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Abstract

In this project a ternary regime Markov switching jump diffusion model for financial asset price data is proposed.

Initially, we propose a statistical technique for the detection of jumps and volatility estimation in a return time series

data using a threshold method. As the threshold and volatility estimator are derived together by solving an implicit

equation, this leads to unprecedented accuracy in jump detection over wide-ranging parameter values. Next, using

the proposed threshold method the increments attributed to jumps are removed from historical data of various

Indian sectoral indices. Thereafter, we attempt to model the derived continuous part of the data by analysing the

presence of regime switching dynamics in the volatility coefficient using discriminating statistics, proposed by us,

which are sensitive to the transition kernel of the regime switching model.In particular we have restricted ourselves

to ternary regime switching dynamics. Finally, the performance of the proposed regime switching model is tested

by examining its replication of the empirical Cumulative Distribution Function(eCDF) of the return time series.
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Chapter 1

Introduction

Stock prices possess an inherent randomness. Attempts have been made to model the dynamics of stock price

using diffusion processes. In 1973, Black, Scholes and Merton, [17], used Geometric Brownian Motion to model

Stock/Risky Asset prices. This is the pioneering asset pricing model that continues to influence all models to

this day. The theoretical results obtained from this model were not consistent with empirical observations.Various

assumptions made by the model such as constant market parameters such as volatility, drift and interest rate turned

out to be unrealistic since in the real world these parameters are ever changing. Many Models have been developed

to address to the inconsistency between theory and empirical observations and issue of assumptions made by the

Black, Scholes and Merton model. A few examples are the Heston Model and several regime switching models.

The Heston Model[15] considers volatility to be a stochastic process unlike the Black, Scholes and Merton model.

It makes the use of a Cox Ingersoll Ross(CIR) process to model the volatility of a stock. Modeling of volatility as

a CIR process implies volatility to follow mean reverting dynamics. Many models later have extended the Heston

Model in various forms.

The phenomenon of quick or rapid variations in stock prices(where the historical volatility is too high or too

low) due to certain events that occur rarely cannot be explained by models with continuous path such as the Black,

Scholes and Merton model and the Heston Model. The real time series data of financial asset prices do exhibit jump

discontinuities which cannot be explained by a diffusion model alone. The sudden large changes in the return series

are attributed to jump discontinuities.To address the phenomenon of empirically observed big and sudden changes

in simple return series the market jump diffusion models have been considered. Merton[49] in 1976 introduced a

pioneering jump diffusion option pricing model. Other examples of jump diffusion models are [24] and [25]. These

models introduce the concept of discontinuity into the stock price dynamics. A jump diffusion extension of a

geometric Brownian motion is called a geometric Lévy process. It intends to improve over the geometric Brownian

motion process of the BSM model. This model is used in [28]. Models also have been developed by introducing

jump into the Heston Model. An example is [30].

Regime switching models are another type of models gaining traction in literature of Mathematical Finance after

the work of of Hamilton (1989) [14] and Di Masi et.al (1994) [13]. There have been regime switching extensions
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of the Black, Scholes and the Heston Model. These models allow variation of Market parameters in a simplistic

manner. In Regime switching models, the key market parameters evolve as finite state pure jump process such as a

Markov chain. The volatility and drift coefficients are changed based on the movement of a unobserved pure jump

process. One such regime switching model is a Markov Modulated Geometric Brownian Motion(MMGBM), which

is a Geometric Brownian motion whose parameters evolve as Markov chain. As research in the regime switching

field grew, the models also gained popularity academically. After [13] various researchers assumed regime switching

models for asset price dynamics. Examples of such regime switching models are [1], [2], [3], [4], [5], [6], [7] [8], [9],

[10], [11], [12]. Some examples of regime switching models modulated by a Markov chain are[18], [19] and [20].

Regime switching extension of the Heston model is studied in [16]. The list is just indicative and not exhaustive.

The jump diffusion models or regime switching models alone have not been able to model and explain various

aspects of the asset price dynamics. Therefore,this thesis aims at a unified inference of jump diffusion models with

regime switching. In this thesis, the inference problem for a class of Ternary regime-switching jump diffusion model

is studied. In [33], the statistical inference of a class of binary regime-switching jump diffusion model of financial

time series data studied. In [33] a particular type of test statistics has been used which is suitable for a model

where the low volatility regime occurs with a low probability and high volatility regime occurs with low probability,

not together, but in isolation. An extension of that study where models where, the high volatility regime and low

volatility regime occur with low probability together is considered in this thesis. The jumps are identified and

removed before inferring the regimes in the regime-switching volatility dynamics.

Various approaches have been studied to infer the parameters of jump models which include the maximum

likelihood approach [35], the Markov chain Monte Carlo approach [39], and threshold estimators [40], [43]. In, [32]

jump discontinuities are inferred using a Maximum Likelihood Estimation(MLE) approach while [43] and [31] a

non parametric approach is used for jump detection. Specifically, [31] infers jump discontinuities by minimizing

the Mean Square Error(MSE). In this thesis a threshold technique is proposed, to disentangle the jump from the

continuous part. In this method we obtain a threshold that is dependent on the volatility coefficient.

The standard threshold method involves fixing a threshold value of return, based on the time granularity of the

data, and a jump is said to have occurred when the return crosses that threshold and the instances when the jump

has occurred are classified as the jump times. The volatility coefficient is estimated post the removal of the jumps

detected, from the return series. One must note that, if the threshold does not depend on the diffusion coefficient,

the jump identification is poor for a large value of the volatility coefficient due to rare but large increments caused

by Brownian motion, would be misclassified as jumps. This issue has been addressed by us, by simultaneously

obtaining the threshold and the volatility estimator, by solving an implicit equation. The maximum solution is

obtained by an iterative scheme that rapidly converges to it. The resulting estimator is denoted as the maximal

estimator, as it maximizes the contribution of diffusion term in explaining return series and reduces the false-positive

error. Post the removal of jumps detected from the return series, the continuous part of the data(return series)is

modelled using a ternary regime switching GBM model.

Discriminating statistics proposed by us, are used to test the model. The sampling distribution of the discrimi-

nating statistics varies drastically and desirably, with varying choices of instantaneous rate parameter in the regime

switching dynamics. The discriminating statistics are constructed using certain descriptive statistics of squeeze and

expansion duration of the Bollinger band. The sampling distribution of the descriptive statistics of these durations,
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under a particular model hypothesis, do not have a form by which analytical inference can be done. Despite this,

the empirical distribution of the statistics can be obtained using a reliable simulation procedure. This is a standard

approach known as the typical realization surrogate data approach in Theiler et al. [47]. Other works such as [45]

and [46] use a similar approach. As the approach in [33] serves as a bedrock for this thesis.

This thesis is organised into chapters with several sections and subsections within the chapters. Chapter 2

provides a brief picture and describes diffusion, jump diffusion and Markov switching models for asset price dynamics

developed to date. In Chapter 3, we propose the development of a method for inference of jumps in uni-regime

and regime switching Merton’s jump diffusion model. In Chapter 4, method of obtaining squeeze and expansion

durations is given. These durations are used to propose discriminating statistics which are detailed in the same

chapter. The rejection procedure of any composite null hypothesis based on these statistics is also elucidated in

Chapter 4. The discretization of a few important class of regime switching models is explained in cChapter 5.

Chapter 6 deals with the application of the proposed inference technique developed to some empirical data and

some numerical experiments on the best fit models to test their performance.
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Chapter 2

Stochastic Models of Asset Price

Dynamics

2.1 Diffusion and Jump diffusion models

In 1973, Black, Scholes and Merton [17] used Geometric Brownian Motion to model Stock/Risky Asset prices. It is

known as the Black Scholes Merton(BSM)model which is given by the following stochastic differential equation:

dSt = dSt(µdt+ σdWt),

where St is the price of the stock, S0 > 0, µ is the drift(expected return) of the stock and σ is the volatility of the

stock(standard deviation) and Wt is standard Brownian Motion.

The theoretical results, obtained from the model were not consistent with empirical observations due to various

assumptions of the model such as constant market parameters such as volatility, drift and interest rate which were

unrealistic as, in the real world these parameters are constantly changing. Further, Models have been developed

to address to the inconsistency between theory and empirical observations mainly due to the assumptions made by

the Black, Scholes and Merton model. A few examples are the Heston Model and several regime switching models.

The Heston Model[15] considers volatility to be a stochastic process unlike the Black, Scholes and Merton model.

It makes the use of a Cox Ingersoll Ross(CIR) process to model the volatility of a stock. Modeling of volatility as

a CIR process implies volatility to follow mean reverting dynamics. Various successive models have extended the

Heston Model in different forms . The Heston Model is given by the following Stochastic differential equations:

dSt = µSt +
√
vtStdWt

dvt = κ(θ − vt)dt+ σ
√
vtdWt

′,
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W and W ′ are standard Brownian motions, such that dWtdWt
′ = ρdt, St is the price of the stock, vt is the volatil-

ity of the stock. The parameters of volatility are defined as follows: κ is speed, θ is the long run mean, and σ is

the volatility of volatility. The system of differential is also subject to additional conditions as: Feller condition:

σ2<2κθ, which assures the non negativity of v and to assure square integrability of S: σ ≤ κ
(2ρ+

√
2)+

.

As discussed in the introduction, to address the phenomenon of quick or rapid variations in stock prices due to

certain events that occur rarely in the market jump diffusion models have been considered. Sudden large changes

in the return series are attributed to jump discontinuities. Some examples of jump diffusion models are [24] and

[25]. These models introduce the concept of discontinuity into the stock price dynamics. One example of a jump

diffusion process is :

dSt = St−(µdt+ σdWt +
∫
η(z)N(dt, dz)),

where, η : R→R is continuous and bounded above and η(z) > −1 and N(dt, dz) is a Poisson random measure with

intensity ν(z)dt, where ν is a finite Borel measure. [24] and [25] study similar models as above .

A jump diffusion extension of a geometric Brownian motion is called a geometric Lévy process. It intends to

improve over the geometric Brownian motion process of the BSM model. It is given by:

St = S0 expZt, where Zt is a Lévy process.

Zt = σWt + Yt, where Wt is a standard Brownian motion and Yt is jump Lévy process independent of Wt.

The process Yt has the following representation in terms of the Poisson random Measure, N(dt, dz), t≥0, z∈ R\{0}
generated by the jumps of Zt:

Yt = bt+
∫ t

0

∫
R\{0}zI|z|≥0N(ds, dz) +

∫ t
0

∫
R\{0} zI|z|<0[N(ds, dz)− ν(dz)ds] and I is the indicator function.

Here, ν(dz) is the Lévy measure which satisfies the following conditions:
∫

min(z2, 1)ν(dz) <∞. This model is

used in [28].

Models also have been developed by introducing jump into the Heston Model. An example is [30]. The model is as

follows:

dSt = (rt − dt − γmj)St +
√
vtStdWt

s + (eJ
s − 1)StdNt

p, S0 = s,

dvt = κ(θ − vt)dt+ σ
√
vtdWt

v + JvdNt
p, V0 = v

where, W s and W v are standard Brownian motions, such that dWt
sdWt

v = ρdt, Np is a Poisson process with

constant intensity γ, Js is called the return jump and Jv is called the variance jump.

Amplitude of return jump is assumed to have normal distribution and Amplitude of volatility jump is assumed to

have exponential distribution as follows:
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ωs = 1
2πδ2 exp (− (Js−ν)2

2δ2 ), ωv = 1
η exp (−−1

η J
v),

where, ν is the mean and δ is the volatility of return jump Js and η is the mean of variance jump Jv.

mj = exp(ν + 1
2δ

2)− 1, is the compensator.

2.2 Markov Switching Models

In Regime switching models market parameters vary with the changing state of economy which in turn is modulated

by a Markov or a Semi Markov chain. Some examples of regime switching models modulated by a Markov chain

are[18], [19] and [20].

Regime switching was integrated into the BSM model to address some of the shortcomings. It is called the Markov

Modulated Geometric Brownian Motion(MMGBM)model. The stochastic differential equation of the MMGBM

model is as given below:

dSt = µ(Xt)Stdt+ σ(Xt)StdWt

where {Xt}t≥0, is a Markov process independent of the stock price St. τ is the time-index set {0, 1, 2, 3, ...},
(Ω,F ,P), the probability space and X = {1, 2, 3, ..., k} be the state-space of an irreducible k state Markov-chain.

The transition rate matrix of the Markov chain is λ, where, λij ≥ 0 for i 6= j & λii = −
∑k
j 6=i λij, i, j ∈ X

pij =
λij
|λii| are the transition probabilities from state i to state j, where i 6= j and pii = 0.

In Markov Modulated Geometric Brownian motion the drift of the stock µ and the volatility of the stock σ

are assumed to evolve as a function of a continuous time Markov chain. The stochastic differential equation of

MMGBM is as given below,

dSt = µ(Xt)Stdt+ σ(Xt)StdWt (2.2.1)

where, {Xt}t≥0, is a Markov process independent of the stock price, µ(Xt), σ
2(Xt) are the Markov dependent drift

and volatility of the stock respectively and {Wt}t≥0 is standard Brownian Motion.

Definition 2.2.1. The stock price in a Markov Modulated Brownian motion is given as follows:

Let the initial stock price at t=0 be S0 = s. Then the stock price at any time t=T’, is given as,

ST ′ = S0exp[

∫ T ′

0

µ(Xt)− σ2(Xt)/2)]dt+

∫ T ′

0

σ(Xt)dWt.
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Some examples of MMGBM models are [1], [13], [18], [19], [20], [21], [22] and [23].

Regime switching extension of the Heston model is studied in [16]. It intends to address several inconsistencies

of theoretical results of the Heston model with real/empirical data. The model is as follows:

dSt = µSt +
√
vtStdWt,

dvt = κ(Xt)(θ(Xt)− vt)dt+ σ(Xt)
√
vtdWt

′, V0 = v0,

where, Xt is a homogeneous continuous time Markov chain, W and W ′ are standard Brownian motions, such that

dWtdWt
′ = ρ(Xt)dt.

2.3 Historical Volatility in MMGBM

Volatility in the MMGBM model is modulated by a continuous time Markov chain. It changes when there is a

regime change in the Markov chain, else it remains constant. This leads to the volatility to behave as a step func-

tion which is a pure jump process. However, with pure jump volatility one can observe diffusion type dynamics of

historical volatility conventionally observed through data. A numerical approach is taken to establish the diffusion

type dynamics of historical volatility by considering a pure jump volatility in an MMGBM model. The approach is

as follows:

The stock price St, follows the MMGBM model. The estimator of historical volatility σ̂t is calculated for an

interval of ′d′ days over a period of time T . The square of estimator volatility is called estimator of variance given

by, σ̂2. The estimator of historical volatility is given by σ̂t. δ is the time step considered. Return of the stock Rt−δ

is given by,

Rt−δ =
St − St−δ
St−δ

, (2.3.1)

where the stock price St, follows an MMGBM process.

V̂ (Rt−δ) =

∑20
i=1Rt−iδ

2

20
− (

∑20
i=1Rt−iδ

20
)2 (2.3.2)

σ̂2
t =

V̂ (Rt−δ)

δ
, is the estimator of historical variance. (2.3.3)

In order to observe the diffusion type dynamics as well as the mean reverting nature of historical volatility
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resulting from a pure jump volatility Monte Carlo simulations were run of the model (2.2.1) on MATLAB using the

parameters given below :

1. Total time, T=3 (in years), Time step, δ=1/253 year

2. Initial stock price at time t=0, S0=100.

3. 3 states: 1, 2, 3 are considered with, initial state X0 = 1 and Rate Matrix, Λ =

−0.1 0.08 0.02

0.01 −0.02 0.01

0.015 0.035 −0.05

 .
σ(1) = 0.05, σ(2) = 0.10, σ(1) = 0.20 and µ(1) = 0.02, µ(1) = 0.08, µ(1) = 0.04.

Figure 2.1 is the simulation of as single realization of historical volatility over a 3 year period.

Figure 2.1: Single Realization of Historical Volatility

From the figure 2.1 the diffusion type dynamics of historical volatility can be observed. Another observation

that can be made from the figures is the mean reverting nature of historical volatility. Mean reverting nature is

displayed here as the the value of historical volatility rises and falls but tends to approach a mean value after each

rise and fall. These numerical simulations and the following observations of diffusion type dynamics and mean

reverting nature of the historical volatility process that is empirically observed in market data validates the claim

of considering volatility to behave as a pure jump process.
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Chapter 3

Inference of Jumps in Merton’s Jump

Diffusion model

In this chapter, we detail a statistical method for detection of jump discontinuities in the asset return data using

a threshold approach. As the diffusion noise and the jump, both, contribute to the second order moment of the

return process, the knowledge of return’s variance alone is not sufficient to solve the calibration problem of both

jump and diffusion coefficients. More insight(information) can be obtained from the classification of the returns

using a threshold. In the standard threshold approach, to calibrate volatility, the annualized coefficient of diffusion

term, the jump coefficients are inferred in advance. In this thesis we propose approach of maximal threshold where

the jump detection and the volatility coefficients are obtained simultaneously. In our method for jump inference we

consider a more generalized version of the original Merton’s Jump Diffusion(MJD) model[49] where we relax the

condition of jump sizes following a log-normal distribution.

3.1 Model Hypothesis

For detection of jump discontinuities, a simplified continuous-time model of asset price process, S := {St}t∈[0,T ], is

considered which is given by,

dSt = µSt−dt+ βSt−dWt + St−dMt (3.1.1)

with S0 > 0, where W = {Wt}t∈[0,T ] is the standard Brownian motion, and M = {Mt}t∈[0,T ] is a compound Poisson

process. In particular, M is given by Mt =
∑Nt
i=1 ξ(i), in which N = {Nt}t∈[0,T ] is a Poisson process with intensity

Λ and ξ := {ξ(i)}i=1,2,... is a sequence of independent random variables with identical cumulative distribution

function (cdf) F having mean zero and a finite variance. We assume that W , N and ξ are independent to each

other. It should be noted that (3.1.1) implies the following model

S(i)− S(i− 1)

S(i− 1)
− µ∆ = β

√
∆Z(i) + (Mi∆ −M(i−1)∆) (3.1.2)

9



for the discrete time series (S(0), S(1), S(2), . . . , S(N)) having time step ∆ (in year unit), where, {Z(i)} are inde-

pendent, identically distributed (i.i.d.) standard normal random variables. Here S(i) stands for Si∆ in (3.1.1). From

a given equispaced data the one-step simple return is given by r(i) = S(i)−S(i−1)
S(i−1) . The average r of {r(1), . . . , r(N)}

is given by r = 1
N

∑N
i=1 r(i). Using (3.1.2) and the model assumption that Eξ(i) = 0, it is evident that r is an

unbiased estimator of µ∆. In addition, Our assumptions on F are:

(A1) F (−1) is assumed to be zero,

(A2) F (0−) = F (0), i.e., zero is a point of continuity of F .

Assumption (A1) ensures the positivity of S, while (A2) implies that P (ξ = 0) = 0. Specifically, (A2) prohibits

jumps of size zero in simple return which does not impose any practical restriction on (3.1.1), but justifies selection

of the CDF of jump size and the jump intensity. In the classical Merton’s Jump Diffusion(MJD) model F is the CDF

of one less than lognormal and hence MJD obeys (A1) and (A2). Even though (3.1.1) is of a more general nature

than a classical MJD, (3.1.1) would be referred to as the MJD model hereon for the terminological convenience.

3.2 Motivation of Threshold Method

Empirical study by model fitting requires the estimation of all the parameters i.e. historical µ, β, Λ and F where,

F is a functional parameter. The jump discontinuities, which are apparent in a continuous time process, but their

identification becomes ambiguous when the process is observed in discrete time. In the following simple lemma it

can be seen that the false positive error in jump detection can be reduced as the time step decreases.

Lemma 3.2.1. Under no jump conditions and our assumptions: Given any p̂ ∈ (0, 1), and c > 0, there exists a

sufficiently small ∆ > 0, such that P (
⋃N
i=1{|r(i)− µ∆| ≥ c}) < p̂.

Proof. Due to (3.1.2), under Λ = 0, {r(1), . . . , r(N)} is a sequence of i.i.d normal variables with mean µ∆ and

variance β2∆. Let Ai := {ω ∈ Ω | |r(i)− µ∆| ≥ c}, then

P (Ai) = 2

(
1− Φ

(
c

β
√

∆

))
for each i, where Φ denotes the cdf of the standard normal distribution. Therefore,

P

(
N⋃
i=1

Ai

)
= 1− P

(
N⋂
i=1

(Ω \Ai)

)
= 1−

N∏
i=1

(1− P (Ai)) = 1−
(

2Φ

(
c

β
√

∆

)
− 1

)N
.

Hence the lemma is true, i.e., left side is less than p̂ if and only if

2Φ

(
c

β
√

∆

)
− 1 > (1− p̂)1/N = (1− p̂) ∆

T

or,
T

∆
ln

(
2Φ

(
c

β
√

∆

)
− 1

)
> ln(1− p̂) (3.2.1)
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where T denotes the length of the time horizon (i.e., T = N∆). A direct calculation gives that the left side of

the above inequality vanishes as ∆ goes to zero whereas right side is a fixed negative quantity. Hence there is a

sufficiently small ∆ > 0 such that (3.2.1) is true. Hence the proof is completed.

Due to the continuity (see (A2)) of F at zero, given any p̂ > 0, there is a positive c such that for any x ∈ (−c, c),
one has |F (x)− F (0)| < p̂/2. This gives

0 ≤ F (c)− F (−c) < p̂, (3.2.2)

that is P (|ξ| < c) < p̂. In other words, if such a value of c is set as threshold, the chance of false negative in jump

detection becomes less than p̂.

Remark 3.2.1. Based on Lemma 3.2.1 and the implication (3.2.2) of (A2), the noise sources, i.e., Z (diffusion

noise) and M (jump noise) in the discrete time series (sampled from (3.1.2)) can be separated with the help of an

suitable threshold parameter c with confidence 1 − p̂, if the time discretization is sufficiently small. Therefore the

value of c plays a crucial role in classification of noise. The estimation of c as in (3.2.2) is virtually impossible

from a real data, computing a lower bound so that (3.2.1) holds for any value of c higher than that is practicable.

Hence, a threshold obtained facilitates the false positive error to be bounded by p̂. This is delineated further in this

section.

Definition 3.2.1. Considering the above remark, if β̂ is an estimator of β, then ĉ := γβ̂ where

γ :=
√

∆Φ−1

(
1 + (1− p̂) ∆

T

2

)
, (3.2.3)

is a known positive constant. Given a time series data, a jump is said to have occurred at ith time step if |r(i)− r|
is not less than ĉ and at that instance, the value of the jump size is, r(i)− r.

3.3 Maximal Threshold

An estimator (SD) of the standard deviation of one-step return is considered by 1

SD2 =
1

N

N∑
i=1

(
r(i)− r

)2

.

It should also be noted that SD2 does not depend on p̂. Following from, (3.1.2), an estimator β̂ of β, can be chosen

to follow

SD2 = β̂2∆ + Λ̂∆V, (3.3.1)

1It is a consistent estimator. In addition, as ∆ is supposed to be chosen significantly small, let’s say a few
minutes in year unit. This leads to the magnitude of SD being small. In a typical time series data, conventionally,
N is significantly large. Therefore, the bias in SD2 is negligible.

11



where Λ̂ and V are estimators of jump intensity and the variance of jump sizes. To observe this, it needs to be

noted that, the variance formula of compound Poisson process, i.e., V AR(Mt) = ΛtE(ξ2). Let,

Λ̂ :=
card(Iĉ)

T
, (3.3.2)

where Iĉ = {i ∈ {1, . . . , N} | |r(i) − r| ≥ ĉ} and card(A) denotes the cardinality of a set A. Next, Λ̂ is a plug-in

estimator of Λ based on maximum likelihood estimation. Further, V as V :=
∑
i∈Iĉ

(r(i)−r̄)2

card(Iĉ)
=

∑
i∈Iĉ

(r(i)−r̄)2

Λ̂T
(using

(3.3.2)). Plugging in SD2, V and Λ̂ as above in (3.3.1), we get the following

G(β̂) := β̂2 − SD2

∆
+

1

T

∑
i∈Iγβ̂

(r(i)− r̄)2 = 0. (3.3.3)

Λ̂ =
card(Iγβ̂)

T and subsequently V =

∑
i∈I

γβ̂
(r(i)−r̄)2

Λ̂T
can be obtained from the solution of the above equation.

(3.3.3) evidently has a trivial solution β̂ = 0, which results in Λ̂ = N
T = 1/∆ and V = SD2. In contrast we focus

on the nontrivial solution where β̂ > 0, as higher the magnitude of β̂ smaller the time points attributed to being

jumps. In essence, we focus on the largest solution to (3.3.3), as our objective is to minimize the false-positive error

in jump detection. A low false-positive error means the return series is explained by the diffusion term as much as

possible.

Theorem 3.3.1. The equation (3.3.3) has a non-trivial solution for sufficiently small p̂.

Proof. We need to prove the existence of a nontrivial zero of G (the function of β̂ that is defined on the left side of

(3.3.3)). It is evident that if β̂ is more than SD/
√

∆, G(β̂) is strictly positive. Hence any positive solution if exists

lies in (0, SD/
√

∆]. Again, (3.2.3) implies that limp̂→0 γ =∞. Therefore,

lim
p̂→0

∑
i∈Iγβ̂

(r(i)− r̄)2 = 0

as Iγβ̂ becomes empty for a sufficiently large γ. Thus for any β̂ ∈ (0, SD/
√

∆), there is a sufficient small p̂ such

that G(β̂) is strictly negative. We fix such p̂. Since G is positive on ( SD√
∆
,∞), we conclude that G is bounded below

and rises from negative to positive as β̂ increases. This confirms existence of a zero of G if each discontinuity of G

is due to a negative jump. Moreover, G, being bounded below, if additionally possesses right-continuity and has

positive first order derivative at each point of continuity, would permit a minimizer β̂min, say.

The above properties of G, can be established by considering the term 1
T

∑
i∈Iγβ̂

(r(i)− r̄)2, a non-increasing right

continuous step function of β̂. As G is the sum of this term with a continuous function β̂2 and a constant, G is

also right continuous, having only negative jumps and a positive first and second order derivatives at the points of

continuity. Hence, G has at least one zero on (β̂min, SD/
√

∆).

Remark 3.3.1. It is of crucial importance to take into account that (3.3.3) must be solved numerically for a given

data set. Uniqueness of non-trivial zero is not obvious since G, is discontinuous. Since, G is strictly positive
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Figure 3.1: Convergence of gradient descent to the largest solution of (3.3.3)

beyond SD/
√

∆, there exists a finite largest zero of G which is strictly positive and unique, provided G becomes

negative. This is also the desired solution to (3.3.3). It is to be observed that G is right continuous and also has a

right derivative. Specifically, G′(β) = 2β, where G′ is the right derivative of G. Therefore, the following Newton-

Raphson algorithm with initial point SD√
∆

converges to the largest non-trivial solution(described above) rapidly

βn+1 = βn −
G(βn)

2βn
, ∀n ≥ 0, and β0 = SD/

√
∆. (3.3.4)

This is evident as G has jumps of negative size and has positive first and second order derivatives at the points of

continuity and the initial point is on the right of the desired solution. It can be observed from Figure 3.1.

Definition 3.3.1 (Maximal Estimators). Let the limit of the iterative sequence (3.3.4) be defined as β̂max and term

it as the maximal estimator of β parameter. Further more, the product γβ̂max is in fact defined as the maximal

threshold and denote that by ĉmax.

Evidently, the above mentioned threshold method is disparate to the standard method based on obtaining a fixed

threshold. The approach in this thesis is termed as the maximal threshold method due the accuracy of jump-

detection being optimized by controlling the false-positive error. We achieve this objective by obtaining the threshold

and the volatility simultaneously by an iterative scheme. The theorem below with an independent theoretical

interest, answers the question of uniqueness question of (3.3.3) on a restricted set. Furthermore, it also indicates

the location of the estimator.

Theorem 3.3.2. For a sufficiently small p̂, (3.3.3) has a unique solution on
(
SD√
2∆
, SD√

∆

]
and no solution on(

SD√
∆
,∞
)

.

Proof. Let β0 = SD√
2∆

and γ0 := maxi≤N

(
|r(i)−r|
β0

)
. We fix p̂ sufficiently small, so that γ in (3.2.3) is more than γ0.

Hence for all β̂ not less than β0, γβ̂ is greater than maxi≤N |r(i)− r| and consequently Iγβ̂ is empty. Therefore, at

β̂ = β0, G is equal to −β0
2, a negative quantity; and continues to increase continuously on (β0,∞) and is positive

at β̂ = SD√
∆

. Hence the proof.

The computation β̂max has been elucidated so far, mainly to obtain a threshold value ĉmax. The threshold facilitates

the isolation of the jumps from diffusion noise in return series with a confidence 1 − p̂. The class of data points
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having jumps, can be analyzed alone for inferring the jump size distribution F . In addition, the return series which

is driven or controlled by only diffusion can also be analyzed separately for the fitting other sophisticated diffusion

models. This aspect is dealt in detail in the subsequent sections.

3.4 Consistency of β̂

In this section the issues pertinent to the consistency of the estimator β̂ as ∆→ 0 are discussed. It can be observed

that β̂ depends on γ which in turn is dependent on both ∆ and the choice of the mis-classification probability

or probability of separation, p̂. To enable β̂ to only depend on ∆, the probability of mis-classification must be

considered to be dependent on ∆ and must approach zero as ∆ → 0, rather than fixing a constant pre-assigned

value p̂. It is evident that the decay rate of the misclassification probability plays a key role in establishing

consistency of the estimator. The missclassification probability is chosen as follows,

p̂ = min
(

1, α∆ln(1/∆)
)

(3.4.1)

for some α > 0. It can be seen that, p̂→ 0 as ∆→ 0. By choosing α carefully, a value of our choice can be assigned

to p̂. Hereon, we denote the right side of (3.2.3) as γ(∆) in which p̂ is defined as (3.4.1). By the following lemma,

we prove that this choice of p̂ gives a consistent estimator.

Lemma 3.4.1. Let γ(∆) be as above. Then as ∆ tends to 0,

1. γ(∆) converges to zero and

2.
∆ ln 1

∆

γ(∆)2 converges to zero.

Proof. It follows from the formula 7.1.13 of [34] that for any x ≥ 0

1

x+
√
x2 + 4

<

√
π

2
e
x2

2 (1− Φ(x)) <
1

x+
√
x2 + 8

π

. (3.4.2)

Therefore for any ε ≥ 0, we have that

eεx
2

x+
√
x2 + 4

<

√
π

2
ex

2( 1
2 +ε) (1− Φ(x)) <

eεx
2

x+
√
x2 + 8

π

. (3.4.3)

Now substituting x by x√
1
2 +ε

in the left hand side of the inequality (3.4.3), we deduce

ex
2

1− Φ

 x√
1
2 + ε

 >

√
2

π

√
1
2 + εe

ε
1
2

+ε
x2

x+
√
x2 + 4ε+ 2

.

Since the right side diverges to infinity as x→∞, given any M > 0, there exists a x0 > 0 such that for all x ≥ x0,
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we have 1− Φ
(
x/
√

1
2 + ε

)
> Me−x

2

. Again, since Φ is non-decreasing, we obtain

x/

√
1

2
+ ε < Φ−1

(
1−Me−x

2
)
. (3.4.4)

On the other hand, substitution of x by
√

2x in the right side of the inequality (3.4.2), gives convergence of

ex
2 (

1− Φ
(√

2x
))

to 0 as x→∞, in other words, given any M > 0, there exists a x′0 > 0 such that for all x ≥ x′0,

we have the following

√
2x > Φ−1

(
1−Me−x

2
)
. (3.4.5)

With slight abuse of notation, we denote x0 := max{x0, x
′
0}. Then (3.4.4) and (3.4.5) hold for any x ≥ x0. For a

fixed p̂ ∈ (0, 1) and sufficiently large x ≥ x0, let y > 0, be such that the following holds

1−Me−x
2

=
1 + (1− p̂)y

2
.

By using the Taylor’s series expansion of (1− p̂)y, from above we obtain

x2 = − ln

(
p̂y

2M
+ o(y)

)
.

Then there is a y0 > 0 such that for all y < y0, we have√
ln

(
4M

p̂y

)
> x =

√
− ln

(
p̂y

2M
+ o(y)

)
>

√
ln

(
M

p̂y

)
. (3.4.6)

Now by using (3.4.6) in (3.4.4), and by setting y = ∆
T , for all ∆ < ∆0 with ∆0 = Ty0, we deduce√

ln

(
MT

p̂∆

)
<

√
1

2
+ εΦ−1

(
1 + (1− p̂) ∆

T

2

)
=

(
1

2
+ ε

)1/2
γ(∆)√

∆
,

provided p̂ = min
(
1, α∆ln(1/∆)

)
. Without loss of generality, assume ∆0 sufficiently small so that p̂ < 1 for any

∆ < ∆0. By substituting M = 1 in the above inequality, and by squaring both sides we get

0 < ln

(
T

α

)
+ ln

(
1

∆

ln(1/∆)
)

+ ln

(
1

∆

)
<

(
1

2
+ ε

)
γ2(∆)

∆
, ∀ ∆ < ∆0. (3.4.7)

Or,

∆

γ2(∆)
ln(T/α) +

∆

γ2(∆)
(ln(1/∆))

2
+

∆

γ2(∆)
ln(1/∆) <

(
1

2
+ ε

)
.

Note that the second term of the left hand side of the above inequality is strictly dominating over the other terms

as ∆→ 0 and also the sum is bounded. This implies that the terms other than the second vanish as ∆→ 0. Thus

we prove our second claim, i.e.,
∆ ln 1

∆

γ(∆)2 → 0 as ∆→ 0. Again, by using (3.4.6) in (3.4.5), and by setting y = ∆
T , for
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all ∆ < ∆0, we get that √
ln

(
4MT

p̂∆

)
>

√
1

2

γ(∆)√
∆

provided p̂ = min
(
1, α∆ln(1/∆)

)
where α > 0. By substitute M = 1 and simplifying we obtain

2∆

(
ln

(
4T

α

)
+ ln(1/∆) + (ln(1/∆))

2

)
> γ2(∆),

for ∆ < ∆0. Hence the first claim is true as the left hand side of the above converges to 0 as ∆→ 0.

Theorem 3.4.2. Let β be the positive volatility parameter appearing in (3.1.1) and β̂max as in definition 3.3.1. As

∆→ 0, β̂max converges to β in probability.

Proof. Note that log return, i.e., the increment of log of asset price in ∆ time span is

ln(St)− ln(St−∆) = ln(St/St−∆) = ln(1 +
St − St−∆

St−∆
). (3.4.8)

On the other hand, St−St−∆

St−∆
is the simple return on the same time span and goes to zero as ∆→ 0 provided t is not

a jump time. Hence, using (3.4.8) and limx→0
ln(1+x)

x = 1, we can write ln(St) − ln(St−∆) ∼ St−St−∆

St−∆
. Therefore,

ĉ2max, the threshold on the square of simple return also serves as the threshold on the square of log return as ∆→ 0.

Hence Corollary 2 in [43] gives that β̂max → β in probability provided, ĉ2max and
∆ ln 1

∆

ĉ2max
vanish as ∆→ 0.

First note that, due to the finite activity jump, SD2 = O(∆) as ∆→ 0. Thus by Theorem 3.3.2 we know that β̂max

is bounded and away from zero provided β 6= 0. Therefore, ĉ2max and γ2(∆) share the same asymptotic. Finally the

result follows from Lemma 3.4.1.

3.5 Numerical Experiments

This section the study of the finite sample performance of the estimator and threshold is detailed, presented in

definition 3.3.1 by performing numerical experiments involving accuracy evaluation of jump detection for a given

family of simulated data. Specifically, the accuracy measure is defined as,

Accuracy :=
True Positive + True Negative

True Positive + False Positive + True Negative + False Negative
.

For performing simulations, Merton’s jump-diffusion (MJD) model (3.1.1) is considered with various values of β

and all other parameters are fixed to their typical values. The parameters, µ = 0.1, Λ = 100 are fixed and F is

the cdf of Lognormal(− δ
2

2 , δ
2) − 1, with δ = 0.0055. Each simulated time series data is of length 18000 and has

a granularity ∆ = 1/18000. For every value of β, the average accuracy of 1000 simulations is illustrated by a plot

and displayed in a table below, where, the performance of maximal threshold is compared and contrasted with a
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few fixed thresholds. The fixed thresholds are chosen from the those suggested in Section 5 of [43].

Figure 3.2: Jump-detection Accuracy using Maximal

threshold (MT) and Fixed threshold (FT) with values

∆0.9, ∆0.99 and ∆0.999.

β Using Maximal Using Fixed Threshold

values Threshold ∆0.9 ∆0.99 ∆0.999

0.01 0.9997 0.9946 0.9953 0.9954

0.1 0.9972 0.9946 0.9953 0.9954

0.2 0.9955 0.9947 0.9954 0.9955

0.3 0.9948 0.9947 0.9950 0.9948

0.4 0.9946 0.9947 0.9870 0.9838

0.5 0.9945 0.9938 0.9603 0.9517

0.6 0.9945 0.9885 0.9164 0.9027

0.7 0.9945 0.9755 0.8632 0.8459

0.8 0.9944 0.9541 0.8083 0.7887

Table 3.1: Mean accuracy of jump-detection using

1000 simulations of MJD model for different β and

threshold values.

In Figure 3.2 the horizontal axis pertains to increasing values of the volatility parameter β and the vertical axis

pertains to the accuracy measure in jump detection using a threshold method. Every line plot depicts the change of

accuracy as β changes, corresponding to a particular threshold. We consider in addition to the maximal threshold,

three different fixed thresholds, namely, ∆0.9, ∆0.99 and ∆0.999. Maximal thresholds are obtained by fixing p̂ = 0.01.

A few numerical values are shown in Table 3.1.

It can be observed from Figure 3.2 and Table 3.1 that the accuracy measure reduces in the case of higher

volatility when fixed threshold method for detecting jumps. In contrast we do not observe such a reduction in the

case of Maximal threshold method.

In another numerical experiment the relative errors of the volatility estimators are obtained using four thresh-

olds(Maximal and Fixed) as specified above. The analysis is conducted by varying β in [0, 0.8] and considering six

distinct δ values. Plots 1 to 6 in Figure 3.3 pertain to δ values of 0.0055, 0.01, 0.02, 0.03, 0.04, and 0.5 respectively.

We can observe from the plots that the range of error is larger for larger δ which can be explained in the following

manner. A large δ produces more jumps having smaller size which in turn causes higher number of false negative

in jump detection when a fixed threshold is considered. In contrast, the linear dependence of maximal threshold on

β, causes it to detect these small jumps if β is small. These typical small jumps are in fact, larger than the return

size due to the diffusion noise given that, β is not very large. Therefore, the fixed threshold the estimation of small

volatility is heavily affected by the presence a large number of outliers emanating from the small jumps which is

the reason for the initial decline of relative error in small volatility estimation by fixed threshold when β increases.

Plots 1 to 5 display an additional rise of error with β for higher β, occurring due to the increase of false positive in

jump detection by the fixed thresholds. As maximal threshold grows linearly with β, the misclassifcation of large

returns coming from diffusion noise as jumps does not occur.
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Figure 3.3: Relative error vs true value in volatility estimation for δ = 0.0055, 0.01, 0.02, 0.03, 0.04, and 0.5
respectively. The color legend of all six plots are identical to that of Figure 3.2.

The numerical experiments and explanations presented above justify the use of maximal threshold for jump detec-

tion. Therefore, maximal threshold method is used for the removal of jumps from the time series and consequently

obtain the continuous part of the time series. The inference of the continuous part of the time series is presented

in the subsequent sections.

Remark 3.5.1. In [31], a Maximal threshold is obtained by minimizing Mean Square Error(MSE) in contrast to

minimizing false positive error. Instead of MSE minimization if we obtain maximal threshold by minimizing false

positive error, this later approach gives the threshold value immediately. In addition Minimization of false positive

error produces Maximal threshold by straightforward arguments and the estimator of β is obtained simultaneously

with the estimator of the threshold.

3.6 Inference of Jumps in a Regime Switching Model

The Maximal threshold method discussed in the section 3.3 can be applied to models where volatility is not constant

and varies, such as in a regime switching model and the consistency of estimators result from [43] will still hold.

However, the motivation of the method of Maximal threshold would be lost as it mainly hinges on estimating a

constant volatility parameter(based on the uni-regime Merton jump diffusion model), as the threshold is a function of

the constant volatility parameter estimated. The calibrated constant volatility may not be meaningful in a stochastic

volatility model such as a regime switching model.

Therefore, in this section only the accuracy of the maximal threshold would be compared with the fixed threshold
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method in regime switching conditions. There would be no analysis on relative error of the estimated volatility

parameter due to the above mentioned loss of meaning.

Numerical experiments involving accuracy evaluation of jump detection for a given family of simulated data of

the regime switching Merton jump diffusion model with three regimes are performed.

For performing simulations, regime switching Merton’s jump-diffusion (MJD) model (3.1.1) is considered with var-

ious values of β = σ̄ and all other parameters are fixed to their typical values. The parameters corresponding to the

three regimes i=1, 2, 3 are µ(1) = µ(2) = µ(3) = 0.07, σ(1) = β ∗ (1 − ε), σ(2) = β, σ(3) = β ∗ (1 + ε), where

ε = 0.8, instantaneous transition rates, λ1 = 3000, λ2 = 1000, λ = 2500 and Λ = 150 are fixed and F is the cdf of

Lognormal(− δ
2

2 , δ
2)− 1, with δ = 0.0045.

Each simulated time series data is of length 11000 and has a granularity ∆ = 1/18000. For every value of β, the

average accuracy of 1000 simulations is illustrated by a plot and displayed in a table below, where, the performance

of maximal threshold is compared and contrasted with a few fixed thresholds. The fixed thresholds are chosen from

the those suggested in Section 5 of [43].

Figure 3.4: Jump-detection Accuracy in a regime

switching model using Maximal threshold (MT) and

Fixed threshold (FT) with values ∆0.9, ∆0.99 and

∆0.999.

β Using Maximal Using Fixed Threshold

values Threshold ∆0.9 ∆0.99 ∆0.999

0.01 0.9992 0.9946 0.9950 0.9951

0.1 0.9963 0.9946 0.9950 0.9951

0.2 0.9946 0.9946 0.9946 0.9945

0.3 0.9941 0.9942 0.9879 0.9864

0.4 0.9940 0.9914 0.9698 0.9649

0.5 0.9941 0.9848 0.9376 0.9286

0.6 0.9940 0.9725 0.8939 0.8813

0.7 0.9939 0.9545 0.8460 0.8307

0.8 0.9940 0.9309 0.7973 0.7805

Table 3.2: Mean accuracy of jump-detection using

1000 simulations of regime switching MJD model for

different β and threshold values.

It can be observed from Figure 3.4(where X axis represents the β values and the Y axis represents the accuracy)

and Table 3.2 that the accuracy measure reduces in the case of higher volatility when fixed threshold method for

detecting jumps. In contrast we do not observe such a reduction in the case of Maximal threshold method. The max-

imal threshold method also has a higher accuracy than the fixed threshold methods for all volatility values considered.
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Chapter 4

Squeeze-Expansion Based Inference of

Regimes

4.1 Historical Volatility: Squeeze and Expansion Duration

From the knowledge of β̂ obtained from the previous section, we have the threshold value ĉ = γβ̂, for identifying

the jump discontinuities. β̂ and ĉ denote β̂max and ĉmax which implies that ĉ is the maximal threshold value for

identifying jump discontinuities.

For each i = 1, . . . , N .

Define,

Definition 4.1.1. r̂(i) :=

{
r(i) if |r(i)− r| ≤ ĉ
r else.

Hence r(j) = r̂(j) + (r(j) − r̄)1[ĉ,∞)(|r(j) − r̄|). Thus, r̂ = {r̂(i)|i = 1, N} represents the simple return of

the continuous part of the time series after removing the jump discontinuities. We use r̂ to derive the historical

volatility time series below.

Definition 4.1.2. (µ̂, σ̂). For a fixed window size n, the moving average {m(k)}Nk=n and the sample standard

deviation {σ(k)}Nk=n are given by

m(k) :=
1

n

n−1∑
i=0

r̂(k − i),

σ(k) :=
√

1
n−1

∑n−1
i−−0

(r̂(k − i))2 − n
n−1m(k)2,

for k ≥ n. The empirical volatility σ̂ = {σ̂(k)}Nk=n is given by σ̂(k) :=
σ(k)√

∆
. The empirical drift µ̂ = {µ̂(k)}Nk=n is
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given by µ̂(k) :=
m(k)

∆
.

Definition 4.1.3. Let y = {yk}mk=1 be a collection of random samples of a real valued random distribution. Then

the empirical cumulative distribution function or ecdf F̂y is defined as: F̂y(x) := 1
m

∑m
k=1 1[0,∞)(x−yk) where given

a subset A, 1A denotes the indicator function of A.

Definition 4.1.4. (p-percentile). Let F̂y(p) be the ecdf of y = {yk}mk=1. Then for any p ∈ (0, 1), the p-percentile of

y, denoted by F̂←y (p), is defined as

F̂←y (p) := inf{x|F̂y(x) ≥ p}.

Lemma 4.1.1. Given a time series y = {yk}mk=1 and p ∈ (0, 1),

(i) −F̂←−y = F̂←y (1− p+),

(ii) and if p ∈ (0, 1)\F̂y(R), then− F̂←−y(p) = F̂←y (1− p),

Proof. Let x = −F̂←−y(p) say or −x = F̂←−y(p). Hence using using definition of F̂ ,

F̂−y (−x− ε) < p ≤ F̂−y(−x)∀ε > 0

or,
card{k| − y(k) ≤ −x− ε}

N
< p ≤ card{k| − y(k) ≤ −x}

N
∀ε > 0

or,
card{k|y(k) ≥ x+ ε}

N
< p ≤ card{k|y(k) ≥ x}

N
∀ε > 0

or, 1− card{k|y(k) < x+ ε}
N

< p ≤ 1− card{k|y(k) < x}
N

∀ε > 0

or,
card{k|y(k) < x+ ε}

N
> 1− p ≥ card{k|y(k) < x}

N
∀ε > 0

or,
card{k|y(k) < x}

N
≤ 1− p < card{k|y(k) < x+ ε

N
∀ε > 0

or,
card{k|y(k) ≤ x− ε}

N
≤ 1− p < card{k|y(k) ≤ x+ ε}

N
∀ε >0

or, F̂y(x− ε) ≤ 1− p < F̂y(x+ ε)∀ε > 0

or, F̂y(x−) ≤ 1− p < F̂y(x)

since F̂y is a right continuous step function. Hence, x = lim
ε→0

F̂←y (1− p+ ε). Thus (i) is true.

If p is not in the range of F̂y, p is strictly less than F̂−y(−x). Then, F̂y(x−) < 1−p < F̂y(x), i.e., x = F̂←y (1−p).
From Lemma (4.1.1), the range of F̂y, i.e., F̂y(R) is {i/m|i = 0, 1, m} since y = {yk}mk=1. Therefore (0, 1)\F̂y(R) =
m⋃
i̇=1

(
i̇− 1

m
,
i̇

m
). By considering a particular p, the 100p percentile of σ̂’would be used as the threshold in identifying

the squeeze of the Bollinger band of return series. The definition of squeeze is presented below.
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Definition 4.1.5. (p-squeeze). Given a p ∈ (0, 1), an asset is said to be in p-squeeze at k-th time step if the

empirical volatility σ̂(k), as defined above, is not more than F̂←σ̂ (p).

The definition of sojourn times of the p-squeeze is given below:

Definition 4.1.6. By following the convention of min∅ = +∞, for a fixed p ∈ (0, 1) and a given time series

{σ̂}Nk=n, let {(ai, bi)}∞i=1 be an extended real valued double sequence given by
a0 = n

bi−1 := min{k ≥ ai−1|σ̂(k) > F̂←σ̂ (p)

ai := min{k ≥ bi−1|σ̂(k) ≤ F̂←σ̂ (p),

for i = 1, 2, . . .. Then the collection of sojourn time durations for the p-squeezes is d(σ̂; p) := {di}Li=1, where

di := bi − ai and L := max{i|bi <∞}, provided L ≥ 1. di is the i-th entry of d(σ̂; p) and L is the length of d(σ̂; p).

di should be multiplied by ∆ to obtain the squeeze duration in year unit. An application of Lemma (4.1.1)

implies that d(−σ̂; p) is the collection of sojourn time duration for p-expansions, i.e., the duration when σ̂(k) ≥
F̂←σ̂ (1 − p), provided p is not in the range of F̂σ̂. To observe this one must note that if d(−σ̂; p) = {di}Li=1, then

di = bi − ai, where ai = min {k ≥ bi−1| − σ̂(k) ≤ F̂←−σ̂(p)} which is same as min {k ≥ bi−1|σ̂(k) ≥ F̂←σ̂ (1 − p)} and

bi−1 = min {k ≥ ai−1| − σ̂(k) > F̂←−σ̂(p)} = min{k ≥ ai−1|σ̂(k) < F̂←σ̂ (1− p)} for i ≥ 1 and a0 = n. d(±σ̂; p) is used

to denote either d(σ̂; p) or d(−σ̂; p).

Remark 4.1.1. (i) From the construction of d(±σ̂; p) it can clearly be seen that d(+σ̂; p) captures the duration of

visiting low volatility, d(−σ̂; p) captures that of visiting high volatility when p is smaller than half. When combined

together, they would be able to capture the three regime scenario, namely, low, medium and high volatility switching

dynamics if p is considerably smaller than half. After removing the jump term from model 3.1.1, one obtains a

geometric Brownian motion which is also known as the BlackScholes-Merton model. To test the model hypothesis

of a three regime switching Model, both d(σ̂; p) and d(−σ̂; p) would be considered together.

4.2 A Discriminating Statistics

The asset price data of long time in the past has little use or relevance in modelling the price dynamics in more

recent times. This necessitates an upper bar/limit on the length of the time series under consideration for inference

purposes. This implies that for a time series data to be used for practical/empirical purposes, the length of d(±σ̂; p)

is considerably small. Let, d = d(±σ̂; p) and L = length of d. Hence, a non parametric estimation of the entries

of d by the use of empirical cdf is not practicable as it would lead to a high standard error. Therefore, only a

collection of few descriptive statistics like mean (d), standard deviation(s), skewness(ν), kurtosis(κ) of d should be

considered as they can be estimated reliably. Theoretically d is a random sequence with random length, the corre-

sponding descriptive statistics constitute a random vector of fixed length. The sampling distribution of this vector is

compared with the vector (d, s, ν, κ ) of the time series data to test the model hypothesis. For this purpose a discrim-

inating statistics T = (T1, T2, . . . ,Tr) is constructed using the first r number of descriptive statistics of d as follows:
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T1 :=
1

L

L∑
i=1

di,

T2 :=

√√√√ 1

L− 1

L∑
i=1

(di − T1)2,

T3 :=
1
L

∑L
i=1(di − T1)3

T2
3

T4 :=
1
L

∑L
i=1(di − T1)4

T2
4

and so on for the other numbers up to r.

The test statistics constitute durations which are in turn are correlated to the sojourn times of regime transitions,

but it is not directly observable that, these statistics would capture the unobserved switching efficiently because of

the randomness present in the Brownian motion. The effect of this randomness can be mitigated by considering

a longer moving window size (n) for defining σ̂ in definition (4.1.2). Unfortunately, a larger window size ignores

a larger number of intermittent transitions often, which enhances the inaccuracy. Therefore n = 20 is fixed from

hereon in the definition, which is the popular choice by practitioners for computing the empirical volatility.

Note: T+ pertains to squeeze durations while T− pertains to expansion durations and T is a generalised definition

pertaining to both T+ and T−.

4.2.1 Rejection criteria based on the statistics

In this subsection the numerical computation of sampling distribution of T statistics is detailed under each model of

the composite null hypothesis using Monte-Carlo simulation method, which is popularly known as typical surrogate

approach following [47](see [48] for composite hypothesis). The rejection criterion is as follows:

(a) A non-empty subclass A of Θ, the class of models obeying the null hypothesis is fixed.

(b) For each θ ∈ A, B number of time series {X1, X2, . . . , XB} are sampled from the corresponding model θ with

the same time step size present in S.

(c) Based on whether the discriminating statistics depend or pertain to squeeze or expansion, d(σ̂; p) or d(−σ̂; p)

is considered respectively for defining T (T+ or T−) . For the class A, then d is considered for defining T. Let

t∗ := T(S) be the value of T of the observed data S and t∗ = (t∗1, t
∗
2, . . . , t

∗
r). Let ti = (ti1, t

i
2, . . . , t

i
r) := T(Xi)

for each i = 1, .. . , B. Then tθ denotes {t1, t2, . . . , tB}, the set of values of T for {X1, X2, . . . , XB}
corresponding to each θ ∈ A.
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(d) In order to measure the proximity of t∗ with respect to the set tθ, we define gB : R → [0, 1/2] given by

gB(x) := max(
min(x, (B − x))

B
, 0) and a proximity measure,

αθr := min
j≤r

gB(

B∑
i=1

1[0,∞)(t
∗
j − tij)).

(e) The measure of proximity of the data to a class A is defined as, αr = maxθ∈A α
θ
r .

(f) The hypothesis that S is a sample from a model in the class A can be rejected provided αr is smaller than a

predetermined value.

(g) The discriminating statistics are calculated pertaining to both squeeze and expansion durations as we do not

know which of them is better sensitive to the data.

(h) Let r be the maximum of all i for which αi is obtained. α+
r (pertaining to squeeze i.e T+ ) and α−r (pertaining

to expansion i.e. T− ) are calculated and the final proximity measure is obtained as follows:

αr = max(α+
r , α

−
r )

The set of parameters for the optimal or best fit model i.e. having the highest proximity measure is obtained

as follows:

θ∗ = argmaxθ(α
+
r , α

−
r ).

The set of parameters θ∗ is the model that has the highest proximity measure/ the maximized/optimal/best

fit model and would be used further for simulations.

Note:We consider our discriminating statistic as αr = max(α+
r , α

−
r ), since, we do not know whether T+ or T−

is more sensitive.

Remark 4.2.1. It is to be noted that the above mentioned rejection has an empirical confidence level 100(1−αr)when

r = 1, i.e., the statistics is of a single dimension. On the other hand this expression is completely different from

confidence level when the dimensions of statistics is large. This phenomenon is called the “curse of dimensionality”.

For a given model, the probability of observing the value of r to be smaller than a predetermined small value is not

so small when r is considerably large.

4.3 Discretization of Continuous Time Models

For testing of model hypothesis we a discrete time version of the continuous time theoretical asset price model given

by,

dSt = µ(Xt−)St−dt+ σ(Xt−)St−dWt + St−dMt, (4.3.1)

for t > 0 with S0 > 0, where {Xt}t≥0 is a three state non explosive three state pure jump process.
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Definition 4.3.1. In this work, {Xt}t≥0 is defined as a continuous three-state continuous Markov chain, with states

defined as 1 , 2 and 3 respectively. This process does not permit the transition directly from state 1 to state 3 or

vice versa without transitioning through state 2.

Firstly, the Merton’s Jump Diffusion (MJD) model which is uni-regime is considered. Two different composite

model hypotheses, namely, (i)uni-regime MJD, (ii) Markov switching Ternary regime MJD, are considered in this

work. The core objective of testing each such composite model hypothesis, is the simulation of the discrete version

of continuous-time models selected from an appropriately chosen range of models satisfying the model assumption.

An approximate procedure of identifying an appropriate class of reduced dimensions for a given data corresponding

to each composite hypothesis is detailed in the following section.

As the test statistics T is computed after removing the jump discontinuities, it depends on only the continuous

part of the data. Therefore for the purpose of inference, it is sufficient to simulate only the continuous part of the

models. It is enough to simulate the following SDE (Stochastic Differential Equation) rather than the continuous

version for comparing the sampling distribution of T

dSt = St(µ(Xt)dt+ σ(Xt)dWt), (4.3.2)

where, {Xt}t≥0 is a continuous three-state Markov process as in definition 4.3.1 and µ(Xt), σ(Xt) are the drift

and the volatility coefficients. Let {0 = t0 < t1 < · · · < tN} be an equispaced partition of the time interval where

ti+1 − ti = ∆ for i = 0, 1, . . . , N − 1 and ∆ is the length of time step in year unit and same as the granularity of

the empirical data. We use this convention throughout this paper.

4.3.1 Uni-regime

In this subsection we consider the model hypothesis (3.1.1) for some arbitrary model parameters µ, β,Λ and F .

After removing the jump term, the model reduces to

dSt = St(µdt+ βdWt)t > 0, S0 > 0. (4.3.3)

Equation 4.3.3 has a strong solution of the form

St = S0 exp(µt− 1

2
β2t+ βWt) t ≥ 0. (4.3.4)

The discretized version of 4.3.4 is given by,

St0 = S0, Sti+1
= Sti exp((µ̂− 1

2
σ̂

2
)∆ + σ̂Zi) for, i = 0, 1, . . . , N − 1 (4.3.5)

where {Zi|i = 0, N − 1} are independent and identically distributed (i.i.d) normal random variables with mean

0 and variance ∆.
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4.3.2 Ternary Markov regime

Omission of the jump term from (4.3.1)reduces the model to (4.3.2) where X denotes a Markov chain as defined in

4.3.1.

As the continuous time Markov chain is characterized by its instantaneous transition rate matrix λ, the class of all

possible models in (4.3.2) are identified with the set Θ of all possible parameters as given below,

Θ = {θ = (µ(1), λ1, λ12, λ13, σ(1), µ(2), λ2, λ21, λ23, σ(2), µ(3), λ3, λ31, λ32)|µ(i) > 0, λi > 0, i = 1, 2, 3}, (4.3.6)

Using the expression of strong solution, the discrete version of models corresponding to each member of Θ can be

written. However, we write down the discretization only for a smaller class of models which are relevant for the

empirical study in the subsequent section. The scheme for X given below is the discretization of a Markov chain

and the details can be found in theorem 5.3.1 in the next chapter.

Sti+1
= Sti exp((µ(Xi)− 1

2σ
2(Xi))∆ + σ(Xi)Zi), (4.3.7)

Xi+1 = Xi + ((2−Xi) + (−δ2,Xi)ηi)Pi (4.3.8)

where, Pi and ηi are sequences of Bernoulli random variables, δx,y is the Kronecker delta function and 00 is taken

as 0. Furthermore, ηi are iid and are independent of the past or present states of the Markov chain Xi. We also

assume the following properties of {Pi}. The sequence {Pi|i = 1, . . . , N − 1} are independent to Zj for all j. For

each given Xi, the conditional distribution of Pi is independent of {P1, P2, . . . , Pi−1} and ηi. For each i, Pi follows

Bernoulli (λXi∆), a Bernoulli random variable with Prob (Pi = 1|Xi) = λXi∆, provided ∆� min{1/λi|i = 1, 2, 3}.
Here for each i, Zi where {Zi|i = 0, . . . , N − 1} are independent and identically distributed (i.i.d) normal random

variables with mean 0 and variance ∆.
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Chapter 5

Empirical Study

5.1 Analysis of Market Data

The time series data of eighteen different Indian stock indices with 5-minute granularity during the time period

starting from 1-st December, 2016 to 30-th June, 2017 are considered. We assume six hours of trading in each day

and two hundred and fifty trading days in a year and set ∆ =
5

250× 360
≈ 5.5 × 10−5. For obtaining the jump

discontinuities separately, we consider p̂ = 1% ( by 3.4.1 p̂ = min
(
1, α∆ln(1/∆)

)
and we choose α = 4.93 ∗ 1039).

Then (3.3.3) is solved numerically as it is described in remark 3.3.1.

The numerical approximations of β̂, Λ̂ and V for each index data are given in Table 5.1. Each row of Table 5.1

corresponds to an index, whose name is given in the second column with the code in the first column. By making

use of the β̂ value, the ĉ value is obtained for each index using (4.1.2). Next, by using the value of ĉ, µ̂ and σ̂ are

computed based on the definition 4.1.2. In the last two columns of Table 5.1 the empirical long run average drift µ̂

and the empirical long run average volatility σ̂ are displayed for each index.
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Table 5.1: Estimated parameters of 5-min (1/12/16 - 30/06/17) data of 17 Indian stock indices

Index β̂ Λ̂ V ¯̂µ ¯̂σ

Code Name (in %) (in 10−5) (in %) (in %)

I01 NIFTY 100 7.41 132.14 2 6.5 6.90

I02 NIFTY 200 7.54 127.36 2 8.7 7.00

I03 NIFTY 50 7.34 132.19 2 7.7 6.88

I04 NIFTY 500 7.62 143.43 2 10.5 6.70

I05 NIFTY BANK 10.39 128.90 5 24.8 9.75

I06 NIFTY COMMODITY 10.22 116.08 3 -4.8 9.47

I07 NIFTY ENERGY 10.93 148.24 4 -13.1 10.22

I08 NIFTY FIN. SER. 9.78 132.20 5 23.3 9.14

I09 NIFTY FMCG 11.89 167.58 5 17.7 11.04

I10 NIFTY INFRA 10.76 103.18 3 12.1 10.02

I11 NIFTY IT 11.26 157.88 4 5.5 10.33

I12 NIFTY MEDIA 14.64 120.90 6 13.9 13.64

I13 NIFTY METAL 16.24 99.95 6 -20.8 15.12

I14 NIFTY MNC 9.36 77.34 3 20.3 8.68

I15 NIFTY PHARMA 12.02 154.69 5 -26.2 11.07

I16 NIFTY PSE 10.25 148.32 3 -9.9 9.47

I17 NIFTY SERVICE SEC. 8.36 149.93 3 17.5 7.84

We recall that the ‘T’ test statistics described in section 4.2 are defined using d(±σ̂; p). In this section we fix

p = 15% in the definition of the sub class of models C and obtaining d(±σ̂; p) and subsequently the T statistics .

The t∗ values are computed using d(σ̂; p) and d(−σ̂; p) separately. The components of t∗ for every index data are

given in Table 5.2.
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Table 5.2: t∗ of the empirical data

Squeeze duration d(σ̂; p) Expansion duration d(−σ̂; p)

Index L t∗1 t∗2 t∗3 t∗4 L t∗1 t∗2 t∗3 t∗4

I01 157 10.66 11.31 1.16 3.36 142 11.78 10.66 1.06 3.79

I02 169 9.89 11.12 1.34 3.92 142 11.76 10.48 0.94 3.32

I03 158 10.58 10.89 1.08 3.24 149 11.22 10.49 1.08 3.80

I04 157 10.65 11.24 1.21 3.60 142 11.76 10.29 0.90 3.37

I05 158 10.59 11.69 1.37 3.98 128 13.07 9.97 0.54 3.14

I06 168 9.95 10.55 1.47 4.57 136 12.29 10.03 0.83 3.59

I07 165 10.14 11.29 1.56 4.75 141 11.86 9.21 0.60 3.24

I08 172 9.72 10.85 1.54 4.61 124 13.48 10.40 0.82 3.72

I09 179 9.35 10.18 1.57 4.95 137 12.20 10.27 0.77 3.27

I10 176 9.50 11.69 1.73 5.43 128 13.06 11.71 1.27 5.09

I11 159 10.52 11.37 1.18 3.31 129 13.06 10.11 1.32 6.76

I12 174 9.61 9.50 1.21 3.86 120 12.97 10.79 0.60 2.82

I13 187 8.94 10.58 1.90 6.42 121 13.68 9.51 0.36 2.35

I14 178 9.40 10.64 1.53 4.62 127 13.12 9.99 0.60 3.26

I15 174 9.61 11.21 1.54 4.51 125 13.39 11.91 1.67 8.29

I16 148 11.30 12.66 1.28 3.75 140 11.94 10.69 0.98 3.54

I17 172 9.72 11.09 1.33 3.79 125 13.38 10.05 0.59 3.21

Remark 5.1.1. As the hypothesis, we consider, is composite in nature(see [48] for composite hypothesis ). That

is to say the value of any parameter is not deemed to be fixed in the null hypothesis, which in turn leads to the

consideration of models with parameters from a high dimensional space. Therefore, to reduce dimensions, we

add some other natural criteria on parameters. These natural criteria desirably put direct and easily calculable

constraints on the parameter set of the models under consideration.

5.2 Uni-regime Model

In this subsection we consider the model hypothesis 3.1.1 of uni-regime Merton Jump Diffusion(MJD) model

Definition 5.2.1. For simulation purposes we consider the sub-class of uni-regime MJD models with a unique

choice of µ and β such that µ = µ̂ and β = σ̂, as used in definition 4.1.2 where the bar sign represents the time

average.

For each index in Table 5.1 and 5.2, we set our null hypothesis,

H0 : the time series is in class of uni-regime MJD models in subclass defined in 5.2.1

The following figures illustrate the results for all 17 indices. Figure 5.1 displays the sampling distribution of

T1 of d(σ̂; p) and 5.2 illustrates that of d(−σ̂; p). Each box plot is obtained by simulating (4.3.5), 100 times. The
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inverted triangle plots represent t∗1 obtained from the Table 5.2. As the dots appear to be non-overlapping with the

box plots, the null hypothesis is rejected with 100% confidence.

Figure 5.1: Sampling distribution of T1 of d(σ̂; p) under uni-regime MJD hypothesis

Figure 5.2: Sampling distribution of T1 of d(−σ̂; p) under uni-regime MJD hypothesis
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5.3 Ternary regime Markov Model

This subsection details the sub class C of Ternary Regime Markov switching Merton Jump Diffusion (TRMJD)

models defined in (4.3.2), which we consider for inference purposes. The subclass C is considered for reduction of

dimensions and ease of computation. The same sub class models are considered for hypothesis testing.

In the following models in subclass C, regime 1 is the low volatility regime, regime two is the medium volatility

regime and regime 3 the high volatility regime. The continuous Markov chain X can be completely defined by its

instantaneous transition rate matrix:

Λ =

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

 .λii = −
∑
j 6=i

λij, where, λi = −λii, fori = 1, 2, 3. (5.3.1)

The general class of models can be identified with the set of parameters Θ. Where,

Θ = {θ = (µ(1), λ1, λ12, λ13, σ(1), µ(2), λ2, λ21, λ23, σ(2), µ(3), λ3, λ31, λ32)|µ(i) > 0, λi > 0, i = 1, 2, 3}. (5.3.2)

As it is evident from (5.3.2) the general class of models are very high dimensional. For reducing the dimension-

ality and for computational feasibility, we consider a smaller subset of the general class of the models for inference

purpose.

The sub class C of Ternary regime Markov/TRMJD Models is defined as follows:

The models with the below instantaneous transition rate matrix for the Markov Chain are considered:

λ1 = λ12 = −λ11 = aλ, λ3 = λ32 = −λ33 =
λ

a
, λ21 =

apλ

(1− 2p)
, λ2 =

(a2 + 1)pλ

a(1− 2p)
, λ23 =

pλ

a(1− 2p)
, λ13 = λ31 = 0.

(5.3.3)

We consider, p < 1
2 . The instantaneous transition rate matrix is as follows,

Λ =

 −aλ aλ 0
apλ

(1−2p) − (a2+1)pλ
a(1−2p)

pλ
a(1−2p)

0 λ
a −λa

 . (5.3.4)
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Additional features of the models we consider are as given below:

p(µ(1) + µ(3)) + (1− 2p)(µ((2)) = µ̂ (5.3.5)

p(σ(1) + σ(3)) + (1− 2p)(σ((2)) = σ̂ (5.3.6)

σ̂

[
1− ε
1 + ε

]
=

[
σ1

σ3

]
, where, ε ∈ [0, 1] (5.3.7)

µ̂ = µ(2) (5.3.8)

σ̂ = σ(2) (5.3.9)

µ(1) = µ(3) (5.3.10)

The features of the smaller class of models C we consider result in the below theoretical implications. This way

we justify our choice of a particular subset of the models from the general class of models.

The sojourn or waiting time distribution of state i, where i=1, 2, 3 is exp(λi).
′a′ is the square root of the empirical

ratio of mean holding times of the high volatility regime to the low volatility regime. As the volatility process as

defined in equation (4.3.2) is a continuous process, there is no possibility of the volatility of an asset to go from

regime 1 to regime 3 or vice versa directly without passing through regime 2 in a model without a jump component.

Therefore,

λ13 = λ31 = 0. (5.3.11)

From (5.3.3) we have,
λ21

λ1
=
λ23

λ3
or,

λ21

λ23
=
λ1

λ3
= a2 (say). (5.3.12)

The sojourn or waiting time distribution of state i, where i = 1, 2, 3 is exp(λi). Hence the mean holding time at

state i is 1/λi. The time spent by the chain at state i on an average is called occupation measure of i, and is given

by

Oi = lim
t→∞

1

t

∫ t

0

1{i}(Xt′)dt
′.

For an ergodic chain these do not depend on the initial state. Assume XT1− = 2, where {Tn}n is the increasing

sequence of successive transition times. Then (5.3.11) implies that XT2 = 2. Therefore using the regeneration,

O2 =
E[T1 | XT1− = 2]

E[T2 | XT1− = 2]
=

E[T1 | XT1− = 2]

E[T1 + (T2 − T1) | XT1− = 2]
=

E[T1 | XT1− = 2]

E[T1 | XT1− = 2] + E[T2 − T1 | XT1− = 2]

and for i 6= 2,

Oi =
E[(T2 − T1)1{i}(XT1

) | XT1− = 2]

E[T2 | XT1− = 2]
=

E[(T2 − T1)1{i}(XT1
) | XT1− = 2]

E[T1 | XT1− = 2] + E[T2 − T1 | XT1− = 2]
.

Moreover, ai := E[(T2 − T1)1{i}(XT1
) | XT1− = 2] = 1

λi
λ2i

λ2
for i ∈ {1, 3}; and a2 := E[T1 | XT1− = 2] = 1/λ2.
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Clearly, E[(T2 − T1) | XT1− = 2] = a1 + a3. Thus we get Oi = ai∑3
i′=1

ai′
for each i = 1, 2, 3.

a1∑3
i=1 ai

= p =
a3∑3
i=1 ai

(5.3.13)

(5.3.5), (5.3.6) and (5.3.13) imply that,

1. The long run average of drift coefficient of the continuous part matches with the time average of empirical

drift µ̂ of the data.

2. The long run average of volatility process for the model matches with the time average of empirical volatility

σ̂ of the data.

3. The long run proportion of time that the volatility process stays below F̂←σ̂ (p) is p,

4. The long run proportion of time that the volatility process stays above F̂←σ̂ (1− p) is p.

5. The ratio of the mean holding times in high and low volatility states in the model is equal to the corresponding

empirical ratio

Provided the volatility process is not constant.

Using the expression of strong solution, the discrete version of models corresponding to each member of C is

given by equations (4.3.8) and (4.3.7), where,

ηi =

0, with probability 1
a2+1

1, with probability a2

a2+1 .

We show that the discretization of a 3 state Markov chain provided above in equation (4.3.8) is indeed a

discretization of a continuous three regime Markov process by the following theorem.

Theorem 5.3.1. Consider (4.3.8) with ηi ∼ Bernoulli( a2

a2+1 ) and λ1, λ2, λ3 are aλ, (a2+1)pλ
a(1−2p) and λ

a respectively,

where a > 0, 0 < p < 1/2 and λ > 0. This is the discretization of a continuous time Markov chain on {1, 2, 3}, by

time step ∆, given by the transition rate matrix,

Λ =

 −aλ aλ 0
apλ

(1−2p) − (a2+1)pλ
a(1−2p)

pλ
a(1−2p)

0 λ
a −λa

 . (5.3.14)

Proof. We recall (4.3.8) below

Xi+1 = Xi + ((2−Xi) + (−δ2,Xi)ηi)Pi.
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We can observe that, the right hand side of the above equation depends only on Xi, Pi, and ηi. By definition Pi

depends only on Xi and also ηi is independent of the Markov chain X. Therefore the equation (4.3.8) generates

a Markov Process. Next, we aim to show that (4.3.8) generates a discrete time Markov Process with parameters

which converge to those of the continuous Markov chain of the given transition matrix.

The transition probability function of a Markov chain with the transition rate matrix Λ, is given by P (∆)

where,

P (∆) = exp (∆Λ). (5.3.15)

By approximating the exponential in the equation (5.3.15) and using Taylor’s expansion we obtain,

P (∆) = I + Λ∆ + o(∆), where, I is the Identity Matrix of the same dimensions of Λ. The approximated transition

probabilities thus obtained is,

P (∆) =

1− aλ∆ aλ∆ 0
apλ

(1−2p)∆ 1− (a2+1)pλ
a(1−2p) ∆ pλ

a(1−2p)∆

0 λ
a∆ 1− λ

a∆

 +o(∆).

The first term on the right hand side, denoted by P̃ (∆), is a probability matrix since, ∆ < min{1/λi|i = 1, 2, 3}.
This implies, λi∆ < 1, therefore, all the terms of P̃ (∆) > 0. Finally, the equality of the transition probabilities of

the discretization and the continuous version is shown. Recall that ηi and Pi are independent. From the equation

(4.3.8), we can see that, there is no way that a transition can occur from regime 1 to 3 and vice versa, this is

consistent with P̃13(∆) = P̃31(∆) = 0.

From (4.3.8) P (Xi+1 = 1|Xi = 2) = P (Pi = 1, ηi = 1|Xi = 2) = (a2+1)pλ
a(1−2p) ∆ a2

a2+1 = apλ
(1−2p)∆ which is equal to

P̃21(∆). Also, from (4.3.8) P (Xi+1 = 3|Xi = 2) = P (Pi = 1, ηi = 0|Xi = 2) = pλ
a(1−2p)∆, which is equal to P̃23(∆).

Next, from (4.3.8) P (Xi+1 = 2|Xi = 1) = P (Pi = 1|Xi = 1) = aλ∆, which is equal to P̃12(∆). Finally, from (4.3.8)

P (Xi+1 = 2|Xi = 3) = P (Pi = 1|Xi = 3) = λ
a∆, which is equal to P̃32(∆). Thus P̃ (∆) is indeed the transition

probability matrix of {Xi}i in (4.3.8).

Finally, as ∆−1(P̃ (∆)− I) and ∆−1(P (∆)− I) converge to the same limit, the result follows.

5.3.1 Simulation Results

For simulation purposes, the parameter λ1 is varied by taking 1
λ1dt

=1, 2, 3.. . , 16 and the parameter ε is chosen

as ei from e1, e2, ...e10 for each iteration ‘i’ where ei are equispaced points from the interval [0, 1).

For each index in Table 5.1 and 5.2, we set the null hypothesis,

H0 : the law of time series is Markov modulated MJD 4.3.1 with parameters of continuous part in subclass C.
For each index, we compute the value of αr as in the section 4.2 for r = 1, 2, 3, 4 by simulating 4.3.7.

Note: From hereon subclass of models of TRMJD means the subclass C and subclass of models of uni-regine

MJD means the subclass as defined in definition 5.2.1.
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For each index, αr where, r=1, 2, 3, 4 are computed as specified in subsection 4.2.1. The results are presented

in Table 5.3.

Table 5.3: The α-values for all the indices under Ternary Markov regime/TRMJD model hypotheses

For C using d(σ̂; p) For C using d(−σ̂; p)

Index α1 α2 α3 α4 α1 α2 α3 α4

I01 0.50 0.35 0.04 0.03 0.50 0.39 0.39 0.39

I02 0.47 0.46 0.09 0.08 0.49 0.37 0.37 0.37

I03 0.50 0.31 0.02 0.01 0.48 0.48 0.48 0.48

I04 0.49 0.34 0.06 0.04 0.50 0.41 0.41 0.41

I05 0.49 0.42 0.12 0.09 0.49 0.14 0.13 0.13

I06 0.50 0.40 0.19 0.15 0.49 0.28 0.28 0.28

I07 0.49 0.43 0.24 0.16 0.50 0.16 0.16 0.16

I08 0.48 0.45 0.25 0.18 0.50 0.22 0.22 0.22

I09 0.47 0.46 0.28 0.25 0.49 0.33 0.29 0.29

I10 0.49 0.42 0.31 0.26 0.49 0.40 0.28 0.28

I11 0.47 0.40 0.06 0.03 0.48 0.28 0.15 0.12

I12 0.50 0.25 0.06 0.06 0.47 0.18 0.18 0.18

I13 0.46 0.42 0.42 0.34 0.46 0.06 0.03 0.03

I14 0.48 0.46 0.24 0.16 0.47 0.15 0.15 0.15

I15 0.49 0.43 0.22 0.15 0.50 0.34 0.18 0.14

I16 0.49 0.44 0.10 0.08 0.49 0.38 0.38 0.38

I17 0.50 0.43 0.12 0.05 0.49 0.14 0.14 0.14

In Table 5.3.1 we summarize the fitting of TRMJD models. The best model class and the best parameter values

are recorded in the last 4 columns. This is done based on proximity measure α4 values obtained for members of the

class C. The largest α4 are given in the 2nd column of the table. The model which is a member of the class C having

the highest α4 value is considered to be the best fit model based on the squeeze-expansion duration statistics. This

best fit model is used for experiments in the next section.
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Table 5.4: Model fitting using α4 values from table
Index α4 value Model Fitting

¯̂σ ε 1
λ1∆

I01 0.39 6.9% 0.76 6
I02 0.37 7.0% 0.85 5
I03 0.48 6.9% 0.66 7
I04 0.41 6.7% 0.85 5
I05 0.13 9.7% 0.85 5
I06 0.28 9.5% 0.85 5
I07 0.16 10.2% 0.85 8
I08 0.22 9.1% 0.85 5
I09 0.29 11.0% 0.85 4
I10 0.28 10.0% 0.66 8
I11 0.12 10.3% 0.85 5
I12 0.18 13.6% 0.85 5
I13 0.34 15.1% 0.57 8
I14 0.16 8.6% 0.85 5
I15 0.15 11.1% 0.76 8
I16 0.38 9.5% 0.76 7
I17 0.14 7.8% 0.85 5

5.4 Comparison of Empirical CDF of Return Distribution

Let F1 be the eCDF of the simple return obtained from the simulation of a theoretical model and F2 be the eCDF of

the simple return from the time series data on the domain (−∞,∞). We measure the performance of the theoretical

fitted model using the L2 error, ||F1 − F2||2, as given below.

Definition 5.4.1. Let F1 be eCDF of a population and F2 be the eCDF of a fitted model. The L2 error of the fitted

model is defined as:

||F1 − F2||2 =
√∫∞
−∞ |F1(x)− F2(x)|2dx. In discrete form, ||F1 − F2||2 =

√
(
∑
i |F1(xi)− F2(xi)|2|xi+1 − xi|)

where xi’s are equi-spaced points on (∞,−∞).

The low L2 error of a theoretical model indicates a better fitting of the empirical return distribution. The compar-

ison of the L2 errors of the two models (best fit uni-regime MJD and TRMJD model as specified in chapter 5 are

illustrated in the figure 5.3 below.

Note: The L2 errors are calculated over a single realization of the theoretical models.
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Figure 5.3: Comparison of L2 errors

We can observe that the L2 error of the Markov switching TRMJD is lower than that of the uni-regime MJD Model.

This indicates at a better performance of the Markov switching TRMJD than the uni-regime MJD model.

Note: Best fit uni regime MJD model is simulated using 4.3.5 and best fit TRMJD model is simulated using

4.3.7.

Further we also attempt to show that the difference between eCDF of the return from the simulation of the uni-

regime MJD model and Markov switching TRMJD model is statistically significant using a 2 Sample Kolmogorov-

Smirnov (K-S) test.

The 2 sample K-S test is defined as below.

Definition 5.4.2. Let F1,n and F2,m be the eCDF’s of two samples where ‘n’ and ‘m’ are the sizes of the

1st and 2nd samples respectively. Assume that the null hypothesis, H0 is that the two samples come from the

same underlying distribution. The Kolmogorov-Smirnov statistic for testing this hypothesis is given by, Dn,m =

supx|F1,n(x) − F2,m(x)|. For large samples, the null hypothesis is rejected at level α if, Dn,m > c(α)
√

n+m
n.m .

The value of c(α) is given in the table 5.5.

α 0.20 0.15 0.10 0.05 0.025 0.01 0.005 0.001

c(α) 1.073 1.138 1.224 1.358 1.480 1.628 1.731 1.949

Table 5.5: c(α) values for two sample K-S test
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Index I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 I13 I14 I15 I16 I17
Dn,m√
n+m
n.m

3.58 3.01 2.10 3.47 3.92 3.80 4.22 4.15 3.55 2.35 4.50 3.67 2.07 4.35 3.29 3.24 3.62

Table 5.6: K-S Test statistics for return distributions of uni-regime MJD model and Markov switching TRMJD

model

The table 5.6 contains the value of ‘
Dn,m√
n+m
n.m

’ for return distributions of uni-regime MJD model and Markov switching

TRMJD model for each index. In view of this, we conclude that the respective return distributions are significantly

different. This conclusion strengthens our case for the better performance of the Markov switching TRMJD model

than the uni-regime MJD model.

Note: The K-S test statistics are calculated over a single realization of the theoretical models.

We also perform the K-S test between the returns obtained from the time series data and from theoretical

models(uni-regime MJD or Markov switching TRMJD). The objective of this experiment is to determine whether

the test statistic obtained for returns coming from time series data and the Markov switching TRMJD model is

smaller than the one obtained for returns coming from time series data and uni-regime MJD model. This would

demonstrate the success of the proposed Markov switching TRMJD model in replicating the empirical return

distribution over the uni-regime MJD model. Given below are the test statistics values obtained from the respective

K-S tests.

Index I01 I02 I03 I04 I05 I06 I07 I08 I09 I10 I11 I12 I13 I14 I15 I16 I17

MJD 3.08 3.59 2.72 4.05 3.07 3.68 3.89 3.50 4.82 3.05 4.28 3.71 4.02 3.62 4.12 3.81 3.23

TRMJD 1.74 2.87 1.77 2.47 2.28 2.31 2.47 2.53 2.52 1.68 2.45 2.44 2.47 2.14 2.56 1.75 2.65

Table 5.7: K-S statistics between empirical and theoretical models
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Figure 5.4: K-S test statistics of uni-regime MJD model and TRMJD model over various indices

Note: The K-S test statistics are calculated over a single realization of the theoretical models.

From the table 5.7 and figure 5.4 we can clearly observe that the test statistics of TRMJD is lesser than that

of the test statistics of the uni-regime MJD model for all indices. This demonstrates the better performance of the

proposed Markov switching TRMJD over the uni-regime MJD model in replicating the eCDF of the return and

subsequently the return distribution obtained from the data of various indices.
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Chapter 6

Conclusion

The proposed technique for jump detection proves to be a considerable success due to the high accuracy obtained

across a wide range of parameter values. The regime switching model obtained using the proposed discriminating

statistics demonstrates its superior performance to that of the standard uni-regime model by providing a better

replication of the empirical Cumulative Distribution Function (eCDF) of the return time series data. These obser-

vations validate the efficiency of proposed regime switching model for financial asset price data. This corroborates

our extension of the approach used for binary regime switching model in [33] to a ternary regime switching model.

This thesis considers a narrow sub-class of models due to the high dimensionality of the general class of models

and subsequently ease of computation. On the other hand, by usage of techniques like parallel programming or

running code on a cluster computer the issues of increasing dimensionality and computational complexity can be

addressed. Consideration of a broader sub-class class of models is expected to result in best fit models with better

discriminating statistics and performance than when a narrow sub-class of models are considered.

The technique of non parametric calibration of jumps unlike the assumption of the jumps following a log-normal

distribution, as done in this work, might lead to better performance indicators such as the L2 norm and the K-S

test statistics. Although, the non parametric calibration of jumps is contingent on factors such as the granularity

of the time series data and the number of jumps detected by the technique used.

To achieve enhanced performance of best fit models with respect to performance indicators such as, L2 norm

and K-S test statistics than displayed in this work by doing away with the discriminating statistics based on squeeze

and expansion approach. Instead, other approaches that aim at minimizing the performance indicators, which leads

to better performing models, such as, gradient descent method could be adopted.

The time spent on this thesis and insights we have gained over time has led to the ideas of new approaches to

propose models that might achieve enhanced performance.
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Appendix A

Matlab Code

A.1 Historical Volatility in MMGBM

1 c l c

2 c l e a r a l l

3 TPM=[0 0 .8 0 . 2 ; 0 . 5 0 0 . 5 ; 0 . 3 0 .7 0 ] ;%t r a n s i t i o n p r o b a b i l i t y matrix

4 CPM=transpose (cumsum( transpose (TPM) ) ) ;%cumulat ive p r o b a b i l i t y matrix

5 L=[10 50 2 0 ] ;%input ( ’\ nEnter n value o f Lambda : ’ )%ins tantaneous t r a n s i t i o n ra t e

matrix

6 Ft=3;%no o f years to be s imulated

7 dt =1/253;%g r a n u l a r i t y

8 l=input ( ’ \n No o f s imu la t i on s o f H i s t o r i c a l V o l a t i l i t y :\n ’ ) ;

9 k=20;%window to compute h i s t o r i c a l v o l a t i l i t y

10 S 0 =100;%i n i t i a l a s s e t p r i c e

11 X(1) =1;%i n i t i a l s t a t e o f the Markov Chain

12 a=0;

13 m=f l o o r ( Ft/dt ) ;%no o f time po in t s

14 j =0;

15

16 %A n t i t he t i c s imu la t i on o f Markov modulated GBM

17 sigma =[0.05 0 .10 0 . 2 0 ] ;%v o l a t i l i t y matrix conta in ing v o l a t i l i t y f o r three s t a t e s o f

the Markov Chain

18 Mu=[0.02 0 .08 0 . 0 4 ] ;%d r i f t matrix conta in ing d r i f t f o r three s t a t e s o f the Markov

Chain

19

20 f o r i =1: l

21
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22 S m( i , 1 ) =100;%i n i t i a l va lue o f the a s s e t f o r each s imu la t i on

23 end

24 f o r i =1: l

25 M=markovfun (L ,TPM, dt , Ft ) ;%genera t ing Markov chain

26 %i n i t i a l i z a t i o n

27 R( i , 1 ) =0;

28 C m t ( i , 1 ) =0;

29 D m t ( i , 1 ) =0;

30

31 f o r j =1:m

32

33 C m( i , j )=(Mu(M( j ) ) −0.5∗( sigma (M( j ) ) ˆ2) ) ∗dt ;

34 D m( i , j )=sigma (M( j ) ) ∗ s q r t ( dt ) ∗normrnd (0 , 1 ) ;

35 C m t ( i , j +1)=C m t ( i , j )+C m( i , j ) ;

36 D m t ( i , j +1)=D m t ( i , j )+D m( i , j ) ;

37 ST m( i , j )=S 0∗exp ( C m t ( i , j +1)+D m t ( i , j +1) ) ;%s imulated a s s e t p r i c e

38 P( i , j )=sigma (M( j ) ) ;%v o l a t i l i t y o f s t a t e o f Markov chain at time

po int ’ j ’

39

40 i f j>1

41 R( i , j ) =((ST m( i , j )−ST m( i , j−1) ) /ST m( i , j−1) ) ;%s imple re turn

42 end

43

44 i f j>=k

45 W=R( i , j−k+1: j ) ;%return f o r a g iven window o f s i z e k

46 E= sum(R( i , j−k+1: j ) ) ;

47 V( i , j ) =((sum(W. ˆ 2 ) /k )−((E/k ) ˆ2) ) /dt ;%h i s t o r i c a l var iance f o r

window s i z e k

48 v ( i , j )=(V( i , j ) ) ˆ 0 . 5 ;%h i s t o r i c a l v o l a t i l i t y f o r window s i z e k

49 e l s e

50 V( i , j ) =0;

51 v ( i , j ) =0;

52 end

53 end

54 end

55 T=1:m;%time matrix

56 f o r i =1: l

57 p lo t (T, v ( i , : ) )%p l o t t i n g o f h i s t o r i c a l v o l a t i l i t y

58

59 hold on

60 p lo t (T,P( i , : ) )%p l o t t i n g o f v o l a t i l i t y o f s t a t e o f Markov chain at time ’ i ’

61 end
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A.2 Calculation of Jump accuracy for a Uni-Regime MJD

1 c l e a r

2 beta =[0.01 0 .1 0 .2 0 . 3 0 . 4 0 .5 0 .6 0 . 7 0 . 8 ] ; %The v o l a t i l i t y ( beta ) matrix

3 N b=s i z e ( beta , 2 ) ;

4 jmax=20; %Number o f s imu la t i on s f o r each beta

5 pi=2∗as in ( 1 . 0 ) ;

6 N=18000;%Length o f the time s e r i e s

7 N2=N/2 ;

8 dt =5./(250∗360) ; %Granular i ty

9 d t=s q r t ( dt ) ;

10 T=N∗dt ;

11 mu=0.1;

12 de l =0.0055;

13 %de l =10∗de l ;

14 lamb=100;

15 ga=−(( de l ˆ2) /2) ; %to keep the mean jump s i z e zero

16 plamb=1−(exp(−lamb∗dt ) ) ; %p r o b a b i l i t y o f observ ing at l e a s t one jump in dt time−
l ength

17

18 alpha =(0.5) ∗10ˆ40; % alpha =(0.5) ∗10ˆ40 g i v e s \hat{p}=1.0122%

19 ph=min (1 , alpha ∗( dt ˆ( l og (1/ dt ) ) ) ) ; %\hat{p} value

20 g=s q r t ( dt ) ∗norminv ((1+((1−ph) ˆ(1/N) ) ) /2) ; %g i s \gamma

21

22 acc1=ze ro s (N b , jmax ) ;

23 acc2=ze ro s (3 , N b , jmax ) ;

24 acc 1=ze ro s (1 , N b ) ;

25 acc 2=ze ro s (3 , N b ) ;

26 f o r k=1:N b % For each k a separa te beta i s chosen .

27 s i g=beta ( k ) ;

28 f o r j =1: jmax

29 %For each j , a s imu la t i on and accuracy o f jump c l a s s i f i c a t i o n i s computed . Then

average accuracy i s computed f o r each beta .

30 W=zero s (1 ,N+1) ;

31 W(1) =0;

32 f o r i =1:N2 %Brownian motion

33 u1=rand ( ) ; %by Box Muller Method

34 u2=rand ( ) ;
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35 W(2∗ i )=W(2∗ i −1)+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) ;%Simulat ing Brownian

motion

36 W(2∗ i +1)=W(2∗ i )+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ s i n (2∗ pi ∗u2 ) ;

37 end

38

39 S=ze ro s (1 ,N+1) ; %Asset time s e r i e s i n i t i a l i z a t i o n

40 S (1) =1; %I n i t i a l Asset p r i c e

41 Xi=ze ro s (1 ,N) ;

42 f o r i =1:N %Simulat ion us ing above W and f o l l o w i n g Xi .

43 u1=rand ( ) ;

44 i f u1 <= plamb % then jump happens

45 u1=rand ( ) ; % Generating Jump S i z e ( Merton Model )

46 u2=rand ( ) ; % Jump s i z e i s LogNormal −1

47 Xi ( i )=exp ( ga+de l ∗ s q r t ((−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) )−1;

48 e l s e % e l s e jump does not occur

49 Xi ( i ) =0; % so Xi ( i ) =0

50 end

51 S( i +1)=S( i ) ∗(1+mu∗dt+s i g ∗(W( i +1)−W( i ) )+Xi ( i ) ) ;% Simulat ing the a s s e t p r i c i n g

model

52 end %Simulat ion i s complete .

53

54 S l=log (S) ;

55 r e t l=d i f f ( S l ) ; %This i s the l og re turn s e r i e s

56 r e t l =( r e t l ) . ˆ 2 ; %Square o f l og re turn s e r i e s

57 r e t=d i f f (S ) . / S ( 1 :N) ; %This i s the s imple re turn s e r i e s

58 n=s i z e ( ret , 2 ) ;

59

60 r s=std ( r e t ) ; %This i s denoted as SD

61 m r=mean( r e t ) ; %This i s \bar{ r }
62

63 %Next we s o l v e an i m p l i c i t equat ion to compute the maximal e s t imator o f \beta , and

thereby the maximal th r e sho ld

64 y=10; %Number o f i t e r a t i o n

65 b=ze ro s (1 , y ) ;

66 b (1)=r s / s q r t (2∗ dt ) ; %i n i t i a l va lue o f beta f o r N−R i t e r a t i o n

67 c h (1 )=g∗b (1) ; %i n i t i a l va lue o f th r e sho ld c h

68

69 f o r i =1:y−1 %So lv ing F1=0 by N−R i t e r a t i o n .

70 F1=((b( i ) ) ˆ2)−((1/T) ∗ ( ( sum ( ( ret−m r ) . ˆ 2 ) )−(sum( r e t ( abs ( ret−m r )>(b( i ) ∗g ) ) . ˆ 2 ) ) )

) ; %The f u n c t i o n a l F1

71 b( i +1)=b( i )−(F1/(2∗b( i ) ) ) ; %N−R i t e r a t i o n scheme

72 end

45



73

74 c=g∗b( y ) ; %Maximal Threshold

75 r e t h=r e t ( abs ( ret−m r )>(c ) ) ; %The s e r i e s o f jump s i z e s

76 L=sum( abs ( ret−m r )>(c ) ) /(n∗dt ) ; %\Lambda , the i n t e n s i t y

77 v=sum ( ( ret h−m r ) . ˆ 2 ) / ( (L∗n∗dt )−1) ;%Variance o f jump s i z e s

78

79 r e t h1 =(Xi˜=0) ; %i d e n t i f y i n g i n s t a n c e s where jump has occurred in s imu la t i on data

80 r e t h2 =(( abs ( ret−m r ) )>c ) ; %es t imat ing i n s t a n c e s where jump has occurred us ing

maximal th r e sho ld ( output=boolean array )

81

82 t ruepos1=sum( r e t h2 ( r e t h2==re t h1 ) ) ;

83 trueneg1=sum( abs ( r e t h2 ( r e t h2==re t h1 )−1) ) ;

84 acc1 (k , j )=(truepos1+trueneg1 ) /(N) ;

85

86 f o r i t e r =1:3

87 power=1−10ˆ(− i t e r ) ; % power = 0 . 9 , 0 . 99 , 0 .999

88 c m=(( dt ) ˆpower ) ;

89 r e t h4 =( r e t l > c m ) ;%i d e n t i f y i n g i n s t a n c e s where jump has occurred ( us ing Mancini ’ s

th r e sho ld )

90 t ruepos2=sum( r e t h4 ( r e t h4==re t h1 ) ) ;

91 trueneg2=sum( abs ( r e t h4 ( r e t h4==re t h1 )−1) ) ;

92 acc2 ( i t e r , k , j )=(truepos2+trueneg2 ) /(N) ;

93 end

94 end

95 %[ sum( r e t h1 ) ,sum( r e t h2 ) , t ruepos1 ] % f o r check ing

96 acc 1 ( k )=mean( acc1 (k , : ) ) ;%Mean accuracy o f maximal th r e sho ld

97 f o r i t e r =1:3

98 acc 2 ( i t e r , k )=mean( acc2 ( i t e r , k , : ) ) ;%Mean accuracy o f standard thr e sho ld

99 end

100 end

101 %p l o t t i n g o f jump accuracy

102 p lo t ( beta , acc 1 , ’ Color ’ , [ 1 0 0 . 9 ] , ’ LineWidth ’ , 2 )

103 hold on

104 h=p lo t ( beta , acc 2 , ’ LineWidth ’ , 2 ) ;

105 s e t (h ,{ ’ Color ’ } , { [ 1 0 0 ] ; [ 0 1 0 ] ; [ 0 0 1 ]} ) ;
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A.3 Calculation of Jump accuracy for a Ternary Regime Markov Switch-

ing MJD

1 c l e a r

2 beta =[0.01 0 .1 0 .2 0 . 3 0 . 4 0 .5 0 .6 0 . 7 0 . 8 ] ; %The v o l a t i l i t y ( beta ) matrix

3 N b=s i z e ( beta , 2 ) ;

4 jmax=1000; %Number o f s imu la t i on s f o r each beta

5 pi=2∗as in ( 1 . 0 ) ;

6 N=11000;%Length o f the time s e r i e s

7 N2=N/2 ;

8 dt =5./(250∗360) ; %Granular i ty

9 d t=s q r t ( dt ) ;

10 T=N∗dt ;

11

12 J=[ 0 .08 150 2 .0 e−05 0 .07 ] ;%parameter matrix

13

14 eps =0.8 ;%parameter used in the v o l a t i l i t y matrix

15 l m =1.0 e+03 ∗ [ 3 .0000 1 2 . 5 ] ;%Instantaneous t r a n s i t i o n r a t e s

16 a=s q r t ( 3 / 2 . 5 ) ;%asymmetry parameter / r a t i o between the t r a n s i t i o n ra t e o f Markov

regime 1 and 3

17 mu=J (1) ;%beta

18 lamb=J (2) ;%lambda

19 V=J (3) ;%Variance o f jump s i z e s

20 mu bar=J (4) ;%mean o f e m p i r i c a l d r i f t

21

22 % eps=eps ;

23 % l m=l m ;

24

25 de l=s q r t ( l og (V+1) ) ;

26 ga=−(( de l ˆ2) /2) ; %to keep the mean jump s i z e zero

27 plamb=1−(exp(−lamb∗dt ) ) ; %p r o b a b i l i t y o f observ ing at l e a s t one jump in dt time−
l ength

28

29 alpha =(0.5) ∗10ˆ40; % alpha =(0.5) ∗10ˆ40 g i v e s \hat{p}=1.0122%

30 ph=min (1 , alpha ∗( dt ˆ( l og (1/ dt ) ) ) ) ; %\hat{p} value

31 g=s q r t ( dt ) ∗norminv ((1+((1−ph) ˆ(1/N) ) ) /2) ; %g i s \gamma

32

33 acc1=ze ro s (N b , jmax ) ;

34 acc2=ze ro s (3 , N b , jmax ) ;

35 acc 1=ze ro s (1 , N b ) ;

36 acc 2=ze ro s (3 , N b ) ;
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37

38 mu m=mu bar∗ ones (1 , 3 ) ;%Generating the d r i f t matrix ( d r i f t p e r t a i n i n g to each regime

o f the Markov Chain )

39

40 x = [ ] ;%i n t i a l i z a t i o n step f o r gene ra t ing a Markov chain

41 x=mrk3(N, dt , a , l m ) ;%genera t i on o f Markov chain

42 W=zero s (1 ,N+1) ;

43 W(1) =0;

44

45 f o r k=1:N b

46 sg bar=beta ( k ) ;% For each k a separa t e beta i s chosen .

47 s ig m=sg bar ∗[1− eps ,1 ,1+ eps ] ;%Generating the v o l a t i l i t y matrix ( v o l a t i l i t y

p e r t a i n i n g to each regime o f the Markov Chain )

48 f o r j =1: jmax

49 %For each j , a s imu la t i on and accuracy o f jump c l a s s i f i c a t i o n i s computed . Then

average accuracy i s computed f o r each beta .

50 W=zero s (1 ,N+1) ;

51 W(1) =0;

52 f o r i =1:N2 %Brownian motion

53 u1=rand ( ) ; %by Box Muller Method

54 u2=rand ( ) ;

55 W(2∗ i )=W(2∗ i −1)+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) ;%Simulat ing Brownian

motion

56 W(2∗ i +1)=W(2∗ i )+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ s i n (2∗ pi ∗u2 ) ;

57 end

58

59 S=ze ro s (1 ,N+1) ; %Asset time s e r i e s i n i t i a l i z a t i o n

60 S (1) =1; %I n i t i a l Asset p r i c e

61 Xi=ze ro s (1 ,N) ;

62 f o r i =1:N %Simulat ion us ing above W and f o l l o w i n g Xi .

63 u1=rand ( ) ;

64 i f u1 <= plamb % then jump happens

65 u1=rand ( ) ; % Generating Jump S i z e ( Merton Model )

66 u2=rand ( ) ; % Jump s i z e i s LogNormal −1

67 Xi ( i )=exp ( ga+de l ∗ s q r t ((−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) )−1;

68 e l s e % e l s e jump does not occur

69 Xi ( i ) =0; % so Xi ( i ) =0

70 end

71 S( i +1)=S( i ) ∗(1+mu m( x ( i ) ) ∗dt+sig m ( x ( i ) ) ∗(W( i +1)−W( i ) )+Xi ( i ) ) ;%s imu la t i on o f

the Ternary Regime Markov Switching Merton Jump d i f f u s i o n model (TRMJD)

72 end %Simulat ion i s complete .

73
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74 S l=log (S) ;

75 r e t l=d i f f ( S l ) ; %This i s the l og re turn s e r i e s

76 r e t l =( r e t l ) . ˆ 2 ; %Square o f l og re turn s e r i e s

77 r e t=d i f f (S ) . / S ( 1 :N) ; %This i s the s imple re turn s e r i e s

78 n=s i z e ( ret , 2 ) ;

79

80 r s=std ( r e t ) ; %This i s denoted as SD

81 m r=mean( r e t ) ; %This i s \bar{ r }
82

83 %Next we s o l v e an i m p l i c i t equat ion to compute the maximal e s t imator o f \beta , and

thereby the maximal th r e sho ld

84 y=10; %Number o f i t e r a t i o n

85 b=ze ro s (1 , y ) ;

86 b (1)=r s / s q r t (2∗ dt ) ; %i n i t i a l va lue o f beta f o r N−R i t e r a t i o n

87 c h (1 )=g∗b (1) ; %i n i t i a l va lue o f th r e sho ld c h

88

89 f o r i =1:y−1 %So lv ing F1=0 by N−R i t e r a t i o n .

90 F1=((b( i ) ) ˆ2)−((1/T) ∗ ( ( sum ( ( ret−m r ) . ˆ 2 ) )−(sum( r e t ( abs ( ret−m r )>(b( i ) ∗g ) ) . ˆ 2 ) ) )

) ; %The f u n c t i o n a l F1

91 b( i +1)=b( i )−(F1/(2∗b( i ) ) ) ; %N−R i t e r a t i o n scheme

92 end

93

94 c=g∗b( y ) ; %Maximal Threshold

95 r e t h=r e t ( abs ( ret−m r )>(c ) ) ; %The s e r i e s o f jump s i z e s

96 L=sum( abs ( ret−m r )>(c ) ) /(n∗dt ) ; %\Lambda , the i n t e n s i t y

97 v=sum ( ( ret h−m r ) . ˆ 2 ) / ( (L∗n∗dt )−1) ;%Variance o f jump s i z e s

98

99 r e t h1 =(Xi˜=0) ; %i d e n t i f y i n g i n s t a n c e s where jump has occurred in s imu la t i on data

100 r e t h2 =(( abs ( ret−m r ) )>c ) ; %es t imat ing i n s t a n c e s where jump has occurred us ing

maximal th r e sho ld ( output=boolean array )

101

102 t ruepos1=sum( r e t h2 ( r e t h2==re t h1 ) ) ;

103 trueneg1=sum( abs ( r e t h2 ( r e t h2==re t h1 )−1) ) ;

104 acc1 (k , j )=(truepos1+trueneg1 ) /(N) ;

105

106 f o r i t e r =1:3

107 power=1−10ˆ(− i t e r ) ; % power = 0 . 9 , 0 . 99 , 0 .999

108 c m=(( dt ) ˆpower ) ;

109 r e t h4 =( r e t l > c m ) ;%i d e n t i f y i n g i n s t a n c e s where jump has occurred ( us ing Mancini ’ s

th r e sho ld )

110 t ruepos2=sum( r e t h4 ( r e t h4==re t h1 ) ) ;

111 trueneg2=sum( abs ( r e t h4 ( r e t h4==re t h1 )−1) ) ;
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112 acc2 ( i t e r , k , j )=(truepos2+trueneg2 ) /(N) ;

113 end

114 end

115 %[ sum( r e t h1 ) ,sum( r e t h2 ) , t ruepos1 ] % f o r check ing

116 acc 1 ( k )=mean( acc1 (k , : ) ) ;%Mean accuracy o f maximal th r e sho ld

117 f o r i t e r =1:3

118 acc 2 ( i t e r , k )=mean( acc2 ( i t e r , k , : ) ) ;%Mean accuracy o f standard thr e sho ld

119 end

120 end

121 %p l o t t i n g o f jump accuracy

122 p lo t ( beta , acc 1 , ’ Color ’ , [ 1 0 0 . 9 ] , ’ LineWidth ’ , 2 )

123 hold on

124 h=p lo t ( beta , acc 2 , ’ LineWidth ’ , 2 ) ;

125 s e t (h ,{ ’ Color ’ } , { [ 1 0 0 ] ; [ 0 1 0 ] ; [ 0 0 1 ]} ) ;

A.4 Calculation of Discriminating Statistics

1 %Jump d e t e c t i o n and obta in ing the best f i t t e rnary regime Markov swi t ch ing Jump

d i f f u s i o n model

2

3 shee t=’name o f the index ’ ;%f o r example shee t =’NIFTY200 ’

4 s = x l s r ea d ( ’ n i f t y i d x c l . x l sx ’ , shee t ) ;

5 s=transpose ( s ) ;%t ranspos ing the a s s e t p r i c e time s e r i e s

6 N=s i z e ( s , 2 ) ;%length o f the time s e r i e s

7 p=15/100;%s e t t i n g up ’ pth ’ p e r c e n t i l e f o r c a l c u l a t i o n o f durat ions

8 s=f l i p ( s ) ;%orde r ing o f time s e r i e s from old to new

9 r e t=s r ( s ) ;%c a l c u l a t i n g s imple re turn o f a s s e t

10 r p=p r c t i l e ( ret , p∗100) ;%c a l c u l a t i n g (100∗p) th p e r c e n t i l e o f re turn data

11 r s=sd ( r e t ) ;%c a l c u l a t i n g standard dev i a t i on o f re turn

12 m r=mean( r e t ) ;%c a l c u l a t i n g mean o f re turn

13 n=s i z e ( ret , 2 ) ;%s i z e o f re turn time s e r i e s

14 dt =5./(250∗360) ;%g r a n u l a r i t y

15 T=N∗dt ;%Total time frame o f time s e r i e s

16 alpha =(0.5) ∗10ˆ40; % alpha =(0.5) ∗10ˆ40 g i v e s \hat{p}=1.0122%

17 ph=min (1 , alpha ∗( dt ˆ( l og (1/ dt ) ) ) ) ; %\hat{p} value

18 d t=s q r t ( dt ) ;%square root o f g r a n u l a r i t y

19 g=s q r t ( dt ) ∗norminv ((1+((1−ph) ˆ(1/N) ) ) /2) ;%g i s \gamma

20 b (1)=r s / s q r t (2∗ dt ) ;%Next we s o l v e an i m p l i c i t equat ion to compute the maximal

e s t imator o f \beta , and thereby the maximal th r e sho ld
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21 F1 (1) =((b (1 ) ) ˆ2)−((1/T) ∗ ( ( sum ( ( ret−m r ) . ˆ 2 ) )−(sum( r e t ( abs ( ret−m r )>(b (1 ) ∗g ) ) . ˆ 2 ) ) ) )

;%I n i t i a l va lue o f the f u n c t i o n a l F1

22 y=10; %Number o f i t e r a t i o n s

23 v (1 ) =0;

24 L(1) =0;

25 c h (1 )=g∗b (1) ;

26

27 f o r i =2:y %no o f i t e r a t i o n s

28 b( i )=b( i −1)−(F1( i −1)/(2∗b( i −1) ) ) ;%N−R i t e r a t i o n scheme

29 F1( i ) =((b( i ) ) ˆ2)−((1/T) ∗ ( ( sum ( ( ret−m r ) . ˆ 2 ) )−(sum( r e t ( abs ( ret−m r )>(b( i ) ∗g ) )

. ˆ 2 ) ) ) ) ;%The f u n c t i o n a l F1

30 c h ( i )=g∗b( i ) ; %i t e r a t i o n o f the maximal th r e sho ld

31 r e t h=r e t ( abs ( ret−m r )>(c h ( i ) ) ) ;%I t e r a t i o n o f the s e r i e s o f jump s i z e s

32 L( i )=sum( abs ( ret−m r )>(c h ( i ) ) ) /(n∗dt ) ;%\Lambda , the i n t e n s i t y

33 v ( i )=sum ( ( ret h−m r ) . ˆ 2 ) / ( (L( i ) ∗n∗dt )−1) ;%Variance o f jump s i z e s

34

35 end

36 c=g∗b( y ) ;%Maximal Threshold

37

38 %r e p l a c i n g the data in re turn time s e r i e s where a jump has occurred with the mean

o f the re turn

39 f o r i =1:n

40 i f ( ( abs ( r e t ( i )−m r ) )<=c )

41 r e t f ( i )=r e t ( i ) ;

42 e l s e i f ( ( abs ( r e t ( i )−m r ) )>c )

43 r e t f ( i )=m r ;

44 end

45 end

46 N=n ;

47 w=20;%s e t t i n g o f window s i z e f o r c a l c u l a t i n g moving average and sample standard

dev i a t i on

48 n f=s i z e ( r e t f , 2 ) ;%s i z e o f r e turn time s e r i e s

49 f o r j =1:( n f−w+1)

50 m( j ) =((sum( r e t f ( j : j+w−1) ) ) /w) ;% moving average

51 sg ( j )=s q r t ( ( sum( r e t f ( j : j+w−1) . ˆ 2 ) ) /(w−1)−((w∗(m( j ) . ˆ 2 ) ) /(w−1) ) ) ;%sample

standard dev i a t i on

52 end

53 m=m/dt ;%e m p i r i c a l d r i f t

54 mu bar=(mean(m) ) ;%mean o f e m p i r i c a l d r i f t

55 sg=sg . / s q r t ( dt ) ;%e m p i r i c a l v o l a t i l i t y

56 sg bar=mean( sg ) ;%mean o f e m p i r i c a l v o l a t i l i t y

57
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58 dura d=dura ( sg , p∗100) ; %durat ions o f p−squeeze

59 dura m=dura mi ( sg , p∗100) ;%durat ions o f p−expans ions

60

61 L d=s i z e ( dura d , 2 ) ;%Length o f p−squeeze vec to r

62 T1 e1 =((sum( dura d ) ) /L d ) ;%T1 d e s c r i p t i v e s t a t i s t i c o f p−squeeze

63 T2 e1= s q r t (sum ( ( dura d−T1 e1 ) . ˆ 2 ) /( L d−1) ) ;%T2 d e s c r i p t i v e s t a t i s t i c o f p−squeeze

64 T3 e1=(sum ( ( dura d−T1 e1 ) . ˆ 3 ) /( L d ) ) / ( ( T2 e1 ) ˆ3) ;%T3 d e s c r i p t i v e s t a t i s t i c o f p−
squeeze

65 T4 e1=(sum ( ( dura d−T1 e1 ) . ˆ 4 ) /( L d ) ) / ( ( T2 e1 ) ˆ4) ;%T4 d e s c r i p t i v e s t a t i s t i c o f p−
squeeze

66

67 L m=s i z e ( dura m , 2 ) ;%Length o f p−expansion vec to r

68 T1 e2 =((sum( dura m ) ) /L m) ;%T1 d e s c r i p t i v e s t a t i s t i c o f p−expansion

69 T2 e2= s q r t (sum ( ( dura m−T1 e2 ) . ˆ 2 ) /(L m−1) ) ;%T2 d e s c r i p t i v e s t a t i s t i c o f p−
expansion

70 T3 e2=(sum ( ( dura m−T1 e2 ) . ˆ 3 ) /(L m) ) / ( ( T2 e2 ) ˆ3) ;%T3 d e s c r i p t i v e s t a t i s t i c o f p−
expansion

71 T4 e2=(sum ( ( dura m−T1 e2 ) . ˆ 4 ) /(L m) ) / ( ( T2 e2 ) ˆ4) ;%T4 d e s c r i p t i v e s t a t i s t i c o f p−
expansion

72

73 a=s q r t ( ( T1 e2 ) /( T1 e1 ) ) ;%c a l c u l a t i o n o f the parameter o f asymmetry

74 B=100;%no o f time s e r i e s to be sampled from sub c l a s s o f models o f the uni−regime

MJD models

75

76 %Simulat ion o f uni−regime MJD

77 f o r j =1:B

78 S g=s (1 ) ;%s e t t i n g the f i r s t data po int o f the a s s e t data time s e r i e s as the

i n i t i a l po int f o r s imu la t i on o f sub c l a s s uni−regime MJD

79

80 gmb=gsm( S g , dt ,N, mu bar , sg bar ) ;%s imu la t i on o f sub c l a s s o f uni−regime MJD

models

81

82 r e t g=s r (gmb) ;%return o f uni−regime MJD

83 n g=s i z e ( r e t g , 2 ) ;%s i z e o f re turn time s e r i e s obta ined from s imu la t i on o f uni−
regime MJD

84 f o r k=1:( n g−w+1)

85 m g( k ) =(((sum( r e t g ( k : k+w−1) ) ) /w) ) ;% moving average

86 sg g ( k )=( s q r t ( ( sum( r e t g ( k : k+w−1) . ˆ 2 ) ) /(w−1)−((w∗(m g( k ) . ˆ 2 ) ) /(w−1) ) ) ) ;%

sample standard dev i a t i on

87 end

88

89 m g=(m g) /dt ;%e m p i r i c a l d r i f t
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90 sg g =( sg g ) / s q r t ( dt ) ;%e m p i r i c a l v o l a t i l i t y

91

92 dura g1=dura ( sg g , p∗100) ;%durat ions o f p−squeeze

93 dura g2=dura mi ( sg g , p∗100) ;%durat ions o f p−expans ions

94

95 L g1=s i z e ( dura g1 , 2 ) ;%Length o f p−squeeze vec to r

96 L g2=s i z e ( dura g2 , 2 ) ;%Length o f p−expans ions

97

98 T1 g1 ( j ) =((sum( dura g1 ) ) /L g1 ) ;%T1 d e s c r i p t i v e s t a t i s t i c o f p−squeeze

99 T2 g1 ( j )= s q r t (sum ( ( dura g1−T1 g1 ( j ) ) . ˆ 2 ) /( L g1−1) ) ;%T2 d e s c r i p t i v e s t a t i s t i c

o f p−squeeze

100 T3 g1 ( j )=(sum ( ( dura g1−T1 g1 ( j ) ) . ˆ 3 ) /( L g1 ) ) / ( ( T2 g1 ( j ) ) ˆ3) ;%T3 d e s c r i p t i v e

s t a t i s t i c o f p−squeeze

101 T4 g1 ( j )=(sum ( ( dura g1−T1 g1 ( j ) ) . ˆ 4 ) /( L g1 ) ) / ( ( T2 g1 ( j ) ) ˆ4) ;%T4 d e s c r i p t i v e

s t a t i s t i c o f p−squeeze

102

103 T1 g2 ( j ) =((sum( dura g2 ) ) /L g2 ) ;%T1 d e s c r i p t i v e s t a t i s t i c o f p−expansion

104 T2 g2 ( j )= s q r t (sum ( ( dura g2−T1 g2 ( j ) ) . ˆ 2 ) /( L g2−1) ) ;%T2 d e s c r i p t i v e s t a t i s t i c

o f p−expansion

105 T3 g2 ( j )=(sum ( ( dura g2−T1 g2 ( j ) ) . ˆ 3 ) /( L g2 ) ) / ( ( T2 g2 ( j ) ) ˆ3) ;%T3 d e s c r i p t i v e

s t a t i s t i c o f p−expansion

106 T4 g2 ( j )=(sum ( ( dura g2−T1 g2 ( j ) ) . ˆ 4 ) /( L g2 ) ) / ( ( T2 g2 ( j ) ) ˆ4) ;%T4 d e s c r i p t i v e

s t a t i s t i c o f p−expansion

107 end

108 %Note : proximity measure s t a t i s t i c s w i l l be r e f e r r e d to as \ alpha s t a t i s t i c s

hence fo r th

109 ag = [ ] ;

110 z g1=T1 g1 ;

111 D1 g=(( z g1−T1 e1 )<=0) ;

112 s g1=sum( D1 g ) ;

113 E1 g= g b ( s g1 ,B) ;% g B func t i on on t s t a t i s t i c s

114 ag=[ag , E1 g ] ;

115 a1 g=min ( ag ) ;%c a l c u l a t i o n o f \ a lpha 1 s t a t i s t i c p e r t a i n i n g to p−squeeze o f uni−
regime MJD

116

117 z g2=T2 g1 ;

118 D2 g=(( z g2−T2 e1 )<=0) ;

119 s g2=sum( D2 g ) ;

120 E2 g= g b ( s g2 ,B) ;% g B func t i on on t s t a t i s t i c s

121 ag=[ag , E2 g ] ;

122 a2 g=min ( ag ) ;%c a l c u l a t i o n o f \ a lpha 2 s t a t i s t i c p e r t a i n i n g to p−squeeze o f uni−
regime MJD
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123

124 z g3=T3 g1 ;

125 D3 g=(( z g3−T3 e1 )<=0) ;

126 s g3=sum( D3 g ) ;

127 E3 g= g b ( s g3 ,B) ;% g B func t i on on t s t a t i s t i c s

128 ag=[ag , E3 g ] ;

129 a3 g=min ( ag ) ;%c a l c u l a t i o n o f \ a lpha 3 s t a t i s t i c p e r t a i n i n g to p−squeeze o f uni−
regime MJD

130

131 z g4=T4 g1 ;

132 D4 g=(( z g4−T4 e1 )<=0) ;

133 s g4=sum( D4 g ) ;

134 E4 g= g b ( s g4 ,B) ;% g B func t i on on t s t a t i s t i c s

135 ag=[ag , E4 g ] ;

136 a4 g=min ( ag ) ;%c a l c u l a t i o n o f \ a lpha 4 s t a t i s t i c p e r t a i n i n g to p−squeeze o f uni−
regime MJD

137

138 %\ alpha s t a t i s t i c s o f p−squeeze o f uni−regime MJD

139 alpha (1 )=a1 g ;

140 alpha (2 )=a2 g ;

141 alpha (3 )=a3 g ;

142 alpha (4 )=a4 g ;

143

144 ah = [ ] ;

145 z h1=T1 g2 ;

146 D1 h=(( z h1−T1 e2 )<=0) ;

147 s h1=sum( D1 h ) ;

148 E1 h= g b ( s h1 ,B) ;% g B func t i on on t s t a t i s t i c s

149 ah=[ah , E1 h ] ;

150 a1 h=min ( ah ) ;%c a l c u l a t i o n o f \ a lpha 1 s t a t i s t i c p e r t a i n i n g to p−expansion o f uni−
regime MJD

151

152 z h2=T2 g2 ;

153 D2 h=(( z h2−T2 e2 )<=0) ;

154 s h2=sum( D2 h ) ;

155 E2 h= g b ( s h2 ,B) ;% g B func t i on on t s t a t i s t i c s

156 ah=[ah , E2 h ] ;

157 a2 h=min ( ah ) ;%c a l c u l a t i o n o f \ a lpha 2 s t a t i s t i c p e r t a i n i n g to p−expansion o f uni−
regime MJD

158

159 z h3=T3 g2 ;

160 D3 h=(( z h3−T3 e2 )<=0) ;
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161 s h3=sum( D3 h ) ;

162 E3 h= g b ( s h3 ,B) ;% g B func t i on on t s t a t i s t i c s

163 ah=[ah , E3 h ] ;

164 a3 h=min ( ah ) ;%c a l c u l a t i o n o f \ a lpha 3 s t a t i s t i c p e r t a i n i n g to p−expansion o f uni−
regime MJD

165

166 z h4=T4 g2 ;

167 D4 h=(( z h4−T4 e2 )<=0) ;

168 s h4=sum( D4 h ) ;

169 E4 h= g b ( s h4 ,B) ;% g B func t i on on t s t a t i s t i c s

170 ah=[ah , E4 h ] ;

171 a4 h=min ( ah ) ;%c a l c u l a t i o n o f \ a lpha 4 s t a t i s t i c p e r t a i n i n g to p−expansion o f uni−
regime MJD

172

173 %\ alpha s t a t i s t i c s p e r t a i n i n g to p−expansion o f uni−regime MJD

174 alpha (5 )=a1 h ;

175 alpha (6 )=a2 h ;

176 alpha (7 )=a3 h ;

177 alpha (8 )=a4 h ;

178

179 mu=mu bar∗ ones (1 , 3 ) ;%D r i f t vec to r p e r t a i n i n g to the sub c l a s s o f TRMJD model

180 g=abs ( l i n s p a c e ( 0 , 0 . 8 5 , 1 0 ) ) ;%s e t t i n g up o f e p s i l o n parameter r equ i r ed f o r v o l a t i l i t y

vec to r o f sub c l a s s o f TRMJD model

181

182 %l e t \ theta be a member o f the parameter s e t o f sub c l a s s TRMJD models

183

184 f o r i =1:10

185 eps=g ( i ) ;%s e l e c t i o n o f e p s i l o n from the vec to r ( s e l e c t i o n o f a member from the

parameter s e t o f sub c l a s s o f models )

186 sg mg=sg bar ∗[1− eps ,1 ,1+ eps ] ;%genera t i on o f v o l a t i l i t y vec to r ( s e l e c t i o n o f a

member from the parameter s e t o f sub c l a s s o f models )

187 f o r j =1:16

188 l m = [ ] ;

189 %genera t i on o f in s tantaneous t r a n s i t i o n ra t e matrix f o r a te rnary regime

Markov proce s s ( f o r a g iven \ theta )

190 l =(((1) /( j ) ) /( dt ) ) /( a ) ;

191 l 1 1 ( j )=(a∗ l ) ; l 3 3 ( j )=( l /a ) ;

192 l 2 2 ( j ) =(((( a ˆ2)+1)∗p∗ l ) /( a∗(1−2∗p) ) ) ;

193 l m=[ l 1 1 ( j ) , l 2 2 ( j ) , l 3 3 ( j ) ] ;

194

195
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196 S m=s (1) ;%s e t t i n g the f i r s t data po int o f the a s s e t data time s e r i e s as the

i n i t i a l po int f o r s imu la t i on o f Ternary regime swi tch ing MJD (TRMJD)

197

198 f o r k=1:100%s imu la t i on o f TRMJD( f o r a g iven \ theta i . e . member o f the sub

c l a s s ) k t imes

199

200 sm=mgbm 1(S m ,N, dt , a , l m ,mu, sg mg ) ;%s imu la t i on o f TRMJD( f o r a g iven \
theta i . e . member o f the sub c l a s s )

201 ret m=sr (sm) ;%return o f TRMJD

202 n m=s i z e ( ret m , 2 ) ;%s i z e o f re turn time s e r i e s obta ined from s imu la t i on

o f TRMJD

203

204 f o r t =1:(n m−w+1)

205 m m( t ) =(((sum( ret m ( t : t+w−1) ) ) /w) ) ;% moving average

206 sg m ( t )=( s q r t ( ( ( sum( ret m ( t : t+w−1) . ˆ 2 ) ) /(w−1) )−((w∗(m m( t ) . ˆ 2 ) ) /(w

−1) ) ) ) ;%sample standard dev i a t i on

207 end

208 m m=(m m) /dt ;%e m p i r i c a l d r i f t

209 sg m=(sg m ) / s q r t ( dt ) ;%e m p i r i c a l v o l a t i l i t y

210

211 dura m1{ i , j , k}=dura ( sg m , p∗100) ;%durat ion o f p−squeeze

212 dura m2{ i , j , k}=dura mi ( sg m , p∗100) ;%durat ion o f p−expansion

213

214 L m1( i , j , k )=s i z e ( dura m1{ i , j , k } , 2 ) ;%Length o f p−squeeze vec to r

215 L m2( i , j , k )=s i z e ( dura m2{ i , j , k } , 2 ) ;%Length o f p−expansion vec to r

216

217 T1 m1( i , j , k ) =((sum( dura m1{ i , j , k}) ) /L m1( i , j , k ) ) ;%T1 d e s c r i p t i v e

s t a t i s t i c o f p−squeeze

218 T2 m1( i , j , k )= s q r t (sum ( ( dura m1{ i , j , k}−T1 m1( i , j , k ) ) . ˆ 2 ) /(L m1( i , j , k )

−1) ) ;%T2 d e s c r i p t i v e s t a t i s t i c o f p−squeeze

219 T3 m1( i , j , k )=(sum ( ( dura m1{ i , j , k}−T1 m1( i , j , k ) ) . ˆ 3 ) /(L m1( i , j , k ) ) ) / ( (

T2 m1( i , j , k ) ) ˆ3) ;%T3 d e s c r i p t i v e s t a t i s t i c o f p−squeeze

220 T4 m1( i , j , k )=(sum ( ( dura m1{ i , j , k}−T1 m1( i , j , k ) ) . ˆ 4 ) /(L m1( i , j , k ) ) ) / ( (

T2 m1( i , j , k ) ) ˆ4) ;%T4 d e s c r i p t i v e s t a t i s t i c o f p−squeeze

221

222 T1 m2( i , j , k ) =((sum( dura m2{ i , j , k}) ) /L m2( i , j , k ) ) ;%T1 d e s c r i p t i v e

s t a t i s t i c o f p−expansion

223 T2 m2( i , j , k )= s q r t (sum ( ( dura m2{ i , j , k}−T1 m2( i , j , k ) ) . ˆ 2 ) /(L m2( i , j , k )

−1) ) ;%T2 d e s c r i p t i v e s t a t i s t i c o f p−expansion

224 T3 m2( i , j , k )=(sum ( ( dura m2{ i , j , k}−T1 m2( i , j , k ) ) . ˆ 3 ) /(L m2( i , j , k ) ) ) / ( (

T2 m2( i , j , k ) ) ˆ3) ;%T3 d e s c r i p t i v e s t a t i s t i c o f p−expansion
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225 T4 m2( i , j , k )=(sum ( ( dura m2{ i , j , k}−T1 m2( i , j , k ) ) . ˆ 4 ) /(L m2( i , j , k ) ) ) / ( (

T2 m2( i , j , k ) ) ˆ4) ;%T4 d e s c r i p t i v e s t a t i s t i c o f p−expansion

226 end

227

228 z m1=T1 m1( i , j , : ) ;

229 am1 = [ ] ;

230 D1 m1=((z m1−T1 e1 )<=0) ;

231 s m1=sum(D1 m1) ;

232 E1 m1= g b ( s m1 ,B) ;

233 am1=[am1 , E1 m1 ] ;

234 a1 m1=min(am1) ;%c a l c u l a t i o n o f \ a lpha (1 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−squeeze o f TRMJD

235

236 z m2=T2 m1( i , j , : ) ;

237 D2 m1=((z m2−T2 e1 )<=0) ;

238 s m2=sum(D2 m1) ;

239 E2 m1= g b ( s m2 ,B) ;% g B func t i on on t s t a t i s t i c s

240 am1=[am1 , E2 m1 ] ;

241 a2 m1=min(am1) ;%c a l c u l a t i o n o f \ a lpha (2 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−squeeze o f TRMJD

242

243 z m3=T3 m1( i , j , : ) ;

244 D3 m1=((z m3−T3 e1 )<=0) ;

245 s m3=sum(D3 m1) ;

246 E3 m1= g b ( s m3 ,B) ;% g B func t i on on t s t a t i s t i c s

247 am1=[am1 , E3 m1 ] ;

248 a3 m1=min(am1) ;%c a l c u l a t i o n o f \ a lpha (3 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−squeeze o f TRMJD

249

250 z m4=T4 m1( i , j , : ) ;

251 D4 m1=((z m4−T4 e1 )<=0) ;

252 s m4=sum(D4 m1) ;

253 E4 m1= g b ( s m4 ,B) ;% g B func t i on on t s t a t i s t i c s

254 am1=[am1 , E4 m1 ] ;

255 a4 m1=min(am1) ;%c a l c u l a t i o n o f \ a lpha (4 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−squeeze o f TRMJD

256

257 %alpha s t a t i s t i c s p e r t a i n i n g to p−squeeze o f TRMJD( one member o f the sub

c l a s s )

258 a1 m2 ( i , j )=a1 m1 ;

259 a2 m2 ( i , j )=a2 m1 ;

260 a3 m2 ( i , j )=a3 m1 ;
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261 a4 m2 ( i , j )=a4 m1 ;

262

263 z n1=T1 m2( i , j , : ) ;

264 an1 = [ ] ;

265 D1 n1=(( z n1−T1 e2 )<=0) ;

266 s n1=sum( D1 n1 ) ;

267 E1 n1= g b ( s n1 ,B) ;% g B func t i on on t s t a t i s t i c s

268 an1=[an1 , E1 n1 ] ;

269 a1 n1=min ( an1 ) ;%c a l c u l a t i o n o f \ a lpha (1 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−expansion o f TRMJD

270 z n2=T2 m2( i , j , : ) ;

271 D2 n1=(( z n2−T2 e2 )<=0) ;

272 s n2=sum( D2 n1 ) ;

273 E2 n1= g b ( s n2 ,B) ;% g B func t i on on t s t a t i s t i c s

274 an1=[an1 , E2 n1 ] ;

275 a2 n1=min ( an1 ) ;%c a l c u l a t i o n o f \ a lpha (2 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−expansion o f TRMJD models

276

277 z n3=T3 m2( i , j , : ) ;

278 D3 n1=(( z n3−T3 e2 )<=0) ;

279 s n3=sum( D3 n1 ) ;

280 E3 n1= g b ( s n3 ,B) ;% g B func t i on on t s t a t i s t i c s

281 an1=[an1 , E3 n1 ] ;

282 a3 n1=min ( an1 ) ;%c a l c u l a t i o n o f \ a lpha (3 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−expansion o f TRMJD models

283

284 z n4=T4 m2( i , j , : ) ;

285 D4 n1=(( z n4−T4 e2 )<=0) ;

286 s n4=sum( D4 n1 ) ;

287 E4 n1= g b ( s n4 ,B) ;% g B func t i on on t s t a t i s t i c s

288 an1=[an1 , E4 n1 ] ;

289 a4 n1=min ( an1 ) ;%c a l c u l a t i o n o f \ a lpha (4 ,\ theta ) s t a t i s t i c p e r t a i n i n g to p

−expansion o f TRMJD models

290

291 % \ alpha s t a t i s t i c p e r t a i n i n g to p−expansion o f TRMJD models

292 a1 n2 ( i , j )=a1 n1 ;

293 a2 n2 ( i , j )=a2 n1 ;

294 a3 n2 ( i , j )=a3 n1 ;

295 a4 n2 ( i , j )=a4 n1 ;

296 end

297 end

298 a1 m=max(max( a1 m2 ) ) ;
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299 a2 m=max(max( a2 m2 ) ) ;

300 a3 m=max(max( a3 m2 ) ) ;

301 a4 m=max(max( a4 m2 ) ) ;

302

303 %\ alpha s t a t i s t i c s p e r t a i n i n g to p−squeeze o f TRMJD models ( c o n s i d e r i n g the whole

sub c l a s s )

304 alpha (9 )=a1 m ;

305 alpha (10)=a2 m ;

306 alpha (11)=a3 m ;

307 alpha (12)=a4 m ;

308

309 a1 n=max(max( a1 n2 ) ) ;

310 a2 n=max(max( a2 n2 ) ) ;

311 a3 n=max(max( a3 n2 ) ) ;

312 a4 n=max(max( a4 n2 ) ) ;

313 %\ alpha s t a t i s t i c s p e r t a i n i n g to p−expansion o f TRMJD( c o n s i d e r i n g the whole sub

c l a s s )

314 alpha (13)=a1 n ;

315 alpha (14)=a2 n ;

316 alpha (15)=a3 n ;

317 alpha (16)=a4 n ;

318 a lpha te rnary=alpha ( 9 : 1 6 ) ;

319 shee t =1;

320 x l s w r i t e ( f i l ename , a lpha ternary , sheet , ’Am:Hm’ ) ;% ’m’ i s the index number
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A.5 Simulation of Best Fit Model for Calculation of L2 Error and K-S

Test Statistics

1 %simula t i on o f the best f i t model f o r c a l c u l a t i o n o f L2 e r r o r and K−S t e s t

s t a t i s t i c s

2

3

4 J1 = x l s r e ad ( ’ mode l s tats . x l sx ’ ) ;% ’ mode l s tats . x lsx ’ conta in s the parameters f o r the

best f i t model ’

5 J=J1 (m, 1 : 1 0 ) ;% ’m’ i s the index ’ im ’ cor re spond ing to which the best f i t model i s

be ing s imulated m= 1 , . . . , 1 7

6 J=ar ray2 tab l e ( J ) ;

7 shee t=’name o f the index ’ ;%f o r example shee t =’NIFTY200 ’

8 s = x l s r ea d ( ’ n i f t y i d x c l . x l sx ’ , shee t ) ;%read ing the a s s e t p r i c e data o f the index

9 s=tab l e2a r ray ( s ) ;

10 s=transpose ( s ) ;%t ranspos ing the a s s e t p r i c e time s e r i e s

11 s=f l i p ( s ) ;%orde r ing o f time s e r i e s from old to new

12 r e t=s r ( s ) ;%c a l c u l a t i n g s imple re turn o f a s s e t

13 r e t=s o r t ( r e t ) ;%s o r t i n g o f the re turn time s e r i e s

14 N=s i z e ( s , 2 ) ;%Length o f the time s e r i e s

15 pi=2∗as in ( 1 . 0 ) ;

16 N=s i z e ( s , 2 ) ;%Length o f the time s e r i e s

17 N2=c e i l (N/2) ;

18 dt =5./(250∗360) ; %Granular i ty

19 d t=s q r t ( dt ) ;%square root o f g r a n u l a r i t y

20 T=N∗dt ;%Total time frame o f time s e r i e s

21 eps=J (6) ; %e p s i l o n parameter o f the best f i t TRMJD model f o r a g iven index

22 a=J (7) ;%asymmetry parameter o f the best f i t TRMJD model f o r a g iven index

23 l m=[J (8 ) J (9 ) J (10) ] ;%ins tantaneous t r a n s i t i o n r a t e s o f bes t f i t TRMJD model

24 %f e e d i n g o f parameters o f bes t f i t model f o r s imu la t i on purposes

25 mu=J (1) ; %e m p i r i c a l d r i f t o f s i m p l i f i e d model used f o r jump i n f e r e n c e

26 lamb=J (2) ;%Jump i n t e n s i t y

27 V=J (3) ;%Variance o f jump s i z e s

28 mu bar=J (4) ;%mean o f e m p i r i c a l d r i f t

29 sg bar=J (5) ;%mean o f e m p i r i c a l v o l a t i l i t y

30 de l=s q r t ( l og (V+1) ) ;

31 ga=−(( de l ˆ2) /2) ; %to keep the mean jump s i z e zero

32 plamb=1−(exp(−lamb∗dt ) ) ; %p r o b a b i l i t y o f observ ing at l e a s t one jump in dt time−
l ength

33 alpha =(0.5) ∗10ˆ40; % alpha =(0.5) ∗10ˆ40 g i v e s \hat{p}=1.0122%

34 ph=min (1 , alpha ∗( dt ˆ( l og (1/ dt ) ) ) ) ; %\hat{p} value
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35 g=s q r t ( dt ) ∗norminv ((1+((1−ph) ˆ(1/N) ) ) /2) ; %g i s \gamma

36

37 %For each j , a s imu la t i on and accuracy o f jump c l a s s i f i c a t i o n i s computed . Then

average accuracy i s computed f o r each beta .

38 W=zero s (1 ,N+1) ;

39 W(1) =0;

40 f o r i =1:N2 %Brownian motion

41 u1=rand ( ) ; %by Box Muller Method

42 u2=rand ( ) ;

43 W(2∗ i )=W(2∗ i −1)+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) ;

44 W(2∗ i +1)=W(2∗ i )+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ s i n (2∗ pi ∗u2 ) ;

45 end

46

47 S u=ze ro s (1 ,N) ; %Asset time s e r i e s i n i t i a l i z a t i o n

48 S u=s (1 ) ; %I n i t i a l Asset p r i c e

49 Xi=ze ro s (1 ,N) ;

50 f o r i =1:N−1 %Simulat ion us ing above W and f o l l o w i n g Xi .

51 u1=rand ( ) ;

52 i f u1 <= plamb % then jump happens

53 u1=rand ( ) ; % Generating Jump S i z e ( Merton Model )

54 u2=rand ( ) ; % Jump s i z e i s LogNormal −1

55 Xi ( i )=exp ( ga+de l ∗ s q r t ((−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) )−1;

56 e l s e % e l s e jump does not occur

57 Xi ( i ) =0; % so Xi ( i ) =0

58 end

59 S u ( i +1)=S u ( i ) ∗(1+mu bar∗dt+sg bar ∗(W( i +1)−W( i ) )+Xi ( i ) ) ;

60 end %Simulat ion i s complete .

61

62 r e t c u=s r ( S u ) ;%This i s the s imple re turn s e r i e s obta ined from the s imu la t i on o f

uni−regime MJD model

63

64 r e t c u=s o r t ( r e t c u ) ;%s o r t i n g o f s imple re turn s e r i e s

65

66 s ig m=sg bar ∗[1− eps ,1 ,1+ eps ] ;%e m p i r i c a l v o l a t i l i t y vec to r f o r s imu la t i on o f bes t

f i t TRMJD model

67

68 mu m=mu bar∗ ones (1 , 3 ) ;%e m p i r i c a l d r i f t vec to r f o r s imu la t i on o f bes t f i t TRMJD

model

69 x = [ ] ;

70 x=mrk3(N, dt , a , l m ) ;%s imu la t i on o f te rnary regime Markov proce s s us ing the

ins tantaneous t r a n s i t i o n ra t e o f bes t f i t TRMJD model

71 W=zero s (1 ,N+1) ;
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72 W(1) =0;

73

74 f o r i =1:N2 %Brownian motion

75 u1=rand ( ) ; %by Box Muller Method

76 u2=rand ( ) ;

77 W(2∗ i )=W(2∗ i −1)+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) ;

78 W(2∗ i +1)=W(2∗ i )+s q r t ( dt∗(−2)∗ l og (1−u1 ) ) ∗ s i n (2∗ pi ∗u2 ) ;

79 end

80

81 S m=ze ro s (1 ,N) ; %Asset time s e r i e s i n i t i a l i z a t i o n

82 S m (1)=s (1 ) ; %I n i t i a l Asset p r i c e

83 Xi=ze ro s (1 ,N) ;

84 f o r i =1:N−1 %Simulat ion us ing above W and f o l l o w i n g Xi .

85 u1=rand ( ) ;

86 i f u1 <= plamb % then jump happens

87 u1=rand ( ) ; % Generating Jump S i z e ( Merton Model )

88 u2=rand ( ) ; % Jump s i z e i s LogNormal −1

89 Xi ( i )=exp ( ga+de l ∗ s q r t ((−2)∗ l og (1−u1 ) ) ∗ cos (2∗ pi ∗u2 ) )−1;

90 e l s e % e l s e jump does not occur

91 Xi ( i ) =0; % so Xi ( i ) =0

92 end

93 S m( i +1)=S m( i ) ∗(1+mu m( x ( i ) ) ∗dt+sig m ( x ( i ) ) ∗(W( i +1)−W( i ) )+Xi ( i ) ) ;%s imu la t i on

o f the TRMJD model

94 end %Simulat ion i s complete .

95

96 ret cm=sr (S m) ; %This i s the s imple re turn s e r i e s obta ined from the s imu la t i on o f

bes t f i t TRMJD model

97 ret cm=s o r t ( ret cm ) ;%s o r t i n g o f s imple re turn s e r i e s

98 max r=max(max( r e t ) ) ;%maximum of the e m p i r i c a l r e turn s e r i e s

99 min r=min ( min ( r e t ) ) ;%maximum of the e m p i r i c a l r e turn s e r i e s

100 xr=l i n s p a c e ( min r , max r ,11001) ;%genera t i on o f a mesh o f equispaced po in t s between

max r and min r f o r obta in ing the e m p i r i c a l CDF(eCDF) ( o f e m p i r i c a l and

t h e o r e t i c a l models ) and the L2 norm o f e m p i r i c a l CDF

101 x2=d i f f ( xr ) ;%d i f f e r e n c e o f cons e cu t i v e e lements o f the generated mesh vec to r

102 x1=xr ( 1 : end−1) ;

103 f 1 =( i n v p r c t i l e ( ret , x1 ) ) /100 ;%e m p i r i c a l eCDF

104 f 2 =( i n v p r c t i l e ( r e t cu , x1 ) ) /100 ;%Uni−regime MJD model eCDF

105 f 3 =( i n v p r c t i l e ( ret cm , x1 ) ) /100 ;%TRMJD model eCDF

106 %c a l c u l a t i n g the square i f the d i f f e r e n c e o f e lements o f same index o f d i f f e r e n t

eCDF’ s

107 f 2 1 =(f2−f 1 ) . ˆ 2 ;

108 f 3 1 =(f3−f 1 ) . ˆ 2 ;
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109

110 %Kolmogorov−Smirnov (K−S Test )

111 l en1=s i z e ( ret , 2 ) ;%length o f re turn time s e r i e s

112 l en2=s i z e ( r e t cu , 2 ) ;%length o f uni−regime MJD return s e r i e s

113 l en3=s i z e ( ret cm , 2 ) ;%length TRMJD return s e r i e s

114

115 D(1) =(max( abs ( f2−f 1 ) ) ) /( s q r t ( ( l en1+len2 ) /( l en1 ∗ l en2 ) ) ) ;%K−S Test s t a t i s t i c o f the

eCDF’ S o f re turn time s e r i e s and uni−regime MJD model

116 D(2) =(max( abs ( f3−f 1 ) ) ) /( s q r t ( ( l en1+len3 ) /( l en2 ∗ l en3 ) ) ) ;%K−S Test s t a t i s t i c o f o f

r e turn time s e r i e s and TRMJD model

117 D(3)=max( abs ( f3−f 2 ) ) /( s q r t ( ( l en2+len3 ) /( l en2 ∗ l en3 ) ) ) ;%K−S Test s t a t i s t i c o f uni−
regime MJD and TRMJD

118

119 L2 (1)=s q r t (sum( f 2 1 .∗ x2 ) ) ;%L2 e r r o r o f uni−regime MJD

120 L2 (2)=s q r t (sum( f 3 1 .∗ x2 ) ) ;%L2 e r r o r o f TRMJD

121

122 f i l ename1=’L2 . x l sx ’ ;

123 shee t =1;

124 x l s w r i t e ( f i l ename1 , L2 , sheet , ’Am:Bm’ ) ;

125 f i l ename2=’ KStest . x l sx ’ ;

126 x l s w r i t e ( f i l ename2 ,D, sheet , ’Am:Cm’ ) ;
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A.6 User Defined Functions Used in the Main Code

A.6.1 Simulation of Markov Chain

1 f unc t i on M=markovfun (L ,TPM, dt , Ft )

2

3 CPM=transpose (cumsum( transpose (TPM) ) ) ;%cumulat ive p r o b a b i l i t y matrix

4 X(1) =1;%i n i t i a l s t a t e o f the Markov chain

5 a=0;

6 m=c e i l ( Ft/dt ) ;%no time po in t s

7 j =0;

8 whi le c e i l ( a/dt )<m

9 j=j +1;

10 T( j )=exprnd (1/L(X( j ) ) ) ;

11 b=a+T( j ) ;%o v e r a l l time spent t i l l s t a t e X( j )

12 f o r i=c e i l ( a/dt ) +1:min ( c e i l (b/dt ) ,m)

13 M( i )=X( j ) ;% Markov chain s t a t e

14 end

15 i f c e i l (b/dt )>m

16 break

17 e l s e

18 a=b ;

19 cumdist=CPM(X( j ) , : ) ;

20 r = rand ( ) ;

21 X( j +1)=f i n d ( cumdist>r , 1 ) ;%next s t a t e o f Markov chain

22 end

23 end

A.6.2 Simple Return

1 f unc t i on r e t=s r ( a )

2 n=s i z e ( a , 2 ) ;

3 r e t=ze ro s (1 , n−1) ;

4 f o r i =1:(n−1)

5 r e t ( i ) =((a ( i +1)−a ( i ) ) /a ( i ) ) ;%c a l c u l a t i o n o f s imple re turn o f time s e r i e s

data ’ a ’

6 end

7 end
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A.6.3 Squeeze Durations i.e Corresponding to pth Percentile

1 f unc t i on dura=dura ( a , p)

2

3 n=s i z e ( a , 2 ) ;

4 P=p r c t i l e ( a , p ) ;

5 f l a g 1 =1;

6 t r a n s i t i o n 1 = [ ] ;%i n i t i a l i z a t i o n

7 %c a l c u l a t i n g durat ions

8 f o r j =1:n

9 i f f l a g 1 ∗a ( j )< f l a g 1 ∗P
10 t r a n s i t i o n 1 =[ t r a n s i t i o n 1 , j ] ;

11 f l a g 1=−f l a g 1 ;

12 end

13 end

14 t r a n s i t i o n=t r a n s i t i o n 1 ;

15 Dura=d i f f ( t r a n s i t i o n ) ;

16 dura=Dura ( 1 : 2 : end ) ;% squeeze durat ions

17 end

A.6.4 Expansion Durations i.e Corresponding to (100-p)th Percentile

1 f unc t i on dura mi=dura mi ( a , p )

2 n=s i z e ( a , 2 ) ;

3 Q=p r c t i l e ( a ,(100−p) ) ;%c a l c u l a t i n g (100−p) th p e r c e n t i l e

4 t r a n s i t i o n 2 = [ ] ;%i n i t i a l i z a t i o n

5 f l a g 2 =1;

6 %c a l c u l a t i o n o f durat ions

7 f o r k=1:n

8 i f f l a g 2 ∗a ( k )> f l a g 2 ∗Q
9 t r a n s i t i o n 2 =[ t r a n s i t i o n 2 , k ] ;

10 f l a g 2=−f l a g 2 ;

11 end

12 end

13 t r an s i t i on m=t r a n s i t i o n 2 ;

14 Dura m=d i f f ( t r an s i t i on m ) ;

15 dura mi=Dura m ( 1 : 2 : end ) ;%expansion durat ions

16 end
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A.6.5 Asset Price Simulation by a GBM Model/uni-regime MJD after removal of

jump term

1 f unc t i on St=gsm(S , dt ,N, mu, sg )

2 %’mu’ i s the d r i f t and ’ sg ’ i s the v o l a t i l i t y

3 St = [ ] ;%i n i t i a l i z a t i o n

4 St (1 )=S ;%i n i t i a l a s s e t p r i c e

5 sdt=s q r t ( dt ) ;

6 a=0

7 f o r i =2:N

8 w=normrnd (0 , sdt ) ;

9 a=mu∗dt+sg ∗w−0.5∗( sg ˆ2) ∗dt ;

10 St ( i )=St ( i −1)∗exp ( a ) ; %c a l c u l a t i o n o f a s s e t p r i c e

11 end

12 end

A.6.6 Asset Price Simulation by an MMGBM Model/ TRMJD model after removal

of jump term

1 f unc t i on St m=mgbm 1(S ,N, dt , a , l m ,mu m, sg 1 )

2 x (1 ) =2;%i n i t i a l s t a t e o f Markov chain

3 f o r i =1:N

4 h=((( a ) ˆ2) / ( ( ( a ) ˆ2)+1) ) ;%c a l c u l a t i o n o f parameter f o r ’ e t a i ’ B e r o u l l i Random

v a r i a b l e

5 z=binornd (1 , h) ;%genera t ing ’ e t a i ’ B e r n o u l l i random v a r i a b l e

6 Q=binornd ( 1 , ( ( l m ( x ( i ) ) ) ∗dt ) ) ;

7 x ( i +1)=x ( i )+((2−x ( i ) ) +((kd ( x ( i ) ) ) ∗((−1)ˆz ) ) ) ∗Q;% genera t i on o f next s t a t e in

the Markov chain

8 end

9 a 1 =0;%i n i t i a l i s a t i o n

10 St m (1)=S ;%i n i t i a l a s s e t p r i c e

11 f o r j =2:N

12 w 1=normrnd (0 , s q r t ( dt ) ) ;

13 a 1 =((mu m( x ( j ) ) ) ∗dt ) +(( sg 1 ( x ( j ) ) ) ∗w 1 ) − ( (0 .5∗ ( ( sg 1 ( x ( j ) ) ) ˆ2) ) ∗dt

) ;

14 St m ( j )=St m ( j−1)∗exp ( a 1 ) ;%genera t i on o f a s s e t p r i c e from

MMGBM model

15 end

16 end
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A.6.7 gb Function Used for Calculating Discriminating Statistics

1 f unc t i on g b=g b (x ,B)

2 g b=max( ( min (x , ( B−x ) ) /B) ,0 ) ; %g b func t i on de f ined in the c a l c u l a t i o n o f

d i s c r i m i n a t i n g s t a t i s t i c s

3 end

A.6.8 Kronecker Delta Function δ(2,j)

1 % Kronecker de l t a func t i on o f s t a t e ’2 ’ o f the Markov chain

2 f unc t i on kd=kd ( s )

3 i f s==2

4 kd=1;

5 e l s e i f s==1

6 kd=0;

7 e l s e i f s==3

8 kd=0;

9 end

10 end

A.6.9 Discrete Form of Ternary Regime switching Markov Chain

1 f unc t i on x=mrk3(N, dt , a , l m )

2 x (1 ) =2;%i n i t i a l i z a t i o n

3 f o r i =1:N

4 h=((( a ) ˆ2) / ( ( ( a ) ˆ2)+1) ) ;%c a l c u l a t i o n o f parameter f o r ’ e t a i ’ B e r n o u l l i random

v a r i a b l e

5 z=binornd (1 , h) ;%genera t ing ’ e t a i ’ B e r n o u l l i random v a r i a b l e

6 Q=binornd ( 1 , ( ( l m ( x ( i ) ) ) ∗dt ) ) ;%P i B e r n o u l l i random v a r i a b l e

7 x ( i +1)=x ( i )+((2−x ( i ) ) +((kd ( x ( i ) ) ) ∗((−1)ˆz ) ) ) ∗Q;% genera t i on o f next s t a t e in

the Markov chain

8 end
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