]2+𝑛0[𝑆2]2+𝑚0[𝑆1][𝑆2]+𝑘0[𝑆1]2[𝑆2]+𝑝0[𝑆1][𝑆2]2

𝑥0[𝑆1][𝑆2]+𝑣0[𝑆1]2[𝑆2]+𝑤0[𝑆1][𝑆2]2            (4.12) 

Here, 𝑎0 = 𝑘−1𝑘−2𝜖4, 𝑒0 = (𝑘−1𝑘3 + 𝑘1𝑘−2)(𝑘−4 + 𝑘5) + 𝑘1𝑘−2𝑘−3, 

𝑙0 = (𝑘−2𝑘4 + 𝑘−1𝑘2)(𝑘−3 + 𝑘5) + 𝑘−1𝑘2𝑘−4, 𝑑0 = 𝑘1𝑘3(𝑘−4 + 𝑘5), 𝑛0 = 𝑘2𝑘4(𝑘−3 + 𝑘5), 

𝑚0 = 𝑘1𝑘4(𝑘−2 + 𝑘−3) + 𝑘2𝑘3(𝑘−1 + 𝑘−4) + 𝑘3𝑘4𝑘5, 𝑘0 = 𝑘1𝑘3𝑘4, 𝑝0 = 𝑘2𝑘3𝑘4, 

𝑥0 = 𝑘5(𝑘−1𝑘2𝑘3 + 𝑘1𝑘−2𝑘4), 𝑣0 = 𝑘1𝑘3𝑘4𝑘5 and 𝑤0 = 𝑘2𝑘3𝑘4𝑘5. 

At a constant [𝑆2], Eq. 4.12 reduces to  

 〈𝑡〉𝑟𝑎𝑛𝑑𝑜𝑚 = 𝑑0′
𝑣0′

+
(𝑣0′𝑒0

′ −𝐴′𝑑0
′

𝑣0′ )[𝑆1]+𝑅′

𝐴′[𝑆1]+𝑣0′[𝑆1]2 .                                      (4.13) 
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Here, 𝐴′ = 𝑥0[𝑆2] + 𝑤0[𝑆2]2, 𝑣0
′ = 𝑣0[𝑆2], 𝑑0

′ = 𝑑0 + 𝑘0[𝑆2], 𝑅′ = 𝑎0 + 𝑙0[𝑆2] + 𝑛0[𝑆2]2, 

𝑒0
′ = 𝑒0 + 𝑚0[𝑆2] + 𝑝0[𝑆2]2.  

Thus, the behaviour of the mean waiting time is not the same as observed for the ordered 

sequential mechanism. In the limit when 𝑘2 → 0 and 𝑘−2 → 0, there is only one initial substrate 

binding step as a result of which Eq. 4.13 reduces to 

〈𝑡〉𝑟𝑎𝑛𝑑𝑜𝑚 = 𝜉 + µ
[𝑆1].                                                                          (4.14) 

Here, 𝜉 = 𝑘4[𝑆2]+𝑘−4+𝑘5
𝑘4𝑘5[𝑆2]  and µ = 𝑘−1𝑘3 (𝑘−4+𝑘5)+𝑘4[𝑆2](𝑘1𝑘−3+𝑘3𝑘5)

𝑘1𝑘3𝑘4[𝑆2]𝑘5
. This resembles the classical 

MM equation. The mean waiting time 〈 𝑡〉 𝑟𝑎𝑛𝑑𝑜𝑚 behaves non-linearly as a function of the 

concentration of 𝑆1 for a fixed [𝑆2] (Eq. 4.13). The non-MM behaviour of the enzyme 

corresponds to a cooperative effect.15 Chapter 2 of the thesis covers cooperativity and its effects 

for enzymatic models with different types of conformational interconversions. A MM type of 

behaviour recovers when one considers only a single substrate binding to the free enzyme (Eq. 

4.14). Thus, the non-MM behaviour of the initial rate of product formation as a function of the 

substrate concentration 𝑆1 can distinguish between the ordered and the random sequential 

mechanisms.              

𝜕𝑡𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸∗, 𝑛𝑃, 𝑛𝐸∗𝑆2, 𝑛𝐸0, 𝑛𝑄; 𝑡)

= 𝑘1[𝑆1](𝑛𝐸 + 1)𝑃(𝑛𝐸 + 1, 𝑛𝐸𝑆1 − 1, 𝑛𝐸∗, 𝑛𝑃, 𝑛𝐸∗𝑆2, 𝑛𝐸0, 𝑛𝑄; 𝑡)

+ 𝑘−1(𝑛𝐸𝑆1 + 1)𝑃(𝑛𝐸 − 1, 𝑛𝐸𝑆1 + 1, 𝑛𝐸∗, 𝑛𝑃, 𝑛𝐸∗𝑆2, 𝑛𝐸0, 𝑛𝑄; 𝑡)

+ 𝑘2(𝑛𝐸𝑆1 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1 + 1, 𝑛𝐸∗ − 1, 𝑛𝑃 − 1, 𝑛𝐸∗𝑆2, 𝑛𝐸0, 𝑛𝑄; 𝑡)

+ 𝑘3[𝑆2](𝑛𝐸∗ + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸∗ + 1, 𝑛𝑃, 𝑛𝐸∗𝑆2 − 1, 𝑛𝐸0, 𝑛𝑄; 𝑡)

+ 𝑘−3(𝑛𝐸∗𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸∗ − 1, 𝑛𝑃, 𝑛𝐸∗𝑆2 + 1, 𝑛𝐸0, 𝑛𝑄; 𝑡)

+ 𝑘4(𝑛𝐸∗𝑆2 + 1)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸∗, 𝑛𝑃, 𝑛𝐸∗𝑆2 + 1, 𝑛𝐸0 − 1, 𝑛𝑄 − 1; 𝑡)

− (𝑘1[𝑆1]𝑛𝐸 + (𝑘−1 + 𝑘2)𝑛𝐸𝑆1 + 𝑘3[𝑆2]𝑛𝐸∗ + (𝑘−3

+ 𝑘4)𝑛𝐸∗𝑆2)𝑃(𝑛𝐸, 𝑛𝐸𝑆1, 𝑛𝐸∗, 𝑛𝑃, 𝑛𝐸∗𝑆2, 𝑛𝐸0, 𝑛𝑄; 𝑡) 
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                                                                                                                                            (4.15) 

Eq. 4.15 shown above represents the CME for the ping-pong mechanism as given in Figure 

4.1(c). The joint probability distribution shown in Eq. 4.15 reduces to the following set of 

coupled ordinary differential equations. 

𝜕𝑃𝐸(𝑡)
𝜕𝑡

= −𝑘1[𝑆1]𝑃𝐸(𝑡) +  𝑘−1𝑃𝐸𝑆1(𝑡) + 𝛿0𝑃𝐸0(𝑡)                                                       (4.16.a)  

𝜕𝑃𝐸𝑆1(𝑡)

𝜕𝑡
= 𝑘1[𝑆1]𝑃𝐸(𝑡) − (𝑘−1 + 𝑘2)𝑃𝐸𝑆1(𝑡)                                 (4.16.b) 

𝜕𝑃𝐸∗(𝑡)
𝜕𝑡

= 𝑘2𝑃𝐸𝑆1(𝑡) − 𝑘3[𝑆2]𝑃𝐸∗(𝑡) + 𝑘−3𝑃𝐸∗𝑆2(𝑡)                                (4.16.c) 

𝜕𝑃𝐸∗𝑆2
(𝑡)

𝜕𝑡
= 𝑘3[𝑆2]𝑃𝐸∗(𝑡) − (𝑘−3 + 𝑘4)𝑃𝐸∗𝑆2(𝑡)                                (4.16.d) 

𝜕𝑃𝐸0(𝑡)

𝜕𝑡
= 𝑘4𝑃𝐸∗𝑆2(𝑡) − 𝛿0𝑃𝐸0(𝑡)                                                (4.16.e) 

Solving the above set of differential equations gives Eq. 4.17. 

[
 
 
 
 
 𝑃̂𝐸(𝑠)
𝑃̂𝐸𝑆1(𝑠)
𝑃̂𝐸∗(𝑠)

𝑃̂𝐸∗𝑆2(𝑠)
𝑃̂𝐸0(𝑠) ]

 
 
 
 
 

=

[
 
 
 
 
 
 
 

𝑠3+𝛼1𝑠2+𝛼2𝑠+𝛼3
𝑠4+𝛾1𝑠3+𝛿1𝑠2+𝛿2𝑠+𝛿3

𝛼4𝑠2+𝛼5𝑠+𝛼6
𝑠4+𝛾1𝑠3+𝛿1𝑠2+𝛿2𝑠+𝛿3

𝛼8𝑠+𝛼7
𝑠4+𝛾1𝑠3+𝛿1𝑠2+𝛿2𝑠+𝛿3

𝛼9
𝑠4+𝛾1𝑠3+𝛿1𝑠2+𝛿2𝑠+𝛿3

0 ]
 
 
 
 
 
 
 

                                                                    (4.17) 

Here 𝜗1 = 𝑘−1 + 𝑘2, 𝜗2 = 𝑘−3 + 𝑘4, 𝛼1 = 𝜗1 + 𝜗2 + 𝑘3[𝑆2], 𝛼2 = 𝜗1(𝜗2 + 𝑘3[𝑆2]) +

𝑘3𝑘4[𝑆2], 𝛼3 = 𝜗1𝑘3𝑘4[𝑆2], 𝛾1 = 𝛼1 + 𝑘1[𝑆1], 𝛼4 = 𝑘1[𝑆1], 𝛼5 = 𝛼4(𝜗2 + 𝑘3𝑘4[𝑆2]), 

𝛼6 = 𝑘1𝑘3[𝑆1][𝑆2], 𝛼7 = 𝑘1𝑘2[𝑆1], 𝛼8 = 𝑘1𝑘2(𝑘−3 + 𝑘4)[𝑆1], 𝛼9 = 𝑘1𝑘2𝑘3[𝑆1][𝑆2],  

𝛿1 = (𝜗1 + 𝑘1[𝑆1])(𝜗2 + 𝑘3[𝑆2]) + 𝑘1𝑘2[𝑆1] + 𝑘3𝑘4[𝑆2], 𝛿3 = 𝑘1𝑘2𝑘3𝑘4[𝑆1][𝑆2] and 

𝛿2 = (𝜗2 + 𝑘3[𝑆2])𝑘1𝑘2[𝑆1] + 𝑘−1𝑘3𝑘4[𝑆2] + 𝑘2𝑘3𝑘4[𝑆2] + 𝑘1𝑘3𝑘4[𝑆1][𝑆2].  

From the obtained solution, calculating waiting time distribution function 𝑓(𝑠) as 
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𝑓(𝑠) = 𝑘4𝑃̂𝐸∗𝑆2(𝑠) = 𝑘4𝛼9
𝑠4+𝛾1𝑠3+𝛿1𝑠2+𝛿2𝑠+𝛿3

.                                                                              (4.18) 

Figure 4.4: Plot of the dimensionless waiting time distribution as a function of the dimensionless 
time for the non-sequential ping-pong mechanism at (a) moderate concentration [𝑺𝟏]  = 𝟓 and  
(b) high concentration [𝑺𝟏] =  𝟏𝟎𝟎𝟎 at three concentrations of the second substrate, [𝑺𝟐] =
 𝟏(blue line), [𝑺𝟐]  = 𝟏𝟎 (green line), and [𝑺𝟐] =  𝟏𝟎𝟎𝟎 (red line). Parameter values chosen are 
𝒌𝟏 =  𝒌−𝟏 =  𝒌𝟑 =  𝒌−𝟑 =  𝟎. 𝟓 and 𝒌𝟐 =  𝒌𝟒 =  𝟓. 

The waiting time distribution behaves similarly to the sequential mechanism at low and 

intermediate substrate concentration, [𝑆1]. However, the distribution of the waiting times 

behaves differently at high [𝑆1]. Unlike the sequential pathways, the distribution decays multi-

exponentially at high [𝑆1], irrespective of the concentration [𝑆2]. The distribution becomes 

steeper and narrower with increasing [𝑆2] at large values of [𝑆1] but never follows an 

exponential decay pattern (Figure 3(b)). In the ping-pong mechanism, at high concentrations 

of 𝑆1 and 𝑆2, there exists a competition between the two product formation timescales. Our 

theoretical results are validated against stochastic simulations based on the Gillespie 

algorithm.16 The difference in the distribution profiles at high concentrations can distinguish 

between the sequential and the ping-pong mechanism at the SM level.  

The first moment of Eq. 4.18 gives the average turnover time. 

〈𝑡〉𝑝𝑖𝑛𝑔 𝑝𝑜𝑛𝑔 = 𝐴0
[𝑆1] +

𝐵0
[𝑆2] + 𝐶0                                                               (4.19) 

Here, 𝐴0 = (𝑘−1+𝑘2)
𝑘1𝑘2

, 𝐵0 = (𝑘−3+𝑘4)
𝑘3𝑘4

 and 𝐶0 = 1
𝑘2

+ 1
𝑘4

 . If [𝑆2] is constant then the expression 

for average turnover time reduces to MM type of equation given as 

〈𝑡〉𝑝𝑖𝑛𝑔−𝑝𝑜𝑛𝑔 = 𝐷0 + 𝐴0
[𝑆1] .                                                                       (4.20) 
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Here, 𝐷0 = 𝐵0
[𝑆2] + 𝐶0 . 

              To quantify the time dependent fluctuations present in different bisubstrate 

mechanisms, we evaluate the randomness parameter. Eq. 4.21 represents 𝑅, for the sequential 

ordered pathway. 

𝑅𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 1 − [𝑆1][𝑆2](𝐽+𝐼[𝑆1]+𝐿[𝑆2])

[𝑀+𝑁[𝑆1]+𝑃[𝑆2]+𝑄[𝑆1][𝑆2]]2
                                                             (4.21) 

Here, 𝐽 = 2𝑘1𝑘2𝑘3(𝑘−1 + 𝑘−2 + 𝑘3), 𝐼 = 2𝑘1
2𝑘2𝑘3, 𝐿 = 2𝑘1𝑘2

2𝑘3,𝑀 = (𝑘−2 + 𝑘3)𝑘−1, 

𝑁 = (𝑘−2 + 𝑘3)𝑘1, 𝑃 = 𝑘2𝑘3  and 𝑄 = 𝑘1𝑘2. 

From the above expression, it is clear that the randomness parameter is not equal to unity at 

high substrate concentration. However, when [𝑆1] → 0, the value of 𝑅𝑜𝑟𝑑𝑒𝑟𝑒𝑑 is equal to unity 

irrespective of the concentration of the second substrate ([𝑆2]). For the physical scenario, when 

[𝑆1] is very large and [𝑆2] has low to intermediate values, Eq. 4.21 reduces to Eq. 4.22. 

𝑅𝑜𝑟𝑑𝑒𝑟𝑒𝑑 = 𝑁2+𝑈[𝑆2]+𝑄2[𝑆2]2

𝑁2+𝑉[𝑆2]+𝑄2[𝑆2]2                                                                        (4.22) 

Here, 𝑈 = 2𝑘1
2𝑘2𝑘−2, and  𝑉 = 2𝑘1

2𝑘2(𝑘−2 + 𝑘3). Further, if [𝑆2] → 0 or [𝑆2]is very large 

then the value of 𝑅𝑜𝑟𝑑𝑒𝑟𝑒𝑑 (Eq. 4.22) will be unity.  

               Figure 4.5(a) graphically depicts the randomness parameter (Eq. 4.21) for the ordered 

sequential mechanism. At intermediate concentrations of [𝑆1] and [𝑆2], the probability of 

transitions between different intermediate states increases. Such a multi-step cascade leads to 

a non-monotonic variation of the randomness parameter. At high substrate concentration of 

[𝑆1], and an intermediate [𝑆2], 𝑅 saturates to a value other than unity indicating transitions 

between the intermediate steps in the reaction pathway (Eq. 4.22). At high [𝑆2], the product 

formation step is the rate-determining step, and 𝑅 saturates to unity (solid black line). The 

sequential random mechanism also shows similar observations represented in Figure 4.5(b). 
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Figure 4.5: Variation of the randomness parameter as a function of the substrate concentration 
[𝑺𝟏] (in dimensionless units) at different values of [𝑺𝟐] for the (a) ordered and (b) random 
pathway. The randomness parameter deviates from unity at high concentration of [𝑺𝟏] and at an 
intermediate concentration of 𝑺𝟐, ([𝑺𝟐 = 𝟏]: green line and [𝑺𝟐]   = 𝟏𝟎: red line). At high 
concentration of 𝑺𝟐, the randomness parameter is unity for both ordered and random 
mechanisms ([𝑺𝟐]  = 𝟏𝟎𝟎𝟎, black line). Kinetic parameter values for ordered and random 
mechanisms are same as in Figures 4.2 and 4.3 respectively. 
 
Eq. 4.23 represents the randomness parameter for the ping-pong mechanism. 

𝑅𝑝𝑖𝑛𝑔− 𝑝𝑜𝑛𝑔 = 1 − 𝐺0[𝑆1]2[𝑆2]2+𝐻0[𝑆1]2[𝑆2]+𝐹0[𝑆1][𝑆2]2+𝐸0[𝑆1][𝑆2]

[𝐽0[𝑆1][𝑆2]+𝐾0[𝑆1]+𝐿0[𝑆2]]2
            (4.23) 

Here, 𝐸0 = 2𝑘1𝑘2𝑘3𝑘4(𝑘−1 + 𝑘2)(𝑘−3 + 𝑘4), 𝐹0 = 2𝑘1𝑘2𝑘3
2𝑘4(𝑘−1 + 𝑘2 + 𝑘4), 𝐺0 =

2𝑘1
2𝑘2𝑘3

2𝑘4, 𝐻0 = 2𝑘1
2𝑘2𝑘3𝑘4(𝑘2 + 𝑘−3 + 𝑘4), 𝐽0 = 𝑘1𝑘3(𝑘2 + 𝑘4), 𝐾0 =

𝑘1𝑘2(𝑘−3 + 𝑘4) and 𝐿0 = 𝑘3𝑘4(𝑘−1 + 𝑘2). 

 

Figure 4.6: Variation of the randomness parameter as a function of the substrate concentration 
[𝑺𝟏] (in dimensionless units) at different values of [𝑺𝟐] for ping-pong mechanism. The randomness 
parameter does not saturate to unity at high concentration of [𝑺𝟏] and at intermediate to a high 
concentration of 𝑺𝟐 ([𝑺𝟐=1]: green line, [𝑺𝟐]   = 𝟏𝟎: red line and [𝑺𝟐]   = 𝟏𝟎𝟎𝟎: black line). At 
high concentration of 𝑺𝟐, when 𝒌𝟐  >  𝒌𝟒, the randomness parameter reduces to unity (black 
dashed line). Kinetic parameter values are same as in Figure 4.4. 
 
Thus, unlike the sequential kinetic mechanism of bi-substrate binding, the randomness 

parameter for the ping-pong mechanism attains a constant value other than unity when both 
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substrates 𝑆1 and 𝑆2 are present in excess. The randomness parameter saturates at a value 

different from unity at high concentration of [𝑆1] irrespective of [𝑆2]  (black solid line). The 

interconversions between multiple intermediate states affect the timescale of the product 

formation and thus leading to dynamic disorder. When 𝑘2 is much larger than 𝑘4, then 𝑘4 is 

the rate-determining step and the randomness parameter decays to unity (black dashed line) at 

high [𝑆1]  and [𝑆2]. Thus, the magnitude of the temporal fluctuations depends on the type of 

the bisubstrate binding mechanism at various concentrations of the substrates.  

4.3 Conclusions: 

         In this chapter, we use the chemical master equation approach to study the kinetics of a 

single enzyme binding to multiple substrates either in a sequential or a non-sequential manner 

under the substrate abundance assumption at short times.17,18 We obtain closed-form analytical 

expressions for the waiting time distribution from which the mean waiting time and the 

randomness parameter are calculated. We fix one substrate concentration at some low to 

moderate value, the waiting time distribution is multi-exponential and the randomness 

parameter deviates from unity at high concentration of the other substrate. For the sequential 

mechanisms (Figures 4.1(a) and 4.1(b)), the waiting time distribution becomes single-

exponential and the randomness parameter saturates to unity at high concentrations of both the 

substrates. The distribution profile and the randomness parameter is same for both the 

sequential mechanisms. This is not the case for non-sequential binding, where the waiting time 

distribution remains multi-exponential and the randomness parameter is not equal to unity at 

high substrate concentrations.  

           At a quasi-statically fixed concentration of one substrate, the mean waiting time 

recovers a MM type reaction, i.e. it has a linear dependence on the inverse of the concentration 

of the other substrate for the ordered and the ping-pong mechanism. However, there are 

deviations from this linear behaviour when one considers the random mechanism.  Here one 
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can observe a non-MM behaviour as the binding of one of the substrate influences the 

simultaneous binding of the other substrate to the single enzyme. Thus, such stochastic analysis 

of the rate of product formation can distinguish the two pathways of sequential bisubstrate 

binding.  
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5.1 Introduction: 

In our previous thesis chapters (2, 3 and 4), we have modelled enzymatic chemical reactions 

involving single and multiple type of substrates at the SM level. For determining the reaction 

velocity, one applies the steady state approximation, which ensures excess substrate availability 

for the initial phase of reaction. That is why in the application of the probabilistic treatments, 

substrate number changes are not present in the time evolution equations. However, the 

consumption of the substrate molecules with the reaction progression will consequently 

decreases its number. At the SM level, following the chemical master equation approach, it has 

been shown that if the substrate is present in abundance and the conformational detailed 

balance is satisfied, the average rate follows the MM form.1,2 However, there are many 

chemical systems where the substrate concentration is comparable or limiting to that of the 

catalyst. For instance, in the living cells, the assumption that the substrate is present in 

abundance may not be always valid.3 Recently Grima and Leier have used the chemical master 

equation technique to study a wide range of enzymatic reaction mechanisms and obtain the 

average rate of product formation without including the substrate abundance assumption.4 This 

study confirmed that at long times, the rate attains a logarithmically corrected MM type of 

equation.  

         In this chapter, we study a more realistic situation using the CME approach. The main 

objective of this chapter is to model the catalytic activity of an enzyme in an intracellular 

environment. Here the substrate molecules enter into a compartment, and on the completion of 

the catalytic cycle, the product molecules leave the compartment. To account for the substrate 

fluctuations, one must explicitly include the number of substrate molecules as a variable in 

the joint probability distribution. Here we consider two examples: an enzymatic reaction with 

one intermediate enzyme-substrate complex that corresponds to a MM mechanism and a 

reaction scheme with two intermediate enzyme-substrate complexes. Our model demonstrates 
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that the effect of the substrate fluctuations across the compartment membrane in one (influx) 

or both directions (influx and out-flux). The processing of the substrate units by the single 

enzyme will lead to the product formation (turnover rate). For these model systems, the 

functional form of the reaction velocity does not follow the MM relation. 

              In order to study the stochastic noise present in the system, one can calculate the higher 

moments of the PDF. Grima has also studied the role of noise in multi-subunit enzymes where 

one can obtain an expression for protein fluctuations.5,6 One can measure the stochastic 

fluctuations through a dimensionless quantity, known as the coefficient of variation. Eq. 1 

represents its mathematical form. 

𝜎 = √〈𝑛2〉−〈𝑛〉2

〈𝑛〉                                                           (5.1) 

Here n is the number of substrate molecules present in the compartment at some definite time. 

5.2 Reaction Models and Analyses: 

 

Figure 5.1: Schematic representation of catalytic reaction schemes associated with (a) an 
irreversible substrate flow with one intermediate, (b) a reversible substrate flow with one 
intermediate, (c) an irreversible substrate flow with two intermediates, and (d) a reversible 
substrate flow with two intermediates. 
 
We consider four examples in which a single enzyme catalyses the formation of the product in 

an intercellular environment, where substrate molecules are fed in at a constant rate 𝑘0. In the 

first two cases, the enzymatic reaction involves a single intermediate complex 𝐸𝑆 (Figures 

5.1(a) and 5.1(b)). Such unidirectional transport mechanisms are common inside cells.7 For the 
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case with a bidirectional substrate flow, along with influx, we consider an additional backward 

reaction for the substrate out-flux in the reaction scheme with an average rate equal to 𝑘0
, . Next, 

we consider two other schemes that involve two intermediate complexes, 𝐸𝑆1 and 𝐸𝑆2. For all 

these different models, we describe the system by 𝑃[𝑝, 𝑛, 𝐽, 𝑡], the probability that when the 

enzyme is in state J, 𝑝 molecules are processed and 𝑛 substrate molecules are present in the 

compartment at time t. 𝐽 = 0 represents the free enzyme and𝐽 = 1 corresponds to the bound 

enzyme such that 𝑃[𝑝, 𝑛, 𝐽 = 0, 𝑡] = 𝑃0[𝑝, 𝑛, , 𝑡]and 𝑃[𝑝, 𝑛, 𝐽 = 1, 𝑡] = 𝑃1[𝑝, 𝑛, 𝑡]. We use the 

steady state approximation which allows us to write these master equations as a set of reduced 

distributions that can be solved for the turnover rate and also derive the moments of the 

distribution.8 Eq. 5.2 represents the chemical master equations for the probability distributions 

for the scheme shown in Figure 5.1(a).   

𝜕𝑃0[𝑝, 𝑛, 𝑡]
𝜕𝑡

= −𝑛𝑘𝑃0[𝑝, 𝑛, 𝑡] + 𝑘−1𝑃1[𝑝 + 1, 𝑛 − 1, 𝑡] + 𝑘1𝑃1[𝑝, 𝑛, 𝑡] − 𝑘0𝑃0[𝑝, 𝑛, 𝑡]

+ 𝑘0𝑃0[𝑝, 𝑛 − 1, 𝑡] 

                                                                                                                                            (5.2a)      

𝜕𝑃1[𝑝, 𝑛, 𝑡]
𝜕𝑡

= (𝑛 + 1)𝑘𝑃0[𝑝 − 1, 𝑛 + 1, 𝑡] − (𝑘−1 + 𝑘1)𝑃1[𝑝, 𝑛, 𝑡] − 𝑘0𝑃1[𝑝, 𝑛, 𝑡]

+ 𝑘0𝑃1[𝑝, 𝑛 − 1, 𝑡] 

                                                                                             (5.2b) 

On rescaling, 𝜏 = 𝑘𝑡, 𝜖−1 = 𝑘−1
𝑘

, 𝜖1 = 𝑘1
𝑘

  and 𝜃 = 𝑘0
𝑘

, Eq. 5.2 takes the following form. 

𝜕𝑃0[𝑝, 𝑛, 𝜏]
𝜕𝜏

= −𝑛𝑃0[𝑝, 𝑛, 𝜏] + 𝜖−1𝑃1[𝑝 + 1, 𝑛 − 1, 𝜏] + 𝜖1𝑃1[𝑝, 𝑛, 𝜏] − 𝜃𝑃0[𝑝, 𝑛, 𝜏]

+ 𝜃𝑃0[𝑝, 𝑛 − 1, 𝜏] 

                                                                                                                                            (5.3a)  
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𝜕𝑃1[𝑝, 𝑛, 𝜏]
𝜕𝜏

= (𝑛 + 1)𝑃0[𝑝 − 1, 𝑛 + 1, 𝜏] − (𝜖1 + 𝜖−1)𝑃1[𝑝, 𝑛, 𝜏] − 𝜃𝑃1[𝑝, 𝑛, 𝜏]

+ 𝜃𝑃1[𝑝, 𝑛 − 1, 𝜏]  

                                                                                        (5.3b) 

The normalization condition ∑ (𝑃0[𝑝, 𝑛, 𝜏] + 𝑃1[𝑝, 𝑛, 𝜏])𝑝,𝑛 = 1  must be satisfied at all times.                       

Eq. 5.4 represents the turnover rate under the steady state approximation. 

𝑉 = 𝜕〈𝑝〉
𝜕𝜏

= ∑ 𝑝(𝑃0[𝑝, 𝑛, 𝜏] + 𝑃1[𝑝, 𝑛, 𝜏])𝑝,𝑛    .                                                                            (5.4) 

For Figure 5.1(a), we can reduced the distributions in the form mentioned below. 

∑ 𝑃0[𝑝, 𝑛, 𝜏]
𝑝

= 𝑄0[𝑛, 𝜏] 

∑ 𝑃1[𝑛, 𝜏]
𝑝

= 𝑄1[𝑛, 𝜏] 

Following the reduced form of the distributions, Eq. 5.3 becomes 

𝜕𝑄0[𝑛,𝜏]
𝜕𝜏

= −𝑛𝑄0[𝑛, 𝜏] + 𝜖−1𝑄1[𝑛 − 1, 𝜏] + 𝜖1𝑄1[𝑛, 𝜏] − 𝜃𝑄0[𝑛, 𝜏] + 𝜃𝑄0[𝑛 − 1, 𝜏]          (5.5a)         

𝜕𝑄1[𝑛,𝜏]
𝜕𝜏

= (𝑛 + 1)𝑄0[𝑛 + 1, 𝜏] − (𝜖1 + 𝜖−1)𝑄1[𝑛, 𝜏] − 𝜃𝑄1[𝑛, 𝜏] + 𝜃𝑄1[𝑛 − 1, 𝜏]            (5.5b)     

Similarly, the velocity equation takes the form  

𝑉 = ∑ 𝑛𝑄0[𝑛, 𝜏]𝑛 − 𝜖−1 ∑ 𝑄1[𝑛, 𝜏]𝑛 .                                                                        (5.6) 

Eq. 5.7 defines the 𝑁𝑡ℎ  moment of the distribution corresponding to any particular state. 

∑ 𝑛𝑞𝑄0[𝑛, 𝜏]𝑛 = 𝜇𝑞
(0)                                                                                                                   (5.7a) 

∑ 𝑛𝑞𝑄1[𝑛, 𝜏]𝑛 = 𝜇𝑞
(1)                                                                                                                    (5.7b) 

Following Eq. 5.7, the velocity expression in Eq. 5.6 reduces to Eq. 5.8. 

𝑉 = 𝜇1
(0) − 𝜖−1𝜇0

(1)                                                                                                                       (5.8) 

In the steady state approximation, 𝜕𝑄0[𝑛,𝜏]
𝜕𝜏

= 0 and 𝜕𝑄1[𝑛,𝜏]
𝜕𝜏

= 0 which give the following set. 

(𝑛 + 𝜃)𝑄0[𝑛, 𝜏] = 𝜖−1𝑄1[𝑛 − 1, 𝜏] + 𝜖1𝑄1[𝑛, 𝜏] + 𝜃𝑄0[𝑛 − 1, 𝜏]                                            (5.9a)                                

(𝜖1 + 𝜖−1 + 𝜃)𝑄1[𝑛, 𝜏] = (𝑛 + 1)𝑄0[𝑛 + 1, 𝜏] + 𝜃𝑄1[𝑛 − 1, 𝜏]                                               (5.9b)                                          
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Summing Eq. 5.9a over 𝑛 we get 

𝜇1
(0) = (𝜖1 + 𝜖−1)𝜇0

(1).                                    (5.10a) 

Summing Eq. 5.9a over n and weighting it by 𝑛 gives 

𝜇2
(0) = (𝜖1 + 𝜖−1)𝜇1

(1) + 𝜖−1𝜇0
(1) + 𝜃𝜇0

(0).                                  (5.10b) 

Summing Eq. 5.9a over n and weighting it by 𝑛2 leads to 

𝜇3
(0) = (𝜖1 + 𝜖−1)𝜇2

(1) + 𝜖−1𝜇0
(1) + 2𝜖−1𝜇0

(1)+𝜃𝜇0
(0)+2𝜃𝜇1

(0).                               (5.10c) 

Summing Eq. 5.9a over n and weighting it by 𝑛3 yields 

𝜇4
(0) = (𝜖1 + 𝜖−1)𝜇3

(1) + 𝜖−1𝜇0
(1) + 3𝜖−1𝜇2

(1)+3𝜖−1𝜇1
(1) + 𝜃𝜇0

(0)+3𝜃𝜇2
(0)+3𝜃𝜇1

(0).          (5.10d) 

Similarly, summing Eq. 5.9b over n we get 

𝜇1
(0) = (𝜖1 + 𝜖−1)𝜇0

(1)                                                (5.11a) 

Summing Eq. 5.9b over n and weighting it by n one can find 

𝜇2
(0) = (𝜖1 + 𝜖−1)𝜇1

(1) + 𝜇1
(0) − 𝜃𝜇0

(1).                                  (5.11b) 

Summing Eq. 5.9b over n and weighting it by 𝑛2 yields                                                             

𝜇3
(0) = (𝜖1 + 𝜖−1)𝜇2

(1) − 𝜇1
(0) + 2𝜇2

(0)−𝜃𝜇0
(1)−2𝜃𝜇1

(1)                                (5.11c) 

Summing Eq. 5.9b over n and weighting it by 𝑛3 will give 

𝜇4
(0) = (𝜖1 + 𝜖−1)𝜇3

(1) + 𝜇1
(0) + 3𝜇3

(0)−3𝜇2
(0) − 𝜃𝜇0

(1)−3𝜃𝜇2
(1)−3𝜃𝜇1

(1).                   (5.11d) 

Equating 5.10b and 5.11b and using the normalization condition, 𝜇0
(0) + 𝜇0

(1) = 1, we get 

𝑉 = 𝜃 = 𝜇1
(0) − 𝜖−1𝜇0

(1)                                                                                  (5.12) 

Equating 5.10c and 5.11c one can deduce 

𝜇2
(0) = (𝜃+𝜖−1

2
) 𝜇0

(1) + (𝜃 + 𝜖−1)𝜇1
(1) + 𝜃

2
𝜇0

(0) + (𝜃 + 1
2
) 𝜇1

(0).                      (5.13) 

Equating 5.10d and 5.11d one can obtain Eq. 5.14. 
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𝜇3
(0) = (

𝜃 + 𝜖−1

3
) 𝜇0

(1) + (𝜃 + 𝜖−1)𝜇2
(1) + (𝜃 + 𝜖−1)𝜇1

(1) + (𝜃 + 1)𝜇2
(0) +

𝜃
3

𝜇0
(0)

+ (𝜃 −
1
3
) 𝜇1

(0)  

                                                                                                                                            (5.14) 

From Eq. 5.13 and Eq. 5.9b we get the desired equation to be solved for 𝜃 

(𝜃−𝜖−1
23

) 𝜇0
(1) + (𝜃 − 𝜖1)𝜇1

(1) − 𝜃
2
𝜇0

(0) + (𝜃 + 1
2
) 𝜇1

(0) = 0                                                      (5.15) 

For obtaining an equation in terms of the variable 𝜃 that represents the reaction velocity, we 

need the moments of respective states present in Eq. 5.15 in terms of reaction rate constants. 

From normalization condition and definition of 〈𝑛〉 we have  

𝜇0
(0) + 𝜇0

(1) = 1 and 𝜇1
(0) + 𝜇1

(1) = 〈𝑛〉. 

Putting Eq. 5.10a into Eq. 5.12 we get 

𝜇0
(1) = 𝜃

𝜖1
                                                                                  (5.16)                                                                                                             

Putting Eq. 5.16 in Eq. 5.10a we obtain 

𝜇1
(0) = 𝜃 + 𝜖−1

𝜖1
𝜃                                                                                                                          (5.17) 

From the definition of 〈𝑛〉 we get 

𝜇1
(1) = 〈𝑛〉 − 𝜃 − 𝜖−1

𝜖1
𝜃                                              (5.18)                                                                                 

From normalization we get 

𝜇0
(0) = 1 − 𝜃

𝜖1
                                    (5.19)                                                                                                         

Substituting Eq. 5.16 to Eq. 5.19 into Eq. 5.15, followed by some rearrangements we obtain a 

quadratic equation in terms of variable 𝜃. 

𝜃2

𝜖1
+ 𝜃(〈𝑛〉 + 𝑧) − 〈𝑛〉𝜖1 = 0                 (5.20)       

Eq. 5.21 represents the solution of Eq. 5.20. 

𝑉 = 𝜃 = 𝜖1
2

(〈𝑛〉 + 𝑧) [√1 + 4〈𝑛〉
(〈𝑛〉+𝑧)2  − 1]                                                                                  (5.21) 
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Here, 𝑧 = 𝜖1 + 𝜖−1. When 〈𝑛〉 + 𝑧 ≫ 2√𝑛, which is true at high substrate concentration, or at 

large values of z, Eq. 5.21 can be binomially expanded as  

𝑉 = 𝜃 = 𝜖1
2

(〈𝑛〉 + 𝑧) [1 + (1
2
) 4〈𝑛〉

(〈𝑛〉+𝑧)2 − (1
4
)

( 4〈𝑛〉
(〈𝑛〉+𝑧)2)

2

2!
+ ⋯ − 1]. 

Neglecting the higher order terms and simplifying, the above equation reduces to a MM form. 

𝑉𝑀𝑀 = 𝜃 = 𝜖1〈𝑛〉
〈𝑛〉+𝑧

                                                                                                                        (5.22) 

Thus at higher substrate concentrations and higher values of 𝑧 (at a given value of < 𝑛 >), the 

velocity equation behaves as MM type equation. As shown in Figures 5.2 (a) and 5.2(b), we 

compare Eq. 5.21 with the MM relation (Eq. 22) and different values of 𝑧 by varying 𝜖1. The 

difference between the two curves is more at lower values of 𝜖1. Also at a higher value of z, 

the two curves come closer at higher substrate concentrations where the effect of fluctuations 

is less prominent. 

 

 

 

 
 
 
 
Figure 5.2: Variation of reaction velocity 𝑽 as a function of average number of substrate 
molecules 〈𝒏〉 for the scheme with one intermediate and irreversible substrate flow at (a) 𝝐𝟏 = 𝟐, 
𝝐−𝟏 = 𝟎. 𝟏 and (b)𝝐𝟏 = 𝟏𝟎, 𝝐−𝟏 = 𝟎. 𝟏. Solid line represents the velocity expression (Eq. 5.21) and 
dashed line is the velocity in the MM limit (Eq. 5.22). 
 
For deducing 〈𝑛2〉, analytical forms of 𝜇2

(0) and 𝜇2
(1) are required. 

Substituting 5.16, 5.18 and 5.19 in Eq. 5.10b we get Eq. 5.23. 

𝜇2
(0) = − 𝜃2

𝜖1
+ 𝜃 [𝑧(1−𝑧)

𝜖1
] + 𝑧〈𝑛〉                                               (5.23) 

Equating Eq. 5.14 and 5.11c we obtain 

𝜇2
(1) = 𝜃3+𝜃2𝑧(1+𝑧)+𝜃(𝜖1𝑧−𝜖1(1+𝑧)〈𝑛〉)−𝜖1

2〈𝑛〉
𝜖1(𝜃−𝜖1) .                                         (5.24) 

Eq. 5.21 
Eq. 5.22 Eq. 5.21 

Eq. 5.22 
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Substituting Eq. 5.23 and 5.24 in Eq. 5.22 gives the required expression of 〈𝑛2〉 for Figure 

5.1(a). 

〈𝑛2〉 = 𝜇2
(0) + 𝜇2

(1) = 𝜃2(2𝑧+𝜖1)+𝜃(𝜖1𝑧2−〈𝑛〉𝜖1)−〈𝑛〉𝜖1
2(1+𝑧)

𝜖1(𝜃−𝜖1)                                                           (5.25)                                                                                                                                                                                              

Using Eq. 5.25, we calculate the coefficient of variation 𝜎 as defined in Eq. 5.1.  

For the catalytic reaction scheme described in Figure 5.1(b) with an additional backward 

reaction at an average rate equal to 𝑘0
, , Eq. 5.26 represents the master equations 

𝜕𝑃0[𝑝, 𝑛, 𝑡]
𝜕𝑡

= −𝑛𝑘𝑃0[𝑝, 𝑛, 𝑡] + 𝑘−1𝑃1[𝑝 + 1, 𝑛 − 1, 𝑡] + 𝑘1𝑃1[𝑝, 𝑛, 𝑡] + 𝑘0𝑃0[𝑝, 𝑛 − 1, 𝑡]

+ 𝑘0
, 𝑃0[𝑝, 𝑛 + 1, 𝑡] − (𝑘0 + 𝑘0

, )𝑃0[𝑝, 𝑛, 𝑡] 

                                                                             (5.26a) 

𝜕𝑃1[𝑝, 𝑛, 𝑡]
𝜕𝑡

= (𝑛 + 1)𝑘𝑃0[𝑝 − 1, 𝑛 + 1, 𝑡] − (𝑘−1 + 𝑘1)𝑃1[𝑝, 𝑛, 𝑡] + 𝑘0𝑃1[𝑝, 𝑛 − 1, 𝑡]

+ 𝑘0
, 𝑃1[𝑝, 𝑛 + 1, 𝑡] − (𝑘0 + 𝑘0

, )𝑃1[𝑝, 𝑛, 𝑡] 

                                                                                                  (5.26b) 

and satisfies the normalization condition ∑ (𝑃0[𝑝, 𝑛, 𝜏] + 𝑃1[𝑝, 𝑛, 𝜏])𝑝,𝑛 .  Following the 

rescaling as 𝜖−1 = 𝑘−1
𝑘

, 𝜖1 = 𝑘1
𝑘

, 𝜂 = 𝑘0
,

𝑘
 and 𝜃 = 𝑘0

𝑘
, the master equations reduce to Eq. 5.27.  

𝜕𝑄0[𝑛, 𝜏]
𝜕𝜏

= −𝑛𝑄0[𝑛, 𝜏] + 𝜖−1𝑄1[𝑛 − 1, 𝜏] + 𝜖1𝑄1[𝑛, 𝜏] + 𝜃𝑄0[𝑛 − 1, 𝜏] + 𝜂𝑄0[𝑛 + 1, 𝑡]

− (𝜃 + 𝜂)𝑄0[𝑛, 𝜏] 

                                       (5.27a) 

𝜕𝑄1[𝑛, 𝜏]
𝜕𝜏

= (𝑛 + 1)𝑄0[𝑛 + 1, 𝜏] − (𝜖1 + 𝜖−1)𝑄1[𝑛, 𝜏] + 𝜃𝑄1[𝑛 − 1, 𝜏] + 𝜂𝑄1[𝑛 + 1, 𝑡]

− (𝜃 + 𝜂)𝑄1[𝑛, 𝜏] 

                                       (5.27b) 

For the given model, in the steady state the turnover has the following form. 

𝑉 = 𝜇1
(0) − 𝜖−1𝜇0

(1)                                       (5.28) 
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Using the steady-state approximation, 𝜕𝑄0[𝑛,𝜏]
𝜕𝜏

= 0 and 𝜕𝑄1[𝑛,𝜏]
𝜕𝜏

= 0, gives the following set of 

equations. 

(𝑛 + 𝜃 + 𝜂)𝑄0[𝑛, 𝜏] = 𝜖−1𝑄1[𝑛 − 1, 𝜏] + 𝜖1𝑄1[𝑛, 𝜏] + 𝜃𝑄0[𝑛 − 1, 𝜏] + 𝜂𝑄0[𝑛 + 1, 𝜏](5.29a)                                                                                                                           

(𝜖1 + 𝜖−1 + 𝜃 + 𝜂)𝑄1[𝑛, 𝜏] = (𝑛 + 1)𝑄0[𝑛 + 1, 𝜏] + 𝜃𝑄1[𝑛 − 1, 𝜏] + 𝜂𝑄1[𝑛 + 1, 𝜏]   (5.29b)                                                                                                                                               

Summing 5.29a over n, weighting it by 𝑛, 𝑛2,  𝑛3  

𝜇1
(0) = (𝜖1 + 𝜖−1)𝜇0

(1)                  (5.30a) 

𝜇2
(0) = (𝜖1 + 𝜖−1)𝜇1

(1) + 𝜖−1𝜇0
(1) + (𝜃 − 𝜂)𝜇0

(0)           (5.30b) 

𝜇3
(0) = (𝜖1 + 𝜖−1)𝜇2

(1) + 𝜖−1𝜇0
(1) + 2𝜖−1𝜇1

(1)+(𝜃 + 𝜂)𝜇0
(0)+2(𝜃 − 𝜂)𝜇1

(0)         (5.30c) 

𝜇4
(0) = (𝜖1 + 𝜖−1)𝜇3

(1) + 𝜖−1𝜇0
(1)

+ 3𝜖−1𝜇2
(1)+3𝜖−1𝜇1

(1) + (𝜃 − 𝜂)𝜇0
(0)+3(𝜃 − 𝜂)𝜇2

(0)+3(𝜃 +  𝜂)𝜇1
(0) 

                                       (5.30d) 

Summing 5.29b over n, weighting it by 𝑛, 𝑛2,  𝑛3  

𝜇1
(0) = (𝜖1 + 𝜖−1)𝜇0

(1)                          (5.31a) 

𝜇2
(0) = (𝜖1 + 𝜖−1)𝜇1

(1) + 𝜇1
(0) − (𝜃 − 𝜂)𝜇0

(1)                       (5.31b) 

𝜇3
(0) = (𝜖1 + 𝜖−1)𝜇2

(1) − 𝜇1
(0) + 2𝜇2

(0)−(𝜃 + 𝜂)𝜇0
(1)−2(𝜃 − 𝜂)𝜇1

(1)                    (5.31c) 

𝜇4
(0) = (𝜖1 + 𝜖−1)𝜇3

(1) + 𝜇1
(0) + 3𝜇3

(0)−3𝜇2
(0) − (𝜃 − 𝜂)𝜇0

(1)−3(𝜃 − 𝜂)𝜇2
(1)−3(𝜃 + 𝜂)𝜇1

(1)   

                                                                                                                                          (5.31d)                                                                                                               

Equating 5.30b and 5.31b and using the normalization condition, we get 

𝑉 = 𝜃 = 𝜇1
(0) − 𝜖−1𝜇0

(1) + 𝜂                             (5.32) 

Equating 5.30c and 5.31c we get 

𝜇2
(0) = (𝜃+𝜂+𝜖−1

2
) 𝜇0

(1) + (𝜃 − 𝜂 + 𝜖−1)𝜇1
(1) + (𝜃+𝜂)

2
𝜇0

(0) + (𝜃 − 𝜂 + 1
2
) 𝜇1

(0)         (5.33) 

Equating 5.30d and 5.31d we get 
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𝜇3
(0) = (𝜃−𝜂+𝜖−1

3
) 𝜇0

(1) + (𝜃 − 𝜂 + 𝜖−1)𝜇2
(1) + (𝜃 + 𝜂 + 𝜖−1)𝜇1

(1) + (𝜃 − 𝜂 + 1)𝜇2
(0) +

            (𝜃−𝜂)
3

𝜇0
(0) + (𝜃 + 𝜂 − 1

3
) 𝜇1

(0)                                                (5.34) 

From equations 5.33 and 5.30b we get the desired equation to be solved for 𝜃 

(𝜃+𝜂)
2

+ (𝜃 − 𝜂)〈𝑛〉 − 𝜖−1
2

𝜇0
(1) − 𝜖1𝜇1

(1) − (𝜃 − 𝜂)𝜇0
(0) + 1

2
𝜇1

(0) = 0                                        (5.35) 

To obtain an equation in terms of the variable 𝜃 that represents the reaction velocity, we need 

to calculate the moments in Eq. 5.35 in terms of reaction rate constants by using the above set 

of relations. As shown for Figure 5.1(a), by using the above equations, the normalization 

condition, and definition of 〈𝑛〉, we get 

𝜇0
(1) = (𝜃−𝜂)

𝜖1
                                            (5.36)                                                                                                                             

𝜇1
(0) = (𝜃 − 𝜂) (𝜖1+𝜖−1

𝜖1
)                                                                                                             (5.37) 

𝜇1
(1) = 〈𝑛〉 − (𝜃 − 𝜂) (𝜖1+𝜖−1

𝜖1
)                                                                       (5.38) 

𝜇0
(0) = 1 − (𝜃−𝜂)

𝜖1
                                                                                                                          (5.39) 

After substituting equations 5.36 to 5.39 in Eq. 5.35 and performing some rearrangement, we 

get a quadratic equation in terms of the reaction variable 𝜃.  

𝜃2

𝜖1
+ 𝜃 (𝑧 + 〈𝑛〉 − 2𝜂

𝜖1
) − [𝜖1〈𝑛〉 + 𝜂(𝑧 + 〈𝑛〉 − 1) − 𝜂2

𝜖1
] = 0                                                   (5.40) 

Eq.5.41 represents the solution of Eq. 5.40. 

𝑉 = 𝜃 = 𝜖1
2

(〈𝑛〉 + 𝑧 − 2𝜂
𝜖1

) [√1 + 4(〈𝑛〉(𝜖1+𝜂)+𝜂(𝑧−1−𝜂))

𝜖1(〈𝑛〉+𝑧−2𝜂
𝜖1

)
2  − 1]                                                 (5.41) 

Thus, the functional form of the turnover rate equation changes when we include the reverse 

outflow reaction. For the velocity function to exist over the entire range substrate concentration, 

𝜂 ≪ 𝜖1(〈𝑛〉+𝑧)
2

 at given value of z and at a given substrate concentration <n>.  In Figure 5.3(a) 

we plot the velocity as function of average substrate concentration. We show that in the limit 
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when 𝜂 = 0, Eq. 5.41 reduces to Eq. 5.21 (the dotted line and the black circles coincide with 

each other). 

In the limit when 〈𝑛〉 + 𝑧 − 2𝜂
𝜖1

≫ 2√〈𝑛〉(𝜖1+𝜂)+𝜂(𝑧−1−𝜂)
𝜖1

 which is true at high substrate 

concentration, or at large values of 𝑧 and small values of 𝜂 (at a given substrate concentration), 

Eq. 5.41 can be binomially expanded and neglecting the higher order terms and simplifying we 

get Eq. 5.42. 

𝑉 = 〈𝑛〉(𝜖1+𝜂)+𝜂(𝑧−1)−𝜂2

〈𝑛〉+𝑧−2𝜂
𝜖1

                                                                                                      (5.42) 

Further, in the limit when 𝑧 ≫  𝜂, the above equation reduces the MM velocity expression. 

𝑉𝑀𝑀 = 〈𝑛〉(𝜖1+𝜂)
〈𝑛〉+𝑧−2𝜂

𝜖1

                                                                                                                           (5.43) 

In order to take the limit of 𝑧 ≫  𝜂 in Eq. 5.43, we need not take very small values of 𝜂. The 

effect of adding the condition of substrate export out of the compartment vanishes when 𝜂 is 

very small. Thus the condition of 𝑧 ≫  𝜂 can be achieved by making 𝑧 significantly higher than 

the rate of substrate output out of the compartment. In Figures 5.3(b) and 5.3(c) we compare 

the velocity expressions obtained from Eq. 5.41 and 5.43 at different values of 𝑧 and 𝜂. For 

higher values of 𝑧 (i.e. by increasing the value of 𝜖1), the expression in Eq. 5.41 agrees with 

MM form (Eq. 5.43). 

 

 

 

 

Figure 5.3: Variation of reaction velocity V as a function of average number of substrate 
molecules 〈𝒏〉 for the scheme with one intermediate and reversible substrate flow (influx and out 
flux). (a) Solid line represents the velocity expression (Eq. 5.41) at 𝝐𝟏 = 𝟐, 𝝐−𝟏 = 𝟎. 𝟏, 𝜼 = 𝟏. The 
black circles represent the velocity expression obtained when the limit 𝜼 → 𝟎 is applied to Eq. 
5.41 and dashed line represents velocity in Eq. 5.21. Comparison of the reaction velocity (Eq. 5.41, 
solid line) with the MM equation (Eq. 5.43, dashed line) at (b) 𝝐𝟏 = 𝟐, 𝝐−𝟏 = 𝟎. 𝟏, 𝜼 = 𝟏 (c) 𝝐𝟏 =
𝟐𝟎, 𝝐−𝟏 = 𝟎. 𝟏, 𝜼 = 𝟏. 

Eq. 5.41 
Eq. 5.43 

Eq. 5.41 
Eq. 5.43 

Eq. 5.41 
Eq. 5.41 (η=0) 

Eq. 5.21 
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Eq. 5.44 represents the second moment 〈𝑛2〉. 

〈𝑛2〉 =

 
𝜃2(𝜖1+2𝑧)+𝜃(𝑧(𝜖1𝑧−4𝜂)−2𝜂(1+𝜖1)−〈𝑛〉𝜖1)−〈𝑛〉(𝜂𝜖1+𝜖1

2(1+𝑧))+𝜂𝑧(1
3+𝜖−1(2−𝑧))+𝜂2(2−𝜖−1−𝑧2)+4𝜂𝜖1

3 −2𝜂𝜖−1
3

𝜖1(𝜃−𝜂−𝜖1)    

                                                                                                                                            (5.44)   

If we put the limit, 𝜂 → 0, Eq. 5.44 reduces to Eq. 5.25. In Figure 5.4, we compare the 

coefficient of variation for enzyme-catalysed reaction with and without substrate molecules. 

As the concentration of the substrate increases, the noise strength decreases. 

 

 

 

 

Figure 5.4: Plot of the coefficient of variation, 𝝈 versus the mean substrate concentration <n> for 
the catalytic reaction scheme with one intermediate complex in the (a) absence of substrate 
outflow (solid line) obtained from Eq. 5.25 and (b) in the presence of substrate outflow (dashed 
line) obtained from Eq. 5.44. Parameter values are 𝝐𝟏 = 𝟐, 𝝐−𝟏 = 𝟎. 𝟏, 𝜼 = 𝟏. 

Next, we consider an enzymatic reaction where two intermediate enzyme-substrate complexes 

are formed before the product is released out of the compartment as shown in Figure 5.1(c). 

Instead of two values of 𝐽, one needs to consider the number of substrate molecules present and 

number of product molecules formed in the 𝐸𝑆2 state (𝐽 = 2) such that 𝑃[𝑝, 𝑛, 𝐽 = 2, 𝑡] =

𝑃2[𝑝, 𝑛, 𝑡] . the master equations for this model are described below. 

𝜕𝑃0[𝑝, 𝑛, 𝑡]
𝜕𝑡

= −𝑛𝑘𝑃0[𝑝, 𝑛, 𝑡] + 𝑘−1𝑃1[𝑝 + 1, 𝑛 − 1, 𝑡] + 𝑘3𝑃2[𝑝, 𝑛, 𝑡] − 𝑘0𝑃0[𝑝, 𝑛, 𝑡]

+ 𝑘0𝑃0[𝑝, 𝑛 − 1, 𝑡] 

                                                                                                                                          (5.45a) 

𝜕𝑃1[𝑝, 𝑛, 𝑡]
𝜕𝑡

= (𝑛 + 1)𝑘𝑃0[𝑝 − 1, 𝑛 + 1, 𝑡] − (𝑘−1 + 𝑘2)𝑃1[𝑝, 𝑛, 𝑡] + 𝑘−2𝑃2[𝑝, 𝑛, 𝑡]

+ −𝑘0𝑃1[𝑝, 𝑛, 𝑡] + 𝑘0𝑃1[𝑝, 𝑛 − 1, 𝑡] 

Eq. 5.25 
Eq. 5.44 
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                                                                (5.45b) 

𝜕𝑃2[𝑝, 𝑛, 𝑡]
𝜕𝑡

= 𝑘2𝑃1[𝑝, 𝑛, 𝑡] − (𝑘−2 + 𝑘3)𝑃2[𝑝, 𝑛, 𝑡] − 𝑘0𝑃2[𝑝, 𝑛, 𝑡] + 𝑘0𝑃2[𝑝, 𝑛 − 1, 𝑡] 

                                                                                                                                          (5.45c) 

The normalization condition ∑ (𝑃0[𝑝, 𝑛, 𝜏] + 𝑃1[𝑝, 𝑛, 𝜏] + 𝑃2[𝑝, 𝑛, 𝜏])𝑝,𝑛 = 1 is satisfied at all 

times, = 𝑘𝑡 .     

Eq. 5.46 shows the turnover rate. 

𝑉 = 𝜕〈𝑝〉
𝜕𝜏

= 𝜕
𝜕𝜏

∑ 𝑝(𝑃0[𝑝, 𝑛, 𝜏] + 𝑃1[𝑝, 𝑛, 𝜏] + 𝑃2[𝑝, 𝑛, 𝑡])𝑛,𝑝 .             (5.46)                                                                                                         

Following the same mathematical procedure, one can derive the reaction velocity as 

𝑉 = 𝜃 = (𝐵′′+〈𝑛〉)
2𝐴′′

[√1 + 4𝐴′′𝜖2𝜖3〈𝑛〉
(𝜖2+Ω2)(𝐵′′+〈𝑛〉)2 − 1].                            (5.47) 

Here 𝐴′′ = (𝜖2+Ω2)2−𝜖2𝜖3
𝜖2𝜖3(𝜖2+Ω2) , 𝐵′′ = 𝜖−1Ω2+𝜖2𝜖3

(𝜖2+Ω2) , Ω1 = 𝜖−1 + 𝜖2, Ω2 = 𝜖−2 + 𝜖3. 

The functional form of the turnover rate relation with only the substrate input does not change 

by including an additional intermediate state in the catalysis reaction (Eq. 5.21).  

In the limit, when 𝐵′′ + 〈𝑛〉 ≫ 2√𝐴′′𝜖2𝜖3〈𝑛〉
𝜖2+Ω2

, carrying out the binomial expansion we obtain 

the velocity expression in the MM form as shown in Eq. 5.48. 

𝑉𝑀𝑀 = 𝜃 = 𝜖2𝜖3〈𝑛〉
(𝐵′′+〈𝑛〉)(𝜖2+Ω2)                 (5.48) 

This condition is satisfied either at very high substrate concentration or at high values of 𝜖2 and 

𝜖3 for a given value of < 𝑛 >. Eq. 5.47 when considered in these limits, gives the MM form 

as described in Figures 5.5(a) and 5.5(b). 

 

 

 

 

Eq. 5.47 
Eq. 5.48 

Eq. 5.47 
Eq. 5.48 
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Figure 5.5: Variation of reaction velocity V as a function of average number of substrate 
molecules 〈𝒏〉 for the scheme with two intermediates and irreversible substrate flow at (a) 𝝐𝟐 = 𝟏, 
𝝐−𝟏 = 𝟎. 𝟏, 𝝐𝟑 = 𝟓, 𝝐−𝟐 = 𝟎. 𝟏 and (b) 𝝐𝟐 = 𝟏𝟎, 𝝐−𝟏 = 𝟎. 𝟏, 𝝐𝟑 = 𝟐𝟎, 𝝐−𝟐 = 𝟎. 𝟏.   Solid line 
represents the velocity expression (Eq. 5.47) and dashed line is the velocity in the MM limit (Eq.5. 
48). 

For the model shown in Figure 5.1 (c), Eq. 5.19 represents the 〈𝑛2〉 expression. 

〈𝑛2〉 = 𝜇2
(0) + 𝜇2

(1) + 𝜇2
(2) = 𝑎4 + 𝑎5〈𝑛〉                                                                                    (5.49)                                                              

Here 𝐶 = 𝜖2(𝜖3−𝜖−1)−(Ω2+𝜖2)2

𝜖2𝜖3(Ω2+𝜖2) , 𝐷 = 1 + 𝜖−1Ω2(1−𝜖−1)−𝜖2𝜖3𝜖−1
𝜖2𝜖3

+ (𝜖−1
2Ω2+𝜖−1𝜖3(𝜖2−𝜖−2)−𝜖3

2Ω1
𝜖3(Ω2+𝜖2) ), 

𝐸 =
𝜖−1Ω2 + 𝜖2𝜖3

Ω2 + 𝜖2
, 𝐹 =

2
𝜖3(Ω2 + 𝜖2)

,𝑀 = −𝐹, 𝐺 =
𝜖2(𝜖−1 − 𝜖3)
𝜖3(Ω2 + 𝜖2)

−
2𝐸
𝜖3

+
Ω2 + 𝜖2 + 1

𝜖3
, 

𝑂 =
GΩ2

𝜖2
+

2
(Ω2 + 𝜖2)

+
(2𝜖−1 − 1)Ω2 + 𝜖2(2𝜖3 − 1)

𝜖2𝜖3
, 𝐻 = −

𝐼
2

− 𝐷𝜖2 +
2𝜖−1Ω2

𝜖3
+ 2𝜖2, 

𝑃 = 𝐻Ω2
𝜖2

− 2𝐸 + 1, 𝐼 = 2𝜖2
Ω2+𝜖2

, 𝐽 = Ω2(2+𝜖−1)
3𝜖3

− 𝜖−1Ω2
𝜖3

+ 𝜖−1𝜖2𝜖−2+𝜖2𝜖3Ω1
Ω2+𝜖2

, 𝐾 = −𝜖2(1 +

𝐸), 𝑄 = −Ω2(1 + 𝐸) + 𝐼𝜖3, 𝐿 = − 𝜖2
2𝜖3

Ω2+𝜖2
,  

𝑎1 = 2
(Ω2+𝜖2) 𝜃

3 + (𝐻 + 𝑃 − 𝐶𝜖2𝜖3 + 𝐷(Ω2 + 𝜖2))𝜃2 + 𝐽 (1 + Ω2
𝜖2

) 𝜃, 𝑎2 = (−𝜖2 − Ω2 +

𝜖3𝐼)𝜃 + 𝐿 (1 + Ω2
𝜖2

) − 𝐸𝜖2𝜖3, 𝑎3 = 𝜃(Ω2 + 𝜖2) − 𝜖2𝜖3, 𝑎4 = 𝑎1
𝑎3

 and 𝑎5 = 𝑎2
𝑎3

. 

Next, we consider the same enzymatic reaction as described in Figure 5.1(d) with a reversible 

substrate influx and out-flux. Eq. 5.50 represents the master equations for the same. 

𝜕𝑃0[𝑝, 𝑛, 𝑡]
𝜕𝑡

= −𝑛𝑘𝑃0[𝑝, 𝑛, 𝑡] + 𝑘−1𝑃1[𝑝 + 1, 𝑛 − 1, 𝑡] + 𝑘3𝑃2[𝑝, 𝑛, 𝑡] + 𝑘0𝑃0[𝑝, 𝑛 − 1, 𝑡]

+ 𝑘0
′𝑃0[𝑝, 𝑛 + 1, 𝑡] − (𝑘0 + 𝑘0

′)𝑃0[𝑝, 𝑛, 𝑡] 

                                                                                                                                          (5.50a) 

𝜕𝑃1[𝑝, 𝑛, 𝑡]
𝜕𝑡

= (𝑛 + 1)𝑘𝑃0[𝑝 − 1, 𝑛 + 1, 𝑡] − (𝑘−1 + 𝑘2)𝑃1[𝑝, 𝑛, 𝑡] + 𝑘−2𝑃2[𝑝, 𝑛, 𝑡]

+ 𝑘0𝑃1[𝑝, 𝑛 − 1, 𝑡] + 𝑘0
′𝑃1[𝑝, 𝑛 + 1, 𝑡] − (𝑘0 + 𝑘0

′)𝑃1[𝑝, 𝑛, 𝑡] 

                                                                                                                                          (5.50b) 
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𝜕𝑃2[𝑝, 𝑛, 𝑡]
𝜕𝑡

= 𝑘2𝑃1[𝑝, 𝑛, 𝑡] − (𝑘−2 + 𝑘3)𝑃2[𝑝, 𝑛, 𝑡] + 𝑘0𝑃2[𝑝, 𝑛 − 1, 𝑡] + 𝑘0
′𝑃2[𝑝, 𝑛 + 1, 𝑡]

− (𝑘0 + 𝑘0
′)𝑃2[𝑝, 𝑛, 𝑡] 

                                       (5.50c) 

The normalization condition ∑ (𝑃0[𝑝, 𝑛, 𝜏] + 𝑃1[𝑝, 𝑛, 𝜏] + 𝑃2[𝑝, 𝑛, 𝜏])𝑝,𝑛 = 1 is satisfied at all 

times, where  𝜏 = 𝑘𝑡   .           

Eq. 5.51 gives the turnover rate. 

𝑉 = 𝜃 = (𝐵′′−2𝜂+〈𝑛〉)
2𝐴′′

[√1 +
4𝐴′′(( 𝜖2𝜖3

𝜖2+Ω2
 + 𝜂)〈𝑛〉+𝜂(𝐵′′−1)−𝜂2𝐴′′)

(𝐵′′−2𝜂+〈𝑛〉)2 − 1]                                   (5.51) 

In the limit when 𝜂 → 0 Eq. 5.51 reduces to Eq. 5.47. Figure 5.6(a) graphically depicts the 

same. 

In the limit, when (𝐵′′ − 2𝜂 + 〈𝑛〉) ≫ 2√𝐴′′ (( 𝜖2𝜖3
𝜖2+Ω2

 +  𝜂) 〈𝑛〉 + 𝜂(𝐵′′ − 1) − 𝜂2𝐴′′), 

carrying out the binomial expansion we get Eq. 5.52. 

 𝑉 = 𝜃 =
( 𝜖2𝜖3
𝜖2+Ω2

+𝜂)〈𝑛〉+𝜂(𝐵′′−1)−𝜂2𝐴′′

(𝐵′′−2𝜂+〈𝑛〉)                       (5.52) 

In the limit when 𝜖2 and 𝜖3 are much higher than 𝜂, Eq. 5.52 reduces to a MM form of velocity 

as shown in Figures 5.6(b) and 5.6(c). 

𝑉𝑀𝑀 = 𝜃 =
( 𝜖2𝜖3
𝜖2+Ω2

+𝜂)〈𝑛〉

(𝐵′′−2𝜂+〈𝑛〉).                  (5.53) 

 

 

 

 

 
Figure 5.6: Variation of reaction velocity V as a function of average number of substrate 
molecules 〈𝒏〉 for the scheme with two intermediate and reversible substrate flow (influx and out 

Eq. 5.51 
Eq. 5.53 

Eq. 5.51 
Eq. 5.51 (η=0) 
Eq. 5.47 

Eq. 5.51 
Eq. 5.53 
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flux). (a) Solid line represents the velocity expression (Eq. 5.51) at 𝝐𝟐 = 𝟑, 𝝐−𝟏 = 𝝐−𝟐 = 𝟎. 𝟏, 𝝐𝟑 =
𝟏𝟎, 𝜼 = 𝟏. The black circle represents the velocity expression obtained when the limit 𝜼 → 𝟎 is 
applied to Eq. 5.51 and dashed line represents velocity in Eq. 5.47. Comparison of the reaction 
velocity (Eq. 5.51, solid line) with the MM equation (Eq. 5.53, dashed line) at (b) 𝝐𝟐 = 𝟑, 𝝐−𝟏 =
𝝐−𝟐 = 𝟎. 𝟏, 𝝐𝟑 = 𝟏𝟎, 𝜼 = 𝟏. (c) 𝝐𝟐 = 𝟑𝟎, 𝝐−𝟏 = 𝝐−𝟐 = 𝟎. 𝟏, 𝝐𝟑 = 𝟏𝟎, 𝜼 = 𝟏 
 

Eq. 5.54 represents the expression for the second moment for the model shown in Figure 5.1 

(d). 

〈𝑛2〉 = 𝑎9 + 𝑎10〈𝑛〉                                                                                                                (5.54) 

𝑎6 =
2

(Ω2 + 𝜖2)
(𝜃 −  𝜂)3 + (𝐻 + 𝑃 − 𝐶𝜖2𝜖3 + 𝐷(Ω2 + 𝜖2) +

(Ω2 + 𝜖2)2

𝜖2𝜖3
− 1) (𝜃 −  𝜂)2

+ (𝐽 (1 +
Ω2

𝜖2
) − 𝐷𝜖2𝜖3 − Ω2 − 𝜖2) (𝜃 −  𝜂) + (𝜃 +  𝜂)(Ω2 + 𝜖2)

+ ( 𝜃2 − 𝜂2) (1 −
(Ω2 + 𝜖2)2

𝜖2𝜖3
), 

𝑎7 = 𝜖3𝐼(𝜃 −  𝜂) − (𝜃 +  𝜂)(Ω2 + 𝜖2) + 𝐿 (1 +
Ω2

𝜖2
) − 𝐸𝜖2𝜖3,  

𝑎8 = (𝜃 −  𝜂)(Ω2 + 𝜖2) − 𝜖2𝜖3, 𝑎9 = 𝑎6
𝑎8

 and 𝑎10 = 𝑎7
𝑎8

. 

Similar to Figure 5.4, in Figure 5.7 we plot 𝜎 as a function of the mean substrate concentration 

for the two intermediate enzyme catalyzed reaction in the absence and presence of substrate 

outflux. The fluctuations decrease with the increase in substrate molecules. This implies that 

at high substrate concentrations the removal of substrate molecules during the catalytic reaction 

decreases and substrate is present in excess within the compartment. Also the out-flux rate is 

small and does not change during the course of the reaction. As a result, the size of the 

fluctuations remains constant with increasing substrate concentration. 

 

 

 

  

Eq. 5.49 
Eq. 5.54 
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Figure 5.7: Plot of the coefficient of variation, 𝝈 of fluctuations in substrate concentration 
versus the mean substrate concentration <n> for the catalytic reaction scheme with two 
intermediate steps in the absence of substrate outflow (solid line) obtained from Eq. 5.49 
and in the presence of substrate outflow (dashed line) obtained from Eq. 5.54. Parameter 
values are 𝝐𝟐 = 𝟑, 𝝐−𝟏 = 𝝐−𝟐 = 𝟎. 𝟏, 𝝐𝟑 = 𝟏𝟎, 𝜼 = 𝟏. 

We have also compared the noise for the reaction models with one and two intermediate states. 

For both the models, the noise level decreases as we move from low to moderate substrate 

concentrations. At high substrate number, 𝜎 remains the same with an increase in the mean 

substrate concentration. At high substrate concentration, when most of the enzyme is in the 

substrate bound state, the presence of slow fluctuations between the two enzyme-substrate 

conformers lead to higher noise levels in the two state model. 

 

 

 

Figure 5.8: Plot of the coefficient of variation versus the mean substrate concentration 
<n> for the catalytic reaction scheme in the absence of substrate outflow for the one 
intermediate scheme, (solid line) at 𝝐𝟏 = 𝟏𝟎, 𝝐−𝟏 = 𝟎. 𝟏 and the two intermediate scheme 
(dashed line) at parameter values are 𝝐𝟑 = 𝟏𝟎, 𝝐−𝟏 = 𝟎. 𝟏, 𝝐𝟐 = 𝟑, 𝝐−𝟐 = 𝟎. 𝟏. 

5.4 Conclusions: 

        In this chapter, we study the role of noise in enzymatic reactions that take place in 

intracellular environments. One can obtain the stochastic description of the system by solving 

the chemical master equation under the steady state approximation. Our results show that 

irrespective of the number of intermediates present in the reaction scheme, substrate 

fluctuations can lead to deviation from the classical MM equation. This is in contrary to the 

studies performed under the substrate abundance assumption. The velocity expressions have a 

different functional form when there is a unidirectional or bidirectional transport of substrate 

Eq. 5.25 
Eq. 5.49 
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molecules into the intracellular compartment. For unidirectional as well as bidirectional 

transport, the velocity equation cannot distinguish between single and multiple intermediate 

states. At high substrate concentration, all these velocity equations reduce to the classical MM 

type equation.                 

                  We also study the fluctuations in the substrate concentration by measuring the 

coefficient of variation, 𝜎. For a catalytic reaction with one intermediate or more number of 

intermediate states, 𝜎 decreases with the increase in the mean substrate number and reaches a 

constant value at high substrate concentrations. We observe that the fluctuations are larger in 

the presence of both substrate influx and out-flux at low substrate concentrations as compared 

to reactions where there is only unidirectional flow of the substrate into the compartment. On 

comparing systems with different number of intermediates with a unidirectional substrate flow, 

system with more internal states undergoes more fluctuations at higher substrate 

concentrations. Therefore, noise plays an important role in cellular compartments.  
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6. Single-Molecule Kinetics of an 
Enzyme in the phosphorylation-
dephosphorylation cycle 
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6.1 Introduction: 

In the previous chapters, we have discussed many enzymatic models with different free and 

bound conformers mutually interconverting among themselves in the absence or presence of 

substrate number fluctuations. The processing of a substrate molecule by the free (already in 

the active state) enzyme leads to the completion of one catalytic cycle and marks the beginning 

of the next. However, in certain biological networks for performing the catalytic turnovers 

some enzymes need a prior activation. Mitogen-activated protein kinase ERK2 also known as 

extracellular signal regulatory kinase works at the integration of several biochemical signals 

assisting various cellular processes like cell proliferation, transcription control and 

development.1 Most of the physiological enzymatic actions involve phosphorylation and de-

phosphorylation cycle (PdPC). ERK2 activation requires phosphorylation carried out by 

MAP/ERK kinases (MEK).2 For the substrate phosphorylation, the phosphorylated/activated 

enzyme3 goes into the nucleus of the stimulated cell and phosphorylates the target.  The 

corresponding de-phosphorylation is the detachment of phosphoric ester or anhydride through 

reversible hydrolysis catalysed by phosphatases, which leads to the deactivation of the 

activated enzyme. This PdPC 4 is very common in post-translational modification occurring in 

proteins. 

 

Figure 6.1: Schematic represenation showing the Phosphorylation-dephosphorylationn cycle 
catalysed by pyruvate kinase on a Gold surface-immobalized peptide monolayer.5 
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Experimental and theoretical investigations on the mechanistic action of ERK2 enzyme have 

shed light on how the initial occupancy of the docking site introduces conformational 

modifications, followed by the specific substrate-binding happening at the active site. 6-8  

Recently, Kolomeisky and co-workers have provided a quantitative network model 9 for 

theoretically investigating an unexpected enhanced activity caused by the mutations 10 in the 

D-site of ERK2 enzyme. As per the purposed mechanism firstly, the inactive ERK2 enzyme 

binds with an activator (MEK). The activator bound enzymatic state irreversibly dissociates 

leading to the formation of the activated/phosphorylated ERK2. The phosphorylated enzyme 

can execute the substrate phosphorylation or it can simply follow the deactivation route. This 

biochemical network has three coupled Michaelis-Menten (MM) reactions associated with 

each of the reaction routes namely, the phosphorylation of the inactive ERK2 (activation), de-

phosphorylation of the active ERK2 (deactivation) and phosphorylation of the substrate by the 

active ERK2. The average rate of the substrate phosphorylation by the active (phosphorylated) 

ERK2 shows the MM behaviour. 9  

            We ask the following questions: although the average rate of substrate phosphorylation 

catalysed by the active ERK2 enzyme shows the hyperbolic dependence with the substrate 

concentration, what is the form of the corresponding waiting-time distribution? Is dynamic 

disorder present in such PdPC reaction networks? If so, how does the randomness change under 

different physical scenarios subjected to changes in the magnitude of the rate constants 

constituting the parameter space and concentrations of the activator, deactivator, and substrate? 

How the introduction of one more activator-bound internal state affects the functional form of 

the reaction velocity and system randomness?  

  In this chapter, we have considered three different types of PdPC networks and applied 

the CME (Chemical Master Equation) 11 approach. The formulated waiting time distribution 

focuses on the substrate phosphorylation catalysed by the active ERK2 enzyme. In different 
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physical scenarios depending on the magnitudes of the rate constants and concentrations of the 

activator, deactivator, and substrate, the rate determining step changes. We obtain the analytical 

expression for the waiting time distribution and the mean turnover time. In order to quantify 

the temporal fluctuations in the reactions rates, we calculate the randomness parameter. 12,13  

6.2 Reaction Models and Analysis: 

 

Figure 6.2: Schematic representation showing the activation/phosphorylation of the inactive 
ERK2, deactivation/de-phosphorylation of the active ERK2 and substrate phosphorylation 
carried out by the activated ERK2 enzyme.  

In the above schematic, there are three reaction routes namely, the activator (MEK) assisted 

activation/phosphorylation, the deactivator (phosphatases) involved deactivation/de-

phosphorylation and the substrate phosphorylation pathway catalysed by the active ERK2 

enzyme. Firstly, the inactive free enzyme (𝐸0) binds reversibly with an activator (𝑀) to form 

an activator bound enzymatic state (𝐸1).   Further, 𝐸1 can irreversibly dissociate to give the 

phosphorylated/activated state (𝐸2).  Now, this phosphorylated enzyme (𝐸2) can access the 

two probable pathways. Following the deactivation route, 𝐸2 can bind reversibly with the 

deactivator (𝐷) to form the deactivator bound enzymatic state (𝐸3) which can irreversibly 

regenerate the starting non-phosphorylated free enzyme state, 𝐸0. Following the substrate 

phosphorylation pathway, 𝐸2 can reversibly bind with the substrate (𝑆)  forming the enzyme-

substrate complex (𝐸2𝑆). Further, 𝐸2𝑆 irreversibly dissociates to give the product and 

regenerated enzyme, 𝐸2
(0). The enzymatic state 𝐸2

(0) instantaneously converts to 𝐸2 through 
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a transition characterized by the rate constant 𝛿0. In the given reaction mechanism, all binding 

events associated with the three routes namely,  the phosphorylation of the inactive ERK2, the 

de-phosphorylation of the active ERK2 and the substrate phosphorylation catalysed by the 

active ERK2 are characterized by the rate constant 𝑢. All the unbinding processes, beginning 

from the enzymatic bound states (𝐸1, 𝐸3, 𝐸2𝑆) are designated by the rate constant 𝑤. Similarly, 

all the irreversible rate processes are designated by the rate constant 𝛼. For this reaction 

mechanism, the reaction rate statistics in terms of the time evolution of the joint probability of 

the number of each species involved in the chemical reaction is described by the chemical 

master equation (CME) approach. The variables constituting the probability distributions are 

𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2
(0) and 𝑛𝑃 representing the number of enzyme molecules present in 

the state 𝐸0,  𝐸1, 𝐸2, 𝐸3, 𝐸2𝑆, 𝐸2
(0), and 𝑃 respectively and 𝑛𝑃 is the number of product molecules 

formed at a time t. 

𝜕𝑡𝑃 [𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2
(0),  𝑛𝑃; 𝑡]

= (𝑢[𝑀](𝑛𝐸0 + 1)𝑌𝐸0𝑌𝐸1
−1 + 𝑤(𝑛𝐸1 + 1)𝑌𝐸0

−1𝑌𝐸1 + 𝛼(𝑛𝐸1 + 1)𝑌𝐸1𝑌𝐸2
−1

+ 𝑢[𝐷](𝑛𝐸2 + 1)𝑌𝐸2𝑌𝐸3
−1 + 𝑤(𝑛𝐸3 + 1)𝑌𝐸2

−1𝑌𝐸3 + 𝛼(𝑛𝐸3 + 1)𝑌𝐸0
−1𝑌𝐸3

+ 𝑢[𝑆](𝑛𝐸2 + 1)𝑌𝐸2𝑌𝐸2𝑆
−1 + 𝑤(𝑛𝐸2𝑆 + 1)𝑌𝐸2

−1𝑌𝐸2𝑆 + 𝛼(𝑛𝐸2𝑆 + 1)𝑌𝐸2𝑆𝑌𝐸2
(0)

−1 𝑌𝑃
−1

− (𝑢([𝑀]𝑛𝐸0 + ([𝐷] + [𝑆])𝑛𝐸2)

+ (𝑤 + 𝛼)(𝑛𝐸1 + 𝑛𝐸3 + 𝑛𝐸2𝑆)))𝑃 [𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2
(0) ,  𝑛𝑃; 𝑡] 

                                                                                                                                   (6.1) 

Owing to the mutual exclusivity of different enzymatic states, Eq. 6.1 reduces to Eq. 6.2. 

𝜕𝑃𝐸0(𝑡)
𝜕𝑡

= −𝑢[𝑀]𝑃𝐸0(𝑡) + 𝑤𝑃𝐸1(𝑡) + 𝛼𝑃𝐸3(𝑡)                                                                     (6.2.a)                  
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𝜕𝑃𝐸1(𝑡)
𝜕𝑡

= 𝑢[𝑀]𝑃𝐸0(𝑡) − (𝑤 + 𝛼)𝑃𝐸1(𝑡)                                                                               (6.2.b)                     

𝜕𝑃𝐸2(𝑡)
𝜕𝑡

= 𝛼𝑃𝐸1(𝑡) − 𝑢([𝐷] + [𝑆])𝑃𝐸2(𝑡) + 𝑤𝑃𝐸3(𝑡) + 𝑤𝑃𝐸2𝑆(𝑡) + 𝛿0𝑃𝐸2
(0)(𝑡)                  (6.2.c)                                                             

𝜕𝑃𝐸3(𝑡)
𝜕𝑡

= 𝑢[𝐷]𝑃𝐸2(𝑡) − (𝑤 + 𝛼)𝑃𝐸3(𝑡)                                                                               (6.2.d)     

𝜕𝑃𝐸2𝑆(𝑡)
𝜕𝑡

= 𝑢[𝑆]𝑃𝐸2(𝑡) − (𝑤 + 𝛼)𝑃𝐸2𝑆(𝑡)                                                                             (6.2.e)  

𝜕𝑃
𝐸2

(0)(𝑡)

𝜕𝑡
= 𝛼𝑃𝐸2𝑆(𝑡) − 𝛿0𝑃𝐸2

(0)(𝑡)                                                                                         (6.2.f)   

For the given model, Eq. 6.3 represents the turnover time distribution. 

𝑓(𝑡) = 𝜕𝑃𝑃(𝑡)
𝜕𝑡

= 𝛼𝑃𝐸2𝑆(𝑡)                             (6.3)                         

At the beginning of the reaction, the enzyme exists in the free-state conformer 𝐸0 such that 

𝑃𝐸0(0) = 1, 𝑃𝐸1(0) = 0, 𝑃𝐸2(0) = 0, 𝑃𝐸3(0) = 0, 𝑃𝐸2𝑆(0) = 0, 𝑃𝐸2
(0)(0) = 0 and 𝑃𝑃(0) = 0. 

At any instant of time, the condition 𝑃𝐸0(𝑡) + 𝑃𝐸1(𝑡) + 𝑃𝐸2(𝑡) + 𝑃𝐸3(𝑡) + 𝑃𝐸2𝑆(𝑡) = 1 must 

be satisfied. Thus, the above set of coupled differential equations can be solved by taking the 

Laplace transform and applying appropriate initial conditions and normalization constraints we 

get the following matrix                             

[
 
 
 
 
 𝑠 + [𝑀]𝑢 −𝑤 0 −α 0 0

−[𝑀]𝑢 𝑠 + 𝑤 + α 0 0 0 0
0 −α 𝑠 + 𝑢([𝐷] + [𝑆]) −𝑤 −𝑤 −δ0
0 0 −𝑢[𝐷] 𝑠 + α + 𝑤 0 0
0 0 −𝑢[𝑆] 0 𝑠 + 𝑤 + α 0
0 0 0 0 0 𝑠 ]

 
 
 
 
 

[
 
 
 
 
 
 
 𝑃̂𝐸0(𝑠)
𝑃̂𝐸1(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸3(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸2

(0)(𝑠)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
1
0
0
0
0
0]
 
 
 
 
 

      

                                                                                                                                              (6.4) 

Solving this matrix by taking an inverse gives Eq. 6.5.  
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[
 
 
 
 
 
 
 𝑃̂𝐸0(𝑠)
𝑃̂𝐸1(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸3(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸2

(0)(𝑠)]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝑠3+ 𝐴 𝑠2+ 𝐵 𝑠 + 𝐶
𝑠4+ 𝐸 𝑠3+ 𝐹 𝑠2+ 𝐺 𝑠 + 𝐻

[𝑀]𝑢 𝑠2 + 𝐼 𝑠 + 𝐽
𝑠4+ 𝐸 𝑠3+ 𝐹 𝑠2+ 𝐺 𝑠 + 𝐻

α[𝑀]𝑢 𝑠 + 𝐾
𝑠4 + 𝐸 𝑠3 + 𝐹 𝑠2 + 𝐺 𝑠 + 𝐻

α[𝐷][𝑀]𝑢2

𝑠4 + 𝐸 𝑠3 + 𝐹 𝑠2 + 𝐺 𝑠  + 𝐻
α[𝑀][𝑆]𝑢2

𝑠4 + 𝐸 𝑠3 + 𝐹 𝑠2 + 𝐺 𝑠 +𝐻
0 ]

 
 
 
 
 
 
 
 
 

                                                                                          (6.5)                                                                                                

Here 𝐴 = ([𝐷] + [𝑆])𝑢 + 2(α + 𝑤),𝐵 = α([𝐷] + [𝑆])𝑢 + (α + 𝑤)(α + ([𝐷] + [𝑆])𝑢 + 𝑤), 

𝐶 = α([𝐷] + [𝑆])𝑢(α + 𝑤), 𝐸 = 𝐴 + [𝑀]𝑢,  

𝐹 = α2 + 2α([𝐷] + [𝑆])𝑢 + ([𝑀]𝑢 + 𝑤)(2α + ([𝐷] + [𝑆])𝑢 + 𝑤), 𝐺 = 2𝐽 + 𝐶 + 𝐾, 

𝐻 = α2[𝑀][𝑆]𝑢2, 𝐼 = [𝑀]𝑢(α + ([𝐷] + [𝑆])𝑢 + 𝑤), 𝐽 = α[𝑀]([𝐷] + [𝑆])𝑢2,  and 

 𝐾 = α[𝑀]𝑢(α + 𝑤). 

Eq. 6.6 represents the waiting-time distribution function for the scheme shown in Figure 6.2. 

𝑓(𝑠) = α𝑃̂𝐸2𝑆(𝑠) = α2[𝑀][𝑆]𝑢2

𝑠4 + 𝐸 𝑠3 + 𝐹 𝑠2+ 𝐺 𝑠 + 𝐻
                                                                                (6.6)                                                                                   

From Eq.6.6, we obtain the corresponding mean waiting-time. 

〈𝑡〉 = (α+𝑤)([𝐷]+[𝑀])+2[𝑀][𝐷]𝑢
α[𝑀][𝑆]𝑢

+ α+2[𝑀]𝑢+𝑤
α[𝑀]𝑢

                                                                                         (6.7) 

For the reaction scheme represented in Figure 6.2, the average waiting-time for the substrate 

phosphorylation shows a linear relationship with the inverse of the substrate concentration. 

To quantify the temporal fluctuations, we calculate the randomness, represented by Eq. 6.8.  

𝑅 = 1 − 2[𝑀][𝑆]𝜉1
𝜉2

.                                                                                                                   (6.8) 

Here 𝜉1 = (𝛼2 + ([𝑀]𝑢 + 𝑤)(([𝐷] + [𝑆])𝑢 + 𝑤) + 2𝛼(([𝐷] + [𝑀] + [𝑆])𝑢 + 𝑤)), and 

𝜉2 = ((𝛼 + 𝑤)([𝐷] + [𝑀] + [𝑆]) + 2[𝑀]([𝐷] + [𝑆])𝑢)2.                                                                                                                                                                                        

If we apply, the limit [𝑀] → 0 in Eq. 6.8 then 𝑅 attains the value to be unity since the 

phosphorylation of the enzyme via 𝐸1 formation becomes the slowest step. The substrate 

phosphorylation would happen only after the activation of the enzyme. In Eq. 8 if we consider 
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the limit [𝑆] → 0,  𝑅 goes to unity. In this physical scenario, the binding of the substrate with 

the active ERK2 enzyme becomes the rate-determining step. 

 

Figure 6.3: The plots showing the variation of the randomness parameter (𝑹) as a function of the 
substrate-concentration ([𝑺]) for Figure 6.2, to analyse the effect of (a) the binding rate constant 
(𝒖) with the common set of reaction parameters: 𝒘 = 𝟏,𝜶 = 𝟓, [𝑴] = 𝟏 and [𝑫] = 𝟎. 𝟏, (b) the 
activator concentration ([𝑴]) in the common parameter space: 𝒖 = 𝟏,𝒘 = 𝟏, 𝜶 = 𝟓, and [𝑫] =
𝟎. 𝟎𝟎𝟏 and (c) the deactivator concentration ([𝑫]) for the given set of reaction rate constants: 
𝒖 = 𝟏,𝒘 = 𝟏, 𝜶 = 𝟓  and [𝑴] = 𝟏. The red and green solid lines represent the obtained behaviour 
at two values 0.001 and 1, respectively for 𝒖/[𝑴]/[𝑫] for the plots labelled as (a), (b) and (c), 
respectively. The blue solid line in each plot represents the response for the case when 𝜶 = 𝟓𝟎𝟎 
and the corresponding values of 𝒖/[𝑴]/[𝑫] are taken to be unity for the plots labelled as (a), (b) 
and (c), respectively. 
 

We plot the randomness parameter 𝑅  (Eq. 6.8) as a function of [𝑆] for a given set of kinetic 

parameters to analyze the effects of 𝑢, [𝑀] and [𝐷] as shown in Figure 6.2. For all the cases, 

at low [S], the substrate binding event is the rate-determining step and there is no dynamic 

disorder. At higher [S], the enzyme is present in the substrate-bound 𝐸2𝑆 state and there is a 

competition between the product formation event and the dissociation of 𝐸2𝑆 back to 𝐸2. For 

comparable values of 𝛼 and 𝑤, there is competition between these two events contributing to 

the randomness of the system and  𝑅 deviates from unity. The competition reduces when one 

of the rate constant involved in the competition is considerably higher than the other constant, 

assuring the presence of a single rate-determining step. For example, at high values of 𝛼, the 

product formation event occurs readily and the value of randomness parameter approaches to 

unity irrespective of changes in any other system parameters.  

At higher [S], when the enzyme is present in the substrate-bound  𝐸2𝑆 state, at low 

values of 𝑢, the conversion of 𝐸2 into 𝐸2𝑆 is the slowest step and 𝑅 = 1. With an increase in 
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the value of 𝑢, the substrate-binding event is no longer the slowest step. There is a competition 

between the events starting from 𝐸2𝑆 state, which can lead to deviation in the value of 𝑅 from 

unity. 

For a given set of kinetic parameters at low [𝑆], 𝑅 = 1 irrespective of [𝑀]. At high [S], 

when [M] is low, the formation of 𝐸1 from 𝐸0 is the rate governing step and 𝑅 approaches 

unity. With an increase in [𝑀], a sufficient amount of the activated enzyme 𝐸2 would be formed 

which will be readily converted to E2S at moderate to high [S] and R deviates from unity due 

to competing reaction time scales.  

For a given parameter space, at low [𝑆], there is no dynamic disorder irrespective of 

[𝐷]. For higher values of [𝑀], the free enzyme 𝐸0 will go to the 𝐸2 state, which can participate 

either in the substrate phosphorylation or the deactivation route, when [𝑆] and [𝐷] are of 

comparable order. This leads to deviation in the value 𝑅 from unity. At higher [𝑆], and low to 

moderate values of [𝐷], the substrate phosphorylation would be favoured over the deactivation 

route and R is independent of [𝐷]. The enzyme will be now in the E2S state from which product 

formation and dissociation can happen on comparable timescales and the randomness 

parameter attains a constant non-unity value irrespective of the value of [𝐷]. Considering a 

physical scenario where the magnitudes of [𝐷] and [𝑆] are considerably high, we find that 

irrespective of [𝐷], at low [𝑆], 𝑅 = 1. At higher [𝑆] and [𝐷], sufficient amount of 𝐸2𝑆 and as 

well as 𝐸3 would be formed which increases the probabilities of the transitions from these 

bound enzymatic states and thus, 𝑅 ≠ 1.  Further, at high [𝑆] and at extremely high values of 

[𝐷], the dephosphorylation route will be favored over the product formation step and thus, the 

value of 𝑅 approaches to unity.  
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Figure 6.4:  Schematic representation showing the activation/phosphorylation of the inactive 
ERK2 assisted by the two different activator-bound enzymatic states (𝑬𝟏 and 𝑬𝟏

′  both can directly 
access the phosphorylated state of the ERK2), deactivation/de-phosphorylation of the active 
ERK2 and substrate phosphorylation carried out by the activated ERK2 enzyme.  

Next, we consider another reaction route where there is one additional internal state (𝐸1
′).  

𝐸1
′ formation occurs, when the starting enzyme conformer 𝐸0 reversibly binds with the 

activator. To form to the activated/phosphorylated enzyme  (𝐸2), 𝐸1
′  dissociates irreversibly. 

We also consider the conformational fluctuations between these two activator bound enzymatic 

conformers 𝐸1 and 𝐸1
′  characterized by the rate constant, 𝑝. The variables constituting the 

probability distributions are 𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸1
′ , 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2

(0) and 𝑛𝑃 representing the number 

of enzyme molecules present in the state 𝐸0, 𝐸1, 𝐸1
′ , 𝐸2, 𝐸3, 𝐸2𝑆, and 𝐸2

(0), respectively and 𝑛𝑃 

is the number of product molecules formed at a time t. 
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𝜕𝑡𝑃 [𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸1
′ , 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2

(0),  𝑛𝑃; 𝑡]

= (𝑢[𝑀](𝑛𝐸0 + 1)𝑌𝐸0𝑌𝐸1
−1 + 𝑤(𝑛𝐸1 + 1)𝑌𝐸0

−1𝑌𝐸1 + 𝛼(𝑛𝐸1 + 1)𝑌𝐸1𝑌𝐸2
−1

+ 𝑢[𝑀](𝑛𝐸0 + 1)𝑌𝐸0𝑌𝐸1
′

−1 + 𝑤(𝑛𝐸1
′ + 1)𝑌𝐸0

−1𝑌𝐸1
′ + 𝛼(𝑛𝐸1

′ + 1)𝑌𝐸1
′𝑌𝐸2

−1

+ 𝑝(𝑛𝐸1 + 1)𝑌𝐸1𝑌𝐸1
′

−1 + 𝑝(𝑛𝐸1
′ + 1)𝑌𝐸1

−1𝑌𝐸1
′ + 𝑢[𝐷](𝑛𝐸2 + 1)𝑌𝐸2𝑌𝐸3

−1

+ 𝑤(𝑛𝐸3 + 1)𝑌𝐸2
−1𝑌𝐸3 + 𝛼(𝑛𝐸3 + 1)𝑌𝐸0

−1𝑌𝐸3 + 𝑢[𝑆](𝑛𝐸2 + 1)𝑌𝐸2𝑌𝐸2𝑆
−1

+ 𝑤(𝑛𝐸2𝑆 + 1)𝑌𝐸2
−1𝑌𝐸2𝑆 + 𝛼(𝑛𝐸2𝑆 + 1)𝑌𝐸2𝑆𝑌𝐸2

(0)
−1 𝑌𝑃

−1

− (2𝑢[𝑀]𝑛𝐸0 + (𝑤 + 𝑝 + 𝛼)𝑛𝐸1 + (𝑤 + 𝑝 + 𝛼)𝑛𝐸1
′ + 𝑢([𝐷] + [𝑆])𝑛𝐸2𝑆

+ (𝛼 + 𝑤)𝑛𝐸3 + (𝛼 + 𝑤)𝑛𝐸2𝑆))𝑃 [𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸1
′ , 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2

(0),  𝑛𝑃; 𝑡] 

                                                                                                                                    (6.9) 

To solve Eq. 6.9, we use the mutual exclusivity of different enzymatic states, which gives the 

following set of coupled differential equations. 

𝜕𝑃𝐸0(𝑡)
𝜕𝑡

= −2𝑢[𝑀]𝑃𝐸0(𝑡) + 𝑤𝑃𝐸1(𝑡) + 𝑤𝑃𝐸1
′(𝑡) + 𝛼𝑃𝐸3(𝑡)                                              (6.10.a)                  

𝜕𝑃𝐸1(𝑡)
𝜕𝑡

= 𝑢[𝑀]𝑃𝐸0(𝑡) − (𝑤 + 𝑝 + 𝛼)𝑃𝐸1(𝑡) + 𝑝𝑃𝐸1
′(𝑡)                                                    (6.10.b) 

𝜕𝑃𝐸1
′ (𝑡)

𝜕𝑡
= 𝑢[𝑀]𝑃𝐸0(𝑡) + 𝑝𝑃𝐸1(𝑡) − (𝑤 + 𝑝 + 𝛼)𝑃𝐸1

′(𝑡)                                                    (6.10.c)                                  

𝜕𝑃𝐸2(𝑡)
𝜕𝑡

= 𝛼𝑃𝐸1(𝑡) + 𝛼𝑃𝐸1
′(𝑡) − 𝑢([𝐷] + [𝑆])𝑃𝐸2(𝑡) + 𝑤𝑃𝐸3(𝑡) + 𝑤𝑃𝐸2𝑆(𝑡) + 𝛿0𝑃𝐸2

(0)(𝑡)   

                                                                                                                                         (6.10.d)  

𝜕𝑃𝐸3(𝑡)
𝜕𝑡

= 𝑢[𝐷]𝑃𝐸2(𝑡) − (𝑤 + 𝛼)𝑃𝐸3(𝑡)                                                                             (6.10.e)     

𝜕𝑃𝐸2𝑆(𝑡)
𝜕𝑡

= 𝑢[𝑆]𝑃𝐸2(𝑡) − (𝑤 + 𝛼)𝑃𝐸2𝑆(𝑡)                                                                          (6.10.f) 
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𝜕𝑃
𝐸2

(0)(𝑡)

𝜕𝑡
= 𝛼𝑃𝐸2𝑆(𝑡) − 𝛿0𝑃𝐸2

(0)(𝑡)                                                                                      (6.10.g) 

As explained for the previous model, for the scheme shown in Figure 6.4 we have   

[
 
 
 
 
 
 
 
 
 𝑃̂𝐸0(𝑠)
𝑃̂𝐸1(𝑠)
𝑃̂𝐸1

′(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸3(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸2

(0)(𝑠)]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 

 𝑠3+ 𝐿 𝑠2+𝑁 𝑠 +𝑄
 𝑠4+𝑋 𝑠3+𝑌 𝑠2+𝑍 𝑠+𝑏

  [𝑀]𝑢 𝑠2+𝑒 𝑠 +𝑓
 𝑠4+𝑋 𝑠3+𝑌 𝑠2+𝑍 𝑠+𝑏

 [𝑀]𝑢 𝑠2+𝑒 𝑠 +𝑓
 𝑠4+𝑋 𝑠3+𝑌 𝑠2+𝑍 𝑠+𝑏

2α[𝑀]𝑢 𝑠 +𝑔
 𝑠4+𝑋 𝑠3+𝑌 𝑠2+𝑍 𝑠+𝑏

 2α[𝐷][𝑀]𝑢2

 𝑠4+𝑋 𝑠3+𝑌 𝑠2+𝑍 𝑠+𝑏
 2α[𝑀][𝑆]𝑢2

 𝑠4+𝑋 𝑠3+𝑌 𝑠2+𝑍 𝑠+𝑏
0 ]

 
 
 
 
 
 
 
 
 
 

.                                                                                        (6.11) 

Here 𝐿 = ([𝐷] + [𝑆])𝑢 + 2(α + 𝑤), 𝑁 = α([𝐷] + [𝑆])𝑢 + (α + 𝑤)(α + ([𝐷] + [𝑆])𝑢 + 𝑤), 

𝑄 = α([𝐷] + [𝑆])𝑢(α + 𝑤), 𝑋 = 2α + ([𝐷] + 2[𝑀] + [𝑆])𝑢 + 2𝑤,     

Y = α2 + (2[𝑀]𝑢 + 𝑤)(([𝐷] + [𝑆])𝑢 + 𝑤) + 2α(([𝐷] + 2[𝑀] + [𝑆])𝑢 + 𝑤),       

Z = α𝑢(α([𝐷] + 2[𝑀] + [𝑆]) + 4[𝑀]([𝐷] + [𝑆])𝑢 + ([𝐷] + 2[𝑀] + [𝑆])𝑤),     

𝑏 = α2[𝑀][𝑆]𝑢2, 𝑒 =  [𝑀]𝑢 [α + ([𝐷] + [𝑆])𝑢 + 𝑤], 𝑓 = α[𝑀]([𝐷] + [𝑆])𝑢2, and 

𝑔 = 2α[𝑀]𝑢(α + 𝑤).   

Eq. 6.12 represents the waiting-time distribution for Figure 6.4. 

𝑓(𝑠) = 𝛼𝑃̂𝐸2𝑆(𝑠) =  2α2[𝑀][𝑆]𝑢2

 𝑠4 + 𝑋 𝑠3 + 𝑌 𝑠2 + 𝑍 𝑠 + 2𝐻
.                (6.12)                                                                                                                

Using the above equation, we get the mean reaction time. 

〈𝑡〉 = α+4[𝑀]𝑢+𝑤
2α[𝑀]𝑢

+
(α+w)([𝐷]+2𝑀)+4[𝑀][𝐷]𝑢

2α[𝑀][𝑆]𝑢
                 (6.13)                                                                        

Thus, the mean time for the substrate phosphorylation follows the MM equation. Eq.6.14 

represents the analytical expression for the randomness parameter for Figure 6.4. 

𝑅 = 1 − 4[𝑀][𝑆]𝜉3
𝜉4

                                                                                                                     (6.14)                              

Here 𝜉3 = (𝛼2 + 𝑤 + 2𝛼(([𝐷] + 2[𝑀] + [𝑆])𝑢 + 𝑤) + 𝑢(2[𝑀]([𝐷] + [𝑆])𝑢 + ([𝐷] + 2[𝑀] +

[𝑆])𝑤)),   and 𝜉4 = ((𝛼 + 𝑤)([𝐷] + 2[𝑀] + [𝑆]) + 4[𝑀]([𝐷] + [𝑆])𝑢)2.     
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In Eq. 14, in the limit [𝑆] → 0, R attains the value unity, as the substrate-binding event becomes 

the rate-determining step. In the limit, [𝑀] → 0, the activation of ERK2 enzyme becomes the 

slowest step so 𝑅 = 1. 

Based on the data listed in Table 1 shown below, the dependence of the randomness parameter 

on 𝑢, [M] and [D] for model shown in Figure 6.4 is same as that of Figure 6.2. Also based on 

the expression of the randomness parameter as given in Eq.14, the randomness parameter is 

independent of the conformational fluctuation rate 𝑝 for Figure 6.4. When the rate of 

conformational fluctuations between 𝐸1 and 𝐸1
′  and the rate of formation of the phosphorylated 

enzyme from 𝐸1 and 𝐸1
′  are same, there is no competition among reaction timescales, and the 

randomness parameter is independent of the conformational fluctuations at a given 

concentration of [M] and [D]. 

Table 6.1: 

6.1(a) Effect of the binding rate constant 𝒖 at high [𝑺] for Figure 6.4:  

Kinetic Parameters 𝑢 R 
 

𝑤 = 1, 𝛼 = 5, [𝑀] = 1, [𝐷] = 0.1, [𝑆] = 5 ∗ 104  
 0.001 ~1 

       0.5 0.6250 
       1 0.4800 
       5 0.3786 

𝑤 = 1, 𝛼 = 500, [𝑀] = 1, [𝐷] = 0.1, [𝑆] = 5 ∗ 104        1 (fixed) ~1 
 

6.1(b) Effect of the activator concentration [M] at high [S] Figure 6.4: 

Kinetic Parameters [𝑀] R 
 

𝑢 = 1,𝑤 = 1, 𝛼 = 5, [𝐷] = 0.001, [𝑆] = 5 ∗ 104 
0.001 ~1 

      0.1 0.8906 
      1 0.4800 
      10 0.4140 

𝑢 = 1, 𝑤 = 1, 𝛼 = 500, [𝐷] = 0.001, [𝑆] = 5 ∗ 104       1 (fixed) ~1 
 

6.1(c) Effect of the deactivator concentration [D] for Figure 6.4: 
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Kinetic Parameters [𝐷] R 
 

𝑢 = 1,𝜔 = 1, 𝛼 = 5, [𝑀] = 1, [𝑆] = 5 ∗ 104 
 

0.001 0.4800 
1 0.4800 

1 ∗ 103 0.4902 
5 ∗ 106 ~1 

𝑢 = 1,𝜔 = 1, 𝛼 = 500, [𝑀] = 1, [𝑆] = 5 ∗ 104 1 (fixed) ~1 
 

In the next schematic, the activator bound state 𝐸1
′,   cannot directly undergo an irreversible 

transition leading to the activated state 𝐸2. 𝐸1
′  can make a conformational flip to 𝐸1,followed 

by reaching 𝐸2. The rest of Figure 6.5 is same as that of the reaction model shown in Figure 

6.4. The variables constituting the probability distributions are 

𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸1
′ , 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2

(0) and 𝑛𝑃 representing the number of enzyme molecules present 

in the state 𝐸0,  𝐸1, 𝐸1
′ , 𝐸2, 𝐸3, 𝐸2𝑆, and 𝐸2

(0), respectively. 𝑛𝑃 is the number of product 

molecules formed at a time t. 

 
Figure 6.5: Schematic representation showing the activation/phosphorylation of the inactive 
ERK2 assisted by the two different activator-bound enzymatic states (𝑬𝟏

′  cannot directly reach 
the phosphorylated state of the ERK2), deactivation of the active ERK2 and substrate 
phosphorylation carried out by the activated ERK2 enzyme. 
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𝜕𝑡𝑃 [𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸1
′ , 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2

(0),  𝑛𝑃; 𝑡]

= (𝑢[𝑀](𝑛𝐸0 + 1)𝑌𝐸0𝑌𝐸1
−1 + 𝑤(𝑛𝐸1 + 1)𝑌𝐸0

−1𝑌𝐸1 + 𝛼(𝑛𝐸1 + 1)𝑌𝐸1𝑌𝐸2
−1

+ 𝑢[𝑀](𝑛𝐸0 + 1)𝑌𝐸0𝑌𝐸1
′

−1 + 𝑤(𝑛𝐸1
′ + 1)𝑌𝐸0

−1𝑌𝐸1
′ + 𝑝(𝑛𝐸1 + 1)𝑌𝐸1𝑌𝐸1

′
−1

+ 𝑝(𝑛𝐸1
′ + 1)𝑌𝐸1

−1𝑌𝐸1
′ + 𝑢[𝐷](𝑛𝐸2 + 1)𝑌𝐸2𝑌𝐸3

−1 + 𝑤(𝑛𝐸3 + 1)𝑌𝐸2
−1𝑌𝐸3

+ 𝛼(𝑛𝐸3 + 1)𝑌𝐸0
−1𝑌𝐸3 + 𝑢[𝑆](𝑛𝐸2 + 1)𝑌𝐸2𝑌𝐸2𝑆

−1 + 𝑤(𝑛𝐸2𝑆 + 1)𝑌𝐸2
−1𝑌𝐸2𝑆

+ 𝛼(𝑛𝐸2𝑆 + 1)𝑌𝐸2𝑆𝑌𝐸2
(0)

−1 𝑌𝑃
−1

− (2𝑢[𝑀]𝑛𝐸0 + (𝑤 + 𝑝 + 𝛼)𝑛𝐸1 + (𝑤 + 𝑝)𝑛𝐸1
′ + 𝑢([𝐷] + [𝑆])𝑛𝐸2𝑆

+ (𝛼 + 𝑤)𝑛𝐸3 + (𝛼 + 𝑤)𝑛𝐸2𝑆))𝑃 [𝑛𝐸0, 𝑛𝐸1, 𝑛𝐸1
′ , 𝑛𝐸2, 𝑛𝐸3, 𝑛𝐸2𝑆, 𝑛𝐸2

(0),  𝑛𝑃; 𝑡] 

                                                                                                                                  (6.15) 

Following the same mathematical procedure as adopted for the previous models, we get 

Eq.6.16. 

[
 
 
 
 
 
 
 
 
 𝑃̂𝐸0(𝑠)
𝑃̂𝐸1(𝑠)
𝑃̂𝐸1

′(𝑠)
𝑃̂𝐸2(𝑠)
𝑃̂𝐸3(𝑠)
𝑃̂𝐸2𝑆(𝑠)
𝑃̂𝐸2

(0)(𝑠)]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
 

 𝑠4+ ℎ 𝑠3+ 𝑗 𝑠2+𝑙 𝑠 +𝑛
  𝑠5+𝑠4 𝑞+ 𝑠3 𝑥+ 𝑠2 𝑦+ 𝑠 𝑧+𝜆1

  [𝑀]𝑢 𝑠3+ 𝜆2 𝑠2+𝜆3 𝑠 +𝜆4
  𝑠5+𝑠4 𝑞+ 𝑠3 𝑥+ 𝑠2 𝑦+ 𝑠 𝑧+𝜆1

 [𝑀]𝑢 𝑠3+ 𝜆5 𝑠2+𝜆6 𝑠 +𝜆7
  𝑠5+𝑠4 𝑞+ 𝑠3 𝑥+ 𝑠2 𝑦+ 𝑠 𝑧+𝜆1

α[𝑀]𝑢  𝑠2 +𝜆8 𝑠+𝜆9
  𝑠5+𝑠4 𝑞+ 𝑠3 𝑥+ 𝑠2 𝑦+ 𝑠 𝑧+𝜆1
 𝛼[𝐷][𝑀]𝑢2 𝑠+𝛼[𝐷][𝑀]𝑢2(2𝑝+𝑤)
  𝑠5+𝑠4 𝑞+ 𝑠3 𝑥+ 𝑠2 𝑦+ 𝑠 𝑧+𝜆1
 𝛼[𝑀][𝑆]𝑢2𝑠+𝛼[𝑀][𝑆]𝑢2(2𝑝+𝑤)

  𝑠5+𝑠4 𝑞+ 𝑠3 𝑥+ 𝑠2 𝑦+ 𝑠 𝑧+𝜆1

0 ]
 
 
 
 
 
 
 
 
 
 
 

                                                                             (6.16) 

Here ℎ = 2𝛼 + 2𝑝 + ([𝐷] + [𝑆])𝑢 + 3𝑤, 

𝑗 = 𝛼([𝐷] + [𝑆])𝑢 + 𝛼(𝑝 + 𝑤) + 𝑤(2𝑝 + 𝑤) + (𝛼 + ([𝐷] + [𝑆])𝑢 + 𝑤)(𝛼 + 2(𝑝 + 𝑤)), 

𝑙 = 𝛼([𝐷] + [𝑆])𝑢(𝛼 + 2(𝑝 + 𝑤)) + (𝛼 + ([𝐷] + [𝑆])𝑢 + 𝑤)(𝛼(𝑝 + 𝑤) + 𝑤(2𝑝 + 𝑤)), 

𝑛 = 𝛼([𝐷] + [𝑆])𝑢(𝛼(𝑝 + 𝑤) + 𝑤(2𝑝 + 𝑤)), 

𝑞 = 2𝑝 + ([𝐷] + 2[𝑀] + [𝑆])𝑢 + 3𝑤 + 𝛼(2 + 𝛼[𝑀][𝑆]𝑢2(2𝑝 + 𝑤)), 

𝑥 = 𝛼2 + (2[𝑀]𝑢 + 𝑤)(([𝐷] + [𝑆])𝑢 + 𝑤) + (2𝑝 + 𝑤)(([𝐷] + 2[𝑀] + [𝑆])𝑢 + 2𝑤)
+ 𝛼(3𝑝 + 2([𝐷] + 2[𝑀] + [𝑆])𝑢 + 4𝑤), 
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𝑦 = (2𝑝 + 𝑤)(2[𝑀]𝑢 + 𝑤)(([𝐷] + [𝑆])𝑢 + 𝑤) + 𝛼2(𝑝 + ([𝐷] + 2[𝑀] + [𝑆])𝑢 + 𝑤)
+ 𝛼(6[𝑀]𝑝 𝑢 + ([𝐷] + [𝑆])𝑢(3𝑝 + 4[𝑀]𝑢) + 3𝑝 𝑤 + (3[𝐷] + 5[𝑀] + 3[𝑆])𝑢 𝑤
+ 2𝑤2), 

𝑧 = 𝛼 𝑢((2𝑝 + 𝑤)(3[𝑀]([𝐷] + [𝑆])𝑢 + ([𝐷] + [𝑀] + [𝑆])𝑤) + 𝛼([𝑆](𝑝 + 𝑤) + [𝐷](𝑝 + [𝑀]𝑢
+ 𝑤) + [𝑀](2𝑝 + 2[𝑆]𝑢 + 𝑤))), 

𝜆1 = 𝛼2[𝑀][𝑆]𝑢2(2𝑝 + 𝑤), 𝜆2 = [𝑀]𝑢(𝛼 + 2𝑝 + ([𝐷] + [𝑆])𝑢 + 2𝑤), 

𝜆3 = [𝑀]𝑢(𝛼([𝐷] + [𝑆])𝑢 + (2𝑝 + 𝑤)(𝛼 + ([𝐷] + [𝑆])𝑢 + 𝑤)), 

𝜆4 = 𝛼[𝑀]([𝐷] + [𝑆])𝑢2(2𝑝 + 𝑤), 𝜆5 = 𝜆2 +  𝛼[𝑀]𝑢, 

𝜆6 = 𝜆3 + [𝑀]𝑢(𝛼(𝛼 + ([𝐷] + [𝑆])𝑢 + 𝑤)), 𝜆7 = 𝜆4 + 𝛼2[𝑀]([𝐷] + [𝑆])𝑢2, 

𝜆8 = 𝛼[𝑀]𝑢(𝛼 + 2(𝑝 + 𝑤)), and 𝜆9 = 𝛼[𝑀]𝑢(𝛼 + 𝑤)(2𝑝 + 𝑤). 

Eq. 6.17 represents the waiting-time distribution for the model shown in Figure 6.5. 

𝑓(𝑠) = 𝛼𝑃̂𝐸2𝑆(𝑠) = 𝛼2 (  [𝑀][𝑆]𝑢2 𝑠+[𝑀][𝑆]𝑢2(2𝑝+𝑤)
  𝑠5 + 𝑞 𝑠4 +  𝑥 𝑠3 +  𝑦 𝑠2 + 𝑧 𝑠 + 𝜆1

).                                                    (6.17) 

From Eq. 6.17, we get the mean reaction time. 

〈𝑡〉 = 𝛼(𝑝+[𝑀]𝑢+𝑤)+(2𝑝+𝑤)(3[𝑀]𝑢+𝑤)
𝛼[𝑀]𝑢(2𝑝+𝑤)

+ (2𝑝+𝑤)(3[𝐷][𝑀]𝑢+([𝐷]+[𝑀])𝑤)+𝛼([𝑀](2𝑝+𝑤)+[𝐷](𝑝+[𝑀]𝑢+𝑤))
𝛼[𝑀][𝑆]𝑢(2𝑝+𝑤)

      (6.18)  

The mean time for the substrate phosphorylation follows the MM equation. Eq. 6.19 shows 

the analytical expression for the randomness parameter for the scheme shown in Figure 6.5. 

𝑅 = 1 − 2𝑀𝑆𝜉8
𝜉9

                                                                                                                      (6.19)                                         

Here 𝜉5 = (2𝑝 + 𝑤)2(2[𝑀]𝑢 + 𝑤)(([𝐷] + [𝑆])𝑢 + 𝑤), 

𝜉6 = 𝛼2(2𝑝2 + 𝑝([𝐷] + 2[𝑀] + [𝑆])𝑢 − [𝑀]([𝐷] + [𝑆])𝑢2 + 3𝑝𝑤 + [𝑀]𝑢𝑤 + 𝑤2), 

𝜉7 = 𝛼(2𝑝 + 𝑤)(𝑢(3𝑝([𝐷] + 2[𝑀] + [𝑆]) + [𝑀]([𝐷] + [𝑆])𝑢) + (3𝑝 + 2([𝐷] + 2[𝑀] + [𝑆])𝑢)𝑤

+ 2𝑤2), 

𝜉8 = 𝜉5 + 𝜉6 + 𝜉7, and 

𝜉9 = ((2𝑝 + 𝑤)(3[𝑀]([𝐷] + [𝑆])𝑢 + ([𝐷] + [𝑀] + [𝑆])𝑤) + 𝛼([𝑆](𝑝 + 𝑤) + [𝐷](𝑝 + [𝑀]𝑢 + 𝑤)

+ [𝑀](2𝑝 + [𝑆]𝑢 + 𝑤)))2. 
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In Eq. 6.19, if we put the limit [𝑆] → 0 then 𝑅 attains the value unity, as the substrate-binding 

event becomes the rate-determining step. Also in the limit, [𝑀] → 0, the activation of ERK2 

enzyme becomes the slowest step so 𝑅 = 1.  

For this model (Figure 6.5), the presence of conformational fluctuations between two activator 

bound enzymatic states affects the randomness in the system. When the enzyme is in the 

inactive 𝐸1
′  state, it has to reach to the 𝐸1 state for the reaction to proceed towards product 

formation. When the rate constant characterizing these conformational transitions (𝑝) is 

smaller or comparable in magnitude to the other rate constants then it can lead to dynamic 

disorder. This is evident from the significant deviation in the value of 𝑅 from unity (Eq.18) as 

shown in Figure 6.5. With an increase in the magnitude of 𝑝, 𝐸1
′  readily converts to 𝐸1 and 

the dynamic disorder decreases, 𝑅 is equal to one. As seen from the data listed in Table II, all 

other dependencies of 𝑅 on 𝑢, [𝑀] and [𝐷] follows the same trend as observed for the model 

shown in Figure 6.2. 

 

Figure 6.6: Plot showing the variation of 𝑹 as a function of [𝑺] for the reaction scheme represented 
in Figure 6.5 to analyse the effect of the rate constant 𝒑 at four different values 0.0001, 0.05, 0.1 
and 0.5 represented by the red, green, blue and black solid lines, respectively. The common set of 
reaction parameters 𝒖 = 𝟏,𝒘 = 𝟏, 𝜶 = 𝟓, [𝑴] = 𝟏𝟎 and [𝑫] = 𝟎. 𝟏. 

 

Table 6.2: 

6.2(a) Effect of the binding rate constant 𝒖 at high [S] for Figure 6.5:  
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Kinetic Parameters 𝑢 R 
 

𝑤 = 1, 𝛼 = 5, 𝑝 = 1, [𝑀] = 1, [𝐷] = 0.1, [𝑆] = 5 ∗ 104  
 0.001 ~1 

       0.5 0.7174 
       1 0.6790 
       5 0.7837 

𝑤 = 1, 𝛼 = 500, 𝑝 = 1, [𝑀] = 1, [𝐷] = 0.1, [𝑆] = 5 ∗ 104     1(fixed) ~1 
 

6.2(b) Effect of the activator concentration [𝑴] at high [𝑺] for Figure 6.5: 

Kinetic Parameters [𝑀] R 
 

𝑢 = 1, 𝑤 = 1, 𝛼 = 5, 𝑝 = 1, [𝐷] = 0.001, [𝑆] = 5 ∗ 104 
0.001 ~1 

      0.1 0.8940 
      1 0.6790 
      10 0.8384 

𝑢 = 1,𝑤 = 1, 𝛼 = 500, 𝑝 = 1, [𝐷] = 0.001, [𝑆] = 5 ∗ 104  1 (fixed) ~1 
 

6.2(c) Effect of the deactivator concentration [D] at high [S] for Figure 6.5: 

Kinetic Parameters [𝐷] R 
 

𝑢 = 1,𝜔 = 1, 𝛼 = 5, 𝑝 = 1, [𝑀] = 1, [𝑆] = 5 ∗ 104 
 

0.001 0.6790 
1 0.6790 

1 ∗ 103 0.6852 
5 ∗ 106 ~1 

𝑢 = 1,𝜔 = 1, 𝛼 = 500, 𝑝 = 1, [𝑀] = 1, [𝑆] = 5 ∗ 104 1 (fixed) ~1 
 

6.3 Conclusions: 

In this chapter, we have applied the waiting-time distribution formalism to understand the 

dynamical picture associated with the substrate phosphorylation process catalysed by the 

activated ERK2 enzyme. For such reaction systems, we find that the reaction velocity follows 

the MM type relation. However, there are multiple rate-determining steps in different physical 

scenarios depending on the given parameter space as well as the concentrations of the activator, 

substrate, and deactivator. When there is sufficient availability of the activated ERK2 (𝐸2), and 

the substrate concentration is considerably higher than the [D], the phosphorylation of the 

substrate will be favored over the deactivation/dephosphorylation of the active enzyme (𝐸2). 
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At high [S], the enzyme present in the substrate-bound state can either form the product or 𝐸2𝑆 

can simply revert-back to E2. Thus, there are multiple rate determining steps contributing to 

the randomness of the system. For the cases when the [𝐷] and [𝑆] both are significantly high, 

the probabilities of transitions from the deactivator bound and substrate-bound enzymatic states 

increases leading to the deviation in the value of 𝑅 from unity. For the reaction model shown 

in Figure 6.4, the presence of conformational fluctuations between 𝐸1 and 𝐸1
′  neither affects 

the reaction rate nor the randomness parameter. If the activated enzymatic state is not directly 

accessible to one of the activator bound state as shown in Figure 6.5, then the enzyme will be 

trapped in the 𝐸1
′  state and the formation of the activated ERK2 (𝐸2) form is hindered. If the 

conformational fluctuations are faster, then it will readily go back to 𝐸1 state from which the 

formation of 𝐸2 takes place and the disorder in the system decreases.  

               The applied theoretical formalism provides justifications to explain the causes 

contributing to the system randomness and emphasizes on how the rate-determining step 

changes in different physical situations. These analyses provides a platform for dynamical 

interpretations associated with the phosphorylation/de-phosphorylation network reactions. 
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7. A stochastic theoretical approach to 
study the size-dependent catalytic 
activity of metal nanoparticle at the 
single molecule level 

 
 

Reprinted from “Singh, D.; Chaudhury, S., Phys. Chem. Chem. Phys. 2017, 19, 8889-

8895.” with the permission from the Royal Society of Chemistry publishing. 
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7.1 Introduction 

Catalysis can be homogenous as well as heterogeneous. Enzymatic activity is usually associated with 

the homogenous turnover characteristics where the transformation of a specific substrate type to its 

corresponding product occurs with the regeneration of the free enzyme. However, in case of certain 

enzymes more than one substrate molecule can be processed at a time owing to the oligomeric nature 

(equivalent multiple active sites) of proteins but the catalytic action would remain restricted to a 

particular substrate.1  Some enzyme exhibit the well-known allosteric effect, where a non-active 

(docking) site is present along with the active site. In these mechanisms, occupancy of the docking site 

introduces configurational rearrangements, which modulate the substrate-binding event and eventually 

both of these sites are vacant after the successful execution of the turnover event.2,3 Experimental 

evidences and theoretical investigations related to the kinetics of an enzyme in the presence of varying 

substrates have shed light on the multiple binding pathways and its stochastic dependencies on the 

sequence and site specificity.4 Reaction models describing such catalytic systems have clarified the 

cooperative effect5 and explained the ternary complex formation mechanisms, which leads to the 

turnover (final product) event. In other words, we can say that the fundamental homogeneity associated 

with the activity of an enzyme (monomeric/oligomeric) signifies the conversion of a definite substrate 

to its product. In our previous thesis chapters, we have described all these effects in details by 

considering different enzymatic models undergoing reversible conformational interconversions.  

                On the contrary, nanoparticles are heterogeneous catalysts pertaining to different types of 

surface active sites, spontaneous or induced surface restructuring dynamics, which affects the 

adsorption equilibrium kinetics of different catalytic channels. Metal nanoparticles play an important 

role as catalysts in many chemical transformations and have many industrial applications. 6-8 Unlike 

enzymes, in NP catalysis there are many simultaneous chemical reactions occurring on different active 

sites. This can lead to a distribution of time-dependent catalytic rate constants.9 The heterogeneous and 

dynamic behaviour of metal nanoparticles remains hidden in ensemble-averaged measurements. 

Electrochemical microscopy techniques,10 surface plasmon resonance,11 electro generated 

chemiluminescence12 and single fluorescence microscopy8 are among the few techniques that have been 
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used to study the catalytic activity of a single metal nanoparticle in real time. Zhou et al. has used 

single-molecule fluorescence microscopy to study the redox catalysis of single gold nanoparticle that 

catalyses the reduction of resazurin to a fluorescent product, resorufin in an aqueous environment.8 The 

product formation and product dissociation events were respectively characterized by the off and on 

behaviour of the intensity in the fluorescence trajectory. The calculated autocorrelation functions of the 

off and on times were not found to be zero which indicates the presence of time-dependent fluctuations 

in both the off and the on reaction rates.  

   Further single molecule studies reveal that the size of a nanoparticle plays an important role, 

which consequently leads to different catalytic reactivity and selectivity between the two parallel 

product dissociation pathways.13 The experimental results show that the surface restructuring time 

scales are different for individual nanoparticles of different dimension. Also, the rate of activity 

fluctuations for both the off and on reactions are higher for nanoparticles of smaller size. It was also 

explained theoretically that the surface dynamic restructuring occurs readily in smaller size 

nanoparticles due to high surface energies.13 We know that the measurements of average rate from the 

first moment of the off and on distributions does not provide enough information about the temporal 

fluctuations in the off and on rates. In order to obtain a quantitative measure of the temporal variations, 

one can calculate the randomness parameter.14 

            Unlike enzymes, nanoparticles do not follow the classical Michaelis-Menten (MM) mechanism. 

Xu et al. 15 has proposed a single-molecule kinetic theory based on the Langmuir Hinshelwood 

mechanism to describe the catalytic product formation event which could explicitly account for the 

multitude of catalytic sites on the nanoparticle surface by considered two parallel product dissociation 

pathways as reported earlier in experiments.8 Using this Langmuir Hinshelwood mechanism,16 the 

randomness parameter was calculated for the off and on state from the respective probability densities, 

which successfully described the stochastic dynamics associated with different pathways. When the 

substrate adsorption-desorption is low, the Langmuir adsorption isotherm breaks down. In such a 

scenario, Xu et al. considered a modified Michaelis-Menten mechanism for heterogeneous nanoparticle 

catalysis.15 But this modified theory employed one "effective" active site assumption which represented 



122 
 

all the catalytic sites.15 Therefore, it could not explain the actual effect of size on the catalytic activity 

of a single metal nanoparticle.  

       However, experimental studies indicated that the inclusion of a multitude of surface active sites on 

a single nanoparticle surface could enhance disorder.13  In order to account for the effect of 

heterogeneity in nanoparticle catalysis, Ochoa et al. has calculated the time correlation functions in the 

off and on state for an experimental fluorescence trajectory.17 Das et al. has proposed a theoretical 

model 18 based on the first passage time distribution formalism where they have considered multiple 

non-equivalent catalytic sites and quantified the time dependent fluctuations in the activity of a single 

NP.  

                  In this chapter, we utilize a stochastic approach that is based on the superposition of renewal 

processes (SRP)19 to obtain the first passage time distribution of product formation and dissociation 

event for single nanoparticle of different sizes. The number of surface active sites increases with the 

increase in particle dimension. We consider an arbitrary 𝑁 number of independent and identical non-

interacting sites on the nanoparticle. We can calculate the distribution of the off and on events of 𝑁 

such identical and independent catalytic sites starting from the distributions of a single active site on 

the nanoparticle surface. Here, the main aim is to develop a generalized theoretical framework in order 

to analyse the size-dependent activity of single nanoparticle and the temporal fluctuations in the 

catalytic rates. 

7.2 Reaction Model and Analyses: 
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Figure 7.1: Modified MM scheme of enzyme catalysis with multiple product dissociation 
pathways applicable to single nanoparticle catalysis. 

For the given model, we obtain the first passage time distribution of N-number of identical surface 

catalytic sites on a single nanoparticle. In the context of heterogeneous nanoparticle catalysis, each 

product formation, and dissociation event corresponds to a renewal process.20 The off and on time 

distribution for a single catalytic site is used to obtain the pooled output which corresponds to the 

distribution of 𝑁 independent and equivalent catalytic sites. Following the SRP method by Cox and 

Smith,19 the first passage time distribution of 𝑁 surface sites is given by Eq. 7.1. 

𝜙𝑜𝑓𝑓/𝑜𝑛(𝑡, 𝑁) = 𝑁𝜙𝑜𝑓𝑓/𝑜𝑛(𝑡, 1)(∫ 𝜙𝑜𝑓𝑓/𝑜𝑛(𝜏, 1)𝑑𝜏∞
𝑡 )

𝑁−1
                                                    (7.1) 

Here 𝜙𝑜𝑓𝑓/𝑜𝑛(𝑡, 1) ≡ 𝜙𝑜𝑓𝑓/𝑜𝑛(𝑡) corresponds to the first passage time distribution between two 

successive off/on events for a single catalytic site on the surface of a nanoparticle.  Eq. 7.2 written 

below represents the PDF for the fluorescent product formation event. 

∅̂𝑜𝑓𝑓(𝑠) = 𝐶1∅̂1(𝑠) + 𝐶2∅̂2(𝑠)                                                                                                         (7.2) 

In the above equation 𝐶1 and 𝐶2 are the weight coefficients for the two product dissociation pathways 

such that 𝐶1 + 𝐶2 = 1.  

𝐶1 = 𝑘3(1+𝐾2[𝑆])
𝑘3(1+𝐾2[𝑆]+𝑘5𝐾2[𝑆])

, 𝐶2 = 𝑘5𝐾2[𝑆]
𝑘3(1+𝐾2[𝑆]+𝑘5𝐾2[𝑆])

 and 𝐾2 = 𝑘4
𝑘−4+𝑘5

. 

Eq. 7.3 represents the PDF for the direct dissociation pathway. 

∅̂1(𝑠) = 𝑄̂𝐸→𝐸𝑆(𝑠)𝑄̂𝐸𝑆→𝐸𝑃(𝑠)
1−𝑄̂𝐸→𝐸𝑆(𝑠)𝑄̂𝐸𝑆→𝐸(𝑠)

                                                                                                               (7.3) 

Similarly, Eq. 7.4 shows the PDF for the substrate-assisted pathway. 

∅̂2(𝑠) = 𝑄̂𝐸𝑆→𝐸𝑃(𝑠)
1−𝑄̂𝐸→𝐸𝑆(𝑠)𝑄̂𝐸𝑆→𝐸(𝑠)

                                                                                                               (7.4)      

The waiting time distributions characterizing the transitions between any two consecutive states have 

the following functional form.                                                                                                  

𝑄̂𝐸𝑆→𝐸𝑃(𝑠) = 𝑘2
𝑠+𝑘2+𝑘−1

                                                                                                                          (7.5.a)                                                                                      
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𝑄̂𝐸𝑆→𝐸(𝑠) = 𝑘−1
𝑠+𝑘2+𝑘−1

                                                                                                                          (7.5.b)                         

𝑄̂𝐸→𝐸𝑆(𝑠) = 𝑘1[𝑆]
𝑠+𝑘1[𝑆]

                                                                                                                               (7.5.c)                                                                                                    

After substituting the above set of equations in Eq. 7.2, we get Eq. 7.6. 

∅̂𝑜𝑓𝑓(𝑠) = 𝑘2[𝑆](𝑘1𝑘3(𝑘−4+𝑘5)+𝑘4𝑘5𝑠+𝑘1𝑘4(𝑘3+𝑘5)[𝑆])
(𝑘3(𝑘−4+𝑘5)+𝑘4(𝑘3+𝑘5)[𝑆])(𝑘−1𝑠+(𝑘2+𝑠)(𝑠+𝑘1[𝑆]))

                                                                     (7.6)      

The inverse Laplace transform of the above equation will yield Eq. 7.7.                           

 ∅̂𝑜𝑓𝑓(𝑡) =
𝑒𝐵𝑡 𝑘2[𝑆]((𝐺+𝐾[𝑆])(1−𝑒𝐴𝑡)+(𝑘4𝑘5𝐴)(1+𝑒𝐴𝑡))

(𝐼+𝐽[𝑆])𝐴
                                                                  (7.7)             

Here 𝐴 = √−4𝑘1𝑘2[𝑆] + (𝑘−1 + 𝑘2 + 𝑘1[𝑆])2, 𝐵 = − 1
2
(𝑘−1 + 𝑘2 + 𝑘1[𝑆] + 𝐴),  

𝐺 = −2𝑘1𝑘3(𝑘−4 + 𝑘5) + 𝑘4𝑘5(𝑘−1 + 𝑘2), 𝐾 = −𝑘1𝑘4(2𝑘3 + 𝑘5), 𝐼 = 2𝑘3(𝑘−4 + 𝑘5) and 𝐽 =

2𝑘4(𝑘3 + 𝑘5).  

Next, we construct the PDF for the product dissociation event, given as Eq. 7.8. 

∅̂𝑜𝑛(𝑠) = 𝑄̂𝐸𝑃→𝐸𝑆𝑃(𝑠)𝑄̂𝐸𝑆𝑃→𝐸𝑆(𝑠)+𝑄̂𝐸𝑃→𝐸(𝑠)
1−𝑄̂𝐸𝑃→𝐸𝑆𝑃(𝑠)𝑄̂𝐸𝑆𝑃→𝐸𝑃(𝑠)

                                                                                           (7.8)   

Eq. 7.9 shows the waiting time distributions for each step associated with the on route.                                                               

𝑄̂𝐸𝑃→𝐸𝑆𝑃(𝑠) = 𝑘4[𝑆]
𝑠+𝑘4[𝑆]+𝑘3

                                                                                                                     (7.9.a)                                                                                         

𝑄̂𝐸𝑆𝑃→𝐸𝑆(𝑠) = 𝑘5
𝑠+𝑘−4+𝑘5

                                                                                                                  (7.9.b)       

𝑄̂𝐸𝑃→𝐸𝑃(𝑠) = 𝑘−4
𝑠+𝑘−4+𝑘5

                                                                                                                   (7.9.c)               

𝑄̂𝐸𝑃→𝐸(𝑠) = 𝑘3
𝑠+𝑘4[𝑆]+𝑘3

                                                                                                                   (7.9.d)                                               

Substituting the above expressions in Eq. 7.8, we will get Eq. 7.10. 

∅̂𝑜𝑛(𝑠) = 𝑘5𝑘4[𝑆]+𝑘3(𝑠+𝑘−4+𝑘5)
(𝑠+𝑘−4+𝑘5)(𝑠+𝑘4[𝑆]+𝑘3)−𝑘−4𝑘4[𝑆]                                                                                        (7.10)                                                                             
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By taking an inverse Laplace Transform of Eq. 7.10, we can obtain the PDF for the on event (fluorescent 

product dissociation) in the time domain. 

∅𝑜𝑛(𝑡) =
𝑒𝐵′𝑡[ (𝐶′+𝐷′[𝑆])(1−𝑒𝐴′𝑡)+𝑘3𝐴′(1+𝑒𝐴′𝑡)]

2𝐴′                                                                                     (7.11) 

Here  𝐴′ = √(𝑘3 + 𝑘−4 + 𝑘5 + 𝑘4[𝑆])2 − 4(𝑘3(𝑘−4 + 𝑘5) + 𝑘4𝑘5[𝑆]), 

𝐵′ = − 1
2
[(𝑘3 + 𝑘−4 + 𝑘5 + 𝑘4[𝑆]) + 𝐴′],  𝐶′ = 𝑘3(𝑘3−𝑘−4 − 𝑘−5) and 𝐷′ = 𝑘4(𝑘3 − 2𝑘−5). 

In order to account for the heterogeneity of a single nanoparticle, one needs to consider the effect of 

multiple surface active sites explicitly. For deducing the distribution of the on and off times for 𝑁 

independent, identical catalytic sites, we substitute Eq. 7.7 and 7.11 in Eq. 7.1. From the first and second 

moment of these distributions, we can account for the substrate concentration dependence of the 

randomness parameter in the off and on state for a single nanoparticle of different dimensions and a 

varying number of surface catalytic sites.  

To illustrate the effect of the dimension of the nanoparticle, we consider single nanoparticles 

of three different dimensions; Type I having only two catalytic sites (𝑁 =  2), Type II with five 

catalytic sites (𝑁 =  5), and Type III with (𝑁 =  10). The number of catalytic sites is proportional to 

the size of the nanoparticle. Experimental findings of Zhou and co-workers, have shown that the 

binding of the substrate to the Au-nanoparticle is weaker for smaller particle size and they preferentially 

dissociate via substrate assisted pathway.13 The catalytic reactivity per surface site increases with the 

dimension of the single nanoparticle.  For bigger size nanoparticles, single-particle measurements show 

that the selectivity decreases and the two dissociation pathways are equally likely. Thus, the kinetic 

parameters show size-dependent activity and hence the parameter values for the different rate constants 

chosen in our theoretical investigation are such that they follow the experimental trends. 

        Figure 7.2 shows the temporal variation of the turnover time distribution in the off state for three 

different nanoparticle sizes as calculated from Eq. 7.1. For all three dimensions, the turnover times 

decay mono-exponentially at low and high substrate concentration [𝑆] (Figures 7.2(a) and 7.2(c)). At 

intermediate [𝑆], for particles of smaller dimension, the distribution is multi-exponential (Figure 7.2(b)) 



126 
 

and becomes narrower with the increasing particle size. 

 

Figure 7.2: The temporal variation of first passage time distribution in the off state for different 
size of nanoparticle. For (a) and (c) distribution is monoexponential at low [𝑺] =  𝟎. 𝟎𝟏 and high 
[𝑺] =  𝟏𝟎𝟒 for Type I: 𝑵 =  𝟐 (blue line), Type 2: 𝑵 =  𝟓 (green line) and Type III: 𝑵 =  𝟏𝟎 (red 
line). For (b) the distribution is multiexponential at an intermediate substrate concentration 
[𝑺]  =  𝟏𝟎𝟎 for all three types of nanoparticle. Parameter values for Type I: 𝒌𝟏 = 𝟐, 𝒌𝟑 =  𝟒,
𝒌𝟓 =  𝟖, Type II: 𝒌𝟏 =  𝟓, 𝒌𝟑 =  𝟔, 𝒌𝟓 =  𝟏𝟎  and  Type III: 𝒌𝟏 =  𝟔, 𝒌𝟑 =  𝒌𝟓 =  𝟏𝟐. Common 
parameter values in (a)-(c) are 𝒌−𝟏 =  𝟏, 𝒌𝟐 =  𝟐𝟓, 𝒌𝟒  = 𝟑𝟎𝟎, 𝒌−𝟒 =  𝟑. 

Similarly, Figure 7.3 gives the first passage time distribution for the on state for three different particle 

sizes. The parameter values of the kinetic parameters are same as used in Figure 7.2. For all three 

sizes (𝑁 =  2, 𝑁 =  5, 𝑁 =  10), the distributions show an exponential decay at low and high [𝑆] (Fig. 

3(a) and (c)). At intermediate substrate concentrations, for small and medium size nanoparticles (𝑁 =

 2 , 𝑁 =  5), the distribution is multi-exponential as shown in Figure 7.3(b). Similar to the off time 

distributions, the multi-exponential behaviour decreases with the increase in the single nanoparticle 

size. 

 

Figure 7.3: The first passage time distribution in the on state is mono-exponential at low substrate 
concentration ([𝑺]  =  𝟎. 𝟎𝟏) and high substrate concentration ([𝑺]  =  𝟏𝟎𝟎𝟎𝟎) for Type I: 𝑵 =
 𝟐 (blue line), Type II: 𝑵 =  𝟓 (green line) and Type III: 𝑵 = 𝟏𝟎 (red line). The distributions at a 
moderate substrate concentration ([𝑺]  =  𝟏𝟎𝟎) are multi exponential for Type I: 𝑵 = 𝟐 (blue 
line), Type II: 𝑵 =  𝟓 (green line) and mono-exponential for Type III: 𝑵 =  𝟏𝟎 (red line).  
Parameter values for Type I: 𝐤𝟑 = 𝟒, 𝐤𝟓 = 𝟖, Type II: 𝐤𝟑 = 𝟔, 𝐤𝟓 = 𝟏𝟎 and Type III: 𝐤𝟑 = 𝐤𝟓 =
𝟏𝟐. Common parameter values are 𝐤𝟒 = 𝟑𝟎𝟎 and 𝐤−𝟒 = 𝟑. 

At the single molecule level, such multi exponential behaviour in the first passage time distributions 
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arises due to dynamic surface reconstruction, which can lead to time-dependent activity fluctuations. 

The multi-exponential behaviour decreases with increasing particle size. For bigger size nanoparticles, 

𝑁 =  10 (𝑘3  =  𝑘5), the on time distribution decays exponentially at all substrate concentrations, [𝑆]. 

This indicates that for nanoparticles of larger dimension, the product dissociation process has a single 

rate-determining step.  

               The first moment of the off and on time distribution gives the rate of product formation and 

dissociation respectively. Figure 7.4 graphically shows the variation in the product formation and the 

dissociation rate with the substrate concentration, [𝑆] for single nanoparticles of three different 

dimensions. For all the three particle sizes, the rate of product formation (〈𝑡𝑜𝑓𝑓〉−1), shows different 

saturation levels and a similar MM-like behaviour. For the product dissociation rate, 〈𝑡𝑜𝑛〉−1 saturates 

at high substrate concentration, [S]. For type III, with more number of surface sites, 𝑘3
𝑇𝑦𝑝𝑒 𝐼𝐼𝐼 ≈

𝑘5
𝑇𝑦𝑝𝑒 𝐼𝐼𝐼, and the product dissociation rate is a constant and independent of [𝑆] (black line in Fig. 4b). 

 

Figure 7.4: The reciprocal of the (a) off and (b) on times for three types of nanoparticles as a 
function of substrate concentration, [S]. The parameters values for the off and on rates as same 
as in Figure 7.2 and 7.3, respectively. 

Next, we compute the randomness parameter to quantify the measure of the temporal fluctuations in 

the reaction pathway. Following Eq. 1, one can obtain the second moments of the first passage time 

distributions and hence the randomness parameter in the off and on state. 

               Figure 7.5(a) shows the variability of the randomness parameter in the off state as a function 

of particle size. For all three sizes of the particle, 𝑅𝑜𝑓𝑓 is equal to unity for low and infinite substrate 



128 
 

concentration. The value of 𝑅𝑜𝑓𝑓 significantly deviates from unity at intermediate substrate 

concentrations for all particle sizes. This is in agreement with Fig. 7.2 where we observed the multi-

exponential decay behaviour of the off time distributions at intermediate [𝑆]. This indicates the 

presence of dynamic disorder due to multiple competing time steps in the reaction. Figure 7.5(b) shows 

the variation of the randomness parameter with the number of surface active sites, 𝑁  at some 

intermediate substrate concentration. For less number of identical catalytic sites, 𝑅𝑜𝑓𝑓 is less than unity. 

Initially, with an increase in the number of surface catalytic sites the dynamic disorder increases and 

then decreases. Eventually, it saturates to unity. This indicates that the effect of dynamic surface 

restructuring is less prominent for particles of larger dimension. 

 

Figure 7.5: (a) The randomness parameter as a function of substrate concentration [𝑺] for the 
given scheme in the off state for Type I: 𝑵 =  𝟐 (blue line), Type II: 𝑵 =  𝟓 (green line) and Type 
III: 𝑵 =  𝟏𝟎 (red line). Parameter values are same as in Fig. 7.2. (b) The randomness parameter 
as a function of 𝑵 for the given scheme at [𝑺] =  𝟏𝟎𝟎, 𝒌𝟏 = 𝟐, 𝒌−𝟏  =  𝟏, 𝒌𝟐 =  𝟐𝟓,   𝒌𝟑 =  𝟒, 𝒌𝟓   =
 𝟖, 𝒌𝟒 =  𝟑𝟎𝟎, 𝒌−𝟒 =  𝟑. 

 

Figure 7.6(a) shows 𝑅𝑜𝑛 as a function of [𝑆]. For all three sizes of the particle, 𝑅𝑜𝑛 is equal to unity for 

low and infinite substrate concentration. At intermediate substrate concentrations, for smaller particle 

size (Type I and II), where the substrate-assisted dissociation pathway is more likely than the direct 

dissociation step (𝑘3 <  𝑘5), 𝑅𝑜𝑛 <  1. This indicates that at intermediate [𝑆], dynamic disorder is 

present in a single nanoparticle of smaller dimension (Type I and Type II). For Type III, where 𝑁 is 

large and both the product dissociation routes are equally likely (𝑘3 =  𝑘5), the product dissociation is 

dominated by a single rate-determining step and 𝑅𝑜𝑛 is equal to unity at all [𝑆]. Thus, for large size 

nanoparticles with a multitude of surface active sites, there is no dynamic disorder in the product 
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dissociation reaction. Figure 7.6(b) shows the variation of 𝑅𝑜𝑛 with the number of surface sites 𝑁 at 

intermediate value of [𝑆]. For less number of surface active sites 𝑅𝑜𝑛 deviates more from unity that is 

randomness increases. With a further increase in 𝑁, the randomness decreases (𝑅 approaches unity). 

 

Figure 7.6: (a) Randomness parameter as a function of substrate concentration [𝑺] in the on state 
for the given scheme for Type I: 𝑵 = 𝟐 (blue line), Type II: 𝑵 = 𝟓 (green line) and Type III: 𝑵 =
𝟏𝟎 (red line). Parameter values are same as in Fig. 3. (b) Randomness parameter 𝑹𝒐𝒏 as a 
function of 𝑵 for the given scheme at [𝑺]  =  𝟏𝟎, 𝒌𝟑 = 𝟒, 𝒌𝟓 = 𝟖, 𝒌𝟒 = 𝟑𝟎𝟎 and 𝐤−𝟒 = 𝟑. 

All these studies show that dynamic disorder arises due to the temporal fluctuations in the catalytic 

activity, attributed to the dynamic surface restructuring. For single nanoparticles of higher dimension 

with a large number of surface catalytic sites, the effect of dynamic surface restructuring decreases and 

it thereby reduces the effect of temporal activity fluctuations. 𝑅𝑜𝑓𝑓 and 𝑅𝑜𝑛 show deviation from unity 

at intermediate substrate concentrations for less number of surface catalytic sites indicating the presence 

of dynamic disorder. With further increase in the number of catalytic sites for a given nanoparticle, the 

dynamic disorder decreases. 

7.3 Conclusions: 

In this chapter, we have presented a theoretical approach based on the superposition of the renewal 

process (SRP) to understand the effect of particle size on the catalytic activity of metal nanoparticle. 

Within this approach, we obtain the off and on time distribution of 𝑁 identical surface catalytic sites 

from the distribution function of one site. The off and on time distribution of a single nanoparticle with 

one catalytic site is obtained using the first passage time distribution formalism.21 The parameter values 

of the rate constants are chosen based on the experimental predictions of the dependence of kinetic rate 

constants on the size of the nanoparticle.13,15 The shape of the PDF and the value of the randomness 
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parameter in the off and on state support the fact that the effect of dynamic surface restructuring which 

can lead to activity fluctuations in the single metal nanoparticle is suppressed with the increase in the 

dimension of the nanoparticle. Our results show that there exists a close correlation between dynamic 

disorder and dynamic surface structural dynamics in single nanoparticle catalysis. It also provides a 

strong basis for the experimental findings on the size-dependent catalytic activity of nanoparticle at the 

single molecule level. 
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8.1 Introduction: 

Application of numerous experimental methods with high temporal and spatial resolutions and 

analytical frameworks, help in understanding multiple chemical processes on nanocatalysts.1-5 

However, the molecular mechanism of these phenomena remains not well understood. Single-molecule 

experimental approaches give much detailed stochastic information. By analysing a certain number 

fluorescence trajectories comprising specific number of products in a defined time range, one can obtain 

the waiting time distributions of the fluorescent product formation and dissociation event, which 

corresponds to one-on and one off-event, respectively. These studies confirm that there is a wide 

distribution in the rates of product formations and dissociations on nanocatalysts, and that the size of 

nanocatalyst affects the dynamic surface restructuring, leading to temporal dependence of the catalytic 

activities.    

                   In our previous thesis chapter, we have employed a theoretical framework for modelling 

the size dependent heterogeneous6 catalysis by a single nanocatalyst.  For deriving the PDF, which 

could describe the different catalytic events occurring on the multiple surface active sites, we utilized 

the distribution corresponding to one site. In this way, one can analyse the required temporal effects 

from a pool of events. The statistical quantities of interest (the mean time and higher moments of the 

PDF) calculated using this approach gave the stochastic measurements obtained from the time 

distribution, which represented the overall time required for the turnover to happen on each site. In other 

words, only after the completion of the chemical reaction on all the surface sites there will be 

commencement of the next set of events and this time between any two consecutive cumulative set of 

processes gave the first passage distribution. The chemical model taken into account was quite 

simplistic.  

                  On the contrary, at nanocatalysts, reactions occur simultaneously on multiple sites and the 

recorded times between any two consecutive fluorescence bursts, yields the PDF. The main objective 

of this chapter deals with the development and application of another theoretical approach based on the 

first passage analysis, which could establish a direct link between the experimentally measured time 

and the time distribution deduced from the analytical methods. This also emphasizes on exploring the 
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mechanistic details of the chemical reaction occurring on different catalytic sites of a single 

nanocatalyst. Unlike the previous theoretical methods, here we use a complex general reaction 

occurring on each site, which comprises an arbitrary number of catalytic active sites and intermediates.  

For a given network, based on the specific site descriptions (number of free or substrate-bound/occupied 

sites) of a particular state, one can determine the productivity and the probability of the chemical 

reaction to begin from there. Availability of a single or multiple free sites will ensure initiation of the 

chemical reaction from there. Similarly, for the product formation to happen from any state there must 

be a single or multiple bound sites. 

Using a discrete-state stochastic model that takes into account the stochasticity of individual chemical 

reactions at each catalytic site, one can examine the molecular details of these processes and understand 

its relation with experimentally measured distributions of reaction times. The mean time analysis is 

insufficient to capture the stochastic effects so we need higher moments of the PDF. From these 

moments, one can quantify the temporal fluctuations present in the system and analyse the noise 

dependence for systems with varying number catalytic sites and number of intermediates. 

8.2 Reaction Model and Analyses: 

 

 

Figure 8.1: Schematic representation of a nanocatalyst with 𝑵 (a) identical catalytic sites and (b) 
two different types of catalytic sites. 
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Figure 8.2: (a) Schematic representation of (a) catalytic reaction taking place at each catalytic site 
(b) system with 𝑵 number of catalytic sites with 𝑴 number of intermediate steps (c) system with 
one intermediate state, 𝑴 = 𝟏. 

We consider a system consisting of a single nanocatalyst particle with 𝑁 identical active sites as 

illustrated in Figure 8.1a. We assume that all catalytic sites are independent of each other and all of 

them are equally accessible to the substrate molecules. At each site, the chemical reaction with 

𝑀(𝑀 = 1,2,3,… )  sequential intermediate states is taking place. In this scheme, 𝐶𝑆𝑗 describes the 

intermediate chemical state 𝑗 (𝑗 =  1, 2,3,… ,𝑀) at the given catalytic site. From the state 𝐶𝑆𝑗 the 

reaction moves forward to the state 𝐶𝑆𝑗+1with a rate 𝑢𝑗, while the backward transition that leads to the 

state 𝐶𝑆𝑗−1 has a rate, 𝑤. The substrate first binds to the catalytic site with a rate proportional to the 

concentration of substrates, 𝑢0  =  𝑘[𝑆], while the final transition that creates the product molecule P is 

irreversible and it has a transition rate 𝑢𝑀 (Figure 8.2a). Just like the experimental measurements, we 

calculate the catalytic time distribution and the related statistical quantities associated with the 

consecutive product formation events where we consider the possibility of one or more products 

formation from single or few sites. It depends on the number of catalytic sites present in the 𝐶𝑆𝑀 state. 

Chemical reactions are simultaneously happening at different catalytic sites, and a discrete-state 

stochastic scheme represents the overall dynamics in the system as shown in Figure 8.2b. Here the state 

𝑛 refers to a situation when 𝑛 active sites are present in the chemical state 𝐶𝑆𝑀 just before the product 

formation is taking place. From the state 𝑛, the transition rates to the state 𝑛 +  1 and 𝑛 −  1 are given 
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by (𝑁 −  𝑛)𝑎 and 𝑛(𝑢𝑀  + 𝑤𝑀 ), respectively. The parameter 𝑎 is the effective rate of reaching the state 

𝑛 from the state 𝑛 − 1, and it can be always explicitly determined in terms of transition rates (𝑢𝑗, 𝑤𝑗) 

for any 𝑀 as shown later. 

At large times, the dynamics in the system reaches stationary conditions. We define 𝑃𝑛 as a steady-state 

probability to find the system in the state 𝑛, i.e. with 𝑛 sites in the conformation, 𝑆𝑀 . Because at 𝑡 →

 ∞, the discrete-state stochastic model (see Figure 8.2b) attains an effective equilibrium, with the 

following form of probabilities. 

𝑁 𝑎 𝑃0 = (𝑢𝑀 + 𝑤𝑀)𝑃1 

(𝑁 − 1) 𝑎 𝑃1 = 2(𝑢𝑀 + 𝑤𝑀)𝑃2… 

 𝑎 𝑃𝑁−1 = 𝑁(𝑢𝑀 + 𝑤𝑀)𝑃𝑁                                                                                                                  (8.1) 

Taking into account the normalization condition, ∑ 𝑃𝑛 = 1𝑁
𝑛=0 , one can solve these equations. 

𝑃𝑛 = 𝑁! 𝑥𝑛

(𝑁−𝑛)!𝑛!(1+𝑥)𝑁                                                                                                                              (8.2) 

Using Eq.2, one can estimate the total flux from 𝑁 sites, under stationary conditions. 

𝐽𝑁 = 𝑢𝑀𝑃1 + 2𝑢𝑀𝑃2 + 3𝑢𝑀𝑃3 + ⋯+ 𝑁𝑢𝑀𝑃𝑁 = 𝑁 ( 𝑎 𝑢𝑀 
𝑎+𝑢𝑀+𝑤𝑀

)                                                      (8.3) 

The reciprocal of the flux gives the mean time between the products release events, 〈𝜏〉𝑁 = 1
𝐽𝑁

 which is 

also the average reaction times as measured in the single-molecule experiments. 

 〈𝜏〉𝑁 = 〈𝜏〉1
𝐽𝑁

                                                                                                                                          (8.4) 

In other words, the mean reaction times are inversely proportional to the number of active sites. It means 

that if one considers only the mean reaction times as a measure of the chemical processes occurring at 

the nanocatalyst, the stochastic effects remain hidden. This does not depend on the specific details of 

the chemical reactions at each site, which, however, affect the amplitude of reaction times. Considering 

only the mean reactions times, a system with 𝑁 sites with the rates (𝑢𝑗, 𝑤𝑗) [𝑗 = 1,2,3, . . , 𝑀] behaves 
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exactly like a system with one "effective" single catalytic site with the rescaled rates, (𝑁𝑢𝑗, 𝑁𝑤𝑗). Figure 

8.3 represents these observations. 

 

Figure 8.3: Mean reaction times 〈𝝉〉𝑵 for the system with 𝑵 catalytic sites as function of a, using 
𝒖𝑴  =  𝒘𝑴  =  𝟏. 

The effective rate 𝑎 can be explicitly expressed in terms of the intrinsic transition rates (𝑢𝑗, 𝑤𝑗).  𝑎 

depends only on the number of intermediate states 𝑀, but it is independent of the number of catalytic 

sites 𝑁.7 For 𝑁 =  1,  Eq. 8.5 represents the flux. 

𝐽1 = ( 𝑎 𝑢𝑀 
𝑎+𝑢𝑀+𝑤𝑀

) = 1
𝑅𝑀

                                                                                                                         (8.5) 

Here 𝑅𝑀 = ∑ 𝑟𝑗𝑀
𝑗=0                                                                                                                                 (8.6) 

𝑟𝑗 = 1
𝑢𝑗

[1 + ∑ ∏ 𝑤𝑙
𝑢𝑙

𝑗+𝑘
𝑙=𝑗+1

𝑀
𝑘=1 ]                                                                                                                (8.7) 

From Eq. 5, we derive Eq. 8.8. 

𝑎 = (𝑢𝑀+𝑤𝑀 
𝑢𝑀𝑅𝑀−1

)                                                                                                                                       (8.8) 

For 𝑀 = 1, 𝑎 = 𝑢0. 



137 
 

 

Figure 8.4: Theoretical framework for first-passage analysis for a system with 𝑵 catalytic sites 
involving chemical reactions with 𝑴 intermediate states. (b) Representation of the system for one 
catalytic site (𝑵 =  𝟏) and (c) for two catalytic sites (𝑵 =  𝟐) for 𝑴 intermediates. 

Since the mean reaction times do not reflect the stochasticity of the system and do not yield the 

molecular information on the mechanisms of chemical reactions at each site, we have to investigate the 

higher moments of the reaction times. For this purpose, we introduce a method based on the first-

passage probability calculations of the catalytic times distributions. Figure 8.4 describes the discrete-

state stochastic scheme for this approach. We define 𝐹𝑛(𝑡) as a probability density function to complete 

the catalytic cycle and to make the product 𝑃 for the first time at time 𝑡, provided, at 𝑡 =  0, the system 

is present in the state 𝑛. A set of backward master equations represents the temporal evolution of these 

first-passage probabilities.8  

𝜕 𝐹0(𝑡)
𝜕𝑡

= 𝑁 𝑎𝐹1(𝑡) − 𝑁𝑎𝐹0(𝑡)                                                                                                                            (8.9.a) 

 

𝜕 𝐹1(𝑡)
𝜕𝑡

= (𝑁 − 1)𝑎 𝐹2(𝑡) + 𝑤𝑀  𝐹0(𝑡) + 𝑢𝑀 𝐹𝑃(𝑡) − [(𝑁 − 1)𝑎 +  𝑤𝑀 +  𝑢𝑀]𝐹1(𝑡)                                         (8.9.b) 

 

𝜕 𝐹𝑛(𝑡)
𝜕𝑡

= (𝑁 − 𝑛)𝑎 𝐹𝑛+1(𝑡) +   𝑛 𝑤𝑀  𝐹𝑛−1(𝑡) +   𝑛 𝑢𝑀 𝐹𝑃(𝑡) − [(𝑁 − 𝑛)𝑎 + 𝑛(𝑢𝑀 + 𝑤𝑀)]𝐹𝑛(𝑡)       

                                                                                                                                                                          (8.9.c) 

 𝜕 𝐹𝑁(𝑡)
𝜕𝑡

=  𝑁 𝑤𝑀  𝐹𝑁−1(𝑡) +  𝑁 𝑢𝑀  𝐹𝑃(𝑡) − 𝑁( 𝑢𝑀 +  𝑤𝑀)𝐹𝑁(𝑡)                                                                       (8.9.d) 
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Here 𝐹𝑃(𝑡) represents the product state, such that, 𝐹𝑃(𝑡) = 𝛿(𝑡). The physical meaning of this relation 

is that if the system is already in the product state, the reaction is immediately finished. One can solve 

these equations for any number of active sites using the Laplace transformations. From these 

transformed densities, one can derive the moments.  

⟨𝑇𝑛⟩ = −(𝜕𝐹̂𝑛(𝑠)
𝜕𝑠

)
𝑠=0

, ⟨𝑇𝑛
2⟩ = −(𝜕2𝐹̂𝑛(𝑠)

𝜕𝑠2 )
𝑠=0

                                                                                                      (8.10) 

For 𝑁 =  1, we will have the following equations for the probability densities. The reaction can begin 

from the state 0, as it has one free site. The product formation can exclusively take place from the 

reaction state 1, due to the availability of one 𝐶𝑆𝑀  conformer (Figure 8.4b). 

𝐹̂0(𝑠) = 𝑎 𝑢𝑀
𝑠2+𝑠(𝑎+𝑢𝑀+𝑤𝑀)+𝑎 𝑢𝑀

                                                                                                            (8.11.a) 

𝐹̂1(𝑠) =  𝑢𝑀(𝑠+𝑎)
𝑠2+𝑠(𝑎+𝑢𝑀+𝑤𝑀)+𝑎 𝑢𝑀

                                                                                                            (8.11.b) 

For the given scheme, Eq. 8.12 shows the mean first passage time.  

〈𝜏〉1 = ⟨𝑇0⟩ = 𝑎+𝑢𝑀+𝑤𝑀
𝑎𝑢𝑀

                                                                                                                                        (8.12) 

Eq. 8.13 represents the second moment for the model shown in Figure 8.4b. 

〈𝜏2〉1 = 2 [(𝑎+𝑢𝑀+𝑤𝑀
𝑎𝑢𝑀

)
2
− 1

𝑎 𝑢𝑀
] = 2(〈𝜏〉1)2 − 2

𝑎 𝑢𝑀
                                                                                             (8.13) 

Similarly, one can analyse the catalytic systems with 𝑁 =  2 and 𝑁 =  3. Eq. 8.14 represents the 

backward CME for the system with two active sites (Figure 8.4c). 

𝜕 𝐹0(𝑡)
𝜕𝑡

= 2𝑎 𝐹1(𝑡) − 2𝑎𝐹0(𝑡)                                                                                                                              (8.14.a) 

 𝜕 𝐹1(𝑡)
𝜕𝑡

=  𝑤𝑀  𝐹0(𝑡) +  𝑢𝑀 𝐹𝑃(𝑡) + 𝑎 𝐹2(𝑡) − ( 𝑤𝑀 +  𝑢𝑀 + 𝑎)𝐹1(𝑡)                                                               (8.14.b) 

𝜕 𝐹2(𝑡)
𝜕𝑡

=  2 𝑤𝑀  𝐹1(𝑡) +  2 𝑢𝑀 𝐹𝑃(𝑡) − 2( 𝑤𝑀 +  𝑢𝑀)𝐹2(𝑡)                                                                               (8.14.c)                                                                                                           

𝜕 𝐹2(𝑡)
𝜕𝑡

=  2 𝑤𝑀  𝐹1(𝑡) +  2 𝑢𝑀 𝐹𝑃(𝑡) − 2( 𝑤𝑀 +  𝑢𝑀)𝐹2(𝑡)                                                                                (8.14.d) 

One can solve Eq. 8.14 using the Laplace transforms, which will give Eq. 8.15. 

𝐹̂0(𝑠) = 2𝑎𝑢𝑀(𝑠+2𝑎+2(𝑢𝑀+𝑤𝑀))
(𝑠+𝑎+𝑢𝑀+𝑤𝑀)((𝑠+2𝑎)(𝑠+2𝑢𝑀)+2𝑠𝑢𝑀)

                                                                                                         (15.a) 

𝐹̂1(𝑠) = (2𝑎+𝑠)𝑢𝑀(𝑠+2𝑎+2(𝑢𝑀+𝑤𝑀))
(𝑠+𝑎+𝑢𝑀+𝑤𝑀)((𝑠+2𝑎)(𝑠+2𝑢𝑀)+2𝑠𝑢𝑀)

                                                                                                         (8.15.b) 
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𝐹̂2(𝑠) = 2(2𝑎+𝑠)𝑢𝑀(𝑎+𝑠+𝑢𝑀)+4(𝑎+𝑠)𝑢𝑀𝑤𝑀
(𝑠+𝑎+𝑢𝑀+𝑤𝑀)((𝑠+2𝑎)(𝑠+2𝑢𝑀)+2𝑠𝑢𝑀)

                                                                                                     (8.15.c) 

The time required to start the reaction from state 0, 1 or 2. 

⟨𝑇0⟩ = −(𝜕𝐹̂0(𝑠)
𝜕𝑠

)
𝑠=0

, ⟨𝑇1⟩ = −(𝜕𝐹̂1(𝑠)
𝜕𝑠

)
𝑠=0

, ⟨𝑇2⟩ = −(𝜕𝐹̂2(𝑠)
𝜕𝑠

)
𝑠=0

                                                                    (8.16) 

For the initiation of the chemical reaction, there must be the availability at least one free site. Analogous to this 

logic, for the occurrence of the product formation event from a particular state, at least one 𝐶𝑆𝑀 conformer must 

be present. Because of these reasons, the reaction can start from the state 0 or 1 and the product formation can 

happen either from the state 1 or 2. Eq. 8.17 represents the average time between the product releases.  

〈𝜏1〉2 = ⟨𝑇0⟩𝑃0
′ + ⟨𝑇1⟩𝑃1

′                                                                                                                                       (8.17) 

𝑃0
′   and 𝑃1

′ are the probabilities for the reaction to start from the state 0 and 1, respectively. One can derive them 

using the stationary state probabilities of respective states. 

𝑃0 = 𝑢𝑀+𝑤𝑀
(𝑎+𝑢𝑀+𝑤𝑀)2

   (8.18.a) 

𝑃1 = 2 𝑎(𝑢𝑀+𝑤𝑀)
(𝑎+𝑢𝑀+𝑤𝑀)2

                                                                                                                                                (8.18.b) 

Substituting these relations, we get 

〈𝜏1〉2 = 𝑎+𝑢𝑀+𝑤𝑀
2𝑎𝑢𝑀

                                                                                                                                                  (8.19) 

As shown for Figure 8.4b, for the system with two sites also, one can derive the second moment.  

〈𝜏2〉2 = 1
4
(〈𝜏2〉1 + 2

(𝑎 𝑢𝑀)2(〈𝜏〉1)2
)                                                                                                                         (8.20) 

Similarly, for the network with three catalytic sites, one can get Eq. 8.21 and 8.22. 

〈𝜏1〉3 = 𝑎+𝑢𝑀+𝑤𝑀
3𝑎𝑢𝑀

                                                                                                                                                 (8.21) 

〈𝜏2〉3 = 1
9
(〈𝜏2〉1 − 4

(𝑎 𝑢𝑀)2(〈𝜏〉1)2
+ 16

2(𝑎 𝑢𝑀)2(〈𝜏〉1)2+𝑎 𝑢𝑀
)                                                                                      (8.22) 

On considering multiple active sites as a single new effective site with the properly rescaled transition rates, then 

one can expect the following scaling relation, (⟨𝜏2⟩𝑁 =
⟨𝜏2⟩1
𝑁2 ). However, Eq. 8.20 and 8.21 clearly show deviations 

from this behavior. Thus, the effect of stochasticity of individual chemical reactions exhibits itself in the second 

and higher moments of reaction times. In addition, the molecular details of these chemical reactions specify the 

degree of deviations from the above-mentioned scaling relation. Figure 8.5 illustrates these observations. 
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Figure 8.5: Mean squared reaction times ⟨𝝉𝟐⟩𝑵 (in s2) for the system with 𝑵 catalytic sites 

as function of the effective rate 𝒂 (in 𝒔−𝟏) for 𝒖𝑴  =  𝟎. 𝟎𝟏 𝒔−𝟏 and 𝒘𝑴  =  𝟎. 𝟎𝟎𝟏 𝒔−𝟏. 

Using the randomness parameter, one can measure the degree of stochastic fluctuations. We explicitly 

evaluate the randomness 𝑅𝑁,𝑀 for the system with 𝑁 active sites and 𝑀 intermediate states. Eq. 8.23 

show the randomness expression for the system with one catalytic site (𝑁 =  1). 

𝑅1,𝑀 = 1 − 2
𝑎 𝑢𝑀(〈𝜏〉1)2                                                                                                                           (8.23) 

For the system with two sites, one will get Eq. 8.24. 

𝑅2,𝑀 = 1 − 2
𝑎 𝑢𝑀(〈𝜏〉1)2 (1 − 1

𝑎 𝑢𝑀(〈𝜏〉1)2)                                                                                               (8.24) 

Eq. 8.25 represents the randomness for the system with three sites. 

𝑅3,𝑀 = 1 − 2
𝑎 𝑢𝑀(〈𝜏〉1)2 (1 + 2

𝑎 𝑢𝑀(〈𝜏〉1)2 − 8
1+2 𝑎 𝑢𝑀(〈𝜏〉1)2)                                                                    (8.25) 

 

 

Figure 8.6: Randomness parameter 𝑹𝑵,𝑴 (a) as a function of the effective rate 𝒂 (in 𝒔−𝟏 ) for a 
system with 𝑵 =  𝟏 (red line), 𝑵 =  𝟐 (green line) and 𝑵 =  𝟑 (blue line) catalytic sites for 
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arbitrary number of intermediate states 𝑴 and (b) as a function of the transition rate 𝒖𝟎 (in 𝒔−𝟏) 
for a system with one and two catalytic sites and having one (𝑴 =  𝟏) and two 
(𝑴 =  𝟐) intermediates. 

Figure 8.6a presents the dependence of the randomness on the effective transition rate 𝑎 for 𝑁 =

 1, 𝑁 =  2 and 𝑁 =  3 for arbitrary number of intermediate states, 𝑀. It shows a non-monotonic 

behavior of the randomness. The largest noise is expected for the intermediate values of 𝑎, while the 

noise is diminished for very small and very large transition rates, 𝑎. For understanding these 

observations, consider the discrete-state scheme described in Figure 8.2. For 𝑎 → 0, the system is 

mainly found in the state, 𝑁 − 1 and there are not much stochastic fluctuations. Similarly, for 𝑎 >> 1, 

the system prefers to be in the state 𝑁, and this again leads to very small stochastic fluctuations. All 

discrete states in the system are fully explored only for intermediate values of 𝑎. One can also analyze 

that a decrease in the degree of stochastic fluctuations with increasing the number of catalytic sites 

(Figure 8.6a). This is in agreement with experimental observations.6 The degree of stochastic noise 

depends also on the complexity of the chemical reactions at each catalytic site. Figure 8.6b describes 

this effect, where the randomness is studied as a function of the transition rate, 𝑢0. One can see that 

increasing the number of intermediate states 𝑀, governs the degree of stochastic noise in the system. 

These observations suggest that the analysis of experimentally obtained randomness parameters can 

assist in determining the molecular details of the chemical reactions at each catalytic site.  

            One can extend the current theoretical framework in several directions to present a more realistic 

description of the complex processes on the nanocatalysts. For example, we can analyze a system with 

two types of catalytic sites as shown in Figure 8.1b. There are 𝑁1 active sites where the chemical 

reactions with transition rates (𝑢𝑗, 𝑤𝑗) and 𝑁2 active sites where the chemical reactions with transition 

rates (𝑝𝑗, 𝑞𝑗), with 𝑁 = 𝑁1 + 𝑁2. Assuming that all reactions have 𝑀 intermediate states, we obtain the 

following expression for the mean reaction time. 

⟨𝜏1⟩𝑁 = ( 1
𝑁1

) (1
𝑎
+ 1

𝑢𝑀
+ 𝑤𝑀

𝑎 𝑢𝑀
) + ( 1

𝑁2
) (1

𝑏
+ 1

𝑝𝑀
+ 𝑞𝑀

𝑏 𝑝𝑀
)                                                                                       (8.26) 
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Here 𝑎 and 𝑏 are the effective transition rates before the product formation steps. This result again 

shows that the stochasticity effects remain hidden when we are simply considering the mean turnover 

times. The molecular details of the underlying reactions will influence the higher moments of PDF. 

8.3 Conclusions: 

In this chapter, we have developed a theoretical method to analyse the dynamics of chemical processes 

of catalytic particles with multiple active sites. Using the discrete-state stochastic description, dynamic 

properties of the chemical reactions on nanocatalysts one can explicitly evaluate the stationary-state and 

first-passage probabilities. Our analysis shows that the mean reaction times in the system are inversely 

proportional to the number of active sites, independently of the details of underlying chemical reactions. 

This result suggests that the stochastic effects remain covered for the mean chemical reaction rates, and 

the nanocatalyst with multiple active sites behaves as one new effective catalyst with a single site. 

Careful consideration of higher moments of reaction times leads to a different conclusion. For this 

situation, the stochastic effects are important. In addition, the details of the chemical reactions at each 

active site affects the higher moments of the PDF. The proposed theoretical method provides platforms 

for uncovering the quantitative features of the complex processes on nanocatalysts. It will be critically 

important to test our theoretical predictions in experimental studies as well as in the more advanced 

computational methods. 
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contribution on transition time 
distributions: theory and simulations 
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9.1 Introduction: 

In the previous thesis chapters, we have applied different analytical frameworks to model the stochastic 

kinetics and dynamics of catalytic systems at the SM level.  We took into consideration different 

enzymatic networks comprising single/multiple substrate types, reaction models equivalent to 

intracellular compartment reactions with substrate number fluctuations, mechanisms covering dynamic 

cooperative and allosteric effects of an enzyme. We also applied our theoretical formalisms to study 

heterogeneous metal NP catalysis for theoretically understanding size dependent catalytic activity and 

exploring mechanistic details of chemical reactions occurring on multiple active surface sites of a 

nanocatalyst. For solving these problems, we constructed the PDF corresponding to discrete stochastic 

events and determined temporal quantities of interest from the statistical moments. The obtained 

distribution of time relates to the probability of occurrence of an event from a particular state for the 

first time, beginning from an initial state, after traversing through a certain number of intermediate 

states. Similarly, one can derive the waiting time distribution for the catalytic turnover event from a 

productive substrate-bound state, which gives the corresponding rate of change in the probability 

density of the product formation state. The PDF takes into account the change in the number of different 

species participating in each step with certain a priori conditions. The fundamental basis of these 

theoretical methods lies in the implementation of probabilistic approach for discrete single or multi 

directional reversible transitions among different interconverting conformers. In other words, the 

random variables exclusively take discrete values.  

                  Apart from discrete approaches applied on stochastic systems, one can also obtain the same 

PDF of interest, by implementing considering theoretical methods, which employ continuous random 

variables. The overall PDF obtained from discrete methods, constitutes of the PDFs describing changes 

in species involved in each sequential step, which ultimately leads to the main event under examination 

(say, the monitored transition). However, in the continuous state model, the PDF represents the overall 

change in the dynamics of the system in terms of a variable (say the reaction co-ordinate of a system 

representing its progression with time), rather than examining discrete sequential changes. Analogous 

to discrete models, here also one determines the probability of finding the system at some advance time 

i.e. predicting the position of the reaction coordinate, pertaining to certain initial conditions. In general, 
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to model such systems in one dimension using a continuous formalism, one can begin with the Langevin 

equation (LE) and formulate the corresponding Fokker-Planck equation (FPE). This equation represents 

the rate of change in the probability density of the state, which marks the event accomplishment. The 

solution of the FPE gives the PDF (the first passage-time distribution) of interest associated with the 

continuous random variable. The later sections of this chapter include descriptive explanations of the 

theoretical method used with a specific example.  

            Bio-molecular transitions like protein folding and conformation rearrangements involve a one-

dimensional diffusion in a free energy landscape with two minima separated by a high-energy barrier.1-

6 Owing to the stochastic nature of biophysical events and probable reversions happening while crossing 

the potential barrier, both the successful as well as the failed events contribute to the PDF (the first-

passage time distribution). However, in the case of steep barriers, the reversion probability becomes 

significantly smaller and the corresponding PDF exclusively incorporates only the successful transitions 

initiated from the point of origin to the final co-ordinate, which marks the completion of an event. The 

distribution corresponding to such processes are defined as the transit time distribution (TTD), which 

represent the time a single particle spends while crossing the energy barrier, beginning from an initial 

co-ordinate to another defined co-ordinate. Recent single-molecule measurements have now achieved 

sufficient time resolution to observe such individual transition paths.7-11 In the context of nucleic acid 

and protein folding,9,12 zipping/unzipping transition of a DNA hairpin,13 experimentally one can 

measure the time biomolecules spend while crossing such free energy barriers known as the transition 

path times. The time duration of such a transition path is much shorter than the mean reaction time and 

only a small fraction of the stochastic trajectories contribute to the transition paths. Such experimental 

studies have motivated many theoretical and computational studies where one can determine the full 

probability distribution function of transition path times.12,14-17 

These theoretical studies at the earlier stage mostly employed memoryless Markovian 

dynamics.18-20 Nevertheless, as pointed out in protein folding experiments and in theoretical studies, the 

dynamics of such macromolecular systems is anomalous/sub-diffusive in nature and one needs to 

include memory effects to model the dynamics along a reaction coordinate.21,22 One can account for 

such sub-diffusive behavior by implementing models that are based on fractional Fokker Planck 
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equation, fractional Brownian motion and so on.23 Makarov and coworkers have looked at the effect of 

memory on the time duration of transition paths using a simple model defining the particle dynamics 

using a generalized Langevin equation with an exponential memory kernel.22,24,25 Later, Carlon and 

coworkers extended this to a power-law-type memory kernel.26 Obtaining closed form analytical 

expressions for the transit path times are difficult but under certain approximations, analytical results 

are derivable. To model such systems, one can implement the high friction (overdamped) limit. 

However, as pointed out by Orland and coworkers, for such short duration of transition paths, it is 

interesting to consider inertial effects and they have calculated the full transition-path time distribution 

along with the average transition-path time.27 However, the calculations for the Markovian limit 

employed an ordinary Langevin equation with the Gaussian white noise. Since memory effects are 

important in molecular folding, it would be interesting to consider them along with the inertial 

contribution. In this chapter, we present theoretical calculations of the transition time distribution and 

the mean transition time using a model based on the generalized Langevin equation with the fractional 

Gaussian noise for a parabolic barrier. We show the calculation details of the transit time distribution 

(TTD) and deduce the analytical expressions of the distributions in the short and the long-time regimes. 

We also show a comparison between the analytical results and numerical simulations performed using 

the absorbing boundary conditions.  

9.2 Model and Analyses: 

 

Figure 9.1: (a) Motion of a trajectory represented by the change in the position of the reaction co-
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ordinate 𝒙, in a double well potential. 𝒙𝒂and 𝒙𝒃 represent the equilibrium positions for the two 
protein conformations, which are involved in the transition.  The part of the trajectory lying 
between the co-ordinates −𝒙𝟎 and 𝒙𝟎 corresponds to the transition path in the defined inverted 
parabolic potential (dashed brown lines). (b) Time taken by the trajectory to reach 𝒙𝟎 beginning 
from −𝒙𝟎 without any reversion, gives the transit path time. The red circles clearly mark the 
transit path and the x-axis signifies the corresponding transition time. 

A generalized Langevin equation (GLE)28,29 well describes the stochastic dynamics of a particle in an 

inverted parabolic potential barrier 𝑉(𝑥) = − 𝑘 𝑥2

2
. 

𝑚𝑣̇(𝑡) = −𝑉′(𝑥) − 𝛾 ∫ 𝑑𝑡′ 𝐾(𝑡 − 𝑡′)𝑣(𝑡′) + 𝜃(𝑡)𝑡
0                                                                        (9.1)  

where 𝑚 is the mass of the particle, 𝛾 is the friction coefficient and 𝐾(𝑡 − 𝑡′) is the power law memory 

kernel having the form 

 𝐾(𝑡 − 𝑡′) = 2𝐻(2𝐻 − 1)|𝑡 − 𝑡′|2𝐻−2 = (2 − 𝛼)(1 − 𝛼)|𝑡 − 𝑡′|
−𝛼

 

where 𝛼 = 2 − 2𝐻  and 0 ≤ 𝛼 ≤ 1.                                                                                                       (9.2) 

The third term on the RHS of the GLE, 𝜃(𝑡) represents the colored noise of the system with the 

following characteristics. 

〈𝜃(𝑡)〉 = 0 and                                                                                            

〈𝜃(𝑡)𝜃(𝑡′)〉 =  𝛾 𝑘𝐵 𝑇 𝐾(𝑡 − 𝑡′).                                                                                                     (9.3) 

Following Figure 9.1 (a), which represents the propagation of a trajectory in a double well potential, 

marked by the equilibrium positions 𝑥𝐴 and 𝑥𝐵 , we exclusively consider the transition part falling in 

the inverted parabolic barrier region. This is a symmetric barrier peaked at 𝑥 = 0 with initial and final 

points at – 𝑥0  and 𝑥0 , respectively. The trajectories that sample the transit time enter the transition 

region at – 𝑥0  and exit into 𝑥0  without ever going back to – 𝑥0 . Thus the calculation of TPT 

distributions requires absorbing boundary conditions at – 𝑥0 and 𝑥0 . Equivalent to this GLE, one can 

obtain the propagator 𝑃(𝑥, 𝑣, 𝑡|−𝑥0, 𝑣0, 0)  that gives the probability of finding the system at a position 

𝑥 and velocity 𝑣 at time 𝑡 with initial position and velocity as −𝑥0 and 𝑣0. In the non-Markovian limit 



148 
 

the Fokker Planck equation (FPE) can be written as 

𝜕𝑃
𝜕𝑡

= −𝑣 𝜕𝑃
𝜕𝑥

+ 𝛯(𝑡) 𝜕 (𝑣𝑃)
𝜕𝑣

− 𝑊2𝑥 𝜕𝑃
𝜕𝑣

+ (𝑊2(𝑡) − 𝑤𝑏
2) 𝑘𝐵 𝑇 

𝑘
𝜕2𝑃

𝜕𝑣 𝜕𝑥
+ 𝛯 𝑘𝐵 𝑇 

𝑚
𝜕2𝑃
𝜕𝑣2 

.                                (9.4)                                                                                                                                            

where 𝑃(𝑥, 𝑣, 𝑡|−𝑥0, 𝑣0, 0) ≅ 𝑃 

𝛯(𝑡) = 𝜒(𝑡)𝜒⃛(𝑡)−𝜒̇(𝑡)𝜒̈(𝑡)
𝜒̇(𝑡)2−𝜒(𝑡)𝜒̈(𝑡)

                                                                                                                         (9.5)                                                                                                       

𝑊2(𝑡) = 𝜒̇(𝑡)𝜒⃛(𝑡)−𝜒̈(𝑡)2

𝜒̇(𝑡)2−𝜒(𝑡)𝜒̈(𝑡)
                                                                                                                            (9.6)                                                                                                     

𝜒(𝑡) is the inverse Laplace transform of 𝜒̂(𝑠). 

𝜒̂(𝑠) =
𝑠+(𝛾 𝐾̂(𝑠)

𝑚 )

𝑠2+𝑠(𝛾 𝐾̂(𝑠)
𝑚 )−𝑤𝑏2

                                                                                                                           (9.7)                                                                                                     

No exact solution of Eq. 9.4 satisfies the absorbing boundary conditions. Eq. 9.8 represents the general 

solution of Eq. 9.4. 

𝑃(𝑥, 𝑣, 𝑡) =
√𝑐
2𝜋

 𝑒𝑥𝑝 [−
1
2 {𝐷11(𝑥 − 𝑥̅(𝑡))2 + 2𝐷12(𝑥 − 𝑥̅(𝑡))(𝑣 − 𝑣̅(𝑡))

+ 𝐷22(𝑣 − 𝑣̅(𝑡))2}]                                                                            

                                                                                                                                                            (9.8)                                                                                                                           

where 𝐶 is the determinant of a matrix 𝐷 with general elements 𝐷𝑖𝑗                                                         

𝐷 = [ 𝐶 𝜎𝑣
2(𝑡) −𝐶 𝜎𝑥𝑣(𝑡)

−𝐶 𝜎𝑥𝑣(𝑡) 𝐶 𝜎𝑥
2(𝑡)

]                                                                                                               (9.9) 

𝑥̅(𝑡) = 𝑥0𝜒(𝑡) + 𝑣0 𝜒̇(𝑡)
𝑤𝑏2                              (9.10a) 

𝑣̅(𝑡) = 𝑥0𝜒̇(𝑡) + 𝑣0 𝜒̈(𝑡)
𝑤𝑏2                                                                   (9.10b) 

𝜎𝑥
2(𝑡) = − 𝑘𝐵 𝑇 

𝑚
(𝜒̇(𝑡)2

𝑤𝑏4 − (𝜒2(𝑡)−1)
𝑤𝑏2 )                                                                            (9.10c) 
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𝜎𝑣
2(𝑡) = 𝑘𝐵 𝑇 

𝑚
(1 + 𝜒̇(𝑡)2

𝑤𝑏2 − 𝜒̈(𝑡)2

𝑤𝑏4 )                                                      (9.10d) 

𝜎𝑥𝑣(𝑡) = 𝑘𝐵 𝑇 
𝑚

(𝜒(𝑡)𝜒̇(𝑡)
𝑤𝑏2 − 𝜒̇(𝑡)𝜒̈(𝑡)

𝑤𝑏4 )                                                                                                    (9.10e) 

This solution is with the free boundary conditions since no exact solution exists with the absorbing 

boundaries. In order to calculate the transit time distribution we introduce a function 𝑄𝐴(𝑡), which 

counts all the trajectories crossing 𝑥0 starting from −𝑥0 at a particular time 𝑡 such that 

𝑄𝐴(𝑡) = ∫ 𝑃(𝑥, 𝑡|−𝑥0, 0) 𝑑𝑥 ∞

𝑥0
                                                                                                           (9.11)                                                                                       

where 𝑃(𝑥, 𝑡|−𝑥0, 0) is the probability of finding the particle at position 𝑥 at a time 𝑡. Using the rate of 

change in the absorption function at two consecutive time instants with an interval of Δ𝑡, one can obtain 

the transit time distribution.27 As shown in the Ref. 27, the TPT distribution can be approximated as 

𝑓(𝑡) ≈ 𝐶 (𝑑𝑄𝐴(𝑡)
𝑑𝑡

).                                             (9.12) 

On integrating the velocity component 𝑣 in the obtained solution of the FPE (Eq. 9.8), we get  

𝑃(𝑥, 𝑡|−𝑥0, 𝑣0, 0) = ∫ 𝑑𝑣 𝑃(𝑥, 𝑣, 𝑡|−𝑥0, 𝑣0, 0)∞

−∞
= 1

√2𝜋𝜎𝑥
2(𝑡)

 𝑒
−(𝑥−𝑥̅(𝑡))2

2𝜎𝑥2(𝑡)                                           (9.13)                                                                   

Further integration of Eq. 9.13 over 𝑣0 by incorporating the equilibrium distribution of initial velocities, 

we get 𝑃(𝑥, 𝑡|−𝑥0, 0) 

𝑃(𝑥, 𝑡|−𝑥0, 0) = ∫ 𝑑𝑣0 𝜌𝑒𝑞(𝑣0)𝑃(𝑥, 𝑡|−𝑥0, 𝑣0, 0) = 1
√2𝜋𝜎2(𝑡)

 𝑒−(𝑥−𝑋0(𝑡))2

2𝜎2(𝑡)∞

−∞
                                  (9.14)                                               

where 𝜌𝑒𝑞(𝑣0) = √
𝑚

2𝜋𝑘𝐵 𝑇
𝑒− 𝑚𝑣0

2

2𝑘𝐵 𝑇, 𝜎2(𝑡) = 𝑘𝐵 𝑇 
𝑘

(𝜒2(𝑡) − 1) and 𝑋0(𝑡) = −𝑥0𝜒(𝑡). 

Substituting Eq. 9.14 in Eq. 9.11 gives Eq. 9.15.  

𝑄𝐴(𝑡) = 1
2
(1 − 𝐸𝑟𝑓(𝐺(𝑡)))                                                                                                            (9.15) 



150 
 

where 𝐺(𝑡) = √𝛽𝐸 √𝜒(𝑡)+1
𝜒(𝑡)−1

                                                                                                             (9.16)      

𝛽 = 1
𝑘𝐵 𝑇 

 and 𝐸 = 𝑘 𝑥0
2

2
.  

The transit time distribution is  

𝑓𝑇𝑇𝐷(𝑡) = 1
𝑄𝐴(∞) (

𝑑𝑄𝐴(𝑡)
𝑑𝑡

).                                                                                                                (9.17) 

𝑄𝐴(∞) = 1
2
(1 − 𝐸𝑟𝑓(√𝛽𝐸))                                                                                                         (9.18)       

Using the above equations, we get Eq. 9.19. 

𝑓𝑇𝑇𝐷(𝑡) = − 2
√𝜋

𝐺′(𝑡)𝑒−𝐺2(𝑡)

(1−𝐸𝑟𝑓(√𝛽𝐸))
                                                                                                           (9.19)       

This expression is approximate, as we have used the free boundary conditions instead of imposing the 

appropriate absorbing boundary conditions. We exclude trajectories that correspond to multiple 

unsuccessful attempts, and may fail to accomplish the transition. We are not counting trajectories with 

multiple crossings at – 𝑥0 and 𝑥0, as it will not be the transition path. However, it had has been shown 

earlier that assuming a barrier that is much higher than the thermal energy, such re-crossing events 

become rare and the solution with free boundary conditions can be well approximated to that in the case 

of an absorbing boundary. 19,23 

Using Eq.9.19 one can calculate the mean transit time defined as 

〈𝑡〉 = ∫ 𝑡 𝑓𝑇𝑇𝐷(𝑡)𝑑𝑡∞

0 = ∫ 𝑡 (− 2
√𝜋

𝐺′(𝑡)𝑒−𝐺2(𝑡)

(1−𝐸𝑟𝑓(√𝛽𝐸))
)𝑑𝑡.∞

0                                                    (9.20)                                  

For the non-Markovian system with the inertial contribution, the functional form of 𝜒(𝑡) can be found 

to be 

𝜒(𝑡) = ∑ (𝑤𝑏 𝑡)2𝑛

𝑛!
∞
𝑛=0 [𝐸2−𝛼,1+𝛼𝑛

(𝑛) (−𝛾𝛤[3−𝛼]𝑡2−𝛼

𝑚
) + 𝛾𝛤[3−𝛼]𝑡2−𝛼

𝑚
𝐸2−𝛼,3+𝛼(𝑛−1)

(𝑛) (−𝛾𝛤[3−𝛼]𝑡2−𝛼

𝑚
)].   (9.21)                                                                                                                                       

where  𝐸𝛼,𝛽(𝑧) is the Mittag-Leffler function defined as 𝐸𝛼,𝛽(𝑧) = ∑ 𝑧𝑚

𝛤[𝛼𝑚+𝛽]
∞
𝑚=0 . The nth order 

derivative of the same can be represented as 𝐸𝛼,𝛽
(𝑛)(𝑧) = ∑ (𝑚+𝑛)! 𝑧𝑚

𝑚! 𝛤[𝛼(𝑚+𝑛)+𝛽]
∞
𝑚=0  . 
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In the overdamped limit(𝛾 →  ∞), 𝐸𝛼,𝛽(−𝑧)~ 1
(𝑧)𝛤[𝛽−𝛼]. In this case, Eq. 9.21 attains the same form as 

reported in the study by Orland and co-workers specific for the non-Markovian system without the 

inertial contributions. 

As we cannot obtain a closed form of expression for 𝜒(𝑡), we numerically truncate the series 

of 𝜒(𝑡) in order to obtain an expression of the full transit-time distribution function. In order to do so, 

we write the expression of 𝜒(𝑡) as 

𝜒(𝑡) = ∑ ∑ ( (𝑗+𝑘)!(−𝑧)𝑗(𝑤𝑏 𝑡)2𝑘

𝑗! 𝑘!𝛤[(2−𝛼)(𝑗+𝑘)+1+𝛼𝑘] +
(𝑗+𝑘)!𝑧(−𝑧)𝑗(𝑤𝑏 𝑡)2𝑘

𝑗! 𝑘!𝛤[(2−𝛼)(𝑗+𝑘)+3+𝛼(𝑘−1)])
∞
𝑘=0

∞
𝑗=0                                          (9.22) 

where 𝑧 = 𝛾𝛤[3−𝛼]𝑡2−𝛼

𝑚
 

This is an infinite series in two indices 𝑗 and 𝑘 starting from zero. To evaluate this series, the inner sum 

over 𝑘 at each 𝑗 is evaluated by truncating the summation when the increment of the summation made 

by adding one more term is less than a very small number (here we take 10−8). Then we sum over 𝑗 

and again truncate the series when the change in the successive terms is again less than a very small 

number (again we take it to be 10−8). In this way, we evaluate 𝜒(𝑡) at each 𝑡 starting from an initial 

time 𝑡 = 0.01 and at small time intervals of ℎ =  0.01. Next, we calculate 𝐺(𝑡) and 𝐺′(𝑡) at each time 

step using the relation 𝐺′(𝑡) = 𝐺(𝑡+ℎ)−𝐺(𝑡)
ℎ

 and using these expressions we calculate the 𝑓𝑇𝑇𝐷(𝑡) from 

Eq. 9.19. 

Figure 9.2 shows the transition path distribution 𝑓𝑇𝑇𝐷(𝑡) for two different values of α. The 

transition path time decreases with decreasing α. At low values of α, memory effects are dominant and 

that will enhance the dynamics. For a given value of the friction coefficient, the integral 

∫ 𝑑𝑡′ 𝐾(𝑡 − 𝑡′)𝑣(𝑡′) = ∫ 𝑑𝑡′ (2 − 𝛼)(1 − 𝛼)|𝑡 − 𝑡′|
−𝛼

𝑣(𝑡′)𝑡
0

𝑡
0 ≡ 𝐼(𝑡) increases with an 

increase in 𝛼, but in the inertial limit (low 𝛾 values), the difference between I(t) for different 𝛼 s’ is very 

less. Thus, the contribution from this term is negligible. At the same time because of the fact that the 

particle cannot go backward, the initial random force is positive (particle will only move forward) and 

the random forces at the subsequent times must be positive. At low values of 𝛼 the random forces are 
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strongly-positively-correlated and this helps the particle to likely complete its trajectory faster. So these 

two effects compete with each other and as we have described that at low 𝛾 the difference in the 

frictional force at different 𝛼 values is very less, the random force term dominates and hence the particle 

completes its trajectory faster at low 𝛼 values. Also as shown in Figure 9.2, the transition path time 

decreases with decrease in  𝛼 in the inertial regime, though the difference is very less as in general the 

effect of the random forces on the particle dynamics is weaker than the effect of the frictional force. 

Also the plot at 𝛼=1 agrees with Eq. 9.19 in Ref. 27 which gives an expression for the transition path 

distribution in the Markovian limit in the presence of inertia. However at higher friction values (i.e. in 

the overdamped limit), the frictional force dominates over the random force term and the transition path 

time then increases quite significantly with decreasing α. 

 

Figure 9.2: The transit time distributions obtained from Eq. 9.19 and 9.22 for various values of  
𝜶. The solid red line represents the data sets obtained using Eq. 9.22 (theoretical prediction by 
implementing the free-boundary condition) and the filled red circles correspond to the data 
generated numerically using absorbing boundary conditions for the non-Markovian system, 𝜶 =
𝟎. 𝟕𝟓. Similarly for 𝜶 = 𝟏 there are data sets generated using Eq. 9.22 and from simulations, 
respectively represented by the blue dashed line and filled blue circles. The solid blue line 
corresponds to the TTD for the Markovian system described in Ref. 27. The other parameters 
are 𝒌 = 𝟏𝟎 ,𝒎 = 𝟏 , 𝜸 = 𝟓, 𝒙𝟎  =  𝟏 and 𝒌𝑩𝑻 =  𝟏 such that  𝜷𝑬 = 𝟓.  
 

It is difficult to obtain the closed-form analytical expression for the transit time distribution for the non-

Markovian system as it involves an infinite series associated with the nth order derivative of the Mittag-

Leffler function. However, we can obtain the exact asymptotic forms of quantities like 𝑄𝐴(𝑡) and 𝐺(𝑡) 

and obtain the behavior of 𝑓𝑇𝑇𝐷(𝑡) at short and long times by using the properties of the Mittag-Leffler 

function.30 

javascript:popRef('d19')
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In the short time limit we approximate the Mittag-Leffler function as 𝐸𝛼,𝛽(−𝑓)~∑ (−𝑓)𝑘

𝛤[𝛼𝑘+𝛽]
3
𝑘=0 . Using 

this, Eq. 9.21 reduces to 

𝜒(𝑡)~1 + 𝑡2𝑤𝑏
2 (1

2
) + 1

24
𝑡4𝑤𝑏

4 − 𝑡2𝑤𝑏
2𝑧

 𝛤[3−𝛼](𝛼2−7𝛼+12)                                                                         (9.23) 

The above equation does not consider higher order terms of time because of their insignificant 

contributions in the short time limit. This agrees with the short time approximation of 𝜒(𝑡) given in 

Ref. 27 in the Markovian limit, by considering  α = 1 in Eq. 9.23. 

Substituting Eq. 9.23 in Eq. 9.16, we get 

𝐺(𝑡)~√𝛽𝐸√
2

𝑡2𝑤𝑏2(1
2)+

1
24𝑡

4𝑤𝑏4− 𝑡2𝑤𝑏2𝑧
 𝛤[3−𝛼](𝛼2−7𝛼+12)

.                                                                                    (9.24)                                                 

Eq. 9.24 shows that in this limit 𝑡 → 0, 𝐺(𝑡) diverges. 

This expression for 𝐺(𝑡) and its derivative is used to derive transit time distribution for early times. 

Figure 9.3a shows that 𝜒(𝑡) agrees with the short time approximation of 𝜒(𝑡) given in Ref 27 in the 

Markovian limit (𝛼 =  1). In Figure 9.3b, we have compared TTD expressions at short times for 𝛼 =

 0.75. 

 

Figure 9.3: (a) Comparison between the exact expression of 𝝌(𝒕) (Eq. 9.21) at shorter times for 
𝜶 =  𝟏, the early time approximation of 𝝌(𝒕) expressed in Eq. 9.23 and the 𝝌(𝒕)  for Markovian 
systems at short time as described in Ref. 27. These data sets are respectively, represented by the 
filled red circles, the green solid line and the filled blue circles using the following set of parameter 
values:  𝒌 =  𝟎. 𝟏,𝒎 = 𝟏, 𝜸 = 𝟏  (b) Comparison between the expression of TTD in Eq. 9.19 using 
the 𝝌(𝒕) defined in Eq. 9.21 at shorter times for α = 0.75 (non-Markovian system) and the TTD 

https://pubs.acs.org/doi/full/10.1021/acs.jpcb.8b06379#fig3
https://pubs.acs.org/doi/full/10.1021/acs.jpcb.8b06379#fig3
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using the early time approximation of 𝝌(𝒕) in Eq. 9.23. These are respectively, represented by the 
red solid line and the dashed blue line, using the mentioned parameter set: 𝒌 =  𝟎. 𝟏,𝒎 = 𝟏, 𝜸 =
𝟏 and 𝒙𝟎 = 𝟏. 

In the long time, 𝐸𝛼,𝛽(−𝑓) = −∑ 1
(−𝑓)𝑟𝛤[𝛽−𝛼𝑘]

𝑁
𝑟=1 . Here, 𝑁 can be any natural number greater than 

unity. Applying this formula in Eq. 21 will give  

𝜒(𝑡) = ∑ −𝑧−𝑟𝑁
𝑟=1 [𝐸𝛼,1−(2−𝛼)𝑟

𝑟 ((Ω𝑡)𝛼) + 𝑧𝐸𝛼,(3−𝛼)−(2−𝛼)𝑟
𝑟 ((Ω𝑡)𝛼)]                                              (9.25) 

where Ω = ( 𝑚𝑤𝑏
2

𝛾𝛤[3−𝛼])
1
𝛼.  

Here,  𝐸𝛼,𝛽
𝑟 (𝑓) = ∑ 𝑟(𝑘)𝑓𝑘

𝑘!𝛤[𝛼𝑘+𝛽]
∞
𝑘=0 . It represents the functional form of a three parameter Mittag-Leffler 

function and 𝑟(𝑘) holds the relationship mentioned below.31 

𝑟(𝑘) = { 1;  𝑘 = 0
𝑟(𝑟 + 1)(𝑟 + 2)… (𝑟 + 𝑘 − 1); 𝑘 > 0}  

 

Figure 9.4: Comparison between the exact expression of 𝝌(𝒕) (Eq. 9.21) at long times for α = 1, 
the long-time approximation of 𝝌(𝒕) expressed shown in Eq. 9.25, and the 𝝌(𝒕)  for Markovian 
systems at short time as discussed in Ref. 27, respectively represented by the filled red circles, the 
green solid line and the dashed blue line. The parameter values used are 𝒌 = 𝟎. 𝟏,𝒎 = 𝟏  and 𝜸 =
𝟏.  (b) Comparison between the expression of TTD in Eq. 9.19 using the 𝝌(𝒕) in Eq. 9.21 at long 
times for α = 0.75 (non-Markovian system) and the TTD using the long-time approximation of 
𝝌(𝒕) as shown in Eq. 25, respectively represented by the red solid line and the dashed blue line. 
The parameter values used are∶  𝒌 =  𝟎. 𝟏,𝒎 = 𝟏, 𝜸 = 𝟏 and 𝒙𝟎 = 𝟏. 
 
In order to test our theoretical results we performed simulations by numerically integrating the full GLE 

given in Eq. 9.1. We compute the TPT distribution from the simulations by imposing absorbing 

boundary conditions in 𝑥0. The initial position of the particle is at - 𝑥0 and the velocity is initialized 

from the equilibrium distribution of velocities. Then the particle evolves in time until it reaches 𝑥0. If 

the particle enters the region 𝑥 ≤ −𝑥0, we discard and restart the simulation of that particle. We repeat 
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this process until we evolve the particle to the region 𝑥 ≥ 𝑥0 without entering into the region 𝑥 ≤ −𝑥0 

and we record the time required for that particle. This will give us one transit path time. We repeat this 

process for 105 times to get 105 transit path times. This will give us our entire transit path time 

distribution. 

As described in the former sections of the chapter, for obtaining an analytical expression for 

the transit time distribution associated with the barrier-crossing event one needs to apply the high barrier 

approximation using the free-boundary conditions. The exact solution corresponding to the absorbing 

boundary conditions is unobtainable. As shown in Figure 9.4a, the numerical simulations (using the 

absorbing boundary conditions) performed for validating our theory (based on the free boundary 

conditions), show excellent agreement in the high barrier limit. So, in general, the statistics obtained by 

implementing the free and absorbing boundary conditions using theory and simulations respectively 

agree well with each other for the steep barriers as under these situations, the probability of re-crossing 

reduces significantly. This was also observed in previous studies on the transit time distributions both 

in the overdamped as well as inertial limit.18,26,27 For smaller barriers, the agreement is good at lower 

friction values and disagrees in the higher friction limit (Figure 9.5b).  When the friction is low, the 

inertial contributions saturate to a fixed value (represented by the first term of Eq. 10c) and fluctuations 

in the reaction coordinate are negligible (represented by the second term of Eq. 10c). On the other hand, 

at higher friction coefficient values, fluctuations have contributions both from the inertial term as well 

as from the variance of the reaction coordinate, 𝑥. Thus, in this case, there is a disagreement between 

the theoretical and simulation data points.  

 

Figure 9.5: Transit time distributions obtained from Eq. 9.21 and 9.22 for various values of 𝜸 at 
𝒌 =  𝟏𝟎 and (b) 𝒌 = 𝟐. The red, green and blue solid lines respectively represent the distribution 

javascript:popRef('d19')
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profiles obtained using Eq. 9.22 for the different values of 𝜸: 𝟎. 𝟓, 𝟏 and 𝟓.  The corresponding 
colored symbols represents the TTDs from simulations, employing the following parameter set: 
𝜶 = 𝟎. 𝟕𝟓,𝒎 = 𝟏, 𝒙𝟎  =  𝟏 and 𝒌𝑩𝑻 =  𝟏. We observe significant deviations between theory and 
simulations for the case when  𝒌 =  𝟐 (low barrier) at higher values of the friction coefficient 𝜸. 

9.3 Conclusions: 

Transition path times takes into account the actual duration of transition between two different 

conformational states in the context of proteins folding, polymer translocation experiments. In this 

chapter, we used a simple toy model of a generalized Langevin equation with a power-law memory 

kernel to model the dynamics of a one-dimensional stochastic particle crossing a parabolic barrier. 

Previous dynamical analyses employed the overdamped limit for a non-Markovian process and later 

the inertial effects were included. However, the studies with inertial contributions were limited to 

Markovian process. As anomalous dynamics is present in macromolecular systems and recent studies 

have examined the effect of memory on transition path times, in this chapter we include inertial effects 

in the presence of memory.  

The analytical approach followed for deducing the transit time distribution involves the usage 

of the free boundary conditions by incorporating the high barrier approximation. Inclusion of inertia 

and memory effects make the calculations complex and a closed form analytical form of the TPT 

distribution cannot be obtained. Also this solution is not exact as we do not use the absorbing boundary 

conditions. We have also developed a numerical algorithm to calculate the transit time distribution for 

non-Markovian processes with power-law memory and extended it to study systems with inertia. Our 

analytical results with free boundary conditions agree very well the numerical simulations for steep 

barriers. Such studies associated with modeling non-Markovian systems including inertial effects 

enhance the physical understanding of the dynamics of molecular systems that relate to realistic 

biochemical processes. 
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10.1 An Overall Outlook: 

Understanding the stochastic physics associated with biomolecules like protein, DNA, RNA 

and polypeptides can unravel the mechanistic details of the concerned biological process. The 

molecular aspect of a biochemical network regulates the method of analysis, which would 

determine the time-dependent signatures of the system under investigation.1,2 Exploration of 

several SM experimental techniques, well comprehended with different analytical frameworks, 

provided tools for examining dynamic properties of biophysical/biochemical networks.3,4 

Many studies have confirmed the existence of temporal fluctuations in the catalytic rates 

attributed to the slow conformational interconversions between different states.5,6  One cannot 

extract such dynamic information by simply applying the ensemble average measurements. 

          In this thesis, we have implemented different theoretical methods (the first-passage time 

distribution formalism, the waiting-time distribution formalism) for modelling the dynamics of 

a system with discrete conformational states. We have also applied a continuous modelling 

method, using the generalized Langevin equation (GLE) for deducing the distribution of time 

taken by a molecule in crossing a double-well potential, pertaining to frictional and random 

forces with the inertial and memory effects (the transit time distribution). The PDF 

corresponding to a certain event contains the stochastic signatures of that particular system. 

From the first moment of the PDF, one can deduce the exact analytical expression for the mean 

reaction time. However, using the mean analysis one cannot capture any fluctuation 

characteristics. Additionally, two different systems can show similar mean behaviour. In order 

to quantify the temporal fluctuations in the catalytic rates, we deduce higher moments of the 

PDF and calculate the randomness parameter.7 We have analysed different reaction models 

related to enzyme and NP catalyses at the SM level, where different states are mutually 

interconverting into each other. We have found that the statistical quantities reflect the 

stochasticity of systems and predict the mechanistic details of the ongoing chemical reactions. 
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As observed experimentally, from these mechanistic minimal models, one can successfully 

measure different temporal effects like the dynamic cooperativity, the allosteric effect, 

determination of the rate-determining step in a complicated network and the characteristic 

phenomenon of distribution of rates. We have also validated our theoretical predictions by 

employing numerical algorithms for a system with many stochastic processes. Such extended 

applications provide platforms for dynamic investigations of intracellular networks, multi-step 

catalysis, understanding the transport mechanism of chemical substances across membranes, 

dependence of the substrate processing rate on different physical-chemical factors and 

associated stochastic kinetics of biopolymers.     

      Factually, any slight change in the reaction environmental conditions can introduce 

conformational (structural) modifications in the native state of a protein. This protein structure-

function dependence and its corresponding consequences in a complex biological framework 

is a wholesome challenging research problem in itself.8 Beginning from the protein activation 

to the required activity, there can be many intermediate steps. Identifying a particular state in 

a multistep reaction will depend on its lifetime and the resolution of the spectroscopic technique 

adopted for the characterization. However, in the course of a reaction, denaturation of the active 

protein can also happen, leading to the malfunctioning in a given biological process and rare 

deadly diseases.9,10 Based on the mechanistic insights, suggesting alternative pathways to 

inhibit the unfolding process, developing models to understand the dynamics of a certain class 

of proteins and investigating the rare event statistics, could be some of the engaging problems. 

In future, we would like to develop similar theoretical formalisms and extend their applicability 

to many more cellular reactions and catalytic networks in a general way.                  

               Similar to biomolecules, materials also exhibit phenomena of change in their 

magnetic properties, realignment of its composite atoms, reordering and restructuring, driven 

by thermodynamic and kinetic principles.11-13 We wish to extend and modify the existing 
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analytical formalisms for probing the stochastic behaviour. By applying the concepts of 

statistical mechanics, one can compute the thermodynamic and kinetic parameters of interest. 

Developing model mechanisms and computing theoretical analogues of some experimental 

quantities could help in establishing a link between the observed data and the developed 

theoretical method. Active coherence between experiments and theory would open new vistas 

for better understanding and future developments in a definite domain of research.   
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