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Abstract
In this thesis, we study the ground-state phases of an extended Bose-Hubbard ladder using the

density-matrix renormalization group (DMRG) algorithm. Each chain in the ladder is character-
ized by an onsite interaction U, nearest-neighbor interaction V, and intrachain hopping J compris-
ing an extended Bose-Hubbard model (EBHM). Though the ground-state phases of a single chain
EBHM are well understood, the ladder remains completely unexplored. We assume that the chains
in the ladder are coupled through the hopping of atoms in the rungs, and we explore how it affects
the current phase diagram of a single chain. We use charged-energy gap, density-wave order, and
non-local string order to identify the ground state phases.

Further, we use finite-size scaling to estimate the phase boundaries of the thermodynamic limit.
Restricting the analysis to a unit filling factor, we find that a supersolid state emerges in the phase
diagram due to the inter-chain hopping. In particular, the supersolid (SS) state is sandwiched
between the superfluid (SF) and the density wave (DW). Interestingly, the emergence of SS is
accompanied by a reentrant behavior at which the system undergoes SS-DW-SS transition as a
function of the contact interaction strength (U). Other states such as Mott-insulator and Haldane
insulator may arise depending on the onsite interaction strength or boundary conditions.

We provide a comprehensive picture of the role of inter-chain tunneling on the ground state
properties by calculating the superfluid correlation, rung correlation, rung-rung correlation, rung-
leg correlation, and entanglement. Further, we show that removing a single rung in the ladder
may have drastic effects on the phase diagram. We propose two realistic setups based on dipolar
atoms/polar molecules and Rydberg-dressed atoms loaded in optical lattices for implementing the
symmetric Bose-Hubbard ladder. Our studies open up various directions in the physics of the Bose-
Hubbard ladder. For instance, one can investigate the effect of hopping in a multi-leg ladder or the
quantum quench dynamics through the reentrant region, including the Kibble-Zurek mechanism.
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Chapter 1

Introduction

A physical system changes its fundamental properties drastically when it goes from one phase to
another via phase transition [1]. Although microscopic thermal fluctuation drives this macroscopic
change in a finite temperature system, the thermal fluctuation dies out when the temperature ap-
proaches absolute zero. However, in a quantum system, due to the Heisenberg uncertainty relation,
quantum fluctuation still exists at T = 0, and when these quantum fluctuations are strong enough,
it can bring macroscopic change (i.e., phase transition) whereas a classical system cannot do so.
These are called “quantum” phase transitions (QPT) [2]. We will see that competition between
kinetic and interaction energy is fundamental to the quantum phase transition, which is inherently
different from competition between internal energy and entropy, observed in a classical phase tran-
sition.

A paradigmatic example of QPT is the Bose-Hubbard model(BHM). In one dimension, where
the fluctuations are important, an extension of this model leads to phases like Mott-insulator, su-
perfluid, Haldane insulator, and density waves [3] in the commensurate filling. However, unlike
the higher dimension [4], no supersolid is observed in 1D [5]. To understand this issue of dimen-
sionality, we consider a two-leg ladder case and investigate the role of inter-chain tunneling on the
ground-state phases of this model, with a certain context to supersolidity. This type of model also
can be mapped to spin-model [6] or fermionic systems [7], which allows simultaneous study of
different models. On top of that, strong correlations, independent control of interaction parame-
ters, and large bosonic Hilbert space can make this an ideal playground for developing theoretical
and experimental ideas on quantum simulators [8, 9].

These kinds of Hubbard ladder have been studied previously with different motivations [6,10],
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without any context to supersolid. Nonetheless, these published works help us to explain the results
of this thesis. The most general extended BHM in a ladder scheme consists of several parameters,
which in the non-homogeneous case and different boundary conditions can produce many new
phenomena in principle. However, we only consider a symmetric ladder for simplicity, where the
couplings in both legs are the same. We restrict our model to an average density of 1 with an open
boundary condition, and we are left with three independent parameters. The interplay of these
parameters leads to several ground-state phases, which will be our primary result. We employ
a large-scale density-matrix renormalization algorithm [11] in numerical simulation to obtain the
ground state. Different correlation functions are calculated to characterize the ground states and
understand the specific role of inter-chain tunneling. Due to computational cost, we have kept our
DMRG simulation up to a lattice of 80⇥2, with a maximum number of 6 bosons per site.

In chapter 2, after introducing the Bose-Hubbard model, we discuss its two phases: the Mott-
insulator and superfluid. Using a perturbative mean-field theory approach [12], we summarize the
phase diagram and its limitations in 1D. Later we introduce the concept of energy-gap, which is
used to draw the DMRG phase diagram [13]. In chapter 3, we extend the BHM with the nearest-
neighbor repulsive interaction. New phases like density waves, Haldane insulator, and supersolid
are characterized with correlation functions [3] and energy gap, which we extensively use for the
later part. We also show how the scaling of order parameters and energy gap is done to reach the
thermodynamic limit [3, 14]. In the end, we discuss the phase diagrams of 1D extended BHM
[3, 15].

Chapter 4 defines the extended Bose-Hubbard ladder [6, 10], what methods and observables
we use to draw the phase diagrams, and understand the phases. We also suggest two possible
experimental setups to model our Hamiltonian [16, 17]. In Chapter-5, first, we explain the phase
diagrams with weak and strong on-site interaction and the effect of inter-chain tunneling in the
phases. Then, we show a reentrant phase diagram for fixed inter-chain tunneling and discuss the
evidence for reentrance. We also study the effect on entanglement in our model and how the phase
diagram changes if we remove one central rung. At last, we show the existence of the Haldane
insulator using a different boundary condition [6].

In conclusion, we summarize our results and give an outlook about what we could not address
due to time constraints and directions for further research.
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Chapter 2

Bose-Hubbard Model

In the context of quantum phase transition [2], the Bose-Hubbard model is much simpler than
fermionic systems as the fermionic Mott transition is complicated by the fact that the anti-ferromagnetic
transition and localization transition occur at the same point [18]. However, it supports non-trivial
phase transitions, which makes it ubiquitous in many-body physics. This model was first intro-
duced in liquid helium to study superfluid to insulator transition [19]. Here, we look at this in a
periodic lattice potential, with an average density (r) of 1. Dynamics of atomic Bose gas in op-
tical lattice (Appendix.B) can realize the Bose-Hubbard model [20]. Truncating the inter-particle
interaction upto two-body terms, the system is described by the many-body Hamiltonian [20] :-

H[ŷ†, ŷ] =
Z

dx ŷ†(x)
⇣
� —2

2m
(x)+Vlat(x)�µ

⌘
ŷ(x)+

1
2

Z
dx

Z
dx0ŷ†(x)ŷ†(x0)V (x� x0)ŷ(x0)ŷ(x)

(2.1)
where ŷ(x) is a bosonic field operator for atoms, m is the atomic mass, µ is the chemical potential,
Vlat(x) being lattice potential and V (x � x0) is the 2-body interaction between two atoms at x and
x0. Here we consider } = 1.

Wannier states: Unlike the continuum case, where the energy eigenstates can be written as
Bloch waves: fk(x) [21], in optical lattices, we need to construct unitary superposition of Bloch
states to get well-localized functions around the lattice sites for each band n, called as Wannier
function : wn(x � xi) = 1p

N Âk e�ikxifk(x), which is localized around xi, decaying exponentially
around it (fig.2.1). These functions are orthogonal for different bands n as well as for differ-
ent sites xi. Although these single-particle Wannier functions neglect the effect of wave-function
broadening in presence of two particle at a site, instead using the two-particle Wannier functions
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does not show significant effect unless used in precision measurements or metrology [22]. That
is why we mostly consider the single-particle Wannier basis, which is mathematically convenient.
Now, in this Wannier basis, we can expand the field operators as [23]

ŷ(x) = Â
i

Â
m

b̂m,iwm(x� xi) (2.2)

where b̂m,i(b̂†
m,i) annihilates (creates) a boson in the mode represented by wm(x�xi) at the i’th site,

and satisfy the commutation relation, [b̂m,i, b̂†
n, j] = di jdmn [24].

Figure 2.1: Maximally localised Wannier functions for two lowest Bloch bands in a 1D sinusoidal
optical lattice. Taken from Ref. [24](Fig.2(a))(Green:band 1, Red: band 2)

Putting (Eq.2.2) in the Hamiltonian (Eq.2.1), we reach to a multiband Bose-Hubbard hamilto-
nian in second-quantized form-

H[b̂†, b̂] = �Â
m,n

Â
i6= j

Jm,n
i, j b̂†

m,ib̂n, j +Â
m,i

(em
i � µ)b̂†

m,ib̂m,i +
1
2 Â

m,n,o,p
Â

i, j,k,l
Umnop

i jkl b̂†
m,ib̂

†
n, jb̂o,kb̂p,l (2.3)

where b̂i, b̂†
i are bosonic annihilation and creation operators with commutation relation [b̂i, b̂†

j ] =

di j, and the terms have these forms-

(1) tunneling: Jm,n
i, j = �

Z
dxw̄m(x� xi)

h
� —2

2m
+Vlat(x)

i
wn(x� x j)

(2) energy offset: em
i =

Z
dxw̄m(x� xi)


� —2

2m
+Vlat(x)

�
wm(x� xi) (2.4)

(3) interaction: Umnop
i jkl =

Z
dx

Z
dx0w̄m(x� xi)w̄n(x0 � x j)V (x� x0)wo(x0 � xk)wp(x� xl)
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Figure 2.2: Schematic of Bose-Hubbard Model in 1D optical lattice. U defines the onsite repulsive
interaction and J defines the nearest-neighbor tunneling

Traditional Bose-Hubbard model: The traditional Bose-Hubbard model [19] is simpler than
(eq.2.3) as it assumes many physical situations.
(1) Lowest band: At sufficiently low temperature and small interaction energies, the atoms occupy
only the lowest band, i.e., n = 0 in this case [23].
(2) Only nearest-neighbor and on-site interaction: For a sufficiently deep lattice, the hopping en-
ergy Ji, j will be exponentially suppressed for all sites other than the nearest neighbors,i.e., Âhi, ji.
Similarly, in some practical situations, especially when the system does not have strong long-range
force, the on-site interaction term can well-describe the physics, i.e., i=j=k=l in Ui jkl . In summary,
we have Ji,i±1, ei and Ui.

On top of these, for most of the physics problems, we deal with homogeneous systems, and
so we can omit suffixes in Jhi, ji, ei and Ui. In this case e = const., and can be neglected from the
Hamiltonian. Now, simply by using the commutation relation and definition of number operator,
n̂i = b̂†

i b̂i, , we can write b̂†
i b̂†

i b̂ib̂i = n̂i(n̂i � 1). With all these, we will have BHM hamiltonian
defined as (also in fig.2.2):

HBHM = �J Â
hi, ji

(b̂†
i b̂ j +h.c.)� µ Â

i
n̂i +

U
2 Â

i
n̂i(n̂i �1) (2.5)

2.1 Phases of Bose-Hubbard Model

Bose-Hubbard model (spin zero) with U > 0, exhibits two types of ground-state phases: a super-
fluid phase and a Mott-insulator phase. Whereas in the superfluid phase, each atom is spread out
over the entire lattice and exhibiting phase coherence; the Mott-insulator phase has an exact num-
ber of localized atoms at individual lattice sites with random phase [25]. To understand these two
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quantum phases in the grand-canonical model, we define density as,

r =
Total number of particles

Total number of site
(2.6)

2.1.1 When r 2 Z : Commensurable density

(1) In strong coupling limit i.e J/U ! 0: For r = 1 : In this case, there is, on average, one
boson per site. If we observe the Hamiltonian(2.5), it says that one-Boson at a site does not cost
any on-site(U) energy. Here, as we consider U ! • and if we want to minimize the energy for
the ground state, the on-site interaction should not contribute. So, it must be the case that there is
precisely one boson at each site, maintaining no contribution from U in the ground state energy.

For r � 2 (r 2 Z), we can think of the case as competition between �J and U . The term with
J wants to delocalize the atom, but the energy cost for that is U, and thus in U � J, the hopping
process is suppressed.

In summary, for an integer number-density, bosons will be suppressed to move from one-site to
another and the system is in an insulating state, called Mott-insulator (MI). The many-body ground
state of MI can be written as a product of local Fock states at each lattice site [12, 18]-

|YMIiJ=0 µ
M

’
i=1

(b̂†
i )

r |0i (2.7)

where M is the total number of lattice sites, and the filling factor is r .

(2) In weak coupling limit i.e U/J ! 0: From the above discussion it is obvious now that
when J is strong, tunneling is more favoured. In this limit, the single-particle wave-functions of N

atoms spread out over the entire lattice of M sites to minimize the ground-state energy [25]. This
quantum state of delocalized bosons is called superfluid (SF). The wave-function of SF is given
by [18, 25]-

|YSFiU=0 µ
⇣ M

Â
i=1

b̂†
i

⌘N
|0i (2.8)

Thus, as the J/U ratio increases, we expect a phase transition from MI to SF state.
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2.1.2 When r /2 Z : Incommensurable density

In this case, we cannot have a Mott-insulator because that requires an equal and integer number of
particles at each site, which is not possible when r /2Z. Consider r = n0 +dn where n0 2Z. Then
these excess bosons (dn) move through the whole system, creating a SF state even for J/U ! 0.

Here, we should emphasize that quantum fluctuation plays an essential role in the phase transi-
tion. Due to strong fluctuation in atom number, atoms in SF are delocalized and exhibit long-range
phase coherence and interference pattern, coming from number-phase uncertainty. Contrary to
that, atom-number fluctuation is reduced in the MI phase, leading to the increasing fluctuation in
the phase, for which it loses phase coherence. In this way, using the quantum uncertainty principle,
we explain how coherence is lost in MI, but present in SF.

2.2 Phase Diagram of BHM

The Bose-Hubbard model is one of the most straightforward many-body systems that cannot be
reduced to a single-particle Hamiltonian [12], and the challenge for an analytical solution comes
from the tunneling term in the eq.2.5.

2.2.1 Perturbative Mean-Field theory

In perturbative mean-field theory (MFT), we neglect second order fluctuations as (b̂†
i �hb̂†

i i)(b̂ j �
hb̂ ji ' 0, and define order parameter, j ⌘ hb̂i. This reduces the tunneling term as local terms -

) b̂†
i b̂ j ' j b̂ j +j b̂†

i � |j|2 (2.9)

Now, if we use perturbation in J/U , we can obtain free energy as, [12]-

E(j, j̄) =
U
2

r(r �1)� µr
| {z }

⌘a0

+Jz|j|2 +
h
(Jz)2

⇣ r +1
µ �Ur

+
r

U(r �1)� µ

⌘i
|j|2

| {z }
⌘a2|j|2

+a4|j|4 +O(|j|6)

(2.10)
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Figure 2.3: MFT phase diagram for BHM in (µ,J) plane, where Mott lobes of r = 1 and 2 are
surrounded by SF. Solid lines show MI-SF transition. (MI:Mott-insulator ; SF:superfluid)

where z is the coordination number. In Landau’s phase transition theory, by minimizing this energy
potential E(j, j̄) with respect to j , we can show that the MI-SF transition line is defined by

a2 = Jz+(Jz)2
⇣ r +1

µ �Ur
+

r
U(r �1)� µ

⌘
= 0 (2.11)

plotted in (fig.2.3). We can see that MI lobes of r = 1,2 are surrounded by SF phase. Looking
at that phase diagram, we can conclude that SF exists for all J > 0, depending on µ , even when
U/J � 1. There are always two critical points (µc) for MI-SF transition at any J/U value, other
than the tip of the lobe. These are called µ+ and µ� corresponding to the upper and lower criti-
cal line, which defines the commensurate-incommensurate transition via adding or removing one
particle. (sec.2.1.2). Thus we can identify

µ+ = E0(N +1)�E0(N); µ� = E0(N)�E0(N �1) (2.12)

where E0(N) is the ground-state energy for the system of N Bosons. µ+(µ�) are particle (hole)
excitation gap, quantifying the energy cost (gain) to add (remove) a particle from the system.

In this (µ,J) plane, we can see the signature of two different types of MI-SF transition as
discussed in sec.2.1. On the sides of the Mott-lobe, where µ+ 6= µ�, the phase transition is driven
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by density fluctuations [19]. However, on the constant density line (µ+ = µ�), it is driven by phase

fluctuation, depending on the strength of J/U , defined by the tip of the lobe. In case of 1D, the
coordination number is z = 2 and the tip of the r = 1 MI lobe is at [23],

✓
J
U

◆

c
' 0.08578. (2.13)

This tip also signifies the critical point Jc, after which all points are in the SF phase. In the thesis,
we have worked with commensurate r = 1, which means whenever we say MI-SF transition, it
means tip-of-the-lobe point.

BHM in 1D: In low- dimensional, e.g.,- 1D or quasi-1D systems, the fact that two particles
cannot cross without feeling their interaction makes slight quantum fluctuation very important
[26–28], leading to novel physics. On the other hand, technological revolutions are towards minia-
ture objects, for which studying phases in low-dimension is instrumental. However, the mean-
field theory fails in 1D and quasi-1D, as it neglects the critical quantum fluctuation of the sys-
tem. Hence, we will be using the best approximate numerical method available for such purpose;
namely, density-matrix renormalization group algorithm(DMRG) [29] (Appendix.A).

2.2.2 Charged Energy Gap

Obtaining the critical point at constant density means getting the tip of the lobe, i.e., when µ+ =

µ�. For that purpose, we can define a quantity called charged energy gap as [30–33]

Dc
L = µ+(L)� µ�(L) = E0

L(N +1)+E0
L(N �1)�2E0

L(N) (2.14)

such that when Dc
L = 0, we have a phase transition from MI to SF. Here, L defines the system

size. Previously, in the mean field theory (eq. 2.12), we do not have L- dependence as the energy
functional there depends on the coordination number z, and that means it is already with infinite
or periodic lattice. The ‘charge’ in the charged energy gap denotes the number of particles, that is,
the charged gap is the energy gap involving the number of particles. On top of our understanding
from the MFT phase diagram, if we add this definition, it is clear that MI should be gapped phase
as in Mott lobe µ+ 6= µ� ) Dc 6= 0, whereas SF should be gapless.

However, this charged gap directly defines superfluidity without any context of the MFT phase
diagram. For that, consider a 1D lattice with a filling factor =1, where there is exactly one particle
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per site (fig.2.4). Let us say the energy of this configuration is E0
L(N). Now, if a particle tunnel

from one site to another, (as shown in the fig) the new configurations can be thought of as creating
one extra-particle at one site, whereas removing another particle at another site, which costs the
energy -

[E0
L(N +1)�E0

L(N)]+ [E0
L(N �1)�E0

L(N)] (2.15)

which is the same as Dc
L. This implies that the charged energy gap quantifies the energy cost to

move a particle on a lattice, i.e., the delocalization of particle-hole excitation throughout the lattice.
So, a gapless phase means it does not need any energy for moving particles, which is the case in
SF. On the other hand, gapped phases should be insulated, as particles need extra energy to move
around. From this discussion of the charged energy gap, it should be clear that the charged energy
gap is a robust probe to identify gapped to gapless transitions, e.g., MI to SF transition.

Figure 2.4: Explaining charged energy gap as the energy needed to move a particle in the lattice

2.2.3 DMRG Phase diagram for 1D BHM

DMRG algorithm (Appendix.A) is a powerful numerical method to obtain ground-state energy of
an extensive 1D system, which is otherwise impossible using exact diagonalization due to the large
Hilbert-space dimension. We need to work with large lattices to get rid of finite-size effects, and
crucial in strongly correlated systems as quantum phase transitions occur only in the thermody-
namic limit (large-L) at zero-temperature [12].

Here, we obtain a similar phase diagram (like fig.2.3) for BHM by calculating µ±, but now
using finite-size scaling of DMRG results. Although finitely many bosons can occupy each lattice
site in principle, in this DMRG calculation, we have restricted it to nmax = 4 for computational
cost, which turns out to be good [14]. By calculating E0

L(N),E0
L(N + 1),E0

L(N � 1), we have ob-
tained µ±(L) for L = 80,100,120,200. For these calculations, we have gone till bond-dimension
of c = 400, with maximum 20 sweep (Appendix.A). Then by extrapolating the results of these
finite-size lattices with respect to 1/L, the thermodynamic limit is obtained (fig.2.5). These µ±,
for different J/U , give us the DMRG phase diagram(fig.2.6) in the (µ/U,J/U) plane. As we can
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see, this phase diagram is drastically different from the MFT phase diagram (fig.2.3). The tip of
the lobe is at (J/U)c = 0.277 [13], which is far from the MFT value (eq.2.13).

0.000 0.005 0.010 0.015
1/L

0.60

0.65

0.70

0.75

0.80

µ
±
/U µ+/U

µ�/U

Figure 2.5: Scaling of particle and hole excitation gap with 1/L (r = 1,J = 1,U = 4). Here
µ+ = 0.716+3.555/L and µ� = 0.678�2.559/L.

Figure 2.6: DMRG phase diagram of BHM for r = 1. The dashed line indicates region with
integer density. Reentrance from MI-SF-MI is observed around J/U ' 0.22 (MI:Mott-insulator,
SF:superfluid)

In this 1D case, the correlation function in SF phase decays algebraically rather than having
a long-range order, and that is why the phase is called quasi-SF, instead of true-SF. For constant
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integer filling, the SF-MI transition (at the tip) is of the Berezinskii-Kosterlitz-Thouless (BKT)
type [13,31], and the existence of this BKT transition in 1D BHM can be explained by the scaling
theory discussed in Fisher et al. [19], which showed that for a d-dimensional BHM, phase transition
in constant density line (tip) is in the same universality class of (d +1)-dimensional classical XY-
model. Hence, 1D-BHM corresponds to the 2D-XY model, and it has a BKT transition [34].

Reentrance: In the DMRG phase diagram (fig.2.6), we can see that for J/U > 0.2, the lower
phase boundary is bending down [13], which means MI is reentrant as a function of J/U . The
reentrance is very non-trivial because this means that with increasing kinetic energy, the system
localizes. MFT fails to capture these as perturbative series of J/U is incorrect for large J/U

values. Particle-hole asymmetry in Mott-lobe, along with BKT-transition is considered responsible
for this reentrance [18]. In higher dimensions,(d � 2), this reentrant behavior is missing as those
transitions are not of BKT-type. Also, for a higher filling factor, the kinetic energy is higher due to
more bosons, and the tip of the lobe shrinks to a smaller J/U value, leaving no chance of reentrance
behavior to appear [35].
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Chapter 3

Extended Bose-Hubbard Model

Quantum gases are mostly governed by the 2-body interaction between particles [12]. In the previ-
ous chapter, we discussed bosons with short-range interaction U . However, in the last two decades,
it is found that dipolar interactions between a pair of magnetic or electric dipoles [36–38] can lead
to novel phases of matter in a strongly correlated regime. The dipole-dipole interaction being
long-range and anisotropic, is quite different than isotropic, short-range contact interaction [38].
Simultaneously, the experimental possibilities to cool and trap polar molecules and atomic species
with a larger magnetic moment make dipolar gas a topic of huge attraction [39].

With this motivation, we can add a nearest-neighbor interaction term, at minimum, to the BHM
to account for the long-range interaction. For simplicity, we consider this as constant over the
lattice. This extended Bose-Hubbard model (EBHM) (fig.3.1) hamiltonian then written as-

HEBHM = �J Â
hi, ji

(b̂†
i b̂ j +h.c.)� µ Â

i
n̂i +

U
2 Â

i
n̂i(n̂i �1)+V Â

i
n̂in̂i+1 (3.1)

where J,U,µ have their usual meaning as in BHM and V defines the nearest-neighbor repulsive
interaction.

Mapping to Heisenberg spin-S model: In strong U limit, EBHM can be mapped to anisotropic
Heisenberg spin-S chain [7, 32, 40] using the Holstein-Primakoff transformation

S+
i =

p
(2S �ni)bi

S�
i = b†

i

p
(2S �ni) (3.2)
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V

Figure 3.1: Schematic of extended Bose-Hubbard model in a 1D optical lattice. J provides tunnel-
ing to nearest-neighbor, U and V are respectively on-site and nearest-neighbor interaction.

Sz
i = S �ni

and the spin hamiltonian has the form -

H = Â
i


2J(Sx

i Sx
i+1 +Sy

i Sy
i+1)+SV Sz

i S
z
i+1 +

SU
2

(Sz
i )

2
�

(3.3)

Assuming, hSzi = 0 (i.e., r = hnii = S), this mapping is most correct if the fluctuation is small
dni = ni � S ⌧ S and the maximal site occupation nmax  2S. In our case, r = 1, which implies
S = 1, meaning we need nmax  2 for accurate mapping. This is not the case for small U , and that
is why this mapping can show a significant departure from the correct results in small U .

3.1 Phases of extended Bose-Hubbard model

This section discusses how different phases arise due to competition between the Hamiltonian
terms and how to characterize those. In the small V region, this model is the same as BHM, and
we have the usual MI and SF phases. The new phases emerge in large V in a strongly correlated
regime. Here, we have restricted discussion to the 1D system only, with r = 1 and U,V > 0. By
fixing r , we fix total N for a fixed lattice size, and hence µ is also constant. We set the energy
scale by J = 1, which is the same as saying the parameters scale as U/J and V/J.

3.1.1 When J is small

J being small, we mean the system has large U and V . Here, we can have three extreme situations
considering U and V , namely U � V , U ' V , U ⌧ V .
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(a)

(b)

(c)

Figure 3.2: Insulating phases of 1D EBHM for r = 1 : (a) Bound particle-hole pairs in MI, (b)
Alternating particle-hole pairs (like DW) separated by string of non-zero fluctuating sites (a bunch
of 0’s) in HI, (c) Density wave pattern of (....2-0-2-0-2...) in DW phase (MI:Mott insulator, HI:
Haldane insulator, DW: density wave)

(1) When U � V : V being negligible, we get back to the usual BHM. On top of that, we have
a small J, which implies the system will be in the Mott-insulator phase, characterized by a non-
zero charged gap and fixed number of particles at each lattice site. To mention, due to quantum
fluctuation, there can be bound particle-hole pairs in MI (fig.3.2(a)), quantified by a non-local order
parameter called parity correlation function [6, 41]-

OP( j,r) ⌘
*

exp

(
ip Â

j<k< j+r
d n̂k

)+
(3.4)

(2) When U ⌧ V : In a strong V regime, the system wants to minimize the term n̂in̂i+1. We
cannot have a homogeneous MI-like structure as it costs energy ⇠ V for each pair of lattice sites.
In fact, a new wave-like pattern of ....2 � 0 � 2 � 0 � 2 � 0.... emerges, which can minimize the
interaction (fig.3.2(c)). This is called density wave (DW). This DW-order is characterized by a
density-fluctuation correlation function [3]-

ODW ( j,r) ⌘ (�1)rhd n̂ jd n̂ j+ri (3.5)

where d n̂ j = n̂ j �1. On top of this, as J is small, the system does not delocalize, and it is a gapped
insulator phase.
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(3) When U ' V : In this regime, there is a possibility of a new gapped insulating phase [42],
which is neither MI nor DW. Like Haldane gapped phase [43] of quantum spin-1 chain, this new
phase is identified only by a highly nonlocal string correlation function [6, 41, 42]-

Ostring( j,r) ⌘
⌧

d n̂ j exp

(
ip Â

jk< j+r
d n̂k

)
d n̂ j+r

�
(3.6)

By analogy to spin-system, it is called bosonic Haldane insulator (HI). It has alternating particle-
hole pairs separated by a string of non-zero fluctuating sites (fig.3.2(b)). We can think that HI
arises as a compromise between moderate U/J, which wants to delocalize the particle-hole pairs,
and moderate V/J, which wants particle-hole pairs to be neighbors [6].

Originally, Dalla et al. [42] considered large U , such that local Hilbert space can be truncated
at 3 occupation states n = 0,1,2 for r = 1 case, which can be mapped to an effective spin-1 model
with Sz

i = ni �r as (eq.3.3),

H 0 ' J Â
i
(S+

i S�
i+1 +h.c.)+

U
2 Â

i
(Sz

i )
2 +V Â

i
Sz

i S
z
i+1 (3.7)

In this spin-1 language, DW corresponds to the anti-ferromagnetic(AF) order of the spin along
z-direction, whereas MI looks like Sz

i = 0 state for each site, with bound particle-hole excitation
of Sz

i = ±1. HI phase although mostly contain sites with Sz
i = 0, it has unusual ordering. The

spin-HI is identified with fully broken hidden Z2 ⇥ Z2 symmetry [44]. That can be revealed by
introducing a non-local unitary transformation, which makes string-order parameter of the spin-
1 hamiltonian H 0 to ferromagnetic order of another Hamiltonian H̃ 0. With this, it was shown
that in HI regime, ferromagnetic order for both x and z direction are non-zero, implying Z2 ⇥ Z2

symmetry breaking [44], and there are 4-degenerate ground-states of H̃ 0. However, the original
H 0 has a unique ground state with near degeneracy. From the original Hamiltonian’s perspective
(eq.3.1), it seems this Z2 ⇥Z2 symmetry of H̃ 0 is connected to U(1) symmetry of H.

3.1.2 When J is large

In a large-J limit, the kinetic energy of the system is more, and the system wants to delocalize.
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(1) When U � V : V being negligible, the model has superfluid phase like BHM in the strong-J
limit, characterized by Dc = 0, and the SF-correlation function, defined as [13]-

G( j,r) = hb̂†
j b̂ j+ri (3.8)

which decays as GSF(r) µ 1
rK in SF. Using the analogy of Luttinger liquid [45], the exponent at

BKT transition is expected to be Kc = 1/4, and by a DMRG calculation, it is being verified [13].

(2) When U ⌧ V : As we discussed previously (sec.3.1.1), in a strong V regime, there will be
a DW-order. However, strong J can prevent the insulating behavior of the system by gaining
superfluidity and diminishes the DW-order [13], especially in 1D. There is also another possible
phase that can support both the DW-order and superfluidity. This new phase is called supersolid
(SS) [46]. Although this simultaneous presence of density-order and superfluidity is unusual, it is
useful to think that the entire or part of the modulated solid structure is moving together in SS [47].

Below in this table 3.1, we have summarised minimal characteristics for the phases discussed
in this section [5]. The insulators such as MI, HI, and DW are gapped, and SF and SS are gapless.
The density order is characterized by ODW , which is non-zero in DW and SS. Non-zero Ostring

characterizes the HI; however, DW also has a non-zero value of that because Ostring contains the
part of ODW (eq.3.6).

Table 3.1: Order parameters to characterize phases

Phases Dc ODW Ostring

MI 6= 0 = 0 = 0
SF = 0 = 0 = 0
HI 6= 0 = 0 6= 0
DW 6= 0 6= 0 6= 0
SS = 0 6= 0 6= 0

3.2 Phase diagram of EBHM

Using the table. 3.1, in this section, we discuss the phase diagram of 1D-EBHM for fixed r = 1,
obtained by DMRG [3] in open-boundary condition (OBC). We choose OBC, as DMRG works
efficiently there [48]. The main challenge to obtain the phase transition points comes from the
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finite-size effect [12], and to solve that, scaling of order parameters is needed. Here, we first
demonstrate how the phase transition points are obtained using scaling, and the example presented
here will also show that we can have the wrong conclusion without scaling.

3.2.1 Scaling of order parameters

For a fixed lattice size, we calculate the order parameters and correlation functions in the central
bulk (L/2 sites) part only, discarding the L/4 sites at both ends to reduce the edge-effect. To remove
the initial-position (j) dependence of the order parameters, it is averaged over all possible initial
sites ( j) inside the bulk for a fixed r, i.e.,

O(r) =
1
Nr

Â
j2M

O( j,r) (3.9)

where M defines the bulk of the lattice and Nr is the total number of possible segments of length
r inside M. Then from the plot of O(r) vs r (fig.3.3(a)), we obtained the r ! • limit of the order
parameters. However, this still contains the effect of the lattice size L (fig.3.3(b)). To remove that,
we can extrapolate finite lattices’ O to thermodynamic limit, if we need that value. However, here
we are interested in obtaining the critical point, not the O at L ! •. For that, first, we get the phase
transition point for finite lattices by identifying where O(r ! •) starts having non-zero value, and
then extrapolate those (finite-size) transition points with 1/L, to finally get the critical point at the
thermodynamic limit (fig.3.3(b-inset)).

Example (ODW ): As shown in (fig.3.3)(a), averaged ODW (r) decays with r to a constant value
in large r limit, which is considered as the (r ! •) value. Then in fig.3.3(b), we can see the
L-dependence, as for smaller L, DW-order emerges at smaller V . We consider ODW � 0.01 as
non-zero, below this are considered zero. Vmin is defined as the critical point when ODW =0.01. By
fitting three different Vmin’s of L = 50,100,150, linearly with 1/L, we get Vc for L ! •, which is
the y-intercept in fig.3.3(b)(inset). Here, we get Vc ' 3.026 ± 0.02, where the uncertainly comes
from the least count of our data, which is 0.02.
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Figure 3.3: Finite-size scaling of DW-order parameter to obtain critical point Vc: (a) Density-wave
order parameters (ODW ) as a function of distance r for V=2.98 and V=3.2 in a lattice of L=151
with U/J=2 (b) Extrapolated density-wave order parameters (ODW (r ! •)) as a function of V for
different lengths L. For example, in L=51, the system exhibits a transition to DW at V=2.87 ±
0.02, where the ODW starts being finite(0.01) . Inset: Linear fit of transition point (Vmin) in finite-
size lattice with 1/L to obtain the thermodynamic critical point. Here Vmin = 3.026�8/L, meaning
Vc = 3.026

3.2.2 Scaling of energy gap:

As most critical points are gapless, the energy gap serves as an excellent quantity to obtain a phase
diagram. Also, in DMRG, we minimize energy to get the ground state, so energy has the slightest
numerical error. On the other hand, calculating any order parameters and correlation functions
involves several steps, owing to more truncation and numerical error [29]. Unfortunately, in a
finite system, the gap is non-zero even at critical points, which challenges identifying those critical
points. Here, we discuss two methods for scaling the energy gap and identifying gapless points.

Method 1: In this method, we don’t scale the gap to obtain Dc
L!•. Instead, we get the param-

eter value where the local minima of the energy-gap is obtained for different L’s, and scale those
parameter values with respect to ⇠ 1/L to obtain the critical point in L ! • [3,49]. In (fig.3.4(a)),
we show an example, where we obtain Vmin = 3.033�7.615/L, implying Vc ' 3.033±0.02.

Method 2: This method depends on the scaling theory at critical points [1]. We know that at a
critical point, the energy gap follows this relation [10, 14]-

Dc
L ⇠ 1

L
f
✓

L
x

◆
(3.10)
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where x is the correlation length and f (x) is a scaling function, which follows f (x) ⇠ x at x ! 0.
Now, in the gapless points, x ! •, making f (L/x ) ⇠ 0, and LDc

L = constant for all L. That means
LDc

L for different L intersect at the critical point [10, 14]. However, due to numerical tolerance,
in literature [10], a finite difference between L1Dc

L1
and L2Dc

L2
is also considered as zero. In our

calculation, that tolerance value is 0.04, which means if L2 �L1 = 10, then L2Dc
L2

�L1Dc
L1

 0.04
is considered critical. For gapped to the gapless phase transition, LDc

L curves not only intersect
but coalesces and we find a real zero difference between two curves [14]. However, we stick to
numerical tolerance of 0.04. We have also observed that changing the tolerance does not affect
the qualitative phase diagrams. As an example, in (fig.3.4(b)), we can see how the lines coalesce
around or before V ' 3.05, signifying the phase before that value as a gapless phase. Considering
the tolerance limit of 0.04, we obtain Vc ' 3.05 ± 0.02, which is inside the error bar of obtained
value using method-1.

The example discussed in (fig.3.3,3.4) also proves that although the system is in a strong J/U

regime, with a strong V, it does not have a SS phase, as we see that Vc for the destruction of SF
and onset of DW coincide. In other words, there is a direct transition from SF to DW phase at
Vc ' 3.04 ± 0.02, and it hints to us the importance of finite-size scaling to obtain critical points,
without which someone may claim that SS exists in 1D.
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Figure 3.4: Finite-size scaling of the charged gap to obtain critical point Vc: (a) Using method 1:
Dc

L with V for three different L. (Inset: Minima of Dc
L for different L are linearly fitted to 1/L to

obtain Vc ) (b) Using method 2: LDc
L for different L coalesces at Vc=3.04

3.2.3 Effect of even and odd L

For finite-lattice, in particular to EBHM, the even and odd lattices have different features and
challenges. Here we discuss how we can handle those.
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Close chain: For periodic boundary condition, if we consider even L, there is two degenerate DW
possible, i.e., |202020i and |020202i, whereas, for odd L, the DW will get an artificial center (look
below at open chain) because, in |20202i, the first and last sites also repel and this configuration
cannot be stable. We can apply positive and negative chemical potential µ at two ends to lift the
degeneracy in even-L [3, 42].

Open chain: As the edge sites have one less neighbor in an open chain than bulk sites, the system
always tries to put the maximum number of particles at the edge, minimizing energy cost due to V .
In this way, there is no possibility of O’s (zero number-state) at the edges and thus no degeneracy
in DW. However, this creates a problem for even L. As there must be 2’s at the edges, it has to
create an artificial node [50] in the middle, like |2020i|0202i, which in turn makes a problem
for calculating ODW in the bulk [41]. On the other hand, for odd L, it can have |2020i|1i|0202i,
without destroying the density-wave structure in bulk. The middle |1i owes to the fact that we have
N = L, and already two ends are occupied with 2’s. As a caution, these classical occupancies should
not be taken seriously, as when we calculate local expectation valuehn̂ii, due to the probabilistic
nature of quantum mechanics and numerical calculation, we do not get integer values. As shown
later, we get uniform density waves without identifying the middle site in the odd chain.

On the other hand, this |1i in the middle gives the challenge to calculate Dc in DW, for L =odd,
in strong V , low U regime. There the system mainly wants to minimize the nearest-neighbor
interaction. While calculating Dc

L, when we add or remove one extra particle to |2020i|1i|0202i, it
can sit in the middle almost without any energy cost giving rise to a gapless phase and can fool us.
In other words, |1i can move around the lattice almost at no cost. So, the charged gap is not a good
probe here. That is why the charged gap in this regime is calculated for L=even, and DW-order
is calculated in L=odd to avoid the problems rising from OBC [51]. However, as we do finite-
size scaling, using odd-even does not affect our phase diagram. The above example (fig.3.3,3.4)
demonstrates how Dc and ODW gives rise to the same critical point, despite being calculated for
even and odd Ls. We do not use opposite µ , as we want to stick with normal boundary conditions
and different boundary conditions should be treated separately [15].

3.2.4 Quenching edge-state for HI

The challenge in investigating bulk properties of HI with open boundary conditions is that the
result is affected by edge states [52]. There are mainly three ways to handle this problem.
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Method 1: Instead of using N = L bosons in the lattice, we can add one extra Boson (N = L+1)
for each chain, which results to the magnetization of Âi Sz

i = �1 in spin-1 language. Due to the
Haldane gap, this extra spin is accommodated at the edges, making Sz

1 = Sz
L = 1/2, without any

energy cost, and polarizes the edge states [15, 40, 41]. Although N = L + 1 means r 6= 1, in
thermodynamic limit, r ! 1. Also adding one particle to r = 1 doesn’t change the DW-structure,
whereas it can create solitons for r = 1/2 [53].

Method 2: Applying opposite chemical potentials at the left and right edge sites, we can break
the degeneracy of the edge states [6, 15, 41, 42].

Method 3: We can add hard-core bosons at each chain boundary (sites 0 and L+1), lifting the
degeneracy [40].
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Figure 3.5: Non-zero string order after quenching edge mode in HI: for N=L (without quench), due
to edge mode Ostring decays to negative value; by adding extra particle (N=L+1) or by applying
opposite µ± at the edge, Ostring fixes to a non-zero value

In (fig.3.5), we show how using method-1 and method-2, we can quench the edge states, which
in turn change the constantly decaying Ostring of N = L case to non-zero string-order.

3.2.5 Phase diagram

In this last section of EBHM, we discuss the phase diagram of 1D EBHM in the (U/J,V/J) plane,
obtained by Rossini et al. [3] and Kurdestany et al. [15]. We can see in (fig.3.6), for both cases,
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(a) (b)

Figure 3.6: Phase diagram in (U,V ) plane for 1D EBHM for r = 1 with J = 1 : (a) µ± applied at
the edge: MI, SF, HI, DW are observed (taken from Ref. [3]), (b) Without applying any µ±: MI,
SF, DW observed, HI is replaced by SF (taken from Ref. [15])

without quenching the edge mode [fig-b] and with quenching it using opposite µ [fig-a], MI is
observed for large U with small V region, as we discussed in section-3.1. On the other hand, with
a strong V, the system is in the DW phase for the same U. For smaller U, where J/U is strong, the
SF phase is observed. All these phases are characterized following table.3.1.

Two boundary conditions differ for obtaining the HI phase due to the spurious effect of edge
states. In the presence of gapless edge mode, for N = L case (fig-b), we observe the SF phase in
place of the HI phase, whereas by quenching it in (fig-a), we find the HI phase in the U 'V regime.

Existence of supersolid: While in the above phase diagrams we cannot see SS, its possible
existence is shown in [15, 40], where the authors are also doubtful. In 2D, with commensurate
fillings, it is present [54, 55]. With incommensurate filling above r = 1

2 , SS phase appears in both
1D [56, 57] and 2D [4]. Only unusual thing is absence of SS for 1D commensurate filling of
r = 1

2 [13,47] and r = 1 [5,49,56]. In our thesis, we discuss in detail how this dimensionality [58]
plays a role to get SS.
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Chapter 4

Extended Bose-Hubbard Ladder

In the previous chapters, we discovered that in 1D EBHM, there are a reentrance behavior [35],
BKT-type SF-MI transition [59], and no SS exists for r = 1. However, these are not the case in
2D or higher dimensions. These features of dimensionality in EBHM make it enjoyable to study
dimensional crossover from 1D to 2D. On the other hand, as we believe that these behaviors can be
related to the strong quantum fluctuation in low-dimensional physics [7,27], it is best to consider a
2-leg ladder rather than a multi-leg ladder. Here we can study the effect of inter-leg coupling along
with the strong fluctuation.

With this motivation, we have systematically studied ground-state phase diagrams of the two-
leg ladder extended Bose-Hubbard model. Our main focus is to understand the role of inter-chain
tunneling in the obtained phases. This type of bosonic ladder has also been studied using the
Bosonization method [6, 60] and DMRG [10] earlier with different motivations. They showed
that inter-chain tunneling increases the region of superfluidity [10], and can destroy the direct
MI-HI transition by establishing an SF phase in the intermediate region [6]. These results hint
that there is a possibility of a supersolid in the strongly correlated regime. However, complete
phase diagrams of this model with supersolid and the role of interchain tunneling in it were never
studied. Other studies with modified Bose-Hubbard ladder have found dimer superfluid in case of
attractive on-site interaction [61], pair-superfluid where attractive inter-chain interaction [62–64]
was introduced, fractional insulator phases in strong inter-chain coupling limit [65], and rung-pair
localization with hard-core bosons [66].
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Figure 4.1: Schematic diagram for the ladder setup. J provides the inter-chain tunneling, V is the
nearest-neighbor interaction along a chain, U is the strength of the on-site interatomic interaction,
and t? is the inter-chain hopping.

4.1 Hamiltonian

We consider an extended Bose-Hubbard ladder, schematically shown in (fig. 4.1), described by the
Hamiltonian [6, 10, 61, 65],

Ĥ = �J Â
i,a

(b̂†
i,a b̂i+1,a +H.c.)� t? Â

i
(b̂†

i,1b̂i,2 +H.c.)

+
U
2 Â

i,a
n̂i,a(n̂i,a �1)+V Â

i,a
n̂i,a n̂i+1,a , (4.1)

where b̂†
i,a(b̂i,a) is the bosonic creation (annihilation) operator and n̂i,a = b̂†

i,a b̂i,a is the number
operator at the site i in the leg-a as shown in fig.4.2. For two-leg ladder, a = 1,2. Here we
consider a symmetric ladder, where the parameters are equal in both legs. The parameters J and
t?, respectively, provide us intra-chain nearest-neighbor and inter-chain hopping strengths. U

and V denote on-site inter-particle and the nearest-neighbor repulsive interaction in each chain,
respectively. As we consider fixed r , (canonical case) we omit µ from the Hamiltonian. At t? = 0,
the Hamiltonian in Eq. (4.1) breaks up into two independent chains for EBHM, and the critical
points match with the 1D model [15].
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4.2 Method

We have used the matrix-product state (MPS) based density-matrix renormalization (DMRG) [11,
29, 67] algorithm implemented in TenPy package [68] for diagonalizing the Hamiltonian to get
the many-body ground-state. The ground-state phase diagrams are obtained in open-boundary
condition using finite-size scaling of order parameters and energy gap discussed in section.(3.2).
We have performed simulations in 80  L⇥2  160 lattice sites with a maximal number of nmax = 6
bosons per site depending on the parameter values. For DMRG, we have used bond dimensions up
to c = 800 and a maximum of 30 sweeps as needed for convergence (Appendix.A). The truncation
errors in our calculation are always less than 10�6. For the representative purpose, sometimes we
have gone up to L⇥2 = 400 sites.

We have used 2N = 2L, i.e., r = 1 for primary phase diagrams, where we may have missed HI,
as explained in section(3.2.4). To recover HI, we also obtain some diagrams with 2N = 2(L + 1).
Later in the thesis, to show the effect of the rung, we also remove one central rung and obtain an
un-scaled phase diagram for comparative purposes. To simulate the ladder Hamiltonian, we have
mapped it to a 1D array of sites in a zig-zag fashion, as shown in fig.4.2.

Figure 4.2: Mapping ladder sites to 1D-chain in a zig-zag way: sites at leg-1(leg-2) are mapped to
odd (even) positions of the 1D chain. Here (i,a) denotes site i at leg-a .

4.3 Observables

For phase diagram: For characterising phases and identifying the phase-transition points, we
mainly use following energy gap and correlation functions, similar to 1D EBHM (Table.3.1)-

Charged gap: Dc
L = E0

L(N +1)+E0
L(N �1)�2E0

L(N), (4.2)
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DW order: Oa
DW( j,r) = (�1)rhd n̂ j,ad n̂ j+r,ai, (4.3)

String order: Oa
string( j,r) =

⌧
d n̂ j,a exp

(
ip Â

jk< j+r
d n̂k,a

)
d n̂ j+r,a

�
, (4.4)

where ( j,a) denotes the site j at leg-a . All the correlation functions are measured in the intra-leg
direction and it is symmetric in both legs. Then these are scaled with different single-leg lengths
L as similar to the 1D case (section.3.2.1). L in the charged gap Dc

L denotes the single-leg length
L and we calculate on the whole system of 2L lattice sites with {2N,2N ± 1} particles. We use
this ‘L’ [10] while calculating LDc

L for the scaling (section.3.2.2). If someone considers 2LDc
L for

the purpose, it doesn’t affect the phase diagram much from what we have used. As numerical
tolerance, here also we use Dc

LDL = 0.04 as numerical zero.

Correlation functions for better understanding: To understand the phases and their character-
istics better, we calculated following correlation functions (also shown in fig.4.3) -

SF correlation fn: Ga( j;r) = hb̂†
j,a b̂ j+r,ai, (4.5)

Rung correlation: g( j) = hb̂†
j,1b̂ j,2i, (4.6)

Rung-rung corr.: gk( j;r) = hb̂†
j,2b̂ j+r,2b̂†

j+r,1b̂ j,1i�hb̂†
j,2b̂ j,1ihb̂†

j+r,1b̂ j+r,2i (4.7)

Rung-leg corr.: Rl( j;r) = hb̂†
j+r,1b̂ j+r,2b̂†

j+r,2b̂ j,2i�hb̂†
j+r,1b̂ j+r,2ihb̂†

j+r,2b̂ j,2i (4.8)

where j defines an initial position and r denotes the distance from it. To remove the dependence
of j, all the above correlation functions are averaged over j for fixed r inside the bulk region. We
consider this j-independent correlation function as a result, which is a function of only r. Notice,
we do not add Hermitian conjugate (h.c.) to the correlation functions because the Hamiltonian
is time-reversal symmetric, and the wave function is real. We have also checked this within the
numerics.

SF-correlation [Ga (r)] is measured along the leg-direction, and it is symmetric in both legs for
all the phases. Rung-correlation [g( j)] defines the hopping of particles along the rung direction,
which says how strongly particles are exchanged between legs, and in turn, describes the role of
t?. With the onset of DW-order, the lattice is divided into even-odd sites, so we average over even

and odd sites separately.

Rung-rung correlation [gk(r)] is a 4-point correlation function, characterizing correlated hop-
ping in two-rungs at a distance of r. In simple words, it measures if in one rung, particle tunnels
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from lower chain to upper-chain, then how much probable it is that another particle will also tunnel
from upper-chain to lower-chain at a distance r. A close look at this captures the effect of intra-
chain repulsive interaction V . Remember, the direction of these two hopping should be opposite
(fig.4.3).

Similar to the rung-rung correlation, the rung-leg correlation [Rl(r)] measures if one particle
tunnels on a rung from one leg, does another particle in that leg come to fill up the position. This
would help us understand how the hopping at rung can amplify the particle delocalization along
the leg. Here, we selectively chose one leg because both legs are symmetric. All these four-point
correlation functions are connected correlation functions, which we use to subtract the effect of
independent tunneling.

Figure 4.3: Schematic of different correlation functions: g(1) defines hopping-correlation on rung
at site-1; G2(1;2) defines SF-correlation function at site-1 of leg-2 for distance r=2 ; gk(4;2)
measures connected rung-rung correlation between site-4 and site-(4+2) ; the rung-leg correlation
Rl(7;2) tells us if one particle hops at rung (7+2) from leg-2 to leg-1, does another particle hop
from site-7 to site-(7+2) of the leg-2?

Compressibility: Compressibility is an alternative way to understand if a phase is gapped or
gapless. It measures if some energy is put into the system or taken out, does the system accommo-
dates one extra or less particle. We first define the chemical potential µ of the system with density
r = N/L as

µ =
dE0

L(N)

dN
(4.9)

and from the behavior of r as a function of µ , we can identify a gapped and gapless phase [53].
The compressibility k , which is non-zero in the gapless phase, is calculated as

k =
dr
d µ

(4.10)
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For a gapped phase, by changing d µ amount of energy, the system cannot accommodate dr parti-
cles, and that’s why k = 0 in it. We will use k later to show that for r = 1, although in 1D there is
no SS (k = 0), there is a non-zero region SS in the ladder.

Excitation spectrum: We know that with onset of DW-order, there is a roton instability in the
excitation spectrum W(k) [12]. A good approximation for W(k) along the leg-direction can be
found by using the expression [56],

W(k) =
Ek

LS(k)
(4.11)

Here Ek = �J
L [cosk � 1]hY0|ÂL

i=1(b
†
i bi+1 + h.c)|Y0i and |Y0i is the ground state. The structure

factor is defined as, S(k) = 1
L2 Âx,x0 eik(x�x0)hn(x)n(x0)i. Here, k is the usual wave-vector. We later

show the roton-instability of W(k) in the SS region.

Entanglement: We calculate von-Neumann entanglement for different bipartitions and entangle-
ment spectrum in different phases. For that purpose, the ladder is divided into two halves (along
the leg or rung) and write |Yi in Schmidt decomposition-

|Yi =
c

Â
b=1

Lb |b iL|b iR (4.12)

where Lb is Schmidt coefficient and |b iL and |b iR are the orthonormal Schmidt basis, for the
left and right half [35], with normalization Âb L2

b = 1. Due to MPS ansatz (Appendix. A), the
maximum allowed Schmidt rank is the maximum bond-dimension c . Using Schmidt coefficient
Lb , we can define the entanglement entropy as -

Sl = �
c

Â
b=1

L2
b log2(L2

b ) (4.13)

where l defines the length of the segment or in our case considers the length of the left-half. Now,
we will define the different configurations for which we calculate this entanglement entropy.

(a) Between two legs [fig.4.4(a)], which is done by taking partial trace over one-leg
(b) Dividing the ladder in chain-direction [fig.4.4(b)], which is done by using left-right seg-

ment of middle bond while doing DMRG sweep.

We also calculated the entanglement spectrum (xb ) for the bond in the middle of both chains
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(a) (b)

Figure 4.4: Different bipartitions to calculate entanglement : (a) For entanglement between two
legs; (b) For entanglement along the leg direction, by cutting at the middle-bond as shown

(fig.4.4(b)). It is defined as energy states of a fictitious Hamiltonian H by equating it to with the
density matrix as rl = e�H [69], which implies

e�xb = L2
b (4.14)

We can learn about the superposition states of a phase by looking at the degeneracy spectra of xb ,
as Lb defines different superposition states.

4.4 Experimental Setups

We suggest two possible experimental setups that can model our Hamiltonian (eq.4.1). For ob-
taining on-site interaction (U/J) and inter-chain tunneling (t?), we can use ultra-cold atomic [70]
optical-lattices (Appendix. B). For independent control in the leg and rung direction, we can use
different depths of optical lattices. Getting the repulsive nearest-neighbor interaction (V ) along
the leg direction but not in the rung direction is tricky. For that, we suggest using dipole-dipole
interaction or Rydberg-dressed atoms.

Dipolar interaction: In dipolar gases or polar atoms/molecules [36, 37], after polarization, all
dipoles point in the same direction, and the dipole-dipole interaction energy between such two
polarized dipoles is given by [16]-

Vdd(r,q) =
Cdd

4p
(1�3cos2 q)

r3 (4.15)

where q is the angle between the common polarization axis and the relative position (~r). The
coupling constant Cdd = µ0µ2

m for particles having magnetic dipole moment µm (where µ0 is the
vacuum permeability) and Cdd = µ2

e /e0 for particles having a permanent electric dipole moment µe

(where e0 is the vacuum permittivity) . To selectively get dipole interaction only in the leg direction,
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we will use the anisotropy of this interaction. When two dipoles sit side-by-side (q = 90�) along
the leg-direction, they have repulsive interaction (Vdd > 0). On the other hand, we can choose q
between two dipoles on a rung as cos�1(1/

p
3), such that Vdd = 0. The setup is shown in fig.4.5,

where all dipoles lie in the x-y plane and are polarized along the y-z plane, making an angle of
q = cos�1(1/

p
3) with the x-y plane (~r also lies in the x-y plane as shown).

Figure 4.5: Experimental setup-1 for extended Bose-Hubbard ladder using dipolar interaction:
all dipoles are polarized along the y-z plane, and lie in the x-y plane making an angle of q =
cos�1(1/

p
3) with the plane

Rydberg-dressed atoms: In this setup, we use anisotropy of Rydberg interaction to model the
ladder Hamiltonian. We can weakly admix Rydberg states |ri with the ground state of Bosons
|gi using Rabi frequency W, along with large negative detuning (|D| � W) [24] as shown in
fig.4.6. Here we consider laser-excited Rydberg 2P3/2 state of Rubidium atoms, denoted by |ri =

|n2P3/2,m = 3/2iz = |np,1iz|1
2

1
2iz. Van der Waals interaction Vrr between these Rydberg-dressed

states has an approximate form of [17]

Vrr(r,q) =

✓
W

2|D|

◆4 C6(q)

r6 +R6
c

; C6(q) = (ea0)
4n11 sin4 q (4.16)

where the strength can be tuned by principal quantum number n, and as it decays as 1
r6 , we can

approximate it to nearest-neighbor interaction. e is the charge of an electron, a0 is the scattering
length, and q being the angle between the quantization (here z) axis and the relative vector r. Rc

defines the blockade radius Rc = [C6/2}|D|]1/6. Using this anisotropy, we can have zero interaction
with q = 0 (put in the rung direction), and the strongest at q = p/2 (along the leg direction). We
have the ladder in the z-x plane and rung along the z-direction (fig.4.6).
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To understand this anisotropy, consider the initial state in |ri, which has the |np,1iz part. By
emitting a photon, this state can go to |ns,0iz (see A in fig.4.6), whereas the photon can go in either
z-direction with s+ polarization or to x-direction with linearly polarized light along the y-direction.
As the other |ri is already in |+1i state (B), s+ polarised light cannot be absorbed, which means
along z-direction(rung) there is no interaction i.e Vrr(q = 0) = 0. On the other hand, as py involves
both s+ and s�, a transition is possible (C), and the photon can be absorbed. That’s how there can
be interaction along the x-direction (leg), i.e. Vrr(q = p/2) 6= 0.

A

B

C

Figure 4.6: Left: Experimental setup-2 for extended Bose-Hubbard ladder using Rydberg-dressed
atoms: all the atoms lie in the x-z plane, where the p-orbital lobes are in x-y plane. Along the
z-direction, due to s+ polarization of a photon, A cannot interact with |ri at B, whereas due to
py polarization along x-direction A can interact with C. Right: Ground state (|gi) being weakly
coupled to a Rydberg state (|ri) by a laser field of Rabi frequency W and detuning D
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Chapter 5

Results and Discussions

In this chapter, we discuss the results for the symmetric extended Bose-Hubbard ladder introduced
in chapter-4 using the methods and observables mentioned therein. We work with the constant
filling factor r = 1 and set the energy scale by choosing J = 1.

5.1 Weak on-site interaction

For weak on-site interaction, here U/J = 2 (fig.5.1), we have obtained a phase diagram in (t?,V )

plane, where we observe supersolid (SS) sandwiched between superfluid (SF) at small V and den-
sity waves (DW) at large V, for t? 6= 0. However, no Mott insulator (MI) is there because U/J

is below the critical point of SF-MI transition in 1D, which is (U/J)c = 3.61 [31]. As there is
no SS in this parameter regime of the 1D EBHM model, i.e., when inter-chain tunneling t? = 0
(sec.3.2.2), it must be the non-zero t? in the ladder, which plays the leading role in having SS. We
can explain why SS is less probable in 1D than in a ladder in this manner - in the 1D lattice, V

wants to localize particle-hole pairs on the same lattice sites, where J tries to delocalize. In other
words, for 1D, there is no other channel for particles to delocalize without strictly opposing the
strong repulsion of V. However, the inter-chain tunneling serves as an extra-channel to simultane-
ously allow superfluidity and density waves in the ladder. A possible mechanism can be due to
inter-chain tunneling; particle-hole pairs are created on the rungs, enhancing the delocalization of
particles along the leg direction.

In fig.5.1, we can see that the SF-SS transition line has a weaker dependence on t?. This can
be explained as this line is defined by the onset of ODW along the leg-direction, and t? cannot
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affect that directly. On the other hand, the critical points (Vc) for the SS-DW line increase with
t? till t? ⇠ 0.8, after which it saturates to that value of Vc. The first increase of the SS region in
low t? is expected, as with increasing t?, the particles are getting more delocalized, increasing the
superfluidity in the regime DW-order is already present. As a signature, we show in fig.5.2(b),
for V=4.5, how with increasing t? the LDc

L coalesces at t? = 0.5, signifying the gapped-DW to
gapless-SS transition. We can also see the increase in the SF-correlation function, shown in the
inset. The saturation behavior after certain t? is expected as t? can affect only one lattice distance
along the rung in a two-leg ladder, and it cannot increase the superfluidity indefinitely through only
one rung distance. With more legs, we expect this saturation of t? to shift towards a higher value.
Similar saturating behavior is also observed in the critical points (Uc) for SF-MI transition in a
bosonic ladder [10]. One of the major obstacles in the past about observing SS was its existence

Figure 5.1: Phase diagram in (t?,V ) plane for U=2: SF, SS, and DW are observed. SF-SS remains
almost constant with increasing t?, whereas the SS-DW line first increases towards the right and
then saturates (SF: superfluid, SS: supersolid, DW: density wave). Inset: pattern of density wave
is symmetric on both legs.

in tiny phase space [71]. However, here we found quite a large region of SS, which may help
in detecting SS. To support the existence of SS in this large region, we show coalescing LDc

L for
different L at DW-SS transition and scaled Vc for SF-SS transition in fig.5.2(a) at t? = 0.6.
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(a) (b)

Figure 5.2: Coalescing LDc
L for DW-SS transition: (a) With decreasing V LDc

L for different L
coalesces at DW-SS transition point Vc = 5 for t? = 0.6,U = 2, Inset: From linear fit of Vmin for
ODW with 1/L, SF-SS transition obtained at Vc=2.78 (b) With increasing t?, LDc

L for different L
coalesces at DW-SS transition point tc

? = 0.3 Inset(top left): With increasting t?, G(rmax) also
increases, Inset(bottom right): Existence of density pattern in SS phase (t? = 0.5).

5.2 Strong on-site interaction

With strong on-site interaction, specifically U/J = 6 case here, main features of the phase diagram
discussed in U=2 case (fig.5.1) is also present here (fig.5.3), however with a smaller region of
SS. The SS region is suppressed due to large U in which case occupying any sites with more than
one particle is costlier, whereas superfluidity needs particle-hole excitation. U/J being greater than
MI-SF transition, MI is observed in the low t? region which then vanishes to SF with increasing t?.
For V = 0, the MI-SF critical point matches with Luthra et al. [10]. We show how LDc

L coalesces
at MI-SF transition in fig.5.3(b). Unlike the U = 2 case, effect t? saturates at large t? ⇠ 1.8, which
means it is not easy for t? to overcome the effect of strong U in order to get saturated.

5.3 Effect of t? on nmax

For drawing the phase diagrams we mostly use nmax = 5 and nmax = 6 bosons per site, as per the
requirement for energy convergence with respect to nmax. Here, we observe that the need for a
larger nmax is prominent in the large t? regime as shown in fig.5.4(a). For nmax = 2 , huge energy
difference is expected, as this is only good for an insulator phase, where particles are not tunneling
to an occupied site. However, in the SF region, using nmax = 2, is not at all good. With this
knowledge at first, we expected that nmax = 4 should be good enough, and drew a phase diagram
using it as shown in fig.5.4(b). There we found a reentrance of DW-SS-DW with increasing t?.
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Figure 5.3: (a) Phase diagram in (t?,V ) plane for U=6: MI is observed for small V and small t? ,
along with SF, SS and DW (b) For t? = 0.15, with increasing V , LDc

L for different L coalesces at
MI-SF transition point Vc=2.6

One possible reason behind this can be related to the effect of t? as discussed in section.5.1. Due
to the lack of allowed bosons at sites, the superfluidity cannot be increased as possible by t?, and
in the strong t?, it reduces the region of SS. If in an experimental setup, the maximum number of
bosons at a site can be fixed, this reentrance can be observed, by choosing lesser nmax. Thus nmax

can be an extra knob to control the phases.

(a) (b)

0 1 2 3 4 5 6 7
V/J

0.0

0.4

0.8

1.2

1.6

t ?
/J SF SS DW

U/J = 2 nmax = 4

Figure 5.4: Effect of nmax : (a) With increasing nmax energy converges. For larger t?, more nmax
is necessary (Inset: Enlarged version of the same plot to show for nmax = 4.) (b) Phase diagram
with nmax = 4, where convergence reaches with nmax � 5: a reentrance of DW-SS-DW is observed
at fixed V
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Figure 5.5: DW-order and SF-correlation function for different phases in 1D and ladder: (a), (c)
ODW and G(r) respectively for different phases in 1D EBHM, where SS does not exist; (b), (d)
Oa

DW and Ga(r) respectively for different phases in the ladder, where SS exists

5.4 Evidences of SS in ladder

DW-order and SF-correlation: To support the existence of SS in the ladder which is not present
in 1D EBHM, we have shown how Oa

DW (r) and Ga(r) decays with r, for all the 4 different phases
in fig.5.5 both in 1D and ladder. As expected, the MI and SF have zero DW-order, whereas the DW
and SS have non-zero order. On the other hand, in DW and MI phase, the SF-correlation function
[(c),(d)] decays to zero, whereas in SF and SS, although it decays, it does not go to zero. For U=2,
V=4.25, in 1D (t? = 0), we can see G(r) decays to zero proving it to be in DW phase, whereas
in the ladder with t? = 0.6, G(r) has non-zero values showing the existence of SS with the same
(U,V) value. To mention, the effect of Z2 symmetry breaking can be seen in Ga of DW and SS.

Compressibility: In fig.5.6 (a), we can see a plateau of constant r = 1, despite the change in
µ , which results in zero compressibility (section.4.3), and we don’t have SS for r = 1 in 1D.
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With the same (U,V ) value, when t? = 0.6, we observe non-zero compressibility in r = 1 region,
which supports the existence of SS in ladder. Similarly, in DW of Ladder, zero compressibility is
observed in r = 1 as expected.
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Figure 5.6: Variation of compressibility(k) and density(r) with chemical potential(µ) : (a) For 1D,
the plateau of r = 1 have zero compressibility signifying DW, while it is finite elsewhere showing
the existence of SS, (b) Non-zero value of compressibility throughout r = 1 in this parameter
regime of ladder proves existence of SS, which is not present in (a), (c) For DW in the ladder, the
plateau of zero compressibility appears at r = 1
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Figure 5.7: The dispersion relation, W(k) vs k for different V: Roton instability at SF-SS transition
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Excitation spectrum: In fig.5.7, we can see for V = 2, in the SF phase, the roton minima of
the excitation spectrum (along leg) is stable, and with increasing V it softens. At V = 3, the
minima pinch the k-axis, which indicates the roton-instability. Thus it proves the existence of
SF-SS transition.

5.5 Effect of t? and V on correlation functions
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Figure 5.8: Effect of t? and V on correlation functions for U=6 in a L ⇥ 2 = 51 ⇥ 2 lattice : (a)
Effect of increasing t? on (a1) MI to SF (a2) DW to SS (a3) DW (b) Effect of increasing V for
(b1) t? = 0.2 (b2) t? = 0.6 (b3) t? = 0.05

Effect of increasing t?: Now, we will discuss how does correlation functions change with in-
creasing t? in different phases [fig.5.8(a)], namely in MI, SF, SS and DW. In MI and SF (V=2),
ODW constantly remains at zero even with increasing t?, indicating that strong repulsion (V ) is the
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key player to have ODW . However, when the phase already has ODW , e.g.- in SS (a2) or DW (a3),
increasing t? reduces it. This is probably the reason why we found slight bending of the SF � SS

line towards the right in fig.5.3(a). Ga(rmax) is defined as the SF-correlation function at maximum
possible distance rmax inside the bulk of a fixed lattice size. This is also the minimum of G(r) out
of all possible r. We can see that G(rmax) increases for MI-SF transition and after that in the SF
region (a1). Although the same is true for SS (a2); in the DW-region (a3), it doesn’t increase with
t?, which makes the phase insulating. The rung correlation function g doesn’t break Z2 symmetry
in SF region (a1), due to zero ODW , whereas in SS(a2) and DW(a3) region, it divides into godd and
geven. As we consider L = odd, the odd sites are occupied with 2’s, whereas the even sites are 0’s.
This makes the godd grow larger with t?, where the effect in geven is very small (a3), due to 0’s
at even sites. As t? enhances the superfluidity along the leg, when the even rungs fail to have a
non-zero correlation, the effective superfluidity in the leg-direction (Ga ) is also lost (a3).

Effect of increasing V : When V is increased for fixed t?, we observe the expected transition
from SF to SS for t? = 0.2 (b1) and = 0.6 (b2), shown by the onset of ODW as the green-line. The
existence of SS is understood by looking at the purple line (GSF ) in (b1) and (b2). It is not suddenly
going to zero, with the onset of DW-order [4]. In (b3), we can see an increase of superfluidity from
MI, with increasing V . It is non-trivial, as V should induce an insulator state rather than SF.
However, this is not special to the ladder, as we can see the existence of SF in t? = 0 also [15], and
may be due to the gapless edge mode in that region [41].

5.6 Phase diagram in (U,V ) plane for fixed t?

We found out in fig.5.1 and fig.5.3 that depending on U , the area of SS-region changes. To under-
stand this U-dependence, we fix t? = 0.6, and draw the phase diagram in (U,V ) plane (fig.5.9).
We can see that the SF-SS line, which is defined by the onset of ODW , shifts towards large Vc with
increasing U as expected, due to the competition between U and V . In the strong U limit, occupy-
ing multiple particles at a site costs more energy, and that is why non-zero ODW is only possible in
large V for large U (fig.5.10(d)). The most interesting part is the reentrance behavior observed in
the SS-DW transition line. For fixed V , by increasing U , one goes from SS to DW to SS again.

It should be clear that t? has more effect on the SS-DW line than the SF-SS line, as t? affects
the superfluidity, not DW-order. Now, for superfluidity, we consider the combined effect of t?
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Figure 5.9: Phase diagram in (U,V ) plane for t? = 0.6 : SF, SS and DW phases. A reentrance of
SS-DW-SS is observed for fixed V . (SF: superfluid, SS: supersolid, DW: density wave)
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and J, which surpasses the strength of U , when U is small. That is why in t? = 0.6, although
for U � 4, the SS-DW line can be seen as a competition between U and V , in case of small U ,
it is indeed competition between J and V (fixed t?). When we plot in the (U/J,V/J) plane, due
to these different pairs of competition, we cannot directly compare the SS-DW line for small and
large U, and a reentrance behavior occurs. Even in the phase diagram of 1D EBHM (fig.3.6), we
can see how small U and large U behave linearly, and we believe ladder configuration shifts that
behavior to an even larger U/J value with the help of t?.

To support the existence of this reentrance, we have plotted LDc
L, ODW , and the SF-correlation

function through that reentrance region in fig.5.10. LDc
L between different L goes farther from each

other in the DW phase, confirming it as a gapped phase (fig.5.10(a)), and (fig.5.10(c)) shows the
existence of DW-order in the region. The higher Dc

L at U = 6, also shows a sign of SS-SF transition
by a dip in the energy gap. Similarly, in the SF-order parameter (fig.5.10(b)), even within the
finite-size lattice, we can see the decrease of Ga in DW-region (prominent in r ! • limit), which
again supports the reentrance.

5.7 Four-point correlation functions

Rung-leg correlation: We claim that the intra-chain superfluidity increases due to inter-chain
hopping, making SS possible in ladder. Here, we show how rung-leg correlation Rl(r = 2) at a
distance r = 2 can show the signature of this mechanism. Like we discussed in section 4.3, the
rung-leg correlation quantifies if one particle hops along a rung if it induces tunneling along the
leg. In fig. 5.11(a), we can see that near the onset of ODW , the correlation between rung and leg
for odd-rung (filled) increases, whereas on even-rung(unfilled) it decreases, as odd-rung consists
of 2 � 2, and even-rung of 0 � 0. That is why we calculate at r = 2, allowing the average on odd
and even rungs to be done separately. Interestingly, for larger U’s, this odd-rung correlation starts
decreasing earlier after it starts increasing, and this suggests that the effect of t? is weaker there,
leading to a smaller region of SS fig.5.9. This shows that rung-leg correlation is present in SS and
affects the size of the SS region in the phase diagram.

Rung-rung correlation: As we discussed above, the superfluidity is enhanced due to rung-
correlation. Here, we have studied how the correlation between two rungs changes with V and
U , using the rung-rung correlation defined in section-4.3. We have to remember that this correla-
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Figure 5.11: Rung-leg and rung-rung correlation for different U at t? = 0.6 : (a) Rung-leg corre-
lation for odd and even rung at distance (r=2) showing larger region of odd-correlation for smaller
U (b) Rung-rung correlation at distance r=1(odd=even) and r=2(odd)

tion has a relative directionality, i.e., if one rung particle hops from the lower to the upper leg, it
should be in the opposite direction in the other rung fig.4.3. In fig.5.11(b), we can see for nearest
neighbor rungs (unfilled), this correlation decreases until the ODW arrives, which means the rung-
hoppings are independent and not in the relative opposite direction in the SF phase. However, after
ODW arises, it starts growing. This can be explained by considering that if two particles are going
to the same leg, they have to sit side-by-side, which is not preferable with ODW , and that is why
there is a correlated hopping in a relatively opposite direction on the neighboring rungs. Contrary
to that, at r = 2, i.e., the next-nearest neighbor rungs, the correlation decreases in SS, as it must in-
volve two r = 1 processes (our model has only nearest-neighbor hopping J). That means, if in one
rung particles go upward, the next rung should be downwards, implying the next nearest neighbor
should go up again, making the r = 2 correlation smaller. The r = 2 at even rung-rung correla-
tion are almost ⇠ 0, as there is no particle due to DW-order. One interesting observation here is :
for U = 2, odd-correlation at (r=2) and (r=1) become equal after 3.5, which facilitates long-range
coherence. We believe this can be one reason behind the larger SS region of U=2 (fig.5.9).

5.8 Phase diagram in (t?,U) plane for fixed V

The reentrance observed in the phase diagram for fixed t? = 0.6 (fig.5.9) shows that along V ' 4.1,
U 2⇠ [2.7,5] region is in DW, whereas for other U’s it is in SS. Being curious, we wonder if it is the
case even with high t?, where a DW-SS transition is expected, and the reentrance behavior would
vanish. For that purpose, we draw a phase diagram in (t?,U) plane for fixed V = 4.1 (fig.5.12).
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Figure 5.12: Phase diagram in (t?,U) plane for fixed V = 4.1 : a reentrance of SS-DW-SS can be
seen for fixed t?. Asymptotic lines suggest for U 2 (2.7,5), even with increasing t?, there will be
no SS at fixed V = 4.1

Surprisingly, it remains in DW for U 2⇠ [2.7,5], despite providing high t?. The slope of the SS-
DW lines suggests that although for U ' 2,6, the SS region can be extended with increasing t?,
that is not the case with U ' 3,4,5. Thus, it concludes that the reentrance behavior is present even
with high t?. We do not go beyond t? = 1.8, as it needs more nmax to converge.

5.9 Number density
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Figure 5.13: Number density in SS of U=2 and 6: (a,d): near SF, (b,e): in the middle of SS, (c,f):
near DW
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As SS phase has density-wave order, the expectation value of the number operator (hn̂i) shows
oscillation between 0 and 2. However, it is not exactly 0 or 2, for all the parameter values. Here in
fig.5.13, we can see that for U = 2, the amplitude of the oscillation is higher than for U = 6. This
is expected as in strong on-site interaction (U), occupying more particles at a site is costly. Inside
the SS regime, near the SF-SS transition line, the amplitude of oscillation is low and then increases
with V both for U=2 and 6. We also show how does this amplitude, |ni � ni+1| changes through
different phases with increasing V [fig.5.14(a)] and U [fig.5.14]. In the SF phase, it is 0, and there
is continuous change while going from SS to DW (fig.5.14(a)). With increasing U, for fixed V, the
amplitude decreases due to competition between U and V [fig.5.14(b)].
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Figure 5.14: Amplitude of density-oscillation through different phases for L=61: (a) With in-
creasing V , amplitude increases from zero at SF to non-zero values at SS and DW phase and then
saturates, (b) With increasing U, amplitude decreases for fixed V

5.10 Entanglement

Entanglement in many-body physics is related to a strong correlation in the system. Thus, entan-
glement also contains specific signatures of the phases. Here, von Neumann entanglement along
the chain and between two legs has been discussed. The entanglement spectrum shows the degen-
eracy at different phases.

Entanglement along the leg direction: If we bipartition the leg direction (fig.4.4(b)) into a
length of l and L � l, the entanglement Sl = SL�l , which means entanglement is symmetric with
respect to partition. We can see in fig.5.15(a) that in the DW phase, first entanglement grows with l

first, and then it saturates quickly due to short correlation length [51]. However, in SF, it has almost
no l dependence due to long-range coherence and is uniform in bulk. We guess that as SS has a
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Figure 5.15: Von-Neumann entanglement and entanglement spectrum : (a) Entanglement along
the leg-direction for SS, SF and DW, (b) Entanglement spectrum showing degeneracy at lowest
six energies for different V , (c) Entanglement between two-legs with increasing t? for U=2,6 , (d)
Entanglement between two-legs with increasing V for U=2,6

stronger correlation and coherence, it contains the maximum entanglement. We do not find any
unique signature in SS, which can strictly distinguish it from other phases. In DW and SS phase,
the effect of Z2 symmetry breaking is also visible in the entanglement.

Entanglement between two legs: By tracing out the states in one leg (fig.4.4(a)), we calculate
entanglement between two legs (Sleg). Taking the trace of a large Hilbert space is computationally
expensive and requires very high memory. This restricts the calculation to a maximum 2L = 6⇥2
lattice size. However, as we want to understand how strong the legs are entangled through the
rung, it should not depend much on the chain length. We observe some behavior that can be
qualitatively related to the thermodynamic phase diagram. In fig.5.15(c), for fixed V=4.5, with
increasing t?, the Sleg increases as t? help to acquire more coherent superposition between legs.
Although initially, Sleg increases fast with t?, it slows down after a certain t?, which is similar to
the saturation behavior we observed in the phase diagrams (fig.5.1, fig.5.3(a)). We can also see that
for large on-site interaction, i.e., U=6, the entanglement is smaller because it restricts the hopping
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of particles compared to U = 2.

In fig.5.15(d), we plot Sleg with increasing V for fixed t? = 0.6. For U = 6, we can see a
decrease in entanglement, which becomes sharp around V ' 4 (this may be the SS-DW transition
point of the phase diagram). For U=2, strange behavior is observed. Although for V < 2, Sleg

decreases as expected, after V = 2 point, it starts growing. As these plots are done for a tiny
system size, we do not want to conclude or infer anything from these and recommend further
studies along this line of thought.

Entanglement spectrum: From the Schmidt coefficients at the central bond of the chain (fig.4.4(b)),
we calculate the entanglement spectrum using eq.4.14. To mention, here we have used µ = ±2
at the four ends of two legs to compare with Deng et al. [40]. In fig.5.15(b), we have plotted the
smallest six xb , and we can see some degeneracy around V=3 and 5.5, which are near the SF-SS
transition and SS-DW transition. With a larger lattice size, we expect to see better degeneracy [69].
Although we cannot identify the degenerate states here, we believe the near degeneracy of x1 and
x2 is related to SS [40]. A further detailed study is needed in this direction.

5.11 Effect of removing rung

As we have observed in all of the above discussions, the inter-chain tunneling along the rung plays
the most important role in the new physics in ladder. Although we calculated many correlation
functions to understand that, another interesting way to look at this effect is: what happens if one
rung is removed? Surely this will change the Hamiltonian; still, it is worth studying. We can con-
sider many possibilities of rung removal, but for simplicity, we will discuss only one configuration
by removing one central rung. First, we study the effect of V and t? as we did before in sec.5.5.
Comparing to that, in fig.5.16 by removing the central rung, ODW onsets slightly before than nor-
mal case. This is because, by removing a rung, Z2 symmetry is already broken for that site.

However, when we draw a small phase diagram with this configuration, the difference be-
comes visible. In this case, there is a problem of finite-size scaling, as removing one rung, say for
L = 50 doesn’t mean that we can manage to remove (60/50) ⇤ 1 = 6/5 rung in L = 60. One can
think of doubling the lattice size to L = 100; then we believe the configuration will have 2 removed
rungs at a distance of 50 from each other, which is not what we intended to. We want a central rung
removed. This is the reason we cannot go for a phase diagram in the thermodynamic limit, but at
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Figure 5.16: Effect of increasing t? and V on a lattice, where a central rung is removed: (a)
With increasing t?, no visible effect is observed compared to with rung case fig.5.8(a2), (b) With
increasing V , ODW arises before than the with rung-case fig.5.8(b1)
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Figure 5.17: (a) Comparing U = 6 phase diagram with L = 50 vs in thermodynamic limit (with fi-
nite size-scaling)[shaded], (b) Comparing phase diagram for U = 6 with rung (shaded) and without
a central rung

least we see the effect for L = 50. For that, first, we compare our thermodynamic phase diagram
(fig.5.3(a)) with a phase diagram drawn for 2L = 50⇥2 (fig.5.17(a)). We identify local minima in
the charged energy gap to obtain SS-DW transition (method-1 sec.3.2.2). In fig.5.17(a), the main
difference between a finite-size and thermodynamic(TD) phase diagram is that in the TD limit, the
whole diagram is pushed towards larger Vc’s, and also there is a smaller region in small t?. How-
ever, qualitatively it remains similar. With this observation, we draw a similar phase diagram but
without one central rung (fig.5.17(b)), and we found more region of SS compared to the previous
case, which is surprising. The SS region increases in the SF-SS transition line because ODW arises
before due to already broken local Z2 symmetry in the removed rung site. We believe the SS-DW
transition line moves towards the right due to the non-uniformity of the lattice, which prefers SS
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(due to fluctuation) than uniform DW.

5.12 HI phase

As we discussed previously in section.3.2.4, to get the HI phase, we need to get rid of edge mode.
In this case, we have checked both methods 1 and 2 discussed in section.3.2.4, namely using
2N = 2(L + 1) particles and µ = ±2J at the edges. We have to add two more particles, as we
have two chains, and we have checked that adding one particle does not solve the problem. For
some unknown reason, method 2 (using µ = ±2J) in some regimes fails to arrest the decay to a
negative value, so we stick to using 2(L+1) particles. Surprisingly, we have found that the HI exists
only in one leg (fig.5.18), whereas all the other order parameters ODW ,GSF , number density remain
symmetric in both chains. This also supports that HI has a hidden order. HI being observed only in
one leg may be related to the fact that the HI phase is a topological phase in 1D, and in a ladder, it
loses the necessary topology [6, 72]. For the same reason, within a very small t?, the HI vanishes
both for U = 2 and U = 6, which means that HI does not play an important role in our main phase
diagrams. That’s why we avoided drawing a thermodynamic phase diagram for HI.
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Chapter 6

Conclusion and Outlook

Ultracold atoms/molecules in optical lattices offer a unique opportunity for solving various prob-
lems ranging from quantum simulation of exotic quantum many-body phases [12, 70, 73], to im-
plementing quantum information protocols [9, 74]. The key advantage of a cold atom setup over
other synthetic quantum systems is the ability to control inter-particle interactions utilizing exter-
nal fields [25, 73]. In addition, due to the rapid developments in trapping/cooling techniques for
atoms [38,73,75], the state-of-the-art experimental setups are highly versatile to realize non-trivial
lattice geometries. Considering the above facts, in this thesis, we analyze the physics of a two-leg
ladder extended Bose-Hubbard model using the DMRG technique. As we detail in this thesis,
the model we consider is unique and can be implemented using either dipolar atoms/molecules or
Rydberg admixed atoms loaded in optical lattices.

For the first time, we show the existence of a supersolid phase in a quasi-one-dimensional
setup with a filling factor of r = 1, otherwise absent in 1D. We analyze the SS phase in detail
using various quantities, particularly compressibility, SF, and DW order parameters. Further, we
study the excitation spectrum of a superfluid and show the emergence of a roton-minima, which
eventually becomes unstable at the SF-SS transition. The supersolid phase appears due to the in-
terplay between the atom-hopping in the rungs and the nearest-neighbor interactions. Strikingly,
the hopping within the rungs can induce delocalization of atoms along the chains and re-establish
the coherence, which is destroyed by the strong inter-particle density-density interactions in the
chain direction. We understand this process using different two-point and four-point connected
correlation functions and bipartite entanglement entropy. Interestingly, the SS state is also accom-
panied by a reentrant transition. We observe SS-DW-SS transition as we vary the on-site interaction
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strength by keeping all other parameters fixed.

Besides these, we point out the effect of maximum bosons per site (nmax) and removal of a
central rung, which can be used as extra knobs in experiments. By quenching the edge modes, we
also show that the Haldane insulator (HI) exists only in one chain and have drawn a phase diagram
as a function of t?. As a whole, this thesis answers the question of dimensionality in the supersolid
phase observed in the Bose-Hubbard model by extensively inspecting the role of t? in the ladder
geometry. Our study also opens various directions in this physics of the Bose-Hubbard ladder,
which we could not address due to time constraints. For instance, to get a complete understanding
of the model, one should draw a 3D phase diagram in the (t?,U,V ) plane, which we believe
can show many reentrance behaviors due to competitions at different regimes. One also has to
see the effect of a multi-leg ladder to describe the dimensional crossover completely. In open-
chain, studying the same model with different boundary conditions is also promising as it can
give rise to other phases [15, 41]. As a novelty of our model, the model we consider here can be
realized in a single chain with atoms occupying two bands instead of one [76]. We also wonder
how a disorder will flow through the ladder in different phases. As a basic query, one can also
investigate the quantum quench dynamics through the reentrant region, including the Kibble-Zurek
mechanism [77–80].
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Appendix A

Density Matrix Renormalization Group

In quantum many-body physics, quantum fluctuation and correlation play the most critical roles. To
study the robust quantum phases in those microscopic models, large-scale numerical simulations
are essential, especially when our favorite mean-field theory fails. The main difficulty here comes
from that the large Hilbert space spanned by the micro-states grows with the system size, and
the classical computer has limited storage. In this case, simulations based on tensor-product state
(TNS) based methods are proven to be very efficient and powerful. One of the most successful
ones is the density-matrix renormalization group (DMRG) [29,81,82]. Although DMRG originally
started in the 1D system, after realizing its success, the idea is extrapolated to a quasi-1D system,
where we can effectively map it to a 1D lattice (fig.4.2). DMRG ’s success is related to the fact
that quantum ground states of our interest are often only slightly entangled (area law), for which it
can be represented efficiently using matrix-product states (MPS) [11].

Area Law: Although a “typical” state in the Hilbert space shows a volume law [Entanglement µ
Volume(partitions)], ground states |y0i of gapped local Hamiltonians follow area law i.e. the
entanglement entropy grows proportionally with the area of the cut [48]. This is related to the

Figure A.1: Area law: significant fluctuations in gapped states occur only on short-range scales
(taken from [68])
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fact that in gapped ground states fluctuations are only within the correlation length x (fig.A.1). So
for N � x , the entanglement does not grow, and hence only degrees of freedom near the cut are
entangled.

This slight entanglement of states can be captured in a relatively small number of Schmidt
states, and that in turn partially solves the storage problem of large Hilbert space. Thus we can
truncate the Schmidt decomposition at some finite c for all e > 0 such that

�����

�����|yi�
c

Â
a=1

La |aileft ⌦ |airight

| {z }
|yitrunc

�����

����� < e (A.1)

The truncation error is defined as the total Schmidt probability of discarded states, i.e. (1 �
Âc

a=1 L2
a).

Matrix Product States (MPS): We define the local basis on site j by |n ji with n j = 0,1, ..,nmax,
where nmax is the maximum number of bosons allowed per site. In this basis, a generic pure quan-
tum state of lattice size of L can be written as :

|yi = Â
n1,n2,....,nL

yn1,n2,......,nL |n1,n2, .....,nLi (A.2)

MPS is an ansatz for yn1,n2,......,nL , where it is decomposed as a product of matrices [68, 83]-

yn1,n2,......,nL = Â
a2,.....aL

M[1]n1
a1a2M[2]n2

a2a3 ........M
[L]nL
aLaL+1 ⌘ M[1]n1M[2]n2 ........M[L]nL (A.3)

Each M[ j]n j is a c j ⇥ c j+1 dimensional matrix, where j is the site index, and a j are called bond

or auxiliary indices, which is bounded by bond-dimension of c j. This c j defines the maximum
allowed entanglement between |n j�1i and |n ji. Although by using arbitrary c j, we can represent
any state, we truncate it to maximum bond-dimension cmax for computational limitation.

Matrix Product Operators (MPO): To use MPS for diagonalization, the Hamiltonian has to be
expressed in MPO, which is a generalization of MPS to operators, written as

O = Â
n1,....,nL
n0

1,....,n
0
L

n left W [1]n1n0
1W [2]n2n0

2 ....W [L]nLn0
L n right|n1,n2, .....,nLihn0

1,n
0
2, .....,n

0
L| (A.4)
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where W [ j]n jn0
j are D ⇥ D matrices and n left(right) are left(right) vectors. We translate the Hamilto-

nian to MPO form like a finite state machine [84, 85].

Density Matrix Renormalization Group (DMRG): DMRG [29] is a variational algorithm for
optimizing the MPS to get the eigenstates of the Hamiltonian ( H written as MPO). We start with
an initial MPS of |yi, and variationally optimize the tensor product of two neighboring sites( eg.-
j and j +1) using the Lanczos method to obtain the ground state energy from hy|H|yi, while the
rest of the chain is kept fixed. For this purpose, the H is projected in {|a jileft ⌦ |n ji⌦ |n j+1i⌦
|a j+2iright} basis. We repeat this two-site update for all neighboring sites in the lattice in sequential
order from left to right and again come back from right to left. This is called one sweep. With an
increasing number of sweeps, the energy converges.

Charge conservation: As we work with a fixed number of atoms, all the tensor has to be in the
same number sector (block) of the Hamiltonian. By using a charge rule [68], we can selectively
disappear entries to ensure the block structure of each tensor individually.

To give an example, consider that the total number of particles at a two-site lattice is N, and
there should be no process in the Hamiltonian that change the total number, i.e.

Hm1m2n1n2 = 0 if m1 +m2 6= n1 +n2 (A.5)

where the Hamiltonian has the form H = Âm1,m2,n1,n2 Hm1m2n1n2 |m1i|m2ihn1|hn2|. This means we
should always choose those special bra and ket states for charge conservation. As we use MPS
tensors to represent those states, here we will discuss how to implement a charge-rule for an ar-
bitrary l-leg tensor M. We first assign one sign z [i] = ±1 for each leg ai (i 2 [1, l]), in particular,
z = +1(z = �1) for a ket (bra). We also define the charge of leg-ai as qai . Now, if we fix the total
charge of the tensor as Q, then the charge rule reads as

8a1,a2....al : z [1]q[1]
a1 +z [2]q[2]

a2 + ..........+z [l]q[l]
al 6= Q ) Ma1a2...al = 0 (A.6)

Charged Energy Gap: As we run DMRG simulations for the fixed total number of particles
(total charge); in order to calculate charged energy gap Dc

L (= E0
L(N +1)+E0

L(N �1)�2E0
L(N)),

we need to run three instances of DMRG, each of them separately targeting the ground state with
{N,N ±1} particle number sectors [3].
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DMRG vs QMC: As the quantum Monte-Carlo method does not suffer from any sign problem
in the bosonic system, QMC is also a good method for diagonalization. However, in our thesis, we
largely depend on the charged-energy gap and finite-size scaling, which is easier in DMRG than
QMC [5]. Also, in DMRG by restricting maximum bond-dimension, we can systematically study
the role of entanglement in particular phases and phase transitions [35].
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Appendix B

Optical Lattice

A periodic potential in the experiment can be formed by overlapping two counter-propagating laser
beams, where the interference between lasers creates an optical standing wave with periodicity
lL/2 (fig.2.2) [75]. These are called optical lattices. Depending on the number of lasers, 1D, 2D,
3D periodic potentials can be obtained. As an example, pair of laser beams can effectively create
the 1D lattice, which is an array of 2D-disk-like traps (fig.B.1). Such periodic potential has the
form

Vlat(x) = V0 sin2 (kLx) (B.1)

where V0 is the potential depth, given in the units of recoil energy ER = }2k2
L/2m. The laser is far-

detuned from the atomic resonant frequency to protect atoms from spontaneous emission, creating
pure conservative and defect-free potentials [73]. Neutral atoms in such potential have two kinds
of motions [20]-

Figure B.1: Left: 1D optical lattice formed by pair of laser beams, where (Right:) the atoms are
confined to 2D potential disks
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(a) vibrational motion within an individual potential well: U

(b) tunneling between neighboring wells: J

If we increase the depth of the optical potential, the atomic wave function becomes more localized,
increasing the onsite repulsion, and at the same time, tunneling decreases (U/J increases). At
ultracold temperature, neutral atoms typically interact only by s-wave scattering, which can be
represented by a short-range and isotropic pseudo-potential [12, 86]:

V (r � r0) =
4p}2as

m
d (r) ⌘ gd (r) (B.2)

where aS is the s-wave scattering length of an atom. This leads to (using 2.4), U = 4p}2as
m

R
dx|w0(x)|4,

which creates a BHM in the experiment [25]. The coherence in SF can be measured by looking at
the interference pattern formed by freely expanding atoms. The charged gap can be calculated us-
ing the excitation spectrum in MI. This is done by tilting the neighboring lattice potential (fig.B.2)
such that when both sites became equal in energy the particle hops. This offset in energy is then
the same as charged energy gap as we explained in sec.2.2.2.

Figure B.2: Measuring energy gap: potential gradient along z-direction can diminish the energy
difference between neighboring sites allowing the atoms to tunnel (taken from Fig.4b of Ref. [25]).
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insulator, superfluid and supersolid phases in the one-dimensional bosonic hubbard model.
In Journal of Physics: Conference Series, volume 640, page 012042. IOP Publishing, 2015.

[6] Erez Berg, Emanuele G Dalla Torre, Thierry Giamarchi, and Ehud Altman. Rise and fall of
hidden string order of lattice bosons. Physical Review B, 77(24):245119, 2008.

[7] MA Cazalilla, Roberta Citro, Thierry Giamarchi, Edmond Orignac, and Marcos Rigol. One
dimensional bosons: From condensed matter systems to ultracold gases. Reviews of Modern

Physics, 83(4):1405, 2011.

[8] Hendrik Weimer, Markus Müller, Igor Lesanovsky, Peter Zoller, and Hans Peter Büchler. A
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[37] Tomasz Sowiński, Omjyoti Dutta, Philipp Hauke, Luca Tagliacozzo, and Maciej Lewenstein.
Dipolar molecules in optical lattices. Physical review letters, 108(11):115301, 2012.

[38] J Stuhler, A Griesmaier, T Koch, M Fattori, T Pfau, S Giovanazzi, P Pedri, and L Santos.
Observation of dipole-dipole interaction in a degenerate quantum gas dd ( r ). 150406:1–4,
2005.

[39] Roman Krems, Bretislav Friedrich, and William C Stwalley. Cold molecules: theory, experi-

ment, applications. CRC press, 2009.

[40] Xiaolong Deng and Luis Santos. Entanglement spectrum of one-dimensional extended bose-
hubbard models. Physical Review B, 84(8):085138, 2011.

[41] Sebastian Stumper and Junichi Okamoto. Macroscopic boundary effects in the one-
dimensional extended bose-hubbard model. arXiv preprint arXiv:2001.04790, 2020.

[42] Emanuele G Dalla Torre, Erez Berg, and Ehud Altman. Hidden order in 1d bose insulators.
Physical review letters, 97(26):260401, 2006.

[43] F Duncan M Haldane. Nonlinear field theory of large-spin heisenberg antiferromagnets:
semiclassically quantized solitons of the one-dimensional easy-axis néel state. Physical Re-

view Letters, 50(15):1153, 1983.

[44] Tom Kennedy and Hal Tasaki. Hidden z 2⇥ z 2 symmetry breaking in haldane-gap antifer-
romagnets. Physical review b, 45(1):304, 1992.

[45] FDM Haldane. Effective harmonic-fluid approach to low-energy properties of one-
dimensional quantum fluids. Physical Review Letters, 47(25):1840, 1981.

66



[46] Hirotsugu Matsuda and Toshihiko Tsuneto. Off-diagonal long-range order in solids. Progress

of Theoretical Physics Supplement, 46:411–436, 1970.

[47] Parhat Niyaz, RT Scalettar, CY Fong, and GG Batrouni. Phase transitions in an interacting
boson model with near-neighbor repulsion. Physical Review B, 50(1):362, 1994.

[48] Matthew B Hastings. An area law for one-dimensional quantum systems. Journal of Statis-

tical Mechanics: Theory and Experiment, 2007(08):P08024, 2007.
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