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Abstract

In this thesis, we study the image of the power map on finite reductive groups.
Let G be a connected reductive algebraic group over an algebraically closed field
k, of characteristic p. Let G be defined over Fq, where q is a power of p and
F be a Steinberg endomorphism of G. Let M ≥ 2 be an integer. The power
map ωM : G(Fq) → G(Fq) is defined by g 7→ gM , where G(Fq) = GF is the
corresponding finite group of Lie type. Denote the image of this map by G(Fq)M ,
which is the set of all M th powers in G(Fq). We study the asymptotic (q →∞) of
the probability that a randomly chosen element of G(Fq) is an M th power; that is,
we find lim

q→∞
|G(Fq)M |
|G(Fq)| . Along the way we consider the related probabilities, |G(Fq)Mrg |

|G(Fq)| ,
|G(Fq)Mss |
|G(Fq)| ,

|G(Fq)Mrs |
|G(Fq)| , which denote the probability that a randomly chosen element

from G(Fq) is an M th power regular, semisimple, and regular semisimple element
respectively and show that they are asymptotically the same.

In another direction, we study the image of the power map more explicitly
in the case of GL(n, q), which is the group of n × n invertible matrices over Fq.
We find necessary and sufficient condition for an invertible matrix to be an M th

power. In an attempt to enumerate such elements, we get the generating functions
forM th power (i) regular and regular semisimple elements (and conjugacy classes)
when (q,M) = 1, (ii) for semisimple elements and all elements (and conjugacy
classes) when M is a prime power and (q,M) = 1, and (iii) for all kinds when M
is a prime, and q is a power of M.
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Notation

k : a field
k× : k \ {0}
k̄ : algebraic closure of k
Z : integers
Q : rational numbers
R : real numbers
C : complex numbers
Fq : finite fields with q elements
R : a commutative ring with 1
R× : units of a ring R
∼=: isomorphism
degf : degree of a polynomial f
Φ : set of all monic irreducible polynomials f ∈ Fq[x] except the polynomial x
N(q, d) : number of monic irreducible polynomials in Fq[x] of degree d
(not including the polynomial x when d = 1)
µ(r) : Möbius function on N
ZG(g) : centralizer of g in G
M(M ; q) : order of M in (Z/MZ)× when (M, q) = 1
Z(G) : center of G
Aut (V ) : set of all automorphisms of V
GL(V ) or GL(n, k) : general linear group
SL(V ) or SL(n, k) : special linear group
Sp(n, k) : symplectic group
GO(n, k) : general orthogonal group
GU(n, k) : unitary group
Gal (L/k) : Galois group of a field L over k
det(g) : determinant of a matrix g
Sn : Symmetric group in n symbols
tg : transpose of a matrix g
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tg−1 : transpose inverse of a matrix g
p(n) : number of partitions of n
diag(λ1, . . . , λn) : diagonal matrix

: end of a proof



Chapter 1

Introduction

One of the ways to approach problems in finite group theory is to study them sta-
tistically. Erdös and Túran initiated this approach to study properties of random
permutations, that is, elements of the symmetric group Sn, in a series of papers
(see [ET65, ET67a, ET67b, ET68]). The study of these statistics often involves
enumeration. The problem of enumeration is often challenging in the sense of ob-
taining precise formulas, and therefore one seeks alternate ways of counting. One
of the most effective ways is to construct a generating function for the enumera-
tive quantity in question, which serves as a vital tool to gain further information
on these objects. A classic example is the study of the number of partitions of a
natural number n (see for instance [And76]).

A significant part of this thesis attempts to solve the equation XM = g for any
M ≥ 2, where g is an invertible matrix with entries in the finite field Fq with q

elements. In other words, we attempt to solve the equation XM = g in the group
GL(n, q). A natural question to ask is how many g ∈ GL(n, q) admit a solution
to the equation XM = g. This can be re-framed in the language of probability as
follows: What is the probability that a randomly chosen element of GL(n, q) is an
M th power or admit an M th root?

The above problem has been studied quite extensively in several papers for the
group Sn. For r ≥ 2, let Srn := {πr | π ∈ Sn} be the set of all permutations π
such that the equation Xr = π has a solution in Sn. We call π, an rth power in
Sn, or an element which admits an rth root in Sn. Thus, the probability that a
randomly chosen permutation admits an rth root is Pr(n) := |Srn|

n! . Blum studied
this problem for r = 2 in [Blu74] and obtained generating function for P2(n) as
follows:
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1 +
∞∑
n=1

P2(n)un =
(1 + u

1− u

)1/2 ∞∏
k=1

cosh
(
u2k

2k

)
. (1.1)

This generating function is constructed by using the cycle index of the symmetric
group Sn, which was originally introduced by G. Pólya (see [PR87]) as follows:

Zn = Zn(t1, t2, . . . tn;Sn) = 1
n!

∑
π∈Sn

type(π)
=(c1,c2,...)

tc1
1 t

c2
2 . . . tcii . . . (1.2)

The polynomial Zn in the variables t1, . . . , tn is called the cycle index of Sn. Here,
type(π) := (c1, . . . , cn) is called the type of the permutation π. Here, ci denotes
the number of i-cycles in π. The type of π determines the conjugacy classes of
Sn, for two permutations τ, σ ∈ Sn are conjugate if and only if type(σ) = type(τ).
Observe that the type of a permutation in Sn is essentially a partition of n. The
product inside the expression for Zn is a finite product, since there exists m ∈ N,
such that ci = 0 for all i ≥ m. The coefficient of the monomial ta1

1 t
a2
2 . . ., where∑

i
iai = n is equal to |Cl(σ)|

n! , where σ ∈ Sn is such that type(σ) = (a1, a2, . . .) and,

Cl(σ) denotes the conjugacy class of σ.

Example 1.0.1. The cycle index Z3 = Z3(t1, t2, t3;S3) of S3 is given by 1
6(t31 +

3t1t2 + 2t3).

Thus, for each n ≥ 1, we have attached a polynomial Zn to the group Sn, which
essentially is the class equation of Sn, where the sizes of the conjugacy classes are
coefficients of certain monomials. The cycle index generating function is given by

1 +
∞∑
n=1

Znu
n =

∏
i≥1

exp
(
tiu

i

i

)
. (1.3)

Blum (see [Blu74]) showed that π ∈ Sn of type (a1, a2, . . . , an) has a square
root in Sn if and only if a2i is even for all i such that 2i ≤ n. Blum obtained
the generating function for P2(n) (which is Equation 1.1) by substituting these
conditions in the cycle index generating function suitably. He further gave an
estimate of P2(n) by studying the analytic properties of the generating function
as follows:

P2(n) ∼ K
√

2
π
n−

1
2 , where, K =

∞∏
k=1

cosh
( 1

2k

)
.

This result was further generalized for any r ≥ 2 by Pouyanne in [Pou02] (once
again by using generating functions) to obtain the following:
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Pr(n) ∼
n→∞

ηr

n1−ϕ(r)
r

where ϕ denotes the Euler’s phi function and ηr, an explicit constant.

There are several other results about Pr(n), for example, a partial recursive
relation involving Pr(n) was proved in [BMW00]. Further, the authors proved
that Pr(n) is a monotonically decreasing sequence and gave a probabilistic proof
of the fact that lim

n→∞
Pr(n) = 0. The authors in [BMW00] incorporate bijective

methods to prove these results, which gives a different perspective compared to the
generating function approach. For more results and estimates on powers in Sn and
related ideas, we urge the reader to look at [Ben74], [BG80], [BG89], [BGHP20],
[MP76], [Pav82] and, [Tur70]. The set of powers has also been studied for the
alternating group An in [Pou09] and wreath products in [KM20].

The problem of studying statistical properties of random matrices is nothing
new. The probability that a randomly chosen element of GL(n, q) is regular or,
semisimple or, regular semisimple has been investigated in several papers using
generating functions. In an effort to give a unified method to construct generating
functions for solving enumeration problems in GL(n, q), Kung [Kun81] developed
cycle index for GL(n, q) very similar to the construction of cycle index of Sn (see
Equation 1.2 above). This was further applied by Stong [Sto88] to get several
asymptotic results in that direction. We present this briefly in Chapter 5. Ful-
man [Ful99,Ful02] developed cycle index for other finite classical groups and also
provided neat proof of some of the earlier known results for GL(n, q). We note that
Wall [Wal99] independently obtained these results for GL(n, q). These works were
followed up in [FNP05] by Fulman, Neumann and Praeger where they extended the
earlier results to all classical groups by obtaining generating functions for the pro-
portion of regular, regular semisimple, and semisimple elements in these groups.
Britnell [Bri02, Bri06] studied this for special linear groups and unitary groups.
The enumeration of conjugacy classes in the finite classical groups were done by
Macdonald and Wall independently in the papers [Mac95, Wal80, Wal63], once
again in the sense of generating functions. The enumeration of regular semisimple
conjugacy classes in these groups were done in [FG13] using a generating function
approach, although some of those results were already proved in [FJK98] without
the use of generating functions. These works motivate us to frame and address
certain subquestions of the original question of finding the probability that a ran-
domly chosen invertible matrix is an M th power for some fixed integer M ≥ 2 (see
Section 1.2).
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From a different point of view, estimating the size of the set of M th powers
in a group G can be thought of as estimating the size of the image of the map
ωM : G → G defined by g 7→ gM . The map ωM is called a power map on the
group G. These power maps are particular cases of a more general family of maps
on groups called the word maps.

The word maps on finite groups of Lie type and algebraic groups have been
studied extensively in the last couple of decades. Larsen, Shalev, Liebeck and
Tiep, among others, have successfully addressed the Waring problem for finite
simple and quasisimple groups by proving beautiful and essential results in this
direction (see the excellent survey article by Shalev [Sha13] and references therein).

Let ω = ω(x1, . . . , xd) be an element (that is, a word) of the free group Fd

with d generators x1, . . . , xd. Let G be a finite group. Thus, ω is of the form
xm1
i1
xm2
i2
. . . xmrir where i1, . . . , ir ∈ {1, 2, . . . d} and mj ∈ Z for all 1 ≤ j ≤ r. The

word map induced by ω is,

ω : Gd → G (g1, g2, . . . , gd) 7→ ω(g1, g2, . . . , gd).

For example, consider the word ω = x3
1x

3
2 of the free group F2 with two generators

{x1, x2}. This induces the map

ω : G×G→ G (g1, g2) 7→ ω(g1, g2) = g3
1g

3
2.

The image of the word map ω is denoted by ω(G). One of the central questions
of interest regarding word maps is the following: Which words are surjective on
all finite simple groups? This is the Waring problem for finite simple groups.
There are several examples of words that have been shown to be surjective on
all finite simple groups (and in some cases also for finite quasisimple groups).
Notable among those, is the commutator word, which induces the commutator
map ω : G×G→ G defined by ω(g1, g2) = g1g2g

−1
1 g−1

2 . This was a long-standing
conjecture by Ore, which was solved recently (see [LOST10]). The word x2

1x
2
2

was shown to be surjective on all finite simple groups in [LOST12]. This can be
regarded as the non-commutative analogue of the Lagrange Four-Square theorem,
which states that any natural number is a sum of at most four squares. More
generally, it has been proved that given a non-trivial word ω, there exists N ∈ N
(depending on ω), such that for all finite simple group G with |G| ≥ N , we have
ω(G)2 = G (see [LST11]). Thus, given a word ω, any element of a finite simple
group G can be written as a product of two word values if G is large enough.

The study of the word maps naturally has not been restricted only to finding
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words which are surjective. For example, the power word x2 is not surjective on
any finite simple group, by virtue of the celebrated Feit-Thompson theorem. In
such a case, a natural question to ask is how large is the image ω(G) with respect
to the size of G. One of the most interesting results of this kind is due to Larsen
(see [Lar04, Proposition 9]) which states that for any non-trivial word ω and ε > 0,
there exists r0 such that if G is a finite simple group of Lie type of rank > r0,
then |ω(G)| > |G|1−ε. Better lower bounds were achieved by Larsen and Shalev
in [LS09] as follows: For every word ω, there is a number N(ω) = N such that if
G is a finite simple group of Lie type of rank r which is not of type Ar or 2Ar,
and |G| ≥ N , then, |ω(G)| ≥ c

r |G| for some absolute constant c > 0. It is further
conjectured in [Sha13], that the above result holds for every finite simple group.
This has been settled for the power word ω = xM recently, for simple groups of
Lie type An and 2An in [GKSV19].

In this thesis, we also study the image of the power word ω = xM on any finite
group of Lie type. We prove an asymptotic result for the proportion of powers in a
finite reductive group. As mentioned earlier, in the rest of the thesis we specialize
over the group GL(n, q) and study the image of the power map, more explicitly
using ideas of enumerative combinatorics. This part of the work also solves the
question posed by R. Stanley (see Chapter 9) to count all matrices over finite fields
which have square roots (see Exercise 180, Chapter 1 of [Sta97]).

1.1 An asymptotic result for the power map

Let G be a connected reductive group over F̄q, where Fq is the finite field with q
elements. Suppose G is defined over Fq, with Steinberg endomorphism F . The set
of fixed points, G(Fq) = GF = {x ∈ G | F (x) = x} defines a finite group which
is known as a finite reductive group or, a finite group of Lie type. Let M ≥ 2
be a positive integer. We consider the power map ω : G → G given by x 7→ xM .
Clearly, this map is defined over Fq. We consider the image of the set G(Fq) un-
der this map, denoted as G(Fq)M . The elements of G(Fq)M are called M-power
elements of G(Fq). Further, we denote the set of M -power regular elements (these
are elements of G(Fq) whose centralizer in G has minimal dimension, see Section
2.7 in Chapter 2) as G(Fq)Mrg = G(Fq)M ∩ G(Fq)rg, the set of M -power semisim-
ple elements (these are elements which are diagonalizable when G is regarded as
embedded in GL, see Section 2.2 in Chapter 2) as G(Fq)Mss = G(Fq)M ∩ G(Fq)ss,
and M -power regular semisimple elements as G(Fq)Mrs = G(Fq)M ∩ G(Fq)rs. One
of the main result of this thesis determines the asymptotic behaviour as q →∞ of
the following quantities:
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|G(Fq)M |
|G(Fq)|

,
|G(Fq)Mrs |
|G(Fq)|

,
|G(Fq)Mss |
|G(Fq)|

,
|G(Fq)Mrg |
|G(Fq)|

.

What we mean here is that we consider the above quantities as a set of real numbers
for a fixed G and a fixed M ; and study the limit points when q → ∞. The main
theorem is as follows:

Theorem A. LetG be a connected reductive group defined over Fq with Frobenius
map F . Let M ≥ 2 be an integer. Then,

lim
q→∞

|G(Fq)M |
|G(Fq)|

= lim
q→∞

|G(Fq)Mrs |
|G(Fq)|

= lim
q→∞

|G(Fq)Mss |
|G(Fq)|

= lim
q→∞

|G(Fq)Mrg |
|G(Fq)|

=
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

where the sum varies over non-conjugate maximal tori T in G(Fq), T = Td1,...,ds
∼=

Cd1 × · · · × Cds reflects the cyclic structure of T , the group WT = NG(Fq)(T )/T .,
and (M,d) denotes the g.c.d of M and d.

This theorem is proved in Section 6.1 of Chapter 6. In the subsequent sections
of the same chapter, we find out these subsequential limits for the group GL(n, q)
and GU(n, q), for M being a prime (see Proposition 6.2.3 and Proposition 6.3.2),
and provide a series of examples to explain the theorem. The prerequisites to
understand the proof of the main result is some basic results in the theory of finite
reductive groups which we provide in Chapter 3.

Observe that when M = 1 in the above result, it is clear that

lim
q→∞

|G(Fq)rs|
|G(Fq)|

= lim
q→∞

|G(Fq)ss|
|G(Fq)|

= lim
q→∞

|G(Fq)rg|
|G(Fq)|

= 1.

This is well known in the literature (see for example [JKZ13]), which essentially
means that the set of regular semisimple elements in a connected reductive group
forms a dense subset. Thus, our result can also be viewed as a generalization of
the M = 1 case.

While the above result gives an asymptotic understanding (as q → ∞), of
the proportion of M th powers in a finite reductive group, it is also necessary to
understand the image of the power map more explicitly. A central question in this
direction is to find sharp bounds for the proportion of M th power in G(Fq), that
is, |G(Fq)M |

|G(Fq)| , and the related quantities (in terms of the group structure), and if
possible to find the exact value as much as possible. We take this up in Chapter 7
and Chapter 8, where we try to develop some tools to answer these questions for
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the group GL(n, q).

1.2 A study of the image of power map in GL(n, q)

Let M ≥ 2 be an integer and GL(n, q)M := {gM | g ∈ GL(n, q)} be the set of
elements of GL(n, q) which are M th power or, in other words, possess an M th root
in GL(n, q). Then, |GL(n,q)M |

|GL(n,q)| is the probability that a randomly chosen element

of GL(n, q) is an M th power. Further, suppose, |GL(n,q)Mrg |
|GL(n,q)| ,

|GL(n,q)Mss |
|GL(n,q)| ,

|GL(n,q)Mrs |
|GL(n,q)|

denote the probability that a randomly chosen element of GL(n, q) is anM th power
regular, semisimple, or a regular semisimple element respectively. The set of M th

powers, GL(n, q)M of GL(n, q) is closed under conjugation and as such is a union of
conjugacy classes. Let c(n,M), c(n,M)rg, c(n,M)ss, c(n,M)rs denote the number
of M th power conjugacy classes, M th power regular conjugacy classes, M th power
semisimple conjugacy classes, andM th power regular semisimple conjugacy classes
respectively. We intend to find out these probabilities and enumerate these classes.

We take a generating function approach to understand the set of powers in
GL(n, q). As mentioned earlier a key to construct these generating functions for
GL(n, q) (or, in fact for any other finite classical group) is a combinatorial descrip-
tion of the conjugacy classes in these groups, which gives rise to the concept of
cycle index. We build these prerequisites in Chapter 4 and Chapter 5 for the group
GL(n, q), as these will once again play an important role in this thesis. Before go-
ing into the discussion of powers, we quickly mention the generating functions of
the regular, semisimple and regular semisimple classes (see [FG13]) and elements
in GL(n, q) (see [Ful99], [Ful02], [Wal99]), for this will enable the reader to com-
pare them with the generating functions obtained for the powers mentioned later
in this chapter. As mentioned, these will once again be taken up in Chapter 5 in
greater detail as a part of the prerequisites.

1.2.1 Generating functions in GL(n, q)

Let Φ be the set of all monic irreducible polynomials of Fq[x] except the poly-
nomial x. Let N(q, d) denote the number of monic irreducible polynomials in
Fq[x] of degree d. Let c(n)rg, c(n)ss, c(n)rs, and c(n) denote the number of regular,
semisimple, regular semisimple, and all conjugacy classes in GL(n, q) respectively.
Let GL(n, q)rg,GL(n, q)ss,GL(n, q)rs denote the collection of all regular, semisim-
ple, and regular semisimple elements in GL(n, q) respectively.

The generating function for the number of regular classes and semisimple
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classes is given as follows:

1 +
∞∑
n=1

c(n)rgu
n = 1 +

∞∑
n=1

c(n)ssun =
∞∏
d=1

(1− ud)−N(q,d) = 1− u
1− qu. (1.4)

In particular, we have c(n)rg = c(n)ss = qn − qn−1.
The generating function for the number of regular semisimple classes is given

by,

1 +
∞∑
n=1

c(n)rsu
n =

∞∏
n=1

(1 + ud)N(q,d) = 1− qu2

(1 + u)(1− qu) . (1.5)

The generating function for the number of conjugacy classes in GL(n, q) is
given as follows:

1 +
∞∑
n=1

c(n)un =
∞∏
i=1

1− ui

1− qui . (1.6)

Now we come to the generating function for the elements. The generating
function for the proportion of regular semisimple elements in GL(n, q) is given as
follows:

1 +
∞∑
n=1

|GL(n, q)rs|
|GL(n, q)| u

n =
∏
d≥1

(
1 + ud

qd − 1

)N(q,d)

. (1.7)

Further the generating function for the proportion of regular elements in
GL(n, q) is given as follows:

1 +
∞∑
n=1

|GL(n, q)rg|
|GL(n, q)| u

n =
∏
d≥1

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)

N(q,d)

(1.8)

An alternate version of this generating function only involving infinite products
can be given as follows:

1 +
∞∑
n=1

|GL(n, q)rg|
|GL(n, q)| u

n =
∏
d≥1

(
1− ud

qd

)−N(q,d) ∏
d≥1

(
1 + ud

qd(qd − 1)

)N(q,d)

. (1.9)

Finally, the generating function for the proportion of semisimple elements in
GL(n, q) is,

1 +
∞∑
n=1

|GL(n, q)ss|
|GL(n, q)| u

n =
∏
d≥1

1 +
∞∑
j=1

ujd

q
j(j−1)

2 d
n∏
i=1

(qid − 1)


N(q,d)

. (1.10)
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We divide the problem of studying M th powers in GL(n, q) into two separate
cases depending on, if M and q are coprime or not. The Jordan decomposition
of elements necessitates this. For an element g ∈ GL(n, q) we can write g =
gsgu = gugs uniquely, where gs is semisimple part and gu is unipotent part of g.
Thus, gM = gMs g

M
u . The semisimple elements are of order coprime to q, and the

unipotent elements are of order a power of q. Chapter 7 entirely deals with the
case (M, q) = 1, while Chapter 8 deals with a special case of (M, q) 6= 1.

1.2.2 The (M, q) = 1 case:

In this case, factorization of certain composed polynomials plays a pivotal role,
which leads us to the definition of “M-power” polynomials. We study these poly-
nomials in Section 7.1. These results eventually help us to obtain necessary and
sufficient combinatorial conditions for an element to be an M th power in GL(n, q).

The generating functions for regular and regular semisimple classes which are
M th power is given by the following:

Theorem B1. Let M ≥ 2 be an integer and (q,M) = 1. For the group GL(n, q),
the generating function for regular and regular semisimple classes which are M th

power is,

1. 1 +
∞∑
n=1

c(n,M)rgu
n =

∏
d≥1

(1− ud)−NM (q,d),

2. 1 +
∞∑
n=1

c(n,M)rsu
n =

∏
d≥1

(1 + ud)NM (q,d),

where NM (q, d) is the number of monic irreducible M-power polynomials of degree
d.

This is Theorem 7.3.2. We will see later that for M = 1, NM (q, d) is same as
N(q, d). Thus, we get back Equation 1.4 and Equation 1.5 by substituting M = 1
in (1) and (2) of the above theorem respectively.

The generating function for proportions of M th power regular and regular
semisimple elements is given by Theorem 7.3.3 as follows:

Theorem B2. For the group GL(n, q), and M ≥ 2 with the condition that
(q,M) = 1,

1. the generating function for the regular semisimple elements which are M th

power is

1 +
∞∑
n=1

|GL(n, q)Mrs |
|GL(n, q)| u

n =
∏
d≥1

(
1 + ud

qd − 1

)NM (q,d)

.
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2. The generating function for the regular elements which are M th power is

1 +
∞∑
n=1

|GL(n, q)Mrg |
|GL(n, q)| u

n =
∏
d≥1

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)

NM (q,d)

=
∏
d≥1

(
1− ud

qd

)−NM (q,d) ∏
d≥1

(
1 + ud

qd(qd − 1)

)NM (q,d)

.

Once again we see that substituting M = 1 in the above result, we get back
Equation 1.7, Equation 1.8, Equation 1.9 respectively, which is as expected.

To deal with semisimple elements and more general elements, we further assume
M = ra, where r is a prime. We get the generating function for semisimple classes
and semisimple elements which are M th powers, in Theorem 7.4.2 as follows:

Theorem C. Let M = ra be a prime power and (q,M) = 1. Then, we have the
following generating functions:

1. 1 +
∞∑
n=1

c(n,M)ssu
n =

a∏
i=0

∏
d≥1

(
1− urid

)−N i
M (q,d)

.

2. 1 +
∞∑
n=1

|GL(n, q)Mss |
|GL(n, q)| u

n =
a∏
i=0

∏
d≥1

1 +
∞∑
j=1

ur
ijd

q
rij(rij−1)d

2
∏rij
t=1(qtd − 1)

N i
M (q,d)

,

where N i
M (q, d) is as defined in Section 7.1 of Chapter 7.

It will be observed once again in Section 7.1 of Chapter 7, that if M = 1, that
is, a = 0, we must have N0

M (q, d) = N(q, d). Thus, once again putting M = 1 in
(1) and (2) of the above theorem, we get back Equation 1.4 and, Equation 1.10 as
desired.

The generating function for the number ofM th power conjugacy classes is given
in Theorem 7.5.3 as follows:

Theorem D. Let M = ra, where r is a prime, and (q,M) = 1. Then we have the
following generating function,

1 +
∞∑
n=1

c(n,M)un =
∞∏
j=1

a∏
i=0

∏
d≥1

(1− ujrid)−N i
M (q,d).

We get back Equation 1.6 in this case when M = 1.
We finally mention the generating function for |GL(n,q)M |

|GL(n,q)| when M is a prime.
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Theorem E. Let M ≥ 2 be a prime and (M, q) = 1. Then,

1 +
∞∑
n=0

|GL(n, q)M |
|GL(n, q)| u

n =
∏
d≥1

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


NM (q,d)

×
∏
d≥1

1 +
∑
n≥1

∑
λ`n

uMnd

qMd
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N̂(q,d)

,

where NM (q, d) denote the number of M-power monic irreducible polynomials of
degree d, and N̂(q, d) = N(q, d)−NM (q, d), where N(q, d) is the number of monic
irreducible polynomials of degree d.

This is Theorem 7.5.5. We study this generating function in further detail in
Section 7.6. We obtain the exact value of |GL(n,q)M |

|GL(n,q)| when M is prime and n is
“sufficiently small”. We prove the following:

Theorem F. Let M be a prime and (M, q) = 1. Let t = M(M ; q) be the order
of q in (Z/MZ)×. Then,

|GL(n, q)M |
|GL(n, q)| =

∑
λ`n

λ=1m12m2 ...

1
Mπt(λ)∏

i≥1 i
mimi!

whenever n < Mt and πt(λ) denotes the number of parts of λ divisible by t, that
is, πt(λ) =

∑
t|i
mi.

This is Theorem 7.6.1. We further conjecture an upper bound for |GL(n,q)M |
|GL(n,q)| in

Question 7.6.16 (when n ≥Mt).

1.2.3 A particular case of (M, q) 6= 1

We deal with the case (M, q) 6= 1 in Chapter 8. To make it a little simpler
we assume, M is a prime and q is a power of M . We obtain a combinatorial
criterion for an invertible matrix to possess an M th root in Theorem 8.1.4. It is
then immediately clear from this characterization that any semisimple elements
possess a M th root. Further, any regular element is a M th power if and only if
it is regular semisimple. We obtain a generating function for the number of M th

power conjugacy classes in GL(n, q) as follows:
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Theorem G. Let M be a prime and q be a power of M . The generating function
for M th power conjugacy classes in GL(n, q) is,

1 +
∞∑
n=1

c(n,M)un =
∏
d≥1

∏
k≥1

1 + ud(kM−1) + · · ·+ ud(kM−(M−1))

1− udkM

N(q,d)

where N(q, d) is the number of monic irreducible polynomials of degree d.

This is Theorem 8.2.1. We must mention that the M = 2 case was already dealt
with by Miller in [Mil16]. Our work is a generalization for any prime M .

In Chapter 9, we use the combinatorial characterizations developed in Chap-
ter 7 and Chapter 8, to compute squares and third powers in GL(2, q) and GL(3, q).
Finally, to end this thesis, we mention further problems that arise from our inves-
tigation of powers in finite reductive groups. This is the subject of Chapter 10. We
also mention a character theoretic connection related to powers in finite groups in
this chapter.

Although we have already mentioned the theme of each chapter in the discus-
sion above, we once again walk through it for the convenience of the reader.
A Chapter-wise description: A sincere effort has been made to keep this thesis
as self-contained as possible. Chapter 2-5 are the basic prerequisites of this thesis
which provides the necessary groundwork to understand the results and proofs in
this thesis. Almost all the basic notions and results relevant to this thesis have
been mentioned in these chapters. Chapter 6-9 deals with the author’s research
work. Finally, in Chapter 10, we mention some problems in this topic, which will
give further motivation to understand this topic completely. This pretty much
summarizes the thesis giving glimpses into the main results proved in various
chapters.



Chapter 2

Linear Algebraic Groups

This is one of the basic chapters of this thesis, which deals with the notion of linear
(or, affine) algebraic groups over an algebraically closed field. We will discuss these
groups briefly in this chapter, by defining important concepts and results which
are relevant to this thesis. In the next chapter, we will see that these groups can
be defined over finite fields, and the results and notions here can be transferred to
those groups in a systematic way. We follow the exposition in [MT11] here. We
also refer the reader to the classic books [Hum75] and [Spr98] for further details.
We will assume here the basic notions of algebraic geometry over an algebraically
closed field (see, for example, Chapter 1 of [Har77]). Let k denote an algebraically
closed field of arbitrary characteristic, throughout this chapter.

2.1 Linear Algebraic Groups - Definition and Exam-
ples

Let X be an affine variety over k, that is, an algebraic set with the induced Zariski
topology (of kn). Let k[X] be the k-algebra of regular (i.e, polynomial) functions
on X. If I is the vanishing (radical) ideal of X, that is,

I = {f ∈ k[X1, . . . , Xn] | f(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ kn}

then k[X] = k[X1, . . . , Xn]/I, and is called the coordinate algebra, or the algebra
of regular functions on X. With this, we have the following definition,

Definition 2.1.1 (Linear algebraic groups). A linear (or, affine) algebraic group
G over k is an affine variety over k such that the group operations (multiplication
and inversion), that is, µ : G × G → G defined by µ(g, h) = gh, and i : G → G

defined by i(g) = g−1 are morphisms of varieties.

13
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Before going to several examples of algebraic groups relevant to this thesis, we
define two important concepts which are, connectedness and dimension of algebraic
groups.

Let X be an affine variety over k. We call X irreducible if X cannot be written
as a union of two non-empty closed subsets. It can be proved that X is irreducible
if and only if k[X] is an integral domain, that is, the vanishing ideal I(X) is a
prime ideal. Observe that if X is irreducible then X is connected but the converse
may not be true. A Noetherian topological space X (that is, a space X where any
decreasing chain of closed subsets stabilize), can be written as a finite union of
maximal irreducible closed subsets of X. These are called irreducible components
of X. Since an affine variety X is Noetherian with respect to the Zariski topology,
X can be written as a finite union of its irreducible components.

Suppose X is an irreducible affine variety. Let k(X) be the field of fractions
of k[X]. The dimension of X is defined as dim(X) := trdegk(k(X)), the transcen-
dence degree of k(X) over k. Alternatively, it is defined as the maximal length
of descending chain of prime ideals in k[X]. For an arbitrary affine variety X,
dim(X) := max(dim(X1), . . . ,dim(Xr)), where X = X1∪ · · ·∪Xr is the decompo-
sition of X into its irreducible components. Suppose G is an algebraic group. Let
G◦ denote the irreducible component of G containing the identity 1. It is easy to
show that G◦ is a subgroup of G. Further, the left cosets of G◦ are precisely the
irreducible components of G. Since the cosets are disjoint, these cosets are also
connected components of G. Thus, the concept of connectedness and irreducibility
coincide in the case of algebraic groups. Since G is a finite union of irreducible
components, we conclude that [G : G◦] is finite, and G◦ is a normal subgroup
of G. Finally, if H is a closed subgroup of G whose index is finite in G, then
H contains G◦. Since the dimension of each coset is clearly the same, we have
dim(G) = dim(G◦).

2.1.1 Examples of algebraic groups

We will now see some examples of linear algebraic groups.

Example 2.1.2. The additive group G = (k,+) is clearly an algebraic group,
with the coordinate ring k[G] = k[T ]. This is a connected group of dimension 1.
This group G is called the additive group and is denoted by Ga.

Example 2.1.3. The multiplicative group G = (k×, .) of k can be identified with
the set {(x, y) ∈ k2 | xy = 1}, which is an algebraic set of k2 defined by the ideal
I = (XY − 1). Thus, G is an algebraic group with k[G] = k[X,Y ]/(XY − 1) =
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k[X,X−1]. Once again G is connected and, of dimension 1. This group G is called
the multiplicative group and is denoted by Gm.

Example 2.1.4 (The general linear group over k). The general linear group over
k denoted by GL(n, k), is the group of all invertible matrices with entries in k,
that is,

GL(n, k) := {A ∈ kn×n | det A 6= 0}.

We can identify GL(n, k) with the algebraic subset of kn2+1, given by {(A, y) ∈
kn

2 × k | det A · y = 1}. Clearly, multiplication of two matrices and taking inverse
of a matrix are both given by polynomials. Thus, GL(n, k) is an algebraic group.
The coordinate ring k[GL(n, k)] = k[Xij , Y | 1 ≤ i, j ≤ n]/(det(Xij)Y − 1) ∼=
k[Xij | 1 ≤ i, j ≤ n]det(Xij), where k[Xij | 1 ≤ i, j ≤ n]det(Xij) is the localization of
the polynomial ring k[Xij | 1 ≤ i, j ≤ n] at the determinant polynomial det (Xij).
The group GL(n, k) is connected (since, the coordinate ring is an integral domain)
of dimension n2.

Example 2.1.5 (The special linear group). The special linear group over k de-
noted by SL(n, k) is the group of n× n matrices of determinant 1, that is,

SL(n, k) = {A ∈ kn×n | det A = 1}.

Clearly, SL(n, k) is an affine variety, being the vanishing set of the polynomial
det(Xij)−1 ∈ k[Xij | 1 ≤ i, j ≤ n]. The multiplication and inversion are morphism
of varieties, and thus SL(n, k) is a linear algebraic group, with k[SL(n, k)] = k[Xij |
1 ≤ i, j ≤ n]/(det(Xij)− 1). The group SL(n, k) is connected of dimension n2− 1.

Example 2.1.6. Let Tn denote the group of invertible upper triangular matrices
over k, that is,

Tn := {(aij) ∈ GL(n, k) | aij = 0 for i > j}.

Let Un denote the group of unitriangular matrices over k, that is,

Un := {(aij) ∈ Tn | aii = 1 for all 1 ≤ i ≤ n}.

Let Dn denote the group of diagonal invertible matrices over k. It is clear that each
of these groups are linear algebraic groups. The determination of the coordinate
ring of these groups are simple. For example, k[Tn] = k[Xij | 1 ≤ i, j ≤ n]/(Xij |
i > j) ∼= k[Xij | 1 ≤ i ≤ j ≤ n]. Thus, Tn is connected. Similarly, Un and Dn are
both connected.
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Finally, we move on to a class of examples which are the so-called classical
groups. These are groups of isometries of certain non-degenerate bilinear forms on
a vector space. For n ≥ 1, let

Kn :=


0 · · · 1
... ... ...
1 · · · 0

 .

Define J2n :=
(

0 Kn

−Kn 0

)
.

Example 2.1.7 (The symplectic group over k). The symplectic group in dimen-
sion 2n (vector space dimension) over k is the closed subgroup of GL(2n, k) defined
by

Sp(2n, k) = {A ∈ GL(2n, k) | tAJ2nA = J2n}.

Given a non-degenerate alternating bilinear form on a vector space of dimension 2n,
there exists a basis of V such that the matrix of the bilinear form is J2n. Thus, the
above group is the group of isometries of an alternating bilinear form (also called
skew-symmetric form when char(k) 6= 2). The above symplectic group is generated
by transvections (see [Gro02] for details), and thus Sp(2n, k) ≤ SL(2n, k). In fact,
Sp(2, k) = SL(2, k) and for n > 2, Sp(2n, k) is a proper subgroup of SL(2n, k).
The group Sp(2n, k) is connected.

Example 2.1.8 (The odd-dimensional orthogonal groups). First we assume
char(k) 6= 2. The orthogonal group in dimension 2n + 1 over k is the closed
subgroup of GL(2n+ 1, k) defined by

GO(2n+ 1, k) = {A ∈ GL(2n+ 1, k) | tAK2n+1A = K2n+1}.

The above group is the group of isometries of a symmetric bilinear form on a vector
space over k of dimension 2n+ 1.

When char(k) = 2, alternating and symmetric bilinear form coincide, thus the
above group GO(2n + 1, k) ∼= Sp(2n, k). Thus, for arbitrary field, the orthogonal
groups are defined using the quadratic form f : k2n+1 → k given by,

f(x1, x2, . . . , x2n+1) := x1x2n+1 + x2x2n + · · ·+ xnxn+2 + x2
n+1.

The group of isometries of the above quadratic form yields the orthogonal group
as follows,

GO(2n+ 1, k) = {A ∈ GL(2n+ 1, k) | f(Ax) = f(x) for all x ∈ k2n+1}.



2.1. Linear Algebraic Groups - Definition and Examples 17

Note that for char(k) 6= 2, this defines the same group as above. These groups are
once again defined using polynomials and thus are linear algebraic groups.

Example 2.1.9 (The even dimensional orthogonal groups). For an arbitrary field
k and even dimension 2n ≥ 2, the orthogonal group is once again defined using
the quadratic form f : k2n → k defined by,

f(x1, x2, . . . , x2n) := x1x2n + x2x2n−1 + · · ·+ xnxn+1.

The orthogonal group is the group of isometries

GO(2n, k) = {A ∈ GL(2n, k) | f(Ax) = f(x) for all x ∈ k2n}.

Once again note that when char(k) 6= 2, we have,

GO(2n, k) = {A ∈ GL(2n, k) | tAK2nA = K2n}.

These groups are once again defined using polynomials and thus are linear algebraic
groups.

Example 2.1.10 (The special orthogonal groups). Suppose char(k) 6= 2. Let G :=
GO(n, k) (in this case, it doesn’t matter if one takes n to be odd or even). It is clear
that if A ∈ G, then det(A) = ±1. It can be shown that there exists A ∈ G such that
det(A) = −1. The special orthogonal group over k, denoted by SO(n, k) is defined
by SO(n, k) := GO(n, k) ∩ SL(n, k). It is clear that [GO(n, k) : SO(n, k)] = 2.
Thus, GO(n, k) is not connected since G◦ ≤ SO(n, q). In fact, it can be proved
that G◦ = SO(n, k). Thus, the special orthogonal group SO(n, k) is connected
algebraic group. Similarly, one can show that GO(n, k) is not connected in any
characteristic by exhibiting an algebraic subgroup of index 2. In characteristic
2, one uses the notion of pseudo-determinant instead of determinant. For more
details we urge the reader to see [Gro02].

As a final example, we show that any finite group is also a linear algebraic group.

Example 2.1.11. Let G be a finite group. Then, G can be embedded into
GL(n, k) using the left regular representation. Thus, G can be regarded as an
affine variety (since any finite set in an affine variety is an affine variety). Thus,
G is a linear algebraic group. It is clear that G is disconnected with each element
being a connected component.

We end this section with one of the most important results in the theory of
linear algebraic groups. We have already seen that all the examples provided here
are closed subgroups of GL(n, k) for some n. This is true in general.
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Theorem 2.1.12. Let G be a linear algebraic group. Then, there exists n ∈ N
such that G can be embedded as a closed subgroup of GL(n, k).

Due to the above result, one uses the term linear algebraic group instead of affine
algebraic group.

2.2 Jordan decomposition in linear algebraic groups

Let V be a finite dimensional vector space over k. Let End(V ) denote the vector
space of linear transformations on V . An element u ∈ End(V ) is called unipotent if
u−1 is nilpotent. The multiplicative version of Jordan decomposition of invertible
linear maps is as follows:

Proposition 2.2.1. For g ∈ GL(V ), there exists unique s, u ∈ GL(V ) such that
g = su = us, where s is semisimple and u is unipotent.

We call s the semisimple part and u the unipotent part of g. The above concept
of Jordan decomposition can be carried out in any linear algebraic group, which
is intuitive from Theorem 2.1.12.

Theorem 2.2.2 (Abstract Jordan decomposition). Let G be a linear algebraic
group.

1. For any embedding ρ of G into GL(V ) and for any g ∈ G, there exists
gs, gu ∈ G such that g = gsgu = gugs, where ρ(gs) is semisimple and ρ(gu) is
unipotent.

2. The decomposition g = gsgu = gugs is independent of the chosen embedding.

3. Let φ : G1 → G2 be a homomorphism of algebraic groups. Then φ(gs) =
φ(g)s and φ(gu) = φ(g)u.

Definition 2.2.3. Let G be an algebraic group and g ∈ G. The decomposition
g = gugs = gsgu is called the Jordan decomposition of g in G. The element gs is
called the semisimple part of g and gu is called the unipotent part of G. If g = gu,
g is called an unipotent element of G. If g = gs then, g is called a semisimple
element of G.

We have,

Gu := {g ∈ G | g is unipotent},
Gs := {g ∈ G | g is semisimple}.
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Let G be an algebraic group consisting entirely of unipotent elements. We call
such G, a unipotent group. Examples of unipotent groups are Un, or any algebraic
subgroup of Un. The next result determines the structure of unipotent groups.

Theorem 2.2.4. Let G ≤ GL(n, k) be a unipotent group. Then, there exists
g ∈ GL(n, k) such that g−1Gg ≤ Un.

Corollary 2.2.5. A unipotent linear algebraic group is nilpotent, and hence solv-
able.

It is clear that Gu ⊆ G is a closed subset. In general, the set Gs ⊆ G consisting
of the semisimple elements need not be closed. For example, in GL(n, k), the set
of all semisimple elements is dense. In the next section, we will see that algebraic
groups consisting only of semisimple elements play a major role.

2.3 Commutative and solvable algebraic groups

In this section, we mention some results on the structure of commutative algebraic
groups. Furthermore, we define the notion of a torus, which plays a central role
in studying the structure of algebraic groups. Finally, we state the Lie Kolchin
theorem which determines the structure of solvable algebraic groups.

2.3.1 Commutative algebraic groups and tori

The structure of commutative algebraic groups is described by the following result:

Theorem 2.3.1. Let G be a commutative algebraic group. Then, the sets Gs and
Gu are closed subgroups of G and G ∼= Gs ×Gu. Furthermore, if G is connected,
both Gs and Gu are connected.

Recall that Gm consists of all semisimple elements, whereas Ga consists of all
unipotent elements, and both have dimension 1. In fact, up to isomorphism,
these are the only connected groups of dimension 1. This motivates the following
definition.

Definition 2.3.2. A linear algebraic group is called a torus if it is isomorphic to
a direct product Gm×· · ·×Gm, that is, to Dn (see Example 2.1.6) for some n ≥ 0.

By definition a torus is abelian, connected, and consists only of semisimple ele-
ments. In fact, we have

Proposition 2.3.3. Let G be a commutative, connected algebraic group consisting
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entirely of semisimple elements. Then, G is a torus.

Let G be an algebraic group. Then T ≤ G is called a maximal torus if it is
not properly contained in any larger torus of G. We end this section with a very
important result on a torus, which is called the rigidity of tori.

Theorem 2.3.4. Let G be a linear algebraic group and T ≤ G be a torus. Then,
NG(T )◦ = CG(T )◦, and NG(T )/CG(T ) is finite.

The above result will later allow us to define the notion of a Weyl group which
once again plays an important role in determining the structure of linear algebraic
groups.

2.3.2 Solvable algebraic groups

We have seen that unipotent algebraic groups can be embedded inside the unitri-
angular group. Thus, Un serves as the prototype for unipotent groups, which are
nilpotent and hence solvable. This nice characterization is enjoyed by a larger class
of groups, which are the connected solvable algebraic groups, where the group of
upper triangular matrices, Tn serves as the prototype.

Theorem 2.3.5 (Lie-Kolchin). Let G ≤ GL(n, k) be a connected solvable linear
algebraic group. Then, G is conjugate to a subgroup of Tn.

The above theorem has strong implications on the structure of G. We have the
natural split exact sequence,

1→ Un → Tn → Dn → 1

where π : Tn → Dn is defined by,

π

(
t1 ∗. . .
0 tn

)
=
(
t1 0. . .
0 tn

)
.

If G is connected solvable, then G ≤ Tn and Gu = G ∩ Un. Thus, Gu is closed
normal subgroup of G. Once again we can use the map π above, and let T := π(G).
Clearly, T is a closed connected subgroup of Dn, and hence by definition, a torus.
It follows that [G,G] ≤ Gu. We have the following structure theorem for connected
solvable groups.

Theorem 2.3.6. Let G be a connected solvable algebraic group. Then, Gu is a
closed connected normal subgroup of G, and [G,G] ≤ Gu. Moreover, all maximal
tori are conjugate in G, and if T is a maximal torus of G, then G = Gu o T , and
NG(T ) = CG(T ).
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As a corollary of this, we have

Corollary 2.3.7. Let G be a connected, solvable linear algebraic group. Then,
any semisimple element of G is contained in a maximal torus and any unipotent
element of G lies in a connected unipotent subgroup of G.

2.4 G-spaces, quotients and Borel subgroup

This important section deals with quotients of linear algebraic groups. We define
the concept of G-spaces for a linear algebraic group G, mention some of its prop-
erties. Consequently, we mention one of the most important results that if H is
a closed, normal subgroup of G, then G/H is a linear algebraic group. This will
allow us to construct more linear algebraic groups. Finally, we define one of the
most important subgroups of a linear algebraic group called the Borel subgroups
and mention its important properties. These subgroups play a major role in the
classification of the connected reductive groups which will be defined in the next
section. In this section, we need to consider affine as well as projective varieties.

2.4.1 G-spaces and quotients

In this section, we will consider the action of G on a general variety X, and see
some important properties of the related quantities like orbits of the action, set
of fixed points under the action, and stabilizers of points. By a variety, we mean
both projective and affine variety.

The projective n-space Pn is defined as the set of one dimensional subspaces
of kn+1. Taking common zeros of a collection of homogeneous polynomials of
k[X0, X1, . . . , Xn] as closed set defines the Zariski topology on Pn. A projective
variety is a closed subset of Pn carrying the induced Zariski topology.

The k-algebra of regular functions of an affine variety here needs to be replaced
by a sheaf of functions as follows: For X an irreducible variety and x ∈ X, let I(x)
be the vanishing ideal at the point x and let Ox be the localization of k[X] with
respect to the prime ideal I(x). Define OX(U) =

⋂
x∈U

Ox, for U ⊆ X open. Thus,

OX = {(U,OX(U)) | U ⊆ X, open} defines a sheaf of functions on X. One can
show that OX(X) = k[X]. For a more general affine variety X = X1 ∪ · · · ∪Xr,
with irreducible components Xi, setting

OX(U) := {f : U → k | f |U∩Xi ∈ OXi(U ∩Xi)}

defines a sheaf on X. The collection of all these sheaves gives the sheaf of functions
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on X.
Let Pn =

n⋃
i=0

Ui, where Ui consists of points in Pn with non-zero homogeneous

coordinate, that is,

Ui = {〈(x0, x1, . . . , xn)〉 | xi 6= 0}.

Then, Ui can be identified with the affine n-space kn, via the map,

(x0, . . . , xn) 7→ (x0
xi
, . . . , xi−1

xi
, xi+1
xi
, . . . , xnxi ).

The induced topology on the set Ui coincides with the Zariski topology of kn.
Thus, due to the discussions above, we have the ring Ox for each x ∈ Ui. Then,
for U ⊆ Pn, set O(U) :=

⋂
x∈U

Ox. Thus, one gets the sheaf of functions as the set

of pairs, {(U,O(U) | U ⊆ Pn}. The sheaf of functions for an arbitrary projective
variety is defined by the restriction of the sheaves of Pn on the former variety.

The dimension of an irreducible projective variety is the dimension of any affine
open subset. For an arbitrary projective variety one just takes the maximum di-
mension among the irreducible components. One can define morphism of varieties
similarly as in the case of affine varieties, with necessary changes.

Example 2.4.1. Let V be a vector space over k of dimension n. For a strictly
increasing sequence of positive integers, 0 < n1 < n2 < · · · < nd ≤ n, the partial
flag variety Fn1,n2,...,nd is defined by,

Fn1,n2,...,nd :=
{

(V1, V2, . . . , Vd) |
Vi ≤ V, dim(Vi) = ni,

and V1 ≤ V2 ≤ · · · ≤ Vd

}
.

The set F1,2,...,n is called a complete flag variety. It can be proved that any partial
flag variety can be embedded as a closed set of a projective variety (see Section
3.3 and Theorem 3.3.7 in [Gec03] for a proof).

We can now define a G-space.

Definition 2.4.2. Let G be a linear algebraic group. A variety X is called a
G-space if there exists a group action G × X → X, defined by (g, x) 7→ g.x for
g ∈ G, x ∈ X, which is also a morphism of varieties.

The following proposition mentions some important properties related to G-spaces.

Proposition 2.4.3. Let X be a G-space. Then,

1. For each x ∈ X, the stabilizer Gx := {g ∈ G | g.x = x} is a closed subgroup
of G.
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2. The fixed point set XG := {x ∈ X | g.x = x for all g ∈ G} is closed.

Furthermore,

Proposition 2.4.4. Let X be a G-space. Then, every orbit G.x = {g.x | g ∈ G}
is open in its closure. Further, orbits of minimal dimension are closed.

Example 2.4.5. Let G be a linear algebraic group. Consider the action of G
on G by conjugation. By Proposition 2.4.3, the centralizers of elements (being
stabilizers) are closed subgroups. The center Z(G) is also closed.

Suppose G is a linear algebraic group. Consider an algebraic representation of
G, that is, a homomorphism of algebraic groups ρ : G→ GL(V ) where V is finite
dimensional over k. Then, V is a G-space via the action g.v = ρg(v). Furthermore,
the projective space P(V ) is also a G-space, via the action g.〈v〉 = 〈ρg(v)〉. The
following theorem by Chevalley allows one to give a variety structure to G/H,
where G is a linear algebraic group and H a closed subgroup of G.

Theorem 2.4.6 (Chevalley). Let H ≤ G be a closed subgroup of the linear alge-
braic group G. Then there exists an algebraic representation ρ : G → GL(V ) and
a one-dimensional subspace W ≤ V such that H = {g ∈ G | ρg(W ) = W}.

Suppose G is a linear algebraic group G and H ≤ G be a closed subgroup.
Assuming the setting of the previous theorem where we take W = 〈v〉, we see that
action of G on P(V ) restricted to the orbit of W under G (say X), makes X into
a G-space. This induces a natural bijection between G/H and X, which allows us
to endow G/H with the structure of a quasi-projective variety, that is, an open
subset of a projective variety. We call G/H endowed with this variety structure
to be the quotient space of G by H. The following is the main theorem of this
subsection.

Theorem 2.4.7. Let H ≤ G be a closed normal subgroup of a linear algebraic
group G. Then G/H is an affine variety and G/H with the usual group structure
is a linear algebraic group.

This theorem will allow us to construct several more examples of algebraic
groups.

Example 2.4.8 (Projective general linear group). Let G := GL(n, k). Z(G) =
{λI | λ 6= 0} is closed normal subgroup. Thus, PGL(n, k) := GL(n, k)/Z(GL(n, k))
is a linear algebraic group called the projective general linear group.

Similarly, PSL(n, k) := SL(n, k)/Z(SL(n, k)) is also a linear algebraic group. The
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same can be applied to the symplectic group and special orthogonal group, which
gives their corresponding projective analogues.

2.4.2 Borel subgroups

The structure of a connected solvable group is now well-understood by virtue of
the Lie-Kolchin theorem, which says that a connected solvable linear algebraic
group G stabilizes a flag F : 0 = V0 ≤ V1 ≤ . . . ≤ Vn = kn of subspaces of kn. For
an arbitrary linear algebraic group G ≤ GL(n, k), it is clear that a stabilizer GF

of such a flag is a solvable subgroup, and the quotient G/GF is a quasi-projective
variety. Since under the action of G, the orbits of minimal dimension are closed,
one can choose a flag F such that G/GF is closed, and so a projective variety. This
is what motivates one to define the Borel subgroups.

Definition 2.4.9. Let G be a linear algebraic group. A Borel subgroup of G, say
B, is a maximal closed connected solvable subgroup of G.

The next theorem is one of the main tools for proving important properties of
Borel subgroups.

Theorem 2.4.10 (Borel fixed point theorem). Let G be a connected solvable al-
gebraic group acting on a non-empty projective G-space of X. Then there exists
x ∈ X such that g.x = x for all g ∈ G.

The following theorem is the main theorem of this section.

Theorem 2.4.11. Let G be a linear algebraic group. Then, all Borel subgroups of
G are conjugate. Furthermore, if G is connected, then G/B is a projective variety
for any Borel subgroup B.

As a corollary of the above theorem, we write another very important result con-
cerning the maximal tori. We also include a proof of this result.

Corollary 2.4.12. Let G be a linear algebraic group. Then, all maximal tori of
G are conjugate.

Proof. Let T ≤ G be a maximal torus. Then, T ≤ B for some Borel subgroup B
of G. Let T1 ≤ B1 ≤ G be another maximal torus contained in another Borel B1

of G. Since B and B1 are conjugate, there exists g ∈ G, such that B1 = gBg−1.
Then gTg−1 ≤ B1. By Theorem 2.3.6, we conclude that there exists b ∈ B1, such
that bgTg−1b−1 = T1 =⇒ (bg)T (bg)−1 = T1. Thus, T and T1 are conjugate.
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Definition 2.4.13. For a linear algebraic group G, the rank of the group G, is
defined to be the dimension of a maximal torus. We denote the rank by rk(G).

At this point, we define the notion of the Weyl group of a linear algebraic
group.

Definition 2.4.14. Let G be a linear algebraic group. The Weyl group of G is
define to be the group NG(T )/CG(T ), where T is any maximal torus, NG(T ) and
CG(T ) are the normalizer and centralizer of T in G.

Note that the Weyl group is finite by Theorem 2.3.4, and doesn’t depend on the
maximal torus chosen. We look at some examples of Borel subgroups and maximal
tori of certain linear algebraic groups.

Example 2.4.15. Let G := GL(n, k). Then, Tn is a Borel subgroup of G. The
group Tn is a closed connected solvable subgroup. If H ≤ G be any closed con-
nected solvable subgroup, then H ≤ gTng−1 for some g ∈ G. Further, if Tn ≤ H,
it is clear that H = Tn. For similar reasons, Dn is a maximal torus of G. Any
Borel subgroup is conjugate to Tn, and any maximal torus is conjugate to Dn.
Since, dim(Dn) = n, we have rk(G) = n. Finally, we calculate the Weyl group
of G. Take T = Dn. Then NG(T ) comes out to be the set of monomial matrices
in G, that is, all those matrices which have exactly one non-zero entry in each
row and each column. The centralizer CG(T ) = T . Therefore, the Weyl group
W = NG(T )/T ∼= Sn. Thus, the Weyl group of GL(n, k) is Sn.

Example 2.4.16. When G := SL(n, k), for similar reasons as above, Tn ∩G, and
Dn∩G are the Borel subgroup and maximal tori of G, up to conjugacy. The Weyl
group of SL(n, k) is also Sn.

Example 2.4.17. Let G := Sp(2n, k) (refer to Example 2.1.7 for definition).
Define T := G ∩D2n. Using definition,

T =





t1
. . .
tn
t−1
n

. . .
t−1
1

 | ti ∈ k
×


≤ G.

Clearly T is a torus and dim(T ) = n. Thus, rk(G) ≥ n. Let T ≤ T1, where T1 is
a torus of G. We have T1 ≤ GL(2n, k). Since T1 is a torus, T1 is simultaneously
diagonalizable, and thus T1 is conjugate to a subgroup of Sp(2n, k)∩D2n. But, since
T is also contained in that conjugate of T1, we conclude that T = T1. Therefore,
T is a maximal torus, and rk(G) = n.
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Let B := G ∩ T2n. Clearly, B is a connected solvable subgroup of G. Let
B ≤ B1 where B1 is a Borel subgroup of G. Now, B1 ≤ GL(2n, k), thus by Lie-
Kolchin theorem, B1 is simultaneously triangulizable. Thus, B1 is conjugate to a
subgroup of G∩T2n. But since B is also contained in that conjugate, we conclude
that B = B1. Hence, B is a Borel subgroup of G.

Similarly, one can check that D2n ∩ SO(2n, k), and D2n+1 ∩ SO(2n + 1, k) are
maximal torus of SO(2n, k) and SO(2n + 1, k) respectively. Similar result holds
for their Borel subgroups.

To finish this section we collect some more important results involving the
Borel subgroups and maximal tori.

Proposition 2.4.18. Let G be a connected linear algebraic group and B be a Borel
subgroup. Then, any automorphism of G that fixes B pointwise is identity.

As a corollary of the above, we have

Corollary 2.4.19. Z(G)◦ ⊆ Z(B) ⊆ CG(B) ⊆ Z(G).

We have already seen that Tn is a Borel subgroup of GL(n, k). Since k is al-
gebraically closed, any matrix is conjugate to a upper triangular matrix. Thus,
GL(n, k) =

⋃
g∈GL(n,k)

gTng−1. This is true in general.

Theorem 2.4.20. Let G be a connected algebraic group, and B be a Borel sub-
group of G. Then G =

⋃
g∈G

gBg−1.

The connectedness in the above theorem is necessary. If G is finite then G 6=⋃
g∈G

gHg−1 for any proper subgroup H of G. As a corollary of the above theorem,

we have the following,

Corollary 2.4.21. Let G be a connected algebraic group. Then,

1. Every semisimple element of G lies in a maximal torus.

2. Every unipotent element of G lies in a closed connected unipotent subgroup.

3. The maximal, closed, connected unipotent subgroups are all conjugate and
they are of the form Bu for some Borel subgroup B of G.

2.5 Reductive and semisimple algebraic groups

Finally we are in a position to define reductive and semisimple algebraic groups.
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In the later part of this thesis, we will work with reductive algebraic groups over
finite fields, also known as the finite groups of Lie type.

Definition 2.5.1. The maximal closed connected solvable normal subgroup of a
linear algebraic group G is called the radical R(G) of G.

Note that the radical always exists since if H,H ′ ≤ G are two closed connected
solvable normal subgroups of G, then so is HH ′ . It is clear from the results of the
previous section that Ru(G) := R(G)u, is the maximal closed connected unipotent
normal subgroup of G. The subgroup Ru(G) is called the unipotent radical of G.
We have the relation, Ru(G) ≤ R(G) ≤ G◦.

Definition 2.5.2. Let G be a connected algebraic group. Then, G is called a
reductive group if Ru(G) is trivial. The group G is called semisimple if R(G) is
trivial.

It is easy to see that for a connected algebraic group G, G/R(G) is semisimple
and G/Ru(G) is reductive. We give some examples of reductive groups before
moving further. First we look at a trivial non-example.

Example 2.5.3. Let G be connected solvable linear algebraic group. Then,
R(G) = G and, Ru(G) = Gu. Thus, a solvable algebraic group is semisimple
if and only if it is trivial, and is reductive if and only if it is a torus.

Example 2.5.4. An abstract construction of a reductive group can be done as
follows: let G be a semisimple linear algebraic group and T be a torus. Then G×T
is a linear algebraic group and R(G× T ) = T , and hence G× T is reductive.

Example 2.5.5. Let G := GL(n, k). Then, clearly R(G) ≤ Tn. But since T−n is
conjugate to Tn, where T−n denote the group of invertible lower triangular matrices,
we conclude that R(G) ≤ Tn ∩ T−n = Dn. Thus, Ru(G) is trivial, and hence
G is reductive. In fact it is easy to determine R(G) explicitly here. We have
R(G) = Z(G) = {λI | λ ∈ k×} ∼= Gm. We conclude, PGL(n, k) is semisimple.

Example 2.5.6. Consider G := SL(n, k). As above, one can show, R(G) ≤
Z(G) = {λI | λn = 1}. Since Z(G) is finite, we conclude, R(G) = {1}. Hence G
is semisimple.

The radical R(G) can be described using the Borel subgroups as follows,

Proposition 2.5.7. Let G be a connected linear algebraic group. Then R(G) =
(
⋂
B B)◦, where B runs over all Borel subgroups of G.
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The following proposition describes the radical of a connected reductive group and
generalizes the observations made in the above examples.

Proposition 2.5.8. Let G be connected reductive linear algebraic group. Then,

1. R(G) = Z(G)◦ is a torus.

2. R(G) ∩ [G,G] is finite.

3. [G,G] is semisimple.

Example 2.5.9. Consider the symplectic group G := Sp(2n, k). It is easy to
show that the center Z(Sp(2n, k)) = {±I}. Thus, R(G) is trivial, and hence G is
semisimple.

Similar computations show that SO(2n, k) and SO(2n+ 1, k) are also semisimple
algebraic groups. We end this section with the definition of simple algebraic group.

Proposition 2.5.10. Let G be a connected reductive group. Then,

(a) For a subtorus S ≤ G, the centralizer CG(S) is connected and reductive.

(b) If T is a maximal torus of G, then CG(T ) = T .

Definition 2.5.11. A connected linear algebraic group is called simple if there is
no non-trivial connected closed normal subgroup.

Clearly any simple algebraic group is semisimple.

Example 2.5.12. The special linear group SL(n, k) is a simple algebraic group.
The group SL(2, k)× SL(2, k) is semisimple but not simple.

2.6 Classification of reductive algebraic groups

This section deals with the classification of reductive (or, semisimple) algebraic
groups over algebraically closed fields. The material in this section is not needed
further in the thesis, but we provide it for completeness. Therefore, our account of
the classification theorem will be made as brief as possible. We start by introducing
the concept of Lie algebra of a linear algebraic group.

2.6.1 Lie algebra of a linear algebraic group

Let A be a k-algebra. A k-linear map D : A → A is called a derivation if for all
f, g ∈ A, we have D(fg) = fD(g)+gD(f). Let Derk(A) be the set of all derivation
of a k-algebra A. Then, Derk(A) is a Lie algebra over k.
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Let G be a linear algebraic group. For each x ∈ G, define the map λx : k[G]→
k[G] defined by λx(f)(g) = f(x−1g) for all f ∈ k[G] and g ∈ G. This is a k-algebra
homomorphism on k[G].

Definition 2.6.1 (Lie algebra of an algebraic group). The Lie algebra of an alge-
braic group G is the subspace

Lie(G) := {D ∈ Derk(k[G]) | Dλx = λxD for all x ∈ G}

of left invariant derivation of k[G] is a Lie subalgebra of Derk(k[G]).

Let X be an affine variety. Then, the tangent space of X at x ∈ X is defined
by

Tx(X) := {δ : k[X]→ k linear | δ(fg) = fδ(g) + δ(f)g for f, g ∈ k[X]}.

If G is a linear algebraic group then the tangent space of G at identity which is
T1(G) can be given a Lie algebra structure by the following map

Θ : Lie(G)→ T1(G), Θ(D)(f) := D(f)(1),

which is a isomorphism of linear maps.

Definition 2.6.2 (Differential map). Let φ : X → Y be a morphism of affine
varieties. The differential dx(φ) of φ at x ∈ X is the map dx(φ) : Tx(X) →
Tφ(x)(X) defined by dx(δ) := δ ◦ φ∗ for δ ∈ Tx(X).

If φ : G → H is a morphism of algebraic groups, then we write dφ := d1φ :
T1(G) → T1(G). In fact, dφ is a homomorphism of Lie algebras on Lie(G). We
also have that Lie(G) = Lie(G◦) and, dim(G) = dim(G◦) = dim(Lie(G)).

Example 2.6.3. Let G := GL(n, k). Then, Lie(G) ∼= gl(n, k) which is the lie
algebra of all n×n matrices over k, with the bracket operation [A,B] := AB−BA
for all A,B ∈ gl(n, k).

Example 2.6.4. Let G := SL(n, k). Then, Lie(G) ∼= sl(n, k) which is the lie
subalgebra of gl(n, k) consisting of all n× n matrices over k with trace zero.

2.6.2 Adjoint representation of an algebraic group

Let G be an algebraic group. For x ∈ G define the isomorphism Intx : G → G

by Intx(g) = xgx−1. The differential dIntx : Lie(G) → Lie(G) is a Lie algebra
automorphism. Let Ad x := dIntx. This defines a representation

Ad : G→ GL(Lie(G)), x 7→ Ad x
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which is called the adjoint representation of G.
The above representation is a homomorphism of algebraic groups. Furthermore,
the differential of the above adjoint map

ad = dAd : Lie(G)→ gl(Lie(G))

is a Lie algebra homomorphism and (ad(X))(Y ) = [X,Y ] = XY −Y X for X,Y ∈
Lie(G). Finally, if G is a connected reductive group then Ker(Ad) = Z(G).

Example 2.6.5. Let G := GL(n, k). Then, Lie(G) ∼= gl(n, k). Some calculations
will show that for g ∈ G, Ad(g) : gl(n, k) → gl(n, k) is given by X 7→ gXg−1 for
all X ∈ gl(n, k). Thus,

Ad : GL(n, k)→ GL(gl(n, k)), g 7→ Ad g : gl(n, k)→ gl(n, k) given by,
Ad g(X) = gXg−1.

In fact the same holds for any closed subgroup of GL(n, k).

2.6.3 Root space decomposition of an algebraic group

We first start with the definition of a character of an algebraic group.

Definition 2.6.6. A character of a linear algebraic group G is a morphism of
algebraic groups χ : G→ Gm. The set of characters of g is denoted by X(G).

A character of G can be naturally considered as an element of k[G]. The set X(G)
is an abelian group with respect to the operation (χ1 +χ2)(g) = χ1(g)χ2(g) for all
χ1, χ2 ∈ X(G).

Definition 2.6.7. A cocharacter of a linear algebraic group G is a morphism of
algebraic groups γ : Gm → G. The set of cocharacter of G is denoted by Y (G).

Clearly, Y (G) is also an abelian group with respect to the operation (γ1 +γ2)(g) =
γ1(g)γ2(g) for all γ1, γ2 ∈ X(G).

Example 2.6.8 (Characters and cocharacters of a torus). Let G = Dn, the torus
of dimension n. Consider χi : Dn → Gm defined by χi(diag(t1, t2, . . . , tn)) = ti.
Clearly χi ∈ X(Dn). In fact any χ ∈ X(G) can be decomposed as χa1

1 . . . χann for
(a1, a2, . . . , an) ∈ Zn. Thus, X(G) ∼= Zn. Similarly, for a = (a1, a2, . . . an) ∈ Zn,
the map γa : Gm → Dn defined by γa(t) = diag(ta1 , ta2 , . . . , tan) is a cocharacter.
Once again it can be shown that any cocharacter is of this form and hence, Y (G) ∼=
Zn.
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We now describe the root space decomposition of an algebraic group G. Let G
be a linear algebraic group. Let T ≤ G be a maximal torus and assume dim(T ) ≥ 1,
which is guaranteed if G is reductive. Let g = Lie(G). Recall the adjoint repre-
sentation Ad : G → GL(g). The image of T under the adjoint representation
Ad(T ) ≤ GL(g) is a set of commuting semisimple elements, so can be simultane-
ously diagonalized. For χ ∈ X(T ), let

gχ = {v ∈ g | (Ad t)(v) = χ(t)v for all t ∈ T}.

This is called the weight space in g corresponding to χ. Then, g decomposes into
certain weight spaces as

g =
⊕

χ∈X(T )
gχ.

The above decomposition is called the root space decomposition of G.

Definition 2.6.9. The set of non-zero characters χ ∈ X(T ) such that gχ 6= 0
occurring in the above decomposition is called the set of roots of G, denoted by
Φ(G) or simply Φ.

It is clear that the size of Φ is finite as g is finite dimensional. By the above
definition we have,

g = g0 +
⊕
χ∈Φ

gχ.

Let G be a connected reductive group, T ≤ G a maximal torus of G, g := Lie(G)
and Φ = Φ(G). Then,

g = Lie(T ) +
⊕
χ∈Φ

gχ,

with dim(gχ) = 1 for χ ∈ Φ, and Lie(T ) = g0. Thus we get, dim(G) = dim(g) =
|Φ| + rk(G). For a detailed result on the structure theory of connected reduc-
tive group, see Theorem 8.17 in [MT11]. We now give an example of root space
decomposition.

Example 2.6.10. Let G := GL(n, k) with Lie algebra g = gl(n, k). Let T be the
diagonal maximal torus Dn. Then Lie(Dn) is the set of all diagonal matrices over
k, which is a Lie subalgebra of g. Let Eij be the matrix whose (i, j) position is 1,
all other entries are 0. Now,

Ad(diag(t1, t2, . . . , tn)) = tit
−1
j Eij



32 2.6. Classification of reductive algebraic groups

Thus, the character χij : T → Gm defined by χij(diag(t1, t2, . . . , tn)) = tit
−1
j

corresponds to a non-zero weight space gχij = 〈Eij〉 for 1 ≤ i 6= j ≤ n. Thus, we
get the root space decomposition

g = Lie(T ) +
⊕

1≤i 6=j≤n
〈Eij〉

Thus the set of roots Φ(G) = {χij | 1 ≤ i 6= j ≤ n}. We have, |Φ(G)| = n(n− 1).
As observed earlier all the weight spaces are of dimension 1, and n2 = dim(G) =
dim(Lie(T )) + |Φ(G)| = n+ n(n− 1) = n2.

As a consequence of the structure theory of reductive groups we get the fol-
lowing important result,

Proposition 2.6.11. Let G be a connected reductive group. Then G = [G,G]R(G) =
[G,G]Z(G)◦.

Since, [G,G] is semisimple, the classification of reductive group boils down to the
classification of semisimple algebraic groups.

2.6.4 Classification of semisimple groups

We end this section by discussing the classification of semisimple groups. We
describe it very briefly. We have already seen from the root space decomposition
of a connected reductive group G with respect to a maximal torus T that, we get
a finite set of roots, Φ ⊆ X(T ) = X (corresponding to non-zero weight spaces).
Define E := X ⊗Z R. The group X being a free abelian group, E is therefore a
vector-space over R of the same dimension as the free rank of X. The group X can
be naturally identified as a subgroup of E. Thus, we have Φ ⊆ X ⊆ E. The set
Φ along with the vector space E fits into a certain combinatorial structure called
the root system.

Definition 2.6.12 (Root system). A subset Φ of a finite dimensional Eucildean
space E is called a root system if the following properties are satisfied:

(R1) Φ is finite, 0 /∈ Φ, 〈Φ〉 = E,

(R2) if c ∈ R is such that α, cα ∈ Φ, then c = ±1.

(R3) for each α ∈ Φ, the reflection sα ∈ GL(E) along α stabilizes Φ.

(R4) for α, β ∈ Φ, sα(β)− β is an integral multiple of α.

The group W := 〈sα | α ∈ Φ〉 ≤ GL(E) is called the Weyl group of Φ. The
dimension of E is called the rank of the root system.
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With this definition the following result holds.

Proposition 2.6.13. Let G be a connected reductive group and Φ be the set of
roots (appearing in the root space decomposition). View Φ as a subset of E :=
X ⊗Z R. Then, Φ is a root system in 〈Φ〉 ≤ E. Moreover, if G is semisimple
〈Φ〉 = E.

Thus, to a semisimple group of rank n we have attached a combinatorial data
which is a root system of rank n.

There is a obvious notion of isomorphism of root systems and therefore one can
classify root system of a given rank. This classification is established by attaching
a graph with respect to a root system which is called the Dynkin diagram of the
root system. The graph has restrictive properties which allows one to classify these
graphs upto isomorphism. Since two root systems are isomorphic if and only if
they have the same Dynkin diagram, it follows that the classification of the Dynkin
diagram yields the classification of root systems. In fact, it is enough to classify
connected Dynkin diagrams because of the notion of indecomposable root system.

Definition 2.6.14. A root system Φ of the Euclidean space E is called indecom-
posable if Φ cannot be written as a union of mutually orthogonal subsets.

A root system is either indecomposable or can be written as a union of inde-
composable root systems (of smaller rank). The Dynkin diagram of a root system
is connected if and only if it is indecomposable. Thus, to classify root system
it is enough to classify indecomposable root system which in turn is achieved by
classifying connected Dynkin diagrams.

It turns out that the root system is not enough to distinguish between two
semisimple algebraic groups. For example - The group SL(2, k) and PGL(2, k) have
the same root system (see Example 9.9, [MT11]). Thus, the cocharacters comes
in to the picture, and it is possible to attach a combinatorial data to a reductive
algebraic group known as the root datum (see Definition 9.10 in [MT11]). This
structure has an underlying root system but have some more information which is
enough to distinguish between any semisimple algebraic group (for example SL(2)
and PGL(2)). This is the classification theorem of semisimple groups by Chevalley.

Theorem 2.6.15 (Classification theorem for semisimple groups). Two semisimple
algebraic groups are isomorphic if and only if they have isomorphic root datum.
For each root datum there exists a semisimple algebraic group that realizes it. The
group is simple if and only if the underlying root system of the root datum is
indecomposable.
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2.7 Regular elements in connected reductive group

We finish this chapter by introducing a class of elements in a connected reductive
group, known as the regular elements. These elements in some sense constitute
most of the group. Let G be a connected reductive group. For x ∈ G, the
centralizer ZG(x) is a closed subgroup of G.

Definition 2.7.1. An element x ∈ G is called regular if dim(ZG(x)) is smallest
possible among all the dimensions of centralizers of elements of G.

The next proposition tells how small the dimension of a centralizer can be.

Proposition 2.7.2. Let G be connected, x ∈ G. Then, dim(ZG(x)) ≥ rk(G).

The following result is one of the most important result used in this thesis. A
finitary analogue of this will appear in Chapter 3, and will play a central role in
proving the results in Chapter 6.

Theorem 2.7.3. Let G be a connected reductive group and s be a semisimple
element and s ∈ T , where T is a maximal torus of G. Then s is regular if and
only if ZG(s)◦ = T . Further, the set of all regular semisimple elements is dense
in G.

We obtain the following two corollaries,

Corollary 2.7.4. Let G be a connected reductive group. Then, x ∈ G is regular
if and only if dim(ZG(x)) = rk(G).

Corollary 2.7.5. Let G be a connected reductive group. Then, every regular
semisimple element of G is contained in a unique maximal torus of G.

Proof. Let s ∈ G be regular semisimple. Let S ∈ T, T
′ , where T and T

′ are
maximal tori of G. Then, by Theorem 2.7.3, ZG(s)◦ = T = T

′ , which yields the
result.

The last corollary will also play a central role in Chapter 8. We also note that for
the classical groups defined in Examples 2.1.4 - 2.1.10, the regular elements can
be described completely in terms of linear algebra. We will see this for the group
GL(n, k) in Chapter 4.



Chapter 3

Finite Groups of Lie type

This is another basic chapter in the thesis where we briefly discuss the theory
(relevant to this thesis) of finite reductive groups or finite groups of Lie type. As
mentioned at the beginning of Chapter 2, we will see that the theory of the finite
reductive groups can be developed from the theory of linear algebraic groups over
algebraically closed fields by using the famous Lang-Steinberg theorem (see The-
orem 3.2.1). Let q = pa be a prime-power, and k = F̄q denote the algebraically
closed field in characteristic p throughout this chapter. Let G denote a linear alge-
braic group over k unless specified otherwise. Once again we follow the exposition
in Part 3 of [MT11].

3.1 Finite groups of Lie type - Definition and examples

Let V ⊆ kn be an affine variety over k defined by a set of polynomials T ⊆
Fq[T1, . . . , Tn]. We say that V is defined over Fq. The map Fq : k → k defined
by t 7→ tq is a field automorphism which fixes Fq pointwise. This is called the
Frobenius automorphism of k. Since I ⊆ Fq[T1, . . . , Tn], it is clear that we have a
well defined morphism,

Fq : V → V , (v1, . . . , vn) 7→ (vq1, . . . , vqn).

This is the induced map Fq on V , induced from the Frobenius automorphism Fq on
k. We call this map the Frobenius morphism of V with respect to the Fq-structure
given by I. Define,

V Fq := V (Fq) := {v ∈ V | Fq(v) = v},

for the Fq-fixed points of V . It is clear that Fq is a bijective morphism, although
it is not an isomorphism of varieties. Note that V Fq is finite.

35
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Example 3.1.1. Let G := GL(n, k). The Frobenius morphism Fq : G→ G given
by (aij) 7→ (aqij), is actually a homomorphism of algebraic groups. Then, the set
of Fq-fixed points,

GL(n, k)Fq = {(aij) ∈ GL(n, k) | (aqij) = (aij)} = GL(n, q)

is the finite group of n× n invertible matrices with entries in the field Fq.

Let G ≤ GL(n, k) be any Fq-stable closed subgroup. Then, the Frobenius
morphism Fq : G → G is a homomorphism of algebraic groups. The set of Fq-
fixed points GFq ≤ GL(n, q) is a finite subgroup. These Frobenius maps can be
generalized so that a much larger class of groups can be covered.

Definition 3.1.2 (Steinberg endomorphism). An endomorphism F : G → G is
called a Steinberg endomorphism if for some m ≥ 1 the power Fm : G→ G is the
Frobenius endomorphism with respect to some Fq-structure of G.

Once again a Steinberg endomorphism is a morphism of varieties which is an
automorphism of the abstract group G. We look at another example.

Example 3.1.3 (General unitary group over finite fields). Let G := GL(n, k). We
define the endomorphism,

F : G→ G, (aij) 7→ t(aqij)−1

Then, F 2 : G→ G is given by (aij) 7→ (aq
2

ij ), which is the standard Frobenius map
Fq2 with respect to Fq2 . Thus we have,

GF ≤ GF 2 = GL(n, q2).

The fixed point group GU(n, q) := GF = {A ∈ GL(n, q2) | t(Aq)A = id} is called
the general unitary group over Fq2 . The finite group SU(n, q) = GU(n, q)∩SL(n, q)
is called the special unitary group over Fq2 . The above definition also shows that
GU(n, q) is the group of isometries of the non-degenerate sesquilinear form on a
vector space of dimension n over Fq2 . Note that the Steinberg endomorphism F

defined above is not a usual Frobenius endomorphism.

Definition 3.1.4. Let G be a connected reductive group over k = F̄q for some
prime-power q, and F be a Steinberg endomorphism of G. Then, the finite group
of fixed points GF is called a finite group of Lie type.

Example 3.1.5 (Symplectic group over finite fields). LetG := Sp(2n, k) as defined
in Example 2.1.7 of the previous chapter. Once again the fixed point set of the
usual Frobenius map defined by
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Fq : G→ G (aij) 7→ (aqij)

gives, Sp(2n, q) = Sp(2n, k)Fq = {A ∈ GL(n, q) | tAJ2nA = J2n}, where J2n is as
defined in Chapter 2.

Example 3.1.6 (Split and non-split orthogonal groups in even dimension). Sup-
pose char(k) 6= 2. Let G := GO(2n, k) as defined in Example 2.1.9. It is clear that
G is stable under the usual Frobenius map Fq : GL(n, q) → GL(n, q). The fixed
point set under Fq gives,

GO+(2n, q) = GO(2n, k)Fq = {A ∈ GL(n, q) | tAK2nA = K2n}

This is called the general orthogonal group over Fq of plus-type, or the split general
orthogonal group over Fq.

Now, let

g :=


In−1

0 1
1 0

In−1


Then det(g) = −1. Thus g ∈ GO(2n, k) \ SO(2n, k). The automorphism F

′ :=
gF : GO(2n, k) → GO(2n, k) is a Steinberg automorphism and thus, the fixed
point set GO−(2n, q) := GO(2n, k)F

′
is called the general orthogonal group (over

finite field) of minus-type, or non-split orthogonal group over finite fields.
These groups can also be obtained as the isometry group of non-degenerate

symmetric bilinear forms (or, equivalently quadratic forms when char(k) 6= 2) over
finite fields. There are two non-equivalent bilinear forms on a vector space of
dimension n over Fq, one represented by the matrix,

B1 =


1

1
. . .

d


where d is a square in F×q , and another represented by the matrix,

B2 =


1

1
. . .

d


where d is a non-square in F×q . When the dimension is even, the isometry group
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with respect to each of these two bilinear forms are non-isomorphic, and thus yields
the two groups of plus-type (with respect to B1) and minus-type (with respect to
B2).

3.2 Lang-Steinberg theorem and its applications

We begin with a theorem which is a crucial tool for transferring the results of an al-
gebraic group G to the group of fixed points GF for some Steinberg endomorphism
F on G.

Theorem 3.2.1 (Lang-Steinberg). Let G be a connected linear algebraic group G
over F̄q with Steinberg endomorphism F : G→ G. The morphism

L : G→ G, g 7→ F (g)g−1,

is surjective.

Now we turn to some very important results relevant to this thesis. Let G be
a connected linear algebraic group with a Steinberg endomorphism F . Suppose
V be any non-empty set and G acts transitively on V . Let F ′ : V → V be a
map. Suppose that the action is F, F ′-compatible, that is, F ′(g.v) = F (g).F ′(v)
for all g ∈ G, v ∈ V . Since the action is compatible with F, F

′ , the finite group
GF acts on V F

′
:= {v ∈ V | F ′(v) = v}. Indeed if v ∈ V F

′
, then for g ∈ GF ,

F
′(g.v) = F (g).F ′(v) = g.v. Thus, it is also clear that V F

′
is finite.

Suppose for some v ∈ V , the stabilizer Gv is closed. Since the action of G
on V is transitive, all stabilizers are then closed (being conjugates). Let us take
some v ∈ V F

′
(assuming V F

′
is non-empty). Observe that F (Gv) ⊆ Gv. Indeed

if x ∈ Gv, F (x).v = F (x).F ′(v) = F
′(x.v) = F

′(v) = v. Thus, F (G◦v) ⊆ G◦v. This
gives a induced map F : Gv/G◦v → G/G◦v. In fact, this map is a isomorphism of
groups.

Definition 3.2.2. Let H be a (abstract) group and σ be an automorphism of H.
We say h1, h2 ∈ H are σ-conjugate if there exists x ∈ H such that h2 = σ(x)h1x

−1.
The equivalence classes for this relation are called the σ-conjugacy classes of H,
or σ-twisted conjugacy classes of G.

Note that if σ is the identity map in the above definition then σ-conjugacy classes
are nothing but the conjugacy classes of G. The next theorem guarantees that
V F

′
is non-empty and describes the orbits of V F

′
under the action of GF .

Theorem 3.2.3. Let G be a connected linear algebraic group over k = F̄q, with
Steinberg endomorphism F . Let V be a non-empty set with a map F ′ : V → V .



3.3. F-stable Tori 39

Suppose that G acts transitively on V such that the action is F, F ′ compatible, that
is, F ′(g.v) = F (g).F ′(v) for every g ∈ G, v ∈ V . Then,

(a) F ′ has fixed point on V , that is, V F
′
6= ∅.

(b) For any v ∈ V F
′
, there is a natural one-one correspondence:

{GF -orbits on V F
′
} ←→ {F -conjugacy classes in Gv/G◦v}.

The correspondence in the above theorem can be given as follows: Let v ∈ V F
′
.

Let x ∈ V . There exists g ∈ G such that x = g.v. With this, we map the orbit
of x to the F -conjugacy class of F (g)g−1G◦v. This correspondence will be needed
later for explicit computations.

Corollary 3.2.4. Let G be a connected reductive group and F : G → G be a
Steinberg endomorphism. Then, there exists a pair T ≤ B, consisting of a F -
stable maximal torus T contained in an F -stable Borel subgroup B of G. All such
pairs (T,B), with T ≤ B are GF -conjugate.

Definition 3.2.5. A maximal torus of G as in the above corollary is called max-
imally split with respect to F .

Example 3.2.6. Let G := GL(n, k). Let Fq be the usual Frobenius endomor-
phism. Consider the pair (Dn,Tn), where Dn ≤ Tn is the diagonal torus contained
in the group of upper triangular matrices. Clearly, Tn and Dn are Fq-stable Borel
subgroup and maximal tori respectively of G. We have DFq

n
∼= F×q × · · · × F×q =

(F×q )n.

We see in the above example that any maximally split torus is the direct product
of n-copies of F×q . This need not be true in the case of an arbitrary Steinberg
endomorphism (see Example 21.14 in [MT11]).

3.3 F-stable Tori

We end this chapter with the discussion of F -stable tori of a linear algebraic group
G. Let G be a connected reductive group with Steinberg endomorphism F and
V = {T ≤ G | T is a maximal torus}. Define the map F ′ : V → V , T 7→ F (T ).
The group G acts on V by conjugation and this action is transitive by virtue of
Corollary 2.4.12 in Chapter 2. The conjugation of G on V is clearly compatible
with the map F ′ on V . Let T be a maximal torus of G. Then the stabilizer of T
under the action of G is the normalizer NG(T ), which is closed. The connected
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component, NG(T )◦ = CG(T )◦ = CG(T ) = T . Thus, by using Theorem 3.2.3, we
conclude that V F

′
is non-empty, that is, there exists F -stable maximal tori and,{

GF -classes of F -stable
maximal tori of G

}
←→ {F -conjugacy classes in W},

where W = NG(T )/T is the Weyl group of G.

Example 3.3.1. Consider the group G := GL(n, k) and let Fq be the usual
Frobenius endomorphism. Then GF = GL(n, q). Let T = Dn be a Fq-stable
maximal torus of G. We have seen in Example 2.4.15 in Chapter 2, that NG(T )
is the subgroup of monomial matrices in G. The group NG(T )/T = {mT | m ∈
NG(T )}, where m are given by the matrices which have exactly one non-zero entry
in each row and column, the non-zero entry being always 1. Thus, Fq induces the
identity automorphism on NG(T )/T ∼= Sn. Thus, by the above discussion,{

GL(n, q) -classes of Fq -stable
maximal tori of GL(n, k)

}
←→ {Conjugacy classes in Sn}.

The conjugacy classes in Sn are parametrized by partitions of n, and thus the
GL(n, q) classes of Fq-stable maximal tori of GL(n, k) are parametrized by the
partitions of n. See Example 3.3.7 for more explicit description of maximal tori in
GL(n, q).

Recall that every semisimple element of a connected reductive group G is con-
tained in a maximal torus of G, and a regular semisimple element is contained in a
unique such maximal torus (see Corollary 2.4.21, and Corollary 2.7.5 in Chapter 2).
In the same light, we have,

Proposition 3.3.2. Let G be a connected reductive group with Steinberg endo-
morphism F . Any semisimple element of GF is contained in a F -stable maximal
torus of G. Furthermore, any regular semisimple element of GF is contained in a
unique F -stable maximal torus of G.

In the light of the above proposition, we define the following,

Definition 3.3.3. Let G be a connected reductive group with Steinberg endomor-
phism of F . We call a subgroup H ≤ GF a maximal torus of GF , if H = TF for
some F -stable maximal torus T of G.

We end this section with the finitary analogue of the density of regular semisim-
ple elements in a connected reductive group G. For an elementary proof of this
result see [JKZ13].
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Proposition 3.3.4. Let G be a connected reductive group with Steinberg endo-
morphism F . Let GFrs denote the set of all regular semisimple elements in GF .
Then,

|GFrs|
|GF |

= 1 + O(q−1).

In other words, lim
q→∞

|GFrs|
|GF |

= 1. The following example illustrates the above result.

Example 3.3.5. Consider the finite reductive group GL(2, q) of invertible 2 × 2
matrices with entries in Fq. We have, |GL(2, q)| = (q2−q)(q2−1) = q4−q3−q2+q.
Let GL(2, q)rs denote the set of regular semisimple elements in GL(2, q). We have

|GL(2, q)rs| = q4 − 2q3 + q (see Chapter 9). Thus, lim
q→∞

|GL(2, q)rs|
|GL(2, q)| = 1.

3.3.1 Non-degenerate maximal tori

We begin with a proposition.

Proposition 3.3.6. Let G be a linear algebraic group with a Steinberg endomor-
phism F : G → G, and H an F -stable closed connected normal subgroup of G.
Then, the natural map GF /HF → (G/H)F is an isomorphism.

Let G and V be as defined in this section. Let T be a F -stable maximal torus
of G. Recall that the GF orbits of F -stable maximal tori are in one-one correspon-
dence with the F -conjugacy classes of the Weyl group W = W (T ) = NG(T )/T .
Due to the discussion at the end of Theorem 3.2.3, this one-one correspondence
can be explicitly given as follows: If T ′ is any F -stable maximal torus of G and
T
′ = g−1Tg for some g ∈ G, then we map the GF -orbit of T ′ to the F -conjugacy

class of F (g)g−1W . Let us now take w ∈W with w = F (g)g−1W for some g ∈ G.
Call F (g)g−1 = nw. Let Tw = g−1Tg. Thus we have, NG(Tw) = g−1NG(T )g.

Applying Proposition 3.3.6, with G equal to NG(Tw) and H equal to Tw, we
have

W (Tw)F = (NG(Tw)/Tw)F ∼= NGF (Tw)/TFw .

Now, for n ∈ NG(T ),

F (g−1ngTw) = g−1ngTw ⇐⇒ gF (g)−1F (n)F (g)g−1(gTwg−1) = ngTwg
−1

⇐⇒ n−1
w F (n)nwT = nT.

Taking nT = n̄ in NG(T )/T , we conclude that,
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NGF (Tw)/TFw ∼= W (Tw)F ∼= CW,F (w) := {x ∈W | F (x)wx−1 = w}.

For t ∈ T ,
F (g−1tg) = g−1tg ⇐⇒ F (t) = n−1

w tnw.

Thus,

TFw
∼= T [w] := {t ∈ T | F (t) = n−1

w tnw}.

Example 3.3.7. Let G := GL(n, k) and Fq be the usual Frobenius map. From
Example 3.2.6 and Example 3.3.1, T = Dn is maximally split and the GL(n, q)-
classes of Fq-stable tori are in one-one correspondence with partitions of n. Let
λ ` n be a partition of n, that is, λ = (λ1, λ2, . . . , λr) with λ1 ≥ λ2 ≥ · · · ≥ λr > 0
for all 1 ≤ i ≤ r and,

∑
λi = n. We claim that,

TFλ
∼= F×

qλ1 × · · · × F×
qλr

where Tλ is a F -stable maximal torus of G corresponding to the partition λ ` n
of n.
Consider the partition (n) ` n. Let wn be the permutation matrix corresponding
to the n-cycle (1, 2, . . . , n). Thus, wn is obtained from the identity matrix by
shifting the first row to second, second to third and so on, that is,

wn =


0 1 · · · 0
...

...
0 0 · · · 1
1 0 · · · 0

 .

By the discussion above, an F -stable maximal tori corresponding to the partition
(n) ` n is isomophic to

D
[wn]
n = {t ∈ Dn | Fq(t) = w−1

n twn}.

Let t ∈ Dn with diagonal entries t1, t2, . . . , tn. Then w−1
n twn has diagonal entries

t2, t3, . . . , tn, t1. Thus, t ∈ D[wn]
n if and only if

tq1 = t2, t
q
2 = t3, . . . , t

q
n−1 = tn, t

q
n = t1.

if and only if
tq
n

1 = t1 and ti+1 = tq
i

1 for 1 ≤ i ≤ n− 1.

This yields,
D[wn]
n = {diag(ζ, ζq, . . . , ζqn−1) | ζ ∈ F×qn} ∼= F×qn .

Thus, we see that for the partition (n) ` n, our claim holds. The general result
can be proved using the same argument cycle-by-cycle.
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In general, for a F -stable maximal tori of G we must have, NGF (T ) ⊆
NGF (TF ), but NGF (T ) 6= NGF (TF ). For example, it might happen when T 6= {1},
but TF = {1}. Taking q = 2 in Example 3.2.6, we have TF ∼= (F×2 )n = {1}.

Based on the above observation, we now consider the action of GF on the set
of all TF where T is a F -stable maximal torus of G. We have already seen that
the orbits of collection of all F -stable maximal torus under the action of GF are
in one-one correspondence with F -conjugacy classes of the Weyl group W . The
same is true for the orbits of {TF | T is a F -stable maximal torus of G} under
the action of G, provided q is large enough. We follow the exposition in Chapter
3 of [Car85] from now onwards.

Definition 3.3.8. Let G be a connected reductive group with Steinberg endomor-
phism F . Let T be a F -stable maximal torus of G. The maximal torus TF of GF

is called non-degenerate if T is the only maximal torus of G containing TF .

The fact that T is the only maximal torus of G containing TF is equivalent to
saying T = CG(TF )◦. The following proposition sums up the properties enjoyed
by non-degenerate maximal tori.

Proposition 3.3.9. Let T1, T2 ≤ G be F -stable maximal tori of G and suppose
TF1 , T

F
2 are non-degenerate. Then T1, T2 are GF -conjugate maximal tori of G if and

only if TF1 , TF2 are conjugate subgroups of GF . Thus, if all the maximal tori of GF

are non-degenerate then there is a one-one correspondence between the conjugacy
classes of maximal tori in GF and the F -conjugacy classes in W . Finally, for a
non-degenerate maximal tori TF of GF , we must have NGF (T ) = NGF (TF ).

Corollary 3.3.10. Let T be a F -stable maximal torus of G such that TF is non-
degenerate. Then, NGF (TF )/TF ∼= W (T )F .

Finally as indicated before, we have the following theorem.

Theorem 3.3.11. Let G be a connected reductive group with Steinberg endomor-
phism F . Then all the maximal tori of GF are non-degenerate if q is sufficiently
large.
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Chapter 4

Conjugacy Classes of GL(n, q)

This chapter deals with the conjugacy classes in the general linear group over finite
fields, denoted by GL(n, q). The conjugacy classes in GL(n, q) are determined by
the well-known theory of rational canonical forms. We discuss this theory briefly in
this chapter. We provide a combinatorial way of describing these classes which will
play a vital role in establishing the combinatorial background of this thesis. We
will also define conjugacy classes of certain special elements in the group, namely
semisimple, regular and regular semisimple conjugacy classes. These classes will
play a significant role in the problem to be discussed in the subsequent chapters.

4.1 Rational canonical form and conjugacy classes in
GL(n, q)

In this section, we will describe the rational canonical form of matrices, which
in turn determines the conjugacy classes in GL(n, q). This theory is well known
and can be found in any graduate algebra text (see, for example [DF04]). The
rational canonical form for a linear transformation can be described using the
structure theory of modules over a principal ideal domain (PID). Let M be a
finitely generated module over R, where R is a PID. The following theorem is
the fundamental theorem of finitely generated modules over PID (see Chapter
12, [DF04]).

Theorem 4.1.1 (Fundamental Theorem, Invariant Factor Form). Let R be PID
and let M be a finitely generated R-module. Then,

1. The module M is isomorphic to the direct sum of finitely many cyclic mod-
ules. More precisely,

45
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M ∼= Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)

for some integer r ≥ 0 and, nonzero elements a1, a2, . . . , am of R which are
not units in R and which satisfy the divisibility relations, a1|a2| · · · |am.

2. The module M is torsion free if and only if M is free.

3. In the decomposition in (1),

Tor(M) ∼= R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am).

In particular, M is a torsion module (that is, Tor(M) = M) if and only if
r = 0 and in this case the annihilator of M is the ideal (am).

The integer r ≥ 0 in the above theorem is called the free rank or the Betti number
of M and the elements a1, a2, . . . , am ∈ R (defined up to multiplication by units
in R) are called invariant factors of M . An alternate version of this theorem
which can be derived as a consequence of the prime decomposition of the elements
a1, a2, . . . , am ∈ R, is as follows:

Theorem 4.1.2 (Fundamental Theorem, Elementary Divisor Form). Let R be
a PID and let M be a finitely generated R-module. Then, M is the direct sum
of finitely many cyclic modules whose annihilators are either (0) or generated by
powers of primes in R, i.e,

M ∼= Rr ⊕R/(pα1
1 )⊕R/(pα2

2 )⊕ · · · ⊕R/(pαtt ),

where r ≥ 0 is an integer and, pα1
1 , pα2

2 , . . . , pαtt are positive powers of (not neces-
sarily distinct) primes in R.

The prime powers pα1
1 , . . . , pαtt (defined up to multiplication by units in R)

are called the elementary divisors of M . In the above theorem if M is torsion
(i.e., r = 0), and p1, p2, . . . , pl ∈ R be the distinct primes occurring in the above
decomposition, we can club together all the elementary divisors corresponding to
each such prime, which yields

M = N1 ⊕N2 ⊕ · · · ⊕Nl

where Ni consists of all elements of M annihilated by some power of the prime
pi. The submodule Ni of M is called the pi-primary component of M . The above
decomposition also identifies M up to isomorphism.
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Theorem 4.1.3 (Fundamental Theorem, Uniqueness). Let R be a PID.

1. Two finitely generated R-modules M1 and M2 are isomorphic if and only if
they have the same free rank and the same list of invariant factors.

2. Two finitely generated R-modules M1 and M2 are isomorphic if and only if
they have the same free rank and the same list of elementary divisors.

Now, with the fundamental theorem at our disposal, we can apply this to linear
transformations. Given a linear transformation T : V → V , where V is a vector
space of dimension n over Fq, we can define a module VT over the polynomial ring

Fq[x] where VT = V and the scalar operation given by
(

n∑
i=0

aix
i

)
.v =

n∑
i=0

aiT
i(v)

where T i = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
i times

. In short, the action is defined by saying “x acts on v

as T acts on v”. We use the notation VT instead of just V , in order to emphasize
that the action is given by T . Since V is finite dimensional vector space over Fq, it
is automatically a finitely generated Fq[x]-module. Moreover, it is torsion, since it
is finite dimensional. Since Fq is a field, Fq[x] is a PID. Thus, by the fundamental
theorem (invariant factor form), we get

VT ∼=
Fq[x]

(a1(x)) ⊕
Fq[x]

(a2(x)) ⊕ · · · ⊕
Fq[x]

(am(x))

as Fq[x]-module, where a1(x), a2(x), . . . , am(x) ∈ Fq[x] are non-constant monic
polynomials satisfying the divisibility criteria a1(x)|a2(x)| · · · |am(x). By Theo-
rem 4.1.1(3), we see that the minimal polynomial of T is am(x), and the other
invariant factors divide this. With such a decomposition, we can now choose a
suitable basis for which the matrix of T is quite simple. Given the Fq-vector space
Fq [x]
(a(x)) , where a(x) = xk+bk−1x

k−1 + . . .+b1(x)+b0, the set {1, x̄, . . . , x̄k−1} (where
x̄ = x(mod a(x)) is a basis for it. The linear transformation T acts on this basis
as multiplication by x thus giving,

T :

1 7→ x̄

x̄ 7→ x̄2

...
x̄ 7→ x̄2

x̄k−2 7→ x̄k−1

x̄k−1 = x̄k = −b0 − b1x̄− . . .− bk−1x̄
k−1

Thus, the matrix of T with respect to this basis (on the subspace spanned by the
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basis elements) is given by,



0 0 · · · · · · · · · −b0
1 0 · · · · · · · · · −b1
0 1 · · · · · · · · · −b2
0 0 . . . ...
...

... . . . ...
0 0 . . . . . . 1 −bk−1


.

The above matrix is just made up of the coefficients of the polynomial a(x) (along
with 0’s and 1’s), and is called the companion matrix of the non-constant monic
polynomial a(x). It is easy to see that the characteristic polynomial of Ca(x) is the
polynomial a(x) itself. We apply the above process for each of the cyclic modules
Fq [x]
ai(x) , and since VT = V is the direct sum of such modules, we conclude that T can
be represented by a block diagonal matrix with the companion matrices Cai(x) in
the block diagonals, i.e, 

Ca1(x)

Ca2(x)
. . .

Cam(x)

 .

This matrix of T is called the rational canonical form of T . Observe that the
characteristic polynomial of T is a1(x)a2(x) . . . am(x), which is the product of all
the invariant factors.

Definition 4.1.4. A matrix is said to be in rational canonical form if it is a
block diagonal matrix with companion matrices for non-constant monic polyno-
mials a1(x), a2(x), . . . , am(x) with a1(x)|a2(x)| . . . |am(x), as the blocks.

It is easy to observe that if two linear transformations T and S are conjugate
then the Fq[x]-module VT is isomorphic to the Fq[x]-module VS , thus by Theo-
rem 4.1.3, they have the same set of invariant factors and hence the same rational
canonical form. Thus, we conclude that rational canonical form determines the
similarity classes of matrices over Fq.

Theorem 4.1.5 (Rational Canonical Form). Let A be a n × n matrix over Fq.
Then, the matrix A is similar to a matrix in rational canonical form (in the sense
of Definition 4.1.4). In other words, there exists an invertible matrix P such that
PAP−1 is in rational canonical form.
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We have discussed the similarity classes with respect to the invariant factor
form. The same thing as above can be applied to the elementary divisor form as
well. Let T be a linear transformation on V . Then by Theorem 4.1.2,

VT = V ∼=
Fq[x]

(f1(x)α1) ⊕
Fq[x]

(f2(x)α2) ⊕ · · · ⊕
Fq[x]

(ft(x)αt)

as Fq[x]-module, where fi’s (not necessarily distinct) are monic non-constant
irreducible polynomials over Fq. Once again it is possible to choose a basis
(similar to above) such that the matrix of T takes a nice block diagonal form
diag(R1, R2, . . . , Rl) where for a fixed 1 ≤ i ≤ l, Ri is the block diagonal matrix
diag(Jfi,λi1 , Jfi,λi2 , . . .) where λi1 , λi2 , . . . are the various powers occurring in the
elementary divisor form corresponding to fi. The matrix Jfi,λir is a block matrix
of size λir with each block size deg(fi) (here, deg(f) denotes the degree of the
polynomial f) given as follows

Jfi,λir =


C(fi) I 0 ··· ··· 0

C(fi) I 0 ··· 0
. . . . . . . . . ...

. . . . . . 0
C(fi) I

C(fi)


where I denotes the identity matrix. Thus, the matrix Jfi,λir is a matrix of size
deg(fi)λir . Observe that the matrix Jfi,λir has a similar form to a Jordan block
(defined over an algebraically closed field). Thus, the above form is an analogue
of Jordan canonical form (which exists over algebraically closed fields) where the
companion matrices replace the eigen values of transformation. The above matrix
is once again a representative of a similarity class of matrices, which is uniquely
determined by its elementary divisors. It is this description of the similarity classes
using the elementary divisors, which allows us to attach a combinatorial data to a
conjugacy class in GL(n, q) (See [Gre55]).

4.1.1 A combinatorial parametrization of the conjugacy classes in
GL(n, q)

In order to describe the combinatorial parametrization of a conjugacy class, we
need to set a notation. Let Φ̃ denote the set of all non-constant, monic, irre-
ducible polynomials f(x) (sometimes we simply write f) with coefficients in Fq.
Let Φ = Φ̃\{x}. We will use this notation freely from now onwards without further
mention. A conjugacy class of GL(n, q) is determined by an associated combina-
torial data as follows. Let Λ be the set of all partitions λ = (λ1, λ2, . . . , λr) where
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λ1 ≥ λ2 ≥ . . . ≥ λr > 0 are integers. The set Λ consists of λ which are all possible
partitions of all non-negative integers |λ| where |λ| is defined to be the sum of
its parts. This includes the empty partition of 0. To each f ∈ Φ, we associate
a partition λf = (λf,1, λf,2, . . .) of some non-negative integer |λf |. A conjugacy
class of GL(n, q) is in one-one correspondence with a function Φ → Λ satisfying∑
f∈Φ
|λf |deg(f) = n. The summation constraint implies that the function takes the

value empty partition on all but finitely many polynomials in Φ. This one-one
correspondence is clear since a conjugacy class is determined by the elementary
divisor form, and the associated data reveals the fact that the elementary divisors
of a matrix in such a conjugacy class is given by the finite number of polynomials
f1, f2, . . . , fl which takes a non-empty partition as its functional value, and cor-
responding to each such polynomial fi, the partition λfi = (λfi,1, λfi,2, . . .) just
denotes the complete set of powers of fi (taking all λfi,j 6= 0) that occur as el-
ementary divisors. In other words, a representative of such a class is the block
diagonal matrix diag(R1, R2, . . . , Rl) where for a fixed 1 ≤ i ≤ l, Ri is the block
diagonal matrix diag(Jfi,λfi,1 , Jfi,λfi,2 , . . .) where Jfi,λfi,j is defined as in Page 34.
Thus, the conjugacy class of an element α ∈ GL(n, q) corresponds to the associ-
ated combinatorial data ∆α, which consists of distinct polynomials f1, . . . , fl and
associated non-zero partitions λfi = (λi1 , λi2 , . . .) for all i. In this notation, we
keep only those fi on which the function on fi takes value non-empty partition
λfi . This combinatorial data will prove to be crucial in defining the notion of cycle
index of GL(n, q) in the next chapter.

To end this section, we discuss briefly about the centralizer of an element
α ∈ GL(n, q), which is the set of all elements in GL(n, q) which commute with α.
Since the centralizer subgroups of two elements in the same conjugacy class are
also conjugate, the size of the centralizer of an element α is only dependent on
the associated combinatorial data ∆α. For our purpose, we will need to know the
size of the centralizer of an element. The size of the centralizer of an element in
GL(n, q) is well known (see for example Page 181, [Mac95]). We write the formula
and give a brief idea about how it can be obtained. We define a notation that will
be required to write the formula. Let λ = (λ1, λ2, . . . , λk) ` n be a partition of n.
The Young diagram corresponding to this partition is an arrangement of square
boxes where the first row has λ1 number of boxes, the second row has λ2 number
of boxes, and so on.

Example 4.1.6. Young diagram corresponding to the partition (4, 2, 1) ` 7 is,
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The transpose of a partition λ ` n of n is the partition of n obtained by
transposing the rows and columns of the Young diagram of λ. It is denoted by λ′ .

Example 4.1.7. λ = (4, 2, 1) ` 7, then λ
′ is the partition of 7 whose young

diagram is

Thus, λ′ = (3, 2, 1, 1) ` 7.

Let Z(α) denote the centralizer of an element α ∈ GL(n, q). The Fq[x] module
Vα via α has the decomposition

Vα = N1 ⊕N2 ⊕ . . .⊕Nl

where,
Ni = Fq[x]

fi(x)λi1
⊕ Fq[x]
fi(x)λi2

⊕ . . .⊕ Fq[x]
fi(x)λir

is the fi-primary component of Vα. Here, λfi = (λi1 , λi2 , . . . , λir) ` |λfi |. It is
clear that an element g ∈ Z(α) is just an automorphism of the Fq[x]-module Vα,
since g(x.v) = g(α(v)) = α(g(v)) = x.g(v) for all v ∈ V . We conclude that
the elements that commute with α are automorphism of the Fq[x]-module Vα.
Therefore, to count the number of elements in Z(α) we need to count the number
of the automorphism of the module Vα. Now,

Aut(Vα) = Aut(N1)×Aut(N2)× . . .×Aut(Nl).

Since, Ni is a finite Fq[x]-module (annihilated by some power of fi), it can be
proved (see Page 181, 1.6, [Mac95]) that,

|Aut(Ni)| = q
deg(fi)

∑
j

(λ′ij )2 ∏
t≥1

( 1
qdeg(fi)

)
mt(λfi )

where
(
u
q

)
i

= (1− u
q )(1− u

q2 ) · · · (1− u
qi

). Thus, we get,
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|Z(α)| =
l∏

i=1

qdeg(fi)
∑
j

(λ′ij )2 ∏
t≥1

( 1
qdeg(fi)

)
mt(λfi )

 . (4.1)

4.2 Regular, Semisimple, and Regular Semisimple
classes

Regular, semisimple, and regular semisimple elements were defined in Chapter 1,
for any linear algebraic group. In GL(n, q), these elements have simple linear
algebra characterizations, involving the elementary divisors. A semisimple element
in GL(n, q) is an element which is diagonalizable over F̄q. In terms of modules,
if α ∈ GL(n, q) is semisimple, it means that for each f -primary component N of
the Fq[x]-module Vα, where f is a non-constant monic irreducible polynomial, the
highest power of f that annihilates the submodule N is f itself. Thus,

Vα = Fq[x]
(f1(x))⊕ . . .⊕

Fq[x]
(f1(x))⊕

Fq[x]
(f2(x))⊕ . . .⊕

Fq[x]
(f2(x))⊕ . . .⊕

Fq[x]
(ft(x))⊕ . . .⊕

Fq[x]
(ft(x))

where f1, f2, . . . , ft(x) are monic non-constant irreducible polynomials over Fq.
The collection of all semisimple elements is a union of conjugacy classes. Thus a
semisimple class is a conjugacy class consisting of semisimple elements. A regular
element in GL(n, q) is an element whose minimal polynomial is the same as the
characteristic polynomial. Once again, in terms of modules, if α ∈ GL(n, q) is
regular, then it is clear that each f -primary component N in the elementary divisor
form of the Fq[x]-module Vα is isomorphic to Fq [x]

(f(x))α for some α > 0. Thus, each f -
primary component is a cyclic module. This is why regular matrices are referred to
as cyclic matrices in the literature. It is once again clear that the set of all regular
elements is a union of conjugacy classes. Thus, a conjugacy class consisting of
regular elements is called a regular conjugacy class.

Finally, a regular semisimple matrix in GL(n, q) is the one that is both regular
and semisimple. Thus, if α ∈ GL(n, q) is regular semisimple, then each f -primary
component N in the elementary divisor form of the Fq[x]-module Vα is isomorphic
to Fq [x]

(f(x)) . Since the characteristic polynomial of the matrix α is the product of all
the elementary divisors, we see that it can be written as f1f2 · · · fk, where fi are
non-constant monic irreducible polynomials. This means that the characteristic
polynomial of α is separable, that is, no irreducible factor occurs more than once.
Thus, these matrices are sometimes referred to as separable matrices. A conjugacy
class consisting only of regular semisimple elements is called a regular semisimple
conjugacy class. We will see that the three types of matrices defined above will
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play a key role in the subsequent chapters.
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Chapter 5

Cycle index of GL(n, q)

This chapter deals with one of the most important tools in this thesis, known
as, generating functions. In the subject of enumerative combinatorics, generating
functions play a vital role, in varied counting problems. In this chapter, we briefly
introduce the notion of generating functions and give examples of various gener-
ating functions that occur in the context of counting the number of conjugacy
classes in GL(n, q). Finally, we introduce the very important notion of cycle index
for GL(n, q) (see equation 1.2, chapter 1 for cycle index of Sn), and give some
important applications relevant to our work. All of these are quite well known in
literature.

5.1 Generating function

Let (an)n≥0 be a sequence of real numbers.

Definition 5.1.1 (Generating function). The ordinary generating function of the
sequence (an)n≥0 is defined as the formal power series

∞∑
n=0

anx
n.

Therefore, the ordinary generating function corresponding to the sequence
(an)n≥0 is an element of the ring of formal power series with coefficients in R,
denoted by R[[x]]. From now onwards, we will write generating function in place
of ordinary generating function. We give several examples of generating functions.

Example 5.1.2 (Addition and multiplication of two generating functions). Let
∞∑
n=0

anx
n and

∞∑
n=0

bnx
n be the generating function for the sequence (an) and (bn)

respctively. Then, the sum of these two generating function, defined similar to
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sum of two polynomials, is

∞∑
n=0

anx
n +

∞∑
n=0

bnx
n =

∞∑
n=0

(an + bn)xn

gives the generating function for the sequence (an + bn). Similarly, the product of
these two generating functions, is given by the Cauchy product which is,( ∞∑

n=0
anx

n

)
×
( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

cnx
n

where, cn =
n∑
k=0

akbn−k. Thus, the product of the generating function for the

sequence (an) and (bn) yields the generating function of the sequence (cn), given
by the Cauchy product.

Example 5.1.3. Consider the sequence (an)n≥0 with an = 1 for every n ≥ 0. The
generating function for this sequence is

1 + x+ x2 + x3 + · · · = 1
1− x.

We say, 1
1−x is a closed form for the generating function of the sequence (an) =

(1, 1, 1, 1, . . .). Note here, that the above equality is just equality in the ring of
formal power series. We don’t take into account the analytic notions of a power
series, like the radius of convergence and so on.

Example 5.1.4. Consider the sequence (an), where an = 1
n! . The generating

function for this sequence is given by,

1 + x+ x2

2! + x3

3! + · · · = exp(x).

Example 5.1.5 (Fibonacci Numbers). The Fibonacci sequence is quite well known
in mathematics and has a variety of applications. The first few terms of the
sequence are given by (0, 1, 1, 2, 3, 5, 8, 13, . . .). This can be defined recursively.
Let (an) be the sequence of Fibonacci numbers. Then, the sequence is defined as,

an =


0 if n = 0

1 if n = 1

an−2 + an−1 if n ≥ 2

.

We intend to find a closed form for the generating function of the Fibonacci se-
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quence. The generating function for (an) is,

s(x) = x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + · · · .

Due to the recursive relation above, we get,

s(x) = x+
∞∑
n=2

anx
n = x+

∞∑
n=2

(an−2 + an−1)xn

=⇒ s(x) = x+ xs(x) + x2s(x) =⇒ s(x) = x

1− x− x2 .

Therefore, we can say that the nth Fibonacci number can be read off from the
coefficient of xn in the formal power series expansion of x

1−x−x2 .

We now turn to a more important example. The next example gives the gen-
erating function for the number of partitions of n.

Example 5.1.6 (Partitions of natural numbers). Let p(n) be the number of
partitions of n. For simplicity, we take, p(0) = 1. Simple computations show,
p(1) = 1, p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, p(6) = 11, p(7) = 15 and so on.
Thus,

1 +
∞∑
n=1

p(n)xn = 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + · · · .

Although, a closed form for the above generating function similar to the one for Fi-
bonacci numbers can’t be given, still one can write the above generating functions
in the form of an infinite product. We will later see that this kind of represen-
tation of generating function can be suitable in specific situations. The following
proposition is well-known. We give a proof for completeness.

Proposition 5.1.7.

1 +
∞∑
n=1

p(n)xn =
∞∏
i=1

1
1− xi .

Proof. Given a partition λ ` n, we have already seen that in frequency (or, power)
notation, λ = 〈1m1 , 2m2 , · · · 〉, where mi denotes the number of times i occur in λ.
Consider the following infinite product,
(1 + x+ x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · ) · · · (1 + xi + x2i + · · · ) · · · .
By interpreting xit = (xi)t in the product (1 + xi + x2i + · · · ), as corresponding to
the partition (i, i, . . . , i︸ ︷︷ ︸

t times

) of it, it is easy to see that p(n) is given by the coefficient
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of xn in the above infinite product. Since,

1 + xi + x2i + · · · = 1
1− xi ,

we get the desired result.

Generating functions in enumerative combinatorics, as mentioned before, can
be useful in counting different mathematical quantities. This can range from get-
ting closed formulas in some cases, to getting recursive formula in others, and
many other properties. It is very intriguing that to date there is no closed formula
for p(n), although several properties of p(n) can be derived from the generating
function in Proposition 5.1.7. We end this section, with two well-known results on
p(n), which can be proved solely by using generating functions. These two results
will highlight the importance of generating functions in enumeration. We start
with a lemma which is well known. We state it without proof.

Lemma 5.1.8 (Euler’s Pentagonal number theorem).

∞∏
i=1

(1− xi) = 1 +
∞∑
k=1

(−1)k(xk(3k+1)/2 + xk(3k−1)/2).

The numbers gk = 1
2k(3k − 1) for k = ±1,±2, . . ., are called Pentagonal numbers.

The following recursive formula for p(n), is a direct consequence of its generating
function in Proposition 5.1.7 and Lemma 5.1.8. For convenience let us assume
p(n) = 0 for n < 0, and p(0) = 1.

Proposition 5.1.9. For n ≥ 2,

p(n) =
∑
k∈Z

(−1)k−1p(n− gk),

where gk are the Pentagonal numbers.

Proof. Observe that, (
n∏
i=1

1
1− xi

)(
n∏
i=1

(1− xi)
)

= 1.

Now, the proof follows from Proposition 5.1.7 and Lemma 5.1.8.

Example 5.1.10. From the above proposition, p(8) = p(7) + p(6)− p(3)− p(1) =
15 + 11− 3− 1 = 22.
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We end this section with another well-known identity of partitions, again due
to Euler. Suppose λ ` n, be a partition of n. We say λ is an odd partition of n,
if each part in λ is odd. In other words, mi(λ) = 0 when i is even. We say λ is
distinct partition of n, if each part is distinct. In other words, mi(λ) is atmost 1
for all i ≥ 1.

Proposition 5.1.11. The number of odd partitions of n is equal to the number of
distinct partitions of n.

Proof. Let d(n) denote the number of distinct partitions of n, and o(n) denote
the number of odd partitions of n. From the proof of Proposition 5.1.7, it can be
easily seen, that, d(n) is the coefficient of xn, in the product (1 + x)(1 + x2)(1 +
x3) · · · (1 + xi) · · · . Thus, we have

1 +
∞∑
n=1

d(n)xn =
∞∏
i=1

(1 + xi).

On the other hand, it is clear that o(n) is the coefficient of xn in the infinite
product,

(1+x+x2 + · · · )(1+x3 +x6 + · · · )(1+x5 +x10 + · · · ) · · · (1+x2i−1 +x2(2i−1) + · · · )

· · · =
∞∏
i=1

1
1− x2i−1 =

∞∏
i=1

1− x2i

1− xi =
∞∏
i=1

(1 + xi).

The penultimate equality is obtained by multiplying
∞∏
i=1

(1 − x2i), to both the
numerator and denominator. Thus, we have

1 +
∞∑
n=1

o(n)un =
∞∏
i=1

(1 + xi).

Since, the generating function for d(n) and o(n) are same, we conclude that d(n) =
o(n), thus completing the proof.

5.2 Generating functions for the number of conjugacy
classes in GL(n, q)

In this section we will obtain the generating function for the number of conju-
gacy classes in GL(n, q), as well as, for some other related quantities, relevant
for our purpose. These generating functions are quite well known (see [Mac81],
[FG13]). Let c(n) denote the number of conjugacy classes in GL(n, q). Let
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c(n)rg, c(n)rs, c(n)ss denote the number of regular, regular semisimple, semsim-
ple conjugacy classes in GL(n, q) (see chapter 4 for the definitions). Recall that
Φ = Φ̃ \{x}, where Φ̃ denotes the set of all monic irreducible polynomials over Fq.
Let Ñ(q, d) denote the number of polynomials of degree d in Φ̃. In other words,
Ñ(q, d) is the number of monic irreducible polynomials of degree d. Let N(q, d) de-
note the number of polynomials of degree d in Φ. It is easy to see that Ñ(q, d) and
N(q, d) are related as, N(q, d) = Ñ(q, d) − 1, when d = 1, and N(q, d) = Ñ(q, d)
otherwise. The formula for Ñ(q, d) is well-known, which we state without proof.

Ñ(q, d) = 1
d

∑
r|d

µ(r)q
d
r (5.1)

where µ is the well known Möbius function defined on the set of natural numbers
as follows:

µ(r) =



1 when r = 1,

(−1)t when r is square free, and r = p1p2 . . . pt,

where pi are primes for all 1 ≤ i ≤ t,

0 when r has square factor.

An elementary conceptual proof of Equation 5.1 can be found in [CM11]. Thus,
we have

N(q, d) = 1
d

∑
r|d

µ(r)(q
d
r − 1) (5.2)

since,
∑
r|d
µ(r) is equal to 1 when r = 1 and 0 otherwise.

We must also mention here that N(q, d) is also the number of Lyndon words in q
alphabets of length d. Thus N(q, d) arises in combinatorics even when q is not a
prime (see [Lot02] for more about Lyndon words).

We begin with an identity (see [Ful99]) that will play a very important role
later.

Lemma 5.2.1.
∞∏
d=1

(1− ud)−Ñ(q,d) = 1
1−qu .

Proof. Consider the infinite product

∏
f∈Φ̃

(1− udegf )−1 =
∏
f∈Φ̃

(1 + udegf + u2degf + · · · ).

Due to the unique factorization of polynomials over Fq, the coefficient of un in the
above product is clearly the number of monic polynomials of degree n. The number
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of monic polynomials of degree n over Fq is qn, which in fact is the coefficient of
un in 1

1−qu . Thus, we get

∏
f∈Φ̃

(1− udegf )−1 = 1
1− qu.

Clubbing together all the degree d polynomials in Φ̃ in the product on the left
hand side of the above equality, proves the lemma.

5.2.1 Number of regular, regular semisimple, and semisimple
classes

In Chapter 4, we have seen that the regular elements in GL(n, q) are in one-
one correspondence with monic polynomials of degree n with non-zero constant
term. The number of such polynomials is qn−1(q − 1) = qn − qn−1. Similarly,
the semisimple elements in GL(n, q) are in one-one correspondence with monic
polynomials of degree n with non-zero constant terms. Thus, we have

c(n)rg = c(n)ss = qn − qn−1.

The following proposition gives the generating function (with closed form) for
c(n)rg and c(n)ss.

Proposition 5.2.2.

1 +
∞∑
n=1

c(n)rgu
n = 1 +

∞∑
n=1

c(n)ssu
n =

∞∏
d=1

(1− ud)−N(q,d) = 1− u
1− qu.

Proof. The coefficient of un in 1−u
1−qu is qn−qn−1, which is also the number of regular

(and, semisimple) classes in GL(n, q). The final equality holds by Lemma 5.2.1.

In chapter 4, we have seen that the regular semisimple classes in GL(n, q)
are in one-one correspondence with separable polynomials of degree n, that is,
polynomials of degree n, which are square-free. The following proposition gives
the generating function for c(n)rs (see [FG13]).

Proposition 5.2.3.

1 +
∞∑
n=1

c(n)rsu
n =

∞∏
n=1

(1 + ud)N(q,d) = 1− qu2

(1 + u)(1− qu) .
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Proof. As a consequence of unique factorization, the coefficient of un in the product

∏
f∈Φ

(1 + udegf )

is equal to the number of monic separable polynomials of degree n. This is because
allowing only udegf ensures that f can occur at most once in any unique factor-
ization. Clubbing together the degree d polynomials in Φ in the above product,
we get the first equality. The second equality follows form Lemma 5.1 since,

∞∏
n=1

(1 + ud)N(q,d) =

∞∏
d=1

(1− ud)−N(q,d)

∞∏
d=1

(1− u2d)−N(q,d)
.

From the above generating function, it is easy to get a closed formula for c(n)rs

(see [FG13, Theorem 2.2]). We just mention this formula without proof.

c(n)rs = qn+1 − qn + (−1)n+1(q − 1)
q + 1 .

See [FJK98] for alternative proofs of these results and [FG13, FJK98] for results
on other finite classical groups.

5.2.2 Number of conjugacy classes in GL(n, q)

Recall that c(n) denote the number of conjugacy classes in GL(n, q). The gener-
ating function for c(n) is well-known and can be found in [Mac81,?]. We briefly
outline the idea of obtaining this generating function (see [Mac81] for more de-
tails). In Chapter 4, given a matrix α ∈ GL(n, q), we associated a combinatorial
data ∆α which consists of some finitely many monic irreducible polynomials (ex-
cept the polynomial x) f1, f2, . . . , fk and partitions λfi ` |λfi | for all 1 ≤ i ≤ k,
such that

∑
i
|λfi |degfi = n. We now provide a modified version of this data which

will help us in obtaining the required generating function. Define polynomials uj
as follows:

uj =
∏
i

f
mj(λfi )
i .

Observe that uj is a monic polynomial with a non-zero constant term, and satisfies,∑
j
jdeg(uj) = n. It is clear from the above discussion that we obtain only finitely

many non-constant monic polynomials ui. Thus, to any elements α ∈ GL(n, q),



5.2. Generating functions for the number of conjugacy classes in GL(n, q) 63

we have attached certain finite number of non-constant monic polynomials, say
u1, u2, . . . , ul satisfying the relation

∑
j
jdeg(uj) = n. This data determines α up

to conjugacy. Thus we now have a modified combinatorial data corresponding to
each conjugacy class of GL(n, q).

Suppose ν ` n be a partition of n, where ν = 〈1n1 , 2n2 , · · · 〉. A conjugacy class
C of GL(n, q) is called a type-ν conjugacy class if deg(uj) = nj for all j ≥ 1, where
ui are the polynomials that occur in the combinatorial data of C. Therefore, we
have grouped the conjugacy classes by a certain rule, which corresponds to a par-
tition of n. For example - consider the partition ν = 〈1n〉 ` n. Then a conjugacy
class will be of type-ν if there is only one polynomial u1 of degree n. By definition
of uj ’s, it is clear that such a conjugacy is a semisimple conjugacy class. Con-
versely a semisimple conjugacy class will be of type-ν, where ν = 〈1n〉 ` n. Thus,
corresponding to the partition 〈1n〉 ` n we have grouped all semisimple conjugacy
classes.

Given a partition ν = 〈1n1 , 2n2 , · · · 〉, let cν denote the number of type-ν conju-
gacy classes. To count the number of such classes, for each j ≥ 1 such that nj > 0,
we have to count the number of ways we can choose non-constant monic polyno-
mials uj with non-zero constant term of degree nj , which is equal to qnj − qnj−1.
Thus,

cν =
∏
ni>0

(qni − qni−1).

Therefore, the number of conjugacy classes c(n) is given by,

c(n) =
∑
ν`n

cν =
∑
ν`n

ν=〈1n1 ,2n2 ,··· 〉

∏
ni>0

(qni − qni−1)

 . (5.3)

We now have all we need to write the generating function for c(n).

Lemma 5.2.4. Let f(u) = 1+
∞∑
n=1

anu
n. Suppose ν = 〈1n1 , 2n2 , · · · 〉 is a partition

of n. Define bn =
∑
ν`n

∏
ni>0

ani

. Then,

1 +
∞∑
n=1

bnu
n =

∞∏
t=1

f(ut).

Proof. The Lemma follows simply by computing the coefficients of un on both
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sides.

Proposition 5.2.5. 1 +
∞∑
n=1

c(n)un =
∞∏
i=1

1−ui
1−qui .

Proof. The proof follows by putting an = qn−qn−1 in the above Lemma and using
Equation 5.3.

Some elementary properties can be derived from the above generating function of
c(n). We collect some of these, whose proof can be found in [Mac81].

Proposition 5.2.6. The number c(n) has the following properties:

1. c(n) is a monic polynomial in q of degree n. Moreover, cn(q) = qn − (qa +
qa−1 + . . .+ qb+1 + qb) + . . ., where a = b1

2(n− 1)c, b = b1
3nc.

2. The constant term in c(n) is (−1)k, whenever n = 1
2k(3k + 1), for some

k ∈ Z. Otherwise, the constant term is 0.

3. q − 1 | c(n).

5.3 Cycle index of GL(n, q) and its applications

Polýa (see [PR87]) introduced the notion of cycle index in the symmetric group Sn,
to study conjugacy class functions, that is, properties which are invariant under
conjugation. Let π ∈ Sn, and for i ≥ 1, mi(π) denote the number of i-cycles in π.
It is clear that

∑
i
imi(π) = n. Thus, mi(π) = 0 for i > n. It is well known that

two permutations π, τ ∈ Sn are conjugate in Sn, if and only if mi(π) = mi(τ) for
all i ≥ 1. It can be seen that 〈1m1(π), 2m2(π), · · · 〉 ` n. Therefore, partitions of n
determine the conjugacy classes in Sn. Define,

Zn = Zn(t1, t2, . . . tn) = 1
n!

∑
π∈Sn

t
m1(π)
1 t

m2(π)
2 . . . tmn(π)

n .

The above polynomial in the variables t1, t2, . . . , tn is called the cycle index of Sn, or
the cycle polynomial of Sn. The coefficient of a monomial of the form tc1

1 t
c2
2 . . . tcnn

is equal to the number of elements in the conjugacy class parametrized by the
partition 〈1c1 , 2c2 , · · · 〉 ` n divided by n!, which is further equal to one divided by
the centralizer of an element in such a class. Since the size of the centralizer is
given by

∏
i
icici!, we get

Proposition 5.3.1. 1 +
∞∑
n=1

Znu
n =

∏
i≥1

exp
(
tiu

i

i

)
.
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The above generating function is called the cycle index generating function of
Sn. This generating function enabled the study of several properties of random
permutations which were only dependent on the cycle structure of permutations
(for context see Chapter 1 and references therein).

The Cycle index of GL(n, q) was developed along the same lines as done by
Pólya for Sn by J. Kung in [Kun81]. R. Stong in [Sto88] studied properties of
linear transformations acting on sets, for example, the proportions of semisimple
elements in GL(n, q), using the cycle index. Later, J. Fulman provided a neater
version of the cycle index (see [Ful99]) and, used it to write the generating functions
for the proportions of regular, regular semisimple, and semisimple matrices in
GL(n, q), and studied the asymptotic behaviour of these proportions (see also
[Wal99]). He further developed the cycle index of some other classical groups like
Sp(2n, q),GU(n, q), and others, using the description of conjugacy classes in these
groups obtained by G.E.Wall in [Wal80,Wal63].

Given α ∈ GL(n, q), we have attached a combinatorial data ∆α which consists
of all monic irreducible polynomials over Fq and associated to each such polynomial
f ∈ Φ, is a partition λf ` |λf |, where |λf | ≥ 0, and satisfies

∑
f∈Φ
|λf |deg(f) = n.

We have already seen that such a data determines α uniquely up to conjugacy in
GL(n, q). Let xf,λ be a variable associated to a pair (f, λ) where f is a monic
irreducible polynomial and λ a partition. The cycle index is defined to be

ZGL(n,q) = 1
|GL(n, q)|

∑
α∈GL(n,q)

∏
f∈Φ

|λf (α)|>0

xf,λf (α).

The significance of this expression is that the coefficient of a monomial represents
the probability that an element α of GL(n, q) belongs to its conjugacy class, which
is, one over the order of its centralizer (or that of any representative of its conjugacy
class). We have already seen that the size of the centralizer of an element α in
GL(n, q) (which depends only on its combinatorial data ∆α), is given by

∏
f∈∆α

qdeg(f).
∑

i
(λ′f,i)

2 ∏
i≥1

( 1
qdeg(f)

)
mi(λf )


where the notation

(
u
q

)
i
denotes (1 − u

q )(1 − u
q2 ) · · · (1 − u

qi
). The following

proposition gives the cycle index generating function in a neat form (see Section
2.1, [Ful02]), which will be useful for our purpose. This is the analogous version
of Proposition 5.3.1, which gives the cycle index generating function for Sn.
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Proposition 5.3.2.

1 +
∞∑
n=1

ZGL(n,q)u
n =

∏
f∈Φ

1 +
∑
j≥1

∑
λ`j

xf,λ
uj.deg(f)

qdeg(f).
∑

i
(λ′i)

2 ∏
t≥1

( 1
qdeg(f)

)
mt(λ)

 .

We will now apply the cycle index to obtain generating functions for the pro-
portions of regular, regular semisimple, and semisimple matrices in GL(n, q) (see
once again [Ful99], and [Ful02]). Let α ∈ GL(n, q) be regular. We have seen that
this means the combinatorial data ∆α of α consists of polynomials f1, f2, . . . , fk,
with associated partition λfi = (|λfi |) ` |λfi | > 0, for each 1 ≤ i ≤ k. Therefore,
to obtain the generating function for |GL(n,q)rg|

|GL(n,q)| , which is the probability that a
randomly chosen matrix in GL(n, q) is regular, we must replace xf,λ by,

xf,λ =

1 ;when λ = (j) ` j

0 ; otherwise

for each f ∈ Φ, j ≥ 1 and λ ` j, in the cycle index generating function in Propo-
sition 5.3.2. Grouping together all polynomials of degree d in Φ, we have the
generating function for proportions of regular elements in an infinite product form
as follows:

1 +
∞∑
n=1

|GL(n, q)rg|
|GL(n, q)| u

n =
∏
d≥1

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)

N(q,d)

. (5.4)

The above generating function gives an alternate form (see [Wal99]) as follows:

1 +
∞∑
n=1

|GL(n, q)rg|
|GL(n, q)| u

n =
∏
d≥1

(
1− ud

qd

)−N(q,d) ∏
d≥1

(
1 + ud

qd(qd − 1)

)N(q,d)

. (5.5)

Let α ∈ GL(n, q) be semisimple. Once again from chapter 4, this means that the
combinatorial data ∆α of α consists of polynomials f1, f2, . . . , fk, with associated
partition λfi = (1, 1, . . . , 1) ` |λfi | > 0, for each 1 ≤ i ≤ k. Therefore, to obtain
the generating function for |GL(n,q)ss|

|GL(n,q)| , which is the probability that a randomly
chosen matrix in GL(n, q) is semisimple, we must replace xf,λ by,

xf,λ =

1 ;when λ = (1, 1, . . . , 1) ` j

0 ; otherwise
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for each f ∈ Φ, j ≥ 1 and λ ` j, in the cycle index generating function. Thus we
get,

1 +
∞∑
n=1

|GL(n, q)ss|
|GL(n, q)| u

n =
∏
d≥1

1 +
∞∑
j=1

ujd

q
j(j−1)

2 d
n∏
i=1

(qid − 1)


N(q,d)

. (5.6)

Finally, let α ∈ GL(n, q) is regular semisimple. This means that λfi = (1) `
|λfi | = 1 for 1 ≤ i ≤ k, where fi ∈ ∆α for 1 ≤ i ≤ k with |λfi | > 0. Thus,
to obtain the generating function for |GL(n,q)rs|

|GL(n,q)| , which is the probability that a
randomly chosen matrix in GL(n, q) is regular semisimple, we must replace xf,λ
by,

xf,λ =

1 ;when λ = (1) ` j = 1

0 ; otherwise

for each f ∈ Φ, j ≥ 1 and λ ` j, in the cycle index generating function. Thus we
get the generating function as follows,

1 +
∞∑
n=1

|GL(n, q)rs|
|GL(n, q)| u

n =
∏
d≥1

(
1 + ud

qd − 1

)N(q,d)

. (5.7)

The above three generating functions as we will see in Chapter 7, will be con-
structed in the more general context of powers where these will turn up as partic-
ular cases. We will use the cycle index to construct these generating functions.
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Chapter 6

Asymptotics of powers in finite
groups of Lie type

This chapter deals with the author’s work in [KKS20]. We work in the setting of
Chapter 3. Let k = F̄q and G be a connected reductive group over k. Let F be a
Steinberg endomorphism on G giving rise to a finite group of Lie type G(Fq) = GF .
Let M ≥ 2 be a positive integer. We consider the power map ω : G → G given
by x 7→ xM . Clearly, this map is defined over Fq. We consider the image of
the set G(Fq) under this map, denoted as G(Fq)M . Let G(Fq)rg, G(Fq)ss, G(Fq)rs

denote the set of regular elements, semisimple elements and, regular semisimple
elements in G(Fq) respectively (see Chapter 3). Further, we denote the set of
M -power regular semisimple elements as G(Fq)Mrs = G(Fq)M ∩ G(Fq)rs the set
of M -power semisimple elements as G(Fq)Mss = G(Fq)M ∩ G(Fq)ss, and M -power
regular elements as G(Fq)Mrg = G(Fq)M ∩G(Fq)rg. In this chapter we are interested
in studying the asymptotic values of the following as q →∞:

|G(Fq)M |
|G(Fq)|

,
|G(Fq)Mrs |
|G(Fq)|

,
|G(Fq)Mss |
|G(Fq)|

,
|G(Fq)Mrg |
|G(Fq)|

.

What we mean here is that we consider the above quantities as a set of real numbers
for a fixed G (thus the rank is fixed) and a fixed M ; and study the limit points
when q →∞.

The main theorem of this chapter (see Theorem 6.1.1) finds the q →∞ limits
of the aforementioned quantities. We apply this theorem to GL(n, q) and GU(n, q)
to find more explicit answers to these limiting values in Section 6.2 and 6.3 re-
spectively, by assuming M to be a prime. The values are given in a sum-product
form and are combinatorial in nature. Thus we use our knowledge of generating
functions as developed in Chapter 5 to provide generating functions for these val-
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ues. We will get a verification of these results in the case of GL(n, q) in Chapter 9,
where we explicitly compute squares and cubes in the group GL(n, q) in some small
ranks. We once again clarify the fact that we will be using the notation G(Fq) to
mean GF for a connected reductive group G and a Steinberg endomorphism F so
that we don’t have to write both F and M in the power.

6.1 The main theorem and its proof

As seen in Chapter 3, for a reductive group G over k, with Steinberg endomorphism
F , a maximal torus of G(Fq) is the group of F -fixed points T (Fq)(= TF ) of a F -
stable maximal torus of G. Since T (Fq) ≤ G(Fq) is a finite abelian group, it can
be written as a product of cyclic groups (see [BG07], [Zav19] for the explicit cyclic
structure of maximal tori in classical groups). The limiting values of the powers in
G(Fq) as q →∞ is given in terms of the cyclic structure of maximal tori of G(Fq).
The main theorem is as follows:

Theorem 6.1.1. Let G be a connected reductive group defined over Fq with Frobe-
nius map F . Let M ≥ 2 be an integer. Then,

lim
q→∞

|G(Fq)M |
|G(Fq)|

= lim
q→∞

|G(Fq)Mrs |
|G(Fq)|

= lim
q→∞

|G(Fq)Mss |
|G(Fq)|

= lim
q→∞

|G(Fq)Mrg |
|G(Fq)|

=
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

where the sum varies over non-conjugate maximal tori T in G(Fq), T = Td1,··· ,ds
∼=

Cd1×· · ·×Cds reflects the cyclic structure of T , and the group WT = NG(Fq)(T )/T .

The rest of this section is devoted to the proof of this result. We begin with
some preparatory lemma.

Lemma 6.1.2. Let H be a finite Abelian group written as a product of cyclic
groups H = Cd1 × · · · × Cds. Then,

|HM |
|H|

= 1
(M,d1) · · · (M,ds)

.

Proof. We begin with a cyclic group, i.e, s = 1 case. Let H = Cd be a finite cyclic
group of order d. We need to show, |C

M
d |
|Cd| = 1

(M,d) where (M,d) denotes the gcd
of M and d. Consider the map ω : Cd → Cd defined by g 7→ gM . It is a group
homomorphism with kernel ker(ω) = {g ∈ Cd | gM = 1}. Clearly, elements of the
kernel are precisely given by g(M,d) = 1. Thus, |C

M
d |
|Cd| = 1

ker(ω) = 1
(M,d) .
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Now, for an Abelian group H, the power map is a group homomorphism.
Thus, when H = Cd1 × · · · ×Cds , the map ω : Cd1 × · · · ×Cds → Cd1 × · · · ×Cds is
(g1, . . . , gs) 7→ (gM1 , . . . , gMs ). Thus, kernel is given by (g1, . . . , gs) where g(M,di)

i = 1
for all i. This gives the required result.

Recall that, a regular semisimple element in G(Fq) is contained in a unique
F -stable maximal torus of G (see Proposition 3.3.2, chapter 3) .

Lemma 6.1.3. Let α ∈ G(Fq)rs. Suppose α belongs to the F -stable maximal torus
T̄ . Then, XM = α has a solution in G(Fq) if and only if YM = α has a solution
in T̄ (Fq).

Proof. Let A ∈ G(Fq) such that AM = α. Write Jordan decomposition A = AsAu,
which implies AMs = α. Now, every semisimple element belongs to some F -stable
torus, say As ∈ T̄ ′(Fq). Then, α ∈ T̄ ′(Fq). But, α being regular semisimple, it
belongs to a unique maximal torus. Thus, T̄ ′(Fq) = T̄ (Fq), hence the solution
As ∈ T̄ (Fq).

For a reductive group G, recall that rk(G) denotes the rank of G. In short,
we write r to denote the rank. From Chapter 2 we also know that for such a G,
there is a root datum Φ, and we denote |Φ+| = N , where Φ+ is the set of positive
roots. Then, it is known that dim(G) = 2N+r and |G(Fq)| = O(q2N+r). The final
piece needed for the proof of the main theorem is the density result of the regular
semisimple elements in G(Fq) which is Proposition 3.3.4. The key ingredient from
this proposition is the following estimate:

|{x ∈ T | x is not regular}| = O(qr−1).

We will use this several times. Here, T is a maximal torus of G(Fq).
Now we are ready to get an estimate for M th power regular semisimple elements.

Theorem 6.1.4. Let G be a reductive group defined over Fq with Steingberg endo-
morphism F . Assume that all maximal torus of G(Fq) are non-degenerate. Then,
the proportion of M th power regular semisimple elements in G(Fq) is,

|G(Fq)Mrs |
|G(Fq)|

=
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

+ O(q−1)

where the sum varies over non-conjugate maximal tori T in G(Fq), T = Td1,··· ,ds
∼=

Cd1 × · · · × Cds reflects the cyclic structure, and the group WT = NG(Fq)(T )/T .
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Proof. Since a regular semisimple element of G(Fq) belongs to a unique F -stable
maximal torus, we have,

G(Fq)Mrs = G(Fq)rs ∩G(Fq)M =
⋃
T̄∈τ

(
T̄ (Fq)rs ∩G(Fq)M

)

where τ is the set of all F -stable maximal tori of G. Now, let T̄ be a F -stable
maximal torus of G and T = T̄ (Fq). Then, from Lemma 6.1.3 we have,

T̄ (Fq)rs ∩G(Fq)M = Trs ∩G(Fq)M = TM ∩G(Fq)rs.

Suppose the cyclic structure of T = Cd1 × · · · × Cds . Thus, using the argument
in [JKZ13, Lemma 4.5] to prove T ∩G(Fq)rs = qr +O(qr−1) where it is shown that
the non regular elements in T are O(qr−1), we get,

|TM ∩G(Fq)rs| = |TM |+ O(qr−1) = 1
(M,d1) · · · (M,ds)

|T |+ O(qr−1)

where r is the dimension of T and the second equality follows from Lemma 6.1.2.
Hence,

|G(Fq)Mrs |
|G(Fq)|

= 1
|G(Fq)|

∑
T̄∈τ,T=T̄ (Fq)

( 1
(M,d1) · · · (M,ds)

|T |+ O(qr−1)
)

=

 ∑
T=Td1,...,ds

1
(M,d1) · · · (M,ds)

1
|WT |

+ 1
|WT ||T |

O(qr−1)

where we take T = Td1,...,ds up to conjugacy. We note that for a fixed T , the number
of conjugates is |G(Fq)|

|WT ||T | (see Proposition 3.3.9 and Corollary 3.3.10 in Chapter 3).
Now, since for any H we have (q − 1)dim(H) ≤ |H(Fq)| ≤ (q + 1)dim(H) where
dim(H) = 2N + r and r is rank of H, applying this to T , we get

|G(Fq)Mrs |
|G(Fq)|

=
∑

T=Td1,...,ds

1
|WT |(M,d1) · · · (M,ds)

+ O(q−1).

This completes the proof.

We remark that the quantity
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

is intrinsic to

the structure of G with given M , even though it seem to involve q.
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Corollary 6.1.5. With the notation as above we have,

1
M rk(G) ≤ lim

q→∞
|G(Fq)Mrs |
|G(Fq)|

=
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

≤ 1.

Proof. The upper end is achieved when M is coprime to the order of all maximal
tori (for example, if M | q), and the lower end is achieved when M divides order
of each cyclic factors in all maximal tori. Thus we have,

1
M rk(G) ≤

∑
T=Td1,··· ,ds

1
|WT |M s

≤
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

≤
∑
T

1
|WT |

= 1.

Note that for a fixed G, the limit above depends on varying M . See Section 6.2
for explicit limiting values.

Lemma 6.1.6. Let G be a reductive group defined over Fq with Steinberg endo-
morphism F and M ≥ 2, an integer. Then, we have

1. |G(Fq)M |
|G(Fq)|

= |G(Fq)Mrs |
|G(Fq)|

+ O(q−1).

2. |G(Fq)M |
|G(Fq)|

= |G(Fq)Mss |
|G(Fq)|

+ O(q−1).

3. |G(Fq)M |
|G(Fq)|

=
|G(Fq)Mrg |
|G(Fq)|

+ O(q−1).

Proof. To prove (1) we show that |G(Fq)M | = |G(Fq)Mrs |+ O(q2N+r−1). Now,

|G(Fq)M | = |G(Fq)Mrs |+ |G(Fq)Mnrs|

where "nrs" refers to non regular semisimple elements, and

|G(Fq)Mnrs| ≤ |G(Fq)nrs| = O(q2N+r−1)

gives us,
|G(Fq)M | = |G(Fq)Mrs |+ O(q2N+r−1).

Since |G(Fq)| = O(q2N+r) we get the required result.
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Now, since

|G(Fq)M |+ O(q2N+r−1) = |G(Fq)Mrs | ≤ |G(Fq)Mss | ≤ |G(Fq)M |

we get, |G(Fq)Mss | = |G(Fq)M |+O(q2N+r−1). A similar argument proves the result
for regular elements.

Proof of Theorem 6.1.1. The proof follows from Lemma 6.1.6 and Theo-
rem 6.1.4 and Theorem 3.3.11 in Chapter 3.

6.2 Asymptotics of powers in GL(n, q)

In this section we want to explore Theorem 6.1.1 for the group GL(n, q). We
ask further question as follows: Determine all possible limiting values for a given
M , that is, what are the possible values of

∑
T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

for

GL(n, q). Recall, from Chapter 3 that GL(n, q) is the group of Fq-fixed points of
GL(n, k) where Fq is the usual Frobenius map. Recall further that maximal tori of
GL(n, q) are parametrized by partitions of n. If (λ1, λ2, . . . , λr) ` n is a partition
of n, and T is a maximal tori of GL(n, q) corresponding to the partition λ, we have

T ∼= F×
qλ1 × · · · × F×

qλr
.

Thus, in terms of cyclic structure, T ∼= Cqλ1−1 × . . .× Cqλr−1 (see Example 3.3.1,
and 3.3.7 in Chapter 3 for detailed computations). Furthermore,W (T ) is ZSn(σλ),
which is the centralizer of an element σλ ∈ Sn where σλ corresponds to the partition
λ (see discussion in Page 42, Chapter 3). The above discussion yields the following
proposition.

Proposition 6.2.1. The proportion of M th powers in GL(n, q) is as follows,

|GL(n, q)M |
|GL(n, q)| =

∑
λ ` n

λ = 〈1m1 , 2m2 , · · · 〉

1∏
i

(M, qi − 1)mi
1

|ZSn(σλ)| + O(q−1)

where |ZSn(σλ)| =
∏
i

mi!imi.

For fixed n,M , let PGL(n, q,M) := |GL(n,q)M |
|GL(n,q)| . We now assume M to be a

prime and determine the possible subsequential limits of the set PGL(n, q,M).
When M - q, denote by o(q) the order of q in (Z/MZ)×. Given b a positive
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integer, let us define

πb(λ) =


∑
b|i
mi if 1 ≤ b ≤ n,

0 otherwise

for λ = 〈1m1 , 2m2 , · · · 〉 a partition of n. Thus, πb(λ) is the number of parts (counted
with multiplicity) of λ divisible by b. It is quite easy to determine the surjectivity
of the power maps for GL(n, q).

Proposition 6.2.2. Let M ≥ 2 be a prime and ω : GL(n, q) → GL(n, q) be the
power map x 7→ xM . Then, ω is surjective if and only if (M, q) = 1 and o(q) > n

where o(q) is order of q in (Z/MZ)×.

Proof. For any finite group G, and M a prime, ω is surjective if and only if

(M, |G|) = 1. Now we know that |GL(n, q)| = q
n(n−1)

2

n∏
i=1

(qi − 1). Hence, the

result follows.

Proposition 6.2.3. Let M be a prime. Then,

1. if M | q then, lim
q→∞

PGL(n, q,M) = 1.

2. If (M, q) = 1 then,

lim
q→∞

PGL(n, q,M) =
∑
λ`n

1
Mπo(q)(λ)

1
|ZSn(σλ)| .

Thus, there are at most 1 + ν(M − 1) subsequential limits of PGL(n, q,M) as
q →∞, where ν(M − 1) = |{a | 1 ≤ a ≤ n and a | (M − 1)}|.

Proof. If M | q, all semisimple elements of GL(n, q) (being of order coprime to q)
remain in GL(n, q)M . Thus, we get

lim
q→∞

PGL(n, q,M) = lim
q→∞

|GL(n, q)M |
|GL(n, q)| = 1.

Now we may assume (M, q) = 1. If o(q) > n then the limit is 1 which is already
obtained. Thus, we consider o(q) ≤ n. In view of Proposition 6.2.1, all we need to
find out is when (M, qi − 1) = M . We claim that, (M, qi − 1) = M if and only if
o(q) | i. For if, M | (qi − 1), then we have qi ≡ 1 (mod M). Thus, o(q) | i. This
gives the formula.

Now, o(q) is something which divides M − 1 and λ can have at most n parts,
we note that πo(q)(λ) can take at most ν(M − 1) values.
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However, for being a limit point of a set it remains to show that there are
infinitely many values of q giving rise to the same value. For this, we need to
prove that given a there are infinitely many q which are of order a in (Z/MZ)×.
Since (q,M) = 1, it follows from Dirichlet’s theorem on primes in an arithmetic
progression that there are infinitely many primes of the form q+xM . Notice that
the order of each such prime is the same as a in (Z/MZ)×. This completes the
proof.

We remark that for the case M | q, the same formula works where we may take
πa(λ) = 0 for all λ.

Corollary 6.2.4. For M = 2, these values are

1 and
∑
λ`n

1
2π(λ)|ZSn(σλ)|

where π(λ) denotes the number of parts of λ.

Example 6.2.5. Consider G := GL(2, q). When M = 2, the limit points are 1
and, 1

22.2! + 1
2.2 = 1

8 + 1
4 = 3

8 .
When M = 3, then one of the limit points is 1. To find the other two limit

points we first observe that (Z/3Z)× ∼= Z/2Z. Thus there are two possible value
of o(q) which are 1 and 2. When o(q) = 1, the limit point is given by,

∑
λ`2

1
3π1(λ).|ZSn(σλ)|

= 1
32.2! + 1

3.2 = 1
18 + 1

6 = 2
9 .

When o(q) = 2, the limit point is given by,

∑
λ`2

1
3π2(λ).|ZSn(σλ)|

= 1
2! + 1

3.2 = 1
2 + 1

6 = 2
3 .

Thus, the possible subsequential limits of PGL(2, q, 3) as q varies is given by
{1, 2

9 ,
2
3}.

Example 6.2.6. Consider G := GL(3, q). When M = 2, the limit points are
given by 1 and,

∑
λ`3

1
2π(λ)|ZSn(σλ)|

= 1
23.3! + 1

22.2 + 1
2.3 = 1

48 + 1
8 + 1

6 = 5
16 .

When M = 3, once again we observe that o(q) = 1 or, 2 or q is a power of 3,
in which case the limiting value is 1. When o(q) = 1, the limiting value is given
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by,

∑
λ`3

1
3π1(λ)|ZSn(σλ)|

= 1
33.3! + 1

32.2 + 1
3.3 = 1

162 + 1
18 + 1

9 = 14
81 .

When o(q) = 2, the limiting value is,

∑
λ`3

1
3π2(λ)|ZSn(σλ)|

= 1
3! + 1

3.2 + 1
3 = 1

6 + 1
6 + 1

3 = 2
3 .

Thus the possible subsequential limits of PGL(3, q, 3) as q varies is given by
{1, 14

81 ,
2
3}.

We look at another example involving SL(n, q). In SL(n, q) the non-conjugate
maximal tori are parametrized by the partitions of n, once again. The cyclic
structure of maximal tori of this group is determined by Theorem 1 in [Zav19].
We just compute the limiting values for SL(2, q), although we mention that, once
again for M prime, the possible subsequential limits for |SL(n,q)M |

|SL(n,q)| as q → ∞ can
be found explicitly as has been done in the GL(n, q) case.

Example 6.2.7. For the group SL(2, q), we have

lim
q→∞

|SL(2, q)M |
|SL(2, q)| = 1

2(M, q − 1) + 1
2(M, q + 1) .

since corresponding to the partition (1, 1) ` 2, the maximal torus is isomorphic
to F×q , whereas for the partition (2) ` 2, the maximal torus is isomorphic to
F1
q = {α ∈ (Fq2)× | α1+q = 1}. When q is odd and M is a prime this takes the

values 
1
2 if M = 2
M+1
2M if M coprime to q, and divides order of SL(2,q)

1 otherwise.

This explains the limits obtained in [KS20a, Theorem 5.1].

6.2.1 Generating function for the limit points of powers in
GL(n, q)

For a prime M ≥ 2, from Proposition 6.2.3, we have the finitely many limit points
for GL(n, q) (except the limit point 1) of the form

P (n, t,M) :=
∑

λ=〈1m1 ,2m2 ,...〉`n

1
Mπt(λ)

1∏
i≥1 i

mimi!
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where, t(≤ n) is a divisor of M − 1 and πt(λ) denotes the number of parts in λ

divisible by t. Note that if t > n, P (n, t,M) = 1 (this is the surjective case, see
Proposition 6.2.2) and when t ≤ n, P (n, t,M) < 1. We will write the generating
function for P (n, t,M) for fixed t ≤ n and M . We begin with a lemma.

Lemma 6.2.8.
∞∏
i=1

exp
(
ui

i

)
= 1

1− u.

Proof. The coefficient of un in
∞∏
i=1

exp
(
ui

i

)
is
∑
λ`n

1∏
i≥1 i

mimi!
= 1, which is

because of the class equation of Sn.

Proposition 6.2.9. The generating function is as follows

1 +
∞∑
n=1

P (n, t,M)un = (1− ut)
M−1
Mt

(1− u) .

Proof. By comparing coefficients we can write,

1 +
∞∑
n=1

P (n, t,M)un =

 ∏
i≥1,t-i

exp
(
ui

i

)×
 ∏
i≥1,t|i

exp
(
ui

Mi

)
=

∏
i≥1

exp
(
ui

i

)×
 ∏
i≥1,t|i

exp
(
ui

Mi

)×
 ∏
i≥1,t|i

exp
(
ui

i

)−1

=
( 1

1− u

)
×

∏
i≥1

exp
(
uti

Mit

)×
∏
i≥1

exp
(
uti

ti

)−1

=
( 1

1− u

)
×

∏
i≥1

exp
(
uti

i

)1/Mt

×

∏
i≥1

exp
(
uti

i

)−1/t

Replacing u by ut in Lemma 6.2.8 and substituting above we get,

1 +
∞∑
n=1

P (n, t,M)un =
( 1

1− u

)
×
( 1

1− ut
)1/Mt

×
( 1

1− ut
)−1/t

= (1− ut)
M−1
Mt

1− u .

This proves the proposition.

We explain this through an example here.

Example 6.2.10. Consider M = 3. The, the divisors of M − 1 are 1 and 2.
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t G.F. of P (n, t, 3) Small order terms

1 (1− u)−
1
3 1 + 1

3u+ 2
9u

2 + 14
81u

3 + 35
243u

4 + 91
729u

5 + 728
6561u

6 + O(u7)

2 (1−u2)1/3

1−u 1 + u+ 2
3u

2 + 2
3u

3 + 5
9u

4 + 5
9u

5 + 40
81u

6 + O(u7)

Table 6.1: Small values of P (n, t, 3).

Therefore, when n = 1, the set of limit points are {1, 1
3}. For n = 2, the set of

limit points are {1, 2
9 ,

2
3} and for n = 3, the set of limit points are {1, 14

81 ,
2
3}.

To end this section, we explore some further properties of P (n, t,M) using its
generating function.

Lemma 6.2.11. Let r ≥ 2 be any integer. Suppose ω 6= 1 be an rth root of unity.
Suppose f(x) is a function such that f(x) = f(ωx). Let g(x) = (1 +x+x2 + . . .+
xr−1)f(x). If g(x) =

∞∑
n=0

anx
n then we must have, akr = akr+1 = · · · = akr+k−1

for every k ≥ 0.

Using this we prove the following property of P (n, t,M).

Proposition 6.2.12. P (kt, t,M) = P (kt + 1, t,M) = . . . = P (kt + k − 1, t,M)
for all k ≥ 0, where we set P (0, t,M) = 1.

Proof. From Proposition 6.2.9 we have, 1 +
∞∑
n=1

P (n, t,M)un = (1− ut)
M−1
Mt

1− u . Let

f(u) = (1 − ut)
M(1−t)−1

Mt . Then, (1−ut)
M−1
Mt

1−u = (1 + u + . . . + ut−1)f(u) and f(u) =
f(ωu), where ω 6= 1, is a tth root of unity. Thus, the result holds by Lemma 6.2.11.

6.3 Asymptotics of powers in GU(n, q)

Similar to Section 6.2, we want to get the estimates in Theorem 6.1.1, for the
unitary group GU(n, q). Recall that GU(n, q) is obtained from GL(n, F̄q) with the
Frobenius map F : (aij) 7→ t(aqij)−1. Thus, GU(n, q) ≤ GL(n, q2). Once again, the
question is to determine the limit

∑
T=Td1,··· ,ds

1
|WT |(M,d1)···(M,ds) more explicitly.

The maximal tori for this group is well known and can be, for example, found
in [GKSV19, Section 2]. We recall the same along with its cyclic structure which
we require for our purpose.

Similar to the case of GL(n, q), the conjugacy classes of maximal tori in
GU(n, q) are in one-one correspondence with the conjugacy classes of Sn. Hence,
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the non-conjugate maximal tori are parameterized by the partitions of n. For a
maximal torus T of GU(n, q), there exists a partition λ = (λ1, λ2, . . . , λr) of n such
that

T ∼= Mλ1 × · · · ×Mλr

where Ms = {x ∈ F̄q | xq
s−(−1)s = 1}. Thus, the cyclic structure is T ∼=

Cqλ1−(−1)λ1 × . . . × Cqλr−(−1)λr . Note that when s is even Ms
∼= F∗qs , and when s

is odd, Ms = {x ∈ Fq2s | xqs+1 = 1}. Corresponding to a partition λ of n, let σλ
denote the standard element of the conjugacy class of Sn with cycle-type λ. Let
T be a maximal torus of GU(n, q) parametrized by the partition λ of n. Then,
WT
∼= ZSn(σλ). For a fixed n,M , let PGU(n, q,M) := |GU(n,q)M |

|GU(n,q)| .

Proposition 6.3.1. The proportion of M th powers in GU(n, q) is,

|GU(n, q)M |
|GU(n, q)| =

∑
λ ` n

λ = 〈1m1 , 2m2 , . . .〉

∏
i

1
(M, qi − (−1)i)mi

1
|ZSn(σλ)| + O(q−1).

Further, the set of limits lim
q→∞

PGU(n, q,M) and lim
q→∞

PGL(n, q,M) are same, in
fact, in bijection under q 7→ −q.

Proof. This is clear from the discussion above, and the Theorem 6.1.1.

The bijection q 7→ −q reminds us of the Ennola duality. Ennola observed that the
character table of GU(n, q) can be obtained from that of GL(n, q) by replacing q
with −q (see [Enn63]). This phenomena is known as the Ennola duality, and can
also be defined in the more general setting of finite reductive groups.

Let M be a prime. Now, we determine the possible subsequential limits of
the set PGU(n, q,M) explicitly and write the generating function. For a partition
λ = (n1, n2, . . . , ns) ` n, let us denote by π′b(λ) as follows: π′b(λ) = 0 if b > n, else
it is the number of ni such that if ni is even b | ni; and if ni is odd, b is even and
b | 2ni. Recall when (M, q) = 1 we denote by o(q) the order of q in (Z/MZ)×.

Proposition 6.3.2. Let M be a prime. Then,

1. When M | q, we have

lim
q→∞

PGU(n, q,M) = lim
q→∞

|GU(n, q)M |
|GU(n, q)| = 1.
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2. Let M > 2 be a prime and (M, q) = 1. Then,

lim
q→∞

PGU(n, q,M) =
∑
λ`n

1
M

π′
o(q)(λ)|ZSn(σλ)|

= lim
q→∞

PGL(n,−q,M).

3. When M = 2, and q odd,

lim
q→∞

PGU(n, q, 2) =
∑
λ`n

1
2π(λ)|ZSn(σλ)|

= lim
q→∞

PGL(n, q, 2)

where π(λ) denotes the number of parts of λ.

Proof. If M | q, all semisimple elements of GU(n, q) (being of order coprime to q)
remain in GU(n, q)M . Thus, we get

lim
q→∞

PGU(n, q,M) = lim
q→∞

|GU(n, q)M |
|GU(n, q)| = 1.

Now, we can assume M - q. In view of Proposition 6.3.1, all we need to find
out is when (M, qi− (−1)i) = M . We claim that, (M, qi− (−1)i) = M if and only
if when i is even o(q) | i, and when i is odd o(q) is even and o(q) | 2i. For if i is
even, M | (qi − 1) if and only if o(q) | i. If i is odd, M | (qi + 1) if and only if o(q)
is even and o(q) | 2i. This gives the formula. The last part is so because when q
is odd, 2 | (qi − (−1)i) for all i.

6.3.1 Generating functions for the limit points of powers in
GU(n, q)

For a prime M and t a divisor of M − 1, we denote

P̃ (n, t,M) =
∑

λ=〈1m1 ,2m2 ,··· 〉`n

1
Mπ′t(λ)∏

i≥1 i
mimi!

.

The generating function for P̃ (n, t,M) is as follows:

Proposition 6.3.3. For M a prime, we have,

1. When t is odd,

1 +
∞∑
n=1

P̃ (n, t,M)un = (1− u2t)
M−1
2Mt

1− u .
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2. When t is even and t/2 is even,

1 +
∞∑
n=1

P̃ (n, t,M)un = (1− ut)
M−1
Mt

1− u .

3. When t is even and t/2 is odd,

1 +
∞∑
n=1

P̃ (n, t,M)un = (1− ut/2)
2(M−1)
Mt

1− u .

Proof. Let o(q) = t. Suppose t is odd. Then o(−q) = 2t. Now suppose t is
even. Further assume that t/2 is even. Then o(−q) = t. Finally, if t is even such
that t/2 is odd, then it is clear that o(−q) = t/2. The result then follows from
Proposition 6.3.2 and Proposition 6.2.9.

Example 6.3.4. ConsiderM = 3. We have the following table for all the divisors
of M − 1 = 2.

t G.F. of P̃ (n, t,M) Small order terms

1 (1−u2)1/3

1−u 1 + u+ 2
3u

2 + 2
3u

3 + 5
9u

4 + 5
9u

5 + 40
81u

6 + O(u7)

2 (1− u)−
1
3 1 + 1

3u+ 2
9u

2 + 14
81u

3 + 35
243u

4 + 91
729u

5 + 728
6561u

6 + O(u7)

Table 6.2: Small values of P̃ (n, t, 3).

Once again we see when n = 1, the set of limit points are {1, 1
3}. For n = 2, the

set of limit points are {1, 2
9 ,

2
3} and for n = 3, the set of limit points are {1, 14

81 ,
2
3}.

Thus the sets are clearly same as in the case of GL(n, q).



Chapter 7

M th powers in GL(n, q) when
(M, q) = 1

This chapter deals with the author’s work in [KS20b]. In the previous chapter, we
have dealt with the asymptotic of powers in a general finite reductive group. In this
chapter, we specialize over the general linear group GL(n, q) of all n×n invertible
matrices with entries in Fq, and determine explicitly the set of all matrices that
are some M th power.

We quickly recall some notations that we will use in this chapter (see Chap-
ter 1). Let M ≥ 2 be an integer. The power map ωM : GL(n, q)→ GL(n, q) is de-
fined by g 7→ gM . The image of ωM denoted by GL(n, q)M = {gM | g ∈ GL(n, q)},
is the set of all invertible matrices which areM th powers, or in other words, possess
M th root. It is easy to see that the image GL(n, q)M is closed under conjugation
and hence is a union of conjugacy classes of GL(n, q). Let C be a conjugacy class of
GL(n, q) which is contained in GL(n, q)M . We call C aM th power conjugacy class.

In this chapter, one of the main questions we will address is which invertible
matrices are M th powers. As a consequence of the Jordan decomposition of in-
vertible matrices, it is necessary that the determination of M th powers must be
divided into two separate cases, depending on the gcd of M and q. The first case
is when (M, q) = 1 which is dealt with in this chapter. In the next chapter we deal
with the case of (M, q) 6= 1. The question of enumeration of M th powers is ap-
proached in the sense of generating function. We will use the theory of cycle index
to deduce the generating function for the proportion of M th powers in GL(n, q),
which is |GL(n,q)M |

|GL(n,q)| . We also deduce the generating function for the number of
conjugacy classes which are M th powers, denoted by c(n,M).

In addition to this we deal with certain kind of elements. Let GL(n, q)Mrg ,

83
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GL(n, q)Mss , GL(n, q)Mrs denote those regular, semisimple and, regular semisimple
invertible matrices which are in the set GL(n, q)M of M th power invertible matri-
ces. In short, these denote the set of M th power regular, M th power semisimple,
and M th power regular semisimple elements in GL(n, q). These sets are also char-
acterized and generating function for the proportion of such elements are given.
It is noteworthy that proportions of M th power regular, semisimple and regular
semisimple elements are generalization of proportion of regular, semisimple and
regular semisimple elements in GL(n, q), by taking M = 1, and as such the gen-
erating functions obtained for the former proportions are generalization of the
generating functions obtained for the latter proportions (see Section 5.3, Chap-
ter 5). We also obtain generating functions for c(n,M)rg, c(n,M)ss and, c(n,M)rs

which are the M th power regular, M th power semisimple and, M th power regular
semisimple conjugacy classes of GL(n, q) respectively.

To characterize a matrix which is a M th power, certain kinds of polynomials,
which we call M-power polynomials, play a crucial role. We start this chapter with
a detailed investigation of such polynomials.

7.1 M-power polynomials

Recall from Chapter 4 that the set of all monic, irreducible polynomials of degree
≥ 1 over the field Fq, except x, is denoted as Φ. Counting of this set is done using
N(q, d) (see Equation 5.2, Chapter 5). Let M ≥ 2 be an integer. For a polynomial
f(x) = xd+ad−1x

d−1 + . . .+a1x+a0 ∈ Fq[x] we denote the composed polynomial,

f(xM ) = xMd + ad−1x
M(d−1) + . . .+ a1x

M + a0,

where we substitute xM in place of x in the expression of f(x). Now we define,

Definition 7.1.1 (M-power polynomial). A non-constant, irreducible, monic poly-
nomial f(x) ∈ Fq[x] of degree d is said to be an M-power polynomial if f(xM ) has
an irreducible factor of degree d. In general, a non-constant, monic polynomial f
is said to be an M-power polynomial if each irreducible factor of f is an M-power
polynomial.

Example 7.1.2. The polynomial x−a ∈ Fq[x] is M-power if and only if a ∈ FMq =
{aM | a ∈ Fq}.

We denote the set of monic, irreducible polynomials which are M-power by Φ̃M

and denote ΦM = Φ̃M \{x}. Let ÑM (q, d) be the number of polynomials of degree
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d in Φ̃M and NM (q, d) be that of ΦM . We have a simple relation NM (q, d) =
ÑM (q, d) except for d = 1 and NM (q, 1) = ÑM (q, 1)− 1 = q−1

(M,q−1) .

Example 7.1.3. Let us compute N2(q, 2), i.e., the number of 2-power polynomials
of degree 2 over Fq. An irreducible polynomial f of degree 2 can be factored over
Fq2 as f(x) = (x − α)(x − σ(α)) where σ is the Frobenius automorphism. Now,
f(x2) = (x2 − α)(x2 − σ(α)) has a factor of degree 2 over Fq if and only if α has
a square root. Thus, for N2(q, 2) we need to count elements α which are in (F∗q2)2

but not in Fq. We get, N2(q, 2) = 1
2

(
q2−1

(2,q2−1) − (q − 1)
)
.

More generally we have the following (thanks to Prof. Will Sawin),

Proposition 7.1.4. For d > 1 we have,

NM (q, d) = 1
d

∑
r|d

µ(r)

(
M(qd/r − 1), (qd − 1)

)
(M, qd − 1) .

Proof. Our proof is generalisation of the proof for N(q, d) in [CM11]. Let f be an
irreducible M-power polynomial of degree d > 1. That is, f(xM ) has an irreducible
factor of degree d. The irreducible polynomial f is characterised with its root in
Fqd . Consider the field extension Fqd of Fq and the power map θ : F∗

qd
→ F∗

qd
defined

by θ(x) = xM . Thus, M-power polynomial f is characterised by an element in the
image of θ which is primitive. Now, consider the set

T = {α ∈ F∗qd | α ∈ FMqd , α /∈ any proper subfield of Fqd}.

Then, we get NM (q, d) = 1
d |T |. Now we count the set T . To do this, we count

T (d, e) = {αM ∈ Fqe | α ∈ Fqd} and apply the inclusion-exclusion principle. The
number of pre-images of each element in Im(θ) is |Ker(θ)|, which is (M, qd − 1).
Now, suppose α ∈ F∗

qd
, such that αM ∈ Fqe . Then

(
αM

)qe
= αM . Thus, the

number of α ∈ F∗
qd
, which are solution of the equation αM(qe−1) = 1, is (M(qe −

1), qd − 1). Hence we get |T (d, e)| = (M(qe−1),qd−1)
(M,qd−1) . The result follows.

For some small values of M and d we write NM (q, d) in tables below.

q N2(q, 2) N2(q, 3) N2(q, 4)
odd 1

4(q − 1)2 1
6(q3 − q) 1

8(q2 − 1)2

even 1
2(q2 − q) 1

3(q3 − q) 1
4(q4 − q2)

Table 7.1: Values of N2(q, 2), N2(q, 3), and N2(q, 4)
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q (mod 3) N3(q, 2) N3(q, 3) N3(q, 4)
0 1

2(q2 − q) 1
3(q3 − q) 1

4(q4 − q2)
1 1

6(q2 − q) 1
9(q3 − 3q + 2) 1

12(q4 − q2)
2 1

6(q − 1)(q − 2) 1
3(q3 − q) 1

12(q4 − q2).

Table 7.2: Values of N3(q, 2), N3(q, 3), and N3(q, 4)

Now, we move on to the problem of determining the degrees of irreducible poly-
nomials occurring in the unique factorization of the composed polynomial f(xM ),
corresponding to an irreducible polynomial f . This determination of degrees will
play a crucial role in determining the M th powers in GL(n, q). Since we are trying
to determine the M th powers in GL(n, q) when (M, q) = 1 in this chapter, we will
now study M-power polynomials when (M, q) = 1.

7.1.1 M-power polynomials when (M, q) = 1

There is an extensive literature to determine the factors of polynomial f(xM ) (more
generally for composition of two polynomials) and their degrees. For (s, q) = 1,
the notation M(s; q) is the order of q in (Z/sZ)×, that is M(s; q) is the smallest
integer such that qM(s;q) ≡ 1 (mod s). For an irreducible polynomial f(x), which
is not x, exponent of f is the order of a root (which is same for all roots) of f(x)
in the multiplicative group F̄q

∗ (see [LN83, Chapter 3, Section 1]). We mention
the following result due to Butler (see [But55, Theorem in Section 3]) which we
need in sequel.

Proposition 7.1.5 (Butler). Let f(x) be an irreducible polynomial of degree d
over Fq and (q,M) = 1. Let t be the exponent of f(x). Write M = M1M2 in such
a way that (M1, t) = 1 and each prime factor of M2 is a divisor of t. Then,

1. f(xM ) has no repeated roots.

2. The multiplicative order of each root of f(xM ) in F̄q
∗ is M2tb, for some b

that b |M1.

3. Further, for a fixed b | M1, the number of irreducible factors of f(xM ) of
which roots have the above order is

M2dφ(b)
M(M2tb; q)

and each of the factors is of degree M(M2tb; q), where φ is Euler’s totient
function.
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We use this to obtain some further information regarding M-power polynomials
when M is a prime power.

Lemma 7.1.6. Let M = ra where r is a prime and (q,M) = 1. Suppose f(x)
is an irreducible polynomial of degree d over Fq of exponent t. Then we have the
following:

1. If r - t, the polynomial f(xM ) has an irreducible factor of degree d, that is,
f is an M-power polynomial.

2. If r | t, the polynomial f(xM ) factors as a product of ra−i irreducible poly-
nomials each of degree dri for some 1 ≤ i ≤ a.

Proof. Let α be a root of f(x) and t be its multiplicative order. Then, Fq[α] ∼= Fqd ,
hence t | (qd − 1) (also gives (t, q) = 1). In fact, because Fqd is splitting field of f ,
the number d is smallest with the property that t | (qd − 1) (see [LN83, Theorem
3.3, 3.5]), hence M(t; q) = d.

First, let r - t, then M1 = M and M2 = 1. Thus, by taking b = 1 in part 3
of Proposition 7.1.5, f(xM ) has an irreducible factor of degree M(t; q) = d. This
shows that f is an M-power polynomial.

Now, let us consider the case when r | t, then M1 = 1 and M2 = M = ra.
Once again applying Proposition 7.1.5, all of the irreducible factors of f(xM ) are of
same degree, which is M(rat; q) = s(say). That is s is obtained from the equation
qs ≡ 1 (mod rat). We claim that d | s and s | rad thus s would have required
form. Since rat | (qs − 1) hence t | (qs − 1). This combined with the fact that
the order of q modulo t is d, we get that d | s. Now, for the second one we show
qr
ad ≡ 1 (mod rat) (which would give s | rad). We can write

(qrad − 1) = (qdra−1 − 1)(qdra−1(r−1) + · · ·+ qd + 1).

Going modulo r the second term on right becomes 0 as qd ≡ 1 (mod r) (as r | t).
Thus this term is a multiple of r. By further reducing a − 1, inductively, we get
(qrad − 1) = (qd − 1)ra.h for some h. Notice that t divides the first term. Hence
the result.

Corollary 7.1.7. With notation as in the Lemma, let f(x) be an irreducible poly-
nomial of degree d. Then, M(r; q) - d implies f is an M-power polynomial.

Proof. We claim that if M(r; q) - d then r - t. Suppose r | t, then r | (qd− 1). This
gives M(r; q) | d, as M(r; q) is the smallest with the property that r | (qM(r;q)−1).
Now, the result follows by Lemma 7.1.6.
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WhenM is a prime we can get an easier way to decide if f(x) is an M-power using
M(M ; q) instead of the exponent which, in general, is difficult to compute.

Lemma 7.1.8. Let M be a prime and (q,M) = 1. Let f(x) be an irreducible
polynomial of degree d over Fq. Then we have the following:

1. If M(M ; q) - d, then f(xM ) factors as a product of an irreducible poly-
nomial of degree d, and d(M−1)

lcm(M(M ;q),d) irreducible polynomials of degree
lcm(M(M ; q), d). Thus, f is an M-power polynomial.

2. If M(M ; q) | d, then f(xM ) is either irreducible or has a factor of degree d.
Thus, if f(xM ) is reducible it is M-power.

Proof. Let us write s = M(M ; q). Let us begin with the case when s - d. We must
have (M, t) = 1 and thusM1 = M,M2 = 1. For if (M, t) 6= 1, i.e., M | t, combined
with t | (qd − 1) we get M | (qd − 1). This gives, s | d as t is smallest with this
property which is contrary to our assumption. Thus by Proposition 7.1.5, f(xM )
has factors corresponding to b = 1 and b = M . For the case b = 1 we get a
factor of degree d as in the previous Lemma. It also has dφ(M)

M(Mt;q) factors of degree
M(Mt; q). We claim that M(Mt; q) = lcm(M(M ; q), d). But, this is clear because
(Z/MtZ)× ∼= (Z/MZ)× × (Z/tZ)× because (M, t) = 1. This completes the proof
of first part.

Now, to prove the second part we have s | d. First we take M - t. We
have M1 = M and M2 = 1. Thus f(xM ) has factors d

M(s;q) = 1 irreducible
polynomial of degree M(s; q) = d and d(M−1)

M(tM ;q) irreducible polynomials each of
degree M(tM ; q) = lcm(M(M ; q), d). Now take the case M | t. We have M1 = 1
and M2 = M . Thus f(xM ) is a product of Md

M(tM ;q) irreducible polynomials each
of degree M(tM ; q) which is either d or Md (from second part of Lemma 7.1.6).
When M(tM ; q) = d we have f an M-power, else f(xM ) is irreducible.

When M = ra, we set some notation and do further counting of polynomials
appearing in the Lemma 7.1.6 above. For 1 ≤ i ≤ a, denote the set of all polyno-
mials f ∈ Φ such that f(xM ) has ra−i irreducible factors each of degree rideg(f),
by ΦM,i. Then by Lemma 7.1.6 we have

Φ = ΦM
⋃ a⋃

i=1
ΦM,i =

a⋃
i=0

ΦM,i

where, for convenience, we denote ΦM = ΦM,0. Note that the above union is
disjoint. Denote N̂(q, d) = N(q, d) − NM (q, d). For 1 ≤ i ≤ a, we denote the
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number of irreducible polynomials f(x) in ΦM,i of degree d by N i
M (q, d). Thus,

N(q, d) = NM (q, d) + N̂(q, d) =
a∑
i=0

N i
M (q, d)

where, for notational convenience, we denote NM (q, d) as N0
M (q, d). We have the

following formula for N i
M (q, d).

Proposition 7.1.9. Let M = ra where r is a prime. For natural numbers d and
e, let T̃ (d, e) denote the number of field generators of Fqe, that has a M th root in
the field Fqd. Then, for 1 ≤ i ≤ a we have,

N i
M (q, d) = 1

d

(
|T̃ (dri, d)| − |T̃ (dri−1, d)|

)
.

Proof. The proof is similar to that of Proposition 7.1.4. Since T̃ (d, e) denotes the
number of field generators of Fqe , that has a M th root in the field Fqd we have,

|T̃ (d, e)| =
∑
r|e
µ(r)

(
M(qe/r − 1), qd − 1

)
(M, qd − 1)

where µ is the Mobius function. Comparing with the proof of Proposition 7.1.4,
we note that 1

d |T̃ (d, d)| = NM (q, d).
To compute N i

M (q, d), we need to find the number of field generators of Fqd
which possess M th root in the field F

qdri
but not in any smaller subfield between

F
qdri

and Fqd . The set T̃ (dri, d) gives the total number of field generators of
Fqd , which posses M th root in the field F

qdri
. Thus, to get N i

M (q, d) we need to
subtract |T̃ (dri−1, d)|. Finally we also note that we d such elements correspond to
a polynomial thus we divide by that to get the result.

We look at an example here.

Example 7.1.10. Let us takeM = 22 and d = 1. We have already seenN0
4 (q, 1) =

N4(q, 1) = q−1
(4,q−1) . Now, N1

4 (q, 1) counts the number of polynomials x − λ, such
that x4 − λ factors as a product of two irreducible degree 2 polynomials. Thus
we have, N1

4 (q, 1) =
(

(q−1)(4,q+1)
(4,q2−1) − q−1

(4,q2−1)

)
= q−1

(4,q2−1) ((4, q + 1)− 1). Finally,
N2

4 (q, 1) counts the number of polynomials x − λ such that x4 − λ is irreducible.
Thus,

N2
4 (q, 1) = (4(q2 − 1), q4 − 1)

(4, q4 − 1) − (4(q − 1), q4 − 1)
(4, q4 − 1) − (4(q − 1), q2 − 1)

(4, q2 − 1)
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= (q − 1)
(

(q + 1)(4, q2 + 1)
(4, q4 − 1) − (4, q3 + q2 + q + 1)

(4, q4 − 1) − (4, q + 1)
(4, q2 − 1)

)
.

7.2 M th powers in GL(n, q)

We consider the power map ω : GL(n, q) → GL(n, q) given by x 7→ xM . We
further assume that (q,M) = 1. Let α ∈ GL(n, q) with combinatorial data ∆α

which determines α up to conjugacy. We have introduced this in Section 4.1.1,
Chapter 4. Conversely, to such a data we have an associated representative matrix
of the conjugacy class which we make use of in the sequel for further computations.

Lemma 7.2.1. Let γ ∈ F∗q and Jγ,n =


γ 1 0 0 ···
γ 1 0 ···
... ... ...

γ 1
γ

 be the Jordan matrix of

size n. Then, (Jγ,n)M is conjugate to JγM ,n.

Proof. We write Jγ,n = γIn+N and notice that N is a nilpotent matrix satisfying
Nn = 0 and Nk 6= 0 for all k < n. Thus,

(Jγ,n)M = (γIn +N)M = γMIn +
(
M

1

)
γM−1InN + · · ·+NM .

Hence, (Jγ,n)M has all diagonal entries γM , and all entries above the diagonal
MγM−1. Since (q,M) = 1, the result follows.

Let f ∈ Φ be a polynomial of degree k ≥ 1. Then, f splits over Fqk . The
Galois automorphisms of this field is obtained by taking powers of the Frobenius
automorphism denoted as σk. Let fM ∈ Fq[x] be the minimal polynomial of M th

power of one of the roots of f . If η is a root of f then other roots of f are σik(η) for
0 ≤ i ≤ k − 1, and fM is the minimal polynomial of ηk. Note that fM is uniquely
associated to f , say it is of degree d. Then, d | k and Fqd is the splitting field of
fM which is a subfield of Fqk . We have the following,

Lemma 7.2.2. Let f ∈ Φ be of degree k ≥ 1, and fM be minimal polynomial
of M th power of a root of f of degree d. Then, exactly k

d roots of f(x) raised to
the power M give a root of fM (x). Further, f(x) is an irreducible factor of the
polynomial fM (xM ).

Proof. Let η ∈ Fqk be a root of f(x), and ηM = ζ ∈ Fqd with minimal polynomial
fM (x). Then, the set of roots of f is S = {σik(η) | 0 ≤ i ≤ k − 1} ⊂ Fqk and under
the M th power map this goes inside the set S̃ = {σid(ζ) | 0 ≤ i ≤ d − 1} ⊂ Fqd
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which are roots of fM . Thus the first statement follows.
We note that η is a root of fM (xM ) as (xM−ζ) = (xM−ηM ) is a factor. Thus,

the minimal polynomial of η, which is f , divides fM (xM ).

Now, we consider slightly more general case of α ∈ GL(n, q) with combinatorial
data ∆α and determine the data ∆αM for αM .

Proposition 7.2.3. Suppose α ∈ GL(n, q) with ∆α consisting of a single irre-
ducible polynomial f of degree k and λf = (λ1, . . . , λl) where |λf | = n

k . Let fM
be the minimal polynomial of a M th power of a root of f , say of degree d. Then,
∆αM consists of a single polynomial fM and |λfM | = n

d with

λfM = (λ1, . . . , λ1︸ ︷︷ ︸
s

, . . . , λl, . . . , λl︸ ︷︷ ︸
s

)

where s = k
d .

Proof. Recall from Section 5.3.2, the associated representative of conjugacy class
corresponding to α is the matrix Aα = diag(Jf,λ1 , . . . , Jf,λl) where Jf,λi is a block
matrix of size λi.k with each block size k and diagonals C(f). Thus to compute
AMα we first look at a single block Jf,λi . Note that Jf,λi = D + N where D =

diag(C(f), . . . , C(f)) and N =


0 I

0 I
. . . . . .

0 I
0

 and DN = ND. Thus,

JMf,λi = (D +N)M = DM +MDM−1N + · · ·

where DM = diag(C(f)M , . . . , C(f)M ). Since (q,M) = 1, the data ∆αM will de-
pend only on how C(f)M splits up. Over Fqk , the companion matrix C(f) is conju-
gate to the diagonal matrix diag(η, σ(η), . . . , σk−1(η)) where Gal(Fqk/Fq) =< σ >.
Thus, Jf,λi is conjugate to the matrix diag(Jη,λi , Jσ(η),λi , . . . , Jσk−1(η),λi). Now, us-
ing Lemma 7.2.1, we get JMf,λi is conjugate to diag(JηM ,λi , Jσ(η)M ,λi , . . . , Jσk−1(η)M ,λi)
over Fqk . Thus, by grouping together the blocks where the conjugates of ζ = ηM

appear, we get JMf,λi is conjugate to

diag

Jζ,λi , Jσd(ζ),λi , . . . , Jσd−1
d

(ζ),λi︸ ︷︷ ︸
1

, . . . , Jζ,λi , Jσd(ζ),λi , . . . , Jσd−1
d

(ζ),λi︸ ︷︷ ︸
s


with s many grouped blocks, because of Lemma 7.2.2. Further, notice that



92 7.2. M th powers in GL(n, q)

diag(Jζ,λi , Jσd(ζ),λi , . . . , Jσd−1
d

(ζ),λi)

where Gal(Fqd/Fq) =< σd >, is conjugate to JfM ,λi ; which is a block matrix of size
λi.d with block size d. Thus, JMf,λi is conjugate to diag(JfM ,λi , . . . , JfM ,λi︸ ︷︷ ︸

s

). This

gives us the required result.

In this proposition, the partition λfM can be easily visualized in the power notation
of partitions where the multiplicity of each part gets multiplied by s. We can
generalize the above result to a more general setup where ∆α has more than one
polynomials but the minimal polynomial of M th power of a root of each one of
them is a single polynomial.

Proposition 7.2.4. Suppose α ∈ GL(n, q) with associated data ∆α consisting of
polynomials fi ∈ Φ of degree di and partitions λfi = (λi1 , λi2 , . . .), 1 ≤ i ≤ l. Let
h(x) be a polynomial of degree d which is the minimal polynomial of M th power
of a root of each fi for all i (that is, (fi)M = h,∀i). Then, ∆αM consists of the
single polynomial h(x) and partition

λh(x) =
(
λ
d1
d

11 , λ
d1
d

12 , . . .︸ ︷︷ ︸, . . . , λ
di
d
i1
, λ

di
d
i2
, . . .︸ ︷︷ ︸, . . . , λ

dl
d
l1
, λ

dl
d
l2
, . . .︸ ︷︷ ︸

)

with |λh(x)| = n
d .

The proof of this follows from the earlier proposition. A more general version
of this Proposition can be written where we have h1(x), . . . , hm(x) which are the
minimal polynomials of M th powers of a subset of fi’s. We also note that in this
proposition the partition obtained need not be ordered. However, there is no loss
here if we make it ordered.

Now, we apply the results obtained so far to get certain classes that are M th

power.

Proposition 7.2.5. Let α ∈ GL(n, q) with combinatorial data ∆α. Suppose, each
partition λfi in ∆α has all its parts distinct. Then, XM = α has a solution in
GL(n, q) if and only if fi is M-power for all i (that is, fi(xM ) has an irreducible
factor of degree deg(fi) for all i).

Proof. It suffices to prove this for a single polynomial i = 1 case. Thus we may
assume, α ∈ GL(n, q) with ∆α consisting of a single polynomial h(x) ∈ Φ of
degree d and partition λh(x) of n

d has all of its parts distinct. Now, we need to
prove XM = α has a solution in GL(n, q) if and only if the polynomial h(xM ) has
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an irreducible factor of degree d.
First, let us assume that there exists an A ∈ GL(n, q) such that AM = α.

Suppose, the combinatorial data ∆A consists of polynomials fi of degree di and
partitions λfi . Then, M th power of roots of fi, for all i, are roots of h(x), i.e.,
(fi)M = h(x) for all i. Therefore, by Proposition 7.2.4, the associated partition
λh(x) will have each λij repeating di

d many times. But, we are given that parts of
λh(x) are all distinct. Hence, di = d for all i. Thus, by fixing f as one of the fi
and by using Lemma 7.2.2, we have s = 1 and h(xM ) has an irreducible factor of
degree d, as required.

Now for converse, since h(xM ) has an irreducible factor of degree d, call it
g(x). Then M th power of each root of g(x) is a root of h(x). Now, take A to
be the standard representative of the conjugacy class with combinatorial data ∆A

consisting of the polynomial g(x) with λg(x) = λh(x). From Proposition 7.2.3, we
see that ∆AM = ∆α. This proves the required result.

To obtain neat results for arbitrary α in GL(n, q) we put some restrictions
on M (for example a prime power). Recall (last paragraph of Section 7.1) that
for 1 ≤ i ≤ a, we denote the set of all polynomials f ∈ Φ such that f(xM ) has
ra−i irreducible factors each of degree rideg(f), by ΦM,i. Also, for convenience we

denote the set of M-power polynomials ΦM = ΦM,0 and we have, Φ =
a⋃
b=0

ΦM,b.

Proposition 7.2.6. Let M = ra where r is a prime. Let α ∈ GL(n, q) with
combinatorial data ∆α consisting of polynomials fi ∈ Φ of degree di and partitions
λfi = 〈1m1(λfi ), 2m2(λfi ), · · · 〉 written in power notation, 1 ≤ i ≤ l. Then, XM = α

has a solution in GL(n, q) if and only if for each 1 ≤ i ≤ l, one of the following
holds:

1. fi ∈ ΦM .

2. fi ∈ ΦM,b for some b, 1 ≤ b ≤ a and rb | mj(λfi) for all j.

Proof. Let us first assume XM = α has a solution B in GL(n, q). It is enough
to prove this result when ∆α consists of a single irreducible polynomial f with
associated partition λf . Let the degree of f be d and hence |λf | = n

d . Since, M
is a prime power, from Lemma 7.1.6 either f(xM ) is an M-power polynomial or it
splits into ra−b irreducible polynomials each of degree drb for some b ≥ 1. That is,
either f ∈ ΦM or f ∈ ΦM,b. We show that if (2) does not hold then f must be an
M-power polynomial. Thus, let us assume that there exists i0, such that mi0(λf ),
the number of times i0 appears in the partition λf , is not divisible by rb. Now, we
need to show that f(xM ) has a factor of degree d. Let ∆B consists of irreducible
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polynomials g1, g2, . . . with associated partitions λg1 , λg2 , . . .. Since, BM = α the
M th power of roots of gj are roots of f for all j. Then, from Proposition 7.2.4,
we conclude that ∆BM consists of the polynomial f with the partition where each
part of λgj repeats sj

d times, where deg(gj) = sj . Thus, d | sj for all j. Notice
that a particular part in λf can come from more than one λgj , i.e, mi0(f) is of
the form

∑
j
sj
d . Now, from Lemma 7.2.2 we see that gj are the factors of f(xM ).

Invoking Lemma 7.1.6, each irreducible factor of f(xM ) (which are gj in our case)
has degree drb. Thus, sj = drb. Since, rb - mi0(f) there exists j0 such that rb - sj0 .
Hence, sj0 = d. This implies f is an M-power polynomial.

To prove the converse, we can work with the blocks of either kind. First,
let f ∈ ΦM , i.e., f(xM ) has an irreducible factor of degree d. Then, following
the proof for converse of Proposition 7.2.5, we get a solution for XM = α. The
main case we need to deal with is the second kind. Let α has associated data ∆α

consisting of polynomial f and partition λf = 1m1 . . . imi . . . with the property that
f ∈ ΦM,b for some b ≥ 1, i.e, f(xM ) is a product of ra−b irreducible polynomials
each of degree drb, and rb | mi for all i. Let g be one of the factors of f(xM ) and

λg = 1
m1
rb . . . λ

mi
rb

i . . .. Let B be a matrix associated with data g and λg. Then from
Proposition 7.2.3, BM is conjugate to α. This completes the proof.

Now, we write a corollary of this when M is a prime.

Corollary 7.2.7. Let M be a prime with (q,M) = 1. Denote t = M(M ; q). Let
α ∈ GL(n, q) with combinatorial data ∆α consisting of polynomials fi ∈ Φ of degree
di and partitions λfi = (λi1 , λi2 , . . .), 1 ≤ i ≤ l. Then, XM = α has a solution in
GL(n, q) if and only if for each 1 ≤ i ≤ l one of the following holds,

1. t - di.

2. fi ∈ ΦM (in this case, it is equivalent to saying that fi(xM ) is reducible).

3. M | mj(λfi) for every j.

This follows from Lemma 7.1.8.

7.3 M th power regular semisimple and regular classes
in GL(n, q)

In this section, we look at the regular and regular semisimple classes in GL(n, q)
which are M th powers and get generating function for the same.



7.3. M th power regular semisimple and regular classes in GL(n, q) 95

Proposition 7.3.1. Let α ∈ GL(n, q) with associated data ∆α. Let α be a regular
element with the polynomials f1, . . . , fl in ∆α. Then, XM = α has a solution in
GL(n, q) if and only if fi is M-power polynomial, for all i.

Proof. Since, α is regular the associated partition λfi has single part, for all i. The
result follows from Proposition 7.2.5.

We note that if α is a regular semisimple element, we can apply this proposition
as well. The generating functions are as follows.

Theorem 7.3.2. LetM ≥ 2 be an integer and (q,M) = 1. For the group GL(n, q),
the generating function for regular and regular semisimple classes which are M th

power is,

1. 1 +
∞∑
n=1

c(n,M)rgu
n =

∏
d≥1

(1− ud)−NM (q,d).

2. 1 +
∞∑
n=1

c(n,M)rsu
n =

∏
d≥1

(1 + ud)NM (q,d).

Proof. From Proposition 7.3.1, it follows that a regular class α ∈ GL(n, q) is aM th

power in GL(n, q) if and only if each irreducible factor f(x) of its characteristic
polynomial χα(x) is M-power polynomial. In other words, the regular conjugacy
classes which are M th power, are in one-one correspondence with the set of M-
power polynomials with non-zero constant term. Therefore,

1 +
∞∑
n=1

c(n,M)rgu
n =

∏
f∈ΦM

(1− udeg(f))−1 =
∏
d≥1

(1− ud)−NM (q,d).

This proves the first part.
The regular semisimpleM th power conjugacy classes in GL(n, q) are character-

ized by separable M-power polynomials with non-zero constant term, and hence,

1 +
∞∑
n=1

c(n,M)rsu
n =

∏
f∈ΦM

(1 + udeg(f)) =
∏
d≥1

(1 + ud)NM (q,d).

This proves the required result.

We get back the generating functions of regular classes in Proposition 5.2.2 and
regular semisimple classes in Proposition 5.2.3 by putting M = 1 in the above
theorem.
Now, we can use this to get the generating function for theM th power regular and
regular semisimple elements.
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Theorem 7.3.3. For the group GL(n, q), and M ≥ 2 with the condition that
(q,M) = 1,

1. the generating function for the regular semisimple elements which are M th

power is

1 +
∞∑
n=1

|GL(n, q)Mrs |
|GL(n, q)| u

n =
∏
d≥1

(
1 + ud

qd − 1

)NM (q,d)

.

2. The generating function for the regular elements which are M th power is

1 +
∞∑
n=1

|GL(n, q)Mrg |
|GL(n, q)| u

n =
∏
d≥1

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)

NM (q,d)

=
∏
d≥1

(
1− ud

qd

)−NM (q,d) ∏
d≥1

(
1 + ud

qd(qd − 1)

)NM (q,d)

.

Proof. We use Proposition 7.2.5 here. To get (1), in the Equation 5.3.2 of cycle
index generating function, we take n = 1 on the right side (and hence the second
sum runs over partitions of 1 which is (1)) and the outer product runs over all
f ∈ ΦM . Thus, to get the desired generating function we put xf,λ = 1, when
f ∈ ΦM and 0 otherwise. We get,

1 +
∞∑
n=1

|GL(n, q)Mrs |
|GL(n, q)| u

n =
∏

f∈ΦM

(
1 + udeg(f)

qdeg(f) − 1

)
=
∏
d≥1

(
1 + ud

qd − 1

)NM (q,d)

.

Here we used the following: for the partition (1) = 11 and qdeg(f).
∑

i
(λ′i)

2 ( 1
qdeg(f)

)
1

=

qdeg(f)
(
1− 1

qdeg(f)

)
= qdeg(f) − 1.

The generating function for regular elements is obtained in similar fashion.
Here we take the partition (n) ` n on the right in the cycle index generating
function. The transpose of this partition is (n)′ = (1, 1, . . . , 1) = 1n and hence
qdeg(f).

∑
i
(λ′i)

2 ( 1
qdeg(f)

)
1

= qn.deg(f)
(
1− 1

qdeg(f)

)
= q(n−1).deg(f)(qdeg(f)−1). There-

fore,

1 +
∞∑
n=1

|GL(n, q)Mrg |
|GL(n, q)| u

n =
∏

f∈ΦM

1 +
∞∑
j=1

uj.deg(f)

q(j−1)deg(f)(qdeg(f) − 1)


=

∏
d≥1

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)

NM (q,d)

.
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To deduce the alternate formula, we note that,

1 +
∞∑
j=1

ujd

q(j−1)d(qd − 1)
=
(

1− ud

qd

)−1(
1 + ud

qd(qd − 1)

)

which can be verified by computing coefficients on both sides.

Once again these generating functions are generalization (M = 1 case) of the ones
obtained in Equation 5.4, 5.5 and, 5.7.

7.4 M th power semisimple classes in GL(n, q) when M

is a prime power

In this section, we deal with semisimple elements which areM th power. We assume
M = ra for some prime r and (q,M) = 1.

Proposition 7.4.1. Let M = ra be a prime power and (q,M) = 1. Let α ∈
GL(n, q) be semisimple with the corresponding combinatorial data ∆α consisting
of polynomials fi and partitions λfi. Then, XM = α has a solution in GL(n, q) if
and only if for each i, one of the following holds,

1. fi ∈ ΦM .

2. fi ∈ ΦM,b, for some 1 ≤ b ≤ a, and rb | |λfi |.

Proof. We recall that when α is semisimple all partitions in ∆α are of the form
1|λfi |. Thus, the second condition in Proposition 7.2.6 becomes the required one
here.

Now recall the notation N i
M (q, d) preceding the Proposition 7.1.9. We have,

Theorem 7.4.2. Let M = ra be a prime power and (q,M) = 1. Then, we have
the following generating functions:

1. 1 +
∞∑
n=1

c(n,M)ssu
n =

a∏
i=0

∏
d≥1

(
1− urid

)−N i
M (q,d)

.

2. 1 +
∞∑
n=1

|GL(n, q)Mss |
|GL(n, q)| u

n =
a∏
i=0

∏
d≥1

1 +
∞∑
j=1

ur
ijd

q
rij(rij−1)d

2
∏rij
t=1(qtd − 1)

N i
M (q,d)

.

Proof. Recall the notation ΦM,i defined at the end of Section 7.1 when M = ra.
By Proposition 7.2.6, it is clear that a semisimple conjugacy class which is M th
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power, corresponds to (in fact, one-one correspondence) a monic polynomial g of
degree n over Fq with the property that the multiplicity of each of its irreducible
factors which belong to ΦM,i for some i, must be a multiple of ri. Therefore, we
get,

1 +
∞∑
n=1

c(n,M)ssu
n =

a∏
i=0

∏
f∈ΦM,i

(
1 + ur

ideg(f) + u2rideg(f) + · · ·
)

=
a∏
i=0

∏
f∈ΦM,i

(
1− urideg(f)

)−1
=

a∏
i=0

∏
d≥1

(
1− urid

)−N i
M (q,d)

.

This proves the first part.
For the proof of second part, we use the cycle index generating function once

again. In the Equation 5.3.2, on the right hand side, we put xf,λ = 1 when
λ = (1, 1, . . . , 1) ` rij, and f ∈ ΦM,i for each j ≥ 1, else we put xf,λ = 0. We also
note that when λ = (1, 1, . . . , 1) ` n and f ∈ Φ, we have,

qdeg(f).
∑

i
(λ′i)

2 ∏
i≥1

( 1
qdeg(f)

)
mi(λ)

= qn
2deg(f)

(
1− 1

qdeg(f)

)
· · ·
(

1− 1
qn.deg(f)

)

= qn
2.deg(f) (qdeg(f) − 1) · · · (qn.deg(f) − 1)

q
n(n+1)

2 deg(f)

= q
n(n−1)

2 deg(f)
n∏
i=1

(qi.deg(f) − 1).

Therefore, we have,

1 +
∞∑
n=1

|GL(n, q)Mss |
|GL(n, q)| u

n =
a∏
i=0

 ∏
f∈ΦM,i

1 +
∞∑
j=1

ur
ij.deg(f)

q
rij(rij−1).deg(f)

2
∏rij
t=1(qt.deg(f) − 1)

 .
This gives the desired generating function.

Putting M = 1 in part (2) of the above result gives Equation 5.6 which is the
generatin function for the proportion of semisimple elements.

In the case,when M = r is a prime, the formula gets further simplified as i
runs from 0 to 1 in the formula above.

Corollary 7.4.3. LetM be a prime and (q,M) = 1. Let α ∈ GL(n, q) be semisim-
ple with the corresponding combinatorial data ∆α consisting of polynomials fi and
partitions λfi. Then, XM = α has a solution in GL(n, q) if and only if for each i,
one of the following holds,

1. fi ∈ ΦM .
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2. M | |λfi |.

Proof. This follows from Proposition above and Corollary 7.2.7 .

Corollary 7.4.4. Let M be a prime with (q,M) = 1. Then,

1 +
∞∑
n=1

c(n,M)ssu
n =

(
1− uM

1− quM

)∏
d≥1

(
1 + ud + u2d + · · ·+ ud(M−1)

)NM (q,d)
.

Proof. Recall that here we have N(q, d) = N0
M (q, d) + N1

Mq, d = NM (q, d) +
N1
M (q, d). By taking a = 1 (and thus r = M) in Theorem 7.4.2, we have,

1 +
∞∑
n=1

c(n,M)ssu
n =

∏
d≥1

(1− ud)−NM (q,d) ∏
d≥1

(1− uMd)−N1
M (q,d)

=
∏
d≥1

(1− ud)−NM (q,d) ∏
d≥1

(1− uMd)NM (q,d)−N(q,d)

=
∏
d≥1

(
1− uMd

1− ud

)NM (q,d) ∏
d≥1

(1− uMd)−N(q,d)

=
∏
d≥1

(
1− uMd

1− ud

)NM (q,d)

.

(
1− uM

1− quM

)
.

The last equality follows from the generating function formula for N(q, d) (see the
Proposition 5.2.2, Chapter 5) by taking uM for u. Putting M = 1 in the above
result, we get the generating function for semisimple classes (see Proposition 5.2.2)
as expected.

7.5 M th power conjugacy classes in GL(n, q) when M is
a prime power

In this section, we work with general elements and assume M = ra, for some
prime r, and (q,M) = 1. Now, we proceed to construct generating functions
for c(n,M) and |GL(n,q)M |

|GL(n,q)| . Recall from Chapter 5, Section 5.2.2, Macdonald’s
parametrization of conjugacy classes in GL(n, q), which led to the notion of type-ν
conjugacy classes of GL(n, q). Now, we determine the number of conjugacy classes
that are M th powers by counting the number of type-ν conjugacy classes that are
M th powers. Recall the notation: ΦM,i is the set of all polynomials f ∈ Φ with the
property that all irreducible factors of f(xM ) are of degree rideg(f). We also have

Φ =
a⋃
i=0

ΦM,i where ΦM,0 the set of M-power polynomials. The Proposition 7.2.6
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can be rephrased in terms Macdonald’s notation as follows.

Proposition 7.5.1. Let M = ra where r is a prime and (q,M) = 1. Let α ∈
GL(n, q), with associated Macdonald’s data (u1, u2, . . .). Write ui(x) =

∏
j f

aij
ij as

a product of irreducible polynomials fij ∈ Φ. Then, XM = α has a solution in
GL(n, q) if and only if, for all fij, fij ∈ ΦM,b, for some 0 ≤ b ≤ a, implies rb | aij.

Proof. We write each ui(x) =
∏
j f

aij
ij as a product of irreducibles. Then the set

fij and the corresponding powers mi(λfij ) = aij give back the combinatorial data
∆α. The result follows from Proposition 7.2.6.

Note the subtle difference between this proposition and the semisimple case
(Proposition 7.4.1). In the present case, we require that rb divides the multiplicity
of each part appearing in the partitions. In general, it is not true that XM = α

has a solution in GL(n, q) if and only if YM = αs has a solution where αs is the
semisimple part of α.

Example 7.5.2. Take α =
(
λ1 1

λ1
λ2

)
∈ GL(3, q) andM = 2. Then, XM = α has

a solution in GL(3, q) if and only if λ1, λ2 ∈ F∗q2. However, Y 2 = αs =
(
λ1

λ1
λ2

)
has solution if and only if λ2 ∈ F∗q2, because

(
λ1

1

)2
=
(
λ1

λ1

)
.

Now, we write the generating function for c(n,M). We have the following,

Theorem 7.5.3. Let M = ra, where r is a prime, and (q,M) = 1. Then we have
the following generating function,

1 +
∞∑
n=1

c(n,M)un =
∞∏
j=1

a∏
i=0

∏
d≥1

(1− ujrid)−N i
M (q,d).

Proof. Let cν,M denote the number of type-ν conjugacy classes that are M th-
powers. For a partition ν = 〈1n1 , 2n2 , · · · 〉 of n, from Proposition 7.5.1 we have

cν,M =
∏
ni>0

c(ni,M)ss

where ni represent deg(ui). Now,

c(n,M) =
∑
ν`n

cν,M =
∑
ν`n

∏
ni>0

c(ni,M)ss

 .
We apply Lemma 5.2.4, taking an = c(n,M)ss, thus f(u) =

a∏
i=0

∏
d≥1

(1 −
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ur
id)−N i

M (q,d) is the generating function for M -power semisimple classes (by The-
orem 7.4.2). Thus, bn = c(n,M) and we get,

1 +
∞∑
n=1

c(n,M)un =
∞∏
t=1

f(ut)

which gives the required result.

Corollary 7.5.4. Let M be a prime and (q,M) = 1. Then we have,

1 +
∞∑
n=1

c(n,M)un =
∞∏
j=1

( 1− uMj

1− quMj

)∏
d≥1

(
1− uMjd

1− ujd

)−NM (q,d)
 .

When M = 1 in the above result, we point out that we get back Propostion 5.2.5,
as expected.

To end this chapter we write the generating function for |GL(n,q)M |
|GL(n,q)| . To make it

simple we assume M is prime. Recall that N̂(q, d) = N(q, d)−NM (q, d) is the set
of all polynomials f ∈ Φ such that f(xM ) is irreducible. We have the following,

Theorem 7.5.5. Let M ≥ 2 be a prime and (M, q) = 1. Then,

1 +
∞∑
n=0

|GL(n, q)M |
|GL(n, q)| u

n =
∏
d≥1

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


NM (q,d)

×
∏
d≥1

1 +
∑
n≥1

∑
λ`n

uMnd

qM
2d
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N̂(q,d)

Proof. By Corollary 7.2.7, we know that α ∈ GL(n, q) is M th power if and only if
for each f ∈ ∆α, either f is M-power or else,M | mj(λf ) for all j ≥ 1. Thus, in the
cycle index generating function (see Equation 5.3.2), we put, for each f ∈ Φ, λ ∈ Λ,

xf,λ =


1 ; if f ∈ ΦM

1 ; if f ∈ Φ \ ΦM and, M | mj(λ) for all j ≥ 1

0 ; otherwise

Substituting these values, we get the generating function.
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7.6 An application of the generating function for pow-
ers

Till now we have developed several generating functions involving the proportion of
M th powers in GL(n, q). These generating functions look complex in form. In this
final section of the chapter, we mention some methods to make these generating
functions much more simpler and accessible when M is prime. As an application,
the explicit value of the probability |GL(n,q)M |

|GL(n,q)| is determined for some values of n.
For the rest of this section we assume M is prime and (M, q) = 1. We start by
stating the main result of this section.

Theorem 7.6.1. Let M be a prime and (M, q) = 1. Let t = M(M ; q). Then,

|GL(n, q)M |
|GL(n, q)| =

∑
λ`n

λ=〈1m1 ,2m2 ,··· 〉

1
Mπt(λ)∏

i≥1 i
mimi!

whenever n < Mt and πt(λ) denote the number of parts of λ divisible by t. In
power notation, πt(λ) =

∑
t|i
mi.

We quickly give some examples.

Example 7.6.2. Let M = 2. We have t = 1. Thus, we get |(F
×
q )2|
|F×q |

= 1
2 , which is

well known.

Example 7.6.3. Let M = 3. Then possible values for t are 1 and 2. When t = 1,
that is, q ≡ 1(mod 3) we have, Mt = 3. Thus, by the above theorem,

|GL(1, q)3|
|GL(1, q)| =

|(F×q )3|
|F×q |

= 1
3 and, |GL(2, q)3|

|GL(2, q)| = 1
32.2! + 1

3.2 = 2
9 .

The above results can be verified from Table 9.5 of Chapter 9.
When t = 2, that is, q ≡ 2(mod 3) we have Mt = 6. We write the values in

the following table:

n 1 2 3 4 5
|GL(n,q)3|
|GL(n,q)| 1 2

3
2
3

5
9

5
9

Table 7.3: Values of |GL(n,q)3|
|GL(n,q)| when q ≡ (mod 3) and n < 6.

Once again the result for n = 2, 3 can be verified from Table 9.5 and Table 9.11.
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Recall from Section 6.2 of Chapter 6, that

P (n, t,M) =
∑
λ`n

λ=1m12m2 ···

1
Mπt(λ)∏

i≥1 i
mimi!

gives the subsequential limits (except possibly 1) of PGL(n, q,M) := |GL(n,q)M |
|GL(n,q)| (for

fixed n,M and varying q). Theorem 7.6.1 states that PGL(n, q,M) = P (n, t,M)
when n < Mt, where t is the order of q in (Z/MZ)×.

Remark 7.6.4. The power map on GL(n, q) is surjective if and only if (M, q) = 1
and n < M(M ; q) = t (see Proposition 6.2.2). This is reflected in the above
theorem since P (n, t,M) = 1 if and only if n < t.

The rest of the section is devoted to the proof of Theorem 7.6.1. As we go
along, we will see simplification of some of the generating function that has been
already obtained in this chapter.

7.6.1 A relation between NM(q, d), and N(q, d), and related identi-
ties

We have already seen that NM (q, d) plays a pivotal role in obtaining the generating
functions related to powers. We derive a simple recursive formulation of NM (q, d)
in terms of N(q, d), which will play a major role in the simplification process of
the related generating functions.

Proposition 7.6.5. Let M ≥ 2 be a prime. Suppose M(M ; q) = t. Let t | d and,
d = Mk.t.y with k ≥ 0 and, M - y. Then,

N̂(q, d) = N(q, d)−NM (q, d) = M − 1
Mk+1t

N(qMkt, y)

Proof. From Proposition 7.1.4, we have,

NM (q, d) = 1
d(M, qd − 1)

∑
r|d

µ(r)
(
M(qd/r − 1), (qd − 1)

)

= 1
Md

∑
r|d

µ(r)(qd/r − 1)(M,
qd − 1
qd/r − 1

)

The second equality follows from the fact that (M, qd−1) = M as t | d. Therefore,
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N̂(q, d) =

1
d

∑
r|d

µ(r)(qd/r − 1)

−
 1
Md

∑
r|d

µ(r)(qd/r − 1)(M,
qd − 1
qd/r − 1

)


= 1
d

∑
r|d

µ(r)(qd/r − 1)

1−
(M, qd−1

qd/r−1)
M

 .
(7.1)

Now, we claim that,

∑
r|d

µ(r)(qd/r − 1)

1−
(M, qd−1

qd/r−1)
M

 = M − 1
M

∑
r|y

µ(r)(qd/r − 1) (7.2)

where, d = Mk.t.y, with (M,y) = 1.
To prove the claim, we observe that if r | d such that r | Mk, then r - y

(assuming k ≥ 1, or else, this case is redundant). Now, if r = Ma, where a ≥ 2,
then µ(r) = 0. If, r = M , then observe that,

(M,
qd − 1
qd/r − 1

) = M =⇒ 1−
(M, qd−1

qd/r−1)
M

= 0.

This is because, if r = M , qd−1
qd/M−1 = q

d
M

(M−1) + . . .+ q
d
M + 1. Now, since, t | dM we

can conclude that, q
d
M

(M−1)+. . .+q
d
M +1 ≡ 1 + 1 + . . .+ 1︸ ︷︷ ︸

M times

(mod M) ≡ 0(mod M).

Therefore, we have proved that if r | d such that r |Mk, then

µ(r)(qd/r − 1)

1−
(M, qd−1

qd/r−1)
M

 = 0.

Now, suppose that r | d, and (r,M) = 1. We have d = Mk.t.y, and along with
that let us assume that (t, y) = s. Thus, t = s.a, and (y, a) = 1. Suppose, further
r | a. Then, r - y. In this case also, observe that,

(M,
qd − 1
qd/r − 1

) = M =⇒ 1−
(M, qd−1

qd/r−1)
M

= 0

This is because, clearly M |
(
qd−1
qd/r−1

)
, as M | qd − 1, but M - qd/r − 1. Suppose

that r | d such that r | s.b, where (b, s) 6= 1, and r > s. In this case µ(r) = 0 as r



7.6. An application of the generating function for powers 105

is not square free. Finally to establish the claim, we see that if r | y,

(M,
qd − 1
qd/r − 1

) = 1 =⇒ 1−
(M, qd−1

qd/r−1)
M

= 1− 1
M
.

Therefore, we have established the claim made in equation 7.2. Now, from equa-
tion 7.1, we get,

N̂(q, d) = M − 1
Md

∑
r|y

µ(r)(qd/r − 1) =
(
M − 1
Mk+1.t

)1
y

∑
r|y

µ(r)((qMkt)y/r − 1)



= M − 1
Mk+1.t

N(qMkt, y).

This completes the proof.

Corollary 7.6.6. Suppose M ≥ 2 is a prime with (M, q) = 1. Let t = M(M ; q).
We have,

N̂(q, d) =

0 when t - d
M−1
Mk+1.t

N(qMkt, y) when d = Mk.t.y for some k ≥ 0.

Proof. The proof follows from the previous proposition and Corollary 7.1.7.

Example 7.6.7. Take M = 2. Then t = 1 is the only choice. We have calculated
N2(q, 2), N2(q, 3), N2(q, 4) in Table 7.1.

N2(q, 5) = N(q, 5)− 1
2N(q, 5) = 1

10(q5 − q)

since k = 0 in the above case.

N2(q, 6) = N(q, 6)− 1
4N(q2, 3) = N(q, 6)− 1

12(q6 − q2)

since k = 1 in the above case. Thus, N(q, 6) = 1
6(q6 − q2 − q3 + q) gives,

N2(q, 6) = 1
12(q6 − q2 − 2q3 + 2q).

Example 7.6.8. Let M ≥ 2 be a prime and (M, q) = 1. Then, L
¯
et M = 3. The

possible values of t are 1 and 2. Let us first take t = 1, that is, q ≡ 1(mod 3).
We have recorded the expressions for N3(q, 2), N3(q, 3), N3(q, 4) in Table 7.2. We
calculate N3(q, 5).

N3(q, 5) = N(q, 5)− 1
3N(q, 5) = 2

15(q5 − q).
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N3(q, 6) = N(q, 6)− 1
9N(q3, 2) = N(q, 6)− 1

18(q6 − q2)

since k = 1 here. Thus, we have,

N3(q, 6) = 1
18(2q6 − 3q3 − 2q2 + 3q).

Let us now take t = 2, that is, q ≡ 2(mod 3). In this case when d = 5, observe
that t - d, and therefore,

N3(q, 5) = N(q, 5) = 1
5(q5 − q).

When d = 6, we have k = 1, and thus,

N3(q, 6) = N(q, 6)− 1
18N(q6, 1) = N(q, 6)− 1

18(q6 − 1).

Thus,
N3(q, 6) = 1

18(2q6 − 3q3 − 3q2 + 3q + 1).

Then next lemma will prove to be useful.

Lemma 7.6.9. Suppose k ≥ 1. Suppose M - d. Then,

N(qMk
, d) = MkN(q,Mkd) +N(qMk−1

, d).

Proof. We have,

N(qMk
, d) = 1

d

∑
r|d

µ(r)((qMk)d/r − 1)

= 1
d

 ∑
r|Mkd

µ(r)(q
Mkd
r − 1)−

∑
Mr|Mkd
(r,M)=1

µ(Mr)(q
Mkd
Mr − 1)


= 1

d

 ∑
r|Mkd

µ(r)(q
Mkd
r − 1) +

∑
r|d

µ(r)((qMk−1)d/r − 1)


= Mk

 1
Mkd

∑
r|Mkd

µ(r)(q
Mkd
r − 1)

+

1
d

∑
r|d

µ(r)((qMk−1)d/r − 1)


= MkN(q,Mkd) +N(qMk−1

, d)

This completes the proof.

We can now prove a very important identity. Recall from Proposition 5.2.2 in
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Chapter 5, the following identity,

c(q, u) =
∞∏
d=1

(1− ud)−N(q,d) = 1− u
1− qu.

Proposition 7.6.10. Let M ≥ 2 be a prime with (M, q) = 1. Suppose t =
M(M ; q). Then,

∏
d≥1

(1− ud)N̂(q,d) =
∞∏
k=0

(
1− uMkt

1− qtuMkt

) 1−M
Mk+1t

=
∞∏
k=0

c(qt, uMkt)
1−M
Mk+1t .

Proof. Using Corollary 7.6.6, we have,

∏
d≥1

(1− ud)N̂(q,d) =
∞∏
k=0

∏
M -d

(1− uMk.t.d)N̂(q,Mk.t.d)

=
∞∏
k=0

∏
M -d

(1− uMk.t.d)
M−1
Mk+1t

N(qMk.t.d,d) =

 ∞∏
k=0

∏
M -d

(1− uMk.t.d)
N(qM

k.t.d,d)
Mk


M−1
Mt

=

∏
M -d

(1− utd)N(qt,d)


M−1
Mt

 ∞∏
k=1

∏
M -d

(1− uMk.t.d)
N(qM

k.t.d,d)
Mk


M−1
Mt

=

∏
M -d

(1− utd)N(qt,d)


M−1
Mt

 ∞∏
k=1

∏
M -d

(1− uMk.t.d)N(qt,Mk.t.d)+N(qM
k−1.t,d)
Mk


M−1
Mt

.

The last equality follows from Lemma 7.6.9, where we replace q by qt. Therefore,
we get, ∏

d≥1
(1− ud)N̂(q,d) =

[ ∞∏
k=0

(1− uMk.t.d)−N(qt,Mk.t.d)
] 1−M

Mt

 ∞∏
k=1

∏
M -d

(1− uMk.t.d)
N(qM

k−1.t,d)
Mk


M−1
Mt

=

∏
d≥1

(1− utd)−N(qt,td)


1−M
Mt

 ∞∏
k=1

∏
M -d

(1− uMk.t.d)
N(qM

k−1.t,d)
Mk−1


M−1
M2t

=
(

1− ut

1− qtut

) 1−M
Mt

 ∞∏
k=1

∏
M -d

(1− uMk.t.d)
N(qM

k−1.t,d)
Mk−1


M−1
M2t

.

Again one can apply Lemma 7.6.9, and do the steps performed above to conclude,
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that, ∏
d≥1

(1− ud)N̂(q,d) =

(
1− ut

1− qtut

) 1−M
Mt

(
1− uMt

1− qtuMt

) 1−M
M2t

 ∞∏
k=2

∏
M -d

(1− uMk.t.d)
N(qM

k−2.t,d)
Mk−2


M−1
M3t

.

Inductively, we conclude,

∏
d≥1

(1− ud)N̂(q,d) =
∞∏
k=0

(
1− uMkt

1− qtuMkt

) 1−M
Mk+1t

=
∞∏
k=0

c(qt, uMkt)
1−M
Mk+1t .

7.6.2 Reformulating the generating functions for M th power reg-
ular and regular semisimple classes

As a quick application of Proposition 7.6.10 in the previous section, we now show
that the generating functions of M th power regular semisimple and regular con-
jugacy classes that were obtained in Theorem 7.3.2 can be reformulated to look
much simpler. Before stating the theorem we recall from Proposition 5.2.3, the
generating function of the number of regular semisimple classes.

s(q, u) = 1 +
∞∑
n=1

c(n)rsu
n =

∞∏
n=1

(1 + ud)N(q,d) = 1− qu2

(1 + u)(1− qu) .

Theorem 7.6.11. Let M ≥ 2 be a prime and (M, q) = 1. Suppose M(M ; q) = t.
Then,

1. 1 +
∞∑
n=1

c(n,M)rgu
n = c(q, u)

∞∏
k=0

c(qt, uMkt)
1−M
Mk+1t .

2. 1 +
∞∑
n=1

c(n,M)rsu
n = s(q, u)

∞∏
k=0

s(qt, uMkt)
1−M
Mk+1t .

Proof. Using Theorem 7.3.2 and Proposition 7.6.10, we have,

1 +
∞∑
n=1

c(n,M)rgu
n =

∏
d≥1

(1− ud)−NM (q,d)

=
∏
d≥1

(1− ud)−N(q,d) ∏
d≥1

(1− ud)N̂(q,d) = c(q, u)
∏
d≥1
t|d

(1− ud)N̂(q,d)

= c(q, u)
∏
d≥1

(1− utd)N̂(q,td) = c(q, u)
∞∏
k=0

c(qt, uMkt)
1−M
Mk+1t .
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We also have,

1 +
∞∑
n=1

c(n,M)rsu
n =

∏
d≥1

(1 + ud)NM (q,d)

=
∏
d≥1

(1 + ud)N(q,d) ∏
d≥1

(1 + ud)−N̂(q,d) = s(q, u)

∏
d≥1
t|d

(1− u2d)−N̂(q,d)

∏
d≥1
t|d

(1− ud)−N̂(q,d)

= s(q, u)
∞∏
k=0

s(qt, uMkt)
1−M
Mk+1t .

Example 7.6.12. Let M = 3, and q is such that such that M(3, q) = t = 2. We
have,

1 +
∞∑
n=1

c(n, 3)rgu
n = c(q, u)

∞∏
k=0

c(q2, u2.3k)−
1

3k+1

=
( 1− u

1− qu

)( 1− u2

1− q2u2

)− 1
3
(

1− u6

1− q2u6

)− 1
9 ∞∏
k=2

c(q2, u2.3k)−
1

3k+1 .

Similarly,

1 +
∞∑
n=1

c(n, 3)rsu
n = s(q, u)

∞∏
k=0

s(q2, u2.3k)−
1

3k+1 =
(

1− qu2

(1 + u)(1− qu)

)
(

1− q2u4

(1 + u2)(1− q2u2)

)− 1
3
(

1− q2u12

(1 + u6)(1− q2u6)

)− 1
9 ∞∏
k=2

s(q2, u2.3k)−
1

3k+1 .

We make table to compute these classes for some small value of n. We know,
c(n)rg = qn − qn−1.

n Number of regular classes Number of M th power regular classes
1 q − 1 q − 1
2 q2 − q 2

3q
2 − q + 1

3
3 q3 − q2 2

3q
3 − 2

3q
2 + 1

3q −
1
3

4 q4 − q3 5
9q

4 − 2
3q

3 + 2
9q

2 − 1
3q + 2

9
5 q5 − q4 5

9q
5 − 5

9q
4 + 2

9q
3 − 2

9q
2 + 2

9q −
2
9

6 q6 − q5 40
81q

6 − 5
9q

5 + 5
27q

4 − 2
9q

3 + 1
27q

2 − 2
9q + 23

81

Table 7.4: Table for c(n, 3)rg for q ≡ 2(mod 3).



110 7.6. An application of the generating function for powers

We can also make similar simplification to the generating functions for the pro-
portion of regular semisimple elements and regular elements that are M th powers.

Theorem 7.6.13. Let M ≥ 2 be a prime and (M, q) = 1. Suppose M(M ; q) = t.
Then,

1. 1 +
∞∑
n=1

|GL(n,q)Mrg |
|GL(n,q)| u

n = C(q, u)
∞∏
k=0

C(qt, uMkt)
1−M
Mk+1t .

2. 1 +
∞∑
n=1

|GL(n,q)Mrs |
|GL(n,q)| u

n = S(q, u)
∞∏
k=0

S(qt, uMkt)
1−M
Mk+1t .

where C(q, u) and S(q, u) denote the generating functions for the proportion of
regular elements in GL(n, q) and the proportion of regular semisimple elements in
GL(n, q) respectively (see Equation 5.4 and Equation 5.7 respectively).

Proof. The proof is similar to Theorem 7.6.11.

7.6.3 Proof of Theorem 7.6.1

The proof is based on the simplification of the generating function for the propor-
tion of M th powers given in Theorem 7.5.5 which can be done in a way exactly
similar to the ones we have done in the previous subsection. We begin with a
simple lemma.

Lemma 7.6.14.

∏
d≥1

1 +
∑
n≥1

∑
λ`n

und

qd
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N(q,d)

= 1
1− u.

Proof. The left hand side can be obtained by putting xf,λ = 1 for every f ∈ Φ
and every partition λ in Proposition 5.3.2. Therefore, the coefficient of un in the
formal power series written in the left hand side is 1

|GL(n,q)|
∑

α∈GL(n,q)
1 = 1. Thus,

∏
d≥1

1 +
∑
n≥1

∑
λ`n

und

qd
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N(q,d)

= 1 + u+ u2 + · · · = 1
1− u.
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Proof of Theorem 7.6.1. Let us denote

P1 =
∏
d≥1

1 +
∑
n≥1

∑
λ`n

uMnd

qM
2d
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N̂(q,d)

and,

P2 =
∏
d≥1

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


NM (q,d)

.

Thus from Theorem 7.5.5, we have,

1 +
∞∑
n=0

|GL(n, q)M |
|GL(n, q)| u

n = P2P1.

Now, we analyze P2 separately. We have,

P2 = 1
1− u

∏
d≥1

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


−N̂(q,d)

= P3
1− u

where,

P3 =
∏
d≥1

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


−N̂(q,d)

=
∏
t|d

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


−N̂(q,d)
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=
∞∏
k=0

∏
M -d

1 +
∑
j≥1

∑
λ`j

ujM
ktd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)


−N̂(q,Mk.t.d)

=
∞∏
k=0

∏
M -d

1 +
∑
j≥1

∑
λ`j

ujM
ktd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)


1−M
Mk+1.t

N(qMkt,d)

.

Using Lemma 7.6.9,

P3 =
∏
M -d

1 +
∑
j≥1

∑
λ`j

utjd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)


N(qt,d)

×

∞∏
k=1

∏
M -d

1 +
∑
j≥1

∑
λ`j

ujM
ktd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)



(
N(qt,Mk.d)+N(qM

k−1t,d)
Mk

)
1−M
Mt

=
∏
d≥1

1 +
∑
j≥1

∑
λ`j

utjd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)


N(qt,d). 1−M

Mt

×

∞∏
k=1

∏
M -d

1 +
∑
j≥1

∑
λ`j

ujM
ktd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)


N(qMk−1t,d) 1−M

Mk+1t

=
( 1

1− ut
) 1−M

Mt
∞∏
k=1

∏
M -d

1 +
∑
j≥1

∑
λ`j

ujM
ktd

qtd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qtd

)
mi(λ)


N(qM

k−1t,d)
Mk−1

1−M
M2t

.

Inductively, we get,

P3 =
∞∏
k=0

(1− uMkt)
M−1
Mk+1t .
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Thus,

1 +
∞∑
n=0

|GL(n, q)M |
|GL(n, q)| u

n = P2P1 = P3
1− uP1 =

∞∏
k=0

(1− uMkt)
M−1
Mk+1t

1− u P1

= P1
(1− ut)

M−1
Mt

1− u

∞∏
k=1

(1− uMkt)
M−1
Mk+1t .

Finally observe that when n < Mt, the coefficient of the generating function in

the right-hand side is contributed by the coefficient of (1−ut)
M−1
Mt

1−u which is precisely
P (n, t,M). This proves the result.

As a corollary of the above proof, we have found a simpler version of the generating
function in Theorem 7.5.5.

Corollary 7.6.15.

1 +
∞∑
n=0

|GL(n, q)M |
|GL(n, q)| u

n = P1
1− u

∞∏
k=0

(1− uMkt)
M−1
Mk+1t ,

where P1 =
∏
d≥1

1 +
∑
n≥1

∑
λ`n

uMnd

qM
2d
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N̂(q,d)

.

We end this section by asking whether the following result is true.

Question 7.6.16. Is the following result true: Let M be a prime. Assume
(M, q) = 1, and let M(M ; q) = t denote the order of q in (Z/MZ)×. Then,

P(n,M, q) := |GL(n, q)M |
|GL(n, q)| ≤

∑
λ ` n

λ = 〈1m1 , 2m2 , · · · 〉

1
Mπt(λ)

∏
i

1
mi!imi

where πt(λ) denotes the number of parts of λ ` n divisible by t, and, equality holds
if and only if n < Mt.

The above result (if true) determines an upper bound for the proportion of M th

powers in GL(n, q). For a more general question over a finite reductive group, see
Chapter 10.

We mention another interesting observation. If the above theorem holds, then



114 7.6. An application of the generating function for powers

we must have lim
n→∞

|GL(n,q)M |
|GL(n,q)| = 0 for a fixed q,M . This is clear by applying the

Sandwich theorem along with the fact that lim
n→∞

P (n, t,M) = 0.



Chapter 8

M th powers in GL(n, q) when M

is a prime and (M, q) 6= 1

In the previous chapter, we dealt with the case when M is coprime to q. Recall
that we are interested in determining the image of the power map ω : GL(n, q)→
GL(n, q) given by x 7→ xM . From the point of view of Jordan decomposition of
elements, when (q,M) = 1, all unipotent elements survive as they are of order, a
power of q. Now, we want to focus on the case when M and q are not coprime.
For simplicity of computations, we take the case M is a prime and q is a power of
M . In this case, all semisimple elements survive in the image. Miller (see [Mil16])
enumerated squares in GL(n, 2a); thus dealt with a particular case, M = 2, of our
situation. The material of this chapter is once again taken from the author’s work
in [KS20b] and follows closely to that of Miller.

We fix M a prime and q, a power of M . We determine the conjugacy classes
that areM th powers in GL(n, q). We begin with a Lemma (analogous to our earlier
Lemma 7.2.1) which is [Mil16, Lemma 2]. Recall the notation that Jγ,n denotes a
Jordan block matrix of size n with diagonal γ.

8.1 M th powers in GL(n, q), where M is prime and q is
a power of M

Lemma 8.1.1 (Miller). Let J0,n be the Jordan block corresponding to scalar 0.
Then, JM0,n is conjugate to

J0,d nM e ⊕ · · · ⊕ J0,d nM e︸ ︷︷ ︸
n̄

⊕ J0,b nM c ⊕ · · · ⊕ J0,b nM c︸ ︷︷ ︸
(M−n̄)

115
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where 0 ≤ n̄ ≤ M − 1 is n (mod M) and
⌈
n
M

⌉
,
⌊
n
M

⌋
are the ceiling and floor

functions respectively.

8.1.1 A map on partitions

In the view of Lemma above, we define the following map ΘM on the set of
partitions Λ. Let Λ(n) denote the set of all partitions of n; thus Λ =

⋃
n≥0

Λ(n).

We define the map ΘM : Λ(n) → Λ(n) as follows: Let λ = 〈1m1(λ), 2m2(λ), · · · 〉 be
a partition of n then ΘM (λ) = 〈1m1(ΘM (λ)), 2m2(ΘM (λ)), · · · 〉 where

mi(ΘM (λ)) = M.m(iM)(λ) +
M−1∑
j=1

(M − j)
(
m(iM−j)(λ) +m(iM+j)(λ)

)
.

If we take M = 2, we get the function defined in [Mil16, Proposition 3]. Since,
this map is quite important for us, we elaborate this alternatively using the other
notation for a partition. Given a partition λ = (λ1, . . . , λk) of n, we have

ΘM (λ) =


⌈
λ1
M

⌉
, . . . ,

⌈
λ1
M

⌉
︸ ︷︷ ︸

λ̄1

,

⌊
λ1
M

⌋
, . . . ,

⌊
λ1
M

⌋
︸ ︷︷ ︸

M−λ̄1

, . . . ,

⌈
λk
M

⌉
, . . . ,

⌈
λk
M

⌉
︸ ︷︷ ︸

λ̄k

,

⌊
λk
M

⌋
, . . . ,

⌊
λk
M

⌋
︸ ︷︷ ︸

M−λ̄k


suitably rearranged in non-increasing order, where 0 ≤ λ̄i ≤ (M − 1) is λi
(mod M). It is easy to see that both of the above definitions are the same. We
give some examples to illustrate this map.

λ ` 4 Θ2(λ) λ ` 4 Θ2(λ)
(3, 1) (2, 1, 1) (2, 2) (1, 1, 1, 1)

(1, 1, 1, 1) (1, 1, 1, 1) (4) (2, 2)
(2, 1, 1) (1, 1, 1, 1)

Table 8.1: The map Θ2 on partitions of 4.

Thus, we see that Θ2(Λ(4)) = {(1, 1, 1, 1), (2, 1, 1), (2, 2)} ⊂ Λ(4) and simi-
larly Θ3(Λ(5)) = {(1, 1, 1, 1, 1), (2, 1, 1, 1), (2, 2, 1)} ⊂ Λ(5). We make a table to
illustrate the size of image for some small values.

n |Λ(n) |Θ2(Λ(n))| |Θ3(Λ(n))| |Θ5(Λ(n))|
1 1 1 1 1
2 2 1 1 1
3 3 2 1 1
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n |Λ(n) |Θ2(Λ(n))| |Θ3(Λ(n))| |Θ5(Λ(n))|
4 5 3 2 1
5 7 4 3 1
6 11 5 4 2
7 15 7 5 3
8 22 10 6 4
9 30 13 7 5
10 42 16 9 6
11 56 21 12 7
12 77 28 16 8
13 101 35 20 9
14 135 43 24 10
15 176 55 28 11

Table 8.2: Values of |ΘM (Λ(n))| for M = 2, 3, 5.

We would like to count the image of ΘM . The following Lemma is a generalization
of [Mil16, Proposition 3].

Lemma 8.1.2. Let ΘM : Λ(n) → Λ(n) be the map described above. Then, a

partition µ of n is in the image of ΘM if and only if
M−1∑
j=1

m(iM−j)(µ′) ≤ 1, for

each i ≥ 1, where µ′ is the conjugate transpose partition of µ.

Proof. The proof is along the same lines as in [Mil16].

Now we can write the generating function for this quantity. This generalizes the
result mentioned in [Mil16] (just before Proposition 3) for M = 2.

Proposition 8.1.3. With the notation as above,

1 +
∞∑
n=1
|ΘM (Λ(n))|un =

∞∏
k=1

1 + ukM−1 + ukM−2 + · · ·+ ukM−(M−1)

1− ukM .

Proof. By the previous Lemma, we see that the kth term |ΘM (Λ(k))| is equal to
the number of partitions λ ` k satisfying

∑M−1
j=1 m(iM−j)(λ′) ≤ 1. This means that

for each i ≥ 1, at most one of miM−j(λ′) = 1, and all other terms are 0 in the
sum. For counting sake, we can think of λ instead of λ′. Thus, |ΘM (Λ(k))| is the
coefficient if uk in the following product:
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(
(1 + u+ u2 + · · ·+ uM−1)

( ∞∑
t=0

utM
))
×(

(1 + uM+1 + uM+2 + · · ·+ u2M−1)
( ∞∑
t=0

u2tM
))
× · · ·

· · · ×
(

(1 + uiM+1 + uiM+2 + · · ·+ uiM+(M−1))
( ∞∑
t=0

uitM
))
× · · ·

=
∞∏
i=1

(
1 + u(i−1)M+1 + u(i−1)M+2 + · · ·+ u(i−1)M+(M−1)

)( 1
1− uiM

)

=
∞∏
i=1

1 + uiM−1 + uiM−2 + · · ·+ uiM−(M−1)

1− uiM .

This completes the proof.

Now, we are ready to describe the result which generalises [Mil16, Theorem
1], and determines M th powers in GL(n, q) in this case.

Theorem 8.1.4. Let M be a prime and q be a power of M . Let α ∈ GL(n, q) and
∆α be its associated combinatorial data consisting of fi and λfi. Then, XM = α

has a solution in GL(n, q) if and only if the partitions λfi are in ΘM (Λ(|λfi |)),
for all i.

Proof. Let A ∈ GL(n, q) be a solution of XM = α. It suffices to prove the
statement when A has a single Jordan block. Thus we may assume, A corresponds
to the polynomial g and partition µg = (µ1, . . . , µk). If g(x) = (x− a1) · · · (x− ad)
then define g(M)(x) = (x− aM1 ) · · · (x− aMd ). Clearly, g(M) is defined over Fq if g
is so. Now, we claim that the associated combinatorial data to AM is g(M) and
the partition ΘM (µ). Since, raising power M is a bijection on F∗q , we can easily
find g such that g(M) = f (for example, by factorising it as a product of linear
polynomials). Thus, this gives the required condition that λf must be ΘM (µ).

For the converse, we have α with its combinatorial data satisfying λfi ∈
ΘM (Λ(|λfi |)), for all i. Without loss of generality, we may assume it has a
single Jordan block, say α is conjugate to Jf,k. Rest of the proof is similar to
the [Mil16, Corollary 3 and Corollary 4], thus we mention it briefly. By factorising
f over F̄q, we can reduce it to constructing the solution A for the Jordan matrix
Jβ,m where β is a root of f . We take A = Jγ,m and get AM = γMI +JM0,m (since q
is anM power). By Lemma 8.1.1, the combinatorial data ∆AM consists of polyno-
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mial (x− γM ) and the partition µ =


⌈
m

M

⌉
, . . . ,

⌈
m

M

⌉
︸ ︷︷ ︸

m̄

,

⌊
m

M

⌋
, . . . ,

⌊
m

M

⌋
︸ ︷︷ ︸

M−m̄

. Thus,

we choose γ so that γM = β. Combined with the fact that µ ∈ ΘM (Λ(m)), and
putting together the Galois conjugate blocks, we get the proof.

Since, order of a semisimple element α is coprime to M , the equation XM = α

always has a solution in GL(n, q). Further,

Corollary 8.1.5. With notation as above, let α ∈ GL(n, q) be a regular element.
Then, XM = α has a solution in GL(n, q) if and only if α is semisimple.

Proof. Since α is regular, the combinatorial data ∆α consists of fi and λfi with
exactly one part |λfi |. Then by Theorem 8.1.4, XM = α has a solution if and only
if, for each i, the partition λf = (|λfi |) is in ΘM (|λfi |). Now, from definition of
ΘM , this is possible only if |λfi | = 1 for all i. This proves that XM = α has a
solution if and only if α is semisimple.

We summarise this as follows:

Proposition 8.1.6. Let M be a prime and q be a power of M . Then,

1. the M th power semisimple classes in GL(n, q) are c(n,M)ss = c(n)ss. The
generating function for semisimple classes (respectively semisimple elements)
which are M th power is same as that of all semisimple classes (respectively
semisimple elements).

2. The M th power regular and regular semisimple classes in GL(n, q) are
c(n,M)rg = c(n,M)rs = c(n)rs. The generating function for regular and
regular semisimple classes (respectively elements) which are M th power is
same as that of all regular semisimple classes (respectively elements).

8.2 Generating function for the M th power conjugacy
classes

The following result generalizes [Mil16, Theorem 2].

Theorem 8.2.1. Let M be a prime and q be a power of M . The generating
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function for M th power conjugacy classes in GL(n, q) is,

1 +
∞∑
n=1

c(n,M)un =
∏
d≥1

∏
k≥1

1 + ud(kM−1) + · · ·+ ud(kM−(M−1))

1− udkM

N(q,d)

.

Proof. By Theorem 8.1.4 we have (the first equality below),

1 +
∞∑
n=1

c(n,M)un =
∑

λf∈ΘM (|λf |)
u
∑

f∈φ |λf |.deg(f) =
∏
f∈Φ

∑
λf∈ΘM (|λf |)

u|λf |.deg(f)

=
∏
f∈Φ

∏
k≥1

1 + udeg(f).(kM−1) + uxdeg(f).(kM−2) + · · ·+ udeg(f).(kM−(M−1))

1− udeg(f).kM

=
∏
d≥1

∏
k≥1

1 + ud(kM−1) + · · ·+ ud(kM−(M−1))

1− udkM

N(q,d)

.

The third equality follows from Proposition 8.1.3 by taking u as udeg(f).

We note that for M = 2, we get [Mil16, Theorem 2] by substituting q = 2 in the
following.

Corollary 8.2.2. For M = 2 we have,

1 +
∞∑
n=1

c(n, 2)un =
∏
n≥1

(1− u2n)(1− qu2n)
(1 + u2n−1)(1− qun)(1− qu4n) .

Proof. From previous Theorem we have,

1 +
∞∑
n=1

c(n, 2)un =
∏
d≥1

∏
k≥1

(
1 + ud(2k−1)

1− u2dk

)N(q,d)

.

Since
∏
k≥1

1 + u2k−1

1− u2k =
∏
k≥1

1− u2k

(1− uk)(1− u4k) (obtained by multiplying with (1 −

u2k−1) in the numerator and denominator) we get

1 +
∞∑
n=1

c(n, 2)un =
∏
d≥1

∏
k≥1

(
1− u2dk

(1− udk)(1− u4dk)

)N(q,d)

.

Now, we use
∏
d≥1

(1− ud)−N(q,d) = 1− y
1− qy to get the required result.

We can obtain the formula for general elements as follows:
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Proposition 8.2.3. With the notation as above,

1 +
∞∑
n=1

|GL(n, q)M |
|GL(n, q)| u

n =
∏
f∈Φ

1 +
∑
n≥1

∑
λ`n

λ∈ΘM (Λ(n))

un.deg(f)

qdeg(f).
∑

i
(λ′

i
)2 ∏
i≥1

(
1

qdeg(f)

)
mi(λf )

 .

Proof. This follows from Theorem 8.1.4 and the cycle index generating function
Equation 5.3.2.
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Chapter 9

Computing squares and third
powers in GL(2, q) and GL(3, q)

In this chapter we compute squares and third powers in the groups GL(2, q),
and GL(3, q), using the necessary and sufficient conditions for powers we have
developed in Chapter 7 and Chapter 8. Since M = 2, 3 here, when (M, q) =
1 we use here Corollary 7.2.7 from Chapter 7. When q is a power of M , we
use Theorem 8.1.4 from Chapter 8. We state these results once again here for
convenience. These computations also verify the asymptotic results (q → ∞)
we obtained for GL(n, q) in Chapter 6. We use the notations of Chapter 7 and
Chapter 8 freely here.

Proposition 9.0.1. Let M be a prime with (q,M) = 1. Let t = M(M ; q) be the
order of M in (Z/MZ)×. Let α ∈ GL(n, q) with combinatorial data ∆α consisting
of polynomials fi ∈ Φ of degree di and partitions λfi = (λi1 , λi2 , . . .), 1 ≤ i ≤ l.
Then, XM = α has a solution in GL(n, q) if and only if for each 1 ≤ i ≤ l one of
the following holds,

1. t - di.

2. fi ∈ ΦM (in this case, it is equivalent to saying that fi(xM ) is reducible).

3. M | mj(λfi) for every j.

Proposition 9.0.2. Let M be a prime and q be a power of M . Let α ∈ GL(n, q)
and ∆α be its associated combinatorial data consisting of fi and λfi. Then, XM =
α has a solution in GL(n, q) if and only if the partitions λfi are in ΘM (Λ(|λfi |)),
for all i.
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9.1 Computing squares and third powers in GL(2, q)

We first need complete information of the conjugacy classes of GL(2, q). We make
a table containing the pieces of information we need. The classification is based
on the different types of combinatorial data possible.

Combinatorial data Number of elements Number of

of conjugacy classes in the conjugacy class such class

f1 = x− µ1, f2 = x− µ2 q(q + 1) 1
2(q − 1)(q − 2)

|λf1 | = 1, |λf2 | = 1

f = x− µ 1 q − 1

|λf | = 2, 1 + 1 ` 2

f = x− µ q2 − 1 q − 1

|λf | = 2, 2 ` 2

f = x2 + ax+ b q2 − q N(q, 2) = 1
2(q2 − q)

f is irreducible,|λf | = 1

Table 9.1: Conjugacy classes in GL(2, q)

Since, we are calculating, squares and third powers in GL(2, q), we need the values
of N2(q, 2), N3(q, 2). We had already recorded this in Chapter 7 (see table 7.1).

q N2(q, 2)
odd 1

4(q − 1)2

even 1
2(q2 − q)

q (mod 3) N3(q, 2)
0 1

2(q2 − q)
1 1

6(q2 − q)
2 1

6(q − 1)(q − 2)

Table 9.2: Values of N2(q, 2) and N3(q, 2).

9.1.1 Computing squares in GL(2, q)

Theorem 9.1.1. There are q2−1 conjugacy classes in GL(2, q), and |GL(2, q)| =
(q2 − 1)(q2 − q). The following table gives the number of conjugacy classes and
elements that are squares.
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q c(2, 2) |GL(2, q)2|
odd 1

8(3q2 + 4q − 7) 3
8q

4 − 5
8q

3 + 1
8q

2 + 5
8q −

1
2

even q2 − q q4 − 2q3 + 2q − 1

Table 9.3: Squares in GL(2, q).

Proof. When q is odd, we use Proposition 9.0.1. We enumerate the number of
classes of each type as given in Table 9.1, which are squares.

1. The first type of conjugacy classes are squares if and only if µ1 and µ2 both
are squares in F×q . The number of such classes are 1

2

(
q−1

2

) (
q−1

2 − 1
)

=
1
8(q − 1)(q − 3).

2. All conjugacy classes of type 2 are squares (since, 2 | |λf | = 2). Thus there
are q − 1 of them.

3. A conjugacy class of type 3 is a square if and only if x − µ is 2-power
polynomial, that is, µ is a square in F×q (since, 2 - m2(λf )). Thus there are
q−1

2 such classes.

4. A conjugacy class of type 4 is square if and only if f is 2-power polynomial.
The number of such polynomials is given by N2(q, 2), which is thus the
number of square conjugacy classes of this type.

Adding all these gives c(2, 2) when q is odd as required. Thus, |GL(2, q)2| is then
readily obtained with the help of the information in Table 9.1.

When q is even we use Proposition 9.0.2, where we put M = 2 and n = 2.
Observe that, Θ2(λ) = (1, 1) where λ is any partition of 2. With this observe that
all classes of type 1,2,4 in Table 9.1 are squares while type 3 classes are non-squares.
The result for c(2, 2) and |GL(2, q)2| is then readily read-off from Table 9.1.

Corollary 9.1.2. The following table gives the sizes of GL(2, q)2
rg,GL(2, q)2

ss,
GL(2, q)2

rs.

9.1.2 Computing third powers in GL(2, q)

Theorem 9.1.3. The following table gives the number of conjugacy classes and
elements that are third powers.
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q |GL(2, q)2
rg| |GL(2, q)2

ss| |GL(2, q)2
rs|

odd 3
8q

4 − 5
8q

3 + 1
8q

2 3
8q

4 − 9
8q

3 + 5
8q

2 + 9
8q − 1 3

8q
4 − 9

8q
3 + 5

8q
2 + 1

8q

−3
8q −

1
2

even q4 − 2q3 + q q4 − 2q3 + 2q − 1 q4 − 2q3 + q

Table 9.4: Values of |GL(2, q)2
rg|, |GL(2, q)2

ss| and, |GL(2, q)2
rs|.

q(mod 3) c(2, 3) |GL(2, q)3|
0 q2 − q q4 − 2q3 + 2q − 1
1 2

9(q2 − 1) 2
9(q4 − q3 − q2 + q)

2 2
3(q2 − 1) 2

3(q4 − q3 − q2 + q)

Table 9.5: Third powers in GL(2, q)

Proof. The proof is similar to Theorem 9.1.1.

Corollary 9.1.4. The following table gives the sizes of GL(2, q)3
rg,GL(2, q)3

ss,
GL(2, q)3

rs.

q(mod 3) |GL(2, q)3
rg| |GL(2, q)3

ss| |GL(2, q)3
rs|

0 q4 − 2q3 + q q4 − 2q3 + 2q − 1 q4 − 2q3 + q

1 2
9q

4 − 2
9q

3 − 2
9q

2 2
9q

4 − 5
9q

3 + 1
9q

2 2
9q

4 − 5
9q

3 + 1
9q

2 + 2
9

−1
9q + 1

3 +5
9q −

1
3

2 2
3q

4 − 2
3q

3 − 2
3q

2 2
3q

4 − 5
3q

3 + 1
3q

2 2
3q

4 − 5
3q

3 + 1
3q

2 + 2
3q

−1
3q + 1 +5

3q − 1

Table 9.6: Values of |GL(2, q)3
rg|, |GL(2, q)3

ss| and, |GL(2, q)3
rs|

Remark 9.1.5. The information in Tables 9.3, 9.4, 9.5, 9.6 verifies the asymptotic
results we have obtained for M = 2, 3 for the group GL(2, q) in Example 6.2.5.

9.2 Computing squares and third powers in GL(3, q)

We will follow the same outline, as in the previous section.

Combinatorial data Number of elements Number of
of conjugacy classes in the conjugacy class such classes
f1 = x− µ1, |λf1 | = 1
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f2 = x− µ2, |λf2 | = 1 q3(q + 1)(q2 + q + 1) 1
6(q − 1)(q − 2)(q − 3)

f3 = x− µ3, |λf3 | = 1
f1 = x− µ1, f2 = x− µ2

|λf1 | = 2, 1 + 1 ` 2 q2(q2 + q + 1) (q − 1)(q − 2)
|λf2 | = 1

f1 = x− µ1, f2 = x− µ2

|λf1 | = 2, 2 ` 2 q2(q + 1)(q3 − 1) (q − 1)(q − 2)
|λf2 | = 1
f = x− µ

|λf | = 3, 1 + 1 + 1 ` 3 1 q − 1
f = x− µ
|λf | = 3, 3 ` 3 q(q2 − 1)(q3 − 1) q − 1
f = x− µ

|λf | = 3, 2 + 1 ` 3 (q + 1)(q3 − 1) q − 1
f1 = x− µ

f2 = x2 + ax+ b q6 − q3 1
2q(q − 1)2

|λf1 | = 1, |λf2 | = 1
f = x3 + ax2 + bx+ c

f is irreducible,|λf | = 1 (q3 − q)(q3 − q2) N(q, 3) = 1
3(q3 − q)

Table 9.7: Conjugacy classes in GL(3, q)

Since, we are calculating, squares and third powers in GL(3, q), in addition to
the values of N2(q, 3), N3(q, 3). We will also need N2(q, 2) and, N3(q, 2) which we
already in Table 9.2.

q N2(q, 3)

odd 1
6(q3 − q)

even 1
3(q3 − q)

q (mod 3) N3(q, 3)

0 1
3(q3 − q)

1 1
9(q3 − 3q + 2)

2 1
3(q3 − q)

Table 9.8: Values of N2(q, 3) and N3(q, 3).

9.2.1 Computing squares in GL(3, q)

Theorem 9.2.1. There are q3−q conjugacy classes in GL(3, q), and |GL(3, q)| =
(q3−1)(q3− q)(q3− q2). The following table gives the number of conjugacy classes
and elements that are squares in GL(3, q).
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q c(3, 2) |GL(3, q)2|

odd 1
16(5q3 + 3q2 − 5q − 3) 1

16(5q9 − 7q8 − q7 + 2q6 + 3q5 + q4

−7q3 + 4q2)

even (q − 1)(q2 + 1) q9 − 2q8 + 2q6 + q5 − q4 − 3q3 + q2 + q

Table 9.9: Squares in GL(3, q).

Proof. Assume that q is odd. Let us write down the number of conjugacy classes
of each type which are squares.

1. Any class of type 1 is a square class if and only if each fi (1 ≤ i ≤ 3) is
2-power, that is, µ1, µ2, µ3 are squares in F×. The number of such classes is((q−1)/2

3
)

= 1
48(q − 1)(q − 3)(q − 5).

2. A class of type 2 is a square class if and only if x − µ2 is a 2-power poly-
nomial, that is, µ2 is a square in F×q . Number of such classes is given by(
q−1

2

) (
q−1

2

)
+
(
q−1

2

) (
q−1

2 − 1
)

= 1
2(q − 1)(q − 2).

3. A class of type 3 is a square class if and only if both µ1, µ2 are squares in
F×q . There are 1

4(q − 1)(q − 3) such classes.

4. A class of type 4 is a square if and only ifµ is a square in F×q (since 2 -
m1(λf ) = 3). Thus there are q−1

2 such classes.

5. A class of type 5 is a square if and only if µ is a square in F×q . Thus there
are q−1

2 such classes.

6. A class of type 6 is a square if and only if µ is a square in F×q . Thus there
are q−1

2 such classes.

7. A class of type 7 is a square class if and only if both f1 and f2 are 2-power
polynomials. The number of such classes is given by q−1

2 .N2(q, 2) = 1
8(q−1)3

(see Table 9.2).

8. A class of type 8 is a square if and only if f is 2-power polynomial. The
number of such classes is given by N2(q, 3) = 1

6(q3 − q) (see Table 9.8).

Thus adding all these up we get c(3, 2) when q is odd. The expression for |GL(3, q)2|
can be found out using Table 9.7.

When q is even, we apply Proposition 9.0.2 with n = 3,M = 2. We have,

Θ2(λ) =

(1, 1, 1) when λ = (1, 1, 1) ` 3 or, λ = (2, 1) ` 3

(2, 1) when λ = (3) ` 3
.
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It is clear then that classes of type 1,2,4,6,7,8 are square classes, while classes of
type 3 and 5 are non-squares. With this the expressions for c(3, 2) and |GL(3, q)2|
are easily calculated using Table 9.7.

Corollary 9.2.2. The following table gives the sizes of GL(3, q)2
rg,GL(3, q)2

ss,
GL(3, q)2

rs.

q |GL(3, q)rg| |GL(3, q)2
ss| |GL(3, q)2

rs|
odd 5

16q
9 − 7

16q
8 − 1

16q
7 5

16q
9 − 11

16q
8 + 3

16q
7 5

16q
9 − 11

16q
8 + 3

16q
7

−3
8q

6 + 11
16q

5 + 1
16q

4 +7
8q

6 − 5
16q

5 − 11
16q

4 +3
8q

6 + 11
16q

5

+ 9
16q

3 − 1
4q

2 − 1
2q −11

16q
3 + q2 + 1

2q −
1
2 −11

16q
4 − 3

16q
3

even q9 − 2q8 + q6 + 2q5 q9 − 2q8 + 2q6 − q4 q9 − 2q8 + q6 + 2q5

−q4 − q3 −2q3 + 2q2 + q − 1 −q4 − q3

Table 9.10: Values of |GL(3, q)2
rg|, |GL(3, q)2

ss| and, |GL(3, q)2
rs|.

9.2.2 Computing third powers in GL(3, q)

Theorem 9.2.3. The following table gives the number of conjugacy classes and
elements that are third powers in GL(3, q).

q (mod 3) c(3, 3) |GL(3, q)3|
0 q2(q − 1) q9 − 2q8 + 2q6 − q4

−2q3 + 2q2 + q − 1
1 1

81(14q3 + 3q2 + 42q − 59) 1
81(14q9 − 14q8 − 32q7 + 36q6

+14q5 − 22q4 + 4q3 + 54q − 54)
2 1

3(2q3 + q2 − 2q − 1) 2
3(q9 − q8 − q7 + q5 + q4 − q3)

Table 9.11: Third powers in GL(3, q).

Proof. The proof is similar to Theorem 9.2.1.

Corollary 9.2.4. The following table gives the sizes of GL(3, q)3
rg,GL(3, q)3

ss,
GL(3, q)3

rs.
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q(mod 3) |GL(3, q)rg| |GL(3, q)3
ss| |GL(3, q)3

rs|
0 q9 − 2q8 + q6 q9 − 2q8 + 2q6 − q4 q9 − 2q8 + q6

+2q5 − q4 − q3 −2q3 + 2q2 + q − 1 +2q5 − q4 − q3

1 14
81q

9 − 14
81q

8 − 32
81q

7 14
81q

9 − 23
81q

8 − 23
81q

7 14
81q

9 − 23
81q

8 − 23
81q

7

+1
3q

6 + 23
81q

5 − 22
81q

4 +8
9q

6 − 13
81q

5 − 58
81q

4 +7
9q

6 + 23
81q

5

+40
81q

3 − 1
9q

2 − 1
3q − 5

81q
3 + 4

9q
2 + q − 1 −58

81q
4 + 4

81q
3

2 2
3q

9 − 2
3q

8 − 2
3q

7 2
3q

9 − 5
3q

8 + 1
3q

7 2
3q

9 − 5
3q

8 + 1
3q

7

−q6 + 5
3q

5 + 2
3q

4 +2q6 − 1
3q

5 − 4
3q

4 +q6 + 5
3q

5 − 4
3q

4

+4
3q

3 − q2 − q −5
3q

3 + 2q2 + q − 1 −2
3q

3

Table 9.12: Values of |GL(3, q)3
rg|, |GL(3, q)3

ss| and, |GL(3, q)3
rs|.

Remark 9.2.5. The information in Tables 9.9, 9.10, 9.11, 9.12 verifies asymptotic
results we have obtained for M = 2, 3 for the group GL(2, q) in Example 6.2.5.

9.3 A solution to a problem by R. Stanley

In [Sta97], the author Richard Stanley had asked to count the number of matrices
over the finite field Fq which have a square root (see Exercise 180 of Chapter
1). V. Miller in [Mil16] characterized invertible matrices with square roots in
characteristic 2. This led to the generating function for the number of conjugacy
classes of all invertible matrices with square roots which is Corollary 8.2.2 (see
Chapter 8). On the other hand, when the characteristic is not 2, the invertible
matrices having square roots are characterized by Corollary 7.2.7 by putting M =
2. This leads to the generating functions for the number of conjugacy classes of
invertible matrices possessing square roots and the proportion of matrices with
square roots obtained by putting M = 2 in Corollary 7.5.4 and Theorem 7.5.5
respectively (see Chapter 7). We collect these generating functions so obtained in
the following theorem,

Theorem 9.3.1. We have the following:

1. Suppose q is a power of 2. The generating function for c(n, 2) which is the
number of conjugacy classes of invertible matrices which have square roots is
given by

1 +
∞∑
n=1

c(n, 2)un =
∏
n≥1

(1− u2n)(1− qu2n)
(1 + u2n−1)(1− qun)(1− qu4n) .
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2. Suppose q is not a power of 2. Then,

1 +
∞∑
n=1

c(n, 2)un =
∞∏
j=1

( 1− u2j

1− qu2j

)∏
d≥1

(1 + ujd)−N2(q,d)

 .
3. Suppose q is not a power of 2. Then,

1 +
∞∑
n=0

|GL(n, q)2|
|GL(n, q)| u

n =
∏
d≥1

1 +
∑
j≥1

∑
λ`j

ujd

qd
∑

i
(λ′i)

2 ∏
i≥1

( 1
qd

)
mi(λ)


N2(q,d)

×
∏
d≥1

1 +
∑
n≥1

∑
λ`n

u2nd

q4d
∑

i
(λ′i)2 ∏

i≥1

( 1
qd

)
mi(λ)


N̂(q,d)

,

where N̂(q, d) = N(q, d)−N2(q, d).

Here, N2(q, d) denotes the number of 2-power polynomials.

The above results answer the question posed by Stanley in the sense of generating
functions. We expect that further concrete results about these (like some form of
recursive relation on n or, sharp bounds or, even closed formula) can be deduced
from the generating functions so-obtained or, otherwise.
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Chapter 10

Future Plans

This thesis revolves around the study of the image of the power map in finite
reductive groups. We have attempted to study the image of the power map
ωM : GF → GF given by g 7→ gM where M ≥ 2 is an integer and G is con-
nected reductive group over F̄q with Steinberg endomorphism F . There are lots
of questions that still remain to be answered to get a more explicit understanding
of this map on these infinite families of finite groups. In this final chapter, we
mention some of the interesting questions in this direction.

10.1 Further Questions

The most general question on this topic is to study the image of the power map on
a finite reductive group G, that is, to understand whether there exists a solution of
the equation XM = g (for g ∈ G) in G. Since this map is mostly non-surjective it is
natural to ask how “big” or “small” is the image compared to the size of the group
which in turn naturally leads to the idea of enumerating the M th powers in G.
This thesis has addressed two kinds of problems in this direction. In Chapter 6, we
have solved the problem of asymptotic as q →∞ for the proportion ofM th powers
in a finite reductive group G. In the second part, to understand the image more
explicitly, we have specialized over the group GL(n, q), and derived generating
functions for the proportion of powers, which is often the tool for questions related
to enumeration. This explicit study perfectly makes sense over any finite classical
group. This leads us to the first question.

Problem 10.1.1. Derive generating functions for the proportion of regular, reg-
ular semisimple, semisimple and all elements that are M th powers in the classical
groups like SL(n, q), Sp(2n, q), GU(n, q), GO(2n+ 1, q), GO+(2n, q), GO−(2n, q)
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etc., (see Chapter 3 for definitions). Derive the generating functions for the num-
ber of conjugacy classes of regular, regular semisimple, semisimple and all elements
that are M th powers in these classical groups.

We have generating functions for the M th power invertible matrices and we
used these generating functions to determine the exact value of |GL(n,q)M |

|GL(n,q)| for some
values of n. We had further guessed an upper bound for the proportion of M th

powers in GL(n, q) (see Question 7.6.16 in Chapter 7).

Problem 10.1.2. Check the validity of the statement in Question 7.6.16.

A positive proof of the above problem will also determine the limiting value
of these proportions in GL(n, q) as n → ∞ (with M, q fixed, and in the case
(M, q) = 1) (see [Ful99] for the limiting values of proportion of semisimple, regular
and, regular semisimple elements in GL(n, q) as n→∞).

Problem 10.1.3. Determine lim
n→∞

|GL(n, q)M |
|GL(n, q)| when M is a prime and q is a

power of M (see Chapter 8).

Problem 10.1.4. Determine sharp bounds (both upper and lower) for |GL(n,q)M |
|GL(n,q)| ,

and more generally in case of all the other finite classical groups.

We have already conjectured that the asymptotic values (that is, subsequential
limits) as q → ∞ are also upper bound for the proportion of powers in GL(n, q).
This leads us to conjecture a more general result for any M ≥ 2, and not just
primes as follows:

Problem 10.1.5. Is the following true: Let M ≥ 2 be any integer and G be a
connected reductive group with Steinberg endomorphism F . Let G(Fq) denote the
finite group of fixed points of G under F . Then,

|G(Fq)M |
|G(Fq)|

≤
∑

T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

where the sum varies over non-conjugate maximal tori T in G(Fq), T = Td1,··· ,ds
∼=

Cd1×· · ·×Cds reflects the cyclic structure of T and the group WT = NG(Fq)(T )/T .

Problem 10.1.6. Given a reductive group G with Steinberg endomorphism F ,
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determine the explicit value of the expression,

∑
T=Td1,··· ,ds

1
|WT |(M,d1) · · · (M,ds)

.

We have already answered this for GL(n, q) and GU(n, q) by assuming M to be
prime in Chapter 6.

We believe answers to these questions will serve as a wealth of information on the
image of power maps on finite reductive groups.

So far we have concentrated on the image of the power map ωM . It is equally
interesting and important to understand the pre-image of this map. More precisely,
what information can we have on the fiber of each element under the power map?
In other words,

Problem 10.1.7. Let G be a finite reductive group. Fix g ∈ G, and suppose
XM = g has a solution in G for a fixed M ≥ 2. Study the set FMg := {α ∈ G |
αM = g} ⊆ G, which is the set of all solutions of the equation XM = g in G.

All the questions that have been posed for the image set make perfect sense for the
fiber FMg of g ∈ G. It is worthwhile to mention a character theoretic connection
here.

Let G be a finite group and Irr(G) denote the set of all irreducible characters
of G. Let ω be an element of the free group Fd on d generators. Consider the
corresponding word map ω : Gd → G. For g ∈ G, the fiber Fωg is defined by,

Fωg = {(g1, g2, . . . , gd) ∈ Gd | ω(g1, . . . , gd) = g}.

Let Nω
g = |Fωg |. We define the map,

Nω
G : G→ C by, Nω

G(g) = Nω
g .

The function Nω
G is a class-function and thus Nω

g =
∑

χ∈Irr(G)
aω,χχ is a C-linear

combination of the irreducible characters of χ. This is not always a character of
G. The coefficients aω,χ are called Fourier coefficients of G with respect to the
word ω. For the commutator word ω, a classical result of Frobenius says that
aω,χ = |G|

χ(1) for all χ ∈ Irr(G). Thus for the commutator word ω, Nω
G is indeed

a character of G. In general, the Fourier coefficients can be found out using the
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inverse Fourier transform.

aω,χ = 1
|G|

∑
(g1,...,gd)∈Gd

χ(ω(g1, . . . , gd)−1),

although this is not always easy to use in practice.
For the power word ω = x2, the coefficient aω,χ can only be +1, 0,−1. This

coefficient attached to χ is called the Frobenius-Schur indicator of χ. For a general
power word ω = xM for an integer M ≥ 2,

aω,χ = 1
|G|

∑
g∈G

χ(gM ).

These coefficients are called the generalized Frobenius-Schur indicators. In our
setting, it will also be interesting to determine these in the case of finite reductive
groups more explicitly. For more literature on these Fourier coefficients, we refer
the reader to the survey article by Shalev (see Section 4 and Section 7, [Sha13]),
and references therein).
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