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Abstract

Individual-level records from health and social services are routinely being generated, col-

lected and maintained centrally in nation-wide registers. These records, when combined

with a cohort study/survey, may increase the statistical power of association between the

outcome and risk factors. The biggest challenge in combining data from the population and

the survey is missing risk factor data. Methods to handle missing data within the survey are

well developed and widely used. Multiple Imputation (MI) is one such widely used methods

of handling missing data.

MI is popular because it avoids the potential bias and efficiency loss resulting from a

complete-case analysis (CCA). This thesis studies how MI handles missing data in com-

parison with CCA for different types of covariates such as continuous and categorical covari-

ates, for time-to-event and binary outcomes data. It also discusses the ways to include the

time-to-event data in the presence of right censoring and delayed entry in the imputation

model. Furthermore, an empirical study has conducted on the population-level ischemic

heart disease event data provided by the Finnish Institute for Health and Welfare (THL),

that contains missing data in the selected risk factors. The overall results show that the MI

method, with a sufficient number of imputation and iterations, is preferred in most scenarios.

Keywords; Missing data, Multiple imputation, time to event data, delayed entry, right

censored data, imputation model, complete case analysis, illness death model.
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Introduction

Missing data or incomplete data inevitably occur in survey-based research when the response

of the respondents is not recorded. It may be due to the intentional refusal to answer some

particular survey questions because of reasons pertaining to privacy and lack of awareness

or even unwillingness to answer, thinking it as a waste of time.

Although the source of missing values may differ from case to case, the troubles resulting

from them are similar. Missing data are a prevailing problem in clinical-based studies and

observational studies, especially in longitudinal ones, and often the data deficiency occurs

in covariates. This is mainly due to the fact that many of the associated covariates or risk

factors are often measured or recorded using surveys that in turn, will have an abundant

amount of missing data. However, survival outcomes such as death and disease times are

usually recorded in hospitals or some other health registers since it can be measured easily

and accurately. For example, in surveys that collect the data of risk factors such as smoking

status or alcohol consumption measurements, participants might be reluctant to give their

daily usage values. Considering the expense of collecting the data in surveys, starting over

again to minimise or to completely eliminate missing data is practically not feasible.

Rubin (1987) [4] proposed multiple imputation (MI) method to provide statistical inference,

which has then become a popular method for handling missing data. Further studies by

Rubin (1996) [12] described that, for the ultimate users who in general have access only to

complete-data, the MI by the database constructor is the method of choice. The basic notion

behind MI is substituting each of the missing values by multiple plausible values obtained

from the distribution of the observed data. As a result, multiple complete data sets with the

same non-missing part but different missing part are generated. Performing MI on survival

data brings up extra efforts than usual because of the inclusion of time to event (TTE) data

as a predictor for the imputation of a missing covariate. Several research papers proposed
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that including the event indicator D and the log of the observed event or censoring time

T as predictors in the imputation model will results in reliable imputations of the missing

values. However, White and Royston(2009) [13] demonstrated using simulation studies that

the usage of Nelson-Aalen estimate of the cumulative hazard along with the event indicator

in the imputation model shows the best results.

MI has the ability to incorporate all sources of variability and uncertainty. Hence, most

of the time, the MI method is capable of making valid inference from incomplete data.

In prognostic research areas, Multivariate Imputation with Chained Equations (MICE) is

currently considered the golden standard. MICE is a special MI technique which imputes

multivariate missing data in a variable by variable basis in a smart and flexible way. MICE

is an iterative approach, in which each of the incomplete covariates is imputed one at a

time based on a unique regression model specified by the user and using the other covariates

as predictors. In cases where the incomplete data are present in covariates of the analysis

model, it is necessary to include the outcome as a predictor of the imputation model as well.

Complete case analysis is another easy way of handling missing data. It is done by selecting

those rows which do not have any missing values in it, i.e., including only the participants

for which we have no missing data on the covariates of interest.

In this thesis, we assess the efficiency of the MI method on handling the missing data

present in the categorical and continuous covariates for the analysis model that have a binary

response and then for the TTE response through simulation studies. With the simulation

studies, we are also comparing the accuracy of the estimates obtained by handling the

missing data using MI to CCA. From the results obtained from the simulation studies, we

are implementing both the MI and CCA method to handle the missing data in the Ischemic

heart disease(IHD) data set of the Finnish population and modelling it using a progressive

illness death model.
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Chapter 1

Missing Data

1.1 Missing data or incomplete data

The problem of having missing data and its corresponding difficulties frequently occur in

statistical analysis as well as in many fields of research. However, disregarding the process

and cause behind the missing data often bring along some statistical issues such as bias and

loss of efficiency. Missing data mechanism by Rubin(1976) [2] helps to give a clear idea about

the process behind missing data mechanism. Let X be a n×p matrix that contains partially

observed values in the data set and let R be the indicator vector indicating the missingness

in X, i.e. R = 0 indicates missing values. The general expression denoting the missing data

model is P (R|Xobs, Xmiss, θ) where θ denotes the parameter vecor associated with missing

data model, Xmiss denotes the missing part and Xobs denotes the non missing part of X

i.e. X = (Xmiss, Xobs). The missing data model describes the level of dependence of the

distribution of R on X

1.1.1 Missing completely at random (MCAR)

This is the case where the missingness of the data is independent of the observed and

unobserved data. Here, the likelihood of having missing values in the data only depends on
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the net probability of being missing, θ:

P (R = 0|Xobs, Xmiss, θ) = P (R = 0|θ) (1.1)

In other words, there does not exist any systematic differences between participants that

have missing data and those with complete data. However, since the MCAR assumptions

restrictive, it is the most ideal to hold in the real life scenarios An instance of MCAR is the

inability of the participants to attend the survey due to severe rain.

1.1.2 Missing at random (MAR)

This happens when the missingness of data is systematically related to the observed but not

to the unobserved data. These types of missingness occur when the reason for the missingness

is correlated to an observed variable or some of the observed variables. Here, the missingness

probability differs between groups however probability of having missing values in the group

is same. Hence, for the case at hand, the likelihood of having missing values depends on

both the parameters θ and the observed values,

P (R = 0|Xmiss, Xobs, θ) = P (R = 0|Xobs, θ) (1.2)

For instance, in a survey, the female participants will be more reluctant to respond to a

question related to their daily alcohol consumption measurements.

1.1.3 Missing not at random (MNAR)

This happens when the missingness of the data is systematically related to the unobserved

data, i.e., the missingness is related to events or factors which are not measured by the

researcher. Under the MNAR condition, the likelihood of having missing data differs between

groups or even between the individual points in the same group due to reasons which depends

on missing information. Hence, the general missing data model cannot be simplified in this

case.

P (R = 0|Xmiss, Xobs, θ) (1.3)
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An example is that the participants with high alcohol consumption are most likely to refuse

to answer the questionnaire related to alcohol consumption measurements. Hence, the prob-

ability of having non-response for such cases depends on the missingness of the high alcohol

consumption values.

These categorization of missing data gives a better insight about how to tackle this problem

and how to proceed further with the analyses.

1.2 Methods for Handling missing data

Several researchers have proposed different methods for dealing with missing data problems

such as mean substitution, regression substitution, MI, listwise deletion/CCA, pairwise dele-

tion and expectation-maximization technique etc. Among these methods, we are particularly

focusing on MI and CCA, which is found to be popular and widely used methods to tackle

the missing data problems.

1.2.1 Complete case analysis (CCA)

CCA is used to describe a statistical method that only includes participants for which we have

no missing data on the covariates of interest in the analysis. This means that the participants

with any missing data are excluded. CCA is preferred because it is the easiest and more

computationally efficient among all the methods available for handling missing data. In

cases of MCAR, CCA is accepted as the best method for handling it, since the parameter

estimation remains unbiased even by the absence of data that is unobserved. When the

exposure or confounders in the main analysis are MNAR, CCA is a valid approach since it

gives a less biased result even when compared to other sophisticated techniques such as MI.

It may give biased results under the MAR assumption since the chance of being a complete

case depends on the observed values of the outcome. This method works efficiently when

only a small proportion of data are missing. However, in most other cases discarding cases

may lead to a reduction of statistical power.
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1.2.2 Multiple Imputation (MI)

Rubin (1978 and 1987) [3, 4] suggested MI method which is now one of the most commonly

used approaches in handling the missing data problem under the assumption of MAR. It

is based on the Bayesian paradigm that involves drawing missing values from a posterior

predictive distribution conditioned on the observed data. The central concept behind it

is to replace each missing values by a set of ”m” imputed values which in turn generates

m different data sets with the same non-missing part but different missing parts. Based

on Schafer (1999) [5], a small number of imputation, m would be enough, which generally

ranges from 5 to 10 times. But recently, White et al. (2011) [14] suggested in their study

that m should be at least equal to the percentage of incomplete cases in the data. This is

now considered as the standard rule for choosing the appropriate m. MI technique consists

of three main steps:

1. Generating multiply imputed datasets: Consider the simplest case where there is only

one incomplete variable X while the rest of the variables Z and the response Y are

complete. The first step is the construction of the imputation model f(X|Z, Y ; β)

from the observed X, and drawing estimated β̂ values with their variance-covariance

matrix Sβ from this model. Then from N(β̂, Sβ), β′s are drawn and thereafter from

the posterior predictive distribution, f(X|Z, Y ; β′) the missing values are generated.

Now, the whole process is repeated m times to generate (m) multiple imputed data

sets.

2. Analysing the multiply imputed datasets: After the imputation, m complete data sets

are generated and analyses are done separately to the m imputed data sets in order to

obtain the parameter estimate of interest.

3. Pooling the estimates: The estimates obtained from each of the m imputed data sets

are combined or pooled to obtain a single parameter. The method of pooling is done

using Rubin’s rules, i.e. let α(k) be the point estimate of the kth imputed data set

(k = 1, . . . ,m), W (k) be the estimated variance of α(k) and B be the variance between

the imputations of the same covariate. Then the pooled estimate is given by:

α̂ =
1

m

m∑
k=1

α(k) (1.4)
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and the overall variance is:

V ar(α̂) = W + (1 +
1

m
)B (1.5)

where W and B are the corresponding ”within” and ”between” imputation variance

given by;

W =
1

m

m∑
k=1

W (k) (1.6)

B =
1

m− 1

m∑
k=1

(α(k) − α̂)2 (1.7)

Incomplete data Imputed data

(m = 3)

Estimated quantity

of interest
Pooled eatimates

Figure 1.1: The schematic diagram representing the 3 stages of MI method

Rubin (1987)[4] mentioned that the advantage of imputation especially with the MI method

is it’s ability to incorporate standard complete data methods of analysis on the imputed data

sets and it’s ability to incorporate the data collector’s knowledge. Another visible advantage

is it’s increased efficiency to make valid inferences as compared to other single imputation

methods. Furthermore, when combining the imputed complete data inference according to

Rubin’s rule, it incorporate all sources of variability and uncertainty, in the form of within

imputation and between-imputation variance.

7



8



Chapter 2

Multiple Imputation in multivariate

missing data

Missing data may be present in different kinds of data, which includes multivariate data

as well. Let X = (X1, .., Xp) be the vector of covariates of interest. In this multivariate

setting, the imputation of the variable Xj that contains missing data will requires all or

some of the predictors in X−j; where X−j represents all the covariates in X other than Xj

and j ∈ (1, .., p).

There are several practical problems associated with the imputation of missing values in

these types of data. This includes a circular dependence, when the missing data in two

incomplete covariates are dependent due to the high correlation between those covariates

and a possible occurrence of collinearity, when p is large and the size of the data n is small.

Various approaches are used in MI to overcome these difficulties, among which the most

commonly used ones are the Joint modeling (JM) and the Fully Conditional Specific (FCS).

2.1 Joint Modeling (JM)

Joint modeling (JM) works under the assumption that a multivariate distribution can fully

describe the data. Imputations for the missing values are created as draws from the fitted
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multivariate distribution conditioned on the observed data, which is used as the imputation

model. The imputation model can be based on any multivariate distribution. However, the

multivariate normal distribution is the one most widely applied.

JM primarily involves specifying a multivariate distribution for the missing data and drawing

imputation from their conditional distributions by Markov Chain Monte Carlo (MCMC)

technique. Hence the basic idea behind this approach is that, in a general missing data

pattern, missing data can be in anywhere in X. As a result, the distribution from which

imputations are to be drawn varies from row to row. For instance, let the missingness

pattern in the ith row be r(i) = (0, 0, 1, 1). Here, the imputations are drawn from a bivariate

distribution Pi(X
miss
1 , Xmiss

2 |X3, X4, θ1,2) whereas when r(i‘) = (0, 1, 1, 1), it needs to be

drawn from the univariate distribution Pi(X
miss
1 |X2, X3, X4, θ1). The JM method is not

preferred much due to its ideal assumption of the having a multivariate model for imputation,

i.e it is not robust to misspecification of model which sometimes hard to cope with.

2.2 Fully Conditional Specification (FCS)

FCS method impute missing data present in the multivariate case in a variable-by-variable

manner (Van Buuren et al. 2006 [15], Van Buuren 2007 [16]). In this method, the specifica-

tion of an imputation model is required for each variable and subsequently, imputations are

created in an iterative manner.

Contrary to the joint modeling, FCS assumes the existence of a multivariate joint distribu-

tion which may or may not actually exist, from the individual univariate imputation model

specified for each of the missing variables, i.e. let X be the set of incomplete variables, R be

the missingness indicating vector, Z be the rest of the variables and Y be the response that is

observed completely. In theory, FCS describes the multivariate distribution P (X,Z, Y,R|φ)

from individual conditional distribution P (Xj|X−j, Z, Y,R, θ) specified separately for each

of the missing variables Xj. This conditional distribution P (Xj|X−j, Z, Y,R, θ) is the one

used for the imputation of the missing values in variable Xj conditioned on the rest of the

missing variable X−j, Z, R and Y .

The algorithm starts by substituting the missing values in each Xj by some simple single

imputation strategy. Then the algorithm proceeds by repeatedly imputing the missing val-
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ues in each variable in an iterative fashion, at each stage conditioning on the most recent

imputations of the other missing variables. Let xj = (xobsj , xmissj ), y and z be the elements

in the variables X, Y and Z respectively. Then the tth iteration is given by

θt1 ∼ f(θ1)f(xobs1 |x
(t)
−1, z, y, θ1)

x
miss(t)
1 ∼ f(xmiss1 |x(t)−1, z, y, θ

(t)
1 )

θt2 ∼ f(θ2)f(xobs2 |x
(t)
−2, z, y, θ2)

x
miss(t)
2 ∼ f(xmiss2 |x(t)−2, z, y, θ

(t)
2 )

.

.

.

θtp ∼ f(θp)f(xobsp |x
(t)
−p, z, y, θp)

xmiss(t)p ∼ f(xmissp |x(t)−p, z, y, θ(t)p )

where x
(t)
j = (xObsj , x

(t)
j ) denote the vector of observed and imputed values at the tth iteration.

After the cycle reaches convergence, the current draws are taken as the first set of imputed

values. The cycle is then repeated until the desired number of imputations has been achieved.

Similarly, multiple number (m) of imputed data sets are created and the statistical quantity of

interest is estimated by following the three steps of Rubin’s rule. The mice package designed

by Van Buuren(2012) [1] performs MI in the FCS perspective, which initiates the iteration

by replacing the missing values by randomly selected observed values from the same variable.

2.2.1 Convergence

The flexibility of mice algorithm defines different imputation models for different variables.

This is beneficial if there are particular properties of the data that requires to be preserved.

Even so, this flexibility can also cause problems in the estimation. Defining different impu-

tation model can cause slow convergence or non-convergence of the imputation model.

So assessing convergence of the imputation model is one of the crucial steps, which should be
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done for each imputed variables, but specifically for those variables with a high proportion of

missingness. The convergence of the imputation model implies that the data augmentation

algorithm has reached an appropriate stationary posterior distribution.

Convergence is mostly checked visually from the trace plots which is plotted for all or selected

parameters against the iteration number. Long term trends in trace plots are the indicates a

slow convergence to stationary. A stationary process has its mean and variance unchanging

over time. On convergence, the different streams of curves denoting each imputation should

be freely intermingled together, without showing any definite trends

Similar algorithms with the FCS have been used by the researchers under different names:

stochastic relaxation, variable-by-variable imputation, switching regruch asessions, sequen-

tial regressions, ordered pseudo-Gibbs sampler, partially incompatible MCMC, iterated uni-

variate imputation, chained equations etc.
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Chapter 3

Imputation models

Consider the simplest case when we have only one missing variable X, a vector of completely

observed outcome Y and rest of the complete covariate vectors Z. Here, the imputation

model can be assumed as P (X|Y, Z, θ). Then, the MI formally involves drawing the missing

values in Xmiss, where X = (Xmiss, Xmiss), from a predictive probability distribution

P (Xmiss|Xobs, Y, Z) =

∫
P (Xmiss|Xobs, Y, Z; θ)P (θ|Xobs, Y, Z)dθ (3.1)

Which in practice, obtained by fitting the model P (X|Y, Z, θ), called the imputation model

based on the observed cases X and yields an estimate θ̂ with a variance covariance matrix Sθ.

Thereafter the values of θ, θ∗’s are drawn from its posterior which can be approximated as

N (θ̂, Sθ). Then at the final step the imputations of Xmiss are drawn from the distributions

P (X|Y, Z; θ∗).
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Method type

Predictive mean matching numeric

Bayesian linear regression numeric

Linear regression, non-Bayesian numeric

Unconditional mean imputation numeric

Two-level linear model numeric

Logistic regression factor,

Multinomial logit model factor, >2 levels

Ordered logit model ordered, >2 levels

Linear discriminant analysis factor

Classification and regression trees (CART) any

Random sample from the observed data any

Table 3.1: Imputation models for the different types of covariates

However, these whole processes gets complicates when we have missing data in the co-

variates of a survival outcome / time to event outcome model.

3.1 Survival analysis a general overview

Survival analysis is a branch of statistics that deals with the study of data on times of events

in individual life histories. The major component in survival analysis are,

Definition 3.1.1. The time-to-event, T is a random variable which measures the time du-

ration between the starting time and observation time of the event or the censoring time. In

general T ≥ 0 and T = 0 at the start event.

3.1.1 Censoring of a data

Censoring in a data happens when we are not able to collect the complete set of data for a

subject due to various reasons such as time limitation due end of the study period. In most

of the cases, it is impossible to avoid data censoring. Hence, it is important to understand
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and incorporate it in the model as well. When the observation time of the event of interest

is independent of censoring then it’s called independent censoring.

Definition 3.1.2. Right censoring: Censoring that occurs before the observation of event

i.e. the event is observed after the end of the study. Let C is the variable indicating censoring

time. Assume T , the time at which the event observed and C are independent. Defined as,

U := min(T, C) (3.2)

and the censoring indicator is given by,

D =

1 if data is uncensored (t ≤ C)

0 if data is censored (t > C)
(3.3)

Remark 3.1.1. If censoring is informative i.e it gives information about the time of event,

then the model must include it as a random event C, which makes the analysis complicated.

Hence, it is enough to show that whether the censoring is stochastically independent of T ,

then we can say C is uninformative.

3.1.2 Fundamental functions in survival analysis

Given the time to event random variable T ,

Definition 3.1.3. 1. Survival Function defines the probability of observing the event after

the time t

S(t) = P (T ≥ t) (3.4)

2. Hazard Function denotes the instantaneous rate of occurrence of the event, defined as

h(t) = lim
dt→0

P (t ≤ T < t+ dt|T ≥ t)

dt
. (3.5)

3. Cumulative hazard H(t) is the summation of all hazard rates until time point t

For discrete T : H(t) =
∑

ti∈T,ti≤t

h(t)

For continuous T : H(t) =

∫ t

0

h(u)du

(3.6)
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The Nelson-Aalen estimator is a non-parametric method which is used to estimate the

cumulative hazard rate function from censored survival data.

Ĥ(t) =
∑
ti≤t

di
ni

(3.7)

where di denotes the number of individuals who event of interest happened at t and ni is

the number of individuals at risk of having the event just prior to time ti

3.1.3 Proportional hazard model

Modeling a survival data is the next crucial step in survival analysis. In most cases a

proportional hazard model (PH) is used for regression due to its simplicity.

Definition 3.1.4. Proportional Hazard model: It is a semi-parametric method for estimat-

ing the hazard function. The core assumption of a proportional hazard model is that all

individuals have the same hazard function with a unique scaling factor. Hence the shape of

the hazard function curve is the same for all individuals, and only a scalar multiple changes

per individual. Let xi = (x1i, x2i, .., xpi) are the covariates if an individual i and h0(t) is the

baseline hazard at t,

h(t, xi) = h0(t)× exp(

p∑
j=1

βjxij) (3.8)

i.e. hazard at t for given xi = (baseline hazard at t) × (Risk factor; exp(βxi)). Further

more, the ratio of this with another subject, by keeping all the covariates except kth covariate

(k ≤ p) constant for both and xik − xjk = 1, is called the hazard ratio and will looks:

hi(t)

hj(t)
=
h0(t) exp(

∑p
l=1 βxil)

h0(t) exp(
∑p

l=1 βxjl)
=

exp(βxik)

exp(βxjk)
= exp(β) (3.9)

i.e. in case of this multiplicative hazards model, exp{β} is called the hazard ratio.

3.1.4 Multistate illness death model

Multi-state models are the models often used for describing the development of longitudinal

failure time data. A multi-state model is defined as the model for the stochastic process,
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which at any time point occupies in one of a set of discrete states. The change of state is

called a transition, or also called as an event. However, it is essential to distinguish between

an event, e.g. death and a state such as dead. The state structure defines the states and

which transitions from a state to, to a state are possible. It is possible to make a figure of the

state structure as in the Figure 3.1. The full statistical model specifies the state structure

and the form of the hazard function for each possible transition.

Healthy (0) Disease (1)

Death (2)

Figure 3.1: The pictorial representation of the multistate illness death model

The progressive illness death model also called the disability model, is a multistate model

with three states. The illness death model of Figure 3.1 can be constructed by splitting the

pathways to the dead state into two, based on whether the death happened from the healthy

or the diseased state. The interpretation of this figure is that the current state contains

the information on how many and which states have been visited previously, and the order

they have been visited in, but not the times of transitions. This is the most commonly used

model in the medical research areas.

3.2 Missing data in covariates of a survival outcome

data

The main aim behind the MI technique is to impute the missing value so that the uncertainty

of the imputed value is also accounted for. So, the imputed values are the plausible values

generated from the predictive distribution rather than the actual value if it is not missing.

Therefore, the variance of the predictive distribution is incorporated in the further analysis.

MI method uses a selected model such as the regression model in the prediction of missing

values based on observed data. In order to incorporate the uncertainty, instead of picking
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one value, many values are chosen stochastically for each of the missing values, and the

uncertainty is described in the variance-covariance matrix of the estimates that are used to

predict missing values. The crucial step for carrying out appropriate imputation lies in the

selection of right imputation model.

The imputation of missing data in covariates of a survival model is usually found to be

challenging. For handling survival data sets that have missing values in the covariates by

the MI method is done by including the time to event outcome in the imputation model.

However, the inclusion of time to event data should be done carefully since the outcome is

the pair of observation, the length of time during which no event was observed T (or the

follow-up time ti if the event is not observed throughout the study) and an event indicator of

whether the end of that time period corresponds to an event or just the end of the observation

D. Several research papers proposed different ways to include time to event outcome into the

imputation model. A prominent research paper by Vann Buure et al(1999) [9] used the D, T

and log(T ) as the predictors in the imputation model. Some researchers used D and log(T ),

or D and T in their imputation models; however, the rationale behind all these usages are

still not clear. White and Royston(2009) [13] demonstrated that inclusion of Nelson-Aalen

estimate of cumulative hazard and the event indicator in the imputation model is the best

method. They have also demonstrated that the suitable imputation model for a normal or

binary missing covariate X is a linear or logistic regression on the Nelson-Aalen estimate

Ĥ0(ti), the event indicator D and the remaining covariates Z. The imputation model of a

normal variable X with missing data will be as follows,

X|T,D,Z ≈ N (γ0 + γ1D + γ2H0(T ) + γ3Z, σ
2) (3.10)

for a binary variable X with missing data, we get the imputation model as,

logit p(X = 1|T,D,Z) ≈ γ0 + γ1D + γ2H0(T ) + γ3Z (3.11)
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Chapter 4

Bias Estimation

The data sets after dealing with the missing data are fitted to an analysis model. After that,

the bias of the coefficient estimates with the true parameter is then calculated which is done

separately for both MI and CCA, solely for comparison purposes, using the methods given

below:

4.1 Mean absolute error (MAE)

Definition 4.1.1. Mean absolute error (MAE) is a measure of errors between paired obser-

vations expressing the same phenomenon, defined by

MAE =

∑n
i=1 |βtrue − βestimate|

n
(4.1)

Expressed in words, the MAE is the average over the verification sample of the absolute

values of differences between the actual and estimated values. The MAE is a linear score

which means that all the individual differences are weighted equally in the average
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4.2 Root mean square error (RMSE)

Definition 4.2.1. RMSE is a quadratic scoring rule which also measures the mean magni-

tude of the error in the obtained parameter estimate, i.e. it’s the square root of the average

of squared differences between estimated and actual parameter value.

RMSE =

√∑n
i=1(βtrue − βestimate)2

n
(4.2)

It describes the degree of coincidence among true and estimated values. Since squaring of

the errors comes before averaging, the RMSE gives a relatively high weightage to large errors.

This implies that the RMSE is most useful when large errors are particularly undesirable.

4.3 Comparison with the ratio of closeness with the

true value

This method simply counts the number of times the estimate obtained from the data set

handled by MI method outperforms the estimates obtained from the CCA method. It is

defined as the average number of times when the estimate based on the MI method is closer

to the true parameter than the estimate based on the CCA method,

d =
1

K

K∑
k=1

1{|β̂MI
k − β| < |β̂CCA

k − β|}

r = d/(1− d)

(4.3)

where, the K denotes the total number of simulated data sets, β indicates the true value

of the estimate when the data is complete without any missing values. β̂MI denotes the

estimates obtained by handling the missing data using MI technique and the β̂CCA denotes

the estimate obtained from CCA.
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Chapter 5

Simulation Study

In this section, we aim to verify whether the MI method is the appropriate one over CCA

when the amount of missing data is very high. We also want to see how efficient the MI

method for a large population sample with a high amount of missing data . Here, the

accuracy of the estimates is quantified using the underlying bias between the coefficient

estimates with the true parameter. The accuracies obtained from both the methods are in

turn used for carrying out the comparison. A quick look at the necessary variables that

are required to be included in the imputation model for the better result are also discussed.

This simulation study has been carried out in two parts, the first one which has a logistic

regression analysis model with missing values in the covariates and the second one which has

a survival model that has missing values in its covariates.

5.1 Study Design

In the construction of the covariates, we’ve considered the simplest case where there are

two normally distributed variables without any missing values in it and only one incomplete

normally distributed variable. In further studies, we proceeded by adding missing variables

one at a time until a total of three missing covariates were present at the same time, of which

two of them were normally distributed and one with categorical values. It is important to

note that the assessment of the performance of CCA and MI method for handling the missing

data is done by evaluating the accuracy of the estimated coefficients obtained using RMSE,
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MAE and by comparing the ratio mentioned in section 4.3 from the previous chapter. Also,

these two methods are examined with respect to the variation in the relative size of missing

data present in the sample. By comparing the results obtained from the two methods, we will

be able to come to the conclusion whether the MI method is the better choice for handling

the missing data as proposed in most of the recent research papers.

Covariates

The detailed description of the simulation settings and variable construction are as follows:

• A data set of size 105 is generated with covariates x1, x2, x3, x4 and x5. The variables

x1, x2, x3 and x4 are generated as continuous and the final variable x5 as a categorical

variable with 4 categories.

• Among the variables, x1 and x2 are constructed from a random normal distribution

independent of all the remaining variables and the construction is such that, x1 ∼
N (2, 12), and x2 ∼ N (−2, 12).

• From the third variable onwards, missing values are introduced. Hence, in order to

incorporate the correlation to facilitate the MI, it is constructed as x3 ∼ N (0.5 x1 +

0.5 x2, 22)

• The variable x4 is generated based on the previous three variables, the complete vari-

ables x1, x2 and the partially observed variable x3, in order to incorporate the cor-

relation for imputation and the construction goes like, x4 ∼ N (0.33 x1 + 0.33 x2 +

0.33 x3, 22).

• The final categorical covariate x5 with four categories is generated by conditioning the

probability of each category with respect to the four covariates defined previously,

lp1 = (−2) + 0.5x1 + 0.2x2 + 0.1x3 + 0.2x4

lp2 = (−2) + 0.5x1 + 0.2x2 + 0.1x3 + 0.2x4

lp3 = 0.5x1 + 0.2x2 + 0.1x3 + 0.2x4

lp4 = 0

(5.1)
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Covariates
mean/number
of observations for
each category

standard deviation/
percentage of observation
for each category

x1 2 1
x2 -2 1
x3 0.5x1 + 0.5x2 2
x4 0.3x1 + 0.3x2 + 0.3x3 2

x5

x
(1)
5 ≈ 33000

x
(2)
5 ≈ 7000

x
(3)
5 ≈ 53000

x
(4)
5 ≈ 7000

x
(1)
5 ≈ 33%

x
(2)
5 ≈ 7%

x
(3)
5 ≈ 53%

x
(4)
5 ≈ 7%

Table 5.1: Descriptive statistics of the simulate covariates

P1 = exp(lp1)/ exp(
4∑
i=1

lpi)

P2 = exp(lp2)/ exp(
4∑
i=1

lpi)

P3 = exp(lp3)/ exp(
4∑
i=1

lpi)

P4 = 1/ exp(
4∑
i=1

lpi)

(5.2)

The probability of the response variable is constructed in such a way that there are

two less frequent categories (categories 2 and 4) while the other two are more frequent

(1 and 3).

As mentioned previously, the missing values are placed in the variables x3, x4 and x5 with the

percentage of missingness as 99%, 95%, 90% and 80% of the total data size. The rest of the

variables x1, x2 and the response are generated without any missing values in it. Similarly,

about 240 data sets are simulated which is then subjected to both CCA and MI method.

5.1.1 Outcome

Binary Outcome

A binary outcome y, without any missing values, is generated for the first set of simulation

studies. The construction is done as follows:
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lp = −1 + 0.05 x1 + 0.2 x2 + 0.1 x3 + 0.02x4 + log(1.5)(x5 = 1)

+ log(5)(x5 = 2) + log(2)(x5 = 3) (5.3)

yi =

0 if ui ≥ plogis(lpi)

1 if ui < plogis(lpi)
(5.4)

for some random number ui ∈ U(0, 1) where i = 1, ...., 105

Survival outcome / Time to event outcome

For the final simulation, we’ve used a TTE outcome and the time scale used here is age.

Here, our objective was to replicate the real data situation. For this purpose, we’ve used

the mortality statistics, provided by Statistics Finland [6], to determine shape and scale

parameters of a TTE response which in turn follows a Weibull distribution. The construction

of the whole set up is carried out as follows:

Here we are considering the subjects with delayed entries, i.e. the subjects are not

observed from time(here our time variable is age) 0 but only from a later entry time, xt,

that is, the subject is only observed conditionally on having survived until xt Let the delayed

time denoted by xt ∼ U(0, 50) is chosen as the starting age when the individual or subject

enters the cohort study. The failure time of each of the individual is defined as

lp = 0.05x1 + 0.2x2 + 0.1x3 + 0.02x4 + log 5(x5 = 2)

+ log 2(x5 = 3) + log 1.5(x5 = 4) (5.5)

T = (a/b)(t/b)a−1exp(lp) (5.6)

where a is the shape parameter, b being the scale parameter and lp =
∑
βixi, denotes the

linear progression of the covariates.

The individual is censored after an age of 100. So, the observed response variable ”Ti” and
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the event indicator δi for an ith individual or observation :

Ti = min(ti, 100) (5.7)

δi =

{
0 if the response was censored (ti > 100)

1 if the event was observed (ti ≤ 100).
(5.8)

5.2 Result of the simulation study

5.2.1 Missing covariates with a binary outcome

Results of the simulation setup with the binary outcome are presented in Table 5.2, Figure 5.2

and Figure 5.1. This section explains the results only from the simulation study, which

contains all the partially observed covariates. The results are arranged in terms of the

percentage of missing data present in the 240 simulated data sets.

The Table 5.2 denotes the ratio of the number of times MI methods outperformed the CCA

method. From the values, we can see that most of its entries are greater than or close to 1,

which implies that the MI technique works very well for a model with a binary outcome and

missing data in the covariates. However, for the second category in the categorical variable

x5, MI doesn’t perform well as, compared to CCA.

Table 5.2: The table depicts the ratio comparison of the accuracy of estimates obtained by
the imputation methods with that of CCA, the ratio (r) given in the equation (4.3).

1 percent 5 percent 10 percent 20 percent

x3 0.388 0.367 0.312 0.217

x4 0.446 0.438 0.383 0.342

x5 class2 0.021 0 0 0

x5 class3 0.338 0.3 0.275 0.271

x5 class4 0.479 0.5 0.458 0.342

This is probably in view of the fact that this category doesn’t provide sufficient details for

its imputation by the MI method, due to its low frequency in x5 as depicted in the Table 5.1.
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This table doesn’t mean that one method, say MI, is far better than the other, since it only

counts the number of times the parameter estimate obtained by MI is closer, than CCA

method, to the actual value and not how much accurate the estimate is. This enhances the

importance of the use of other evaluation techniques, such as RMSE and MAE.

MAE and RMSE are plotted against the percentage of observed values or the non missing

values. The plot of RMSE (Figure 5.1) and MAE (Figure 5.2) shows almost same trend and

in all the plots, it is evident that MI performs better than CCA for a high percentage of

missing values. Even in the less frequent category, category 2 of the variable x5, MI performs

better than CCA when the non missing part is only 1% and 5% (or when 99% and 95% of

the total size is missing) of the total size and then coincide in the later part of the plots.
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(a) RMSE in coefficient estimate of x3 is plotted in the left panel and x4 is in the right panel
of the figure.

(b) RMSE in the coefficient estimate of categories of x5 is plotted in this figure. The leftmost plot
represent the 1st category, the centre being the second and the rightmost the 3rd category of the
variable x5.

Figure 5.1: Root mean square error in the case of a binary outcome. The blue curve indicates
the RMSE of the estimate obtained by MI method while the red curve indicates the same
obtained from CCA.
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(a) MAE in coefficient estimate of x3 is plotted in the left panel and x4 is in the right panel
of the figure.

(b) MAE in the coefficient estimate of categories of x5 is plotted in this figure. The leftmost plot
represent the 1st category, the centre being the second and the rightmost the 3rd category of the
variable x5.

Figure 5.2: Mean absolute error in case of a binary outcome. The blue curve indicates the
MAE of the estimate obtained by MI method while the red curve indicates the same obtained
from CCA.
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5.2.2 Missing covariates in a Survival outcome data

The simulation study with the survival outcome model having missing covariates addresses

our empirical study in the next section. As in the previous simulation study, here also the

results are arranged in decreasing amount of missing values. The results are described in

the Table 5.3, Figure 5.3 and in Figure 5.4. Here, we tried different ways of imputation such

as, using logistic regression model as the imputation model for the categorical variables and

linear regression model for continuous variables as in White and Royston(2009). And using

classification and regression trees (CART) method for the imputation of both the categorical

and continuous variables.

Table 5.3: The table depicts the ratio comparison of the accuracy of estimates obtained by
the imputation methods with that of CCA, the ratio (r) given in the equation (4.3)

x3 x4 x5 Cat2 x5 Cat3 x5 Cat4

Imputation using split

10 0.009 0.591 0 0 0.274

20 0 0.123 0 0 0.145

30 0 0.022 0 0 0.102

40 0 0.009 0 0 0.03

Imputation with CART model

10 0.539 0.927 0.113 0.943 0.911

20 0.463 0.539 0.087 0.852 0.756

30 0.463 0.612 0.058 0.896 0.705

40 0.386 0.634 0.026 0.669 0.549

Imputation with GLM model

10 0.519 0.681 0.601 1.174 1.097

20 0.145 0.436 0.463 0.756 0.881

30 0.134 0.559 0.339 0.657 0.927

40 0.082 0.58 0.191 0.529 0.866

Imputation using T and log(T )

10 0.612 0.896 0.118 1.043 0.959

20 0.463 0.646 0.068 0.911 0.646

30 0.463 0.623 0.063 0.866 0.669

40 0.317 0.669 0.026 0.837 0.570
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As mentioned earlier, it is a common practice to use the event indicator D, observed event

or censoring time T and log(T ) in the imputation model, which is also assessed in this study.

Along with all three setting, we tried to experiment another way of defining the imputation

model by including D and a time group variable Tm which is obtained by splitting the

survival time into time group element.

From the Table 5.3 it can be seen that most of the values are less than 1 which indicates that

almost all the times the coefficient estimated from the CCA is closer to the actual estimate

value than all the other imputation. However, inference can be drawn only after quantifying

the closeness using other methods like MAE and RMSE

The Figure 5.3 represents the RMSE and the Figure 5.4 represents the MAE values of the

simulated data sets. According to the plots of MAE and RMSE it is clear that the imputation

model which includes the time group as covariate is the least preferred one. While the rest

of the three MI method and CCA method performs almost equally well for the coefficient

estimate.
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(a) RMSE in coefficient estimate of x3 is plotted in the left panel and x4 is in the
right panel of the figure. The RMSE values are evaluated for different imputation
model for the comparison purpose

(b) RMSE in the coefficient estimate of categories of x5 is plotted in this figure. The leftmost plot
represent the 1st category, the centre being the second and the rightmost the 3rd category of the
variable x5. The RMSE values are evaluated for different imputation model for the comparison
purpose

Figure 5.3: Root mean square error: The black line denotes the CCA, and the rest of
the lines indicate MI method applied in various manner. The dark green line indicate the
imputation model with splitted survival time, the pink line indicates the imputation method
which use logistic regression model for missing categorical covariates and linear model for
the continuous covariate. The blue line indicates the common practice which use T , and
log(T ) in the imputation model 31



(a) MAE in coefficient estimate of x3 is plotted in the left panel and x4 is in the
right panel of the figure. The MAE values are evaluated for different imputation
model for the comparison purpose

(b) MAE in the coefficient estimate of categories of x5 is plotted in this figure. The leftmost plot
represent the 1st category, the centre being the second and the rightmost the 3rd category of the
variable x5. The MAE values are evaluated for different imputation model for the comparison
purpose

Figure 5.4: Mean absolute error: The black line denotes the CCA, and the rest of the lines
indicate MI method applied in various manner. The dark green line indicate the imputation
model with splitted survival time, the pink line indicates the imputation method which
use logistic regression model for missing categorical covariates and linear model for the
continuous covariate. The blue line indicates the common practice which use T , and log(T )
in the imputation model 32



Chapter 6

Empirical study on Ischemic Heart

Disease follow up data

Individual-level records from health and social services are routinely being generated, col-

lected and maintained centrally in nation-wide registers in Finland by the Finnish Institute

for Health and Welfare (THL). In this section, data from population register and Care Regis-

ter for Health Care (Hilmo) are used to carry out an empirical study of handling the missing

data problem in the ischemic heart disease (IHD) data. The Finnish population and health

care registers are presumed to have a well covered and recorded health details of the pop-

ulation, and the register-based analyses can provide very accurate estimates of population

health. However, the registers lack essential information on risk factors such as smoking sta-

tus and alcohol consumption, which are considered as relevant risk factors for IHD. Hence,

we are combining the Finnish population register data with the survey data that was col-

lected in 2000 health surveys, with a follow-up data until 2018, which comprised of these

relevant risk factors and an enormous amount of missing data. After handling the missing

data with the proposed methods, the population data which contain both the register data

and the survey data is then modelled by a multi-state prognostic illness death model. The

multi-state illness death models allow subjects to move among a finite number of states, as

in the Figure 3.1, during a follow-up period.

The data set is restricted to those people who are in the age of 30 years or older and the ones

who are in the healthy phase at the beginning of the study, which is at the 1st July 2000.
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- Death

- Disease

- Censored

Start of the
study (01/07/2000)

End of the
study (30/06/2018)

- Healthy state

- Disease state

Calendar time

Figure 6.1: A pictorial timeline depicting the possible pathways of the study cohort

The constrains made according to our educated guess, one of which is that the individuals

below 30 years are less likely to be diagnosed with IHD in this 18 years period. The other

constrain, which only allows those people who are not yet diagnosed with the IHD, is due

to the fact that those people who had already diagnosed with IHD will be probably in

control of their risk factor values with the help of medication or care. This will affect the

imputation model by adding noise to those risk factors. This is the reason why, in this

study, we are only including the individuals starting in the same state, namely the healthy.

Moreover, the diseased individuals have a generally higher risk to die because of the disease,

hence incorporating the diseased individuals will require a different imputation model. A

schematic representation of this setting is provided in the Figure 6.1.

The population data set consists of 496,709 individuals that includes 12,229 observations

from the survey data. The associated risk factors, which numbers up to 16 in total, are

composed of 6 categorical variable and 10 continuous variable as described in the Table 6.2

. From the Table 6.2 we can also see that there are about 97% of missing values present in

all the risk factors.

Prior to applying MI to deal with the missing data, CCA is done. The complete cases which

do not have any missing values are only 6987 observations which are slightly more than 50%

which is then analysed by a proportional hazard Weibull regression model. In order to give an

elaborate comparison between CCA and the full population data, the number of transitions
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Covariates
Missing value
number (%)

mean
(SD)

min value 1st quartile median 3rd quartile max value

X3 486328 (97.91)
6.0
(1.11)

1.9 5.2 5.9 6.6 11.7

X4 486328 (97.91)
1.3
(0.376)

0.2 1 1.2 1.5 3.4

X5 [486287 (97.90)
139.6
(22.41)

68 124 138 154 245

X6 486287 (97.90)
81.8
(12.212)

0 74 82 90 134

X7 486316 (97.91)
137.6
(22.081)

66 122 136 150 236

X8 486320 (97.91)
80.8
(11.532)

0 74 80 88 131

X9 485525 (97.75)
77.0
(15.865)

29.1 65.9 75.9 86.8 169.2

X10 485541 (97.75)
167.9
(9.986)

135.5 160 168 175 198

X13 489432 (98.53)
7.5
(5.995)

1 2 7 12 50

X16 486451 (97.93)
3833.8
(8939.833)

0 0 633.5 3708.4 229394.1

(a) The descriptive statistics for the continuous covariates

Covariates
Number of missing
values(%)

number in each
categories

% in each
category

X1 0
1 - 238559
2 - 258150

1 - 48.03
2 - 51.97

X2 485378 (97.72)
0 - 9064
1 - 2267

0 - 80
1- 20.01

X11 486479 (97.94)

1 - 3317
2 - 5396
3 - 1412
4 - 105

1 - 32.42,
2 - 52.75,
3 - 13.8,
4 - 1.03

X12 486719 (97.99)
1 - 2140
2 - 684
3 - 7166

1 - 21.42
2 - 6.85
3 - 71.73

X14 486255 (97.90)
0 - 7642
1 - 2812

0 - 73.1
1 - 26.9

X15 485790 (97.80)
0 - 2579
1 - 3714
2 - 4626

0 - 23.62
1 - 34.01
2 - 42.37

(b) The descriptive statistics for the categorical covariates

Table 6.1: Descripive Statistics
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Healthy Disease Death
Healthy 5349 5574 1306
Disease 0 2653 2921
Death 0 0 4227

(a) Number of transition in the
population data

Healthy Disease Death
Healthy 3761 2770 456
Disease 0 1660 1110
Death 0 0 1566

(b) Number of transition
for the complete cases setting

Table 6.2: Transition numbers

are calculated and described in the Table 6.2b. After analysing with the CCA method,

the data is subjected to MI method. The imputation method we’ve used here is CART,

and the covariates selected in each of the imputation model is based on it’s Kendall rank

correlation value with the response. Along with the covariates in the Table 6.2 the Nelson

Aalen estimate of cumulative hazard and event indicators for the death and the disease

are also used in the imputation models. After the imputation process, the convergence of

each of the imputed covariates are assessed. The Figure 6.2 represents trace plot of the

imputed covariates with slow on no convergence while the rest of the covariates are had their

streams well intermingled and are free from any kind of trends which in turn indicates the

convergence.

The imputed data sets are then analysed using the PH Weibull regression model. The

estimates obtained from both the methods are provided in the Table 6.3 .

From the MAE and RMSE values obtained in the simulation study, it is evident that both

the MI and CCA works almost equally efficient in handling the missing values present in the

covariates of a survival model. As a result, we expected the value of the estimates obtained

from both the methods to be close to each other. The empirical study using the IHD data

set clearly demonstrated the same. Hence with some improvement in the MI method such

as modifying the number of iteration and number of imputation, it will provide to a better

result than the CCA. The estimates obtained from the CCA and MI is demonstrated in the

Table 6.3.
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(a) (b)

(c)

Figure 6.2: Trace plots of the covariates that shows slow or no convergence
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Table 6.3: Ischemic heart disease data: results for the parameter estimate in the analy-
sis model, where the imputation model is chosen based on the Kendall rank correlation
method(the Pearson correlation1).

1The values in brackets are the coefficient estimates of the analysis model when variables selection in
the imputation model is based on the Pearson correlation that has high deviation from the ones obtained
using Kendall rank correlation
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Chapter 7

Conclusion

In this thesis, we have discussed the two of the widely used methods for handling missing

data, namely MI and CCA. For MI itself, we’ve discussed several ways to model the impu-

tation model in order to achieve the best results. Generally, for the majority of regression

models, CCA gives unbiased and accurate results when the missingness is assumed as MCAR

and sometime even for MNAR. Accordingly, there are situations in which CCA analyses are

more efficient than MI analyses, under the MAR assumption (Little, 1992 [17]). Neverthe-

less, unlike CCA, MI is valid for all MAR cases and can use information included in the

incomplete cases and auxiliary variables to improve the accuracy of the estimates. Our aim

in this study was to assess the MI method when the involved missing data amount was very

high, about 80 – 99% of the total size of the sample.

From the simulation studies, we observed that both the MI and CCA based estimates work

almost equally well in the case of survival outcome. At the same time, MI estimate is more

accurate than that obtained from CCA in case of a binary outcome. However, this is not

always the case. In order to have a fair comparison between the MI and CCA, we should

use the number of imputation to be approximately equal to the percentage of missing value

as demonstrated by White et al. (2011) [14]. With the current computation power, carrying

out the imputation with m ≈ 99 will be difficult. Furthermore, an increase in the number

of iteration until attaining the convergence for all the variable or at least to the variables

with a high fraction of missing values would also improve the estimation of our statistical

quantity of interest, at the cost of more computational resources.
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From the empirical study, we can see a major drawback in the CCA method, which is, the 1st

category in the variable “X15” gets eliminated in the complete case analysis. This happens

because the rows corresponding to the 1st category of the variable “X15” always had at least

one missing value in some other covariates in the same row. This can always happen to the

categorical covariates with a rare category in a data having an enormous amount of missing

values when subjected to CCA analysis.

In conclusion, we still propose the MI method as a good method for handling the data

sets with an enormous amount of missing data after incorporating the improvements in

the number of imputation, number of iteration and the selection of covariates both in the

imputation and analysis model.
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Chapter 8

Appendix

Appendix 1: In order to incoporate the delayed entry situation we’ve modified the R function,

nelsonaalen, in the mice package which only allows the entry at time t0 = 0, for calculating

the Nelson Aalen estimate for cumulative hazrad. The R code for the modified function is

given as,

##################################################################################

Nelson-Aalen estimate

##################################################################################

nelson_aalen <- function(data, timevar, statusvar, starttime) {

mice:::install.on.demand("survival")

if (!is.data.frame(data))

stop("Data must be a data frame")

timevar <- as.character(substitute(timevar))

statusvar <- as.character(substitute(statusvar))

time <- data[, timevar]

status <- data[, statusvar]

hazard1 <- survival::

basehaz(survival::coxph(survival::Surv(time, status) ~ 1))

idx1 <- match(time, hazard1[, "time"])

haz1 <- hazard1[idx1, "hazard"]

if(missing(starttime)){
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return(haz1) }

else {

starttime <- as.character(substitute(starttime))

ini_time <- data[, starttime]

X <- rep(1, nrow(data))

cox_out <- survival::coxph(survival::Surv(ini_time, time, status) ~ X)

cox_out$coefficients["X"] <- 0

haz <- predict(cox_out, newdata = data.frame(ini_time, time, 0, 1),

type = "expected")

return(haz)

}

}

Appendix 2: The correlation matrix measured using the Kendall’s Tau method for the IHD

data variables along with the disease indicator(stat1), death indicator(stat2) and the Nelson

Aalen estimate for healthy to disease(na12) and healthy to death(na13) transitions, is given

in the following Table 8.1

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 na12 na13 stat1 stat2
X1 1 -0.14 0.00 0.26 -0.05 -0.13 -0.05 -0.14 -0.39 -0.59 -0.04 -0.23 -0.35 -0.23 -0.04 -0.30 0.14 0.17 -0.16 0.061
X2 -0.14 1 0.03 -0.06 -0.1 0.01 -0.10 0.02 0.03 0.14 -0.054 0.16 0.24 0.19 0.08 0.18 -0.16 -0.17 -0.03 0.02
X3 0.00 0.03 1 0.06 0.12 0.15 0.13 0.15 0.03 -0.03 -0.02 -0.02 0.02 0.06 -0.03 0.02 0.13 0.10 0.09 0.02
X4 0.26 -0.06 0.06 1 -0.06 -0.06 -0.05 -0.05 -0.28 -0.14 0.09 0.05 -0.07 0.07 0.01 0.04 0.06 0.07 -0.13 0.01
X5 -0.05 -0.1 0.12 -0.06 1 0.38 0.86 0.36 0.09 -0.09 -0.08 -0.14 -0.08 -0.05 -0.07 -0.08 0.20 0.19 0.10 0.08
X6 -0.13 0.01 0.15 -0.06 0.38 1 0.38 0.83 0.22 0.10 0.01 0.09 0.08 0.09 0.06 0.10 0.05 0.01 0.09 0.01
X7 -0.05 -0.10 0.13 -0.05 0.86 0.38 1 0.37 0.09 -0.08 -0.08 -0.13 -0.07 -0.05 -0.07 -0.06 0.20 0.19 0.12 0.08
X8 -0.14 0.02 0.15 -0.05 0.36 0.83 0.37 1 0.23 0.12 0.02 0.1 0.09 0.09 0.07 0.11 0.04 0.00 0.09 0.01
X9 -0.38 0.03 0.03 -0.28 0.09 0.22 0.09 0.23 1 0.41 -0.02 0.15 0.21 0.18 0.03 0.20 -0.05 -0.08 0.15 -0.07
X10 -0.59 0.14 -0.03 -0.14 -0.09 0.10 -0.08 0.12 0.41 1 0.08 0.30 0.31 0.24 0.08 0.33 -0.19 -0.21 0.1 -0.09
X11 -0.04 -0.05 -0.02 0.09 -0.08 0.008 -0.085 0.02 -0.02 0.08 1 0.12 0.02 0.02 0.11 0.07 0.00 -0.03 -0.03 -0.08
X12 -0.23 0.16 -0.02 0.05 -0.14 0.09 -0.13 0.11 0.15 0.30 0.12 1 0.19 0.37 0.56 0.6 -0.16 -0.19 0.02 -0.13
X13 -0.35 0.24 0.02 -0.07 -0.08 0.08 -0.07 0.09 0.21 0.31 0.02 0.19 1 0.45 -0.36 0.52 -0.24 -0.24 0.02 -0.02
X14 -0.23 0.19 0.06 0.07 -0.05 0.09 -0.05 0.09 0.18 0.24 0.02 0.37 0.45 1 -0.03 0.58 -0.13 -0.14 0.08 -0.04
X15 -0.04 0.08 -0.03 0.01 -0.07 0.06 -0.07 0.07 0.03 0.08 0.11 0.56 -0.36 -0.03 1 0.19 -0.08 -0.10 0.00 -0.1
X16 -0.30 0.18 0.02 0.04 -0.08 0.10 -0.06 0.11 0.20 0.33 0.07 0.6 0.52 0.58 0.19 1 -0.15 -0.18 0.08 -0.09
na12 0.14 -0.16 0.13 0.06 0.20 0.05 0.20 0.04 -0.05 -0.19 0.00 -0.16 -0.24 -0.13 -0.08 -0.15 1 0.87 -0.1 0.03
na13 0.17 -0.17 0.10 0.07 0.19 0.01 0.19 0.00 -0.08 -0.21 -0.03 -0.19 -0.24 -0.14 -0.10 -0.18 0.87 1 -0.15 0.05
stat1 -0.16 -0.03 0.09 -0.13 0.10 0.09 0.12 0.09 0.15 0.1 -0.03 0.02 0.02 0.08 0.002 0.08 -0.1 -0.15 1 -0.18
stat2 0.061 0.02 0.02 0.01 0.08 0.01 0.08 0.01 -0.07 -0.09 -0.08 -0.13 -0.02 -0.04 -0. -0.09 0.03 0.05 -0.18 1

Table 8.1: Pair wise correlation matrix between the covariates associated to IHD data, using
Kendall’s Tau method
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