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Abstract

This thesis deals with the problem of correspondence between semisimple algebraic groups

de�ned over some base �eld k and semisimple algebras with involutions over k. This

fundamental problem was �rst explored by Weil in 1960 in his paper titled "Algebras with

involutions and the classical groups [1]. The primary result is that over a �eld of characteristic

not equal to 2, almost every semisimple algebraic group with trivial center can be obtained

as the connected component of identity in the automorphism group of a semisimple algebra

with involution, and conversely, that automorphism group of every semisimple algebra with

involution is almost always a semisimple algebraic group with a trivial center. First, we

study the classical approach of this problem over a �eld of characteristic zero, given by Weil

in 1960. This approach uses results from the classical theory of algebraic groups and the

theory of central simple algebras. In the second part, we study the modern treatment of the

problem using the language of Galois cohomology. We prove the Galois descent lemma which

enables us to establish a correspondence between twisted forms of an algebra with involution

pA, σq and the set H1pK,AutpA, σqq. A similar correspondence is true for an algebraic group

G de�ned over a base �eld. The cohomology set H1pK,AutpA, σqq associated with a central

simple algebra with involution is the same as H1pK,AutKpGqq for a classical group G, where
the involution is of the same type as the bilinear form whose isometries give G, giving rise

to the main result that "classical groups over a base �eld k" are in one-one correspondence

with "central simple algebras with involutions over k."
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Introduction

This thesis provides an exposition to the topic of correspondence between linear algebraic

groups and algebras with involutions over a base �eld. It started with André Weil's historic

paper in 1960, which Weil admits has foundations in the work of Siegel on discontinuous

groups. This historic paper paved the way for further developments in the theory of central

simple algebras with involutions. In [1], Weil establishes a correspondence between the set of

semisimple algebras with involutions and classical groups of adjoint type (i.e., those whose

center is trivial) over an arbitrary ground�eld of characteristic 0. The correspondence is

established by observing that except for a few cases, the connected component of identity in

the group of automorphisms of an algebra with involution is always a classical group with

a trivial center, and in turn, almost every such group is obtained in this way. We develop

the theory of central simple algebras and linear algebraic groups to arrive at the following

correspondence due to Weil :

Theorem 0.0.1 (Weil). [1] Let G and A denote the following two sets :

� G : Set of all semisimple groups G with a trivial center, such that when we decompose

G into its simple components, none of the components is isomorphic to an exceptional

group or to PO�p8q.

� A : Set of all semisimple algebras with involutions pA, σq which, when decomposed into

simple components, have factors isomorphic to one of the following : (a) Mn `Mn

with the involution i : pX, Y q ÞÑ pY t, X tq for n ¥ 3 or (b) M2n for n ¥ 1, with

involution M ÞÑ F�1M tF determined by an invertible alternating matrix F , or (c) Mn

with involution X ÞÑ X t for n � 7 or n ¥ 9.

Then, for every G P G, there exists pA, σq P A such that the connected component of identity

in AutpA, σq is isomorphic to G, and this correspondence is one-one.
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Following this, we look at the modern way of approaching this problem using the language

of Galois Cohomology. The language of cohomology has its roots in the works of Grothendieck

on the theory of principal homogeneous spaces; however, in this exposition, we use the

de�nition given by Eilenberg-MacLane. Using the idea of Galois descent, the same problem

of classi�cation can now be approached from a much broader point of view, which once

again bears its roots in the works of Weil [2]. Further formalism of the subject owes its due

to �gures such as Tate, Artin, and Serre, which culminated in the famous monograph by

Serre on Galois Cohomology. Galois cohomology is a powerful tool used to classify various

algebraic structures, and in Chapter 7, we will have a look at some of these problems. Now,

let us see an alternate version of the correspondence given by Weil. LetK{k be any extension
and Ω{K be any Galois extension. Then it is known that the set of K-isomorphism classes

of the K-forms of an algebraic group G is in one-one correspondence with the cohomology

set H1pK,AutKpGqq (see [3, p. 124]). In Section 7.2, we prove that the set of K-isomorphism

classes of central simple K-algebras with involutions is in one to one correspondence with the

set H1pK,AutKpA, σqq, where pA, σq is a central simple algebra k-algebra with involution.

For classical groups, we have a natural isomorphism between AutkpGq and AutpA, σq leading
to an isomorphism between H1pK,AutKpGqq and H1pK,AutpA, σqq where pA, σq is a central
simple k-algebra with involution. Let Epk,Gq denote the twisted k-forms of a classical group

G, and F pk,Aq denote the twisted k-forms of a central simple k-algebra with an involution σ,

where σ corresponds to the type of classical group G. Then, we have the following diagram

:
Epk,Gq F pk,Aq

H1pk,AutkpGqq H1pk,AutpA, σqq

.

Original Contribution

This thesis aims to provide a neat introduction to the fundamental problem of correspondence

between semisimple algebraic groups over k and semisimple algebras with involutions over

k explored by Weil in 1960 [1]. This problem requires knowledge of the theory of central

simple algebras, the theory of classical groups, algebraic groups, and Galois cohomology,

particularly Galois descent. Our exposition of the classical treatment of the problem follows

that of [1] and the modern treatment can be found in the books [7], [11] and [3], etc. The
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tools required in the study are, however, dispersed among a variety of books, and hence for

a reader unfamiliar with the subject, it is di�cult to �nd a place where he is presented with

all the necessary ingredients. The original e�ort of the author lies in assembling all the tools

required for understanding the classical and modern treatment of the problem and make a

coherent one-stop place for the reader to appreciate and understand this beautiful problem.

An e�ort has been made to allude to directions the reader can pursue from here onwards,

which is given in Chapter 8.

Organisation of the thesis

We now give a brief outline of the chapters in the thesis.

� Chapter 1 is an introduction to the theory of central simple algebras. We discuss

important results which will be used throughout the thesis, at times without even

recalling the results, for example, Wedderburn Theorem, Skolem-Noether theorem,

Centralizer theorem, etc. We also get a glimpse of the usefulness of Galois cohomology

as a tool while giving a cohomological characterization of the Brauer group. The

material in this chapter closely follows [4], and the interested reader is referred to [4]

for further details.

� Chapter 2 is devoted to the theory of bilinear forms and the classical groups, which

appear as the isometries of di�erent types of forms. We study the linear groups

GLn, SLn, etc. �rst. One of the central results discussed here is the generation of

SLn using transvections. Then, we look at alternating forms and the corresponding

symplectic groups, which are generated by the symplectic transvections. Following

this, we look at quadratic forms and orthogonal groups. The Iwasawa criterion stated

in the �rst section of the chapter is used to prove the simplicity of groups such as

PSLpnq and PSppnq. The material presented here can be found in [5].

� Chapter 3 discusses the theory of linear algebraic groups. We start by looking at

Zariski topology on An, the a�ne n-space. We then set up a dictionary between

geometrical objects like points in An and algebraic objects like the maximal ideals in

KrT s. Linear algebraic groups over algebraically closed �elds are de�ned, and we look

at the connected components of algebraic groups. We refer the reader to [6] for further

reading on the topic.
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Chapters 1-3 form the necessary background for understanding Weil's paper.

� Chapter 4 is the most essential part of the thesis. It discusses the correspondence

given by Weil between semisimple algebras with involutions and the classical groups.

The presentation in this chapter follows the original paper by Weil on `Algebras with

involutions and the classical groups' [1].

� Chapter 5 discusses Galois Cohomology, and it forms the foundation for the later

chapters. The material presented here is borrowed from [7]. We survey results from

in�nite Galois theory [8], after which we de�ne Krull topology and pro�nite groups.

Pro�nite groups form the setup for further study as we would work with cohomology

sets associated with pro�nite groups. We relate the cohomology of pro�nite groups

to the cohomology of its �nite quotient groups. Finally, we look at how cohomology

groups behave under exact sequences.

� Chapter 6 deals with the concept of Galois descent. The descent problem can be

formulated as follows: Let X,X 1 be two `objects' de�ned over a �eld k, and K{k be a

�eld extension. Suppose X becomes isomorphic to X 1 when extended to K, when can

we say that X is isomorphic to X 1 over k? In this chapter, we see how this problem

can be formulated nicely in the cohomological language. The Galois descent lemma,

which is the end goal of this chapter, shows that the set of twisted k-forms of an object

de�ned over k is in one-one correspondence with the set of certain cocycles.

� Chapter 7 This chapter gives applications of the Galois descent lemma proved in

Chapter 6 to di�erent descent problems. We start by looking at the descent problem

of algebras, and using this, we give a reproof of the correspondence given by Weil. In

the end, we give another application of Galois descent to the conjugacy problem for

matrices.

The results in Chapters 5, 6, and 7 can be found in [7].

� Chapter 8 In the Conclusion, we summarize the important results discussed in the

thesis and also provide possible directions one can pursue from this point. An example

of such a problem would be the problem of obtaining the exceptional groups as automorphisms

of certain algebras (see Chapter 2 of [9] for example). This, Weil describes in his

commentaries [10] as one of his secret hopes while writing his works on classical groups

in 1958-59. One can also learn about correspondences over �elds of characteristic 2

(see [11]), which we have not pursued here.
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Chapter 1

Central Simple Algebras

We would like to study structure theory for non-commutative rings and algebras here, and

the idea is to reduce the study to those algebras which are easy to study. The study of simple

algebras is an approach in this direction. The topic presented in this chapter is standard

and can be found in [4], [12] and [13] for example. For this brief exposition, we will follow

[4]. First, let us give the de�nition of a module:

De�nition 1.0.1. Let R be a non-commutative ring with identity 1. A left module M over

R is as an abelian group pM,�q together with another operation . : R�M ÝÑM such that

the following conditions are satis�ed :

(i) r1.pr2.mq � pr1.r2q.m for all r1, r2 P R and m PM .

(ii) 1.m � m for all m PM .

(iii) r1.pm1 � m2q � r1.m1 � r1.m2 and pr1 � r2q.m1 � r1.m1 � r2.m1 for all ri P R and

mi PM .

A right R-module is similarly de�ned. From now on, we will assume all modules to be

left modules.

1.1 Simple Modules

Simple modules are the building blocks of other modules in much the same way as primes

are the building blocks of integers. The following de�nition in the light of the remark seems

5



apparent :

De�nition 1.1.1. A non-zero module M is said to be simple if it has no proper non-zero

submodule.

Notice that we don't allow 0 to be a simple module, just as we don't allow 1 to be a

prime (to ensure uniqueness of factorization). The following result is quite basic and useful :

Proposition 1.1.1. M is a simple R-module ðñ M is cyclic, i.e., M � Rm and every

non-zero element m is a generator ðñ M � R{I for some maximal ideal I of R.

One of the reasons why simple modules are easy to study is because they have very few

homomorphisms between them. The following result captures that:

Proposition 1.1.2. (Schur's lemma) Let M,N be simple R-modules. Then any R-module

homomorphism f : M Ñ N is either the zero map or an isomorphism. In particular, the

ring EndRpMq is a division ring for a simple module M .

1.2 Semisimple Modules

The next most basic type of modules will be the direct sums of simple modules, which will

be called semisimple modules. Semisimple modules behave like vector spaces in many ways,

where the role of 1-dimensional subspaces is played by simple modules.

De�nition 1.2.1. An R-module M is said to be semisimple if it is a direct sum of simple

modules.

Direct sums, submodules and quotients of semisimple modules are semisimple. A module

M is semisimple if and only if every submodule of M is a direct summand.

Now, we try to represent a map between semisimple modules by matrices, just like we do

for vector spaces. So we are interested in the endomorphism ring of a semisimple module.

To that end, it is easy to set up a group isomorphism between the groups HomRpMn,Mmq
and EndRpMqm�n, where M is an R-module. If we take m � n, we get a ring isomorphism:

EndRpMnq �MnpEndRpMqq. Now,
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Proposition 1.2.1. The endomorphism ring of a semisimple R-module M of �nite length

(i.e., having �nitely many modules in the summand) is isomorphic to a �nite product of

matrix rings over division rings.

Proof. Let M � `k
i�1M

ni
i where we have collected all the isomorphic simple modules Mi

into one isotypic component Mni
i . Now, any endomorphism of M must take each isotypic

component to itself because if Mi �Mj then HompMi,Mjq � 0. Thus,

EndRpMq � EndRp`k
i�1M

ni
i q �

k¹
i�1

EndRpMni
i q �

k¹
i�1

Mni
pEndRpMiqq

and we know from Schur's Lemma that EndRpMiq is a division ring since Mi is a simple

module.

1.3 Wedderburn Theorem

De�nition 1.3.1. A ring R is called semisimple if it is semisimple as a module over itself.

A ring R is semisimple if and only if every R-module is semisimple. Also, a semisimple

ring R is a �nite direct sum of simple R-modules and thus Artinian. Some of the common

examples include division rings and endomorphism rings of �nite dimensional vector space

over a division ring. Finite direct sum of semisimple rings is always semisimple. Thus, if Di's

are division rings and Vi's are �nite dimensional vector spaces over Di, then
±n

i�1EndDi
pViq

is a semisimple ring. Let Vi � Dni
i , then EndDi

pViq � EndDi
pDni

i q � Mni
pEndDipDiqq �

Mni
pD�

i q. In other words, �nite product of matrix rings over division rings is semisimple.

Wedderburn theorem states that every semisimple ring is of this form.

Theorem 1.3.1 (Wedderburn Structure Theorem). Every semisimple ring is isomorphic to

a �nite direct product of matrix rings over division rings.

Proof. SinceR is semisimple as a module over itself, EndRpRq �
±
Mni

pDiq using Proposition
1.2.1. Now, R � EndRpRq� �

±
Mni

pDiq� �
±
Mni

pD�
i q.

De�nition 1.3.2. A simple ring is a ring with no non-trivial two-sided ideal.

7



Note that according to our de�nition of a simple ring, it need not be semisimple. For

example, a simple ring can have an in�nite descending chain of left ideals; however, since

any semisimple ring is Artinian, this is not possible in a semisimple ring. If we force this

condition that any descending chain of left ideals is �nite, i.e., the ring is left Artinian, then

we will see that it becomes semisimple. This is the content of the next result :

Theorem 1.3.2 (Structure Theorem for Simple Artinian Rings). The following are equivalent

for a ring R :

1. R is artinian and has a faithful simple module.

2. R is semisimple and all simple R-modules are isomorphic.

3. R is isomorphic to a matrix ring over a division ring.

4. R is a simple artinian ring.

Proof. p1q ùñ p2q : Let M be a faithful simple module. We want to show that R is

isomorphic to a submodule of Mn for some n. Consider all R-homomorphisms f : RÑMn

for di�erent n, and choose the one with minimal kernel. (this can be done since R is artinian)

Let fprq � 0, and suppose r � 0, then sinceM is faithful , there is am � 0 such that rm � 0.

Now, de�ne

φ : RÑMn `M

such that R ÞÑ pfprq, rmq. Then, kernel of φ is contained in kernel of f , which is a

contradiction. Hence, fprq � 0 implies r � 0. Thus, R is a submodule of Mn, and hence p2q
is true.

p2q ùñ p3q : This follows from the Wedderburn Theorem and the fact that all simple

R-modules are one of the Mni
pDiq in the product, upto isomorphism.

p3q ùñ p4q : This is because matrix ring over a division ring, being �nite dimensional, is

artinian, and also simple.

p4q ùñ p1q : Since R is artinian, using the composition series, R has a simple module. Also,

for any R-moduleM , AnnpMq is a two-sided ideal of R, thus for a simple ring, AnnpMq � 0

for any R-module M .

8



1.4 Simple Algebras

We �rst de�ne an algebra :

De�nition 1.4.1. Let A be a ring (possibly non-commutative). An A-algebra B is a ring

B which is also a module over A such that the ring structure and module structure on B

are compatible in the following way: for any a, a1 P A and b, b1 P B, pabq.pa1b1q � paa1qpb.b1q.
(Here, the binary multiplication is denoted by ., and scalar multiplication is omitted.)

We assume the reader to be familiar with the tensor product of algebras and quote the

universal property for algebras for reference (see [4]) :

Proposition 1.4.1. (Universal Property of tensor product of algebras)

Let R, S be k-algebras where k is a �eld. Suppose we are given any k-algebra T and pair

of algebra morphisms f : R Ñ T and g : S Ñ T such that images of these maps commute.

Then, there exists a unique algebra morphism from R b S Ñ T such that the following

diagram commutes :

De�nition 1.4.2. An algebra is said to be simple (semisimple) if it has the corresponding

property as a ring. A k-algebra S is called central if ZpSq � tx P S|xs � sx@s P Su � k. It

is called a central simple algebra over k if it is both central and simple.

We would now like to see what tensoring does to the simplicity and semisimplicity of

algebras. To that e�ect, we note that :

Lemma 1.4.2. Let R, S be algebras over k such that ZpSq � k. Then, ZpR b Sq � ZpRq.

Proof. Write z P ZpR b Sq as z � °l
i�1 ri b si, where l is minimal. Then, ri's will be

independent over k. Since z P ZpR b Sq, 0 � p1 b sqz � zp1 b sq � °
ri b pssi � sisq

for any s P S and since ri's are independent, ssi � sis � 0, i.e., sis � ssi for all s P S,
which means si P ZpSq � k. Thus, z � ° ri b si �

°
risi b 1 � r b 1. Now, for x P R,

0 � pxb1qz�zpxb1q � pxr�rxqb1 , which means xr � rx for all x P R, thus r P ZpRq.

Now, if we could prove a result of the sort that if R and S are simple, then so is R b S,

then our previous lemma combined with this result would mean that tensor product of two

central simple algebras is a central simple algebra. Indeed,
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Proposition 1.4.3. If R and S are k-algebras where S is central simple, then every ideal

of R b S is of the form I b S for some ideal I of R.

Proof. Instead of giving a full proof, we just outline the idea. Suppose J is a non-zero

ideal of R b S, then it can be shown that J X R � 0. Let I � J X R, then we claim

that J � I b S. Indeed, I b S � J . If I b S is properly contained in J , then the map

J Ñ pR b Sq{pI b Sq � pR{Iq b S is non-zero. But impJq XR{I � 0 since I � J XR.

This gives us the result we wanted as a corollary:

Corollary 1.4.4. If R and S are central simple algebras, so is R b S.

As for semisimplicity, we note that it reduces to the case of simple since : if R � R1�R2,

then R b S � pR1 b Sq � pR2 b Sq. Furthermore, if S is a simple k-algebra with centre C,

then C is a �eld, and S is a central simple C-algebra. Also, R bk S � pR bk Cq bC S. A

�nite dimensional semisimple algebra S is said to be separable over k if all the Ci's in the

center C � C1 � C2 � ....� Ck are separable extensions.

Proposition 1.4.5. If S is a separable algebra, then SK is semisimple for all K � k.

Proof. We can take S to be simple since tensor would distribute over direct sum. Then, the

center C of S is a separable �eld. Now,

K b S � pK b Cq bC S � p
¹

Riq bC S �
¹
pRi bC Sq,

where the second isomorphism comes from the fact that tensor product of two �elds is

semisimple if one of the �elds is separable. Also, since Ri is simple and S is simple, Ri b S

is simple.

Proposition 1.4.6. The tensor product of two �nite-dimensional semisimple algebras is

semisimple if at least one of the algebras is separable.

Proof. Suppose R is a separable algebra, and S is a �nite-dimensional semisimple algebra.

Then, we can assume both R and S are simple due to remarks after Corollary 1.4.4. Let C

be the center of S, then C is a �eld. Now,

R b S � pR b Cq bC S � p
¹

Riq bC S �
¹
pRi bC Sq,

10



where the second isomorphism comes using Proposition 1.4.5.

The tensoring of algebras and the results above give us a really interesting consequence

about the possible dimensions of a central simple algebra:

Proposition 1.4.7. Let R be a simple algebra which is �nite-dimensional over its center Z,

then rR : Zs is a square.

Proof. Since R is simple, its center Z will be a �eld, so R is a �nite dimensional simple

Z-algebra. Thus, using Theorem 1.3.2, we have R � MnpDq, where D is a division algebra

over Z, and is also �nite dimensional. Let K � Z̄ be the algebraic closure of Z. Then,

rD : Zs � rDK : Ks. DK is a �nite dimensional simple algebra over K, so again by

Theorem 1.3.2, we get that DK is a matrix ring over a division ring over K, but since K

is algebraically closed, the only division ring over K is K itself, thus DK � MmpKq. Now,
rR : Zs � rMnpDq : Zs � rMnpDq : DsrD : Zs � n2rDK : Ks � n2m2 � pnmq2.
De�nition 1.4.3 (Degree). If R is a �nite-dimensional central simple k-algebra such that

dimkpRq � n2, then n is called the degree of R.

1.5 Skolem Noether Theorem

We know from linear algebra that any automorphism of the ring Mnpkq over k must be

inner. The Skolem-Noether theorem generalizes this to any �nite-dimensional central simple

algebra.

Theorem 1.5.1. ([4], Theorem 3.14)

Let S be a �nite dimensional central simple k-algebra and let R be a simple k-algebra. Suppose

f, g : RÑ S are two homomorphisms, then there is an inner automorphism α of S such that

α � f � g.

This is equivalent to saying that if R1 and R2 are two isomorphic simple subalgebras of S,

then for any homomorphism f : R1 Ñ R2, there is an inner automorphism α of S such that

α|R1 � f . In particular, any automorphism of S is inner.

Proof. S is �nite dimensional and simple, hence by Structure Theorem, S � EndDpV q
for some division algebra D and a �nite dimensional D-module V . The maps f and g
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de�ne two R-modules on V via the morphisms such that their action commute with the

action of D, thus giving us two RbD-module structures which have same dimension. Also,

RbD is �nite-dimensional and simple, and thus any two �nite dimensional modules of same

dimesional over R bD are isomorphic. Thus, we get h : V Ñ V such that :

hpfprqvqq � gprqhpvq
hpdvq � dhpvq

So, h P S and hfprq � gprqh which implies that gprq � hfprqh�1. Hence, taking α to be

inner conjugation by h, we get the result.

We state another important theorem concerning centralizer of simple algebras. Let S be

a subset of of an algebra R, then centralizer of S is de�ned to be CpSq � tx P R|xs � sx@s P
Su.

Theorem 1.5.2 (Centralizer Theorem). Let S be a �nite dimensional central simple k-algebra

and R be a simple subalgebra of S. Then,

1. CpRq is simple subalgebra of R.

2. Suppose S � MnpD1q for some n and R b D�
1 � MmpD2q for some m, then CpRq �

MkpD�
2q for some k.

3. Degree of CpRq over k is rS : ks{rR : ks.

4. Double centralizer of R is R, i.e., CpCpRqq � R.

For proof refer to Theorem 3.15, [4].

1.6 Brauer Group

We �rst de�ne an equivalence relation on the set of �nite-dimensional central simple algebras.

Let S and T be two �nite-dimensional central simple algebras, then there exist division

algebras (unique up to isomorphism) D and D1 such that S �MnpDq and T �MmpD1q for
some m,n. We say S � T if D � D1. Now, we will put a group structure on the similarity
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classes of C.S.A.s over k, and the group will be called the Brauer group. Let S� denote the

opposite of S, whose underlying set and addition operation are same as S but multiplication

is in reverse order, precisely, for a, b P S�, a � b � b.a where � is the multiplication operation

on S� and . on S.

Let Brpkq be the set of equivalence classes of central simple algebras over k with respect

to the equivalence relation above. For rAs, rBs P Brpkq de�ne rAs � rBs � rA bk Bs . We

now show that Brpkq forms an abelian group under this operation.

1. This is well de�ned : for one if A and B are central simple k-algebras, we know that so

is AbkB, also if A � A1 and B � B1 then it can be easily checked that AbB � A1bB1.

2. Associativity follows from associativity of tensor product.

3. It is clear that rks serves as the identity element of BrpKq.

4. Also, if rSs P Brpkq then rS�s (the opposite of S) serves as the inverse of rSs, which
follows from the lemma below.

Lemma 1.6.1. Let S be a central simple k-algebra of dimension n over k. Then, S b S� �
Mnpkq.

Proof. Let

A � tLs P EndkpSq|Lspxq � sxu

and

B � tRs P EndkpSq|Rspxq � xsu

One can see that as rings A � S by mapping Ls ÞÑ Lsp1q. Similarily, B � S� as rings.

Also, Ls1 � Ts � Ts � Ls1 , i.e., if we de�ne maps from S Ñ EndkpSq and S� Ñ EndkpSq
by the isomorphism, their images commute. Thus, by the universal property of tensor

product of algebras, we get S b S� Ñ EndkpSq, which is injective since S b S� is a simple

algebra, and thus bijective since dimkpSbS�q � dimkpEndkpSqq. Finally, note thatMnpkq �
EndkpSq.

Brauer group over certain �elds are trivial, for example, the �nite �elds and algebraically

closed �elds. An example of a non-trivial Brauer group is that of the reals, BrpRq � Z2 since
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by Frobenius theorem (see Theorem 3.20, [4]), the only �nite-dimensional central division

algebras over R are R itself andH, the quaternions, and it can be veri�ed thatHbH �M4pRq.
Brauer group of other �elds, like Q, are very non-trivial and usually not so easy to determine.

Using number theory techniques, mathematicians have been able to classify the Brauer group

of any algebraic number �eld in general (see [14], [12] for reference).

Sometimes, we can study the structure of k-isomorphism classes of objects (here the

Brauer group) over the below �eld k by looking at a �nite Galois extension K{k and studying
the k-isomorphism classes of those objects which become isomorphic over the bigger �eld K,

the technical term for this is splitting. We say D is split by K if DK � DbK is isomorphic

to MnpKq (Here K will be called a splitting �eld for D). This is where Galois Cohomology

comes into play. This gives us the motivation to de�ne the relative Brauer group as follows:

We �rst notice that we can see Brpq as a functor which takes a �eld and returns an abelian
group, thanks to the following functorial property: if K{k is an extension, then we have a

group homomorphism Brpkq Ñ BrpKq by mapping rSs ÞÑ rSKs, where SK � S bk K. Now

we de�ne the relative Brauer group BrpK{kq as the kernel of the map Brpkq Ñ BrpKq,
i.e., BrpK{kq is the set of k-isomorphism classes of all �nite-dimensional central division

algebras over k which are split by K . Now, we will see how Brpkq splits into manageable

pieces BrpK{kq, which can be studied explicitly by homological algebra.

1.7 Splitting of Brpkq into BrpK{kq

We want to look at maximal sub�elds which will turn out to be splitting �elds.

De�nition 1.7.1. Let A be a central simple k-algebra of dimension n2, then a sub�eld of

degree n over k is called a maximal sub�eld.

Proposition 1.7.1. The following are equivalent for a �nite dimensional central division

k-algebra D:

1. L is a splitting �eld for D.

2. CpLq � L, where CpLq denotes the centralizer of L.

3. L is a maximal sub�eld of D.
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Proof. p1q ùñ p2q : D bk L � L, also L being a �eld is a simple subalgebra of D. Using

(2) of Theorem 1.5.2, with S � D � D1, R � L, we get CpLq � L. This means that

CpLq �MrpLq for some r. But CpLq is a division algebra, so r has to be 1, thus CpLq � L.

p2q ùñ p3q : Again, using p3q of Theorem 1.5.2, we get rD : ks � rL : ksrCpLq : ks � rL :

ks2, thus rL : ks � n.

p3q ùñ p1q: D acts on itself on the left, and L acts on D on the right, and these actions

commute. Thus, we can de�ne a map f : D b L ÝÑ EndLpDq where fpd b xqpd1q � dd1x.

Since D b L is simple, f is injective, it is surjective because dimensions are equal. Thus, f

is an isomorphism of algebras. Finally, note that EndLpDq �MnpLq.

Now, we will show that every division algebra can be split by a �nite Galois extension.

We will use the following result, which we state here without the proof, which can be found

in any Galois theory textbook (for example, see Lemma IV.1.16 in [15]) :

Proposition 1.7.2. Let D central division k-algebra. If every sub�eld of D is purely

inseparable over k, then D � k.

Using this, we have:

Theorem 1.7.3. If D is a central division k-algebra of dimension n2, then there exists a

�nite Galois extension K{k, which is a splitting �eld for D.

Proof. Let L be the largest separable sub�eld of D. Then, CpLq is a central L-division

algebra. If L � L1 � CpLq, then L1{L is purely inseparable, because if x P L1 is separable

over L, then Lpxq{L is a separable sub�eld of D larger than L, which is a contradiction.

Thus, by the previous proposition, CpLq � L, which means by Proposition 1.7.1 that L is

a maximal sub�eld of D. Thus, there exists a maximal separable sub�eld L of D, let K be

the normal closure of L. Then, K is Galois over k. Also, since L is a splitting �eld for D

by Proposition 1.7.1, any bigger �eld is also a splitting �eld. Thus K{k is a �nite Galois

extension which is a splitting �eld.

Let S be a central simple k-algebra, let S �MnpDq. Then, it can be easily veri�ed that

for any extension K{k, K splits S if and only if K splits D. Thus,

Corollary 1.7.4. Brpkq � �BrpK{kq where the union runs over all �nite Galois extensions
K{k.
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1.8 Factor Sets

Now that we have split Brpkq into pieces BrpK{kq, we will see two explicit ways to look at the
group BrpK{kq, one of which is given by factor sets and the other one given by cohomology.

The factor sets turn out to be 2�cocycles in the language of Galois cohomology. But for

de�ning factor sets, we need �rst the following result, which we state without proving (for

proof, see [4, p. 115-116]):

Theorem 1.8.1. Given any extension K{k of degree n, any element of BrpK{kq has a

unique representative S of dimension n2 such that S contains K as a maximal sub�eld.

Now, the setting we will work in is as follows: We have a Galois extension K{k of degree

n with Galois group G � GalpK{kq. S is a central simple k-algebra of dimension n2 which

contains K as a maximal sub�eld. (This already means rSs P BrpK{kq because maximal

sub�elds are splitting.)

Every σ P G is restriction of an inner automorphism on S by the Skolem-Noether theorem,

which means there is some xσ P S such that

xσaxσ�1 � σpaq (1.1)

for all a P K. We can think of txσ|σ P Gu as map from G to K�. If xσ and x1σ both satisfy

(1.1), then we can easily see that they must di�er by a non-zero element of K. Thus, it

follows that

xσxτ � aσ,τxστ

for some aσ,τ P K�.

We can think of taσ,τu as function from G � G ÝÑ K�. The collection taσ,τu is called
a factor set of S relative to K. We now investigate relation between the two factor sets,

say obtained taσ,τu and tbσ,τu by taking txσu and tx1σu satisfying (1.1) respectively. Let

x1σx
�1
σ � fσ P K�. Then, x1σ � fσxσ, and

x1σx
1
τ � bσ,τx

1
στ

fσxσfτxτ � bσ,τfστxστ
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fσσpfτ qxσxτ � bσ,τfστxστ

fσσpfτ qaσ,τxστ � bσ,τfστxστ

ùñ fσσpfτ q
fστ

aσ,τ � bσ,τ (1.2)

We de�ne now an equivalence relation on the set of factor sets using (1.2) as follows: taσ,τu �
tbσ,τu if there exists tfσu such that (1.2) holds.

Proposition 1.8.2. txσ|σ P Gu is a basis for S over K.

Proof. We just have to show linear independence since rS : Ks � n � rK : ks � |G|. To

that extent, we choose a maximal subset J � G such that txσ|σ P Ju is independent. Let

σ R J . Then, using linear dependence,

xσ �
¸
τPJ

aτxτ (1.3)

therefore for any r P K

xσ.r �
¸
τPJ

aτxτ .r (1.4)

and so,

σprqxσ �
¸
τPJ

aττprqxτ (1.5)

Multipliying (1.3) by σprq and equating with (1.5) gives us

σprqaτ � aττprq, (1.6)

for each τ P J, r P K. Now there exists some τ P J such that aτ � 0 otherwise xσ � 0. Then,

σprq � τprq@r P K, which means σ � τ which is a contradiction. Thus, J � G and we are

done.

Now what we have seen above tells us that if we choose two bases xσ and x
1
σ of S over K,

then the factor sets are equivalent. In other words, for isomorphic algebras, factor sets are

equivalent. We now see the converse of this and then establish a correspondence between

the equivalence class of factor sets and elements of BrpK{kq.
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We want to see what condition a factor set necessarily satis�es. If taσ,τu is a factor set,

then the associativity relation xσpxτxρq � pxσxτ qxρ gives us

xσaτ,ρxτρ � aσ,τxστxρ

σpaτ,ρqxσxτρ � aσ,τaστ,ρxστρ

σpaτ,ρqaσ,τρxστρ � aσ,τaστ,ρxστρ

σpaτ,ρqaσ,τρ � aσ,τaστ,ρ (1.7)

We will see in the section that condition (1.7) is exactly the condition for being a 2-cocycle,

thus factor sets naturally become 2-cocycles. This condition is su�cient for taσ,τu to be a

factor set of some simple algebra relative to K, which we list in the proposition below. We

only sketch the outline for proof (for proof, see [4, p. 119-122]):

Proposition 1.8.3. Given a Galois extension K{k and any set of functions taσ,τu from

G � G ÝÑ K� satisfying (2.7) for all σ, τ, ρ P G, there exists a central simple k-algebra

called the crossed product algebra, denoted by pK,G, aq, such that taσ,τu is a factor set of

pK,G, aq. Also, pK,G, aq contains K as a maximal sub�eld.

Proof. We make a vector space A � pK,G, aq over K with basis teσ|σ P Gu. We de�ne

multiplication as:

pαeσqpβeτ q � ατpβqaσ,τeστ (1.8)

We can check that then A becomes an algebra with identity a�1
1,1e1. We can embed K inside

A by de�ning a P K as a.1 where 1 � a�1
1,1e1. An element

°
aσeσ will be in CpKq if and only

if for each a P K we have,

ap
¸

aσeσq � p
¸

aσeσqa¸
aaσeσ �

¸
aσσpaqeσ

which means aaσ � aσσpaq for all σ P G, a P K. If aσ � 0, then a � σpaq for all a P K, which

means σ � id. Thus, aσ � 0 for all σ � id., which gives us CpKq � K. Thus, K � CpKq
and hence K is a maximal sub�eld. A similar veri�cation will lead us to the fact that A is

a simple algebra.

What happens if we take two equivalent factor sets taσ,τu and tbσ,τu by some tfσu, are the
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algebras pK,G, aq and pK,G, bq isomorphic? The answer is yes, and can be seen by giving

the isomorphism map

pK,G, bq ÝÑ pK,G, aq
e1σ ÞÑ fσeσ

This means that equivalent factor sets give rise to isomorphic algebras. Thus, we culminate

in the �nal result:

Proposition 1.8.4. Let K{k be a Galois extension whose Galois group is G. Then, there

is a one-one correspondence between the elements of BrpK{kq and the equivalence classes of

factor sets taσ,τu satisfying (1.7).

1.9 Galois cohomology and BrpK{kq

We give the general de�nition of cohomology groups due to Eilenberg-MacLane at �rst. Let

G be a group and A be an abelian group on which G acts. We de�ne C0pG,Aq � A, and

de�ne CnpG,Aq � tf : Gn ÝÑ Au. The set CnpG,Aq is easily seen to be an abelian group

under addition of functions. Also, note that G has a natural action on CnpG,Aq. The

elements of CnpG,Aq are called the n-cochains of G with coe�cients in A, and CnpG,Aq is
called the n-th cochain group. We now de�ne maps δ0 : C0 Ñ C1 by δ0pfqpgq � g.f � f and

δn : Cn Ñ Cn�1

for n ¥ 1, given by

δnpfq pg1, . . . , gn�1q � g1.f pg2, . . . , gn�1q

�
ņ

j�1

p�1qjf pg1, . . . , gjgj�1, . . . , gn�1q � p�1qn�1f pg1, . . . , gnq

δn is called the n-th boundary map, each of which is a group homomorphism. Also, it

can be checked that δn�1 � δn � 0. Thus, we get a co-chain complex tCn, δnu which can be

denoted as :

0 Ñ C0 δ0Ñ C1 δ1Ñ C2 δ2Ñ . . .
δ�n1Ñ Cn δnÑ Cn�1 δn�1Ñ . . .
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Now we de�ne Zn � kerpδnq and Bn � imagepδn�1q. Elements of Zn are called n-cocycles

and that of Bn are called n-coboundaries. δn�1 � δn � 0 means that Bn � Zn, both of these

are abelian groups. Thus, we can take quotients, we de�ne HnpG,Aq � Zn{Bn, which is

called the n-th cohomology group of G with coe�cients in A.

We shall now restrict to the case where G � GalpK{kq and A � K�. We would like to

see what conditions 2-cocycles of this cohomology satisfy. In this case, Z2 will consist of

ta : G�G ÝÑ K�u such that δ2paq � 1, i.e.,

1 � δ2pσ, τ, ρq � σpapτ, ρqqapστ, ρq�1apσ, τρqapσ, τq�1,

which is equivalent to saying

σpaτ,ρqaσ,τρ � aστ,ρaσ,τ .

This condition is called the cocycle condition. This is exactly the same condition as (1.7),

thus the 2-cocycles of C2pGalpK{kq, K�q are exactly the factor sets relative to K.

Now B2 consists of functions which are images of functions f : G ÝÑ K� under δ1.

δ1pfqpσ, τq � σpfpτqqfpστq�1fpσq.

Two 2-cocycles a and b in Z2 represent the same element in H2 precisely when there is some

f : G ÝÑ K� such that ba�1 � δ1pfq, i.e,

bpσ, τqapσ, τq�1 � σpfpτqqfpστq�1fpσq.

In other words,

bσ,τ � σpfτ qfpσq
fστ

aσ,τ .

This is exactly the condition for two factor sets tbσ,τu and taσ,τu being equivalent. Thus, we
see that as sets the equivalence class of factor sets relative to K is in one-one correspondence

with H2pGalpK{kq, K�q. Thus, using Proposition 1.8.4, BrpK{kq is equivalent as set to

H2pGalpK{kq, K�q. We want to say that they also preserve the group structure in this

correspondence :

ψ : H2pGalpK{kq, K�q ÝÑ BrpK{kq
a ÞÑ rpK,G, aqs,
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i.e., we need the following result, which we state without proving (for proof, see [4, p. 126-128]):

Lemma 1.9.1. If K{k is a Galois extension with Galois group G and a and b are factor

sets relative to K, then

rpK,G, aqsrpK,G, bqs � rpK,G, abqs,

in BrpK{kq.

Using this lemma, we can say that:

Theorem 1.9.2. For a Galois extension K{k, BrpK{kq � H2pGalpK{kq, K�q as groups.
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Chapter 2

Classical Groups

The study of classical groups constitutes the study of groups such as the linear groups,

orthogonal, symplectic, and unitary groups over any �eld. There are various approaches to

study these groups, for example, the theory of Chevalley groups, which is a uniform approach

that applies to classical groups. However, this requires knowledge of Lie algebras. We will

instead follow a more head-on approach studying each class of groups one at a time. The

idea is that looking at isometries of di�erent types of sesquilinear forms on vector spaces,

which is a generalization of bilinear forms, will lead us to di�erent classes of the groups

mentioned above: trivial forms lead us to Linear groups; Orthogonal groups are obtained

from symmetric forms; Symplectic groups are obtained from skew-symmetric forms, and

�nally the Unitary groups can be obtained from hermitian forms. We will not delve into the

study of unitary groups, and for us, it su�ces to look at bilinear forms. The exposition in

this chapter follows that of [5] and [16].

2.1 Preliminaries and Notations

A group action of a group G acting on a set A is a map

. : G� A ÝÑ A

such that the following axioms hold:
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(i) e.a � a @a P A

(ii) g1.pg2.aq � pg1g2q.a

Equivalently, a group action is a group homomorphism φ : G ÝÑ SympAq, where SympAq
is the group of all bijections of A. The action is called faitfhul if φ is one-one, i.e., g.x � x

for all x P A implies that g � e.

Orbits and Stabilizers : De�ne an equivalence relation on A by saying a � b in A if

Dg P G such that g.a � b. The equivalence classes under this relation are called orbits,

OrbGpaq � tg.a : g P Gu. Then, A � ²
OrbGpaq, i.e., A is disjoint union of orbits.

StabGpaq � tg P G|ga � au is called the stabilizer of a in G, which is a subgroup of G.

The map g.a ÞÑ g.StabGpaq from OrbGpaq ÝÑ G{StabGpaq is a well-de�ned bijection of sets.

Thus, |OrbGpaq| � |G : StabGpaq|, which is the Orbit-Stabilizer theorem.

Transitive actions: We say G acts transitively on A if OrbGpaq � A for some a P A (and

hence for all a P A, since A is disjoint union of orbits.). G is doubly transitive on A if for

each pa, bq, pc, dq P A such that a � b and c � d, there exists g P G such that g.a � c and

g.b � d. It is good to note that G is doubly transitive on S if and only if it is transitive on

A and StabGpaq is transitive on A� tau.

Primitive action : B � A such that |B| ¥ 2 is said to be a block of imprimitivity if for

each g P G, either g.B � B or gB X B � H. If G has no blocks, then the action of G

is primitive on A, otherwise it is imprimitive. For example, any transitive action of prime

order (i.e., |A| �prime) is primitive.

Proposition 2.1.1. Suppose that G acts transitively on A. Then, action of G is primitive

if and only if for each a P A, StabGpaq is a maximal subgroup of G.

Proof. Let G be primitive. Suppose H is a proper subgroup of G containing StabGpaq. Then,
OrbHpaq is a block of imprimitivity. Conversely, if there exists a block of imprimitivity B,

then StabGpBq is a proper subgroup of G which contains StabGpaq properly.
Proposition 2.1.2. If G is doubly transitive on A, then G is primitive.

Proof. Suppose B � A such that |B| ¥ 2. Choose a, b P B, a � b. Choose c P AzB. Then,
since G is doubly transitive, Dg P G such that ga � a and gb � c. Then, a P gB X B and

c P gBzB. Thus, B is not a block.
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Proposition 2.1.3. Suppose G acts primitively on A. If N is any normal subgroup of G

which is not contained in the kernel of the group action, then N is transitive on A.

Proof. We want to show that if a P A, then OrbNpaq � A. Let B � OrbNpaq, then |B| ¥ 2

since N is not contained in kernel. For any g P G, gOrbNpaq � g.pNaq � N.pgaq � OrbNpgaq
since N � G. B and gB are both orbits, so they are either equal or disjoint. But B cannot

be a block, so B � A. Thus, OrbNpaq � A.

Proposition 2.1.4. Suppose G acts on A. If a subgroup H of G is transitive on A, then

G � H.StabGpaq for any a P A.

Proof. Let g P G and a P A, then ga � ha for some h P H. Then, h�1g P StabGpaq, which
means g P hStabGpaq � HStabGpaq. Thus, G � HStabGpaq.

Now, we are �t to give Iwasawa's simplicity criterion which we will use to prove simplicity

of PSLpV q for example. A few recollections are in order: A group G is called simple if it has

no non-trivial normal subgroup. The commutator subgroup of G denoted by G1 � rG,Gs is
de�ned as

G1 � tg�1h�1gh|g, h P Gu.

Let Gp1q � G1, then Gpm�1q is de�ned inductively as Gpmq1. G is called solvable if Gm � teu
for some m.

Theorem 2.1.5 (Iwasawa's Criterion). Suppose G acts faithfully and primitively on a set

A, and that G � xgHg�1|g P Gy for some solvable subgroup H � StabGpaq for some a P A.
If G1 � G, then, G is simple.

Proof. Suppose teu � N is a normal subgroup of G. Then, since kernel of action is

teu, G being faithfhul, we have that N is not contained in the kernel of action. Thus,

using Proposition 2.1.3, N is transitive on A, which means by Proposition 2.1.4 that G �
N.StabGpaq � StabGpaq.N for the given a. The subgroup HN � StabGpaqN � G since

H � StabGpaq. Now, gHg�1 � gHNg�1 � HN . Thus, G � HN which means HN � G. It

can be checked inductively that pHNqn � HnN for each n. Since H is solvable, there exists

some m such that Hm � teu. Then, G � Gm � pHNqm � HmN � N , which means N � G.

Thus, G has no non-trivial normal subgroup.
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2.2 Linear groups

In this section, we will look at groups like the General linear group, GLn ; Special linear

group, SLn; and the projective linear groups, PGLn, PSLn over an arbitrary �eld F , and

we will study their properties. We will be working towards the goal of proving that PSLn

is simple using Iwasawa's criterion except for some special cases. The process will lead

us to many other interesting properties, for example, proving that SLn is generated by

transvections. These can be further used to derive more properties, for example, proving

that these spaces will be connected. We will begin with GLpV q, which can be thought of as

the all-embracing classical group as every other classical group will either be a subgroup or

related quotient of this group.

Let V be a m-dimensional vector space over F . The set of all invertible F -linear

transformations on V form a group under composition, and this group is called the general

linear group of V denoted by GLpV q. Choosing a basis for V , the mapping of a linear

transformation to corresponding matrix gives us an isomorphism of GLpV q with the group

GLpn, F q of all n� n invertible matrices over F . The determinant map from GLpV q to the

group F � of non-zero elements of F is an onto group homomorphism. The kernel of this map

is the group SLpV q of linear transformations of determinant 1. SLpV q is called the special

linear group. Few properties about center and dimensions of these groups are in order.

ZpGLpV qq is the set of all scalar matrices aI where a P F �, and thus ZpGLpV qq � F �,

similarily, ZpSLpV qq is the set of all scalar matrices aI where an � 1. ZpSLpV qq is the

unique subgroup of order pn, q � 1q, where pn, q � 1q denotes the g.c.d. of n and q � 1, in

F � (note: F � is cyclic), because an � 1 and aq�1 � 1 if and only if apn,q�1q � 1. If F is the

�nite �eld with q elements, then |GLpn, qq| �±n�1
i�0 pqn�qiq. Since, GLpn, qq{SLpn, qq � F �,

|SLpn, qq| � |GLpn, qq|{pq � 1q.

Now, we de�ne the projective linear groups. The projective linear group of V is de�ned to

be PGLpV q � GLpV q{ZpGLpV qq. Similarily, the projective special linear group is de�ned

to be PSLpV q � SLpV q{ZpSLpV qq. It is clear that the centres of these two groups are

trivial. If F has q elements, then |PGLpn, qq| � |GLpn, qq|{pq � 1q and |PSLpn, qq| �
|SLpn, qq|{pn, q � 1q.
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2.2.1 Action of PSLpV q on PpV q

Let V be an n-dimensional vector space. De�ne an equivalence relation on V zt0u as :

v � w ðñ v � λw for some λ P F . Then, PpV q � trvs : v P V zt0uu. PpV q is called the

projective space of dimension pn � 1q. There is a natural action of GLpV q or SLpV q on V
which is given as σ.rvs � rσpvqs. The kernel of the action of GLpV q on PpV q is ZpGLpV qq,
and likewise the kernel of action of SLpV q is ZpSLpV qq. This action induces an action of

PSLpV q on PpV q which will be faithful. We now show that the action is doubly transitive

too, which will mean it is primitive. This will give us a lead on proving simplicity of PSLpV q
by using Iwasawa's criterion.

Proposition 2.2.1. PSLpV q acts doubly transitively on PpV q.

Proof. Let pru1s, ru2sq and prv1s, rv2sq be 2-tuples of points in PpV q, such that ru1s � ru2s
and rv1s � rv2s. It su�ces to give a map τ P SLpV q such that τ takes ruis to rvis for i � 1, 2.

tu1, u2u and tv1, v2u are linearly independent. Extend tu1, u2u to a basis tu1, u2, � � � , unu and
similarily extend tv1, v2u to a basis tv1, v2, � � � , vnu. De�ne τ P GLpV q such that τpuiq � vi

for i � 2, 3, � � � ,m, and τpu1q � av1, choose a such that detpτq � 1.

The other conditions in the Iwasawa criterion will be ful�lled by looking at transvections.

2.2.2 Transvections

The discussion in this subsection can be found in [16] and [5]. A hyperplane in an n-dimensional

vector space V is a subspace of dimension pn � 1q in V . A map t � Id. P GLpV q is called
a transvection if there exists a hyperplane H such that t|H � id.|H and tv � v P H for all

v P V . Inverse of a transvection is a transvection, but product of two transvections might

not be a transvection. Given a subspace W of V and a vector v outside W , any transvection

on W can be extended to a transvection on V whose �xed hyperplane contains v. We want

to see the matrix of a transvection. Let t be a transvection �xing a hyperplane W . Choose

a basis tv1, v2, � � � , vn�1u of W , and extend it to a basis tv1, v2, � � � , vn�1, vnu of V . Then,

tpviq � vi for all i � 1, 2, � � �n � 1, and tpvnq � vn P W , i.e., tpvnq �
°n�1
i�1 aivi � vn. Thus,

the matrix for t looks like :

27



�������
1 0 . . . a1

0
. . .

...
... 1 an�1

0 0 . . . 1

�������
It is clear that if t is a transvection, it not only belongs to GLpV q but, in fact, to SLpV q.

Now, we de�ne certain types of matrices, named Xijpλq and call them `transvection

matrices.' The matrix Xijpλq where i � j is de�ned to be the matrix whose entries are same

as that of the identity matrix except for a λ at the pi, jqth place. These matrices clearly

lie in SLpV q, and moreover, it can be easily seen by basis change that they are, in fact,

transvections. We now show that these matrices generate the whole of SLpV q.

Lemma 2.2.2. Multiplying a matrix A by Xijpλq on the left changes only the i-th row by

adding λ-times the j-th row to it. Similarly, multiplying A by Xijpλq on the right changes

only the j-th column by adding λ-times the i-th column to it.

Proposition 2.2.3. The transvection matrices Xijpλq generate SLpV q.

Proof. We prove by induction on size of matrix. For n � 1 it is trivial. Assume it is true for

n� n matrix in SLpV q. Now, suppose A P SLpn� 1, F q. If a21 � 0, then the p1, 1q-th entry

of X12pλq will be equal to 1 for a unique λ given by solving a11�λa21 � 1. If a21 � 0, then we

can make it non-zero by multiplying A on the left by X2k for some k such that ak1 � 0 (such

a k exists, since if ak1 � 0 for all k, then determinant is 0). Thus, we can assume WLOG

that a11 � 1. Multiplying on the left by Xj1p�aj1q will make the �rst column zero except

p1, 1q-th position which is 1. Similarily, multiplying on the right by X1kp�a1kq will make the

�rst row zero except p1, 1q-th position. Thus, using these matrices, we have reduced A to a

matrix of the form

�
1 0

0 B

�
, where B is a pn� 1q � pn� 1q matrix and B P SLpn, F q. And

now, we can use the induction hypothesis for B.

Now, we prove that any two transvections are conjugate in SLpV q provided dimension

of V ¥ 3.

Proposition 2.2.4. Let t1 and t2 be two transvections on V . Then, they are conjugate in

GLpV q and if n ¥ 3, then they are conjugate in SLpV q.
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Proof. Let H1 and H2 be the �xed hyperplanes corresponding to t1 and t2 respectively. Let

xi P V zWi for i � 1, 2, and tipxiq � xi � wi P Wi. Choose basis tw1, u1, u2, � � �un�2u for W1

and similarily, tw2, v1, v2, � � � vn�2u for W2. De�ne f P GLpV q as fpw1q � w2, fpuiq � vi for

i � 1, 2, � � �n� 1, and fpx1q � x2. Then, f � t1 � f�1 � t2. If n ¥ 3, then de�ne σa P GLpV q
as σapw1q � w2, σapuiq � vi for i � 1, 2, � � �n � 2, σapun�1q � avn�1 where a P F � is to be

chosen later, and σapx1q � x2. Choose a such that detpσaq � 1.

Using these results, we prove that:

Theorem 2.2.5. [5] If n ¥ 3, then PSLpV q1 � PSLpV q.

Proof. We �rst prove that SLpV q1 � SLpV q. Using previous two propositions, it su�ces to

show that SLpV q1 contains a transvection. (recall: G1 is a normal subgroup of G.) Fix a

basis tv1, v2, � � � , vnu of V . De�ne t1, t2 P GLpV q as

t1pv1q � v1 � v2, t1pviq � vi, if 2 ¤ i ¤ n

t2pviq � vi@i � 2, t2pv2q � v1 � v2

Then, it can be checked that

t1t2t
�1
1 t�1

2 : v1 ÞÑ v1 � v3, vi ÞÑ vi if 2 ¤ i ¤ n,

which is a transvection in SLpV q1. Now, we know that rG{N,G{N s � N rG,Gs{N , thus

PSLpV q1 � ZpSLpV qqSLpV q1{ZpSLpV qq � ZpSLpV qqSLpV q{ZpSLpV qq � PSLpV q by the

2nd isomorphism theorem for groups.

The n � 1 case is trivial, and n � 2 case is a bit di�erent, so we do it separately.

Lemma 2.2.6. [5] Let n � 2, and tv1, v2u be a basis for V . Every transvection in V is

conjugate to one whose matrix relative to basis tv1, v2u is of the form
�

1 0

a 1

�
, where a P F �

Proposition 2.2.7. If n � 2 and |F | ¥ 4, then PSLpV q1 � PSLpV q.

Proof. Again, we just prove that there is a transvection in SLpV q1. Let a P F � and a � �1.
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Then, observe that�
a 0

0 a�1

��
1 0

1 1

��
a�1 0

0 a

��
1 0

�1 1

�
�
�

1 0

pa� a�1q 1

�
,

Here, LHS is clearly in SLpV q1 and RHS is a transvection.

It can be veri�ed that SLp2, 2q1 � A3, which is the subgroup of even permutations in

S3 and thus |PSLp2, 2q1| � 3, but |PSLp2, 2q � 6, thus PSLp2, 2q1 � PSLp2, 2q. Similarily,

SLp2, 3q1 � Q8, the quaternions, and thus SLp2, 3q1 � SLp2, 3q. Now, we state the proposition
which gives the �nal blow to proving simplicity of PSLpnq. For a proof of this proposition,

we refer the interested reader to [5]

Proposition 2.2.8. Let rvs P PpV q,then StabSLpV qrvs has an abelian normal subgroup B(which
means it is solvable) whose conjugates in SLpV q generate SLpV q.
Theorem 2.2.9 (Simplicity of PSLpnq). If n ¥ 2, then PSLpnq is a simple group except

for PSLp2, 2q and PSLp2, 3q.

Proof. Let rvs P PpV q, and choose B � StabSLpV qrvs, then H � BZpSLpV qq{ZpSLpV qq �
StabPSLpV qrvs. All conditions of Theorem 2.1.5 are met, thus PSLpV q is simple.

2.3 Bilinear forms

As discussed, the classic groups other than those discussed in the previous section are

obtained by looking at isometries of di�erent types of bilinear forms. In fact, the linear

groups can be also be �t in this context if we treat them as isometries of the trivial bilinear

form, i.e., Bpx, yq � 0. Throughout this section, F is assumed to be a �eld of characteristic

not equal to 2.

De�nition 2.3.1. Let F be a �eld and V a vector space over F . Assume V to be

�nite-dimensional. Then, a bilinear form on V is a map B : V � V Ñ F such that B

is linear in both the variables, i.e.,

Bpav1 � v2, wq � aBpv1, wq �Bpv2, wq
Bpv, aw1 � w2q � aBpv, w1q �Bpv, w2q

30



where a P F and all other variables are in V .

Now, given a basis for V over F , we get a matrix for a given bilinear form B and

conversely given a matrix we can de�ne a bilinear form on V : Let tviuni�1 be a basis for V ,

and let B be a given bilinear form on V . Let Bpvi, vjq � bij, then B̂ � pbijq is called the

matrix of B relative to the given basis. Conversely, if B̂ � pbijq is a given matrix, then de�ne

B : V � V Ñ F as Bpvi, vjq � bij and extend it linearly in both variables. Thus, B clearly

de�nes a bilinear form.

We would like to associate some invariants to a bilinear form, our �rst guess would be

something like the determinant of the matrix given by the bilinear form or its form, but as

for linear transformations, the determinant depends on the basis. So, we would like to see

how determinant changes upon a change of basis, but �rst, let's see how the action of B

relates to the matrix B̂.

Let v, w be two vectors such that when expanded in terms of basis, v � °n
i�1 aivi and

w � °n
j�1 bjvj and let v, w denote the column vectors pa1, a2, ......., anqT , pb1, b2, ......., bnqT

respectively. Then,

Bpv, wq � Bp
ņ

i�1

aivi,
ņ

j�1

bjvjq �
¸
i,j

aiBpvi, vjqbj � vT B̂w

Now, let twjunj�1 be another basis for V over F , and let D be the invertible change of basis

matrix from twjunj�1 to tviuni�1. Then, matrix for B in this basis is given by pBpwi, wjqq and
Bpwi, wjq �

°
k,l dkiBpvk, vlqdlj � DT B̂D. In other words, the matrix in di�erent bases are

conjugates of each other, so the rank remains same. This rank is called the rank of B. As

for the determinant, it di�ers by a square factor. So, we de�ne

De�nition 2.3.2 (Discriminant). Let F�2 � ta2 : a P F� � F zt0uu. Then, discriminant of

a bilinear form B is de�ned as

discrpBq �
$&%0, if detpB̂q � 0

detpB̂qF�2 P F�{F�2, otherwise.

Now, discrpBq is independent of basis, and is an invariant.

De�nition 2.3.3 (Nondegenerate). A bilinear form B is called nondegenerate if discrpBq �
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0.

Now, we see two linear maps associated with a bilinear form and characterise non-degeneracy

in terms of kernel of these maps. Let V � denote the dual of V . De�ne the maps L : V Ñ V �,

such that v ÞÑ Lv, and R : V Ñ V �, such that v ÞÑ Rv, where Lv : V Ñ F such that

Lvpwq � Bpv, wq and Rv : V Ñ F such that Rvpwq � Bpw, vq. It is easy to see that R,L

are both linear maps. Now, we de�ne

radLpV q :� KerpLq � tv P V : Lvpwq � 0 @w P V u � tv P V : Bpv, wq � 0 @w P V u
radRpV q :� KerpRq � tv P V : Rvpwq � 0 @w P V u � tv P V : Bpw, vq � 0 @w P V u

Proposition 2.3.1. Let B be a bilinear form on a �nite-dimensional vector space V . Then,

B is nondegenerate if and only if radLpV q � radRpV q � 0

Proof. Let tviuni�1 be basis for V and B̂ � pbijq be matrix of B w.r.t. this basis. We will prove

the contrapositive. Suppose v P radLpV q, then Bpv, viq � 0 @i. Let v � °n
j�1 ajvj, then°

j ajBpvj, viq �
°
j ajbji � 0 @i, so the vector X � pa1, ...anqT is a solution to B̂TX � 0,

which is a non-trivial solution if v � 0. Thus, if radLpV q � 0, then detpB̂T q � 0, so

detpB̂q � 0 ùñ discrpBq � 0, hence B is non-degenerate. It is easily seen that the same

holds for radRpV q case.

Corollary 2.3.2. Let W be a subspace of V and B be a non-degenerate bilinear form on V .

Then, for any f P W �, there exists u, v P V such that f � Lu|W � Rv|W .

Proof. Let tw1, ..., wmu be a basis forW and extend this to a basis tw1, ..., wnu for V . Extend
f to f1 P V � as f1|W � f and f1pwiq � 0 whenver i ¡ m. Then, by previous corollary, there

exists u, v P V such that f1 � Lu � Rv, hence f � f1|W � Lu|W � Rv|W .

Now, we generalise radLpV q and radRpV q for any arbitrary subset S � V : For S � V ,

de�ne

KLpSq � tv P V : Bpv, wq � 0 @w P Su � tv P V : Lv|S � 0u
KRpSq � tv P V : Bpw, vq � 0 @w P Su � tv P V : Rv|S � 0u.
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Note that KLpV q � radLpV q and KRpV q � radRpV q

Proposition 2.3.3. KLpSq and KRpSq are subspaces of V satifsying the following:

� KL and KR are inclusion-reversing, i.e., if S � T , then KLpSq � KLpT q and KRpSq �
KRpT q.

� If W is the subspace spanned by S, then KLpSq � KLpW q, and likewise for KRpSq.

� KLpKRpSqq � S, KRpKLpSqq � S.

Proof. We will prove everything for L, and the corresponding proof for R is imitated.

Bpv, wq � 0 @ w P S and Bpv1, wq � 0 @ w P S imply that Bpkv � v1, wq � 0 @ w P S

(where k P F ) because of linearity of B in the �rst coordinate. Thus, KLpSq is a subspace

of V .

Let S � T . Suppose v P KLpT q, thenBpv, wq � 0 @ w P T and thereforeBpv, wq � 0 @ w P S
which implies that v P KLpSq.
Since S � W , KLpW q � KLpSq. Let v P KLpSq, then Bpv, wq � 0 @ w P S. If w1 P W , then

w1 is a �nite linear combination of elements of S, and by linearity of B in second coordinate,

we have Bpv, w1q � 0, which implies v P KLpW q. Hence, KLpSq � KLpW q.
Finally, for any s P S, Bps, wq � 0 @ w P KRpSq, hence S � KLpKRpSqq.

Proposition 2.3.4. Let W be a subspace of V , and B be a non-degenerate bilinear form on

V , then dimpKLpW qq � dimpKRpW q � dimpV q � dimpW q.

Proof. De�ne a map θ : V Ñ W � which maps v ÞÑ Lv|W . This map is onto by Corollary 2.3.2.

Now, kerpθq � KLpW q. By rank-nullity, dimV � dimpkerpθqq � dimpW �q � dimpKLpW qq �
dimpW q. Hence, the result.

Corollary 2.3.5. Let B be a non-degenerate bilinear form on V , S � V and W be the

subspace spanned by S. Then, KLpKRpSqq � KRpKLpSqq � W . In particular for a subspace

W � V , KLpKRpW qq � KRpKLpW qq � W .

Proof. First, S � KLpKRpSqq and right side is a subspace of V , so W � KLpKRpSqq. Also,
dimpKLpKRpSqqq � dimpKLpKRpW qqq � dimpV q � dimpKRpW qq � dimpV q � pdimpV q �
dimpW qq � dimpW q. Hence the result.
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2.4 Alternating forms and Symplectic groups

2.4.1 Alternating forms

We �rst de�ne symmetric and alternating forms. Let B be a bilinear form on V , then B

is called symmetric if Bpu, vq � Bpv, uq @ u, v P V and alternate if Bpu, uq � 0 @ u P V .
A bilinear form B such that Bpu, vq � �Bpv, uq @ u, v P V is called skew-symmetric form.

Thus, B is symmetric if and only if B̂t � B̂, where B̂ is any matrix for B, and skew-symmetric

if and only if B̂t � �B̂. If B is an alternate form, then Bpu� v, u� vq � 0 ùñ Bpu, vq �
Bpv, uq � 0 for any u, v P V . So, if charpF q � 2, then Bpu, vq � �Bpv, uq, so alternating

forms coincide with skew-symmetric forms in charpF q � 2. If charpF q � 2, Bpu, vq � Bpv, uq
so alternating forms coincide with symmetric forms in characteristic 2.

Now, we give a condition which ensures a bilinear form is either symmetric or alternating:

Proposition 2.4.1. If B satis�es

Bpu, vqBpw, uq � Bpv, uqBpu,wq @ u, v, w P V, (2.1)

then B is symmetric or alternating.

Proof. Putting u � v in p2.1q, we get

Bpu, uqrBpw, uq �Bpu,wqs � 0 @ u,w P V (*)

. Now, we want to say that Bpu, uq � 0 @ u P V or rBpw, uq � Bpu,wq @ u, v P V . Suppose
not, then there exists x, y, z P V such that Bpx, xq � 0 and Bpy, zq � Bpz, yq. Put u �
y, w � z in (*), then Bpy, yq � 0. Similarily, Bpz, zq � 0, Bpx, yq � Bpy, xq � 0, Bpx, zq �
Bpz, xq � 0. Now, 0 � Bpx, xq � Bpx, xq � Bpx, yq � Bpy, xq � Bpy, yq � Bpx � y, x � yq,
but putting u � x � y, w � z in (*), we get Bpx � y, x� yq � 0, a contradiction. Hence, B

is either symmetric or alternating.

Now, we de�ne orthogonality and re�exivity. v K w if Bpv, wq � 0. The bilinear form is

said to be re�exive if v K w implies w K v. When B is re�exive, KLpSq � KRpSq and we

denote them by SK. If W is a subspace of V , WK is called the orthogonal complement of W

and W XWK � 0 if and only if B|W�W is non-degenerate, in which case W is said to be a

34



non-degenerate subspace of V . We denote W XWK by radpW q. Now, we see how re�exive,

symmetric and alternating forms are related.

Proposition 2.4.2. A bilinear form B is re�exive if and only if it is either symmetric or

alternating.

Proof. If B is symmetric or alternate, it is easily seen that it is re�exive. Conversely, suppose

B is re�exive. For any u, v, w P V , let x � vBpw, uq � Bpv, uqw, then Bpx, uq � 0 which

means that x K u. Since, B is refelxive, u K x, i.e., Bpu, xq � 0 ùñ Bpu, vqBpw, uq �
Bpv, uqBpu,wq, hence by Proposition 2.4.1, B is symmetric or alternate.

Now, we will look at when two bilinear forms are equivalent. Two bilinear forms B1, B2 on

the vector spaces V1, V2 are said to be equivalent if there exists an isomorphism σ : V1 Ñ V2

such that B2pσpvq, σpwqq � B1pv, wq for all v, w P V1. It is easy to see that

Proposition 2.4.3. B1 and B2 are equivalent i� there are bases for V1 and V2 for which

B̂1 � B̂2.

Proposition 2.4.4. Suppose B is a re�exive bilinear form on V and letW be a non-degenerate

subspace of V . Then, V � W `WK.

Proof. Extend an orthogonal basis tviuki�1 of W to an orthogonal basis tviuni�1 of V . Let v P
V , so that v � °n

i�1 aivi, then we claim that v�°k
i�1 aivi P WK. Indeed, let w � °k

j�1 bjvj P
W , then Bpv �°k

i�1 aivi,W q � Bpv, wq �°k
i�1 aiBpvi, wq �

°k
i�1 aibi �

°k
i�1 aibi � 0. This

shows that V � W �WK, also W XWK � 0 ùñ V � W �WK � W `WK.

Now, we will assume throughout this section that B is an alternating form. If u, v are

such that Bpu, vq � 0 then u, v is a linearly independent set because if u � kv, then Bpu, vq �
Bpkv, vq � kBpv, vq � k.0 � 0. Also, if Bpu, vq � b � 0, then let u1 � b�1u, v1 � v, then

Bpu1, v1q � 1. If W is the subspace spanned by u1, v1, then W is called hyperbolic plane

and tu1, v1u is called hyperbolic basis. W.r.t this basis the matrix for B|W�W is given by�
0 1

�1 0

�
.

Notation: To denote a direct sum V `W where V K W , we use the symbol V kW . The

following proposition tells us how the matrix of an alternating form would look like and can

be found in [5].
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Proposition 2.4.5. Suppose B is an alternating form on V . Then, V decomposes into some

hyperbolic planes with a degenerate part. More precisely,

V � W1 kW2 k � � �Wr k radpV q.

V has a basis tu1, v1, u2, v2, � � �ur, vr, w1, � � �wn�r where each ui, vi is a hyperbolic pair. With

respect to this basis, B has the following block-diagonal matrix������
J 0

. . .

J

0 0n�2r

������ ,

where J �
�

0 1

�1 0

�
is the matrix corresponding to the hyperbolic pairs.

Proof. If B � 0, then V � radpV q and we are done. If B � 0, then we choose a hyperbolic

pair and let w1 denote the span. Then,W1 is a non-degenerate subspace because determinant

of matrix of B on W1 has determinant 1. So, using Proposition 2.4.4, we can write V �
W k WK. Note that radpV q � radpW q ` radpWKq � radpWKq. Now, use induction on

dimension of V .

Corollary 2.4.6. Any alternating form has an even rank. If B is non-degenerate, then V

has an even dimension.

Proof. Rank of the matrix as in Proposition 2.4.5 is 2r, hence even. Also, B non-degenerate

means radpV q � 0, hence V has 2r dimension.

Corollary 2.4.7. Two alternating forms B1, B2 on spaces V1, V2 respectively are equivalent

i� dimpV1q � dimpV2q and rankpB1q � rankpB2q.

Proof. This follows easily from Proposition 2.4.3 and the last part of Proposition 2.4.5.

Corollary 2.4.8. Any two non-degenerate alternate bilinear forms on a vector space V are

equivalent.

36



2.4.2 Symplectic groups

We focus now only on non-degenerate alternate form B on a vector space V . By Corollary

2.4.6, V must have an even dimension, say 2n. De�ne the symplectic group on V as follows:

SppV q :� tτ P GLpV q : Bpτpvq, τpwqq � Bpv, wq@v, w P V u,

i.e, it is the collection of isometries of V under the alternate form B. If we choose another

non-degenerate alternate form B1 on V , then by Corollary 2.4.8, we know that B1 will be

equivalent to B. If P P GLpV q is the matrix such that B̂1 � P tBP , then it can be checked

that the two corresponding symplectic groups will be conjugate by the matrix P .

Now, we �x a symplectic basis tu1, v1, � � � , un, vnu for V . If T represents the matrix of

τ P SppV q in this basis, then SppV q � tT P GLpV q : T tB̂T � B̂u. For n � 1, this condition

is equivalent to T being in SLpV q, thus SppV q � SLpV q when dimpV q � 2. If we write the

matrix for B in the basis tu1, u2, � � � , un, v1, � � � vnu, then it looks like

�
0 I

�I 0

�
. It can be

veri�ed that any for A P GLpnq, T �
�
A 0

0 pAtq�1

�
belongs to SLpV q. Thus, Spp2n, F q

contains an isomorphic copy of GLpn, F q as a subgroup.

From now on, Sppn, F q denotes the group SppV q where dimpV q � n, and if |F | � q, then

we denote it by Sppn, qq.

Symplectic transvections

We will show that every symplectic transvection is determined by a scalar a and a vector

u which will be denoted by τu,a. Suppose that τ is a transvection with a �xed hyperplane

H, and τ P SppV q. Then, dimpHKq � 1, and so let HK � xuy. u P uK � pHKqK � H. Let

v P V zH, then V � H ` xxy. De�ne f P V � by mapping v � bx � h to b. By Corollary

2.3.2, b � fpvq � Bpv, yq for some y P V . Let τpxq � x � z P H, then τpvq � bτpxq � h �
bpx � zq � h � v � bz � v � Bpv, yqz. Now, τ P SppV q so Bpw, xq � Bpτphq, τpxqq �
Bph, x � zq � Bph, xq � Bph, zq, and thus Bph, zq � 0 for all h P H, thus z P HK, i.e,

z � cu for some scalar c. Similarily, y P HK � xuy, and so y � du for some scalar d. Thus,

τpvq � v � Bpv, duqcu � v � cdBpv, uqu � v � aBpv, uqu, where a � cd is another scalar.
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Thus, τpvq � v�aBpv, uqu, and this τ is denoted by τu,a. Conversely, it can be checked that

τu,a is a symplectic transvection.

We follow a similar development as done in Section 2.2 to prove that PSppV q is simple

using Iwasawa's criterion, except for PSpp2, 2q, PSpp2, 3q and PSpp4, 2q.

Proposition 2.4.9. SppV q is generated by symplectic transvections.

Proof. Let T denote the subgroup of SppV q generated by transvections. Then, T is transitive

on V zt0u, and transitive on the set of hyperbolic pairs. We use induction on n, where

dimpV q � 2n. n � 1 case is taken care of by the fact that SLpV q � SppV q for dimpV q � 2.

We choose a hyperbolic pair tu, vu in V and set W � xu, vy, then V � W kWK and now

we can use induction hypothesis for WK.

Corollary 2.4.10. SppV q � SLpV q.

Proof. The determinant of every symplectic transvection is 1.

Proposition 2.4.11. If |F | ¥ 4, then PSppV q1 � PSppV q.

Proof. It su�ces to prove the same for SppV q for which we show that every symplectic

transvection τu,a is a commutator. Let b P F zt0,�1u and let c � a
1�b2

, d � �b2c. Then, it

can be checked that τu,cτu,d � τu,a. There exists σ P SppV q mapping u to bu since set of

transvections is transitive on V zt0u. Then, στu,cσ�1 � τu,d, and we are done.

Similar results can be derived for �nite �elds with cardinality less than 4 (see [5]):

Proposition 2.4.12. If |F | � 3 and dimpV q ¥ 4, then PSppV q1 � PSppV q, and if |F | � 2

and dimpV q ¥ 6, then PSppV q1 � PSppV q.

The action of PSppV q on PpV q turns out to be primitive and faithful, and thus all

conditions in Iwasawa's criterion are met, and we get:

Theorem 2.4.13. (Simplicitiy of PSppV q) PSppV q is simple except for PSpp2, 2q, PSpp2, 3q
and PSpp4, 2q.
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2.5 Quadratic forms and Orthogonal groups

We assume throughout this subsection that F is a �eld with charactersitic � 2. We have

already de�ned symmetric forms in previous section as bilinear forms B such that Bpu, vq �
Bpv, uq @u, v P V . Now, we de�ne quadratic form associated with a bilinear form as a mapQ :

V Ñ F via Qpvq � Bpv, vq. This is particularly helpful because quadratic form determines

the bilinear form and vice versa. Indeed, we note that Bpu, vq � 1
2
rQpu� vq �Qpuq �Qpvqs.

Now, we characterize symmetric forms by diagonal matrices:

Proposition 2.5.1. Suppose B is a symmetric form on V . Then, V has an orthogonal

(v K w i� Bpv, wq � 0) basis tv1, v2, � � � vnu with respect to which the matrix of B is the

diagonal matrix �������
b1 0 . . . 0

0
. . .

...
... br

...

0 0 . . . 0n�r

�������
, where all bi's are nonzero, r � rankpBq, and tvr�1, � � � , vnu forms a basis of radpV q.

Proof. Assume B � 0 because in B � 0 case, we just take r � 0. Then, we can �nd a v such

that Qpvq � 0: indeed Qpvq � 0 @v will mean that Bpv, wq � 0 @v, w contradicting B � 0.

Let W be the span of v, then W is non-degenerate, so V � W kWK. Now, use induction

on dimpV q. Also, v P radpV q i� v K vi @i. If v �
°
aivi, then

Bpv, vjq �
$&%ajbj , 1 ¤ j ¤ r

0 , j ¡ r

Consequently, v is in radpV q i� ai � 0 @i ¤ r, i.e., i� v P  vr�1, � � � , vn ¡.
Note that vi could be replaced by civi wihtout any loss and also bi could be arbitrarily chosen

from the image of Q.

Using this, we give a criterion for when two symmetric forms are equivalent when F

contains the square root of every element. This gives a characterization for symmetric forms

on spaces where the �eld is as given, for example, over C or in general over any algebraically

closed �eld.
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Proposition 2.5.2. Let F be a �eld such that every element has a square root. Then, two

symmetric forms B1, B2 on spaces V1, V2 of the same dimension are equivalent if and only if

they have the same rank.

Proof. Since every element has a square root in F , Qpviq � bi also has a square root say ci.

Then, Qpciviq � 1. Thus, matrix for B becomes

�
Ir 0

0 0

�
, and so using Proposition 2.4.3, we

have the result.

Now, we give characterisation of symmetric forms on ordered �elds, for example R using

a result known as Sylvester's Law of Inertia. For a proof of this, refer to Chapter 4 in [5].

Proposition 2.5.3. Let F be an ordered �eld, and B be a symmetric form on V . Let

tu1, u2, � � �unu and tv1, v2, � � � vnu be two orthogonal bases w.r.t which the following are B̂

respectively: ��������������

b1 0 0 0 0
. . .

bp

0 �bp�1 0 0
. . . 0

�br 0

0 0 0 0

��������������
��������������

d1 0 0 0 0
. . .

dq

0 �dq�1 0 0
. . . 0

�dr 0

0 0 0 0

��������������
,where all bi, di ¡ 0. Then, p � q.

Sylvester's Law of Inertia tells us, in essence, that given an ordered �eld, the number

of positives in the diagonal of the matrix for B is independent of the basis. We de�ne an
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invariant for B called Signature of B, denoted by SigpBq as the number of positive diagonal
entries minus the number of negative diagonal entries.

Now, using the two characterizations above, we can characterize B for ordered �elds in which

every element has a square root.

Proposition 2.5.4. Suppose F is an ordered �eld in which every element has a square root.

Then, bilinear forms B1, B2 on vector spaces V1, V2 of same dimension are equivalent i�

rankpB1q � rankpB2q and SigpB1q � SigpB2q.

Proof. Using Proposition 2.5.3 and ideas used in the proof of Proposition 2.5.2, we can write

matrices for the bilinear forms as ���Ip 0 0

0 �Ir�p 0

0 0 0

���
Now, we use Proposition 2.4.3 to arrive at the result.

Now, we aim to establish the equivalence of quadratic forms in the case when F is a �nite

�eld.

De�nition 2.5.1. Let B be a symmetric form on V with quadratic form Q, then a nonzero

vector v is called isotropic if Qpvq � 0 and anisotropic if Qpvq � 0. The zero vector is always

taken to be anisotropic by convention. If there exists an isotropic vector, then B, V and Q

are called isotropic, otherwise anisotropic. If Qpvq � 0 for all v P V , then V is called totally

isotropic. The bilinear form B and quadratic form Q are called universal if Q is onto.

Proposition 2.5.5. Suppose B is a nondegenerate isotropic symmetric form, then B is

universal.

Proof. Let u � 0 be an isotropic vector. Then, there exists some v such that Bpu, vq � b � 0.

Replacing v by v{2b we can assume Bpu, vq � 1{2. Let w � cu � v for some c, we want to

�nd c such that Qpvq � a, i.e, 2cBpu, vq �Bpv, vq � a. So we take c � a�Bpv, vq. Thus, B
is universal.

Now, suppose F is a �nite �eld such that |F | � q(odd). The squaring map θ : F � Ñ F�2

via θpaq � a2 is a surjective group homomorphism with Kerpθq � t�1u, and so rF � : F�2s �
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2, and the two cosets are cosets of squares and of non-squares in F �.

Let b P F � be a non-square and let K � F be splitting �eld of x2 � b. Then, K � ta� c?bu
and |K| � q2. Let N : K Ñ F be the norm. Since d ÞÑ dq generates the galois group of

K over F , we have Npa � c
?
bq � pa � c

?
bqq�1 since norm is product of conjugates. Now,

N : K� Ñ F � is a homomorphism with KerpNq � ta P K� | aq�1 � 1u a subgroup of order

q� 1. Hence, cardinality of image is equal to |K�|{pq� 1q � q� 1 which is cardinality of F �

so N : K� Ñ F � is onto. Note that Npa� c?bq � a2 � bc2 using minimal polynomial. Even

in the case when B is not isotropic, we have :

Proposition 2.5.6. Suppose F is a �nite �eld. If B is a non-degenerate symmetric form

on V , vector space of dimension n ¥ 2 over F , then B is universal.

Proof. Using the previous proposition, we can assume that B is anisotropic. It will su�ce

to prove this for n � 2. Using Proposition 2.5.1 and scaling, we assume that B has the

matrix

�
1 0

0 �b

�
with respect to an orthogonal basis tu1, u2u. If 0 � v � au1 � cu2, then

Qpvq � a2 � bc2 � 0, so b is a non-square in F . Let K � F p?bq , then by remarks before

this proposition, N : K� Ñ F � is onto, hence B is universal.

Proposition 2.5.7. If F is �nite and B is a non-degenerate symmetric form on V of

dimension n ¥ 2 over F , then there is a basis for V relative to which the matrix for B is������
1

. . .

1

d

������
Proof. Using previous proposition, we can choose v1 P V such that Qpv1q � 1. Continue

choosing such orthogonal elements till   vi, � � � vn ¡K has dimension less than 2, i.e., we

reach vn. Choose vn P  v1, � � � vn�1 ¡K such that Qpvnq � d � 0.

Corollary 2.5.8. Two qudratic forms B1, B2 over V1, V2 vector spaces over �nite �eld F

are equivalent i� dimpV1q � dimpV2q and discrpB1q � discrpB2q. Thus, there are only two

quadratic forms upto equivalence on �nite �elds.

Proof. The �rst part of the statement follows from Proposition 2.5.7, and there are only two

quadratic forms up to equivalence because discrpBq � d.F�2 and d is either a square or a

non-square.
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De�nition 2.5.2 (Quadratic space). A vector space V with a non-degenerate symmetric

form B is called a quadratic space. A 2 -dimensional subspace H of a quadratic space is called

a hyperbolic place if there exists basis tu, vu of H such that Qpuq � Qpvq � 0, Bpu, vq � 1

and tu, vu is called a hyperbolic pair.

Proposition 2.5.9. Let V be a quadratic space of dimension 2. Then, the following are

equivalent:

1. V is a hyperbolic plane.

2. discrpBq � �1.F�2

3. V is isotropic.

Proof. 1 ùñ 2: The matrix for B with respect to standard basis is

�
0 1

1 0

�
, determinant of

which is �1. Thus, discrpBq � �1.F�2.

2 ùñ 3: since discrpBq � �1 � F�2 there is a basis tu, vu for V relative to whichpB �
�
b1 0

0 b2

�
, with b1b2 � �c2, c P F �, Set w � cu� b1v � 0 Then Qpwq � b1c

2 � b2b
2
1 �

b1c
2 � b1c

2 � 0

3 ùñ 1: V is not totally isotropic because it is non-degenerate. There exists a nozero

isotropic vector, say u. Then, there is a vector v such that Bpu, vq � a � 0 since B

is non-degenerate. Now, if we set u1 � a�1u, then Bpu1, vq � 1. Now for any b P V ,

Qpbu1� vq � 2bBpu1, vq�Qpvq � 2b�Qpvq. Let b � �Qpvq{2, and v1 � ��Qpvq
2

u1� v, then
tu1, v1u is easily seen to be a hyperbolic pair.

We quote the following proposition from [5]:

Proposition 2.5.10. Suppose that V is a quadratic space and that U is a subspace with

rad U � 0. Let U 1 be any complementary subspace for rad U in U, i.e. U � radU k U 1. If

tu1, . . . , uku is a basis for rad U then there is a subspace W, with basis tv1, . . . , vku , such that
U XW � 0, U `W is nondegenerate, pui, viq is a hyperbolic pair for Hi � xui, viy , 1 ¤ i ¤ k,
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and

U `W � U 1 kH1 kH2 k � � � kHk

2.5.1 Orthogonal Groups

We wiil assume throughout this section that V is a quadratic space of dimension n ¥ 2 over

F where characteristic of F � 2. The isometries of V are called orthogonal transformations,

they form a group called the orthogonal group, denoted by OpV q. In other words,

OpV q � tτ P GLpvq | Bpτpuq, τpvqq � Bpu, vqu

Choosing a basis tv1, v2, � � � , vku for V , let T̂ , B̂ represent the matrices of τ, B respectively.

Then, τ P OpV q i� T̂ tB̂T̂ � B̂. Thus, detpT̂ q � �1 for any orthogonal transformation.

If detpT̂ q � 1, then τ is called rotation or proper orthogonal transformation, otherwise a

reversion. The subgroup of rotations is called special orthogonal group, denoted by SOpV q.

Proposition 2.5.11 (Witt's cancellation theorem). Suppose that U1 and U2 are nondegenerate

subspaces of a quadratic space V and that σ : U1 Ñ U2 is an isometry. Then UK
1 and UK

2 are

also isometric.

Proof. We use induction on dimU1. In the base case, let U1 � xu1y , U2 � xu2y and hence

Q puiq � 0 since U1, U2 are both nondegenerate by assumption. We may assume that σ pu1q �
u2 and so Q pu1q � Q pu2q . Then

Q pu1 � u2q � 2Q pu1q � 2B pu1, u2q

so if Q pu1 � u2q � Q pu1 � u2q � 0 then Q pu1q is equal to both of B pu1, u2q and �B pu1, u2q ,
contradicting Q pu1q � 0. Thus one, at least, of Q pu1 � u2q and Q pu1 � u2q is nonzero. Say
that Q pu1 � u2q � 0. Note then that

B pu1 � u2, u1 � u2q � Q pu1q �Q pu2q � 0
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so u1 � u2 K u1 � u2, and σu1�u2 pu1 � u2q � u1 � u2. Thus

σu1�u2 pu1q � σu1�u2

�
1

2
pu1 � u2q � 1

2
pu1 � u2q



� �1

2
pu1 � u2q � 1

2
pu1 � u2q

� �u2

Thus σu1�u2 pxu1yq � xu2y , and σu1�u2

�
xu1yK

	
� xu2yK , since

σu1�u2 P OpV q

The proof is similar, using σu1�u2 instead of σu1�u2 , if Q pu1 � u2q � 0. Suppose next that

dimU1 ¡ 1 and assume the result for subspaces of lower dimensions. Choose u1 anisotropic

in U1 and let W1 be the orthogonal complement of u1 in U1. Then W1 is nondegenerate and

U1 � xu1y
À

W1 Set u2 � σu1 and W2 � σW2, so U2 � xu2y©W2. Then

V � xu1y kW1 k UK
1 � xu2y kW2 k UK

2

By the 1 -dimensional case above there is an isometry η from W1© UK
1 to W2 ` UK

2 . Thus

W2`UK
2 � ηW1kη

�
UK

1

�
, and ησ�1 is an isometry fromW2 to ηW1. Also U

K
2 and η

�
UK

1

�
are

the orthogonal complements in V1 � W2 ` UK
2 of W2 and ηW1, respectively, so by induction

UK
2 and η

�
UK

1

�
are isometric, hence UK

1 and UK
2 are isometric.

Note that Witt's cancellation holds only for non-degenerate subspaces. Now, we present

Witt's extension theorem, which talks about how to extend a given isometry on subspace to

the whole of quadratic space.

Proposition 2.5.12 (Witt's Extension Theorem). If U1 and U2 are subspaces of a quadratic

space V and σ : U1 Ñ U2 is an isometry, then there exists τ P OpV q with τ |U1
� σ

Proof. Suppose �rst that U1 and U2 are nondegenerate. Then byWitt's cancellation theorem,

there is an isometry η : UK
1 Ñ UK

2 . Since V � U1 ` UK
1 � U2 ` UK

2 , it is clear that

τ � σ ` η P OpV q, and that τ |U1
� σ.

Suppose then that radU1 � 0, and write U1 � radU1 ` U 1
1 for some subspace U 1

1. By
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Proposition 2.5.10, there is a subspaceW1 such that U1`W1 is nondegenerate and U1`W1 �
U 1

1 `H1 ` � � � `Hk, with each Hi a hyperbolic plane with hyperbolic pair pui, viq . Similarly

we have W2 with U2 `W2 nondegenerate and U2 `W2 � U 1
2 ` H 1

1 ` � � � `H 1
k, with U 1

2 �
σU 1

1, H
1
i � xσui, v1iy , pσui, v1iq a hyperbolic pair. Extend σ to σ1 : U1` W1 Ñ U2 `W2 via

σ1 pviq � v1i; clearly σ
1 is an isometry. since U1 `W1 is nondegenerate there exists τ P OpV q

with τ |U1`W1
� σ1 by the �rst part of the proof, and hence τ |U1

� σ

Corollary 2.5.13. Every totally isotropic subspace is contained in one having maximal

dimension, and any two maximally isotropic subspaces have the same dimension.

Proof. Let U be a totally isotropic subspace of maximal dimension, say m If W is any

totally isotropic subspace then there is an isometry σ from W to a subspace of U. By Witt's

extension theorem there exists τ P OpV q with τ |U � σ. But then τ�1U is a totally isotropic

subspace of dimensionm, maximal, andW � τ�1U . So. W is contained in a totally isotropic

subspace of maximal dimension. Also, if W is itself maximal, then W � τ�1U and hence

dimension of W is also m.

De�nition 2.5.3 (Witt Index). The dimension m of a maximal totally isotropic subspace

of a quadratic space V is called the Witt index of V, denoted by mpV q.

A subspace H of a quadratic space V is called hyperbolic if H is an orthogonal direct

sum of hyperbolic planes.

Proposition 2.5.14. If V is a quadratic space with Witt index m then V has a hyperbolic

subspace H of dimension 2m and an anisotropic subspace X with V � H kX, where X is

determined uniquely upto isometry.

Proof. Choose a totally isotropic subspace U with dimU � m. By Proposition 2.5.10 V

has a subspace W such that U X W � 0, H � U ` W is hyperbolic, and dimH � 2m.

Then V � H k HK; set X � HK. Clearly X � HK is anisotropic, since U K X and

dimU � m is maximal. Suppose that H 1 � H 1
1 ` H 1

2 � � � ` H 1
k, each H

1
i a hyperbolic plane

with hyperbolic pair pui, viq . Then xu1, . . . , uky is totally isotropic, so k ¤ m AlsoH1k� � �kHk

and H 1
1 k � � � k H 1

k are isometric, so by Witt's Extension Theorem, there exists τ P OpV q
carrying H1 k � � � kHk to H

1
1 k � � �H 1

k Thus τ
�1 carries

�°k
1 Hi

	K
� Hk�1 k � � � kHm kX

to
�°k

1 H
1
i

	K
� Y, and hence k � m, since Y is anisotropic. It follows that X and Y are

isometric by the Witt's Cancellation Theorem .
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Corollary 2.5.15. Witt index of a quadratic space V is atmost dimpV q{2.
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Chapter 3

Algebraic Groups

This chapter gives an introduction to the theory of algebraic groups over algebraically closed

�elds. The results discussed in this chapter can be found in [6]. Some proofs are omitted to

maintain brevity, which can be looked up in [6].

3.1 A�ne Varieties

LetK be an algebraically closed �eld of arbitrary characteristic. The setKn, also denoted by

An, will be called the a�ne n-space. An a�ne variety is de�ned as the set of common zeros in

An of �nite set of polynomials inKrT s � KrT1, T2, � � � , Tns. Let I be an ideal inKrT s. Every
ideal inKrT s is generated by �nitely many polynomials due to Hilbert's Basis Theorem. Note

that the set of common zeros of the polynomials generating the ideal is the same as the set of

common zeros of the ideal I. Let V pIq denote the set of common zeros of these polynomials.

Conversely, every a�ne variety corresponds to an ideal in KrT s, because if X is an a�ne

variety, then let I pXq denote the collection of polynomials vanishing on X. Then, I pXq
is an ideal. So, we have the following correspondence between ideals of KrT s and a�ne

varieties in An : I ÞÑ V pIq and X ÞÑ I pXq. However, this correspondence is not one-one.
We immediately observe the following inclusions: X �V pI pXqq and I � I pV pIqq. We

observe that an even stronger inclusion
?
I � I pV pIqq. Hilbert's Nullstellensatz guarantees

the converse, which will give us a correspondence between radical ideals (ideals which are

equal to its radical) and a�ne varieties.
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Theorem 3.1.1 (Hilbert's Nullstellensatz). Let I be an ideal in KrT s, then ?I � I pV pIqq.

Now, we have the following dictionary:

tI P KrT s :
?
I � Iu 1�1ÐÑ tX : X is an a�ne variety in Anu.

Note that I ÞÑ V pIq and X ÞÑ I pXq are inclusion-reversing, and so the noetherian

property of KrT s will imply DCC (Descending Chain Condition) on the collection of a�ne

varieties in An. Furthermore, the points of An correspond to maximal ideals in KrT s.
Indeed, let X � V pIq where I is a maximal ideal. Then, X is non-empty by Hilbert's

Nullstellensatz, so let x P X. I � I ptxuq, which means I � I ptxuq, and so X �
V pI ptxuqq � txu.

Now, we give a topology on An by prescribing the closed sets to be a�ne varieties, i.e.,

a subset X of An is closed if and only if it is of the form V pIq for some radical ideal I in

KrT s. This topology turns out to be very useful; however, it misses some of the properties we

are very accustomed to, for example, Hausdor�ness. Singletons are closed in this topology,

which means it is T1. The DCC property on closed sets implies the ACC property on open

sets, which further gives us that An is a compact space. Since, a closed set V pIq is �nite
intersection of zero sets of fpT q P I, every non-empty open set can be written as union of

principal open sets Xf which are non-zeros of individual polynomials f . These principal

open sets form a basis of the Zariski topology; however, these are not small. For example,

GLpn,Kq is a principal open set in An�1 corresponding to non-zeros of the determinant

polynomial.

Now, we look at irreducible components which will serve as building blocks of a�ne

varieties. Union of two intersecting curves in An is connected but can still be analyzed

into di�erent components. This leads us to study a notion very similar to connectedness but

stronger than it. A topological space X is called irreducible if it cannot be written as a union

of two proper non-empty closed subsets. Subset Y of X is irreducible if it is irreducible in

the subspace topology.

Lemma 3.1.2. The following are equivalent:

1. X is irreducible.
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2. Any two non-empty subsets of X have non-empty intersection.

3. Any non-empty open subset of X is dense in X.

A subset of X is irreducible if and only if its closure in X is irreducible. Also, the

continuous image of an irreducible set is irreducible. Now, we look at how to decompose X

into its irreducible components (maximal irreducible subspaces).

Proposition 3.1.3. Let X be an a�ne variety in An. Then, X has only �nitely many

maximal irreducible subspaces (which have to be closed), and these cover X.

Now, we want to know what type of a�ne varieties will be irreducible, i.e., is there a

correspondence between closed irreducible subsets of X and the corresponding ideals.

Proposition 3.1.4. A closed subset X in An is irreducible if and only if I pXq is a prime

ideal.

So we have extended the dictionary and now it looks like:

Radical ideals in KrT s 1�1ÐÑ A�ne varieties in An

Prime radical ideals in KrT s 1�1ÐÑ Irreducible varieties in An

Maximal radical ideals in KrT s 1�1ÐÑ Points in An

If we have an a�ne variety X in Am and an a�ne variety Y in An, to ask whether X �Y is

an a�ne variety in Am�n we need �rst to give topology on Am�n. There are two ways we can

do so, one is to give Am�n the usual product topology, and the other is to give the Zariski

topology on Am�n. It turns out that the Zariski topology has far more closed sets than the

product topology, for eg., V pT1�T2q � tpa, aq : a P Ku is closed in Zariski topology but not

in product topology. We usually give the Zariski topology on the product. Now, under this

topology, we can ask if X � Y closed in Am�n, and the answer is yes! Furthermore, if X

and Y are closed irreducible in Am and An respectively, then X � Y is closed irreducible in

Am�n.

Suppose X is closed in An, then every polynomial fpT q P KrT s de�nes a polynomial

function x ÞÑ fpxq. The distinct polynomial functions on X are in 1�1 correspondence with

the ring KrT s{I pXq. This ring denoted by KrXs is called the a�ne algebra of X, and it is
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a �nitely-generated reduced algebra over K. When X is irreducible, then I pXq is a prime

ideal, and KrXs is an integral domain. So, we can look at its fraction �eld KpXq, which
is a �nite extension of K using the Weak-Nullstellensatz. The a�ne algebra of X, KrXs
is related to X in much the same way as KrT s is related to An. Suppose we start with

a noetherian topological space X (noetherian means open sets satisfy ACC), whose basis

consists of principal open sets Xf � tx P X : fpxq � 0u for fpxq P KrXs. Then, it is easy to

see that the closed subsets of X correspond to the radical ideals of KrXs and, in particular,

the points of X will be in 1�1 correspondence with the maximal ideals of KrXs. So, in this

sense, X is recoverable from KrXs. This is the idea used in giving an intrinsic de�nition of

a variety, one which is independent of the ambient space An.

We now turn to morphisms of varieties : let X � Am, Y � An be two a�ne varieties.

φ : X ÝÑ Y is called a morphism of varieties if is of the form

φpx1, � � � , xmq � pψ1pxq, ψ2pxq, � � � , ψnpxqq,

where ψi P KrXs. It can be noted that a morphism of varieties is always continuous for the

Zariski topology.

3.2 Linear Algebraic Groups

Let K be an algebraically closed �eld of arbitrary characteristic. All varieties considered will

be over K.

De�nition 3.2.1 (Algebraic Groups). An algebraic group G is a variety which is also a

group such that the maps m : G � G ÝÑ G, pg1, g2q ÞÑ g1.g2 and i : G ÝÑ G, g ÞÑ g�1

are morphisms of varieties. If the underlying variety is a�ne, then G is called a linear

algebraic group.

It turns out that every algebraic group G is a closed subgroup of GLnpKq for some n,

which is why the term `linear' is used. A homomorphism of algebraic groups φ : G ÝÑ G1 is

a morphism of varieties which is also a group homomorphism. It is clear what isomorphism

and automorphism mean.
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Example 1. pGa,Gmq : Ga is the a�ne line A1 with identity e � 0, mpg1, g2q � g1�g2 and

ipgq � �g. It is called the additive group. Gm is the subset K� � A1 with identity e � 1,

mpg1, g2q � g1.g2 and ipgq � g�1, and is called the multiplicative group. It is isomorphic as

a variety to V pxy � 1q � A2.

Example 2. pGLnpKqq : GLnpKq can be seen as a variety in the a�ne pn2�1q-space An2�1

as the closed subset tpxij, tq P An2�1 : detpxijqt � 1u. It is clear that Gm is isomorphic to

GL1pKq.

Notice that Ga can be seen as isomorphic to the subgroup

#�
1 a

0 1

�
: a P K

+
of GL2pKq.

Another source of examples of algebraic groups is the fact that : every closed (in Zariski

topology) subgroup of an algebraic group is algebraic group. If the product variety G�G1 is

equipped with the direct product group structure, then it is an algebraic group. Using these

facts, it can be seen that the following classical groups are algebraic groups:

1) The special linear group SLnpKq � tM P GLnpKq : detpMq � 1 � 0u.

2) The symplectic group Sp2npKq consisting of matrices X P GL2npKq such that

X t

�
0 In

�In 0

�
X �

�
0 In

�In 0

�
.

3) The orthogonal group OnpKq consisting of matrices X P GLnpKq such that X tX � In.

3.2.1 Connected Components

Proposition 3.2.1. Let G � �Gi be a decomposition of G into its irreducible components.

Then, there is a unique Gi such that e P Gi.

Proof. Suppose G1 and G2 are two irreducible components containing e. Then, the image

G1G2 of G1 � G2 under the continuous map G � G ÝÑ G is again an irreducible subset

containing e. Thus, G1G2 � Gi for some i. Also, Gj � G1G2 for j � 1, 2. Thus, G1 �
G1G2 � Gi, and since G1 is maximal, G1 � Gi. Similarily, G2 � Gi, and thus G1 � G2.
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We denote by G� this unique irreducible component of G containing e, and call it identity

component.

Proposition 3.2.2. G� is a closed normal subgroup of �nite index in G and the cosets of

G� are precisely the irreducible as well as the connected components of G. In particular, the

irreducible components are disjoint.

Proof. G� is closed because it is maximal irreducible subset of G, and closure of irreducible is

irreducible. For any g P G�, g�1G� � G� since it is an irreducible component of G containing

e, thus G� � pG�q�1. Now, for any g P G�, gG� � G� similarily, and thus, G�G� � G�. Thus,

G� is a subgroup. Also, gG�g�1 � G� similarily, which means G� is normal. All the left

cosets of G� are irreducible components of G, and thus are �nite in number. Since, the cosets

are disjoint, they are also connected components of G.

Corollary 3.2.3. G is connected if and only if G is irreducible.

Proof. If G is irreducible, then it is connected. Conversely, if G is not irreducible, then it can

be written as a union of its irreducible components, which are closed. Now, by the previous

proposition, these are disjoint, hence also open. This means G is not connected.

Proposition 3.2.4. Every closed subgroup of G having �nite index in G contains G�.

Proof. Let g1 � e, g2, � � � , gm be representatives of di�erent cosets of H. Then, G �²Hgi,

and Hgi are closed. Now, G� � ²G�
�
Hgi, and since G� is irreducible, it must be that

G� � G�
�
Hgi for some i, or equivalently, G� � Hgi for some i. Since, Hgi are disjoint and

G� meets H, we get G� � H.

We say that an algebraic group G is connected if G � G�. A subset X of a topological

space is irreducible if and only if every open subset U � X is connected. Thus, open subsets

of a�ne spaces, for example, are connected. In particular, GLnpKq is connected since it is a

principal open set in an a�ne space. The connectedness of SLnpKq as an algebraic group can
be asserted as follows: SLnpKq is the variety corresponding to the ideal generated by det�1,

and det � 1 is irreducible since every xij appears only once in the formula of determinant.

The connectedness of other classical groups, for e.g., Sp2npKq is more involved, and we will

be content with stating the fact without giving a proof. [To read more about this, we refer

the reader to [17].]
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Chapter 4

Exposition on the work of André Weil

The content in this chapter gives an exposition to the foundational paper of André Weil on

`Algebras with involutions and the classical groups' [1]. In this chapter, we work over a �xed

algebraically closed base �eld k of characteristic zero, i.e., the algebras considered are de�ned

over k. We want to give a bijection between the set of semisimple algebras with involution and

the set of classical semisimple groups, but to achieve this, we must restrict our sets suitably.

We will see explicitly how certain special groups, like PO�pnq, PSpp2nq, etc., are obtained
using certain special semisimple algebras with involutions as the connected component of

identity in the group of automorphisms of these algebras. Using these correspondences as

our basis, given a semisimple algebra with involution whose summands are isomorphic to

these "special" algebras, we can associate it with a semisimple group as direct summand of

the "special" semisimple groups obtained from the "special" algebras. But we are not done

here because it turns out that this "special" set of semisimple groups has some inherent

isomorphisms within itself. We have to cut these isomorphic copies out to avoid double

counting so that the correspondence is one-one. Now, we can work over this restricted set

of groups and algebras, and we will get a one-one correspondence between these two.

We now give the de�nition of an involution on algebra:

De�nition 4.0.1 (Involution). Let A be an algebra over k. An involution on A is a map

σ : A ÝÑ A such that σpx� yq � σpxq � σpyq, σpxyq � σpyqσpxq and σ2 � IdA.

We will denote an algebra with involution by the pair pA, σq. A non-trivial involution is
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a ring anti-automorphism of order 2. Note that σ need not be k-linear.

4.1 PLpnq

Let us �rst see how the group PLpnq can be obtained as connected component of identity in

the group of automorphisms of a semisimple algebra with involution. Let A �Mn`Mn and

let i be the involution on A given by pX, Y q ÞÑ pY t, X tq. It is clear that the automorphisms

of pA, iq, i.e., automorphisms of A commuting with i form an algebraic group, say G. Let G0

denote the automorphisms which leave the componentsMn invariant. So, apriori G0 consists

of the automorphisms of the form φ : pX, Y q ÞÑ pM�1XM,N�1Y Nq using Skolem-Noether

because restricted on each Mn elements of G0 give an automorphism of Mn, where M,N are

two invertible matrices. (Note that M,N P PGLpnq because under scalar multiplication of

M,N the map remains the same.) Now, we will use the fact that this automorphism has to

commute with pX, Y q ÞÑ pY t, X tq.

φ � i � i � φ, which translates to

M�1Y tM � N tY tpN tq�1 and N�1X tN �M tX tpM tq�1

MN tY t � Y tMN t and NM tX t � X tNM t.

This holds for all X, Y P Mn, so MN t and NM t are in the centre of GLn, thus using the

fact that M,N P PGLn, we see that N � pM tq�1. So, G0 consists of the automorphisms

of the form φpMq : pX, Y q ÞÑ pM�1XM,M tYM t�1q, where M is an invertible matrix. This

way we have a mapping M ÞÑ φpMq of GLn onto G0 whose kernel is the centre of GLn, thus

G0 � PGLpnq. Since PGLpnq is connected as a linear algebraic group, G0 is one connected

component of G. We will show that G0 has index 2 in G, thus there is only one other

component, namely the coset of G0 in G consisting of the automorphism pX, Y q ÞÑ pY,Xq.
To see this:

Let I denote the identity map on Mn. Let S denote the set tpI, 0q, p0, Iqu, and let f be

an algebra automorphism of Mn`Mn. Then, we claim that f maps S to S, i.e., f permutes

ei to ej, where ei denotes p0, 0, � � � , I, � � � , 0q with I at the i-th position. Indeed, elements of
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S are characterised by elements M of Mn `Mn satisfying the following three conditions:

� M is in the centre.

� M has rank 2.

� M is idempotent.

All these properties are preserved under any algebra automorphism, thus fpSq � S. Now,

f|S : S Ñ S is an invertible map, hence the claim.

Let f denote the automorphism pX, Y q ÞÑ pY,Xq. Now, let ψ be an automorphism of

the algebra A. Suppose ψpI, 0q � pI, 0q and ψp0, Iq � p0, Iq. Then, ψ P G0. Suppose now

that ψpI, 0q � p0, Iq and ψp0, Iq � pI, 0q. Then, ψ.fpI, 0q � pI, 0q and ψ.fp0, Iq � p0, Iq.
So, ψf P G0 and since f is its own inverse, ψ P fG0, the coset of G0 containing f . Thus, G0

has index 2 in G. Call this coset G1, then G1 is a connected component using Proposition

3.2.2, i.e., G has two connnected components G0 and G1, and G0, the connected component

of identity, can be identi�ed as PLpnq.

There is one more thing that we would like to check: if A,A1 are two isomorphic

algebras and suppose G0, G
1
0 is the connected component of identity in each of these, then

are G0 and G1
0 isomorphic? The answer is yes. To see this, we note that the inner

automorphisms of G will induce inner automorphisms of G0 using the ideas of how the

set S permutes. And automorphisms of G0 are either inner automorphisms of G0 or product

of such automorphisms by the automorphism induced on G0 by pX, Y q ÞÑ pY,Xq. Now, let
n ¥ 3. It can be shown that for n ¥ 3, the latter is not an inner automorphism. Also, it

is well known that these are all the automorphisms of G0 � PLpnq. Also, only the identity

automorphism on A induces the identity automorphism on G0. Hence, every automorphism

of G0 can be obtained uniquely from an automorphism of A.

The following proposition summarizes the discussion in this section :

Proposition 4.1.1. PLpnq is the connected component of identity G0 in the group of

automorphisms of A � Mn ` Mn with the involution i : pX, Y q ÞÑ pY t, X tq. Moreover,

every automorphism of G0 can be derived uniquely from an automorphism of A.
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4.2 PSppnq, n is even

Let A � Mn. We know that X ÞÑ X t is an involution on A. By Skolem-Noether theorem

applied on A and its opposite algebra, any anti-automorphism of A is of the form iF :

X ÞÑ F�1X tF . Now for this to be an involution, we must have F�1F tXF t�1
F � X or,

equivalently XF�1F t � F�1F tX which means that F�1F t � λ, where λ P Z, the center.

Thus, F t � λF , but now using the involution condition for matrix F gives us that λ2 � 1.

Thus, F t � �F .

Consider F t � �F :

Any automorphism of A is of the form X ÞÑM�1XM , such an automorphism will commute

with iF if and only if F � M tFM using the fact that M P PLpnq. Let G be the group

of such automorphisms. F t � �F will imply that n is even. The matrices M satisfying

F � M tFM are of determinant 1 using the pfa�an formula for skew-symmetric matrices :

PfpBABtq � detpBqPfpAq. These group of matrices form the symplectic group Sppnq which
is a connected algebraic group. As in the case of PLpnq, G will be quotient of this group by

its center, which is PSppnq. It is known that PSppnq only has inner automorphisms, and as

we did above, we will see that every automorphism of G can be derived in one and only one

way from an automorphism of A commuting with the considered involution iF . So, if A,A
1

are two algebras each isomorphic to Mn, then the connected component of identity in the

group of automorphisms of A,A1 say G0, G
1
0 are each isomorphic to G. (Note that in this

case G itself is connected, so G0 the connected component of identity is G itself.)

The following proposition summarizes the discussion in this section :

Proposition 4.2.1. PSpp2nq is the connected component of identity in the group of automorphisms
of A � M2n with the involution iF : X ÞÑ F�1X tF , where F is the block matrix

�
0 J

�J 0

�
,

where J �

���������

1

1

. .
.

1

1

��������
.

58



4.3 PO�pnq

Consider F t � F now.

As the base �eld is algebraically closed, we can take the matrix F to be the identity matrix.

Now, the matricesM satisfying F �M tFM ùñ In �M tM , which make up the orthogonal

group Opnq with two connected components O�pnq and O�pnq depending upon whether the

determinant is �1 or �1. Identity is in the component O�pnq, and thus as we have seen

before, the connected component of identity G0 in the group of automorphisms G commuting

with the given involution iF , is the quotient of O�pnq by its center, i.e., PO�pnq. Now,

depending on whether n is even or odd, the group G will be connected or disconnected.

If n is odd and n ¥ 3, then the center of Opnq is �In, of which In lies in O�pnq and �In
lies in O�pnq. Thus, we can pass from one component to the other inside G by multiplying

with �In and thus G is connected and may be identi�ed with O�pnq. Also, O�pnq has only
inner automorphisms, and thus as before, every automorphism of G can be derived in one

and only one way from an automorphism of A commuting with the considered involution iF .

If n is even and ¥ 4, then the center again contains only �In, but now both of these are

contained in O�pnq and so G has two components. In this case, it is known that the inner

automorphisms of PO�pnq for even n are of index 2 in the group of all automorphisms of

PO�pnq, except when n � 8 in which case the index is 6. It can also be easily seen that the

inner automorphisms of G induced by elements of G1, the other component, is not an inner

automorphism of G0. Thus, again as in the case of PLpnq, every automorphism of G can be

derived in only one way from automorphism of A.

The following proposition summarizes what we have discussed in this section :

Proposition 4.3.1. PO�pnq is the connected component of identity in the group of automorphisms
of A �Mn with the involution i : X ÞÑ X t.

This sums up the particular cases; now, we look at the general case.

4.4 Isomorphism between semisimple groups and algebras

We know that every semisimple algebra is a direct sum of matrix algebras. Now, any

involution of a semisimple algebra either leaves a component invariant or interchanges it
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with another one. To see this fact, we again allude to what we did earlier, using that we

see that any algebra automorphism will be given by a permutation permuting the basis

elements since our automorphism is involutory, this means that the permutation has order

2, and the only order 2 permutations are either a 2-cycle or a product of disjoint 2-cycles,

hence the fact. Thus, the only type of components we can have in a semisimple algebra with

involution is a matrix component being invariant under an involution, which pertains to the

cases 4.2, 4.3 or two matrix components being interchanged with one another which pertains

to the case 4.1. Thus, every semisimple algebra with involution is the direct sum of algebras

with involution of one of the three types discussed above. Also, if G0 is the connected

component of identity in the group of automorphisms of the algebra with involution A, then

it is clear that automorphisms in G0 will transform each component of A to itself. Thus,

G0 must be a direct product of groups of the type considered above, and that every such

group can be obtained as G0 for a suitable algebra with involution. But some groups will

be obtained more than once in this process because there are some well-known inherent

isomorphisms within these classical groups of various families, which are listed below:

1. SLp2q � Spp2q : Let J �
�

0 1

�1 0

�
. Then, J t � �J , and if M P SLp2q, then

M tJM � J , which means M P SLp2q. Converse is clear.

2. PO�p3q � PSpp2q

3. PO�p4q � PSpp2q ` PSpp2q

4. PO�p5q � PSpp4q

5. PO�p6q � PLp4q.

Considering these isomorphisms, we restrict our list of groups and algebras to the following:

The family of groups is restricted to all semisimple groups, with center reduced to the

neutral element, that when decomposed don't have any exceptional group or PO�p8q as
simple component, and the family of algebras is restricted to all semisimple algebras with

involution, which when decomposed into simple components have factors isomorphic to one

of the following: (a) Mn `Mn with an involution exchanging the two summands for n ¥ 3

or (b) M2n for n ¥ 1, with involution M ÞÑ J�1M tJ determined by an inverting alternating

matrix J , or (c) Mn with involution X ÞÑ X t for n � 7 or n ¥ 9.
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(Note (a) excludes PLp2q because it is already included in (b) as PSpp2q. Similarily, (c)

excludes PO� for all n   7 because these are already included in (b) using one of the above

isomorphisms.)

It follows that each group in our list of groups is isomorphic to the connected component

of identity in the group of automorphisms of one of the algebras in our list and that

any isomorphism between these groups is induced by a unique isomorphism between their

corresponding algebras.

4.A Pfa�an and determinant

In Section 4.2, we used the fact that pfpBABtq � detpBqpfpAq to prove that matrices M

satisfying F � M tFM are of determinant 1 . In this section, we prove that pfpBABtq �
detpBqpfpAq :

The pfa�an pf is given by the formula:

pfpAq � 1

2mm!

¸
i1,...,in

εi1...inai1i2 � � � ain�1in ,

where

εi1...in :�

$'''&'''%
�1 if pi1, ..., inq is an even permutation of p1, ..., nq
�1 if pi1, ..., inq is an odd permutation of p1, ..., nq
0 else

Now,

2mm!PfpBtABq �
¸

i1,...,in

εi1...inpBtABqi1i2 � � � pBtABqin�1in

�
¸

i1,...,in

εi1...in
¸

j1,...,jn

�
bj1i1aj1j2bj2i2

� � � � �bjn�1in�1ajn�1jnbjnin
�

�
¸

j1,...,jn

¸
i1,...,in

�
εi1...inbj1i1bj2i2 � � � bjn�1in�1bjnin

�paj1j2 � � � ajn�1jnq
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�
¸

j1,...,jn

εj1...jndetpBqpaj1j2 � � � ajn�1jnq � detpBq2mm!PfpAq,

where we have used the fact that

εj1...jndetpBq �
¸

i1,...,in

εi1...inbj1i1bj2i2 � � � bjn�1in�1bjnin .

and this follows straight from the de�nition of determinant in terms of permutation.
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Chapter 5

Galois Cohomoogy

This chapter discusses the concept of Galois cohomology, its functorial properties, and

how cohomology sets behave under exact sequences. The content in this chapter has been

collected from [7] and [8].

5.1 Pro�nite Groups

5.1.1 In�nite Galois Theory

We assume the reader to be acquainted with �nite Galois theory, and in this section, we

will look at arbitrary Galois extensions Ω{k. The fundamental theorem for �nite Galois

extensions gives us a one-one correspondence between subgroupsH � GalpΩ{kq and intermediate

�elds k � L � Ω. This fails to be true in the case when Ω{k is an in�nite Galois extension.

For instance, consider the in�nite Galois extension Qp?p, p primeq{Q with Galois group G.

Let H be the subgroup of G generated by elements σp,
?
p ÞÑ �?p and ?p1 ÞÑ ?

p1 if p1 � p.

It can be checked that H is a proper subgroup of G with �xed �eld Q, whereas the �xed

�eld of G is also Q. In order to establish a correspondence as that in the �nite case, we put

a topology on GalpΩ{kq, and it turns out that closed subgroups of GalpΩ{kq are in one-one

correspondence with intermediate �elds. Note that to do this, we need a topology such that

when Ω{k is reduced to the �nite case, we get a discrete topology on GalpΩ{kq.
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Let F � tL : k � L � Ω, rL : ks   8, L{k is Galoisu and N � tU � G : U �
GalpΩ{Lq for some L P Fu. We will de�ne the topology using elements of N to be open

neighbourhoods of 1, i.e., identity map.

De�nition 5.1.1. (Krull topology) A subset X of G is open if X � ∅ or if X � �i σiNi

for some σi P G and Ni P N .

It can be veri�ed that this indeed forms a topology on G. We note some properties of this

topology: tσN : σ P G,N P N u forms a basis for this topology. Since N P N , |G : N |   8,

and so GzσN can be written as disjoint union of �nite cosets of N , σN is closed as well as

open.

Note that
�
NPN N � t1u, and �NPN σN � tσu. Using these properties, it can be proved

that:

Proposition 5.1.1. G is totally disconnected and Hausdor� as a topological space.

Now, we show that G can actually be constructed from �nite Galois groups G{N �
GalpL{kq where N � GalpΩ{Lq. Form the direct product Ĝ � ±NPN G{N and give each

G{N the discrete topology and P the product topology. Ĝ is compact Hausdor� as a

topological space since each G{N is so. Then, we have an obvious homomorphism of groups

Θ : G ÝÑ Ĝ given by σ ÞÑ tσNu. Θ is a homeomorphism onto its image, and the image is

a closed subset of Ĝ. This gives us:

Proposition 5.1.2. G is compact as a topological space.

The above results are not coincidences, in fact, these topological properties hold for

pro�nite groups in general, and we will soon see that the Galois group is a pro�nite group.

From �nite Galois theory, we know that if H is a subgroup of G, then it is of the form

GalpΩ{Lq for some �nite subextension L � Ω. Then, the �xed �eld of H, ΩH � L, and so

H � GalpΩ{ΩHq. In the in�nite case, an analogous statement holds:

Proposition 5.1.3. If H is a subgroup of G, then GalpΩ{ΩHq � H

This already tells us why we need to look at closed subgroups to get one-one correspondence.

We state the fundamental theorem below:
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Theorem 5.1.4. (Fundamental Theorem of Galois Theory) Let Ω{k be a Galois extension,

and G be its galois group with Krull topology on it. Then,

1. L ÞÑ GalpΩ{Lq and H ÞÑ ΩH gives a one-one correspondence between intermediate

�elds k � L � Ω and closed subgroups H of G.

2. Under the above correspondence, H is open if and only if |G : H|   8 if and only if

rL : ks   8. Thus, we get a one-one correspondence between open subgroups H of G

and intermediate extensions L such that rL : ks   8.

3. Also, H is normal in G if and only if L is Galois over k. Thus, we get a one-one

correspondence between open normal subgroups H of G and intermediate extensions L

such that L{k is �nite Galois.

For later reference, we observe the following proposition and its corollary about morphism

of Galois extensions. The proofs can be found in [7].

Proposition 5.1.5. Let Ω1{K1 and Ω2{K2 be two Galois extensions, and suppose we have

the following commutative diagram:

Ω1
φiÝÝÝÑ Ω2��� ���

K1
ιÝÝÝÑ K2

,

where φi, i � 1, 2 are extensions of the ring morphism ι. Then, for every τ 1 P GalpΩ2{K2q,
there exists a unique τ P GalpΩ1, K1q such that τ 1 �φ1 � φ2 � τ . In particular, when τ 1 � id.,

there exists ρ P GalpΩ1{K1q such that φ1 � φ2 � ρ.
Corollary 5.1.6. Under the above setting with Ω1 � Ω2 and φ1 � φ2, we have a map

φ : GalpΩ{K2q ÝÑ GalpΩ{K1q which is a continuous group morphism. Moreover, if φ1 is

another extension of ι and φ � φ1 � ρ for some ρ P GalpΩ{K1q, then φ1 � Intpρq � φ, where
Intpρq denotes the inner conjugation by ρ.

5.1.2 Projective limits and pro�nite groups

De�nition 5.1.2. (Directed Set) Let I be a nonempty set with a binary relation ¤ such

that
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(i) i ¤ i for all i P I.

(ii) i ¤ j and j ¤ k implies i ¤ k.

(iii) for any i, j P I, there exists k P I such that i ¤ k and j ¤ k.

Let I be a directed set. Now, let pGiqiPI be a family of sets (groups, rings, modules, etc.)

together with maps (respective morphisms) φij : Gj ÝÑ Gi for any i ¤ j such that

(i) φii � IdXi
@i P I.

(ii) φij � φjk � φik for all i ¤ j ¤ k.

Then, pGi, φijqi,jPI is called a projective system.

De�nition 5.1.3. (Projective Limit) Let pGi, φijq be a projective system of sets (groups,

rings, etc.). The projective/inverse limit of the system is de�ned to be

G � limÐÝ
iPI

Gi �
#
pgiqiPI P

¹
iPI

Gi : φijpgjq � gi@i ¤ j

+
.

Let pi : G ÝÑ Gi denote the projection to i-th component. The inverse limit satis�es

the following universal property:

If H is any set (group, ring, etc.) and we have maps gi : H ÝÑ Gi for each i, such that

gj � φij � gi for i ¤ j, then there is a unique map (resp. morphism) g : H ÝÑ G such that

gj � pj � g for all j. In other words, we have the following commutative diagram :

H

G Gj

Gi

gj

gi

D!g

pj

pi
φij

Let pGi, φijq be a projective system of groups. Give discrete topology to each Gi, and then

give product topology on
±

iPI Gi, and endow limÐÝiPI
Gi with the subspace topology. This
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topology on the inverse limit is called the pro�nite topology. Recall that a topological group

is a group with a topology on it such that the multiplication and inverse maps are continuous.

De�nition 5.1.4. (Pro�nite group) A topological group G is a pro�nite group if it is

isomorphic as a topological group to the inverse limit of a system of �nite groups endowed

with the discrete topology.

The Galois groupGalpΩ{kq corresponding to an extension Ω{k is an example of a pro�nite

group as it is the inverse limit of the �nite groups GalpL{kq . This says that the full Galois
group GalpΩ{kq can be completely understood by looking at the �nite groups GalpL{kq,
which is also hinted at by the fact that any element in Ω can be seen as an element in

some �nite Galois subextension L . The set of all �nite Galois subextensions of Ω{k form

a directed set under the relation '�', and the corresponding Galois groups GalpL{kq form
a projective system of groups, where if L1 � L, then we have the map φL1L : GalpL{kq ÝÑ
GalpL1{kq, σ ÞÑ σ|L1 . The following isomorphism is, in disguise, the same isomorphism Θ

after Proposition 5.1.1 :

Theorem 5.1.7. Let Ω{k be a Galois extension. Then, the following is an isomorphism of

topological groups :

Θ : GalpΩ{kq ÝÑ limÐÝ
LPF

GalpL{kq

σ ÞÑ pσ|LqL

Now, we list some properties of pro�nite groups for further reference.

Theorem 5.1.8. Let G be a topological group. Then, G is pro�nite if and only if it is totally

disconnected, Hausdor�, and compact.

Proof. Suppose G is pro�nite and let G � limÐÝiPI
Gi where each Gi is a �nite group endowed

with discrete topology. Then, since each Gi is Hausdor�, so is the product space and hence

any subspace, in particular, G is Hausdor�. Let X be a subset of G containing two points

c, c1, then U � ±
Ui where Ui � tciu for �nitely many i and Ui � Gi for others. Then,

X � pU X Xq Y pG � U X Xq is an intersection of two non-empty disjoint open subsets of
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X, hence X is disconnected.
±
Gi is compact by Tychono�'s theorem. G is a closed subset

of
±
Gi since it is intersection of the closed subsets p�1

j � φ�1
ij pgjq. Thus, G is compact.

Conversely, if G is compact, Hausdor�, and totally disconnected, then let N be the

collection of open normal subgroups of G. It can be shown that each N P N has �nite

index in G and G � limÐÝNPN G{N , where R.H.S. is given the subspace topology induced from

product topology, where each G{N has discrete topology.

This proof reminds us of the Galois group case, and indeed there is a connection between

pro�nite groups and Galois group, proved by Waterhouse in 1974 (see [18]):

Theorem 5.1.9. (Waterhouse) Every pro�nite group is isomorphic to the Galois group of

some Galois extension.

Now, using the things we know about the Krull topology on the Galois group, the

following results look familiar:

Proposition 5.1.10. Let G be a pro�nite group. A subgroup H of G is open if and only if

it is closed and has a �nite index. Closed subgroups H of G are pro�nite groups, and if H

is normal, then so is the quotient group G{H.

5.2 Cohomology of pro�nite groups

5.2.1 Continuous action

Let G be a pro�nite group. The cohomology groups de�ned will be that of G and G-sets.

To de�ne G-sets, we �rst need to understand continuous actions.

De�nition 5.2.1 (Continuous action). Let G be a pro�nite group. A left action of G on a

discrete topoloigcal space A is called continuous if the map � : G� A ÝÑ A, pσ, aq ÞÑ σ.a is

continuous.

Now, we list some equivalent conditions for an action to be continuous, which are going

to be useful in the coming sections.

68



Proposition 5.2.1. Let G be a pro�nite group which acts on a discrete topological space A.

Then, the following are equivalent :

(i) The action of G on A is continuous.

(ii) For each a P A, the map σ ÞÑ σ.a is continuous.

(iii) For each a P A, the set StabGpaq � tσ P G : σ.a � au is an open subgroup of G.

(iv) A � �NPN AN , where N denotes the set of open normal subgroups of G.

De�nition 5.2.2. (G-sets and modules) Suppose G is a pro�nite group acting continuously

on a set A with discrete topology on it. Then, A is called a G-set. A group A which is also

a G-set is called a G-group if G acts by group morphisms, i.e.

σ � pa1a2q � pσ � a1q pσ � a2q for σ P G, a1, a2 P A.

A G-group which is commutative is called a G-module.

Suppose A,B are G-sets (groups, modules). We say that f : A ÝÑ B is a morphism of

G-sets (groups, modules) if fpσ.aq � σ.fpaq for all σ P G, a P A.

As an example, let Ω{k be a Galois extension with Galois group GΩ � GalpΩ{kq (from
now on, we will denote the Galois group by GΩ). Then, GΩ acts on Ω by evaluation, and

thus Ω is a GΩ-module.

5.2.2 Cohomology sets

Throughout the section, we will assume that G is a pro�nite group which acts continuously

on a set A, making A into a G-set. Let N denote the set of open normal subgroups of G. We

�rst de�ne the 0-th cohomology set as follows: H0pG,Aq :� AG � ta P A : σ.a � a@σ P Gu.
If A is a G-group, then it is a subgroup of A. To de�ne higher cohomology sets (groups), we

will need condition of continuity of maps α : Gn ÝÑ A. The image αpσ1, σ2, � � � , σnq will be
denoted as ασ1,σ2,��� ,σn . We list below some equivalent properties of such maps. This will tell

us that every continuous α : Gn ÝÑ A is locally de�ned by a family of maps αN .

Proposition 5.2.2. For any map α : Gn ÝÑ A, the following are equivalent:
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(i) α is continuous.

(ii) α is locally continuous, i.e., for any g � pσ1, σ2, � � � , σnq P Gn, there exists an open set

containing g on which α is constant.

(iii) There is some N P N and a map αN : pG{Nqn ÝÑ AN such that

αNσ̄1,σ̄2,��� ,σ̄n
� ασ1,σ2,��� ,σn .

Now, let A be a G-module (written additively here). As done in Section 2.9, we de�ne

C0pG,Aq � A and CnpG,Aq � tf : Gn cont.ÝÝÝÑ Au for n ¥ 1. All nomenclature is borrowed

from Section 2.9, except that the maps here are continuous (which we can talk about since

both G and A have topologies on them). Now, we de�ne maps δn : CnpG,Aq ÝÑ Cn�1pG,Aq
as follows:

δ0paqpσq � σ.a� a

and for n ¥ 1,

δnpαqσ1,σ2,��� ,σn�1 � σ1.ασ2,σ3,��� ,σn �
ņ

j�1

p�1qjασ1,σ2,��� ,sjsj�1,��� ,σn�1 � p�1qn�1ασ1,σ2,��� ,σn .

Similar as before, it can be checked that δn�1 � δn � 0. Thus, we get a co-chain complex

tCn, δnu which can be denoted as :

0 Ñ C0 δ0Ñ C1 δ1Ñ C2 δ2Ñ . . .
δn�1Ñ Cn δnÑ Cn�1 δn�1Ñ . . .

We now de�ne Zn � kerpδnq and Bn � imagepδn�1q. Elements of Zn are called n-cocycles

and that of Bn are called n-coboundaries. δn�1 � δn � 0 means that Bn � Zn, both of

these are abelian groups (since A is a G-module). Thus, we can take quotients, we de�ne

HnpG,Aq � Zn{Bn, which is called the n-th cohomology group of G with coe�cients in A.

Two n-cocycles are said to be cohomologous if they di�er by a n-coboundary. Trivial

n-cocyle is the element of ZnpG,Aq which maps every σ ÞÑ 1. This trivial cocycle makes

HnpG,Aq into a pointed set.
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5.3 Functorial properties of Cohomology sets

5.3.1 Compatible pairs

Now, we discuss some functorial properties of cohomology sets. Let G,G1 be two pro�nite

groups, and let φ : G1 ÝÑ G be a morphism of pro�nite groups. Let A,A1 be G,G1 sets

repsectively, and f : A ÝÑ A1 be a morphism of sets (groups if A,A1 are groups/modules).

We say that pφ, fq is a compatible pair if fpφpσ1qaq � σ1fpaq for all σ1 P G1, a P A. It can be

easily observed that if a is �xed by G, then fpaq is �xed by G1, so f induces a restriction

map

f� : H0pG,Aq ÝÑ H0pG1, A1q.

The following result shows that we can do this for higher cohomology sets as well.

Proposition 5.3.1. Let G,G1, A,A1 be as above. For n ¥ 1, there is an induced map

f� : CnpG,Aq ÝÑ CnpG1A1q,

such that f�pαqpσ11, σ12, � � � , σ1nq � fpαφpσ11q,φpσ12q,��� ,φpσ1nqq. This also restricts to the map of

pointed sets f� : HnpG,Aq ÝÑ HnpG1, A1q in the sense that class of α is mapped to class of

f�pαq.

The map constructed above respects composition in the sense that:

Proposition 5.3.2. Suppose G,G1, G” are pro�nite groups with maps G”
φ1ÝÑ G1 φÝÑ and

A,A1, A” are G,G1, G”-sets respectively with the following compatible maps A
fÝÑ A1 f 1ÝÑ A”.

Then, pφ � φ1, f 1 � fq is compatible pair, and pf 1 � fq� � f 1� � f�.
Example 3. This will be our primary example. From now on, whenever we have just one

pro�nite group, i.e., G1 � G, we will take φ � Id. In this case, any morphism f of G-sets is

a compatible map, and f� maps rαs ÞÑ rf � αs.
Example 4. Let G be a pro�nite group acting on a G-set A. Let N,N 1 P N , the set of

open normal subgroups of G such that N � N 1. Using Proposition 5.2.2, G{N,G{N 1 act

continuously on AN , AN
1

respectively. We have a well-de�ned map G{N 1 ÝÑ G{N and

similarily, we have f : AN ÝÑ AN
1

, and these two maps are compatible. Thus, we have the

map infN,N 1 : HnpG{N,ANq ÝÑ HnpG{N 1, AN
1q using Proposition 5.3.1. This map will be

useful when we would like to see cohomology set as a direct limit.
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Example 5. Similar to Example 4, suppose N P N . Then, we have well-de�ned maps

G ÝÑ G{N and f : AN ÝÑ A, which is just the inclusion. Then, Proposition 5.3.1 gives us

the map fN : HnpG{N,ANq ÝÑ HnpG,Aq.

Now, we see that the map f� satis�es the following functorial property:

Proposition 5.3.3. Suppose we have the following two commutative diagrams of pro�nite

groups Gi and their respective sets Ai and their compatible maps:

G1
φ1ÐÝÝÝ G2���φ3

���φ2

G3
φ4ÐÝÝÝ G4

,

and
A1

f1ÝÝÝÑ A2���f3

���f2

A3
f4ÝÝÝÑ A4

.

Then, for any n ¥ 0, we have the following commutative diagram:

HnpG1, A1q f1�ÝÝÝÑ HnpG2, A2q���f3�

���f2�

HnpG3, A3q f4�ÝÝÝÑ HnpG4, A4q

.

5.3.2 Direct limit and cohomology sets

In the following chapters, we will look at Galois cohomology functor; we will then like to

see the set HnpGΩ, GpΩqq as the direct limit of the sets HnpGL, GpLqq where G is a Galois

cohomology functor. We prove that here in the more general case of a pro�nite group G and

G-groups. Proposition 5.2.2 hints us at how an n-cocyle can be de�ned locally by the family

of maps αN ; we will explore this further and prove that HnpG,Aq � limÝÑHnpG{N,ANq,
where limÝÑ denotes the direct limit.

De�nition 5.3.1. Let I be a directed set. Let pGiqiPI be a family of sets (groups, rings,

modules, etc.) together with maps (respective morphisms) φij : Gi ÝÑ Gj for any i ¤ j

such that
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(i) φii � IdXi
@i P I.

(ii) φij � φjk � φik for all i ¤ j ¤ k.

Then, pGi, φijqi,jPI is called a directed/injective system.

De�nition 5.3.2. Let pGi, φijqi,jPI be a directed system of sets (groups, rings, modules).

The direct limit of the system is de�ned as

G � limÝÑ
iPI

Gi �
#º

iPI

Gi{ �: for i ¤ j, xi P Xi � xj P Xj ðñ Dk ¥ i, j such that φikpxiq � φjkpxjq
+

The following lemma, with the help of (iv) of Proposition 5.2.1, will allow us to see at

once how we can visualise a G-set A locally as AN , precisely, A � limÝÑNPN AN . For a proof

of this lemma, see [7].

Lemma 5.3.4. Let pGi, φijqi,jPI be as above, where each Gi is a subset of G and Gi � Gj

whenever i ¤ j. Then, limÝÑiPI
Gi �

�
iPI Gi.

Now, let G be a pro�nite group and A be a G-set. In Example 4 of Section 5.3.1, we saw

that for N � N 1, we have the map infN,N 1 : HnpG{N,ANq ÝÑ HnpG{N 1, AN
1q. It can be

veri�ed that for each n, pHnpG{N,ANq, infN,N 1qN,N 1PN form a directed sysetm, and its limit

is exactly HnpG,Aq.

Theorem 5.3.5. Let G,A be as above. Then,

HnpG,Aq � limÝÑ
NPN

HnpG{N,ANq

5.3.3 Exact sequences and Connecting maps

If G is a pro�nite group and A is a G-module, then the groups HnpG,Aq behave nicely

with exact sequences. Precisely, suppose A,B,C are all G-modules (i.e, they are abelian

as groups) and suppose we have a short exact sequence, where the maps are morphisms of

G-modules

1 ÝÝÑ A
fÝÝÑ B

gÝÝÑ C ÝÝÑ 1.
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Then, we get a corresponding exact sequence in cohomology groups:

1 ÝÑ H0pG,Aq f�ÝÝÑ H0pG,Bq g�ÝÝÑ H0pG,Cq ∆0ÝÝÑ H1pG,Aq f�ÝÝÑ � � �
� � � Ñ HnpG,Aq f�ÝÝÑ HnpG,Bq g�ÝÝÑ HnpG,Cq ∆nÝÝÑ Hn�1pG,Aq f�ÝÝÑ � � �

Here, f� and g� are the maps de�ned by Proposition 5.3.1, and the map ∆n is called the n-th

connecting map. We show below how the maps ∆0,∆1 are de�ned, and this procedure is

generalised to de�ne ∆n:

∆0 : H0pG,Cq ÝÑ H1pG,Aq : Let c P H0pG,Cq � CG. Since g is surjective, there exists

some b P B such that gpbq � c. Now, by assumption σ.c � c for any σ P G, thus gpσ.bq � gpbq
or equivalently, gpb�1σ.bq � 1, which means b�1σ.b � fpασq using exactness at B, for some

ασ P A. Then, α : G ÞÑ A, σ ÞÑ ασ is a 1-cocyle and rαs P H1pG,Aq does not depend upon

the choice of b. So, we get a map ∆0 : H0pG,Cq ÝÑ H1pG,Aq, c ÞÑ rαs.

∆1 : H1pG,Cq ÝÑ H2pG,Aq : Let γ P Z1pG,Cq be a 1-cocyle. Let βσ denote a pre-image

of γσ under g, then

gpβσσ.βτβ�1
στ q � γσσ.γτγ

�1
στ � 1,

thus βσσ.βτβ
�1
στ � fpασ,τ q for some ασ,τ P A using exactness at B. Then, α : G2 ÝÑ

A, pσ, τq ÞÑ ασ,τ is a 2-cocycle and rαs P H2pG,Aq does not depend on the choice of βσ's.

Thus, we get a well-de�ned map ∆1 : H1pG,Cq ÝÑ H2pG,Aq, rγs ÞÑ rαs.

The maps ∆n also satisfy the following functorial property:

Proposition 5.3.6. Let A,B,C be G-modules and A1, B1, C 1 be G1-modules. Suppose we

have the following commutative diagram with exact rows:

1 A B C 1

1 A1 B1 C 1 1

α1

f

α2

g

α3

f 1 g1

.

Let φ : G1 ÝÑ G be a morphism of pro�nite groups compatible with αi for i � 1, 2, 3. Let ∆

and ∆1 denote the n-th connecting maps for the respective sequences. Then, for each n ¥ 0,
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we have the following commutative diagram:

HnpG,Cq ∆nÝÝÝÑ Hn�1pG,Aq���α3�

���α1�

HnpG1, C 1q ∆1
nÝÝÝÑ Hn�1pG1, A1q

.

Finally, we end this section by stating a very useful result giving a correspondence between

kerpH1pG,Aq ÝÑ H1pG,Bqq and orbit of H0pG,Bq in H0pG,Cq. But �rst we need to de�ne

an action of BG � H0pG,Bq on CG � H0pG,Cq. Let b P BG, c P CG. Let b1 P B be a

preimage of c under g, then de�ne b.c � gpbb1q. One can check that this is independent of

the choice of b and that indeed b.c P CG for c P CG. Let CG{BG denote the orbit set of

action of BG on CG.

Proposition 5.3.7. There is a one-one correspondence between the sets CG{BG and

kerpH1pG,Aq ÝÑ H1pG,Bqq, given by c P CG ÞÑ ∆0pcq.

It can be easily proved using the fact that kerpH1pG,Aq ÝÑ H1pG,Bqq is exactly the

image of H0pG,Cq under the map ∆0.
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Chapter 6

Galois descent

In mathematics, we like to classify things, and one of the questions frequently encountered is

one involving isomorphism of two mathematical structures de�ned over a �eld k. Usually, it

is easier to study the objects over bigger �elds containing k, for example, algebraic closures,

separable closures, etc. (for example, think of polynomials over R and C). In most cases,

it so happens that the extensions of objects over separable closure become isomorphic; it is

natural to ask then if they are also isomorphic to the ground�eld k. The answer, in general,

is no, but we can study classes of objects below which become isomorphic to a particular

object over the bigger �eld. We will see in this chapter how Galois descent provides us a good

insight into such questions by providing a nice formulation of the problem. We will recall

some de�nitions and results from category theory �rst to set up the stage. This chapter is

borrowed heavily from [7].

6.1 Categories and functors

De�nition 6.1.1 (Category). A category C consists of

� a collection of objects, ObjpCq.

� for any two objectsA,B P ObjpCq, a setHomCpA,Bq � tf : A ÝÑ B : f is a morphismu
with the following properties:
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(i) Let A,B,C be any there objects of C. Then we have a function:

HomCpA,Bq �HomCpB, Cq ÝÑ HomCpA, Cq, pf, gq ÞÑ g � f.

In other words, we can compose compatible morphisms.

(ii) The set HomCpA,Aq is non-empty for any A P ObjpCq having an element IdA

such that it is identity with respect to composition, i.e, for any f P HomCpB,Aq,
we have IdA � f � f , and for any g P HomCpA,Bq, g � IdA � g.

(iii) The law of composition is associative.

Example 6. Sets denotes the category where objects are sets and morphisms are usual

maps, Sets� denotes the category of pointed sets where morphisms are maps preserving the

base points.

Example 7. � Grps : ObjpCq � Groups, Morphisms = group homomorphism.

� AbGrps : ObjpCq � Abelian groups, Morphisms = group homomorphism.

� Ck : ObjpCq � �eld extensions K{k, Morphisms = �eld homomorphism.

� Algk : ObjpCq �Algebras over k (commutative, associative and with identity), Morphisms

= Algebra homomorphisms.

� SupposeG is a pro�nite group, then SetsG : ObjpCq � G-sets, Morphisms = morphisms

of G-sets. Similarily, GrpsG and ModG are de�ned.

We have obvious notions of isomorphisms of objects in a category using the de�nition.

De�nition 6.1.2 (Functors). Let C1, C2 be two categories. A covariant (contravariant)

functor F : C1 ÝÑ C2 is a map such that for each A P ObjpC1q, there exists a unique

FpAq P ObjpC2q and for every morphism f : A ÝÑ B, there exists a unique morphism

Fpfq : FpAq ÝÑ FpBq prespectively Fpfq : FpBq ÝÑ FpAqq such that :

� FpIdAq � IdFpAq for all A P ObjpC1q.

� Fpf � gq � Fpfq � Fpgq whenever f and g can be composed.

Example 8. GLn : Algk ÝÑ Grps such that for any R P Algk,GLnpRq denotes the

general linear group of matrices over R. If φ : R ÝÑ R1 is a k-algebra morphism, then

GLnpφq : GLnpRq ÝÑ GLnpR1q maps paijq ÞÑ pφpaijqq.
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Example 9. We de�ne an extremely useful functor from an arbitrary category C to Sets.

Let A P ObjpCq, then de�ne hA : C ÝÑ Sets as follows :

B ÞÑ HomCpA,Bq
pf : B ÝÑ Cq ÞÑ phA : HomCpA,Bq ÝÑ HomCpA,Cq, φ ÝÑ f � φq

De�nition 6.1.3 (Natural transformation). Let F1,F2 : C1 ÝÑ C2 be two covariant functors.

A natural transformation of functors Θ : F1 ÝÑ F2 is a rule such that for every A P ObjpC1q,
we have ΘA : F1pAq ÝÑ F2pAq, and such that for every morphism f : A ÝÑ B, in C1, the

following diagram commutes :

F1pAq ΘAÝÝÝÑ F2pAq���F1pfq

���F2pfq

F1pBq ΘBÝÝÝÑ F2pBq
.

From this, it is clear what an isomorphism of functors means.

De�nition 6.1.4 (Representable functor). Let F be a covariant functor from a category C
to the category of sets, Sets. F is called representable if there exists an A P ObjpCq such
that F � hA, where hA is the functor in Example 9.

Now, for a concrete de�nition, we would want A in the above de�nition to be unique up

to isomorphism. This fact is guaranteed by Yoneda's Lemma, which says:

Lemma 6.1.1 (Yoneda's Lemma). There is a one-one correspondence between the set of

morphisms f : A ÝÑ B and the set of natural transformations Θ : hB ÝÑ hA. In particular,

if hA � hB, then A � B and vice-versa.

We now give us a very useful example of a representable functor, which will give us many

examples of algebraic group schemes, as we will see later.

Example 10. Let k be a �eld, and I be an ideal in krX1, X2, � � � , Xns. De�ne V pIq :

Algk ÝÑ Sets as V pIqpXq � tpx1, x2, � � � , xn P Xn : fpx1, x2, � � � , xnq � 0 @f P Iqu. Then,
V pIq is a representable functor, and V pIq � hA where A is the �nitely-generated k-algebra

krX1, X2, � � � , Xns{I.
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6.2 Bringing in the players

The Galois descent lemma, which is what we are aiming towards in this chapter, states that

if we have a functor F : Ck ÝÑ Sets satisfying the Galois descent condition, and we have

a Galois functor G acting on F, then the set of equivalence classes of twisted forms is in

bijection with the set of a certain type of cohomology classes. To understand the Galois

descent lemma, we �rst need to understand the terms in italics, which will be the goal of

this section.

6.2.1 Continuous action of GΩ

Let k be a �eld, K{k a �eld extension, and Ω{K a Galois extension with Galois group GΩ.

Let F : Ck ÝÑ Sets be a covariant functor. If K ÝÑ K 1 is a �eld morphism, then we have a

corresponding morphism of sets FpKq ÝÑ FpK 1q, the image of x P F pKq under this would
be denoted by xK1 throughout this section. We would like to de�ne an action of GΩ on FpΩq
: for σ P GΩ and x P FpΩq, de�ne σ.x � F pσqpxq. It can be checked that the properties

of an action are satis�ed. Moreover, if F is a group-valued functor, then this action is by

group automorphisms, i.e., σ.pxyq � pσ.xqpσ.yq. The following lemma on how this action is

compatible under restriction will be useful later:

Lemma 6.2.1. Let . be the action de�ned above. Suppose Ω{K and Ω1{K are two Galois

extensions such that Ω � Ω1, then

σ1.xΩ1 � pσ1|Ω.xqΩ1 @σ1 P GΩ1 , x P F pΩq.

Now, to study the cohomology of sets/groups under this action, we want the action to

be continuous. It turns out that this is precisely when F is a representable functor under

some mild conditions.

Proposition 6.2.2. Let F : Algk ÝÑ Sets be a representable functor, i.e., F � hA. Then,

for every Galois extension Ω{K, the map F pKq ÝÑ F pΩq induces a bijection F pKq �
F pΩqGΩ. Moreover, if A is �nite-dimensional, then action of GΩ on F pΩq is continuous.

As a consequence of this and (iv) of Proposition 5.2.1, we have the following: FpΩq ��
L�Ω iLpFpLqq, where the union runs over all �nite Galois subextensions L of Ω and iL :
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FpLq ÝÑ FpΩq denotes the map induced by inclusion L ÝÑ Ω. The type of functor satisfying

conditions of Proposition 6.2.2. is special and we would like to give some name to it:

De�nitions 6.2.1 (Group-schemes). Let G : Algk ÝÑ Grps be a covariant functor, then

G is called group-scheme over k. If G is representable by an algebra A, then it is called

a�ne group-scheme, and if A is �nite-dimensional then it is called algebraic group-scheme.

Finally, an algebraic group-scheme G is called an algebraic group if A is reduced (i.e., has

no non-zero nilpotent elements.)

Notice the apparent connection between this de�nition of an algebraic group and that

given in Chapter 4.

Example 11. The prototypical example for an algebraic group is GLn. In fact, it has been

proved that every algebraic group-scheme is a 'closed' subgroup of GLn for some n.

6.2.2 Galois functor

Working with algebraic group-schemes is a bit too restrictive because not all group-schemes

are representable, and furthermore, in some descent problems, we need the group-schemes

to be only de�ned over Ck which is a subcategory of Algk. So, in our setup, we force the

conditions derived in the case of algebraic group-schemes in Proposition 6.2.2 to de�ne a

special type of functor called the Galois functor :

De�nition 6.2.2 (Galois Functor). Let G : Ck ÝÑ Grps be a group-scheme over k. Then,

G is called a Galois functor if :

1. for every Galois extension Ω{K, the map GpKq ÝÑ GpΩq is injective and induces a

group isomorphism: GpKq � GpΩqGΩ .

2. GpΩq � �L�Ω iLpGpLqq where the union runs over all �nite Galois subextensions L of

Ω and iL : FpLq ÝÑ FpΩq denotes the map induced by inclusion L ÝÑ Ω.

Examples include any functor satisfying conditions of Proposition 6.2.2., i.e., any algebraic

group-scheme. Using 1. and 2. of De�nition 6.2.2. and Proposition 5.2.1, it can be easily seen

that for every Galois extension Ω{K of extensions of k, GpΩq is a GΩ-group. Let i : K ÝÑ K 1
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be a morphism of �elds. For Galois extensions Ω{K and Ω1{K 1, we get two di�erent pro�nite

groups GΩ,GΩ1 and their corresponding groups GpΩq,GpΩ1q. If we have a map φ : Ω ÝÑ Ω1

extending i, then we get using Corollary 5.1.6, φ : GΩ1 ÝÑ GΩ. We also have the map of

GΩ,G 1Ω-groups Gpφq : GpΩq ÝÑ GpΩ1q. The maps φ and Gpφq are compatible, and thus

using Proposition 5.3.1., we get a map φ� : HnpGΩ,GpΩqq ÝÑ HnpGΩ1 ,GpΩ1qq which is

independent of which extension we choose for i.

De�nition 6.2.3 (Galois descent condition/ GDC). Let F : Ck ÝÑ Sets, we say that

F : Ck ÝÑ Sets satis�es the Galois descent condition if for �eld extension K{k and every

Galois extension Ω{K, the map FpKq ÝÑ FpΩq is injective and induces the bijection FpKq �
FpΩqGΩ . As an example, any representable functor F : Ck ÝÑ Sets satis�es the Galois

descent condition. The functor Mn also satis�es the condition.

6.2.3 Action of Galois functor

Let k be any �eld, G : Ck ÝÑ Grps be a Galois functor, and F : Ck ÝÑ Sets be a functor

satisfying the Galois descent condition. We say G acts on F if for every �eld extension K{k,
GpKq acts on FpKq by � such that the action is functorial in K. Precisely, if i : K ÝÑ K 1

is a morphism of �eld extensions, then

GpKq � FpKq �ÝÝÝÑ FpKq���Gpiq�Fpiq

���Fpiq

GpK 1q � FpK 1q �ÝÝÝÑ FpK 1q
,

is commutative. In our notation, pg � aqK1 � gK1 � aK1 .

Now that we have an action of G on F, we can talk about StabGpaqpΩq given any

extension Ω{k. Given a P Fpkq, it is de�ned in the usual way as

StabGpaqpΩq � tg P GpΩq : g � aΩ � aΩu.

If i : Ω ÝÑ Ω1 is a morphism of �elds, then Gpiq : GpΩq ÝÑ GpΩ1q restricts to a map

StabGpaqpΩq ÝÑ StabGpaqpΩ1q, which makes StabGpaq : Ck ÝÑ Grps into a functor (it

is a subfunctor of G). In fact, it can be proved that for every a P F pkq, StabGpaq is a

Galois functor in our setting. This means that for Galois extension Ω{K corresponding to
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extensions of k, we can talk about the GΩ-group StabGpaqpΩq.

6.3 Galois descent lemma

Now, we are almost ready to provide the descent lemma, but we need to understand the

concept of twisted forms �rst. The setting is the same as above, i.e., k is any �eld, F :

Ck ÝÑ Sets is a functor satisfying the Galois descent condition, and G : Ck ÝÑ Grps is

a Galois functor acting on F . Given a �eld extension K{k, de�ne an equivalence relation

on F pKq as follows: let a, a1 P FpKq, a �K a1 if and only if there exits g P GpKq such that

g � a � a1. In other words, the equivalence classes are just GpKq-orbits of FpKq.

De�nition 6.3.1 (Twisted form). Let a P F pkq, K{k be an extension and Ω{K be a Galois

extension. Then, a1 P F pKq is called a twisted K-form of a if aΩ �Ω a
1
Ω.

Let K{k be an extension, and Ω{K be a Galois extension. Now, the set of K-equivalence

classes of twisted forms of a P F pkq is de�ned as

FapΩ{Kq � tra1s : a1 P FpKq such that aΩ �Ω a
1
Ωu.

Let K ÝÑ K 1 be a morphism, and Ω{K,Ω1{K 1 be two Galois extensions. It can be checked

that if a1 is a twisted K-form of a, then a1K1 is a twisted K 1-form of a. Thus, we have the

following map induced by FpKq ÝÑ FpK 1q:

FapΩ{Kq ÝÑ FapΩ1{K 1q, ra1s ÞÑ ra1K1s.

Using this, we can make a functor Fa : Ck ÝÑ Sets by setting FapKq � FapKs{Kq (Recall
that Ks , the separable closure, is a Galois extension of K).

At this point, we see that the Galois descent problem stated in the opening paragraph

of this chapter can be given a nice formulation : Let Ω{k be a Galois extension, a, a1 P F pkq
be such that aΩ �Ω a

1
Ω. Then, does a �k a

1? In other words, is FapΩ{kq � trasu?

Note that using results of Section 6.2.2, we have the following functor called the n-th

Galois cohomology functorHnp_,Gq : Ck ÝÑ Sets de�ned asHnpK,Gq � HnpGKs ,GpKsqq.
Similarily, Hnp_,StabGpaqq is a functor from Ck to Sets.
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Theorem 6.3.1 (Galois descent lemma). [7] Let the setting be as above. Given a P Fpkq,
an extension K{k and a Galois extension Ω{K, we have a one-one correspondence between

the following sets which is functorial in Ω:

FapΩ{Kq ÐÑ kerrH1pGΩ,StabGpaqpΩqq ÝÑ H1pGΩ,GpΩqqs.

Thus, we have isomorphism of the following functors :

Fa � kerrH1p_,StabGpaqq ÝÑ H1p_,Gqs.

Sketch of proof. Observe that from Orbit-Stabilizer Theorem, we have the following exact

sequence, where StabGpaqpΩq,GpΩq,GpΩq � aΩ are all GΩ-groups:

1 ÝÝÑ StabGpaqpΩq ÝÝÑ GpΩq ÝÝÑ GpΩq � aΩ ÝÝÑ 1.

From Section 5.3.3, we thus get a corresponding exact sequence in corresponding cohomology

groups, and Using Proposition 5.3.7, we know that kerrH1pGΩ,StabGpaqpΩqq ÝÑ H1pGΩ,GpΩqqs
is in bijection with the set pGpΩq � aΩqGΩ{GpΩqGΩ . Since, G is a Galois functor, using 1. of

De�nition 6.2.2, we have GpΩqGΩ � GpKq. Also, elements of GpΩq � aΩ are the elements of

FpΩq which are equivalent to aΩ, and thus the set pGpΩq�aΩqGΩ is the set of image of twisted

K-forms of a under the map FpKq ÝÑ FpΩq. Using the de�nition of action given before

Proposition 5.3.7, for g P GpKq, aΩ P pGpΩq �aΩqGΩ , we have g.a1Ω � pg �aqΩ where � denotes
the action of GpΩq on FpΩq. Using all this, we can see that pGpΩq�aΩqGΩ{GpΩqGΩ is nothing

but the image of GpKq � a under the map FpKq ÝÑ FpΩq. Hence, FpKq ÝÑ FpΩq induces
a bijection of FapΩ{Kq onto pGpΩq � aΩqGΩ{GpΩqGΩ . The correspondence now follows from

the one given in Proposition 5.3.7. Functoriality can be seen using diagram-chasing.
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Chapter 7

Applications of Galois descent

Galois descent is an important tool that can be used to solve several problems. We look into

the application of Galois descent to a few problems in this chapter. This chapter includes

elements from the books [7] and [11].

7.1 Galois descent of Algebras

Let k be a �eld and V be a �nite dimensional vector space over k. Let K{k be a �eld

extension. By VK we will mean the scalar extension to K, i.e., VK � V bk K. We de�ne

a functor F : Ck ÝÑ Sets by letting FpKq denote the set of all associative algebras with

identity A over k with underlying vector space VK . If i : K ÝÑ K 1 is a morphism of

extensions of k, let Fpiq : FpKq ÝÑ FpLq denote the map R ÞÑ RL. It can be seen using

de�nition of algebra morphism that F : Ck ÝÑ Sets in fact satis�es the Galois descent

condition.

It can be seen that G :� GLpV q : Ck ÝÑ Sets is a functor de�ned by GLpV qpKq �
GLpVKq (infact it is isomorphic to the functor GLn where n � dimpV q). We know that GLn

is an algebraic group-scheme since it is equal to V pIq where I is the ideal in krX1, X2, � � � , Xn2 , T s
generated by the polynomial pdetpXijqT�1q. Any algebraic group-scheme is a Galois functor

by Proposition 6.2.2, thus G is a Galois functor. Now, we de�ne action of G on F in the

following manner: for f P GpKq, A P FpKq, de�ne f.A as the K-algebra with underlying
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vector space VK and multiplication given as follows:

VK � VK ÝÑ VK

px, yq ÞÑ fpf�1pxq.Af�1pyqq,

where .A denotes the multiplication in A. Now, we are in the setup of using the Galois descent

lemma. For A P F pkq, we want to see what StabGpAqpKq is for any extension K{k. Note
that by de�nition of action fpxq.f.Afpyq � fpx.Ayq where .f.A denotes the multiplication in

f.A. This means that f : A ÝÑ f.A is an isomorphism of K-algebras. Thus, it follows that

A,B P F pKq are equivalent, i.e., lie in the same orbit under the action of G if and only if they

are isomorphic as K-algebras. Hence, for each A P F pkq, StabGpAqpKq � AutalgpAqpKq (It
is clear that AutalgpAq is a functor, infact it is clearly a subfunctor of GLn for suitable n).

Thus, the Galois descent lemma leads us to the following:

Theorem 7.1.1. Let k be a �eld, K{k an extension and Ω{K a Galois extension. For

any k-algebra A, the set H1pGΩ,AutalgpAqpΩqq is in one-one correspondence with the set of

isomorphism classes of K-algebras which become isomorphic to A over Ω.

Proof. Let the notations be as in the paragraphs above the theorem. We know that

StabGpAqpΩq � AutalgpAqpΩq and that FApΩ{Kq � trA1s : AΩ � A1
Ωu.Thus, we will be

done if we prove that H1pGΩ,GLpV qpΩqq � 1 for any Galois extension Ω{k. This fact is

known as the Hilbert's 90 Theorem. We state the theorem below, and the proof can be

looked up in [7, p. 113-115], for example.

Lemma 7.1.2 (Hilbert 90). Let k be a �eld, A be a semisimple k-alegbra, then

H1pGΩ,GLpAqpΩqq � 1 for any Galois extension Ω{k. In particular, for any �nite-dimensional
k- vector space V , H1pGΩ,GLpV qpΩqq � 1.

If we take A �Mnpkq in the above theorem, the set of isomorphism classes of K-algebras

which become isomorphic to A over Ω is nothing but the isomorphism classes of central

simple K-algebras of degree n split by Ω. Also, note that AutalgpMnpkqq � PGLnpKq from
Skolem-Noether theorem. The functor PGLn is de�ned as PGLnpKq � PGLnpKq for any
extension K. It thus follows that as functors, AutalgpMnpkqq � PGLn. Thus, we have the

following corollary of Theorem 7.1.1:
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Corollary 7.1.3 (Central simple algebras). Let k be a �eld, K{k an extension and Ω{K a

Galois extension. Ths set H1pGΩ,PGLnpΩqq is in one-one correspondence with the set of

isomorphism classes of central simple K-algebras of degree n which become isomorphic to

Mnpkq over Ω.

Note that since Ks{K is a Galois extension for any extension K{k, we have by de�nition

on page 73,

H1pK,AutalgpAqq Ø K-isomorphic classes of algebras B which become isomorphic to A over Ks.

7.1.1 Algebras with involutions

We start by de�ning some useful things associated with algebra with involution. Throughout

this section, k denotes a �eld of characteristic � 2, A denotes a central simple k-algebra with

identity 1. Recall the de�nition from Chapter 4.

De�nition 7.1.1 (Involution). An involution on A is a map σ : A ÝÑ A such that σpx�yq �
σpxq � σpyq, σpxyq � σpyqσpxq and σ2 � IdA.

We will denote an algebra with involution by the pair pA, σq. A non-trivial involution

is a ring anti-automorphism of order 2. Note that σ need not be k-linear. The most basic

example of an involution is A ÞÑ At where A PMnpkq. If we take λ P k, then σpλq commutes

with every element of A, since xσpλq � σpλ.yq � σpy.λq � σpλq.x for some y P A. This

means that σpλq P k since centre of A is k. Thus, σ|k is an automorphism of k of order 1 or

2. If it has order 1, i.e., σ|k � Idk (in other words, σ is k-linear), then σ is called involution

of �rst kind. If not, then σ is called involution of second kind. Let k1 � tλ P k : σpλq � λu.
If σ is of 1st kind, then k1 � k. If not, then k{k1 is a quadaratic �eld extension, and σ|k is
the unique non-trivial automorphism of k{k1.

From now on, we will focus only on involutions of the �rst kind. We now observe how

two involutions of A are related.

Lemma 7.1.4. Let σ be an involution on A. Then, the most general involution on A is of

the form x ÞÑ a�1σpxqa for some a P A� such that σpaq � �a. If a, a, P A� are two elements

satisfying the same condition, they must di�er by a a non-zero element of k.
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Proof. Notice that if σ1 is another involution on A, then σ1 � σ�1 is an automorphism of A,

hence it is of the form Intpaq for some a P A� by the Skolem-Noether theorem. The rest is

easy veri�cation.

As an important example, note that every involution on Mnpkq is of the form σMpXq �
M�1X tM for someM P GLnpkq. We now de�ne two important subsets of A, SympA, σq and
SkewpA, σq. SympA, σq is de�ned as the set of all symmetric elements of A, i.e., elements

a P A such that σpaq � a, while SkewpA, σq is de�ned as the set of all skew-symmetric

elements of A, i.e., elements a P A such that σpaq � �a. Since σ is of 1st kind, SympA, σq
and SkewpA, σ1q are k-vector spaces. We now want to see how these subsets are related for

two di�erent involutions σ and σ1 on A:

Lemma 7.1.5. Let σ, σ1 be two involutions on A related by σ1 � Intpaq�σ (see Lemma 7.1.4).

If σpaq � a, then SympA, σ1q � aSympA, σq and similarily SkewpA, σ1q � aSkewpA, σq.
If σpaq � �a, then SympA, σ1q � aSkewpA, σq and similarily, SkewpA, σ1q � aSympA, σq.

Now, we de�ne what an isomorphism of algebra with involution means.

De�nition 7.1.2 (Isomorphism). Let pA, σq, pA1, σ1q be two algebras with involutions. Then,
pA, σq and pA1, σ1q are isomorphic if there exists an algebra isomorphism φ : A ÝÑ A1 which

respects the involutions in the sense that σ1 � φ � σ � φ�1. In particular, an automorphism

of pA, σq is an algebra automorphism that commutes with σ.

Let Ω be a splitting �eld for pA, σq. Then, we have an isomorphism of K-algebras

φ : AΩ ÝÑ MnpΩq. Let σΩ denote the involution σ b IdΩ on AΩ. Then, σ
1
Ω � φ � σΩ � φ�1

is an involution on MnpΩq, hence it is of the form σM for some M P GLnpkq. Also by

construction it is clear that pAΩ, σΩq � pMnpΩq, σMq. From Lemma 7.1.4, we know that

M t � �M .

De�nition 7.1.3. Let pA, σq be an algebra with involution of degree n. Then, A is called

orthogonal (or of type 1) if for any splitting �eld Ω{k, pAΩ, σΩq � pMnpΩq, σMq where

M t �M , i.e, M is a symmetric matrix. And, A is called symplectic (or of type -1) if for any

splitting �eld Ω{k, pAΩ, σΩq � pMnpΩq, σMq where M t � �M , i.e., M is a skew-symmetric

matrix.

It can be noted that A is symplectic only if n is even : M t � �M implies detpMq �
detpM tq � p�1qndetpMq, which is possible only if n is even.

88



Proposition 7.1.6. Let pA, σq be an algebra with involution. Then, A is of type ε if and

only if dimpSympA, σqq � npn� εq{2, where ε � 1 or �1.

Proof. It can be easily proved using Lemma 7.1.5 and the fact that SympA, σqΩ � SympAΩ, σΩq.

7.2 Revisiting `Algebras with involutions and classical

groups'

Using the language and results developed in the previous sections, we would like to give

an alternative proof of the one-one correspondence between algebras with involutions and

classical groups given by André Weil, which was discussed in Chapter 4. Throughout, A

denotes a central simple k-algebra of degree n with involution σ on it.pAks , σksq � pMnpksq, σMq.
Let K{k be an extension. De�ne a functor F : Ck ÝÑ Sets such that for K P Ck,

FpKq � pAK , σKq. It can be checked that F satis�es the Galois descent condition. Now, we

de�ne action of the functor GLpAq : Ck ÝÑ Sets, K ÞÑ GLpAKq on F as follows : for each

f P GLpAKq, pAK , σKq P FpKq, de�ne f.AK � AK and f.σK � f � σK � f�1.

Now, we have a functor satisfying the Galois descent condition and a Galois functor

acting on it. We would like to use the Galois descent lemma, for which we identify what

StabGLpAqpAqpKq is for any extension K{k and any k-algebra A. Verify that f.σK � σK if

and only if f P AutpAK , σKq. Thus, StabGLpAqpAqpKq � AutpAK , σKq. In other words, if

we de�ne a functor AutpA, σq : Ck ÝÑ Sets such that AutpA, σqpKq � tσ P AutalgpAKq :

φ � σ � σ � φu, then StabGLpAqpAq � AutpA, σq as functors. Now, for every extension K{k,
the Galois extension Ks{K splits the K-algebra AK , i.e., pAKs , σKsq � pMnpKsq, σM 1q for
some M 1 P GLnpKsq. Thus, AutpA, σq � AutpAks , σksq � AutpMnpksq, σMq. Depending

on whether σ is of type 1 or �1, thus AutpA, σq � PGOpA, σq or AutpA, σq � PSppA, σq
respectively. (Here, PGOpA, σq denotes the functor which, for K{K returns the group

POpAKq where AK has the bilinear form given by matrix M . Similarily, PSppA, σq is

de�ned.)

Since, every central simple K- algebra is split by Ks, and since every K-algebra A1

such that AKs � MnpKsq is central simple, the set of twisted forms becomes the set of
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isomorphism classes of K-algebras with involutions pA1, σ1q which become isomorphic to

pMnpKsq, σMq over Ks. Since any �nite dimensional central simple algebra is semisimple,

we get H1pΩ,GLpAqpΩqq � 1 for any Galois extension Ω{K using Lemma 7.1.2. Thus, the

Galois descent lemma gives us the following one-one correspondence:

H1pK,AutpA, σqq ÐÑ K-isomorphism classes of CSAs with involutions of degree

n over K which are isomorphic to pMnpKsq, σMq over Ks

Case 1. If pA, σq is such that σ is an orthogonal involution (or of type 1), then M is

a symmetric matrix. Also, any two non-degenerate symmetric bilinear forms over Ks are

conjugate to each other by Proposition 3.5.2. Thus, we have the following correspondence:

H1pK,PGOpA, σqq ÐÑ K-isomorphism classes of CSAs of degree

n over K with orthogonal involution

Case 2.If pA, σq is such that σ is a symplectic involution (or of type �1), then M is an

alternating matrix. In this case, degree of A over k is 2n. Also, any two non-degenerate

alternating bilinear forms over Ks are conjugate to each other by Corollary 3.4.8. Thus, we

have the following correspondence:

H1pK,PSppA, σqq ÐÑ K-isomorphism classes of CSAs of degree

2n over K with orthogonal involution

Now we use the following theorem from Serre's book [3, p. 124]:

Theorem 7.2.1. Let G be an algebraic group, Ω{K be a Galois extension. Let EpΩ{K,Gq
denote theK-equivalence class of twisted K-forms of G. Then, EpΩ{K,Gq Ø H1pGalpΩ{Kq, AutKpGqq.

For classical groups, we have a natural isomorphism ofH1pK,AutKpGqq andH1pK,AutpA, σqq
where pA, σq is a central simple algebra k-algebra with involution, using the Skolem-Noether

theorem. Let F pk,Aq denote the twisted k-forms of a central simple k-algebra with an

involution σ, where σ corresponds to the type of classical group G (in the sense that if

G � Spn, then take σ to be a symplectic involution and so on) Using this, we get the

following diagram showing correspondence between the classical groups and algebras with
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involutions:
Epk,Gq F pk,Aq

H1pk,AutkpGqq H1pk,AutpA, σqq

7.3 The conjugacy problem

The conjugacy problem for matrices may be stated as follows :Let Gpkq denote GLnpkq or
SLnpkq for any �eld k. Let k be a �eld, Ω{k be a �nite Galois extension. Let M,M0 be two

matrices in Mnpkq such that they are conjugate by an element of GpΩq. Then, are M and

M0 conjugate by an element of Gpkq?

To answer this problem, we look at the functor G : Ck ÝÑ Sets de�ned as GpKq �
GLnpKq or SLnpKq as the case may be, where K{k is any extension. It can be veri�ed that

this is a Galois functor. Also, de�ne the functor F : Ck ÝÑ Sets as FpKq �MnpKq for any
extension K{k. It is easily seen that F satis�es the Galois descent condition. Now, we de�ne

an action of G on F as follows : for P P GLnpKq, X P MnpKq, P �X � P�1XP . Given a

Galois extension Ω{K and M0 PMnpkq, the set

FM0pΩ{Kq � trM s : M PMnpKq such that there exists Q P GLnpΩq satisfying Q�1MQ �M0u,

where r.s means the GpKq-conjugacy class of matrices. In other words, FM0pΩ{Kq denotes
the GpKq-conjugacy class of matrices which are GpΩq-conjugate to M0.

Also for M0 P Mnpkq, StabGpM0qpΩq � tC P GLnpΩq : CM0 � M0Cu, which is the

centralizer of M0 and is denoted by ZGpM0qpΩq. We have seen earlier that Hilbert 90 gives

us H1pGΩ, GLnpΩqq � 1 for any Galois extension Ω{k. The same is true if we replace GLn

by SLn and this follows from Hilbert 90 as we show below:

Lemma 7.3.1. Let k be a �eld, then for every extension K{k and every Galois extension

Ω{K, H1pGΩ, SLnpΩqq � 1.

Proof. We have the following exact sequence of GΩ-groups :

1 ÝÝÑ SLnpΩq ιÝÝÑ GLnpΩq detÝÝÑ Ω� ÝÝÑ 1.
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Thus, from Section 5.3.3., we have the following exact sequence of cohomology sets :

1 ÝÝÑ SLnpKq ιÝÝÑ GLnpKq detÝÝÑ K� ∆0ÝÝÑ H1pGΩ, SLnpΩqq ι�ÝÝÑ H1pGΩ, GLnpΩqq.

Since det is a surjective map, for λ P K� there existsM P GLnpKq such that detpMq � λ,

∆0pλq �∆0pdetpMqq � ∆0 � detpMq. But since this sequence is exact at K�, we have

∆0 � det � 0. Thus, ∆0 is the trivial map. Also, by Hilbert 90, H1pGΩ, GLnpΩqq � 1, thus

H1pGΩ, SLnpΩqq � 1 using exactness at H1pGΩ, SLnpΩqq.

The Galois descent lemma now tells us that we have the following one-one correspondence:

H1pGΩ, ZGpM0qpΩqq ÐÑ
Gpkq-conjugacy classes of matrices

which are GpΩq conjugate to M0
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Chapter 8

Conclusion

In this thesis, we understand Weil's correspondence between central simple algebras with

involutions and the classical groups. We �rst look at Weil's proof, and towards the end, we

give an alternate proof the same using Galois descent. Some natural extensions of what we

studied in this thesis are given below as further directions, which an interested reader might

follow, for example :

8.1 Future directions

8.1.1 Exceptional groups

The classi�cation of �nite simple groups is seen as one of the biggest achievements of

20th-century mathematics. The groups of Lie type form a huge chunk of groups in this

classi�cation. The classical groups or groups of type An, Bn, Cn, Dn were obtained using

semisimple algebras with involutions by Weil. The other groups in the Chevalley groups

correspond to the ones associated with the exceptional Lie algebras E6, E7, E8, F4 and G2.

Weil expresses in one of his commentaries [10] his secret hope to include at least some of the

exceptional groups in writing his works in 1958-59. One possible direction, having learned

how the classical groups are obtained using algebras with involutions, would be to understand

how the exceptional groups can be obtained from di�erent types of algebras. For example,

in [9], we see that the automorphism group of octonion algebras give us groups of type G2.
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Similarly, the automorphism group of exceptional simple Jordan algebras lead us to groups

of type F4 [11]. Some possible books to read this from would include [9] and [11].

8.1.2 The theory of group-schemes

We notice that while de�ning an algebraic group in De�nition 6.2.1, we require the corresponding

algebra to be reduced, i.e., we don't allow nilpotent elements. This terminology, Milne

writes, con�icts with the terminology of modern algebraic geometry. Grothendieck, who

is considered the father of modern algebraic geometry, used to say that occurrences of

nilpotents are very natural, and so it's natural to allow nilpotents. The modern approach as

in [19] allows nilpotents and gives an intrinsic de�nition of an algebraic k-group, rather than

identifying an algebraic group with its points in some 'universal domain' (as done by Weil).

Note that in Chapter 3, we have de�ned algebraic groups only for algebraically closed �elds

following Humphrey's approach. The theory of group-schemes allows us to de�ne algebraic

groups over arbitrary �elds. This is a natural direction to pursue from this point. The

exposition by Milne [19] can serve as a possible source of reading.

8.1.3 Unitary Involutions

It is to be noted that in Chapter 7, we have only dealt with involutions of the �rst kind.

These involutions, when restricted to the underlying �eld, yield identity and hence lead

us to classical groups of the adjoint type. A natural extension would be to study the

subject of involutions of the second kind, also called unitary involutions, and understand

the automorphism group of such algebras. The automorphism groups of these algebras give

us the unitary groups arising from Hermitian forms. For a start, one can refer to [11].

8.1.4 Further applications of Galois descent

We describe two applications of Galois descent in the thesis. This beautiful technique can

be used for myriads of classi�cation problems as well as other problems. For example, we

can study the correspondences between twisted forms of quadratic forms and cohomology

sets of classical groups using Galois descent.
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Maximal tori Let k be a �eld. A k-torus T is an algebraic group de�ned over k such that

T pksq � Gn
mpksq for some n. Let G be a k-algebraic group, then T is a maximal torus in G

if T is an algebraic subgroup of G such that there is no torus in G properly containing T .

In the case when k is an arithmetic �eld, Galois descent can be used to study the extent to

which a connected k-algebraic group G can be determined by the k-isomorphism classes of

maximal tori which G contains. In this case, it has been proved that the Weyl group of a

split, connected semisimple k-algebraic group is determined by the k-isomorphism classes of

maximal tori inside G, and G is determined by its Weyl group almost always, thus giving us

the correspondence mentioned before. To know more details about this, we refer the reader

to [20], [21] and [22].

One can also look at other problems, for example, the Galois embedding problem, which is

a generalization of the Inverse Galois problem, and study cohomological obstructions of the

same. We refer the interested reader to [7].
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