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Abstract

The observed kinematic distributions of the particles produced in proton proton collision
events are generally different from what is expected for an ideal detector mainly because of
the detector effects like imperfect energy resolution, acceptance of the detector, reconstruc-
tion efficiency, to name a few. We need to consider these effects so that we can compare
the collider observables distributions at the “truth level” with theoretical predictions and
with measurements from the different experiments. These comparisons can enhance the
understanding of the Standard Model, tune Monte Carlo event generator parameters and
enable precision searches for new physics. Unfolding algorithms are used to obtain these
truth distributions from the detector’s measured information by correcting these detector

effects.

Performing high-dimensional measurements at particle colliders are essential as these are
the measurements that keep as much information as possible. They are the key to under-
standing the correlations across different measurements and how they impact interpretations
of differential cross-section, Wilson coefficients in top physics, to name a few. Current unfold-
ing methods depends on the binning chosen for the histogram of the measured observable,
which causes problems when unfolding is done on several variables simultaneously. All pos-
sible auxiliary features that control the detector response are not taken in account by the
traditional unfolding algorithms. Hence, to extract as much information as possible using
the high-dimensional measurements, there is a requirement of an unfolding method which

do not depend on the binning chosen and performs well for multi-dimensional measures.

We explore different unfolding algorithms to develop and test an unfolding method that
can be performed in an unbinned, multi-dimensional fashion preserving as much event infor-
mation as possible. An unfolding method that performs unfolding using the Energy Mover’s
distance [1] metric is explored and is compared with OmniFold [2] which is a new deep
learning-based unbinned unfolding method. A specific case study is used to show specific

gains and advantages of these new unbinned unfolding methods.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is the most successful theory to date in
explaining the fundamental constituents of matter and their interaction. The theoretical
predictions have excellent agreement with almost all published experimental data from ac-
celerators such as LEP, Tevatron and the LHC, to name a few. Even though the Standard
Model has strong predictive power, there are reasons to believe that the SM is not a complete
theory and it is just an effective theory of a more fundamental theory. It does not have a
proper theoretical structure to include the gravitational force to have a unification between
all fundamental interactions. Furthermore, the SM does not have answers to questions like
the compositions of dark matter, neutrino oscillations and stability of Higgs boson mass
to name a few. The recent muon g-2 experiment results [10] by Fermilab and anamolies
like the b-physics anomalies [11] hints us towards the possibility of Beyond Standard Model
physics, which is very exciting! Mainly, there are two methods to challenge the Standard
Model. First, search for direct signatures of particular Beyond Standard Model physics in
specific phase space regions. Second, perform precision measurements of the Standard Model

parameters and look for the discrepancies with respect to the SM predictions.

In this chapter, an overview of the theoretical background of the Standard Model is
given, along with its limitations. The Standard Model is challenged by the differential cross-
section measurements at LHC, and the importance of unfolding is discussed in relation to
these measurements. Our focus then shifts to unfolding algorithms and developing a new
approach to solving the unfolding problem. At the end of this chapter, we discuss our

approach to the unfolding algorithm.



1.1 Standard Model

The theoretical structure of the Standard Model of particle physics was developed mainly
in the late 20" century when quantum mechanics alone without special relativity could not
explain the fundamental interactions. The Standard Model is based on quantum field theory
(QFT), which reconciles quantum mechanics and special relativity. Here the quantum fields
are used to describe the elementary particles. The Electromagnetic interactions are governed
by Quantum Electro-Dynamics (QED). The Strong interactions are described by Quantum
Chromo-Dynamics (QCD). Abdus Salam|[12], Steven Weinberg[13] and Sheldon Glashow[14]
unified the Electromagnetic and the Weak interactions and incorporated the Higgs Boson
into electroweak theory. This model correctly predicted the weak interaction mediating W+
and Z bosons. The SM also includes a mass generating mechanism for all the fundamental
particles, i.e., Brout-Englert-Higgs (BEH) mechanism[15, 16]. The SM was further validated
by the Higgs boson discovery in 2012 at the LHC (CERN) by the ATLAS[17] and the
CMS[18] detectors.

1.1.1 Theoretical Background

In the SM, the matter particles are fermions (spin-half) and interactions among are medi-
ated by vector bosons (spin-one). Fermions are half-integer spin particles, and they follow the
Fermi-Dirac statistics. Leptons and quarks are fermions that make up all matter and have
three generations based on mass hierarchy. Each generation of leptons has an electrically
charged particle (e, 4T, 7F) and an electrically neutral particle called neutrinos (v., v, v;).
Each generation of leptons has an associated quantum number - L, =1, L, = 1 and L, = 1.
In the SM, neutrinos are massless and only interacts via weak interactions. The quarks carry
fractional electric charge (%e, %16) and also carry a color charge (red, , blue) which helps
them to interact via strong interactions. The quark generation (u, d),(c, s), (¢,b) have quan-
tum numbers called charm (C=1), strangeness (S=1), bottomness (b=1) and topness (t=1)
and isospins. Confinement of quarks in hadrons leads to no observed free quarks in nature;
only colour-neutral states can be observed. According to the CPT theorem, each fermion has
its anti-particle with opposite quantum numbers and the same mass. Bosons, on the other
hand, are integer spin particles that follow Bose-Einstein statistics. Gauge bosons mediate
the fundamental interactions. In the the SM, Gluons(g) photon(y), W and Z are vector
boson (spin = 1) and the Higgs boson is the scalar boson (spin = 0). The W=, Z bosons are

massive mediates the Weak interaction, while photon and gluons are massless bosons, and
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mediate the electromagnetic and strong forces, respectively. The weak interaction is a chi-
rality dependent theory where it only interacts with the left-handed fundamental particles.
The scalar Higgs boson is a massive boson responsible for masses of the elementary fermions
and bosons. A detailed picture of fundamental particles and their classification according
to their properties is shown in Figure 1.1. The characteristics of the fundamental forces are

shown in table 1.1

Standard Model of Elementary Particles

three generations of matter interactions / force carriers
(fermions) (bosons)
| Il 1]
mass = =2.2 MeV/c? =1.28 GeV/c? =173.1 GeV/c? 0 =124.97 GeV/c?
charge | % % % 0 0
spin || % U Ya C Y t 1 9 0 H
up charm top gluon higgs

E

=4.7 MeV/c? =96 MeV/c? =418 GeV/c? 0

2 - - 0

» (d v (8 « (D .

down strange bottom photon

ﬁ

=0.511 MeV/c? =105.66 MeV/c? =1.7768 GeV/c? =91.19 GeV/c?

-1 =i =i 0

% (. % (M % 1 ;

electron muon tau Z boson

ﬁ

<1.0 eV/c? <0.17 MeV/c? <18.2 MeV/c? =80.39 GeV/c?

0 0 0 +1

% Ve % VM % VT 1 W

|
e ectr_on muon tau_ W boson
neutrino neutrino neutrino

Figure 1.1: The Standard Model picture includes 12 fundamental fermions and 5 fundamental
bosons with their name and properties like mass, charge, spin. All the fermions listed are
arranged in three generations from left to right. The loops show the boson’s coupling to the
fermions.

In terms of group theory, the SM obeys an SU(3)c ® SU(2);, ® U(1)y gauge symmetry.
The SU(3)c group has eight generators corresponding to eight different types of gluons
of the QCD theory. The SU(2), ® U(1)y corresponds to Glashow, Weinberg, and Salam
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Interaction Theory Mediator Strength Behavior Range

Weak EW W+, 7 10%° % exp "w.2" 107 18m
Strong QCD g 1038 ~T 107 m
EM QED v 1036 ~ 1 00

r

Table 1.1: Summary of the fundamental forces that are incorporated in the SM.

(GWS) theory. It has 3 + 1 generators corresponding to three gauge mediators of the weak
interactions and one mediator of the electromagnetic interactions. Thus in total, there are
12 force-carrying gauge particles, and the conserved quantities arising from U(1)y, SU(2).
and SU(3)¢ symmetries are weak hyper-charge, weak isospin and colour charge, respectively.
The scalar Higgs field spontaneously breaks the SU(2) ® U(1) symmetry group and produces
the massive gauge boson - W, Z and massless v boson via the Higgs mechanism [19]. The
short version of the SM Lagrangian incorporating the described fundamental interactions is

shown in equation 1.1.
1 . _
L=—FFuF" + W) + he.  +Yyihio+ he. 4+ |Duol> —V(p)  (1.1)

1.1.2 Limitations

Even though the SM agrees with almost all confirmed experimental data, it still has many
theoretical issues. It contains at least 19 arbitrary parameters, which includes three inde-
pendent gauge couplings, three generalized Cabibbo weak mixing angles, one CP-violating
strong-interaction parameter, six quark and three charged-lepton masses, and the CP-violating
Kobayashi-Maskawa phase and two independent masses for weak bosons [20]. There are mul-
tiple evidences that there is physics Beyond the Standard Model (BSM) that has yet to be
discovered. Some of the unanswered questions which limits the SM from being a perfect

theory are -

o Dark Matter and Dark Energy: Astronomical observations[21] suggest that
there is a type of matter which explains the rotation curve of galaxies, but the SM
does not have any candidate for such matter (which is invisible by all means so far
except Gravity) to explain such observations. This invisible matter is called the “Dark

matter,” and the SM cannot explain its abundance.

o Neutrino masses : Neutrinos are assumed to be massless in the SM, but the obser-

vations of neutrino oscillations[22, 23] indicates that these particles have mass.
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o Matter/anti-matter asymmetry : From the early stage of the universe, both
matter and anti-matter must be created in an equal amount according to the SM, but
observations show the contrary. A small amount of this asymmetry can be explained
by CP violation in SM, but for the current models of the early universe, this would
not be enough. The SM does not provide a mechanism by which matter dominates

over anti-matter.

o Hierarchy Problem : The particle mass correction comes from the loop interactions
with other particles and depends on the energy scale. Taking this into consideration,
it is seen that the mass of Higgs must scale quadratically in the energy scale and the

correction coming from the top quark loop is -

AP
2

Am?, = Moy + .

where ), is the Yukawa coupling (~ 1) and Ay is the ultraviolet cutoff. This indicates
my > 10°GeV. Experimentally, the mass of Higgs is 125GeV [18, 17]. For this, very
fine-tuning in mass is needed, which is not explained by the SM[24, 25].

o Unification : Weak and electromagnetic interaction has been unified by the Electro-
weak theory when considering high enough energy scales, i.e., the observed weak and
electromagnetic interactions are actually mixtures of the U(1)y and SU(2), groups,
but this only becomes apparent at higher energies. Currently, the SM does not have a

unification of all the three forces, and also, it does not include Gravity.

From these limitations of the SM, there are plenty of good reasons to search for Beyond
Standard Model theories. One of the most promising BSM theory is Supersymmetry or

SUSY, which is not covered here, and more information can be found in Ref [26].

1.2 Precision experiments at LHC

Direct searches for the beyond standard model physics and precision measurements of Stan-
dard Model parameters are two experimental methods to look for physics beyond the SM.
The Standard Model can precisely predict the outcome of a large number of experiments,
measuring, for example, the probability and cross-sections of various particle interactions.
There are 19 free parameters in the Standard Model and measuring them precisely is essen-

tial to validate the theory. One of the most well-known examples of precision measurement
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is the observation of the Higgs boson and the measurements of its decay to other particles

by the ATLAS [17], and the CMS [18] detectors at the LHC.

September 2020 CMS Preliminary
— =
o) =
o 5 O 7 TeV CMS measurement (L < 5.0 fb™) 7
— 10 @ 8 TeV CMS measurement (L < 19.6 fb) b |
B @ 13 TeV CMS measurement (L < 137 fb™) =
Theory prediction .
- 1 04 4 L Z CMS 95%CL limits at 7, 8 and 13 TeV f
c E
i) =
e
O 3
g 10
n »
® 10
(%))
e
o 10
S
(@)
S 107k
© B
o E
=
%02
10°°
-4
10 "Wz wy 2y Wwwz' 2z e ewnens waz' 22z vy 2 'Wv,/'rfm'gg e IE%-SLEWWIEQVZ Emzlﬁé'vzzl t ', Wttty 1Zq 'tz ty W titt GgHY BSVHIWHIZHIHHI tH HH'

EW,Zyy,Wyy: fiducial with W—lv, Z—ll, I=e,u Th. Aoy, in exp. Ao

All results at: http://cern.ch/go/pNj7

Figure 1.2: Summary of the cross-section measurements of Standard Model processes at

CMS [3].

The production cross-sections measurements for various SM processes by the CMS exper-
iment is shown in the figure 1.2 [3]. The CMS precision measurements of the cross-section

and the theoretically predicted value are very close.

1.3 Unfolding

Precision experimental measurements like cross-sections require taking into account the de-
tector effects. The detector acceptance and efficiency affects the particle-level distributions
(real particle collisions), and the smearing that is introduced by the detector response, and
kinematic reconstruction algorithms leads the measured values of an observable to be slightly
different from their true values. Unfolding is the procedure that accounts for these detector

and physics effects using a non-parametric estimator to get the particle level or the parton
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Particle level Detector level

' p Y

laws of real particle real particle
nature collisions detector
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%+¢+++

—

statistical detector 7
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) ) ) simulation
physicists Monte Carlo Detector
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“gen” « ”
~_ ‘%um” ﬁﬂﬁﬂﬂi rec’ [

Figure 1.3: Schematic diagram of unfolding process [4]

level space often called “Truth level”. Figure 1.3 summarises the unfolding process. Unfold-
ing uses the information from the Monte Carlo generators on which detector simulation is
performed, and the “Truth level” distributions are acquired by applying it to the detector

level data.

Unfolding is important as it unsmears the detector effects and gives the “truth level”
distributions which are useful in comparing the distributions of collider observables. This
process ensures the independence of the results from the specific experiments and enables
comparisons between different experiments. These comparisons are important as they help
in -

o enhancing and understanding of the Standard Model,

o tuning Monte Carlo event generator parameters by fitting the parameters involved in

the theory (e.g., QCD) to the data,

o enable comparison between collider observables and theoretical predictions and also

with the measurements from different experiments,

o aiding precision searches for new physics, and
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o allowing exploratory data analysis

CMS 35.9 b (13 TeV)
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Figure 1.4: Some examples of published results where unfolding was used. The Top left
plot shows the t¢ normalized multi-differential cross-section [5].
the Muon-neutrino scattering at the T2K experiment [6].
differential cross-section measurement for the associated production of the W boson + jets
[7]. The bottom right plot shows the top-quark pair spin correlation measurement in the ey
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channel at the ATLAS experiment [8].
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Unfolding is most often used in measurement analysis, where the goal is to calculate cross-
section for QCD, top and electro-weak processes. A few published results where unfolding

was used are shown in Figure 1.4.

Unfolding algorithms are used to mitigate any effects from detector response. As a case
study, we will be focusing on the unfolding in the CMS detector; however, we will be using
simulations of the CMS detector. The CMS detector is made of trackers and calorimeters,
each of them have their own efficiencies and acceptances in resolution of the energy deposited
by the particles. In the following subsections, we first introduce the CMS detector geometry
and then provide the status of Unfolding in the CMS detectors.

1.3.1 CMS detector

The Large Hadron Collider (LHC) is the world’s largest particle accelerator, with a circum-
ference of 27 km. It has four collision points where the detectors are constructed, namely,
ATLAS, CMS, LHCb and ALICE. It is designed for proton-proton collisions with the center

of mass energy /s = 14GeV and a luminosity . = 103tcm 2571

The Compact Muon Solenoid (CMS) is a general-purpose detector studying the SM par-
ticle properties and searching for signatures of new physics produced in p-p collisions at the
LHC. The CMS detector is cylindrical in geometry with the beam pipe aligning with the axis
of the cylinder and has different layers specialised in detecting specific particles as shown in
the Figure 1.5.

The superconducting solenoid has an internal diameter of 6m, creating a magnetic field
of 3.8 T, which helps bend the particles’ trajectories according to their charge. Closest
to the beam pipe is the silicon pixel and strip detectors, which help determine charged
particle tracks and their momentum. The Electromagnetic Calorimeter (ECal) is made of
scintillating lead tungstate crystals, which helps in identifying energy deposit from photons
and electrons. The Hadronic Calorimeter (HCal) comprises brass and scintillator where
neutral and charged hadrons deposit energy. Muons are measured in the muon chamber,
which are gas ionisation detectors embedded in the steel flux-return yoke outside the solenoid.
A more detailed description of the CMS detector, along with the coordinate system used

and the relevant kinematic variables, can be found in Ref [27].
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Figure 1.5: Transverse slice of CMS detector showing different type of particles depositing
their energy from the point of collision to the muon chamber [9].

1.3.2 Current status of Unfolding in CMS

Unfolding in CMS is commonly done using the TUnfold algorithm [28]. TUnfold is in-
terfaced to the ROOT analysis package [29] and is used for correcting the migration and
background effects for multi-dimensional distributions. It implements unfolding the data dis-
tribution using a least square method with Tikhonov regularisation (discussed in the theory
section 2.2.3) where the regularisation parameter is determined using the L-curve method
and scans of global correlation coefficients [28]. Apart from the Tikhonov regularisation,
Iterative Bayesian Unfolding (IBU) is also widely used for unfolding. Both TUnfold and
IBU algorithms can be accessed using the RooUnfold [30] package, which aims to provide a

framework for different Unfolding algorithms.

In recent years, there has been a lot of interest in calculating the multi-differential cross-
section of various SM processes. These types of measurements requires unfolding to be in
a multi-dimensional space where understanding the correlation between the observables is

crucial. These measurements are currently performed as a function of various observables.
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A few examples of multi-dimensional unfolding used are -

1. “The measurement of t¢ normalized multi-differential cross-sections in pp collisions at
/s = 13TeV, and simultaneously measuring the strong coupling strength, top quark
pole mass and parton distribution function at the CMS experiment” [5]. In this anal-
ysis, the unfolding is done in three dimensions as a function of the invariant mass,
rapidity of the ¢t system and the multiplicity of the additional jets at the particle

level.

2. “Measurement of jet-substructure observables in top quark, W boson and light jet
production in proton-proton collisions at /s = 13TeV with the ATLAS detector” [31].

1.4 Unfolding Algorithm limitations

One important point we will notice in the theory chapter 2 is that the traditional unfolding
algorithms are done for individual binned observables, i.e., they are performed on a binned
histogram. This comes from the requirement of a binned response matrix which is initialised
using existing histograms of the observables that are to be unfolded. This binning is chosen
manually and is determined ahead of time. This binning also prevents us from unfolding
a large number of observables simultaneously, and ultimately the measurements of multi-
differential cross-section beyond two or three dimensions are not feasible. Working with
binned observables also introduces mathematical challenges with sparse binning. Binning
also makes it much more challenging for comparing measurements with different experiments
and to the theoretical predictions. The RooFit framework can do two or three-dimensional
unfolding using the multi-dimensional IBU [32] but cannot do higher dimensional unfolding.
Hence, these unfolding algorithms do not generalise well to multi-dimensional unfolding,
loses correlation information, and the results are sub-optimal with a potential bias if the

detector response depends on auxiliary features.

1.5 Our Approach

Performing high-dimensional measurements at particle colliders are important as these mea-
surements keep as much information as possible. This helps in understanding the correlations

across different measurements, which helps in making better comparisons. One approach for
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performing high-dimensional measurements is to move away from binning and perform un-
folding in an unbinned fashion. Omnifold [2] is one such algorithm that performs unfolding
at the particle level and is essentially unbinned unfolding. It uses a deep learning method
to perform reweighting on the simulated data using the likelihood ratio approach. Detailed

information is discussed in the section 2.3.

Optimal transport is a method that is widely used in image processing and on point cloud
data. Optimal transport is a very interesting method to consider as it allows morphing
from one distribution to another, and it works even for the sparse distribution. This makes
optimal transport a good candidate to explore for performing multi-dimensional unbinned
unfolding. In this thesis, the traditional unfolding methods are compared with the non-
traditional unfolding (OmniFold) algorithm, and we propose an unfolding algorithm based
on Optimal transport, which is an unbinned high-dimensional unfolding preserving as much

event information as possible.
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Chapter 2

Theory

2.1 Mathematics of Unfolding

Unfolding, in mathematics, can generally be classified as an inverse problem and is called
deconvolution or unsmearing. In general, the problem can be formulated as to determine
the probability density function (pdf) f(y) of a random variable y using a sample of data
Y, .-y Yn. In the case where a parametric form for the pdf (f(y;#)) is known, then standard

techniques like maximum likelihood function are used to obtain estimators 6.

If the parametric form is not available, we construct a histogram of y with M bins and let
the expectation value of the number of entries in bin ¢ of the histogram be represented by
;. The goal of unfolding is to construct estimators for the M parameters g = (1, ..., fiar)-
In the case where the parametric form is not available and the measured values of y are
subject to further random fluctuations because of measurement errors and statistics. Each
observation is characterized by a true value (unknown) y and a measured value z. The pdfs

for x and y are related by a convolution as defined in equation 2.1.

Foneas () = / R(2ly) forue (y)dy (2.1)

where R(x|y) is the response function which is known and assumed to only depend on the
measuring apparatus [33]. In particle physics, usually the response function is modelled from

a simulated sample based on an assumption f(y)™ed
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Considering that both x and y pdfs are represented by histograms (usually the case in

particle physics), equation 2.1 becomes -

M
V; :ZRiij7i: 1, ..... ,N. (22)

i=1

where g = (i1, .., uy) is the expectation value for the histogram of y and v = (v, ..,vy)
is the expectation value for the histogram of x. R is the response matrix, and in terms of

conditional probability it is defined as -
R;; = P(observed in bin i | true value in bin j) (2.3)

and,
N

Z R;; = P(observed anywhere | true value in bin j) = ¢; (2.4)

i=1
where the €; gives the efficiency, and it depends on the bin j of the true histogram.

Considering the background events in bin i as ;, the equation 2.2 is modified to equation
2.5 for the data n -
En|=v=Rp+p (2.5)

2.2 Traditional Unfolding Algorithms

2.2.1 Correction factors

Deriving correction factors from Monte Carlo simulations is a simple method to construct

estimators. For the ith bin, the estimator of the unfolded distribution can be given by -

gen

Ni
reco

Nz'

fis = (vi — Bi) (2.6)
where N/ NI are the number of generated and reconstructed Monte Carlo events in bin
t. This method is only applicable for M, = M,, i.e., bins on detector level and truth level
have a clear correspondence. In the correction factor method, the results have much smaller
variances, but they are biased significantly by the underlying Monte Carlo distributions. The
estimators are often pulled towards the prediction of the simulation (Monte Carlo) model

used for the correction factors by the bias. This method is usually disfavoured due to the
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simplicity and the fact that it does not account for bin-to-bin migrations. [33, 34].

2.2.2 Matrix Inversion

In the case where the response matrix can be inverted, the equation 2.5 can be written as -
i—R'v-g) 2.7)

The Matrix inversion yield unbiased results as there is no assumption on the y;, but the vari-
ance is very high. When the off-diagonal terms in the response matrix are too large, then the
estimators have significant variances and strong negative correlations between neighbouring
bins. When we apply R™! to get u, the statistical fluctuations in the data histograms end
up with large oscillations between neighbouring bins in the estimators [33]. An example of

such oscillations is shown in the unfolding result shown in the figure 2.1.

2.2.3 Matrix Inversion with Regularization

One method to solve the significant variance seen in response matrix inversion is to regu-
larise the solution. Regularisation methods for inversion problems involve a trade-off between
the quality of the fit and the size of the regularised solution, which is controlled by the reg-
ularisation parameter. The large bin to bin fluctuations of the unfolded result is reduced by
the addition of a regularisation term suggested by Tikhonov [35]. In the most general form,

the equation of the Tikhonov regularisation is -

px = argmin{|[ Ry — v[[3 + M| L(p — po)ll3} (2.8)

where A is the regularisation parameter, ||L(p — po)||2 is the size of the regularisation
solution and the fit is measured by ||Rp — v||o of the residual vector. The bias vector
Lo is often set to zero or equal to the simulation. The matrix L is the regularisation
condition, and it is usually called the penalty matrix. The choice of penalty matrix depends
on the matrix inversion, and it penalizes the unwanted features (e.g. oscillations) of the
unfolded distributions. The most commonly used penalty matrix are Curvature matrix
(discretized version of the laplacian/second derivative operator), Identity matrix, Difference
matrix (discretized version of the difference operator). The Curvature and the Difference
matrix as the penalty matrices long range oscillations while the Identity matrix penalizes

the overall norm.
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The Tikhonov solution py is usually given by the rewriting the eq 2.8 as -
(RTR+ NL"L)ux = R"v + N2 LT Lo (2.9)

The regularisation parameter )\ is arbitrary and one way to determine the value of this
parameter using the L-curve. It can be noted that if regularisation parameter is very high,
then it will not fit the data v and the residual (||Rux — v||2) will be too large, whereas
if regularisation parameter is too small, the fit will be good but it will be affected by the
large oscillation, i.e., ||L(px — to|l2 will be very large. The L-curve is obtained by plotting
the residual norm (||Rpx — v||2) vs the solution norm (||L(px — peoll2). The regularisation
parameter is selected corresponding to the point where change of slope is maximum i.e., the
kink in the L-curve[36, 33, 34].

The significant variances seen in the response matrix inversion can be solved using the
Tikhonov regularisation. We see an example that will show how the difference can be seen
when Matrix inversion is applied vs the Tikhonov regularised solution. We first create an ex-
ponentially generated distribution called “Truth lepton pr”, and for detector simulation, the
exponential distribution is smeared using a normal distribution. The smeared distribution is
called “Detector lepton pr”. The response matrix is created by plotting Detector lepton pr
vs Truth lepton py which is shown in the top left plot of Figure 2.1. We see from the Matrix
inversion unfolding (top right plot 2.1) for this example that the variance is very significant.
The unfolded distribution looks nothing like the truth distribution with wild fluctuations
and negative values in some bins. When inverting the matrix, the solution amplifies the
small fluctuations leading to wildly different results. Performing the Tikhonov regularisa-
tion unfolding, first, the regularisation parameter is selected from the L-curve kink (bottom
left plot in 2.1, where the curvature matrix is used as the penalty matrix for penalizing the
oscillations of the unfolded distribution, which is shown in the bottom right plot in 2.1. Us-
ing the regularisation, the wild fluctuations when inverting the matrix got penalized in the
unfolded distribution. For example purpose, we specifically chose to showcase an extreme
case of matrix inversion going wrong. Matrix inversion does not perform this poorly and it

largely depends on the response matrix, and its eigenvalues.
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Figure 2.1: A comparison of Matrix inversion and Tikhonov regularisation using an example
is shown in the plots. The top left plot shows the response matrix for lepton pr. The
top right plot shows the unfolded distribution using the Matrix inversion. The bottom left
plot shows the L-curve between the residual norm and the solution norm, where the cross
indicates the regularisation parameter chosen from the L-curve. The bottom right plot shows
the unfolded distribution using the Tikhonov regularisation.

2.2.4 TIterative Bayesian Unfolding

D’Agostini [37] proposed an iterative method for unfolding, which makes use of the Bayes
theorem. Let y denote unfolded distribution, and x denote data distribution, then the

equation for the Iterative Bayesian Unfolding is shown in equation 2.10.

Ri'ynil
yj =D Priyle) Pr(z) =Y 05 x (2.10)

n—1
i ZkRikyl(c :

where 7, j are the bin numbers and n is the number of iterations. In IBU, the number of
iterations act as the regularisation parameters and is the arbitrary parameter of the theory.
The number of iterations is decided by looking at the simulation test data. As the n becomes
large, it brings the large variances, and the estimators approach the oscillating solutions that
we see in the Matrix inversion [33]. The convergence rate for IBU towards the unregularized
estimate is very slow compared to the other traditional unfolding methods, and the number

of iterations is expected to grow with the number of bins squared [38].
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2.2.5 TUnfold

TUnfold algorithm estimates p using a least square method with Tikhonov regularisation
and optional area constraint. As discussed earlier, let v be the observables, p be the truth
level distribution and R be the response matrix. Let V,, be the covariance matrix of v.
For the TUnfold algorithm to work, the dimension of g is less or equal to the dimension of

V.

The TUnfold algorithm determines the stationary point of the Lagrangian

£1 = (V - RI“I’)TVVV_I(V - R:u’)a

Lois =7°(p — fopse)" (LTL) (1 — forso),

£3 = )\(Y — €T[,l,), (2 12)

The term L is from the least square minimisation. The term L, describes the regulari-
sation where the regularisation parameter is 72 which helps to dampen the fluctuations in
v. The term L3 is an optional area constraint, and the A is the Lagrangian parameter. The

stationary point of the £(p, A) is discussed in more detail in literature [28].

2.3 Machine Learning Based Unfolding - OmniFold

OmniFold is an unfolding method where the detector-level quantities are iteratively un-
folded, and machine learning is used to handle phase space of any dimensionality without
requiring binning. OmniFold is an unfolding method that generalizes the iterative Bayesian
equation 2.10 [37] to the unbinned, full phase space using the likelihood ratio approach. To
understand it, consider samples X and X', and p,, x (), puw x/(z) is the probability density
of x estimated from the empirical weights w & w’ and the samples X & X' respectively. A

classifier is trained to distinguish (w, X) from (2, X’) as shown in eq 2.13.

_ Pux (z)

L{(w, X), (", X)(2) = == 705

(2.13)
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The function L[(w, X), (w', X")](x) is approximated using classifier trained to distinguish
(w, X) and (w’, X'). Neural network classifiers are used to iteratively reweight the particle

and detector level Monte Carlo weights, which results in an unfolding procedure.

Detector-level Particle-level
_ Data
=
-l
=
—
Step 1: Step 2:
Reweight Sim. to Data Reweight Gen.
Data W
Vp—1 r W Vn—1 — Vn ‘
9 . : Pull Weights . .
B Simulation (Generation
(=
UL
= _
g - <+
N Push Weights

—— ——

Figure 2.2: A schematic diagram of the OmniFold algorithm [2]. Here the “Natural” level is
the physics that we observe in nature, and “Synthetic” is the simulation of the nature.

The OmniFold technique is illustrated in Fig 2.2. The Monte Carlo dataset (Simulation)
is used where each particle level event is defined as ¢ and the detector level event is defined as
m. First, the OmniFold algorithm starts with the prior weights defined as v, which is for the
first iteration assumed to be one. The detector level data at the Natural and the Synthetic
level are matched, i.e. the Simulation weights are reweighted to match the Data which is

defined as w; and calculated by using the Likelihood ratio eq 2.13, where the function L is
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approximated using the classifier trained to distinguish (v, Sim) & (1, Data). These weights
wy are “pulled back,” and the weights are induced on the particle level synthetic data, i.e.
Generation. These “pulled weights” are used to compare Generation with previous weights
of the Generation and the weights of the initial Generation is reweighted to match the new
weighted Generation which results in the weight 1. These v, weights are then “pushed
forward” to the Simulation so that the new Simulation is induced. This process is then

iterated. The following equations show how the method for n'* reweighting -

1 wy(m) = v (m)L[(1, Data), (WP, Sim.)](m),

n—1>

2 Up(t) = vp_ 1 (t) L[(wP, Gen.), (vy_1, Gen.)|(t).

The first step yields new detector-level weights w,(m), which are pulled back to particle-
level weights wP“! = w,(m) using the same synthetic pairs (to an event at detector, m,
matched to the same simulated event at gen-level, ¢). The second step ensures that v, is a

valid weighting function of the particle-level quantities.

The OmniFold algorithm has the following variations depending on the input -

o UniFold - Input - Single observables. It is also an unbinned version of IBU.

o MultiFold - Input - Multiple observables. For example, jet mass, multiplicity, jet pT,

etc as the input.

o OmniFold - Input - Full event, using the full phase space information.

The OmniFold algorithm performed better at unfolding jet substructure observables on sim-
ulated sets of events [2], than the traditional Iterative Bayesian Unfolding (IBU), where the
implementation used dense networks with three layers of one hundred nodes each and a

two-node output layer.

2.4 Optimal Transport

Optimal transport is a tool to transport between two probabilities measures. Optimal trans-
port can be best thought of as moving a large pile of sand to transform it into a target
pile with a prescribed shape in such a way that minimizes the total effort of moving the
sand. Now, let us consider the two different piles of sand of the same volume as two dif-

ferent probability distributions. We compare them and consider all of the possible ways to
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morph, transport or reshape the first pile into second and associate a "global” cost to every
such transport, using the ”local” consideration of how much it costs to move a grain of sand
from one place to another. The effort or the costs defines a distance between the two prob-
ability distributions and also enriches the geometric structure on the space of probability
distributions [39].

2.4.1 Introduction to the Problem

There are two formulations of optimal transport formulations - Monge formulation and

Kantorovich formulation.

Monge Formulation

Optimal transport givers a framework for comparing measures p and v in a Lagrangian
framework. Let p and v be two probability measures on space X and Y respectively, i.e.,
P(X) & P(Y). Let ¢: X xY — [0,+1inf) be the cost function where ¢(x,y) measures the
cost of transporting one unit of mass from z € X to y € Y. The goal is to minimize the cost
¢ while transporting 1 — v. Define T called the transport map where T': X — Y transports
we P(X) tov e P(Y) given the condition

for all v-measurable sets B. Figure 2.3 [39]. shows that for any v-measurable B and A =
x € X :T(x) € B that u(A) = v(B). The defination of the Monge’s Optimal Transport

Problem is given as -

Definition 2.4.1. Given p € P(X) and v € P(Y), minimise M(T) = [, c(x, T(z))dp(x)
over p-measurable maps T : X — 'Y subject to v =Tyup

Monge’s formulation is difficult due to the non-linearity in the constraint 2.4.1 mentioned
in the definition of T". It is challenging to apply this formulation in the discrete cases where

the existence of the maps 7' such that the condition 2.4.1 is followed is not known.

Kantorovich Formulation

In the Monge formulation, mass was mapped x — T'(z), but in the Kantorovich formula-

tion, this mass is split. Consider a measure 7 € P(X x Y) and dn(x,y) as the amount of
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A={x: T(x)E B}

Figure 2.3: Schematic diagram of a Monge’s Transport map 7' which is used to transport
probability distribution A € X to B €Y.

mass transferred from x to y, then mass can be transferred from x to multiple locations. Let

II(, v) be the set of transport plans between p and v, which contains 7s such that [39] -

m(AXY) = p(A),

2.14
(X x B) = v(B) for all measurable setA C X, B CY. (214)

The Kantorovich’s formulation of optimal transport is given as -

Definition 2.4.2. Given p € P(X) and v € P(Y), minimiseK(w) =€xxy c(x,y)dr(x,y)
over m € Il(p,v).

2.4.2 Wasserstein Distance

Given the cost function as c¢(z,y) = |z — y|P, to find the optimal transport maps T, given

X ~ P, we need to minimize
(|l - 7C01P] = [ lle - T@)Pary(o) (215)
over all maps 7" such that T'(X) ~ P, where P, & Py are two distributions. Fig 2.4[40] shows

an example of a transport map.

The Optimal transport problem helps in defining the distance between the two distribu-

tion. The metric itself is a type of transport. This distance is called the Wasserstein distance,
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Figure 2.4: Schematic diagram of transport map

which is define as
. 1/p
W(X,Y) = W,(Py, P) = / e — 7 (@) |PdPy(x) (2.16)

where T™ is the optimal transport map. Wj is called the Earth Mover’s Distance. A more

rigorous definition with proof for metric properties can be found in the Ref [41].

An intuitive way of looking at the Wasserstein distance is to consider the probability
distribution as the pile of sand on a given metric space M. Here M can be any metric
space like square-euclidean, on which the probability distribution is defined. Then the Earth
Mover’s distance W; is the minimum cost of moving one pile of sand from one point to
another and turning the pile to another pile, which takes into consideration the amount of
pile moved and the distance it travelled. This can be used to define a distance function

between two probabilities on a given metric space.

2.4.3 Energy Mover’s Distance

Inspired from the Earth Mover’s Distance (1/7), a distance can be defined on collider events
called the Energy Mover’s Distance (EMD)[1]. This notion of distance can be used as a
definition of the similarity between collider events. EMD allows comparison between events
with different total energies. The EMD can be thought as the minimum “work” required to
rearrange one event € into the other ¢’ by moving the energy f;; from particle ¢ in one event

to particle j in the other.
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where i and j index particles in events € and €', E; is the particle energy, 6;; is an angular
distance between particles, and E,;, = min()_, E;, > ; E7%) is the smaller of the two total

energies, R is a parameter that controls the relative importance of the two terms. The EMD

(2.17)

has dimensions of energy, where the first term quantifies the difference between the two
radiation patterns and the second term accounts for the creation or destruction of energy
[1].

EMD is a true metric, and it satisfies the triangle inequality for the condition -
1. 0;; is a metric
2. R> %Qmax, where 6,,,. is the maximum attainable angular distance between particles.

One feature of EMD is that it metricizes the energy flow by treating events differing only
by soft particles or collinear splittings identically, which hints at a connection to infrared and
collinear (IRC) safety of observables. Fig 2.5 [1] shows an example of the EMD. Here, two
top Jets (blue & red) are compared and the Energy Mover’s Distance is calculated between
them. The particles are shown in the jet reference frame, with the point area proportional

to the pr of the particle.
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Figure 2.5: Example of EMD - The optimal movement to rearrange one top jet (red) into
another (blue) is shown in the plot of the particles where each point is a particle and their
area is proportional to their transverse momenta in hte rapidity-azimuth plane. Darker lines
indicate more transverse momentum movement. The energy mover’s distance in Eq. 2.17 is
the total “work” required to perform this rearrangement [1].
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Chapter 3
Event Simulation

Monte-Carlo simulations are used to model p-p collisions at the LHC. We will be using
the same dataset that the OmniFold paper [2] used for comparison purposes. HERWIG 7.1.5
[42] and PyTHIA 8.243 [43] are used to generate events where HERWIG is a substitute for
the “nature” (LHC data) and PYTHIA is used as “synthetic” distributions. This ensures that
“nature” and “synthetic” distributions are substantially different. We use DELPHES 3.4.2
[44] with fast simulation of the CMS detector is used for to simulate the detector effects,
which uses particle flow reconstruction. Jets with radius parameter R = 0.4 are clustered
using anti-kr algorithm [45] implemented in FASTJET 3.3.2 [46]. The Z + jet events are
produced using the above setup with Z boson p#" > 150 GeV and /s = 14TeV. Only
the leading jets are considered for the analysis, where the Z boson transverse momentum
p% > 200GeV.

The nomenclature that will be used is -

Gen - PYTHIA generator level information

Sim - PYTHIA reconstructed level information

Truth - HERWIG generator level information

Data - HERWIG reconstructed level information (substitute for LHC data)

PyTHIA simulated events are used to derive the unfolding correction along with using
HERWIG reconstructed level information, which will act as the LHC data. The aim is to
perform unfolding and compare the unfolded result to the “truth” i.e., HERWIG generator
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level information. The dataset used in this studies is publicly available on zenodo website

[47).

Jets are the ideal environment to compare unfolding techniques, since detector effects often
account for a significant portion of the experimental measurement uncertainties for many jet
substructure observables. To investigate the unfolding performance, the jet substructure ob-
servables considered for unfolding are - Jet Mass, Jet Multiplicity, Jet Width, N-subjettiness

Ratio (721), Grommed Momentum fraction (zg) and Groomed Jet Mass (msp).

The Jet Mass is the invariant mass of the jet four-vector, Jet multiplicity variable is defined
as the number of particles in the Jet. Jet width is the measure of the broadness of the jet
along the jet axis, which can be used to understand the nature of the jet. As an example, in
the W + jets events, if the p}¥ is high, then the particles are mostly collimated near the jet
axis giving low Jet width value [48]. N-subjettiness is a jet shape variable that determines
how consistent a jet is with having N subjets, and it defined as the 7y, i.e. the degree to which
the jet can be called a jet of N-subjets [49]. The N-subjettiness ratio 751 = 75/71, measures
how two-pronged the jet is as compared to how 1-prong like it is. Jet grooming has lots of
interest as it systematically removes the radiation from the jets, specifically targeting the
soft and wide-angle radiation. Removing the unwanted soft radiation allows identification
of underlying hard substructure, for example - two-prong W-boson or three-prong top quark
decay [50]. The Soft Drop algorithm recursively declusters the jet and removes the soft
radiations unless the soft drop condition is satisfied. After the grooming, the invariant mass
of the jet four-vector is defined as the Groomed Jet Mass (mgp). The Groomed momentum
fraction zg is the energy-sharing of the prongs after grooming. zg can be used to determine
the scale of the soft radiation and the angular distance between two particles for identifying
the wide-angle radiation [50]. The jet observables for the “synthetic” and “nature” datasets

used in the analysis are plotted in Figure 3.1.
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Figure 3.1: Plots shows the jet observable comparison between Gen, Sim, Truth and Data.
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Chapter 4

Results

In this chapter, we will start by discussing and comparing the OmniFold and Traditional
Unfolding Algorithms and see the performance of OmniFold. Then, we introduce a new
approach to unbinned multidimensional unfolding using the Optimal transport and show
results for one dimensional and multidimensional cases and compare it with the OmniFold

and traditional unfolding results.

4.1 OmniFold and Traditional Unfolding Algorithms

We start our analysis by comparing the ML based OmniFold with the traditional Iterative
Bayesian Unfolding (IBU) and Tikhonov regularization for one dimensional observables using

the dataset discussed in Event Simulation chapter 3.

The Triangle discriminator measures the similarity, or differences between two distribu-
tions p and ¢, by taking the square of their differences and dividing by the sum of the
distributions at each point. Considering each point as an individual bin in the histogram, we
can use the triangle discriminator to measure the unfolding performance of various unfolding

methods. The equation of the triangle discriminator is given by -

A= %Z e 4y

where p is the unfolded (binned) histogram, ¢ is the truth (binned) histogram, and z; is the

bin number.
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We use Tikhonov regularization and optimize the free regularization parameter A\ using
the L-curve method 2.9 i.e., solution norm vs residual norm is plotted, which looks like an
L shaped curve, and the X is selected to be the kink of the L-curve, as this represents a
good trade-off between the fit to the data and suppression of the unwanted features given
by the penalty matrix. We also vary the penalty term and add a bias vector in the regular-
ization. The penalty term, i.e., L matrix in the equation 2.8, used for performing Tikhonov
unfolding are - curvature matrix, second-order curvature matrix and the identity matrix.
The Curvature matrix is the matrix version of the Laplace operator, and it penalizes the
oscillations that arise from the matrix inversion. The bias vector used is the “Gen” vector
(Pythia Generator level information). For finding the statistical uncertainties, we use multi-
ple toy samples (smearing the simulation data by reweighting it with a Poisson distribution)
for unfolding, and the uncertainties are found from the multiple unfolded results. For IBU,
the number of iteration used is n = 3. The Response matrix, which is the input to both the

Tikhonov and IBU, is calculated using the PyTHIA “Gen” and “Sim” information.

Instead of OmniFold, we use MultiFold, where all the jet observables described above are
used as input to derive the detector response. For step 1 and step 2 as mentioned in Theory
chapter 2.3, PFN architecture and training parameters with latent space dimension [ = 256
are used which are implemented in the ENERGYFLOW Python package [51]. Keras and
TensorFlow with Adam optimization algorithm are used for training the Neural networks.
For the first iteration, the models are randomly initialized and for the subsequent iterations
the model from the previous iteration are used. The number of epochs = 100, batch size =
500 are used, and the whole process is iterated three times (n = 3). For the ML architecture,
dense networks with three layers of one hundred nodes each and a two-node output layer are

used.

The unfolding performance of MultiFold, Tikhonov and IBU are shown in Fig 4.1 and the
triangle discriminator values are shown in Table 4.1. It is seen that MultiFold (ML-based
unfolding method) performs better than IBU and Tikhonov (Traditional unfolding methods)
in most of the cases. Tikhonov performs the worst for all the observables except the Jet
Multiplicity. It is seen that the plots for Tikhonov unfolding do not compare well with the
“Truth” and for the z, observable, it shows oscillatory behaviour. This oscillatory behaviour
mainly comes from the inversion of the response matrix of Groomed Jet momentum fraction
24 as shown in example plots of Tikhonov regularisation 2.1. The Tikhonov regularisation

unfolding is done with multiple penalty terms, and only the plots with Curvature matrix as
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the penalty term and “Gen” vector as the bias term is shown in the Figure 4.1. The Tikhonov
regularisation unfolding plots with different penalty and the bias vector mentioned in the

table 4.1 are shown in the appendix A.
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Figure 4.1: The plots show the unfolded distributions for the jet substructure observables.
HErwiIG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Tikhonov. For the Tikhonov plots shown here, unfolding was done using
the curvature matrix as the penalty term and “Gen” vector as the bias. The goal here is
to get the unfolded results as close to the green histogram as possible. From the plots, it is
seen that MultiFold’s unfolding performance is better than the IBU and Tikhonov.

It is seen that MultiFold improves the performance if the full phase space contains auxiliary
features that are relevant for the detector response. By construction of the MultiFold method,
it is an unbinned and multidimensional unfolding that is performing better than the one

dimensional binned traditional unfolding methods, i.e., Tikhonov and IBU.

4.2 Optimal Transport Unfolding (OTU)

As discussed in the theory section on optimal transport 2.4, OT helps in defining a metric

on the collider events space and enables comparison between the events. Considering events
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Methods Mass | Multiplicity | width tau2l | zg SDMass
MultiFold 1.93 1.12 35.87 | 7151 | 066.44 1.1
IBU 4.77 1.11 7.59 | 143.24 | 99.42 1.92
Tikh - 1 (no bias) 8.26 1.89 35.66 | 474.76 | 165.95 11.95
Tikh - 1 (MC bias) | 9.12 1.89 86.54 | 213.19 | 222.27 10.91
Tikh - 2 (no bias) 8.45 2.04 | 173.93 | 333.87 | 153.44 7.75
Tikh - 2 (MC bias) | 8.97 0.89 | 193.63 | 183.74 | 253.63 10.73
Tikh - 3 (MC bias) | 27.06 0.23 | 8284.56 | 323.74 | 245.32 22.9

Table 4.1: Triangle discriminator values for various unfolding methods. Tikh-1 is Tikhonov
unfolding with Curvature matrix as the penatly term. Tikh-2 is Tikhonov unfolding with
Second-order curvature matrix as the penalty term. Tikh-3 is Tikhonov unfolding with
Identity matrix as the penalty term. (MC bias) means that the “Gen” vector was used as
the bias term during the unfolding.

as a distribution on the collider event space, applying optimal transport, we compare each
event and show similarity between the events. Using this information, we can compare the
“Data” and “Sim” events in the collider event space, i.e., we want to find the optimal way to
transform “Data” distribution to the “Sim” distribution. From this comparison, we can find
an optimal transport flow matrix 7', which can be used to transform “Data” to look like “Sim”
distribution on the collider event space. There is a known relationship between each event at
the detector and generator level for the simulated events. In Monte Carlo simulations, each
event is individually simulated and can be tracked from generator level to detector level, and
so its migration can be tracked on an individual event basis. Using this relation between
“Gen” to “Sim”, we invert this relationship and apply it to the “Data” distribution to get
the “Unfolded” distribution in the collider event space. Performing unfolding in the event
space and not on the binned histogram makes the algorithm by construction an unbinned

unfolding method. A schematic diagram is shown in the Fig 4.2.

In the algorithm 1, solving the optimal transport and finding the optimal flow matrix
between the “Data” distributions and the “Sim” distribution can be understood as an As-
sociation, and applying the inversion of the relationship between “Gen” and “Sim” as the
Transport function, which transports the “Data” to the “Truth” distribution. We define
f(G,S) to be the transport function that incorporated the known relationship between each
event at the detector and generator level for the simulated events, i.e., a function between
“Gen” and “Sim”. This function takes us from the “Gen” distribution to “Sim” distribution

for each event, and it includes the detector effects. Now inverting this function and applying
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- > Known relation

Applying Known relation

Figure 4.2: Schematic diagram of the application of Optimal transport for unfolding. Here,
the Known relation is the relation between the “Gen” and “Sim” that is obtained from the
fact that each event is individually simulated and can be tracked from generator to the
detector level.

it to the “Data” distribution gives us the “unfolded” distribution.

Algorithm 1: Optimal transport unfolding
Initialize the variables D < “Data” observable, S < “Sim” observable and

G + “Gen” observable”;
M = calculate cost matrix between the D and S for the observables;
T = calculate EMD flow matrix from D to S using M and event weights ;
V=TxDT;
f(G,S) = function that incorporates the relation between G and S;
Unfold = f=X(V, f(G, S));
Result: Unfolded observable

4.2.1 One Dimensional OTU

Traditionally, unfolding is often done for single observables, which is being measured, for
example, the momentum of a jet. Although it is possible to use more information, i.e., more
inputs to facilitate unfolding, often only the information from the variable of interest is used.
As a starting point, we, therefore, consider a similar case for optimal transport unfolding.

Here, we use the value of the variable itself to define the distance between two events. For
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example, if we measured the momentum of the most energetic jet, the distance between two
events would be defined as the square of the difference between the momentum of the most
energetic jet in the two events. Using the single observable, we first create a metric space of
collider events using a metric (square-euclidean) defined on the observable of interest. Then
compare “Data”, and “Sim” events using the Earth Mover’s distance as implemented in the
Optimal Transport python library (POT) [52] and calculate the optimal transportation map
T. We then rearrange the “Data” to match the “Sim” events using the map 7. From the
knowledge of “Gen” and “Sim” relation, we can apply this relation on “Data” to get the
unfolded result. For one dimensional unfolding, the input is just the observables that are to
be unfolded. We can define the function between the “Gen” and “Sim” to be the difference
or ratio, i.e., f(G,S) =G — S or f(G,S) = G/S. More complex functions can be defined

but in our analysis we mainly use the difference between the “Gen” and “Sim” distributions.

One big obstacle to Optimal transport is the computational cost. Computing p-Wasserstein
distance between two events requires O(n?) operations, where n is the number of particles
in each event. We need to compute the pairwise p-Wasserstein distances between the entire
collection of N,,; requiring O(NZ,,) computations[53]. Due to computational limitations, the

number of events was limited to 5000 events.

The unfolding performance of MultiFold, IBU and Optimal transport are shown in Fig
4.4 & 4.3 and the triangle discriminator values are shown in Table 4.2. From the plots and
triangle discriminator values, we see that our one-dimensional Optimal transport unfolding
performs better than MultiFold and IBU for Jet Mass and Jet Multiplicity observables,
but unfolding performance is not great for other variables. In the plots, we see that the
histograms are not smooth, and this is due to the limited number of events used for unfolding.
In order to smooth out some of the fluctuations, we just increased the binning size shown in
the histograms here, which would allow the patterns to be more clearly visible and compared.
For the unbinned methods, there is no difficulty with changing the binning. Fig 4.4 uses
the “Gen” to “Sim” relation as the f(G,S) = G/S and Fig 4.3 uses f(G,S) = G — S.
Comparing the plots, it is observed that both difference and the ratio functions produce
similar outputs. We will be using the difference between “Gen” and “Sim” as the function
f(G,S) in performing the Optimal Transport Unfolding. In the table 4.2, the difference

function is used to perform 1D OTU for the triangle discriminator values.
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Figure 4.3: The plots show the unfolded distributions for the jet substructure observables.
HerwIG (“Data”/“Truth”) and PyTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and one-dimensional Optimal Transport. The goal here is to get the unfolded
results as close to the green histogram as possible. Here the function used is the difference
between “Gen” and “Reco”, i.e., f(G,S) = G — S. We see that the one-dimensional optimal
transport unfolding is doing reasonable when compared to Multifold and IBU.

It is expected that the performance of the unfolding methods changes with the change in
the parts of the dataset used. We are only using 5k events, which is a subset of the dataset
3. We create multiple such subsets of 5k events, and we calculate the values of the triangle
discriminator for the unfolding methods by varying these subsets and calculate the average
and standard deviation values are shown in table 4.2. Also, as MultiFold is a machine
learning-based unfolding method where the weight of the PFN architecture are initialized
randomly, it is expected that the performance of the MultiFold will vary for each run on the

same dataset. These errors are shown in the brackets in the table 4.2.

4.2.2 Different inputs to the OTU algorithm

We already saw the OTU results for one-dimensional inputs, which motivates the use of

different inputs to the optimal transport unfolding algorithm 1. In one dimensional OTU,
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Figure 4.4: The plots show the unfolded distributions for the jet substructure observables.
HerwIG (“Data”/“Truth”) and PyTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and one-dimensional Optimal Transport. The goal here is to get the unfolded
results as close to the green histogram as possible. Here the function used is the ratio between
“Gen” and “Reco”, i.e., f(G,S) = G/S. We see that the one-dimensional optimal transport
unfolding is doing reasonable when compared to Multifold and IBU.

Methods | Mass Multiplicity width tau2l 78 SDMass

MultiFold | 6.14 - 1.16(2.43) | 10.29 +- 1.96(3.52) | 565.299 +- 74.43(278.35) | 329.90 147.07(98.94) | 613.00 +- 173.08(743.26) | 23.56 +- 3.43(10.92)
IBU 9.30 +- 2.05 11.28 4~ 1.73 551.29 +- 106.76 397.88 4- 115.30 542.01 +- 52.64 26.47 +- 6.59
oT 6.22 +- 0.82 7.26 +- 0.82 725.87 4- 94.19 514.47 4- 83.12 1108.83 +- 479.51 45.53 +- 5.40

Table 4.2: Triangle discriminator values for MultiFold, IBU and one dimensional OT. Multi-
ple parts of the dataset were used to calculate the average and the variance of each unfolding
method. One dimensional OT unfolding outperforms MultiFold and IBU for Jet Mass and
Jet Observables and performs reasonably in other cases except for the Groomed Jet Momen-
tum Fraction z,.

we aimed to understand the unfolding using the optimal transport and perform an unbinned
unfolding of an observable of interest, with only one observable as the input. In this section,
we want to understand the unfolding performance of the OTU using in a multidimensional
case. We observe that the input to the ground metric can be multidimensional, which can
help in preserving more correlations than the single observable input as more information

was used to perform the unfolding. The inputs to the ground metric calculation that we
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explored were Jet momentum four-vector and particle momentum four-vectors. Here, we are
just changing the “association function” (i.e., changing the ground matric and how different
events get associated to each other) and keeping the observable of interest as the “transport

function”.

For the case where Jet momentum four vectors is provided as the input, we perform
the unfolding in the similar manner to 1 by first calculating the metric using Jet 4 vector,
then finding the optimal transport matrix 7" by matching “Sim” and “Data”. Then after
rearranging, “Data”, the Unfolded distribution is estimated using the relation between the

“Gen” and “Sim” and applying it on “Data”.

For the case where the particle momentum four-vector is provided as the input, there is
a tweak to the algorithm 1. Here, we first calculate the Energy Mover’s Distance of each
event using the implementation in EnergyFlow python library [51]. These Energy Mover’s
Distance (EMD) will act as a measure to compare two collider events. These values are then
used for calculating the cost matrix and which is used to get the optimal transport matrix
T using the python optimal transport library (POT). Hence, we applied OT twice, once for
calculating EMD between particles of each event and second for performing unfolding. It is
important to notice that by structure, this is an unbinned, multidimensional unfolding. The
comparison of MultiFold, IBU and Jet four vector OTU are shown in the figure B.1 and the

same with Particle four vector OTU are shown in the figure B.2 in the appendix B.1

Methods Mass | Multiplicity | width | tau2l 7g SDMass
1D 5.76 4.73 | 523.27 | 368.79 750.91 38.58
Jetdvector 5.71 3.2 1 668.35 | 1178.87 | 9256.17 74.84
Particle level | 6.87 5.55 | 329.12 889.7 | 7925.02 36.77

Table 4.3: Triangle discriminator values for one dimensional, jet 4 vector and particle 4
vector OT unfolding.

We compare the OT unfolding with different inputs, i.e., one dimensional, jet four-vector
and particle four-vector. Fig 4.5 shows the comparison plots and table 4.3 triangle discrim-
inator comparisons. The number of events used for the plots is 15000. We see that for
Jet mass and multiplicity, all the OT unfolding are performing similarly. For soft drop jet
mass and Jet width, particle level unfolding is performing better than others. However, in

N-subjettiness Ratio, jet and particle level unfoldings have a large concentration of events in
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Figure 4.5: The plots show the unfolded distributions for the jet substructure observables.
HerwIG (“Data”/“Truth”) and PyTHIA (“Sim”/“Gen”) are used to perform unfolding with
different inputs to the Optimal Transport problem. The goal here is to get the unfolded
results as close to the green histogram as possible.

the higher region. The jet and particle level unfolded distribution shows an interesting be-
haviour of distributions having a sharp cut like the one in Groomed Jet Momentum Fraction
z4. There is a significant concentration of events in the region below the cut. It is possible
that the number of events where gen z, < 0.1 is less than that for sim z,. It seems like
due to this, there is a bias that is pulling all these events towards (0, 0.1) interval. Another
possible reason might be that, the events which are close in the case for Jet momentum 4
vector or the Particle momentum 4 vector as the inputs for the “Association function”, these
events are not necessarily close in the observable of interest for calculating the “Transport
function” Hence, when there is a sharp edge in the observable z,, an event in the “Data”
which is close to that edge might get matched to the “Sim” event which is far away from the

that edge and has a transport vector which pull it over the edge.

In this subsection, we compared the OTU with different inputs to the algorithm. Using
the Jet four-momentum vector as the input to the OTU algorithm helps in preserving the

correlations more than the one-dimensional OTU. Apart from some specific cases, we see
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that the Particle four-momentum vector as the input has good unfolding performance and
gives an interesting method of comparing the events. We first compare the events at the
particle level and determine a value to the similarity of those events using Energy Mover’s
Distance, and then we compare the events at the event level. Comparing at the particle level
helps in preserving most of the correlations. In the next section, we will extend the idea of
comparing the events at the particle level using the EMD values and then use these EMD

values as the underlying ground metric to get unfolded particles.

4.2.3 Particle Level OTU

In the previous algorithm 1, we solved the optimal transport problem between the “Data” and
“Sim” and obtained the flow matrix at the level of event space and produced the unfolded
distribution using it. One of the drawbacks of this algorithm is that it directly get the
unfolded distribution of the observables. An approach to get the unfolded particles can give
freedom and flexibility in calculating various observables and preserving correlations. This
section proposes an optimal transport unfolding method that can perform unfolding in the

particle space giving unfolded particles.

Extending the ideas taken from the unfolding done with particle four-momentum as the
input to the algorithm 1, we can first solve the optimal transport problem in the particle
space for each event in the “Data” and “Sim” and find the Energy Mover’s Distance (EMD)
for each of the pairs of events in “Data” and “Sim” using the EnergyFlow python package
[51]. Using the EMD values as the ground metric on the collider events, we solve the optimal
transport problem in the event space and obtain the Transport matrix 7', which is used to
compare “Data” and “Sim” events. Now, instead of using the observables that we want to
unfold as the input, we use a different step to obtain unfolded particles as described in the

algorithm 2.

The algorithm 2 make use of the Linearized optimal transport (LOT) [53]. We first take
a look at the LOT. As mentioned earlier in 4.2.1, the computational cost of computing the
p-Wasserstein distance between two events is O(n?). Also, computing EMD, i.e. pairwise
distance between all events for N, dataset is O(NZ2,). LOT proposes a framework for
computing the distance by reducing the computational cost. It introduces a use of reference
vector which helps in speeding up the computation of the optimal transport distances. We

use LOT as it allows us to approximate a transport map derived on one event (distirbution)
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Algorithm 2: Optimal transport unfolding in particle space

Initialize the variables D < “Data” observable, S < “Sim” observable and
G + “Gen” observable”;

M = Cost matrix with EMD values between D and S at the particle level;
T = EMD flow matrix from D to S in the event space using the M cost matrix;
Match D and S events using T}
R = Initialize a reference event;
for number of events do

Tsm = EMD flow matrix from R to S at the particle level;

79" = EMD flow matrix from R to G at the particle level,

Tdata — EMD flow matrix from R to D at the particle level;

s =Tm x S
g="T9" x G,
d = T x D;

unfolded event = d + (g — s);

unfolded jets = FastJet clustering on the unfolded particles;
end

Result: Unfolded particles for each event

to another event (distribution), which we don’t know how to do with the full EMD. We are
more interested in the concept of the reference event and use it to enable vector calculation

in the particle space.

These reference event contains particles which are used as a reference for the energy
flow. First, we solve the optimal transport problem between reference event R and event E
(where event E will be “Data”, “Sim” and “Gen” event) at the particle level so that we have
a Transport matrix 7" in the particle four momentum vector space. Let the t;; denote the
optimal transport plan from reference event R to an event E, which intuitively can be viewed
as the transport plan ¢;; send energy from particle 7 in the event £ to many different particles
in the reference event R. Let ¢4, t7" and t5™ be the optimal transport plans from R to
“Data” (D), R to “Gen” (G) and R to “Sim” (.5) respectively. Using these optimal transport
plans a map from event E to a vector r; is created which is in n-dimensional Euclidean space

of R™, where n is the number of particles in the reference event. This r; vector is defined as

1
ri = E ; tijgj (42)
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The energies of the particles in the “Data”, “Sim” and “Gen” events are sent to the reference
particles using the optimal transport matrix, and by using the eq 4.2 vectors d;, s; and g;
are created to have vectors in the same dimensions as the reference event. By applying the
knowledge of the relation between “Gen” and “Sim” to “Data” in the vector space created
using the reference event, we get Unfolded particles. These unfolded particles are then
clustered into jets using the pyjet python package, a python implementation of Fastjet[46].
With these unfolded particles, we can calculate any jet substructure variable needed for the
analysis. This unfolding algorithm is an unbinned, multidimensional unfolding that preserves

correlations by construction.

In the algorithm 2, it can be noted that the choice of reference event is arbitrary. The
reference event is introduced to perform the Linearized Optimal Transport. The choice of
reference event has a considerable impact on the quality of the unfolding results. In our
analysis, we choose data as the reference event. To understand the algorithm 2, we perform
unfolding for a straightforward case. Let the case be defined using the following particle

structure -

1. data = [20,1,1,0], [20,-1,-1,0], [5,0,0,0], [5,0,0,0]
2. reco = [20,1,1,0], [20,-1,-1,0], [10,0,0,0]
3. gen = [20,2,2,0], [20,-2,-2,0], [10,0,0,0]

4. truth = [20,2,2,0], [20,-2,-2,0], [5,0,0,0], [5,0,0,0] = Unfolded

In this example, we took a four-particle data event, a three-particle MC event, and the
particle at the centre in gen splits into two equal pT in the truth event. For this simple
case, figure 4.6 shows the plots between all possible combinations of data, reco, gen, truth,
and unfolded events. We see that the data-reco are the same, which is reflected by the EMD
value. The EMD values for gen-reco and data-unfolded is the same, which is expected for
this simple case, and it is what we want to achieve from the unfolding, i.e. when we perform
vector additions to get the unfolded particle distributions, data-unfolded plots should show
the similar distributions as that of gen-reco plots. When unfolding is done for the dataset,
the EMD values for data-unfolded should be similar to that of gen-reco, and the EMD value

for unfolded-gen should be similar to data-reco.
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Figure 4.6: Particle level plots of the simple case. Point shows the particles and their area
is proportional to their transverse momentum in the rapidity-azimuth plane. Darker lines
indicate more transverse momentum movement.
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Figure 4.7: The unfolding results for Jet Mass and Jet pT observables using HERWIG
(“Data”/“Truth”) and PyYTHIA (“Sim”/“Gen”) are shown in this plots. Particle level OTU
is compared with MultiFold and IBU.

Methods Mass | Jet_ pT
MultiFold 1.86 0.06
IBU 3.37 0.07
Particle level OTU | 11.99 1.21

Table 4.4: Triangle discriminator values for MultiFold, IBU and Particle level OTU.

We apply the algorithm 2 to the dataset and perform unfolding to get the unfolded parti-
cles. We compare this OT unfolding with MultiFold and IBU. Figure 4.7 shows the compar-

ison plots and table 4.2.3, i.e., different inputs to the association function. From the plots
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and triangle discriminator values, we see that the MultiFold is performing better than our
Particle level OTU for the Jet Mass and Jet pT observables. We observe that the current
results of Particle level OTU are inconclusive, but the advantage of Particle level OTU can

be reflected in its great flexibility that the unfolded particles provide.

It is observed that the Particle level OTU is similar to the data, and the development
of the algorithm is in progress to remove this bias. We are also exploring the results with

different reference vectors and this is a work in progress.
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Chapter 5
Conclusion

This thesis consisted of an unfolding algorithm study in which an innovative unbinned
multidimensional unfolding algorithm is proposed. The disadvantages of the traditional
unfolding methods, mainly the restrictions coming from the binning and the algorithms’ not
scaling well for higher dimensions and unfolding in higher dimensions, help conserve the
correlations that can be used in comparing results and performing precision analysis with
more freedom. Unfolding algorithms for an unbinned and multidimensional measurement

which can preserve as much correlation as possible is essential.

We first looked into the Machine Learning based unbinned unfolding algorithm - OmniFold,
which can handle phase space of any dimensionality. It was seen in our comparison that
OmniFold performs better than the traditional unfolding algorithms. It utilizes the full
phase space information to mitigate the problem of auxiliary features that are controlling
the detector response. It can be observed that by the structure of the OmniFold algorithm,
it unfolds the full-radiation pattern, which can be used to probe new quantities which are

challenging to unfold with the traditional unfolding methods [2].

From the motivation of OmniFold’s unbinned unfolding, we proposed a novel unfolding
algorithm that is unbinned and handles any dimensionality. The method is based on solving
the Optimal transport problem and exploiting the transport matrix to perform unfolding.
The main concepts used here is the comparison of two events and defining a metric space
on the event space. We showed that Optimal transport unfolding gives promising results
compared to the traditional unfolding method in specific cases, and it can act as a non deep-

learning based alternative to the OmniFold algorithm, although, further studies are required
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to understand its limitations, and under which conditions it does, and does not perform well.
Further improvements to handle some of the cases where it does not perform very well may

also be possible.

The Particle level OTU algorithm that unfolds the whole event to produce unfolded par-
ticles is an interesting way of unfolding. This presents a paradigm shift towards unfolding
where the whole event at the particle level which preserve most of the correlations by the
construction of the algorithm. Although, the results presented in the thesis do not give any
conclusion on the power of Particle level OTU, the approach of performing unfolding at the
event level where we get the unfolded particles provides lots of freedom for precision analy-
sis. These approaches have broad applicability in particle physics; if we came up with a new
jet substructure variable, then to compare the results from the unfolded particles, we can
cluster these particles however necessary to calculate this new jet substructure very easily,
and this can aid to the multi-differential measurements. Calculation of observables which
seems daunting using the traditional unfolding methods can be performed effortlessly using

the raw data, i.e., unfolded particles.

We have demonstrated the OTU method in a specific case of interest, and we unfolded
the full events at the particle level and at the event level and showed the different imple-
mentations of optimal transport problem. The OTU algorithms allowed us to unfold more
complex dataset statistics. There are a few disadvantages in the current OTU implementa-
tion; mainly, the unfolded event has the multiplicity of the reference event. The comparisons
of Particle level OTU with different reference events and polishing the OTU algorithm to
have better performance is required and currently being implemented but has not to be

included in this thesis.
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Appendix A

Tikhonov Regularisation Plots

In section 4.1, we performed the Tikhonov unfolding using different penalty matrix and us-
ing “Gen” vector as the bias vector. In this appendix, we show the plots of the Tikhonov
unfolding with the different penalty matrix, namely, Curvature matrix, Second order differ-
ential matrix and Identity matrix with “Gen” as bias vector. Following are the list of figures

showing the comparison of Tikhonov unfolding with Multifold and IBU -

1. In figure A.1 Tikhonov unfolding is done with Curvature matrix as the penalty matrix

no bias vector is used.

2. In figure A.2 Tikhonov unfolding is done with Identity matrix as the penalty matrix

“Gen” vector is used as the bias vector.

3. In figure A.3 Tikhonov unfolding is done with Identity matrix as the penalty matrix

no bias vector is used.

4. In figure A.4 Tikhonov unfolding is done with discretized second-order differential

matrix as the penalty matrix “Gen” vector is used as the bias vector.

5. In figure A.5 Tikhonov unfolding is done with discretized second-order differential

matrix as the penalty matrix no bias vector is used.

From the plots, it is observed that the Tikhonov unfolding with Identity matrix as the
penalty matrix does not perform well as it is not penalizing the off-diagonal terms, which is
causing large oscillations. Both Curvature and Second-order differential matrix penalize the
oscillations, but the Unfolding with Curvature matrix performs better than the Second-order

matrix from the triangle discriminator values in table 4.1.
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Figure A.1: The plots show the unfolded distributions for the jet substructure observables.
HerwiG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Tikhonov. Unfolding using Tikhonov is done using the curvature matrix
as the penalty term with no bias term added. The goal of the unfolding algorithms is to get
the unfolded results as close to the green “Truth” histogram as possible.
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Figure A.2: The plots show the unfolded distributions for the jet substructure observables.
HerwiG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Tikhonov. Unfolding using Tikhonov is done using the Identity matrix
as the penalty term with “Gen” vector as the bias term added. The goal of the unfolding
algorithms is to get the unfolded results as close to the green “Truth” histogram as possible.
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Figure A.3: The plots show the unfolded distributions for the jet substructure observables.
HerwiG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Tikhonov. Unfolding using Tikhonov is done using the Identity matrix
as the penalty term with no bias term added. The goal of the unfolding algorithms is to get
the unfolded results as close to the green “Truth” histogram as possible.
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Figure A.4: The plots show the unfolded distributions for the jet substructure observables.
HErRwWIG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Tikhonov. Unfolding using Tikhonov is done using the Second order
differential matrix as the penalty term with “Gen” vector as the bias term added. The
goal of the unfolding algorithms is to get the unfolded results as close to the green “Truth”
histogram as possible.
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Figure A.5: The plots show the unfolded distributions for the jet substructure observables.
HerwiG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Tikhonov. Unfolding using Tikhonov is done using the Second order
differential matrix as the penalty term with no bias term added. The goal of the unfolding
algorithms is to get the unfolded results as close to the green “Truth” histogram as possible.
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Appendix B

Optimal transport Unfolding

B.1 Different Input OTU plots

In section 4.2, we showed the comparisons of Optimal Transport Unfolding results for
the one-dimensional collider observable input with MultiFold and IBU. Comparison of one-
dimensional, jet momentum four-vector and particle momentum four-vector as the input for
calculating the ground metric in the OTU algorithm 1 were shown. In this appendix, we
show the comparison of Optimal Transport Unfolding results for the jet momentum four-
vector B.1 and particle four-vector B.2 with the MultiFold and IBU for the jet substructure

observables.
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Figure B.2: The plots show the unfolded distributions for the jet substructure observables.
HErwIG (“Data”/“Truth”) and PYTHIA (“Sim”/“Gen”) are used to perform unfolding with
IBU, MultiFold and Optimal transport unfolding. Unfolding using OTU is done using the
particle momentum four vector as the input for calculating the cost matrix. The goal of the
unfolding algorithms is to get the unfolded results as close to the green “Truth” histogram
as possible.
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