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Abstract
In this thesis, motivated by the Inverse Galois Problem, we prove the occurence of

Sn as Galois group over any global field. While Hilbert’s Irreducibility Theorem,

the main ingredient of this proof, can be proved(for Q) using elementary methods of

complex analysis, we do not follow this approach. We give a general form of Hilbert’s

Irreducibility Theorem which says that all global fields are Hilbertian. Proving this

takes us to Riemann hypothesis for curves and Chebotarev Density Theorem for

function fields. In addition we prove the Chebotarev Density Theorem for Number

Fields. The main reference for this thesis is [1] and the proofs are borrowed from the

same.
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Chapter 1

Introduction

Given a field K and a finite group G, the Inverse Galois Problem is to find a

Galois extension L of K such that Gal(L/K) ∼= G. While the problem is still open

over Q, it has an affirmative solution over C(t). We are interested in extensions of Q.

It is easy to see that IGP has a solution over Q for any finite abelian group G. Indeed,

if G is a finite abelian group, then by the structure theorem for finitely generated

abelian groups,

G ∼= Z/m1Z× Z/m2Z× . . .× Z/mkZ (1.1)

where m1 | m2 | . . . | mk.

By Dirichlet’s theorem, which we will prove in the next chapter, there are infinitely

many primes congruent to 1 mod mi for each 1 ≤ i ≤ k. Choose primes p1, . . . , pk

such that pi ≡ 1 mod mi. Thus, corresponding to each mi we obtain a subgroup Hi

of (Z/piZ)∗ of index mi.

We know that

Gal(Q(ζp1...pk)/Q) ∼= Gal(Q(ζp1)/Q)×Gal(Q(ζp2)/Q)× . . .×Gal(Q(ζpk)/Q)

∼= (Z/p1Z)∗ × (Z/p2Z)∗ × . . .× (Z/pkZ)∗
(1.2)

Since H1 ×H2 × . . . ×Hk is a subgroup of the RHS of index m1 . . .mk, there exists

H a subgroup of Gal(Q(ζp1...pk)/Q) of the same index. Being an abelian extension,

1



2 CHAPTER 1. INTRODUCTION

every subgroup is normal and hence

Gal(QH/Q) ∼=
Gal(Q(ζp1...pk)/Q)

H

∼=
Z/(p1 − 1)Z

H1

× Z/(p2 − 1)Z
H2

× . . .× Z/(pk − 1)Z
Hk

∼= Z/m1Z× Z/m2Z× . . .× Z/mkZ
∼= G.

(1.3)

In following chapters we will build enough theory to show that IGP can be solved

over Q for Sn for any positive integer n.



Chapter 2

Chebotarev Density Theorem for

Number Fields

In this chapter we will give an elementary proof of the Chebotarev Density Theorem.

In particular we do not assume any knowledge of class field theory. All fields occuring

in this chapter are number fields. The exposition follows more or less Chapter 6 of

[1].

Let L/K be a finite Galois extension of fields. By fixing an unramified prime ideal p

in OK , we know that the Frobenius elements living over p form a conjugacy class C
in Gal(L/K).

Suppose we start with an arbitrary conjugacy class C in Gal(L/K) and ask whether

we can find an unramified prime ideal p such that its associated conjugacy class is C.
The Chebotarev Density Theorem answers this question in the affirmative and more-

over also proves that there are infinitely many such prime ideals.

Let P (K) be the set of prime ideals in OK and A ⊂ P (K), we define

δ(A) = lim
s→1+

Σp∈A(Np)−s

Σp∈P (K)(Np)−s
(2.1)

whenever the limit exists.

Remark 2.0.1. 1. For every p ∈ P (K) there lies a prime p ∈ Z such that p | p

3
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and there can be at most [K : Q] prime ideals above a give prime p ∈ Z. Thus,∑
p∈P (K)

(Np)−x =
∑

p∈P (Z)

∑
p|p

(Np)−x

≤
∑

p∈P (Z)

∑
p|p

p−x

≤ [K : Q]
∑

p∈P (Z)

p−x

≤ [K : Q]ζ(x) <∞,

(2.2)

where x ∈ R such that x > 1 and ζ(x) is the Riemann-Zeta function.

2. We observe that for x as above

1

1 + (Np)−x
<

1

1− (Np)−x
≤ 1 + 2(Np)−x. (2.3)

Thus we may conclude that
∏

p∈P (K)(1− (Np)−x)−1 converges.

3. We also note that

|Ak| = |{p ∈ P (K);Np ≤ k}| <∞. (2.4)

4. Thus, ∏
p∈P (K);Np<k

(1− (Np)−x)−1 =
∑
a∈T

(Na)−x (2.5)

where T is the set of all ideals in OK such that only primes in Ak occur in its

factorization.

5. Taking k →∞, we get that∑
a

(Na)−x =
∏

p∈P (K)

(1− (Np)−x)−1, (2.6)

where a runs over all non-zero ideals in OK . This is also referred to as Euler

factorization.

6. If δ(A) exists and is non-zero, then A is infinite. Moreover, whenever the limit

exists it is a real number lying between 0 and 1.
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Theorem 2.0.2 (Chebotarev Density Theorem). Let L/K be a finite Galois

extension and suppose C is a conjugacy class in Gal(L/K) and let

A =

{
p ∈ P (K),

(
L/K

p

)
= C

}
. (2.7)

Then δ(A) exists and equals |C|
[L:K]

.

The proof of the above theorem is given in steps. Sequentially, we prove the CDT

for:

1. Cyclotomic extensions.

2. Abelian extension by Chebotarev’s field crossing argument.

3. Arbitrary Galois extension by reducing to the cylic case.

We mention a lemma which will be used a couple of times.

Lemma 2.0.3. Let a, b, n ∈ N such that (a, n) = (b, n) = 1. Then ζa = ζb ⇔ ζa ≡ ζb

in OQ(ζ)/p, where p is a prime lying over p ∈ Z such that (p, n) = 1 and ζ is a

primitive nth root of unity.

Proof. The direction ⇒ is clear.

⇐ Let K = Q(ζ) and if ζa 6= ζb and ζa ≡ ζb mod p where p is as in the Lemma.

Then ζa − ζb ∈ p.

But ∏
1≤i,j≤n,i 6=j

(ζ i − ζj) = (−1)n−1nn∏
1≤i,j≤n,i6=j,(i,n)=1,(j,n)=1

(ζ i − ζj) = disc(K/Q).
(2.8)

Thus,

nnOK ⊂ disc(K/Q)OK ⊂ (ζa − ζb)OK ⊂ p

nnOK ⊂ p⇒ nOK ⊂ p⇒ nOK ∩ Z ⊂ p ∩ Z⇒ p | n.
(2.9)

This is a contradiction.
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2.1 Cyclotomic extension

Now we begin our proof of the density theorem for cyclotomic extensions. An exten-

sion L/K is called cyclotomic if L ⊂ K(ζn) for some primitive nth root of unity ζn.

Let c ⊂ OK be a non-zero ideal and define

J(c) := {pe11 . . . pekk | ei ∈ Z, pi - c}. (2.10)

In other words, J(c) is the multiplicative subgroup of all fractional ideals coprime to

c.

For L/K an abelian extension, we define an integral ideal c ⊂ OK to be admissible if

the following holds:

If p a prime ideal in OK and p ramifies in OL then c ⊂ p.

The ideal generated by the discriminant of the extension is an example of an admis-

sible ideal. For c an admissible ideal, we define the Artin map as follows:

ωc : J(c)→ Gal(L/K), (2.11)

where ωc(p) =
[
L/K
p

]
. The symbol

[
L/K
p

]
is the corresponding Frobenius element in

Gal(L/K). Note that it is unique since the conjugacy classes are singleton.

Also, J(c) is free on prime ideals which do not occur in the prime factorization of c

and hence a map defined on primes extends uniquely to all of J(c).

If M/L is also an abelian extension and c is admissible for M/K, then c is also

admissible for L/K, and thus we have the following maps and the diagram commutes

(since the restriction of a Frobenius is still a Frobenius).

J(c) Gal(M/K)

Gal(L/K) Gal(L/K)

ωc,L/K

resωc,M/K

Id

For a cyclotomic extension, we will show that the Artin map is surjective. To this

end, we define the following.

Let Kc ⊂ K∗ be the subgroup of all elements x ∈ K∗ which satisfy:
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1. If p | c, then x ∈ OK,p and x ≡ 1 in OK,p/cOK,p.

2. For all real embeddings σ : K → R, we have σ(x) > 0.

Let P (c) = {xOK | x ∈ Kc}. It is easy to see that P (c) ⊂ J(c). We denote

G(c) = J(c)/P (c) and note that G(c) is finite (Theorem 1, Chapter 6, [2]).

For K ∈ G(c), we denote j(K, n) = {a an integral ideal, [a] = K, N(a) ≤ n}.
We note that

|j(K, n)| = ρcn+O(n1− 1
[K:Q] ), (2.12)

where ρc is a constant which is independent of K. (Theorem 3, Chapter 6, [2])

Lemma 2.1.1. Suppose K ⊂ L ⊂ K(ζm) where ζm is a primitive mth root of 1 and

c an ideal in OK such that c ⊂ mOK . Then c is admissible and ωc factors through

G(c).

Proof. We need to show that P (c) ⊂ ker(ωc,L/K).

Since the above diagram commutes, it is enough to show that P (c) ⊂ ker(ωc,K(ζm)/K).

Also, if a prime p ramifies in K(ζm) then p | disc(K(ζm)/K) and we know that

disc(K(ζm)/K) | mm. Hence p | m. Thus, we have p | c. Thus, c is admissible.

We know that

i : Gal(K(ζm)/K)→ (Z/mZ)∗ (2.13)

defined by i(σ) = a mod m where σ(ζm) = ζam is an injection.

For a prime ideal p ∈ J(c), we see that

ωc,K(ζm)/K(p)(ζm) ≡ ζNp
m mod b, (2.14)

where b is any prime ideal lying above p. By Lemma(2.0.3), we get that the same

relation holds in K(ζm) and hence

i ◦ ωc,K(ζm)/K(p) ≡ Np mod m. (2.15)

Thus, for any fractional ideal a ∈ P (c), we have

i ◦ ωc,K(ζm)/K(a) ≡ Na mod m. (2.16)
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For x = a
b
∈ Kc, such that a, b ∈ OK , we see that a− b ∈ cOK,p ∩OK = c (this is true

for Dedekind domains). Thus, a− b ∈ c ⊂ mOK .

To computeNK/Q(x), we can take the normal closure ofK/Q say as T , thenNK/Q(x) =∏
σ∈H σ(x) where H contains the coset representatives of Gal(T/Q)/Gal(T/K).

Since a− b ∈ mOK ⇒ a− b ∈ mOT and hence σ(a)− σ(b) ∈ mOT . But then

σ(a) ≡ σ(b) in OT/mOT . (2.17)

Hence ∏
σ∈H

σ(a) ≡
∏
σ∈H

σ(b) in OT/mOT . (2.18)

Thus,

NK/Q(a) ≡ NK/Q(b) in OT/mOT . (2.19)

But both LHS and RHS lie in Z and hence

NK/Q(a) ≡ NK/Q(b) in Z/mZ. (2.20)

Thus, we have

NK/Q(x) = NK/Q(
a

b
) ≡ 1 in Z/mZ. (2.21)

Then,

N(xOK) = NK/Q(x) ≡ 1 mod m. (2.22)

(here we use the 2nd defining condition of Kc).

Thus,

P (c) ⊂ ker(ωc,K(ζm)/K). (2.23)

Our next aim is to show that the above map ωc : G(c)→ Gal(L/K) is surjective.

In order to do this, we define L-series and analytically continue it to a larger space

and make some observations.

Let G be a finite abelian group. A character χ of G is a group homomorphism

from G to C∗. The set of all characters on a group G is represented by Ĝ and it is

easy to see that |G| = |Ĝ|. We also note the following orthogonality relations are

satisfied by the characters:
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1.
∑

χ∈Ĝ χ(g) =

|G| g = 1

0 g 6= 1

2.
∑

g∈G χ(g) =

|G| χ = 1

0 χ 6= 1

3.
∏

χ∈Ĝ(1− χ(g)Y ) = (1− Y t)|G|/t where t = ord(g).

In order to prove the last relation, suppose G = 〈̂g〉, then polynomial on LHS is

separable and

Roots of LHS = {χ(g)−1|χ ∈ Ĝ}
Roots of LHS ⊂ Roots of RHS

|Ĝ| = |Roots of LHS| ≤ |Roots of RHS| ≤ |G|

(2.24)

Thus identity follows in cyclic case.

For any G and g ∈ G, if χ ∈ 〈̂g〉, then we observe that since C∗ is divisible abelian

group, it is injective Z-module and hence

χ : 〈g〉 → C∗ (2.25)

can be lifted to a map

χ1 : G→ C∗ (2.26)

As a result there exists a split exact sequence

1→ H → Ĝ→ 〈̂g〉 → 1

where H = {χ ∈ Ĝ|χ(g) = 1}.
(2.27)

Thus, Ĝ = 〈̂g〉H and

Ĝ = χ1H ∪ χ2H ∪ . . . ∪ χt−1H ∪H (2.28)

is the coset decomposition, where

〈̂g〉 = {1, χ1, . . . , χt−1} (2.29)
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We observe that ∏
χ∈Ĝ

(1− χ(g)Y ) =
t∏
i=1

∏
χ∈χiH

(1− χ(g)Y )

=
t∏
i=1

(1− χi(g)Y )|H|

= (
∏
χ∈〈̂g〉

(1− χ(g)Y ))|G|/t

= (1− Y t)|G|/t.

(2.30)

The last equality follows from the cyclic case.

For c as above and χ a character on G(c), we define

Lc(s, χ) =
∑

(a,c)=1

χ([a])

(Na)s
,<(s) > 1 (2.31)

The summation runs over all integral ideals coprime to c.

Remark 2.1.2. 1. For defining an L-series and its convergence we do not require

c to be admissible.

2. Convergence of the L-series can be seen by comparing with equation 6.

3. L-series for the trivial character is called Dedekind zeta function of K with

respect to the ideal c and denoted by ζc(s,K).

ζc(s,K) =
∑

(a,c)=1

1

(Na)s
,<(s) > 1 (2.32)

The function χ is multiplicative on J(c) and by using the argument similar to (6),

we derive an Euler factorization

Lc(s, χ) =
∏
p-c

1

1− χ([p])
(Np)s

,<(s) > 1 (2.33)

We take the following Lemma (Chapter 5, [2]) for granted.

Lemma 2.1.3. Let {ai}i∈N be a sequence of complex numbers for which there is a
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0 ≤ σ < 1 and a complex number ρ such that

n∑
i=1

ai = ρn+O(nσ), n→∞. (2.34)

Then

f(s) =
∞∑
n=1

ann
−s (2.35)

defined for <(s) > 1 analytically continues to <(s) > σ except for a simple pole at

s = 1 with residue ρ.

Corollary 2.1.4. The L-series Lc(s, χ) has an analytic continuation to <(s) > 1 −
1

[K:Q] .

Moreover, if χ = 1, then it has a simple pole with residue hcρc and if χ 6= 1, it is

analytic on whole of <(s) > 1− 1
[K:Q] .

Proof. Define an :=
∑

a∈J(c),Na=n χ([a]) and observe that |an| <∞ . Then,

n∑
i=1

ai =
∑

a∈J(c),Na≤n

χ([a])

=
∑
K∈G(c)

∑
a∈j(K,n)

χ([a])

=
∑
K∈G(c)

χ(K)
∑

a∈j(K,n)

1

=
∑
K∈G(c)

χ(K)j(K, n).

(2.36)

By plugging in the estimates of j(K, n) in the above equation we get

For χ = 1,
n∑
i=1

ai = hcρcn+O(n1− 1
[K:Q] ). (2.37)

For χ 6= 1, by using the orthogonality relations,

n∑
i=1

ai = 0 +O(n1− 1
[K:Q] ). (2.38)

Hence, by above lemma, Lc(s, 1) analytically extends to <(s) > 1− 1
[K:Q] with a simple

pole at s = 1 with residue hcρc and Lc(s, χ), for χ 6= 1, can be analytically continued
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to the entire half plane <(s) > 1− 1
[K:Q] .

Recalling the context we are in i.e K ⊂ L ⊂ K(ζm) and c an admissible ideal

(since it was divisible by mOK) we will relate the Dedekind zeta function of cOL to

L-series over K.

Denote G := ωc(G(c)) and denote n := [Gal(L/K) : G]. We observe that any

character χ of G lifts to a character χ ◦ ωc on G(c).

Lemma 2.1.5. Let C := cOL and n as above. Then

ζC(s, L) =
∏
χ∈Ĝ

Lc(s, χ ◦ ωc)
n. (2.39)

Proof. We will use orthogonality relation 3 with Y = 1
(Np)s

and group G as above.

We observe that, any prime ideal p such that p - c, is unramified and hence splits into

g primes in OL each with inertia f . Thus, [L : K] = fg.

But
ord(ωc(p)) = ord(ωc(p))

= ord([
L/K

p
])

= |DB| = f,

(2.40)

where B is any prime lying above p. Using 3 with Y = 1
(Np)s

, we get

∏
χ∈Ĝ

(1− χ(ωc(p))

(Np)s
) = (1− 1

(Np)sf
)|G|/f . (2.41)

Taking nth powers,

∏
χ∈Ĝ

(1− χ(ωc(p))

(Np)s
)n = (1− 1

(Np)sf
)|G|n/f = (1− 1

(Np)sf
)g =

∏
B|p

(1− 1

(NB)s
). (2.42)
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But then

ζC(s, L)−1 =
∏
B-C

(1− 1

(NB)s
)−1

=
∏
p-c

∏
B|p

(1− 1

(NB)s
)−1

=
∏
p-c

∏
χ∈Ĝ

(1− χ(ωc(p))

(Np)s
)−n

=
∏
χ∈Ĝ

∏
p-c

(1− χ(ωc(p))

(Np)s
)n

=
∏
χ∈Ĝ

Lc(s, χ ◦ ωc)
−n.

(2.43)

Now we will show surjectivity of the map ωc by showing n = 1 by using above

lemma.

Lemma 2.1.6. Let χ be a nontrivial character of G, then:

1. Lc(1, χ ◦ ωc) 6= 0.

2. log ζc(s,K) = − log(s− 1) +O(1), s→ 1+.

3. n = 1.

Proof. 1. If χ is nontrivial, so is χ◦ωc, thus if Lc(1, χ◦ωc) = 0, then Lemma(2.1.5)

product on the RHS would be analytic at s = 1. Indeed, since the nth power of

Dedekind zeta function on RHS has a pole of order n which is cancelled by zero

of order n of Lc(s, χ ◦ ωc)
n. Every other term on RHS is analytic at s = 1 and

hence it is forced that the LHS is also analytic at s = 1 which contradicts our

earlier assertion about Dedekind zeta function always having a pole at s = 1.

2. This is basically the restatement that Dedekind zeta function has a pole at

s = 1.

3. Since the RHS has a pole of order n at s = 1, so should the LHS. Thus, n = 1.
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Suppose we prove that

log ζc(s,K) =
∑
p

1

(Np)s
+O(1), s→ 1+. (2.44)

Then we make the observation that∣∣∣∣∣∣
∑

p∈A(Np)−s

− log(s−1)∑
p∈A(Np)−s∑
p(Np)−s

− 1

∣∣∣∣∣∣ =

∣∣∣∣∣
∑

p(Np)−s

log(s− 1)
+ 1

∣∣∣∣∣
=

∣∣∣∑p(Np)−s + log(s− 1)
∣∣∣

|log(s− 1)|

≤

∣∣∣∑p(Np)−s − log ζc(s,K)
∣∣∣

|log(s− 1)|

+
|log ζc(s,K) + log(s− 1)|

|log(s− 1)|
.

(2.45)

As s→ 1+, we see that numerators of both the sums are bounded and since denomi-

nators tends to infinity, we get that

δ(A) =

∑
p∈A(Np)−s

− log(s− 1)
. (2.46)

Lemma 2.1.7. If χ is a character of G = Gal(L/K), then

logLc(s, χ ◦ ωc) =
∑
p-c

χ ◦ ωc(p)

(Np)s
+O(1), s→ 1+. (2.47)

Proof. Using the Euler factorization of L-series,

Lc(s, χ) =
∏
p-c

1

1− χ([p])
(Np)s

(2.48)

converges on the right side of 1.
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Taking logarithm on both sides we get,

logLc(s, χ) = −
∑
p-c

log(1− χ([p])

(Np)s
). (2.49)

Close to 1, we can use the power series expansion of complex logarithm i.e

log(1− x) = −
∞∑
n=1

xn

n
. (2.50)

Thus,

logLc(s, χ) =
∑
p-c

∞∑
n=1

χ([p])n

n(Np)sn

=
∞∑
n=1

∑
p-c

χ([p])n

n(Np)sn

=
∑
p-c

χ([p])

(Np)s
+
∞∑
n=2

∑
p-c

χ([p])n

n(Np)sn
.

(2.51)

Hence, it is enough to show that close to 1

∞∑
n=2

∑
p-c

χ([p])n

n(Np)sn
(2.52)
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is bounded. We let σ = <(s)∣∣∣∣∣∣
∞∑
n=2

∑
p-c

χ([p])n

n(Np)sn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
p-c

∞∑
n=2

χ([p])n

n(Np)sn

∣∣∣∣∣∣
≤
∑
p-c

∞∑
n=2

1

n(Np)σn

≤
∑

p∈P (K)

∞∑
n=2

1

n(Np)σn

≤
∑

p∈P (Q)

∑
p|p

∞∑
n=2

1

(Np)σn

≤
∑

p∈P (Q)

[K : Q]
∞∑
n=2

1

(Np)σn

≤ [K : Q]
∑

p∈P (Q)

∞∑
n=2

1

pσn

≤ [K : Q]
∑

p∈P (Q)

1

p2σ
1

1− p−σ

≤ [K : Q]
∑

p∈P (Q)

1

p2σ

≤ [K : Q]
∑

p∈P (Q)

1

p2

<∞.

(2.53)

Hence we are done.

Using the above Lemma(2.1.7) for the trivial character we get

log ζc(s,K) =
∑
p-c

(Np)−s +O(1), s→ 1+. (2.54)

Thus,

log ζc(s,K) =
∑

p∈P (K)

(Np)−s +O(1), s→ 1+. (2.55)
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Hence, we can say that

δ(A) =

∑
p∈A(Np)−s

− log(s− 1)
. (2.56)

Now, we observe that for a given σ ∈ Gal(L/K)

A =

{
p ∈ P (K),

[
L/K

p

]
= σ

}
= {p ∈ P (K), ωc(p) = σ}. (2.57)

Consider

f(s) :=
∑
χ∈Ĝ

χ(σ−1) log(Lc(s, χ ◦ ωc)),<(s) > 1 (2.58)

In this expression,

f(s) = log(ζc(s,K)) +
∑

χ∈Ĝ,χ 6=1

χ(σ−1) log(Lc(s, χ ◦ ωc)). (2.59)

We observe that the Lc(s, χ) is analytic at 1 for all χ 6= 1 and hence is bounded close

to 1. We also know that

log(ζc(s,K)) = − log(s− 1) +O(1) (2.60)

in a suitable neighbourhood of 1. Thus,

f(s) = − log(s− 1) +O(1), s→ 1+. (2.61)

On the other hand, using the Lemma(2.1.5), close to 1

f(s) =
∑
χ∈Ĝ

χ(σ−1)(
∑
p-c

χ ◦ ωc(p)

(Np)s
+O(1))

=
∑
χ∈Ĝ

∑
p-c

χ(σ−1)
χ ◦ ωc(p)

(Np)s
+O(1)

=
∑
χ∈Ĝ

∑
p-c

χ(σ−1ωc(p))

(Np)s
+O(1)

=
∑
p-c

∑
χ∈Ĝ

χ(σ−1ωc(p))

(Np)s
+O(1)

(2.62)
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But orthogonality relation2 dictate that the sum will always be zero for p /∈ A and

for p ∈ A we will get [L : K], thus we get

f(s) = [L : K]
∑
p∈A

(Np)−s +O(1) (2.63)

Thus,∣∣∣∣
∑

p∈A(Np−s)

− log(s− 1)
− 1

[L : K]

∣∣∣∣ =

∣∣∣∣ [L : K]
∑

p∈A(Np−s) + log(s− 1)

[L : K] log(s− 1)

∣∣∣∣
≤

∣∣∣[L : K]
∑

p∈A(Np−s)− f(s)
∣∣∣

|[L : K] log(s− 1)|
+
|f(s) + log(s− 1)|
|[L : K] log(s− 1)|

.

(2.64)

Both of the terms in the above sum are bounded and hence as s→ 1+,we get that

δ(A) =
1

[L : K]
. (2.65)

Thus, we have proved CDT for the special case of cyclotomic extensions.

Corollary 2.1.8 (Dirichlet’s theorem). Let a, n be positive integers such that (a, n) =

1, then there exist infintely many rational primes p in the arithmetic progession

{a+ tn | t ∈ Z}.

Proof. Consider the sets

A = {p ∈ P (Q) | p ≡ a mod n} (2.66)

B =

{
p ∈ P (Q) |

[
Q(ζn)/Q

p

]
≡ a mod n

}
. (2.67)

Since Gal(Q(ζn)/Q) ∼= (Z/nZ)∗, where the isomorphism is decided after fixing a

primitive nth root of unity (but here we do have a canonical choice which we represent

by ζn = e2πi/n and it sends σ → c where σ(ζn) = ζcn and it is through this identification

that we write Frobenius elements as elements of (Z/nZ)∗.

It is obvious that B ⊂ A and the other inclusion follows from Lemma(2.0.3) for

abelian extensions, thus A = B.

But CDT for cycltomic extensions gives that δ(A) = δ(B) = 1
φ(n)

and hence A is

infinite.
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2.2 Abelian extension

Lemma 2.2.1. Let L/K be a finite abelian extension and m be a positive integer.

Then there exists a cyclotomic field M of degree m such that M ∩ L = K.

Proof. Suppose K = Q, then let L′ be the maximal cyclotomic extension contained

in L. Then L′ ⊂ Q(ζk) for some positive integer k.

Then, find a prime q such that q > k and q ≡ 1 mod m by Dirichlet’s theorem.

Thus, m | q−1 and hence there is a unique subfield M ⊂ Q(ζq) such that [M : Q] = m

and the Galois group is cyclic. Also, Q ⊂M ∩L′ ⊂ Q(ζq)∩Q(ζk) = Q(ζgcd(q,k)) = Q.

Thus, M ∩ L′ = Q and since L ∩M ⊂M ⊂ Q(ζq), we infer that L ∩M ⊂ L′ as L′ is

maximal cyclotomic. Thus L ∩M = Q.

Now for the general case,

We find M ′ which is cyclotomic and cyclic of degree m, then choose M = KM ′. Since

L ∩M ′ = Q, we have that K ∩M ′ = Q and hence [KM ′ : K] = [M ′ : Q] = m and

their Galois groups are isomorphic.

Q

K M ′

L KM ′

Since, L and M ′ are linearly disjoint over Q, by Theorem 20.12 in [3], K and M ′ are

linearly disjoint over Q and L and KM ′ are linearly disjoint over K. Since, L and

KM ′ are linearly disjoint over K, we get that L ∩KM ′ = K.

For each M as above Gal(M/K) = 〈τ〉 and τm = 1.

Now, we begin the proof of CDT for abelian extension.

Suppose L/K is an abelian extension and σ ∈ Gal(L/K) and we know that ord(σ) |
ord(τ). In other words, if ord(τ) = m = pb11 . . . p

bk
k and ord(σ) = n = pa11 . . . pakk we

have ai ≤ bi.

Consider the set

T (M/K) = {τ i, ord(σ) | ord(τ i)} (2.68)
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Then we calculate the size of T (M/K).

Let l = m/n and A = {1 ≤ i ≤ m, gcd(i,m)|l}. We get a bijection from T (M/K) to

A by sending τ i → i.

Let B = {1 ≤ i ≤ l, i|l}.
Then we get a surjective map θ : A→ B by sending i→ gcd(i,m).

The cardinality of each fibre can be computed easily. More precisely, for d ∈ B,

|θ−1(d)| = φ(m/d).

Thus, |T (M/K)| = |A| = Σd|lφ(m/d).

But φ(m/d) = m
d

∏k
i=1

pi−1
pi

.

We get

|A| =
∑
d|l

φ(m/d) = Σd|l
m

d

k∏
i=1

pi − 1

pi

= m
k∏
i=1

pi − 1

pi
(
∑
d|l

1

d
)

=
m

l

k∏
i=1

pi − 1

pi
(
∑
d|l

l

d
).

(2.69)

But if x = py11 . . . pyll , then sum of its divisors is given by
∏l

i=1
p
yi+1
i −1
pi−1 .

Hence,

|A| = m

l

k∏
i=1

pi − 1

pi

k∏
i=1

pbi−ai+1
i − 1

pi − 1
=

k∏
i=1

(pbii − p
ai−1
i ). (2.70)

Fix γ ∈ Gal(M/K).

Let F = LM and find ργ ∈ Gal(F/K) such that ργ|M = γ and ργ|L = σ and consider

E = F<ργ> = {x ∈ F | ργ(x) = x}.

K

L E M

F
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Then we claim that F/E is a cyclotomic extension. Indeed, since

E ∩M = F<ργ> ∩M = M<ργ> = Mγ = K (2.71)

and hence Gal(M/K) ∼= Gal(F/E).

But

ord(γ) = [F : E] = [F : ME][ME : E] = [F : ME][M : K] = [F : ME] ord(γ).

(2.72)

Thus, F = ME.

As K ⊂M ⊂ K(ζ)⇒ KE ⊂ME ⊂ K(ζ)E ⇒ E ⊂ F ⊂ E(ζ).

Thus, F/E is a cyclotomic extension.

Thus,

Aγ = {q ∈ P (E) | [F/E
q

] = ργ} (2.73)

has a density by the CDT for cyclotomic extensions and δ(Aγ) = 1
[F :E]

.

We also note that if γ 6= β, then Aγ ∩ Aβ = ∅.
We will show that primes in Aγ with non-trivial inertia do not count from a density

perspective, they form a “thin” set.

Let A′γ = {q ∈ Aγ | p := q ∩K is unramified for E/K and Np = Nq}.∑
q∈Aγ\A′γ

(Nq)−s ≤ α +
∑
q∈B

(Nq)−s

≤ α +
∑

q∈B,p|q

p−2s

≤ α + [E : Q]
∑

p∈P (Q)

p−2 <∞.

(2.74)

In above inequalties α is the sum of all Nq−s for which q∩K ramifies in E and there

are finitely many such.

Let

B = {q ∈ Aγ, q ∩Kis unramified andNq > N(q ∩K)}. (2.75)

Thus, δ(Aγ) = δ(A′γ) + δ(Aγ \ A′γ) = δ(A′γ).
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We know that

A′γ = {q ∈ P (E) | p := q ∩K is unramified for E/K and Np = Nq,

[
F/E

q

]
= ργ}.

(2.76)

Let B′γ = {p ∈ P (K) | p is unramified ,
[
F/K
p

]
= ργ}.

Again, Bγ ∩Bβ = ∅ whenever γ 6= β.

Consider the restriction map res : A′γ → B′γ which sends q→ q ∩K.

Since q ∩ K is unramified for E/K and q is unramified for F/E, we have q ∩ K is

unramified for F/K and since Nq = N(q ∩ K), the Frobenius for F/E is also the

Frobenius for F/K as the inertia of E/K is trivial and hence the residue fields are

same.

Moreover, if p ∈ B′γ, then there exists a prime b ∈ P (L) lying above p such that

[F/K
b

] = ργ, then it is easy to see that b ∩ E ∈ A′γ.
We calculate the cardinality of the fibres in the above restriction map.

If p ∈ B′γ, then it splits into r primes in E such that ref = [E : K] but since

p is unramified we have e = 1. Thus, for each prime p in B′ there are exactly r

primes lying above p such that pOE = q1 . . . qr. Also, for each such qi, we see that

[E/K
p

] = [F/K
p

]|E = ργ|E = 1E and hence f = |Dqi | = ord([E/K
p

]) = 1. Thus, Np = Nq

for each q which lies above p, we get that f = 1 and hence r = [E : K].

Thus, A′γ =
∐

p∈B′γ
Ap where Ap contains [E : K] primes which lie above p.

Pick a representative from each fibre and form the set D (which is bijective to B′γ).∑
q∈D

(Nq)−s =
∑
q∈D

(N(q ∩K))−s =
∑
p∈B′γ

(Np)−s. (2.77)

But A′γ =
⋃
σ∈Gal(E/K) σD and the union is disjoint. Thus,

1

[F : E]
= δ(A′γ) =

∑
σ∈Gal(E/K)

δ(σD) = [E : K]δ(D) = [E : K]δ(B′γ)

δ(B′γ) =
1

[E : K][F : E]
=

1

[F : K]
.

(2.78)
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Now, consider

δ(∪γ∈T (M/K)B
′
γ) =

∑
γ∈T (M/K)

δ(B′γ)

=
∑

γ∈T (M/K)

1

[F : K]

= |T (M/K)|[F : K]

=
k∏
i=1

(pbii − p
ai−1
i )[F : K]

=
1

[F : K]
[M : K]

k∏
i=1

(1− pai−1−bii ).

(2.79)

If T = {p ∈ P (K) | L/K
p

= σ}, then since the restriction of a Frobenius is also a

Frobenius, we get that
⋃
γ∈T (M/K)B

′
γ ⊂ T .

Thus,

δ(T ) ≥ δ(∪γ∈T (M/K)B
′
γ) ≥

1

[F : K]
[M : K]

k∏
i=1

(1− pai−1−bii )

=
1

[L : K][M : K]
[M : K]

k∏
i=1

(1− pai−1−bii )

=
1

[L : K]

k∏
i=1

(1− pai−1−bii ).

(2.80)

But as

m = |Gal(M/K)→∞⇒ (1− pai−1−bii )→ 1. (2.81)

Thus,

δ(T ) ≥ 1

[L : K]
. (2.82)

But since

δ(∪σ∈Gal(L/K)Tσ) = 1, (2.83)

we must have

δ(T ) =
1

[L : K]
. (2.84)

Remark 2.2.2. This proof is not entirely correct as we have assumed δ(T ) exists.
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To do away with that, show that the equations above for δ(T ) are valid for partial

sums and take limit.

Thus, we have proved CDT for the abelian case.

2.3 Arbitrary extension

Now we will prove CDT for arbitrary Galois extensions.

Suppose L/K is a finite Galois extensions and C ⊂ Gal(L/K) is a conjugacy class

and A = {p ∈ P (K) | (L/K
p

) = C}.
Consider τ ∈ C, and look at E := L<τ> = {x ∈ L | τ(x) = x}.

K

E

L

Then L/E is an abelian (in fact cyclic) extension and hence we know that for

D′ = {q ∈ P (E) | [L/E
q

] = τ}, (2.85)

we have

δ(D′) =
1

[L : E]
. (2.86)

For a prime Q above q ∈ D′, we have ref = [L : E] = ord(τ). But e = 1 and

f = |DQ| = | < τ > | = ord(τ) and hence r = 1. Thus, there is a one to one

correspondence between primes in L having τ as their Frobenius element and primes

lying below such primes.

Consider the set

D = {q ∈ D′ | (q ∩K) unramified forE/K,Nq = N(q ∩K)}. (2.87)
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Then, we claim that the set D′ \D does not contribute to the density.∑
q∈D′\D

(Nq)−s ≤
∑

q∈P (E),N(q∩K)<N(q)

(Nq)−s

≤
∑

q∈P (E),N(q∩K)<N(q)

(N(q ∩K))−s

≤
∑

q∈P (E),N(q∩Q)<N(q)

(N(q ∩Q))−s

≤
∑

p∈P (Q)

∑
p|q,p2≤N(q)

(N(q ∩Q))−s

≤ [E : K]
∑

p∈P (Q)

p−2 <∞.

(2.88)

Thus,

δ(D′) = δ(D) =
1

[E : K]
. (2.89)

Now, for the set

B = {p ∈ P (K) | (L/K
p

) = C}, (2.90)

consider the restriction map θ : D → B.

Note that if τ is the Frobenius element over q ∈ D for L/E, it is also the Frobenius

element over q∩K of L/K, since residue of E/K is trivial for q ∈ D. Thus, the map

θ makes sense.

Moreover, given p ∈ B, there exists b ∈ P (L) such that [L/K
b

] = τ and take q := b∩E
and observe that q ∈ D as restriction of a Frobenius is also a Frobenius and in this

case τ |E = 1 which means that the inertia is one and Np = N(b ∩ E).

We compute the cardinality of the fibres in the above map.

If q and t are elements of D such that they lie over the same prime in B. Then find

unique primes Q and T in P (L) such that they lie over q and t respectively. Then

their exists σ ∈ Gal(L/K) such that σ(Q) = T and

[
L/K

Q
] = τ = [

L/K

T
] = [

L/K

σ(Q)
] = σ[

L/K

Q
]σ−1 ⇒ σ ∈ CG(τ), (2.91)

where G = Gal(L/K).

The group CG(τ) acts transitively on θ−1(p) = {b ∈ D, p | b}. Thus, the orbit size,

the cardinality of θ−1(p), is |CG(τ)
Dq
| = |G|

ord(τ)|C| where q is any prime lying above p with
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τ as the Frobenius element.

Thus,

D =
∐
p∈B

θ−1(p). (2.92)

Pick a representative from each fibre and call that set R. Then R is bijective to B

and ∑
q∈R

(Nq)−s =
∑
q∈R

(N(q ∩K))−s =
∑
p∈B

(Np)−s. (2.93)

Thus,
1

ord τ
=

1

[E : K]
= δ(D) =

|G|
ord(τ)|C|

δ(B)

δ(B) =
|C|

[L : K]
.

(2.94)

Hence, we have proved CDT for an arbitrary Galois extension.

Now we will see some cool applications of the CDT.

Lemma 2.3.1. Suppose L/K is a finite Galois extension of number fields. Then

there are infinitely many primes p ∈ P (K) such that for any prime b lying above p

we have Np = Nb.

Proof. Consider

C = {p ∈ P (K); [
L/K

p
] = 1}. (2.95)

Then δ(C) = 1
[L:K]

. For any p ∈ C, epfp = Db = 1. Thus, Np = Nb. Thus, there

are infinitely many primes p ∈ P (K) such that Np = Nb where b is any prime lying

above p.

Lemma 2.3.2. Suppose L/K is a finite Galois extension of number fields and C a

conjugacy class of Gal(L/K). Then there are infinitely many primes p ∈ P (K) such

that for any prime Np is a prime number and [L/K]
p

= C.

Proof. For

A = {p ∈ P (K);Np > p, p | p}, (2.96)
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we have ∑
p∈A

(Np)−x =
∑
p∈A

(pfp)−x

≤
∑
p∈A

p−2x

≤
∑

p∈P (K)

p−2x

≤ [L : Q]
∑

p∈P (Q)

p−2x

≤ [L : Q]
∑

p∈P (Q)

p−2 <∞.

(2.97)

Hence, δ(A) = 0. For C, any conjugacy class in Gal(L/K), and

C = {p ∈ P (K); (
L/K

p
) = C}. (2.98)

By CDT, we know that δ(C) = |C|
[L:K]

.

But
|C|

[L : K]
= δ(C) = δ(C ∩ A) + δ(C ∩ Ac) = 0 + δ(C ∩ Ac). (2.99)

Thus, there are infinitely many primes p such that there corresponding conjugacy

class is C and Np = p.

Lemma 2.3.3. Let f(x) ∈ Z[x] be an irreducible polynomial of degree n > 1. Then

there are infinitely many primes p such that f has no root in Z/pZ.

Proof. Let K = Q(α1, . . . , αn) where αi are distinct roots of f(x) in C. The Galois

group Gal(K/Q) acts transitively on roots {αi} and each permutation specifies the

element of the Galois group uniquely.

Hence we may think of Gal(K/Q) as a subgroup of Sn. For T1 = Q(α1) we see that

Gal(K/T1) is a proper subgroup of Gal(K/Q) and its conjugates σGal(K/T1)σ
−1 =

Gal(K/Ti) where σ(α1) = αi. As a finite group cannot be written as union of con-

jugates of a proper subgroup, find σ /∈
⋃

Gal(K/Ti). By CDT, there are infinitely

many primes p ∈ Z such that there exists a prime p above p and [K/Q
p

] = σ. The cycle

type of σ tells us the irreducible decomposition of f in the quotient field. For p as

above, if there was a root of f in the residue field of p, then σ must fix a root of f i.e

for some i we must have σ(αi) = αi, which implies σ ∈ Gal(K/Ti). This contradicts

our choice of σ.
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Chapter 3

Chebotarev Density Theorem for

Function Fields

In this chapter we formulate and give an elementary proof of the Chebotarev Density

Theorem for function fields of one variable defined over finite fields.

We assume familiarity with Theory of function fields over one variable and Riemann

hypothesis for finite fields. A good reference is [4] and we assume knowledge of

Chapter 1,3,5.

Over function fields, role of primes is played by places and hence we will use the term

prime/place interchangeably.

Let q be a power of a prime and K be function field of Fq. Given a divisor A ∈ Div(K),

we define NA = qdeg(A). For a place P , this turns out to be NP = qdeg(P ) which is

the cardinality of the residue field KP = OP/P .

A special consequence of Riemann hypothesis is the Hasse-Weil bound on the

number of places of degree 1.

Theorem 3.0.4 (Hasse-Weil bound). Let F be a function field and N(F ) be the

number of places F/Fq of degree 1 and g be the genus of the function field. Then∣∣N(F )− (q + 1)
∣∣ ≤ 2gq1/2. (3.1)

Proof. Refer to Theorem 5.2.3 [4].

Suppose L/K is a Galois extension and Fqn is the constant field inside L. By

fixing an unramified place P in K, we know that the Frobenius elements living over

29
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P form a conjugacy class C in Gal(L/K).

Let P(K) be the set of places in K and A ⊂ P (K), we define

δ(A) = lim
s→1+

∑
P∈A(NP )−s∑

P∈P(K)(NP )−s
, (3.2)

whenever the limit exists.

Remark 3.0.5. 1. The convergence of numerator (a subseries of denominator)

and denominator is seen as follows:∑
P∈P(K)

(NP )−s =
∑

p∈P(Fq(t))

∑
P |p

(NP )−s

=
∑

p∈P(Fq(t))

∑
P |p

q−sdeg(P )

≤
∑

p∈P(Fq(t))

∑
P |p

q−sdeg(p)

≤ [K : Fq(t)]
∑

p∈P(Fq(t))

q−sdeg(p)

≤ [K : Fq(t)]
∑
f∈Fq [t]

f irreducible,monic

q−sdeg(f) + [K : Fq(t)]q−s

≤ [K : Fq(t)]
∑
f∈Fq [t],
fmonic

q−s deg(f) + [K : Fq(t)]q−s

≤ [K : Fq(t)]
1

1− q1−s
+ [K : Fq(t)]q−s <∞.

(3.3)

2. We may assume that K/Fq(t) is a separable extension.

Theorem 3.0.6 (Chebotarev Density Theorem). Let L/K be a finite Galois

extension of function fields and C be a conjugacy class in Gal(L/K) and consider the

set

A =

{
P ∈ P(K) |

(
L/K

P

)
= C

}
. (3.4)

Then δ(A) exists and equals |C|
[L:K]

.

We set up the notation as follows:
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Let τ ∈ Gal(L/K) and we assume the set up to be inside some algebraically closed

field Ω.

P′(K) = {P ∈ P(K) | P is unramified below and above} (3.5)

Pk(K) = {P ∈ P(K) | deg(P ) = k} (3.6)

P′k(K) = P′(K) ∩ Pk(K) (3.7)

Ak(L/K, C) = {P ∈ P′k(K) | (L/K
P

) = C} (3.8)

Bk(L/K, τ) = {Q ∈ P(L) | Q ∩K ∈ Pk(K), [
L/K

Q
] = τ} (3.9)

A′ =
∞⋃
k=1

Ak(L/K, C) (3.10)

gk = genus of K (3.11)

Frobq = Frobenius endomorphism of Gal(Fq) (3.12)

We know that P′(K) is cofinite subset of P(K) and hence A′ is a cofinite subset

of A and it is enough to show that the density of A′ is |C|
[L:K]

.

We introduce some new degrees as the following:

Fq(t) Fqn(t)

KFqn Fqn(t)K

L

m

n

n

d

Lemma 3.0.7. Let k be a positive integer and P ∈ Ak(L/K, C) and τ ∈ C.

1. There are [L:K]
ord(τ)

places of P(L) living over P .

2. If Ak ⊂ Ak(L/K, C) and Bk(τ) = {Q ∈ Bk(L/K, τ) | Q ∩K ∈ Ak}, then

|Ak| =
|C| ord(τ)|Bk(τ)|

[L : K]
. (3.13)
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Proof. 1. For Q any place above P , we know that ord(τ) = |DQ| = fQ/P .

Since P is unramified ref = [L : K] and r = [L:K]
ord(τ)

.

2. We observe that σBk(L/K, τ) = Bk(L/K, στσ
−1). Moreover, if τ1 6= τ2, then

Bk(L/K, τ1) ∩Bk(L/K, τ2) = ∅ (3.14)

The same is true for Bk(τ), hence |Bk(τ)| = |Bk(στσ
−1)|. The restriction map⋃

τ∈C

Bk(τ)→ Ak (3.15)

Q→ Q ∩K (3.16)

is surjective and each fibre has cardinality [L:K]
ord(τ)

. Thus,

|
⋃
τ∈C

Bk(τ)| = |Ak|
[L : K]

ord(τ)
, (3.17)

|C||Bk(τ)| = |Ak|
[L : K]

ord(τ)
. (3.18)

Lemma 3.0.8. Let K ⊂M ⊂ L and τ ∈ Gal(L/M). Suppose Fqr is the full constant

field of M and r | k. Then

Bk(L/K, τ) = Bk/r(L/M, τ) ∩ {Q ∈ P(L) | deg(Q ∩K) = k}. (3.19)

Proof. We see that since τ ∈ Gal(L/M), we have τ(x) = x for all x ∈ KP ′ where

P ′ = Q ∩M .
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Fq

Fqr

Fqn

KP

KP ′

KQ

k
r

If Q ∈ Bk(L/K, τ), then τ(x) = xq
k∀x ∈ KQ.

Since, KP ′ ⊂ KQ, x
qk = τ(x) = x.

Thus, KP ′ ⊂ Fqk .
Also, deg(Q ∩K) = k, hence KP = Fqk .
But, Fqk = KP ⊂ KP ′ ⊂ Fqk .
Thus, Fqk = KP ′ = Fqr deg(P ′) .
Hence, deg(P ′) = k

r
.

Thus, Q ∈ Bk/r(L/M, τ).

On the other hand, if Q ∈ Bk/r(L/M, τ) ∩ {Q ∈ P(L) | deg(Q ∩ K) = k}, then

deg(P ′) = k
r
, due to which KP = KP ′ and hence Q ∈ Bk(L/K, τ).

Lemma 3.0.9. Let K ⊂ M ⊂ L and τ ∈ Gal(L/M). Suppose Fqr is the full

constant field of M and r | k. Suppose C and C ′ are the conjugacy classes of τ in

Gal(L/K),Gal(L/M), respectively. Then, consider the set

A′k/r = Ak/r(L/M, C ′) \ {P ′ ∈ P(M) | deg(P ′ ∩K) ≤ k

2
.} (3.20)

Then we have

|Ak(L/K, C)| =
|C||A′k/r|
|C ′|[M : K]

. (3.21)
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Proof. Consider the set

B′k(τ) = Bk/r(L/M, τ) ∩ {Q ∈ P(L) | deg(Q ∩K) = k}. (3.22)

Then, by Lemma(5.0.11)

B′k(τ) = Bk(L/K, τ). (3.23)

Also, places in L which lie over A′k/r and have τ as their Frobenius elements are

precisely members of B′k(τ). More precisely,

B′k(τ) = {Q ∈ Bk/r(L/M, τ) | Q ∩M ∈ A′k/r}. (3.24)

Thus, we can use Lemma(5.0.10) to get

|A′k/r| =
|C ′| ord(τ)|B′k(τ)|

[L : M ]
, (3.25)

|B′k(τ)| = |Bk(L/K, τ)| = |Ak(L/K, C)|[L : K]

|C| ord(τ)
, (3.26)

Thus, |Ak(L/K, C)| =
|C||A′k/r
|C ′|[M : K]

. (3.27)

Theorem 3.0.10. Suppose L/K is Galois extension and Fqn is the constant field of

L. Let k be a positive integer such that

τ |Fqn = Frob |kFqn . (3.28)

For n′ ∈ N such that n | n′, we consider the constant field extension L′ = FqnL.

Then, for each τ ∈ C, we can find a unique τ ′ ∈ Gal(L′/K) such that τ ′|L = τ and

τ ′|F
qn
′ = Frob |kF

qn
′ .

Moreover,

1. C ′ = {τ ′ | τ ∈ C} is a conjugacy class of Gal(L′/K)

2. ord(τ ′) = lcm(ord(τ), [Fqn′ : Fqn′ ∩ Fqk ])

3. Ak(L
′/K, C ′) = Ak(L/K, C)
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Proof. Let n′ = nt. We first show how to extend τ to L′.

Fq

Fqn

L Fqn′

K

L′

We know that 〈Frob |nF
qn
′ 〉 = Gal(Fqn′/Fqn) ∼= Gal(L′/L) = 〈φ〉 where the isomor-

phism is given by the restriction map. Moreover, τ can be extended to τ ∈ Gal(L′/K)

and all other extensions are related by elements of Gal(L′/L). More precisely,

{τφi | 1 ≤ i ≤ t} (3.29)

are all the extensions of τ to L′. We need to pick the right one. Suppose

τ |F
qn
′ = Frob |lF

qn
′ . (3.30)

But we also know that

Frob |lFqn = τ |Fqn = Frob |kFqn . (3.31)

Thus, we must have k ≡ l mod n. Suppose nr = l − k then

τφ−r|F
qn
′ = τ |F

qn
′ Frob |−nrF

qn
′ = Frob |lF

qn
′ Frob |−nrF

qn
′ = Frob |l−nrF

qn
′ = Frob |kF

qn
′ . (3.32)

Hence choose τ ′ := τφ−r.

Moreover such a τ ′ is unique. Indeed, since L′ = Fqn′L, any extension which agrees

on Fqn′ and L, neccesarily agrees on L′.

Now we show other properties.

1. If τ ′1 and τ ′2 are extensions of τ1, τ2, respectively such that στ1σ
−1 = τ2, then τ ′2

and σ′τ ′1σ
′−1 agree on L where σ′ is any lift of σ. Also, τ ′2 and σ′τ ′1σ

′−1 agree on
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Fqn′ since the Gal(Fqn′/Fq) is abelian. Hence, by uniqueness τ ′2 = σ′τ ′1σ
′−1.

Fq

Fqn

Fqk

Fqn′

Fqgcd(n′,k)

2. ord(τ ′) = lcm(ord(τ), ord(Frob |kF
qn
′ )).

But ord(Frob |kF
qn
′ ) = lcm(n′,k)

k
.

Thus, ord(τ ′) = lcm(ord(τ), lcm(n′,k)
k

) = lcm(ord(τ), [Fqn′ : Fqn′ ∩ Fqk ]).

3. Ak(L
′/K, C ′) = Ak(L/K, C)

Fix a τ ∈ C. If P ∈ Ak(L′/K, C ′), then for some Q ∈ P(L′), we have [L
′/K
Q

] = τ ′,

thus restricting both sides to L, we get [L/K
Q∩L ] = τ , and hence P ∈ Ak(L/K, C).

On the other hand, if P ∈ Ak(L/K, C), then [L/K
Q

] = τ and forQ′ a lift of placeQ

in P(L′), we have τ ′|KQ
(x) = xq

k
and τ ′|F

qn
′ (x) = xq

k
and since KQ′ = Fqn′KQ

we must have τ ′(x) = xq
k

for all x ∈ KQ′ . Thus, [L
′/K
Q′

] = τ ′ and hence

P ∈ Ak(L′/K, C ′).

Corollary 3.0.11. Let L = FqnK and τ ∈ Gal(L/K) such that

τ |Fqn = Frob |kFqn (3.33)

then

Ak(K/K, {1}) = Ak(L/K, {τ}). (3.34)

Proof. We apply the above Theorem(3.0.10) to the set up where L = K and L′ =

FqnK.
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Theorem 3.0.12. Suppose L = FqnK and C = {τ} and τ |Fqn = Frob |Fqn , then∣∣∣∣|A1(L/K, C)| − q
∣∣∣∣ < 2(gL

√
q + gL + d). (3.35)

Proof. We observe that A1(L/K, C) = P′1(K). Indeed, since L/K is a constant field

extension, for any place P ∈ P(K) and Q a place above P in L, we have KQ = FqnKP

Fq

Fqn

KP

KQ

n

1

Thus, if P is a place in K and Q is any place in L lying over P , we have τ |KP
(x) =

τ |Fq(x) = xq and τ |Fqn (x) = xq. Thus, τ(x) = xq for all x ∈ KQ and hence τ = [L/K
Q

].

Consequently, Q ∈ A1(L/K, C).
Moreover, P1(K) \ P′1(K) is the set of all primes of degree 1 ramified over Fq(t) as

there is no ramification over a constant field extension. But, the set of ramified primes

is precisely the support of the Different i.e Diff(K/Fq(t)).
Recalling Hurwitz genus formula,

2gK − 2 = −2[K : Fq(t)] + deg(Diff(K/Fq(t))). (3.36)

For our case the above equation can be re-written as

deg(Diff(K/Fq(t))) = 2(gK + d− 1). (3.37)

By Hasse-Weil(3.0.4), we have a bound on places of degree 1 given by

|P1(K)− q − 1| < 2gK
√
q. (3.38)



38CHAPTER 3. CHEBOTAREVDENSITY THEOREM FOR FUNCTION FIELDS

Thus, we get q − 1− 2gK
√
q < |P1(K)| < q − 1 + 2gK

√
q,

q − 1− 2gK
√
q < |P1(K) ∩ Supp(Diff(K/Fq(t)))|+ |P′1(K)| < q − 1 + 2gK

√
q,

But,

q − 1− 2gK
√
q < |P1(K) ∩ Supp(Diff(K/Fq(t)))|+ |P′1(K)|

< deg(Diff(K/Fq(t))) + |P′1(K)|,
q − 1− 2gK

√
q < 2gK + 2d− 2 + |P′1(K)|,

q − 2(gK
√
q + gK + d) < q + 1− 2gK

√
q − 2gK − 2d < |P′1(K)|.

Also |P′1(K)| ≤ |P1(K)| < q − 1 + 2gK
√
q ≤ q + 2gK

√
q + 2gK + 2d. (3.39)

But since the genus does not change for constant field extensions, we have gK = gL

and hence we are done.

Lemma 3.0.13. Let [K ′ : K] = km such that Fqk ⊂ K ′.Then

|{Q ∈ P(K ′); deg(Q ∩K) | k; deg(Q ∩K) 6= k}| ≤ 2m(qk/2 + (2gK + 1)qk/4). (3.40)

Proof.

{Q ∈ P(K ′); deg(Q∩K) | k; deg(Q∩K) 6= k} = {Q ∈ P(K ′); deg(Q∩K) | k; deg(Q∩K) ≤ k

2
}.

(3.41)

Note that equation is trivially true when k = 1 so we may assume k ≥ 2.

The main ingredient of this proof is Lemma(5.1.9) [4] which tells us the ramification

of place in a constant field extension over a finite field.

For any j|k, we have Fqj ⊂ Fqk .
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Fq

K Fqj

KFqj Fqk

KFqk Fqk

K ′

j

k/m

m

If P ∈ Pj(K), then there are gcd(j, j) = j places lying above P in P(KFqj) and

each of them has degree j/j = 1.

For any prime P ′ ∈ P(KFqj) lying above P ∈ Pj(K), remains prime of degree 1 in

P(KFqk) since gcd(j, k) = j and there can be at most m lifts of P ′ in K ′. Thus,

|{Q ∈ P(K ′); deg(Q ∩K) | k; deg(Q ∩K) ≤ k

2
}|

≤ m|{Q ∈ P(KFqk); deg(Q ∩K) | k; deg(Q ∩K) ≤ k

2
}|

≤ m|
⋃

j|k,j≤k/2

{Q ∈ P(KFqk); deg(Q ∩K) = j}|

≤ m
∑

j|k,j≤k/2

|{Q ∈ P(KFqk); deg(Q ∩K) = j}|

≤ m
∑

j|k,j≤k/2

|{Q ∈ P(KFqj); deg(Q ∩K) = j}|

≤ m
∑

j|k,j≤k/2

|P1(KFqj)|

≤ m
∑

j|k,j≤k/2

(qj + 1 + 2gKq
j/2).

(3.42)

The last inequality is a consequence of Theorem(3.0.4) applied to KFqj .
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∑
j|k,j≤k/2

(qj + 1 + 2gKq
j/2) ≤

∑
j≤k/2

qj +
∑
j≤k/2

1 +
∑
j≤k/2

2gKq
j/2)

≤ 2qk/2 + k/2 + 4gKq
k/4

≤ 2qk/2 + 2qk/4 + 4gKq
k/4

= 2(qk/2 + qk/4(1 + 2gK)).

(3.43)

The last inequality follows from
∑

j≤k/2 q
j ≤ 2qk/2, k/2 ≤ 2qk/4 and

∑
j≤k/2 q

j/2 ≤
2qk/4, all of which can be proved easily.

Theorem 3.0.14. Suppose L/K is finite Galois extension such that m = [L : KFqn ]

and d = [K : Fq(t)]. Let a ∈ N such that

τ |Fqn = Frob |aFqn . (3.44)

for each τ ∈ C. For k ∈ N, if k 6≡ a mod n, then Ak(L/K, C) = ∅, otherwise∣∣∣∣|Ak(L/K, C)| − |C|kmqk
∣∣∣∣ < 2|C|

km
[(m+ gL)qk/2 +m(2gK + 1)qk/4 + gL + dm]. (3.45)

Proof. If P ∈ Ak(L/K, C), then there exists a place Q lying over P such that [L/K
Q

] =

τ . But

Frob |aFqn = τ |Fqn = Frob |kFqn . (3.46)

Thus, k ≡ a mod n.

Let n′ = n ord(τ)k and consider L′ = LFqn′ .
Now suppose k ≡ a mod n, then τ is an in Theorem(3.0.10). Extend τ to get τ ′ such

that τ ′|L = τ and τ ′|F
qn
′ = Frob |kF

qn
′ . Consider the subfield fixed field of τ ′ in L′ and

call it L1 i.e L1 = L′〈τ
′〉.

We observe that L1∩Fqn′ = Fqk almost by definition and hence Fqk is the full constant

subfield of L1. Moreover,

[L : L1] = ord(τ ′) = lcm(ord(τ),
n′

k
) = lcm(ord(τ), n ord(τ)) = n ord(τ). (3.47)
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Thus,

n ord(τ) = [L′ : L1] = [L′ : L1Fqn′ ][L1Fqn′ : L1] = [L′ : L1Fqn′ ][Fqn′ : Fqk ] = [L′ : L1Fqn′ ]
n′

k
.

(3.48)

Thus, L′ = L1Fqn′ . By Corollary 3.6.7 of [4], we get that [L1 : KFqk ] = [L′ : KFqn′ ].
Also, by same Corollary, we get [L′ : KFqn′ ] = [L : KFqn ]. Thus, [L1 : KFqk ] = [L :

KFqn ] = m. Thus, [L1 : K] = km.

Applying Lemma(3.0.9), where M = L1 C := C ′ is the conjugacy class of τ ′ and

C ′ := {τ ′} and r = k, we get

|Ak(L′/K, C ′)| =
|C ′||A′1|
[L1 : K]

=
|C||A′1|
[L1 : K]

. (3.49)

But

A′1 = A1(L
′/L1, {τ ′}) \ {P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
}. (3.50)

Since,

A1(L
′/L1, {τ ′}) = (A1(L

′/L1, {τ ′}) \ {P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
})
⋃

(A1(L
′/L1, {τ ′}) ∩ {P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
}).

(3.51)

We get that

|A1(L
′/L1, {τ ′})| = |A1(L

′/L1, {τ ′}) \ {P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
}|

+|A1(L
′/L1, {τ ′}) ∩ {P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
}|.

|A1(L
′/L1, {τ ′})| ≤

[L1 : K]|Ak(L′/K, C ′|)
|C|

+

∣∣∣∣{P ′ ∈ P(L1) | deg(P ′∩K) ≤ k

2
; deg(P ′∩K) = 1}

∣∣∣∣.∣∣∣∣ |C|
[L1 : K]

|A1(L
′/L1, {τ ′})| − |Ak(L′/K, C ′)|

∣∣∣∣ ≤
|C|

[L1 : K]

∣∣∣∣{P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
; deg(P ′ ∩K) = 1}

∣∣∣∣.
But then we can apply Lemma(3.0.13) to get an upper bound of the set on right side.
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Take K ′ := L1, then we get

|C|
[L1 : K]

∣∣∣∣{P ′ ∈ P(L1) | deg(P ′ ∩K) ≤ k

2
; deg(P ′ ∩K) = 1}

∣∣∣∣
≤ |C|

[L1 : K]

∣∣∣∣{P ′ ∈ P(L1) | deg(P ′ ∩K)

∣∣∣∣ ≤ k

2
; deg(P ′ ∩K) | k}

∣∣∣∣
≤ |C|

[L1 : K]
2m(qk/2 + (2gK + 1)qk/4)

=
2|C|
k

(qk/2 + (2gK + 1)qk/4).

(3.52)

By Theorem(3.0.12), where K = L1 and L = L′, we get that∣∣∣∣|A1(L
′/L1, {τ ′})| − qk

∣∣∣∣ < 2(gL′q
k/2 + gL′ + dm). (3.53)

Now, using both the above equations∣∣∣∣|Ak(L/K, C)| − |C|kmqk
∣∣∣∣ =

∣∣∣∣|Ak(L′/K, C ′)| − |C|kmqk
∣∣∣∣

≤
∣∣∣∣|Ak(L′/K, C ′)| − |C|km |A1(L

′/L1, {τ ′})|
∣∣∣∣

+

∣∣∣∣ |C|km |A1(L
′/L1, {τ ′})| −

|C|
km

qk
∣∣∣∣

≤ 2|C|
k

(qk/2 + (2gK + 1)qk/4)

+
|C|
km

2(gL′q
k/2 + gL′ + dm).

(3.54)

But gL = gL′ being a constant field extension.

Rearranging the right side gives us the proposition.

Lemma 3.0.15. Let a, n ∈ N,then

∞∑
j=0

xa+jn

a+ jn
= − 1

n
log(1− x) +O(1), x→ 1−. (3.55)
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Proof. Consider ζ a primitive nth root of unity. For |x| < 1, we have

n−1∑
i=0

log(1− ζ ix)ζ−ia = −
n−1∑
i=0

( ∞∑
k=0

ζkixk

k

)
ζ−ia

= −
n−1∑
i=0

( ∞∑
k=0

ζ(k−a)ixk

k

)

= −
∞∑
k=0

( n−1∑
i=0

ζ(k−a)i

k

)
xk

= −n
∑

k≡a mod n

xk

k

= −n
∞∑
j=0

xa+jn

a+ jn
.

(3.56)

But

log(1− x) + n
∞∑
j=0

xa+jn

a+ jn
= −

n−1∑
i=1

log(1− ζ ix)ζ−ia. (3.57)

But log(1− ζ ix) for i 6= 0 is holomorphic(at 1) and hence bounded close to 1.

Assuming the set up as in the beginning of the chapter we have the following

theorem.

Theorem 3.0.16. Suppose L/K is finite Galois extension such that m = [L : KFqn ]

and d = [K : Fq(t)]. If a ∈ N such that a ≤ n and

τ |Fqn = Frob |aFqn , (3.58)

for each τ ∈ C. Then,

∑
P∈A

(NP )−s = − |C|
[L : K]

log(1− q1−s) +O(1), s→ 1+. (3.59)

Proof. Since A′ and A differ by only finitely many elements, equation about A′ would

imply the same equation about A. Moreover, Ak(L/K, C) = ∅ whenever k 6≡ a

mod n.
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Now ∑
P∈A′

(NP )−s =
∞∑
k=0

∑
P∈Ak(L/K,C)

(NP )−s

=
∞∑
k=0

|Ak(L/K, C)|q−sk

=
∞∑
j=0

|Aa+jn(L/K, C)|q−s(a+jn).

(3.60)

Moreover for s → 1+, we have |q1−s| < 1 and hence we can use above Lemma3.0.15

Now∣∣∣∣ ∑
P∈A′

(NP )−s +
|C|

[L : k]
log(1− q1−s)

∣∣∣∣ ≤ ∣∣∣∣ ∞∑
j=0

|Aa+jn(L/K, C)|q−s(a+jn) − n |C|
[L : k]

∞∑
j=0

q(1−s)(a+jn)

a+ jn

∣∣∣∣+
|C|

[L : k]

∣∣∣∣ log(1− q1−s) + n
∞∑
j=0

q(1−s)(a+jn)

a+ jn

∣∣∣∣.
(3.61)

Close to 1 and s such that <(s) > 1, we have |q1−s| < 1 and hence by above

Lemma3.0.15 the second term is bounded. Hence it is enough to show that the

first term is bounded.∣∣∣∣ ∞∑
j=0

|Aa+jn(L/K, C)|q−s(a+jn) − n |C|
[L : k]

∞∑
j=0

q(1−s)(a+jn)

a+ jn

∣∣∣∣ =

∣∣∣∣ ∞∑
j=0

(
|Aa+jn(L/K, C)| − n |C|

[L : k](a+ jn)
q(a+jn)

)
q−s(a+jn)

∣∣∣∣ ≤
∞∑
j=0

∣∣∣∣(|Aa+jn(L/K, C)| − |C|
m(a+ jn)

q(a+jn)
)∣∣∣∣|q−s(a+jn)|.

(3.62)
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Using Theorem(3.0.14)

∞∑
j=0

∣∣∣∣(|Aa+jn(L/K, C)| − |C|
m(a+ jn)

q(a+jn)
)∣∣∣∣|q−s(a+jn)|

≤
∞∑
j=0

c1

∣∣∣∣q(1/2−s)(a+jn)a+ jn

∣∣∣∣+
∞∑
j=0

c2

∣∣∣∣q(1/4−s)(a+jn)a+ jn

∣∣∣∣+
∞∑
j=0

c3

∣∣∣∣q(−s)(a+jn)a+ jn

∣∣∣∣
=−

(
log(1− q1/4−x)+

c2 log(1− q1/2−x)+

c3 log(1− q−x)
)
.

(3.63)

where x = <(s). But all the three terms are bounded as s→ 1+.

Corollary 3.0.17. If L = K,then∑
P∈P(K)

(NP )−s = − log(1− q1−s) +O(1), s→ 1+. (3.64)

Corollary 3.0.18.

δ(A) = lim
s→1+

∑
P∈A(NP )−s

− log(1− q1−s)
. (3.65)

Proof. ∣∣∣∣
∑
P∈A(NP )−s

− log(1−q1−s)∑
P∈A(NP )−s∑

P∈P(K)(NP )−s

− 1

∣∣∣∣ =

∣∣∣∣
∑

P∈P(K)(NP )−s

− log(1− q1−s)
− 1

∣∣∣∣
=

∣∣∣∣
∑

P∈P(K)(NP )−s + log(1− q1−s)
− log(1− q1−s)

∣∣∣∣.
(3.66)

As s→ 1+ the numerator is bounded and denominator becomes arbitarily large.

Theorem 3.0.19 (Chebotarev Density Theorem). Let L/K be a finite Galois

extension of function fields and C be a conjugacy class in Gal(L/K) and consider the
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set

A =

{
P ∈ P(K) |

(
L/K

P

)
= C

}
. (3.67)

Then δ(A) exists and equals |C|
[L:K]

.

Proof.∣∣∣∣ ∑P∈A(NP )−s

− log(1− q1−s)
− |C|

[L : K]

∣∣∣∣
≤ 1

[L : K]

∣∣∣∣ [L : K]
∑

P∈A(NP )−s + |C| log(1− q1−s)
log(1− q1−s)

∣∣∣∣
≤
|
∑

P∈A(NP )−s + |C|
[L:K]

log(1− q1−s)|
log(1− q1−s)

.

(3.68)

The numerator of the first term is bounded by the previous theorem and as s→ 1+,

the denominator increases arbitarily and hence we get

δ(A) = lim
s→1+

∑
P∈A(NP )−s

− log(1− q1−s)
=

|C|
[L : K]

. (3.69)



Chapter 4

Nullstellensatz and

Bertini-Noether Theorem

In this chapter we give a model theoretic proof of Hilbert’s Nullstellensatz and a

theorem of Bertini and Noether. We assume familiarity with Chapter 2 and Chapter

3 of [5]. We write ACF for the theory of algebraically closed fields.

4.1 Introduction

Theorem 4.1.1. Let A = {a1, . . . , an} and p ∈ Prop(A), then there exists k ≥ 1

such that |= p ↔ p1 ∨ . . . ∨ pk where pi = aei11 ∧ . . . ∧ aenin where eij ∈ {1,−1} where

a−1i := ¬ai.
This form of proposition p is known as disjunctive normal form or DNF.

Before proving the above we prove a lemma.

Lemma 4.1.2. Assuming the set up as in the above theorem. If p is in DNF, then

so is ¬p.

Proof. Assuming p is a proposition in DNF i.e

|= p↔ ∨ki=1pi. (4.1)

Then applying negation operation and de Morgan’s law we get,

|= ¬p↔ ¬(∨ki=1pi)↔ ∧ki=1¬pi. (4.2)

47
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But expanding out the proposition p we get,

¬pi = ¬(aei11 ∧ . . . ∧ aenin )↔ ∨nj=1(a
e′ij
j ), where e′ij = −eij. (4.3)

Thus we observe that,

¬p↔ ¬(∨ki=1pi)

↔ ∧ki=1¬pi
↔ ∧ki=1¬(aei11 ∧ . . . ∧ aenin )

↔ ∧ki=1(∨nj=1(a
e′ij
j ))

↔ ∨nkl=1(∧ki=1bil),

where bil ∈ {a
e′ij
j }nj=1.

(4.4)

Now it is enough to show that ∧ki=1bil can be brought into the form ati11 ∧ . . . ∧ atinn
for suitable tij.

In order to do that we refer to the following procedure:

1. Eliminating the proposition containing both an atomic formula and its negation

as it can never hold.

2. Removing an extra atomic formula if it occurs multiple times.

3. Whichever a′is do not occur we take all combinations of it and its negation.

For example if we have

a11 ∧ a−11 ∧ an

we remove this as it can never hold and if we have

a11 ∧ a1 ∧ an

we take

∨i 6=1,i 6=n(a1 ∧ ae22 ∧ . . . ∧ a
ei
i ∧ . . . ∧ a

en−1

n−1 ∧ an),

where (e2, . . . , ei, . . . , en) ∈ [0, 1]n−2.

Hence we get that the negation of a proposition in DNF is also in DNF.

Proof. We prove the above by induction on length of proposition.

If k = 1, p = ai or p = > or p = ⊥.
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For p = ai, let pj = a
ej1
1 ∧ a

ej(i−1)

i−1 ∧ a1i ∧ a
ej(i+1)

i+1 ∧ . . . aejnn where we take each of the

2n−1 possible such propositions and note that |= ai ↔ ∨2
n−1

i=1 pi.

For p = >, take all possible 2n propositions and observe that > ↔ ∨2n

i=1pi.

For p = ⊥ then p↔ ¬> and > is in DNF.

Assuming the induction hypothesis, p can be q ∧ r or q ∨ r or ¬q where q, r can be

written in DNF.

If p = q ∨ r, then it is obvious that p is also in DNF.

If p = ¬q, then we have done it above.

If p = q ∧ r, where q ↔ ∨mi=1qi and r ↔ ∨nj=1rj, then

p↔ (∨mi=1qi) ∧ (∨nj=1rj)↔ ∨i,jqi ∧ rj. (4.5)

But qi ∧ rj = (ae11 ∧ . . .∧ aenn )∧ (af11 ∧ . . .∧ afnn ). This can also be brought into the

desired form by the same argument in the proof of converting ¬p in DNF.

Lemma 4.1.3. For every quantifier free formula φ we have a set of atomic formulas

A = {φ1, . . . , φk} such that φ ∈ Prop(A).

Proof. We induct on the number of connectives n in the formula φ.

If n = 0, then φ is an atomic formula and it is a proposition on itself. Assuming the

induction hypothesis, if φ = ψ∧ θ or φ = ψ∨ θ or φ = ¬ψ then these are propositions

on atomic formulas. Note that we are done since φ cannot be of the form ∃xψ or ∀xψ
as it is quantifier free.

By Lemma 2.7.2 in [5], we have that if p(α1, . . . , αn) ∈ Prop({α1, . . . , αn}) is a

tautology then p(φ1, . . . , φn) is valid in all L-structures A for any formulas φ1, . . . , φn.

Thus, given any quantifier free formula φ, by the above lemma φ = p(φ1, . . . , φn) ∈
Prop(φ1, . . . , φn) where φi are atomic formulas. By Theorem(4.1.1), we have that

|= φ↔ p1 ∨ . . . ∨ pk where pi = φei11 ∧ . . . ∧ φeinn .

Thus, φ↔ ∨ki=1pi is valid in all L-structures A by Lemma 2.7.2.

4.2 Model completeness

Definition 4.2.1. Let A and B be two L-structures, and h : A→ B be a set theoretic

map between the underlying sets. We say h is an embedding if
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(a) For each m-ary relation symbol R, (a1, . . . , am) ∈ RA ⊂ Am ⇔ (ha1, . . . , ham) ∈
RB ⊂ Bm.

(b) For each m-ary function symbol f , we have hfA(a1, . . . , am) = fB(ha1, . . . , ham).

(c) h is injective.

Lemma 4.2.1. For any term t(x1, . . . , xm) of the language, and any embedding h :

A → B and (a1, . . . , am) ∈ Am, we have htA(a1, . . . , am) = tB(ha1, . . . , ham).

Proof. Induct on the length of the term t.

Definition 4.2.2. Given a theory Σ, we say that Σ is model complete if for every

embedding h : A → B between models A,B of Σ and given any formula φ(x1, . . . , xm)

and any collection (a1, . . . , am) ∈ Am, we have

A |= φ(a1, . . . , am)⇔ B |= φ(ha1, . . . , ham).

Let LAb = (0,+,−) be the language of abelian groups and Σ be the theory of

abelian groups. Then for models Z and Q and the natural injective map between

them is an embedding as is easy to see, but for the formula φ(y) = ∃x(x+x = y) and

y = 3, we have Z 2 φ(3) but Q |= φ(3) for x = 3/2. Hence we see that the theory of

abelian groups is not model complete.

Definition 4.2.3. Given a theory Σ, we say that Σ has quantifier elimination

if for any formula φ(x1, . . . , xm) there exists a quantifier free formula φ′ such that

Σ |= φ↔ φ′.

Theorem 4.2.2. If Σ has quantifier elimination, then Σ is model complete.

Proof. LetA,B be models of Σ, and h an embedding between them. Let φ(x1, . . . , xm)

be a formula and fix (a1, . . . , am) ∈ Am, we need to show that

A |= φ(a1, . . . , am)⇔ B |= φ(ha1, . . . , ham). (4.6)

We will do this by induction on the number of connectives in φ.

If n = 0, then φ is an atomic formula,

Case 1: φ(x1, . . . , xm) = Rt1 . . . tk

A |= φ(a1, . . . , am) ⇐⇒ (a1, . . . , am) ∈ RA

B |= φ(ha1, . . . , ham) ⇐⇒ (ha1, . . . , ham) ∈ RB.
(4.7)
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But the equations on RHS are equivalent by the definition of embedding.

Case 2: φ(x1, . . . , xm) = (t1(x1, . . . , xm) = t2(x1, . . . , xm))

A |= φ(a1, . . . , am) ⇐⇒ tA1 (a1, . . . , am) = tA2 (a1, . . . , am)

⇐⇒ htA1 (a1, . . . , am) = htA2 (a1, . . . , am)

⇐⇒ tB1 (ha1, . . . , ham) = tB2 (ha1, . . . , ham)

⇐⇒ B |= φ(ha1, . . . , ham).

(4.8)

Assuming the induction hypothesis,

(a) If φ = ψ ∨ θ then,

A |= φ(a1, . . . , am) ⇐⇒ A |= ψ(a1, . . . , am) or A |= θ(a1, . . . , am)

⇐⇒ B |= ψ(ha1, . . . , ham) or B |= θ(ha1, . . . , ham)

⇐⇒ B |= φ(ha1, . . . , ham).

(4.9)

(b) If φ = ψ ∧ θ
Similar to (a)

(c) If φ = ¬ψ,

A |= φ(a1, . . . , am) ⇐⇒ A 2 ψ(a1, . . . , am)

⇐⇒ B 2 ψ(ha1, . . . , ham)

⇐⇒ B |= φ(ha1, . . . , ham).

(4.10)

(d) If φ = ∃xψ,

As Σ has quantifier elimination, there exists quantifier free ψ′ equivalent to ψ.

Thus,

Σ |= φ↔ ∃xψ′ ⇐⇒ A |= φ(a1, . . . , am, x)

⇐⇒ A |= ψ(a1, . . . , am, b) for some b ∈ A
⇐⇒ A |= ψ′(a1, . . . , am, b).

(4.11)

But ψ′ being quantifier independent is a proposition on some atomic formulas,

and we have already dealt with that case.

(d) Similarly for the case where φ = ∀xψ.

Note that we have used the fact that Σ has quantifier elimination in only the last two

cases.
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4.3 Quantifier elimination

Lemma 4.3.1. If K is a model of ACF, and p(x), q(x) ∈ K[x],then p(x) divides

q(x)deg p iff every root of p(x) is also a root of q(x).

Proof. If p|qdeg p and (x − α) is a root of p, then (x − α)|p|qdeg p, thus (x − α)|q and

is root of q.

If every root of p is also a root of q and let p =
∏r

i=1(x − αi)li , whereαi are distinct

roots of multiplicity li.

Since (x− αi) is a root of q, (x− αi) | q ⇒ (x− αi)li |qli | qn, where n = deg p.

Thus,
∏r

i=1(x− αi)li | qn ⇒ p | qn

Henceforth, R always stands for an integral domain. We will show that the theory

of ACF is model complete but more can be said. We extend the language LRing to

LRing(R) where we include one constant for each element in R (elements of R become

constants) and consider theory ACF(R) in which we include the following sentences:

(i) a+ b = c where a, b, c ∈ R and the same relation holds in R

(ii) a.b = c where a, b, c ∈ R and the same relation holds in R

Then models of ACF(R) are algebraically closed fields which contain a homomorphic

copy of R. Note that this is not same as ACF. If R = Z, then models of ACF(R) are

same as models of ACF. On the other hand if R = Z/pZ, then models of ACF(R)

contain algebraically closed fields of characteristic p while those of char 0 are not

models of ACF(R). Thus, we are clearly dealing with a more general situation. We

will show that ACF(R) is model complete.

Theorem 4.3.2. ACF(R) has quantifier elimination. In particular, ACF(R) is model

complete.

Proof. We want to show that given any LRing(R)-formula φ, we can find φ′ which is

quantifier free and Σ |= φ ↔ φ′. We will proof this by induction on the number of

quantifiers in the formula φ.

If n = 0, then φ is an atomic formula and is quantifier free.

Suppose n = k ≥ 1, then φ can be one of the following:

(a) φ = ψ ∧ θ and ψ ↔ ψ′ and θ ↔ θ′, where ψ′ and θ′ are quantifier free. Then

φ↔ ψ′ ∧ θ′.

(b) φ = ψ ∨ θ and we have quantifier free ψ′ and θ′ as in the above case. Then

φ↔ ψ′ ∨ θ′.
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(c) φ = ¬ψ and quantifier free ψ′, then φ↔ ¬ψ′.

(d) φ = ∃xψ, where ψ ↔ ψ′ with ψ′ quantifier free. Then φ↔ ∃xψ′.
We have ψ′ ↔ p1∨ . . .∨pk where pi = φei11 ∧ . . .∧φeinn , where φi are atomic L-formulas.

Thus, φ↔ ∃x(p1 ∨ . . . ∨ pk)↔ ∃xp1 ∨ . . . ∃xpn.

It is enough to show that each ∃xpi is equivalent to a quantifier free formula.

Let p = pi = ψei11 ∧ . . . ∧ ψeinn but we know that any atomic formula ψ in LRing(R) is

equivalent to p(x1, . . . , xl) = 0 where p(x1, . . . , xl) ∈ R[x1, . . . , xl]. Consequently

∃xp↔ ∃x((∧ni=1pi = 0) ∧ (∧mj=1qj 6= 0)) (4.12)

But ∧mj=1qj 6= 0↔ q 6= 0 where q =
∏m

j=1 qj. Thus

∃xp↔ ∃x((∧ni=1pi = 0) ∧ q 6= 0) (4.13)

We may assume pi ∈ R[x1, . . . , xl, x] for each pi and if some pj is independent of x,

then

∃x((∧ni=1pi = 0) ∧ q 6= 0)↔ pj ∧ ∃x((∧ni=1,i 6=jpi = 0) ∧ q 6= 0) (4.14)

Thus it is enough to show that formula appearing on right side of above wedge is

equivalent to a quantifier free forumla. In that sense, we may assume that each pi is

a polynomial in x. Suppose Σn
i=1 degx(pi).

Suppose,

p1 = a10 + . . .+ a1m1x
m1

p2 = a20 + . . .+ a2m2x
m2 .

(4.15)

We define

p1j = a10 + . . .+ a1jx
j for 1 ≤ j ≤ m1. (4.16)

WLOG we may assume degx(p2) ≥ degx(p1) ≥ deg(p1j) ≥ 1.

We observe that

a1jp2 = a2m2x
m2−jp1j + (a1jp2 − a2m2x

m2−jp1j) = tj(x)p1j(x) + rj(x), (4.17)

where degx(rj) < degx(p1j).
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We observe that in any model of ACF(R),

p1 = 0∧p2 = 0↔ ∨m1
j=1(∧k>ja1k = 0∧a1j 6= 0∧p1j = 0∧rj = 0)∨(∧m1

j=0a1j = 0∧p2 = 0).

(4.18)

Thus, the equation (9) above can be simplied so as to reduce the degree by at least

1 Let

wj := (∧k>ja1k = 0 ∧ a1j 6= 0 ∧ p1j = 0 ∧ rj = 0)

w0 := (∧m1
j=0a1j = 0 ∧ p2 = 0).

(4.19)

∃x((∧ni=1pi = 0) ∧ q 6= 0)↔ ∃x((p1 = 0 ∧ p2 = 0) ∧ (∧j>2pj = 0 ∧ q 6= 0))

↔ ∃x((∨jwj = 0) ∧ (∧j>2pj = 0 ∧ q 6= 0))

↔ ∨j∃x(wj = 0 ∧ (∧j>2pj = 0) ∧ q 6= 0).

(4.20)

Thus we see that we have reduced equation on the left to mutiple equations with

fewer number of polynomials.

Hence we may assume that the problem is of the following kind.

∃x(p = 0 ∧ q 6= 0). (4.21)

Let

p = a0 + . . .+ adx
d, (4.22)

And define

pj = a0 + . . .+ ajx
j for 0 ≤ j ≤ d

ajq
j = hpj + rj where degx(rj) < degx(pj).

(4.23)

For any ACF model A and ~a ∈ Al,

1. If p(~a, x) = 0 then the validity of ∃x(p(~a, x) = 0 ∧ q(~a, x) 6= 0) is equivalent to

finding a non-root of q(~a, x). This is always possible when q(~a, x) 6= 0 i.e some

coefficient of q(~a, x) is non-zero.

2. If p(~a, x) 6= 0 then there exists j such that some aj(~a) 6= 0 and ak(~a) = 0 for all

k > j. We have p(~a, x0) = 0 and q(~a, x0) 6= 0 for some x0 ∈ A iff p(~a, x) does

not divide q(~a, x)j iff aj(~a) 6= 0 and rj(~a, y0) 6= 0 for some y0 ∈ A.

Indeed, if p(~a, x) does not divide q(~a, x)j, then p = pj and aj(~a) 6= 0 and
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rj(~a, x0) 6= 0.

If rj(~a, y0) 6= 0 and pj | qj, then pj(~a, x)t(x) = qj(~a, x). But then aj(~a, x)pj(~a, x)t(x) =

aj(~a)qj(~a, x) = h(~a, x)pj(~a, x) + rj(~a, x). Thus, we get pj(~a, x)(aj(~a, x)t(x) −
h(~a, x)) = rj(~a, x). By comparing the degrees w.r.t x on both sides we get that

the equation in brackets must be zero, which forces rj(~a, x) = 0 for all x. This

is a contradiction.

Thus,

∃x(p = 0 ∧ q 6= 0)↔ ∨lj=1(al = 0 ∧ al−1 = 0 ∧ . . . ∧ aj+1 = 0 ∧ aj 6= 0 ∧ ∃xrj 6= 0)

∨(a0 = 0 ∧ a1 = 0 ∧ . . . ∧ al−1 = 0 ∧ al = 0 ∧ (∨jqj 6= 0))

(4.24)

where qj are coefficients of q.

Thus, we can reduce the case ∃x(p = 0 ∧ q 6= 0) to a quantifier free formula.

(e) For φ = ∀xψ, we may assume that ψ is quantifier free.

¬∀xψ ↔ ∃x¬ψ (4.25)

As the above equation is a tautology and since ψ is quantifier free, so is ¬ψ
and hence we can find by (d), a quantifier free formula θ such that

∃x¬ψ ↔ θ. (4.26)

Hence,

∀xψ ↔ ¬¬∀xψ
↔ ¬θ.

(4.27)

Corollary 4.3.3. Let R be an integral domain and θ be a sentence in LRing(R), then

there exists a constant c ∈ R such that ACF(R) ∪ {c 6= 0} � θ or ACF(R) ∪ {c 6=
0} � ¬θ.

Proof. A sentence does not contain any free variables but it might contain bound

occurences of variables. But since ACF(R) has quantifier elimination we may assume

that θ does not contain any variables and hence θ ↔ ∨mj=1((∧ni=1pij = 0) ∧ qi 6= 0)

where pij and qi are constants in R(this is obvious from the above proof technique).



56 CHAPTER 4. NULLSTELLENSATZ AND BERTINI-NOETHER THEOREM

Let c =
∏
pij
∏
qi where pij, qi ∈ R are non-zero elements in R and if all of the them

are zero take c = 1.

If θ holds in R then θ holds in K̃ where K is the fraction field of R. For any modelA of

ACF(R) in which c 6= 0, θ is valid in the homomorphic image R of R contained in A as

the equation θ is imported as is in R. Consequently A � θ and ACF(R)∪{c 6= 0} � θ.
On the other hand, if θ is not valid in R, then it is not valid in K̃ and hence K̃ � ¬θ.
Since ¬θ is valid in R, then by above paragraph ¬θ is valid in all models A of ACF(R)

for which c 6= 0 holds.

Theorem 4.3.4 (Nullstellensatz). Let k be a field, k̃ an algebraic closure of k

and p1, . . . , pr a collection of polynomials in k[x1, . . . , xn]. Suppose that the ideal

(p1, . . . , pr) generated by them is a proper ideal in k[x1, . . . , xn], then there exists

a = (a1, . . . , an) ∈ An(k̃) such that pi(a) = 0 for all 1 ≤ i ≤ r.

Proof. Let φ = ∃x1∃x2 . . . ∃xn(∧ri=1pi(x1, . . . , xn) = 0) and m be a maximal ideal

containing (p1, . . . , pr) and denote L = k[x1, . . . , xn]/m and L be its algebraic closure,

then we have an embedding k → k[x1, . . . , xn] → L → L. But we know that k̃ → L

is an embedding and L |= φ(x). By model completeness of ACF, we have k̃ |= φ.

We say that f(x1, x2, . . . , xm) ∈ R[x1, x2, . . . , xm] is of degree d if the maximum

total degree of monomials is d. We know that f is irreducible if it is not possible to

write f = gh where g and h are polynomials of degree strictly less than that of f .

For any polynomial f(x1, x2, . . . , xm) ∈ R[x1, x2, . . . , xm], we can express the irre-

ducibility of f as a sentence in LRing(R).

Indeed, it is enough to produce a sentence which gives the reducibility of f . We know

that f is reducible if there exist polynomials g, h of degree strictly less than that of

f and f = gh. If f, g, h are as below:

f =
n∑
p=0

( ∑
i1+...+is=p

ai1...isX
i1
1 . . . X

is
s

)
. (4.28)

g =
m∑
q=0

( ∑
j1+...+js=q

bj1...jsX
j1
1 . . . Xjs

s

)
. (4.29)

h =
t∑

r=0

( ∑
k1+...+ks=r

ck1...ksX
k1
1 . . . Xks

s

)
. (4.30)



4.3. QUANTIFIER ELIMINATION 57

And f = gh, then by comparing coefficients we infer that for each s-tuple (i1, . . . , is)

where 0 ≤ iu ≤ p and
∑

u iu = p, we must have

ai1...is =
∑

bj1...jsck1...ks , (4.31)

where sum on the right side runs over all indices ju for which
∑

u ju = q and kw for

which
∑

w kw = r and q + r = p and i1 = j1 + k1, . . . , is = js + ks.

This can be expressed as

f = gh↔
∧

0≤p≤n

∧
{q,r|q+r=p,q≥0,r≥0}

(∏
∃bj1...js

∏
∃ck1...ks

(∑
bj1...jsck1...ks = ai1...is

))
,

(4.32)

where
∏
∃bj1...js and

∏
∃ck1...ks represents writing ∃bj1...js and ∃ck1...ks for all indices

(j1, . . . , js) and (k1, . . . , ks) for which j1 + k1 = i1, j2 + k2 = i2, . . . , js + ks = is.

We take θ as the conjuction of above statement for g and h, where (deg(g), deg(h)) ∈
{(i, j) ∈ N × N | i ≥ 0, j ≥ 0, i < n, i + j = n}. This gives a statement θ to express

reducibility of f .

Definition 4.3.1. Let R be an integral domain, K its fraction field and suppose

f ∈ R[x1, . . . , xn]. Then f is called absolutely irreducible if f is irreducible as an

element of K̃[x1, . . . , xn] where K̃ is an algebraic closure of K.

Theorem 4.3.5 (Bertini-Noether). Assuming the notation as in the above defini-

tion let f(x1, . . . , xn) ∈ R[x1, . . . , xn] be an absolutely irreducible polynomial. Then

there exists a non-zero element c ∈ R such that for any homomorphism of domains

φ : R→ S for which φ(c) 6= 0, φ(f) remains absolutely irreducible.

Proof. Let θ1 be the statement that f is irreducible in R. Let c ∈ R be as in the

Lemma(4.3.3) for the sentence θ1. Since K̃ � θ and c 6= 0 in K̃, by Lemma(4.3.3)

we get ACF(R) ∪ {c 6= 0} � θ1. Also, since φ(c) 6= 0, we get that F̃ , where F is the

fraction field of S, is a model of ACF(R) and hence F̃ � θ1. This means that φ(f) is

absolutely irreducible.

Corollary 4.3.6. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an absolutely irreducible poly-

nomial. Then there exists a non-zero integer c such that for all p which do not divide

c, f(x1, . . . , xn) is irreducible in Z/pZ[x1, . . . , xn]
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The above corollary can be stated in a more general context of global fields.

Theorem 4.3.7. Let f1, f2, . . . , fr, g ∈ K[X1, . . . , Xn] and suppose g vanishes on on

each point a of K̃n for which f1(a) = . . . = fr(a) = 0. Then there exists r ∈ N such

that gr ∈ (f1, . . . , fr) ⊂ K[X1, . . . , Xn].

Proof. We may assume g 6= 0. Consider the ringK[X1, . . . , Xn, Y ] and the polynomial

h(X, Y ) = 1 − g(X)Y . We observe that there is no point (a, b) ∈ K̃n+1 for which

f1(a) = . . . = fn(a) = h(a, b) = 0.

Hence by (4.3.4) we must have that (f1, . . . , fn, h) = K[X1, . . . , Xn, Y ].

Thus, we have a relation:

1 =
n∑
i=1

ai(X, Y )fi(X) + b(X, Y )h(X, Y )

Consider the ring K[X1, . . . , Xn](g) which is K[X1, . . . , Xn] localised at S = {g(X)i |
i ≥ 0}. Now define the evaluation map K[X1, . . . , Xn, Y ]→ K[X1, . . . , Xn](g) sending

f(X, Y ) to f(X, g(X)−1).

Then under this map, above equation becomes:

1 =
n∑
i=1

ai(X, g(X)−1)fi(X) (4.33)

We can find r ∈ N large enough so that

gr =
n∑
i=1

a′i(X)fi(X), (4.34)

where a′i(X) ∈ K[X1, . . . , Xn]. Thus, the above relation also holds in K[X1, . . . , Xn].
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Conjugate Lemma

For any ideal I ⊂ K[X1, . . . , Xn], we associate a K-algebraic set V (I) defined as

V (I) := {a ∈ K̃n | f(a) = 0 ∀ f ∈ I} (5.1)

A subset V of K̃n is calledK-defined if V = V (I) for some ideal I inK[X1, . . . , Xn].

On the other hand, given a subset A ⊂ K̃n we define:

I(A) := {f ∈ K[X1, . . . , Xn] | f(a) = 0 ∀a ∈ A} (5.2)

On the space K̃n, the set {V (I)} satisfy axioms of a closed sets and hence they

form a topological space. We call the topology Zariski K-topology.

It is easy to see the following properties:

1. If I ⊂ J , then V (J) ⊂ V (I).

2. I(A) is a radical ideal.

3. I(V (I)) =
√
I (by (4.3.7)).

4. V (I(A)) = A (by above)

We call a K-algebraic set V a K-variety if it is irreducible as a toplogical space.

We observe that V is a K-variety iff I(V ) is a prime ideal.

We define the dim(V ) as the dimension of it as a topological space. Closed ir-

reducible subsets in V correspond to prime ideals in the coordinate ring Γ(V ) :=

59
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K[X1, . . . , Xn]/I(V ) and hence we get that dim(V ) = dim(Γ(V )). If V is a variety

then the coordinate ring is a domain and then we have that dimension of the coordi-

nate ring is same as the transcendence degree of fraction field of Γ(V ) over K.

Any K-closed set V can be written as V =
⋃
Vi where Vi are irreducible closed

sets. Moreover, this decomposition is unique. It is easy to show that dim(V ) =

max(dim(Vi)).

Lemma 5.0.8. If V1 ⊂ V2 are K-varieties of the same dimension, then V1 = V2.

Proof. For any chain of prime ideals in Γ(V2) can be pulled back to a chain in

K[X1, . . . , Xn], we know that dimension is bounded by n.

Let p1 := I(V1) and p2 := I(V2). Since V1 ⊂ V2, we have p2 ⊂ p1 and there is a

canonical surjection

φ : K[X1, . . . , Xn]/p2 � K[X1, . . . , Xn]/p1 (5.3)

We claim that the above canonical map is injective. Indeed, for any chain of prime

ideals in Γ(V1);

(0) ( q1 ( . . . ( qt,

we get a chain in Γ(V2);

(0) ⊂ φ−1((0)) ( φ−1(q1) ( . . . ( φ−1(qt)

But since φ−1((0)) = ker(φ) is a prime ideal, the chain length increases by 1 if and

only if the map is not injective. We know that dim(V1) = dim(V2) and hence it is

forced that φ is injective.

Thus, if p2 ( p1, then there exists f ∈ p1 such that f /∈ p2. But then f 6= 0 in Γ(V2)

but φ(f) = f = 0 in Γ(V1). This contradicts the fact that φ is an isomorphism. Hence

p1 = p2, we have V1 = V (p1) = V (p2) = V2.

Lemma 5.0.9. If V and W are K-varieties such that V * W and W * V . Then

dim(V ∩W ) < min(dim(V ), dim(W )).

Proof. Suppose dim(V ∩ W ) = dim(V ). Decompose V ∩ W into irreducible com-

ponents and let T be an irreducible component with maximum dimension. Then.

T ⊂ V ∩W ⊂ V and dim(T ) = dim(V ).
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By (5.0.8) we get that T = V . Thus V = T ⊂ V ∩W ⊂ W . This is a contradic-

tion.

We denote Gal(K̃/K) as G. Given γ ∈ G we get an K-linear bijection

γ′ : An(K̃)→ An(K̃), (5.4)

where γ′((a1, . . . , an)) = (γa1, . . . , γan).

Moreover, for an ideal I ⊂ K̃[x1, . . . , xn], V (γ(I)) = γ′(V (I)) we get that the map is

continuous and closed. Thus a homeomorphism. Since the association between γ and

γ′ is unique we will refer to γ′ as γ too.

Lemma 5.0.10. Let K ⊂ L be a Galois extension with Galois group G and W be a

G-stable L-subspace of L-space V . If WG = 0 then W = 0.

Proof. Suppose W 6= 0, and let {ei} be an L-basis of W which we extend to a

basis of V .Choose u ∈ W such that it has minimum number of non-zero coefficients.

Then, u = Σk
i=1ciei where ci ∈ L and ci 6= 0 and we may assume c1 = 1. But

gu = Σk
i=1gciei ⇒ u− gu = (1− g)c2e2 + . . . (1− g)cnen. By minimality, we get that

ci = gci for all i and since g was arbitrary, ci ∈ K. We thus get u = gu for all g.

Thus u ∈ WG = 0. This is a contradiction.

Lemma 5.0.11. If K ⊂ L is a Galois extension of with Galois group G and J

an ideal of K[x1, . . . , xn], then (Je)G = J where Je is the extension of the ideal in

L[x1, . . . , xn].

Proof. It is easy to see that Je ∼= J ⊗K L. Let {ei} be a K-basis of J , then {ei⊗1} is

a L-basis of J ⊗K L, and hence {ei} is an L-basis of Je. It is obvious that J ⊂ (Je)G.

If u ∈ (Je)G, then u = Σk
i=1ciei and gu = Σk

i=1gciei. But gu = u ⇒ ci = gci for all

g ∈ G, then ci ∈ K and hence u ∈ J .

Let V be a K-variety in An(K̃). Suppose V =
⋃k
i=1 Ui is the decomposition of V

into K̃-components i.e Ui are K̃-closed and irreducible subset in An(K̃).

For V is invariant under the action of G, then V = γ(V ) = γ(
⋃k
i=1 Ui) =

⋃k
i=1 γ(Ui).

By uniqueness of decomposition, we get that G acts on {Ui | 1 ≤ i ≤ k} by permuting

them.
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Lemma 5.0.12. Ui as above are G conjugates i.e V =
⋃
γ∈G γ(U1). In other words,

the action is transitive.

Proof. We sketch the outline of the proof.

1. Write V = W1 ∪W2 ∪ . . .∪Wn where Wi =
⋃
g∈G gUi and observe that each Wi

is invariant under the G-action.

2. Observe that only finitely many unions appear in Wi as there are only finitely

many K̃-irreducible components.

3. Now it is enough to show that each Wi is defined over K, as we know V is

K-irreducible which will force V = Wi for some i.

4. Fix a Wi and call it W . Since W is K̃-closed we get that W = V (I) for some

ideal I ⊂ K̃[x1, . . . , xn]. We note that V (gI) = gV (I) = gW = W = V (I).

Thus, gI = I and hence I is invariant under the action of the Galois group.

5. Let J be the complementary subspace of Ic := I ∩K[x1, . . . , xn] i.e

K[x1, . . . , xn] = Ic ⊕ J. (5.5)

By Lemma(5.0.11) we have (Je)G = J . Thus,

{0} ⊂ (I ∩ Je)G ⊂ IG ∩ (Je)G = I ∩ J = {0} (5.6)

6. By Lemma(5.0.10), I ∩ Je = 0.

7. Extending ideals in K̃[x1, . . . , xn], we see that

K̃[x1, . . . , xn] = K[x1, . . . , xn]e = (Ic ⊕ J)e = (Ic)e + Je = (Ic)e ⊕ Je. (5.7)

8. But I ∩ Je = 0, which means that I = K̃[x1, . . . , xn](I ∩K[x1, . . . , xn]) = (Ic)e.

9. Thus, W = V (I) = V (K̃[x1, . . . , xn](I ∩K[x1, . . . , xn])) = V (I ∩K[x1, . . . , xn])

and is defined over K.



Chapter 6

Hilbert Irreducibility Theorem

In this chapter, we define what it means for a field to be Hilbertian. We prove that

all global fields are Hilbertian.

6.1 Hilbertian fields

Let f1, f2, . . . , fm ∈ K(T1, . . . , Tr)[X1, . . . , Xn] be a collection of irreducible polyno-

mials and g ∈ K[T1, . . . , Tr] is a non-zero polynomial, then define Hr(f1, . . . , fm; g)

as the subset of Ar(K) for which fi(a1, . . . , ar, X1, . . . , Xn) is defined and irreducible

in K[X1, . . . , Xn] and g(a1, . . . , ar) 6= 0. Hr(f1, . . . , fm; g) is called a Hilbert set of

Ar(K). If n = 1 and each fi is separable in X, then call Hr(f1, . . . , fm; g) a separable

Hilbert set of A1(K).

A field K is called Hilbertian if every separable Hilbert set of Ar(K) is non-empty.

Lemma 6.1.1. Each separable Hilbert set H(f1, . . . , fm; g) contains H(h1, . . . , hm; g′)

where hi is irreducible in K[T1, . . . , Tr, X], separable in X and hi /∈ K[T1, . . . , Tr].

Proof. Suppose

fi =

nj∑
j=0

aj(T)

bj(T)
Xj,

where T = (T1, . . . , Tr). Multiply by bi(T) =
∏

j bj(T) on both sides to get

b(T)fi =

nj∑
j=0

aj(T)Xj

63
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Now let di(T) = gcd(aj(T); 0 ≤ j ≤ nj). Then

b(T)fi = di(T)

nj∑
j=0

a′j(T)Xj = d(T)hi. (6.1)

such that hi =
∑nj

j=0 a
′
j(T)Xj is primitive (has 1 as the gcd of coefficients)

Now it is easy to see that {hi} are irreducible polynomials in K[T1, . . . , Tr, X].

Take g′ =
∏

i bi(T)di(T)g(T) and observe that H(h1, . . . , hm; g′) ⊂ H(f1, . . . , fm; g).

Also, hi are separable in X as root of fi and hi are same over K(T) by equation

1.

Before proving the next theorem we recall a lemma from Lang[3,9.1]

Lemma 6.1.2. Let K be a field and n ≥ 2, a ∈ K∗. Suppose for all primes p | n, a

does not have a pth root in K and if 4 | n, then a /∈ −4K4, then Xn− a is irreducible

in K[X].

Theorem 6.1.3. Let H = HK(f1, . . . , fm; g) be a Hilbert subset of Ar(K) with fi

irreducible in K[T1, . . . , Tr, X] and degX(fi) ≥ 1. Then H contains a Hilbert set of the

form H(h1, . . . , hm) in which hi are monic, irreducible polynomials in K[T1, . . . , Tr, X]

such that degX(hi) ≥ 2.

Moreover, if fi are separable then so is hi.

Proof. Let ci(T) be the leading coefficients of fi as polynomial over X and ni =

degX(fi). Consider q(T) =
∏

i ci(T)g(T).

If degTi(q) = 0 for all i, then ci ∈ K∗ and g ∈ K∗. Then HK(f1, . . . , fm; g) =

HK(f1, . . . , fm). Since ci ∈ K∗, we may assume fi are monic. Moreover, if for some i,

we have degX(fi) = 1, then fi = X−ai(T) for some ai ∈ K[T], then it is also true that

HK(f1, . . . , fm) = HK(f1, . . . , fi−1, fi+1, . . . , fm). Hence by this reduction, we may as-

sume all degX(fi) ≥ 2 for all i and fi are monic, irreducible polynomials. Take hi = fi

On the other hand, if degTi(q) ≥ 1 for some i, then take b, a prime such that

b > degTi(q) and note that Xb − q(T ) has no solution in K[T]. Indeed, if for some

p(T) ∈ K[T], we have p(T)b = q(T). But then, degTi(p(T)b) = b degTi(p(T)) =

degTi(q(T)), which implies b ≤ degTi(q(T)). Thus, from above lemma we get that
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Xb − q(T ) is irreducible in K[T1, . . . , Ti−1, Ti+1, . . . , Tr][Ti] but being monic it is irre-

ducible in K[T].

Now for degX(fi) = 1, take hi = Xb − q(T) and for degX(fi) ≥ 2, take

hi = q(T)nici(T)−1fi(T, q(T)−1X). (6.2)

Then, by expanding out hi, it is easy to see that hi is monic. Moreover, if hi =

a(T, X)b(T, X) then

ci(T)

q(T)ni
a(T, q(T)X)b(T, q(T)X) = fi(T, X)

It is evident that degX(a(T, q(T)X)) = degX(a(T, X)).

By comparing above equation, we get that WLOG degX(a(T, q(T)X)) ≥ 1. If

degX(a(T, q(T)X)) < ni, then degX(b(T, q(T)X)) ≥ 1 which would imply a non-

trivial factorization of f in the polynomial ring K(T)[X] which can be brought to a

non-trivial facotrization in K[T][X] by Gauss Lemma. This contradicts irreducibility

of f . Thus hi is irreducible.

Now we see that H(h1, . . . , hm) ⊂ H(f1, . . . , fm; g).

Suppose a ∈ H(h1, . . . , hm), then

If ni = 1, then Xb − q(a) is irreducible, then q(a) 6= 0. As a result ci(a) 6= 0 and

fi = ci(a)X − d is irreducible.

If ni ≥ 2, then

hi(a, X) = q(a)nici(a)−1fi(a, q(a)−1X)

then q(a) 6= 0, ci(a) 6= 0 and fi(a, q(a)−1X) is defined and irreducible.

In either case, q(a) 6= 0 and hence g(a) 6= 0.

The claim about separability is obvious from equation (2).

Lemma 6.1.4. Let H be a separable Hilbert set in Ar(K), then there exists an

irreducible polynomial f ∈ K[T1, . . . , Tr, X] such that H(f) ⊂ H, where f is monic,

separable in X and degX(f) ≥ 2.

Proof. By lemma 1, we may assume thatH = H(f1, . . . , fk; g) where fi ∈ K[T1, . . . , Tr, X]

is irreducible,separable in X and fi /∈ K[T1, . . . , Tr] and g 6= 0. Let ri(T) be the lead-

ing term of fi as polynomial over X.

Let xi be roots of fi as polynomial in K(T)[X] and consider L′ = K(T)(x1, . . . , xk).

If degX(fi) = 1 for all i ∈ {1, . . . , k}, then [L′ : K] = 1. Then choose a prime
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l 6= char(K), and consider L := K(T)(T
1/l
1 ), then [L : K] > 1 and is a separable

extension.

Otherwise [L′ : K] > 1 and let L := L′. Since L/K(T) is a finite separable exten-

sion,we may assume L = K(T)(z) for some z separable and integral over K[T]. Let

h ∈ K[T, X] be the monic, irreducible polynomial for which h(z) = 0.

Since K(T)(z) = K(T)[z], we may write xi =
∑ni

j=0
aij(T)

bij(T)
zj = pi(T,z)

p0(T)
.

Let hi ∈ K(T)[xi][X] be the monic, irreducible polynomial such that hi(z) = 0.

We note that hi is separable in X. Then hi = qi(T)gi where gi ∈ K[T, xi, X] and

qi(T) 6= 0.

Now let b = g(T)
∏
qi(T)p0(T)

∏
i ri(T) and we observe that degX(fi) = degX(fi(a, X))

and degX(h) = degX h(a, X).

Now we prove that H(h; b) ⊂ H(f1, . . . , fk; g).

Suppose a ∈ H(h; b) and suppose c ∈ K̃ is a root of h(a, X). Let φ : K[T] → K(a)

be the evaluation map i.e φ(Ti) = ai. By (??) extend φ to a place φ : K(T) →
K(a) ∪ {∞}. By (4.1) we can extend this place, also denoted by φ, from K(T)(z)

where φ(z) = c.

K(T)

K(T)(z)

K(a) ∪ {∞}

K(a)(c) ∪ {∞}

Thus, φ(f(T, X)) = f(a, X) and hence pi(a,c)
p0(a)

is a root of f(a, X).

[K(c) : K] = degX(h) = [K(T)(z) : K(T)]. Moreover, [K(pi(a,c)
p0(a)

) : K] ≤ degX(fi)

and [K(c) : K(pi(a,c)
p0(a)

)] ≤ degX(hi).

We infer that above inequalities are actually equalities and hence fi(a, X) is irre-

ducible.

Now, use above lemma to eliminate b.



6.1. HILBERTIAN FIELDS 67

Given f1, . . . , fn ∈ K[T,X] be irreducible elements such that degX(fi) ≥ 2, fi is

separable in X and g ∈ K[T ] be a non zero polynomial. Then define

G(f1, . . . , fn; g) = {a ∈ K |
∏
i

fi(a, b) 6= 0 ∀ b ∈ K, g(a) 6= 0}.

Theorem 6.1.5. Let G := G(f1, . . . , fm; g) be a subset of Ar(K) with fi absolutely

irreducible in K[T1, . . . , Tr, X], degX(fi) ≥ 2 and separable in X. Then G contains

a set of the form G(h1, . . . , hm) in which hi are monic, absolutely irreducible polyno-

mials in K[T1, . . . , Tr, X] such that degX(hi) ≥ 2 and hi separable in X.

Proof. Let ci(T) be the leading coefficients of fi as polynomial over X and ni =

degX(fi). Consider q(T) =
∏

i ci(T)g(T).

We give a prescription for hi as follows:

hi = q(T)nici(T)−1fi(T, q(T)−1X). (6.3)

Then, by expanding out hi, it is easy to see that hi is monic. Moreover, if hi =

a(T, X)b(T, X) with constant from K̃ then

ci(T)

q(T)ni
a(T, q(T)X)b(T, q(T)X) = fi(T, X)

It is evident that degX(a(T, q(T)X)) = degX(a(T, X)).

By comparing above equation, we get that WLOG degX(a(T, q(T)X)) ≥ 1. If

degX(a(T, q(T)X)) < ni, then degX(b(T, q(T)X)) ≥ 1 which would imply a non-

trivial factorization of f in the polynomial ring K(T)[X] which can be brought to

a non-trivial facotrization in K̃[T][X] by Gauss Lemma. This contradicts absolute

irreducibility of fi. Thus hi is absolutely irreducible.

Now we see that G(h1, . . . , hm) ⊂ G(f1, . . . , fm; g).

Suppose a ∈ G(h1, . . . , hm), then

q(a)nici(a)−1fi(a, q(a)−1b) = hi(a, b) 6= 0

then q(a) 6= 0, ci(a) 6= 0 and fi(a, q(a)−1b) 6= 0

In either case, q(a) 6= 0 and hence g(a) 6= 0.

The claim about separability is obvious from equation (5).
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If K is Hilbertian then H(f1, . . . , fn; g) is non-empty which implies G(f1, . . . , fn; g)

is non-empty. We prove the converse.

Lemma 6.1.6. Suppose f ∈ K[T1, . . . , Tr, X] be an irreducible polynomial, monic

and separable inX such that degX(f) ≥ 2. Then there exists f1, . . . , fr ∈ K[T1, . . . , Tr, X]

where fi is absoutely irreducible, monic and separable in X and degX(fi) ≥ 2 such

that G(f1, . . . , fn) ⊂ H(f).

Proof. Let {xi} be roots of f as a polynomial over the field K(T). Then E =

K(T)(x1, . . . , xn) is a finite separable extension of K(T) and f(T, X) =
∏n

i=1(X−xi).
For any non-empty proper subset I ⊂ {1, . . . , n}, we know that fI =

∏
i∈I(X − xi) is

not an element of K(T)[X], otherwise f is reducible. Thus, there exists a coefficient

yI of fI such that yI /∈ K(T). Let gI ∈ K(T)[X] be the monic, irreducible polynomial

such that gI(T, yI) = 0. Since yI is a polynomial in xi and xi are integral over K[T],

we may assume that gI ∈ K[T][X]. For the same reason, gI is separable polynomial

in X and degX(gI) ≥ 2.

Suppose gI is reducible in K̃[T, X], i.e gI =
∏

j hj where hj are monic, irreducible

polynomials in K̃[T, X]. Note that since gI is separable, each hj is distinct.

Since hi 6= hj ⇒ V (hi) * V (hj). This is because I(V (p)) = p if p is a prime ideal in

K[T, X]. Let WI =
⋂
i V (hi) = V (h1, . . . , hk).

For any i, we must have dim(V (hi)) = dim(K[T, X]/(hi)) ≤ r since height of (hi) is

at least 1 because of the chain (0) ⊂ (hi).

By Lemma5.0.8, dim(WI) ≤ r−1. For all proper non-empty subsets of I for which

gI is reducible in K̃[T, X] let W :=
⋃
WI where WI is as above. Since dim(W ) =

max(dim(WI)) we get that dim(W ) ≤ r − 1.

Project π : W → Ar(K̃) and let A be the K-closure of π(W ). Since π′ : W → A

is a dominant map, the induced map between function fields K(A) → K(W ) is a

injection and hence dim(A) ≤ dim(W ) ≤ r − 1 and hence (0)  I(A).

Thus, there exists g ∈ K[T] such that g is non-zero and vanishes on A. For I

non-empty proper subsets of {1, . . . , n} for which gI is absolutely irreducible, denote

them by hI . Then we claim that

G(hI ; g) ⊂ G(gI | I ( {1, . . . , n})

Indeed, if a ∈ Ar(K) such that hI(a, b) 6= 0 for all b ∈ K and g(a) 6= 0. Suppose
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gI(a, b) = 0 for some I a non-empty proper subset of {1, . . . , n}.
Suppose gI =

∏
j hj, then 0 = gI(a, b) =

∏
j hj(a, b). Thus, WLOG h1(a, b) = 0.

Thus, (a, b) ∈ V (h1).

By Lemma(5.0.12), we know that V (hj) = σ(V (h1)) for some σ ∈ Gal(K̃/K) and

hence (a, b) ∈ V (hi) for all i. Consequently, (a, b) ∈ WI and hence a ∈ A. By choice

of g, we have g(a) = 0. This is a contradiction.

Now we show that

G(gI | I ( {1, . . . , n}) ⊂ H(f) (6.4)

Suppose a ∈ LHS and f(a, X) is reducible i.e f(a, X) = f1(X)f2(X).

Consider the place φ : K(T)→ K(a) ∪ {∞} generated by application of (??) to the

ring map K[T] → K(a) where Ti is sent to ai. By (??) we can extend φ to a place

φ∗ : K(T)(x1, . . . , xn)→ K(a)(c1, . . . , cn) ∪ {∞} where ci are roots of φ(f(T, X)) =

f(a, X). Note that since degX(φ(f(T, X))) = degX(f(T, X)) no root is sent to ∞.

Since f(a, X) =
∏

(X − ci) we infer that there exists a proper non-empty subset I of

{1, . . . , n} such that f1 =
∏

i∈I(X − ci).
Let φ∗(yI) = d for I as in above line. Then since gI(T, yI) = 0, by applying φ∗ we

infer that gI(a, d) = 0. But since ci ∈ K and yI is a polynomial combination of xi, it

is true that d is a polynomial combination of ci and hence d ∈ K. But it contradicts

our choice of a. Thus, G(hI ; g) ⊂ H(f). Use (6.1.5) to eliminate g.

6.2 Global fields are Hilbertian

Lemma 6.2.1. A finite group G cannot be union of conjugates of its proper subgroup.

Lemma 6.2.2. For L/K a finite separable extension of global fields, there are in-

finitely many places p ∈ P(K) for which LP = Kp where P is any prime lying above

p.

Proof. WLOG we may assume L/K is finite Galois. Consider A = {p | (
L/K

p
) =

{1}} and we know by CDT A is infinite. Primes in A exactly correspond to primes

which split completely in L.

Lemma 6.2.3. Let q be a prime power and K = Fq and consider E = K(T ) where

T is an indeterminate. Consider a Galois extension F = K(T )(z) where g(T,X) is
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the monic irreducible polynomial for z and suppose K is algebraically closed in F .

Let d = deg(g),m = degX(g) and C be a conjugacy class in Gal(F/K). Then the

number N of degree 1, unramified primes p ∈ P(K) such that (F/K
p

) = C satisfies∣∣∣∣N − |C|qm
∣∣∣∣ < 10d2|C|√q. (6.5)

Proof. We use Theorem(3.0.14) coupled with the inequality gF ≤
(d−1)(d−2)

2
.

Lemma 6.2.4. Let K be a global field and f ∈ K[T,X] be an absolutely irreducible

polynomial such that f is monic, separable in in the variable X and degX(f) > 1.

Then there are infinitely many primes p ∈ P(K) such that there exists ap ∈ OK with

the following property:

If a ∈ OK such that a ≡ ap mod p, then f(a, b) 6= 0 ∀ b ∈ K.

Proof. In case K is a function field over Fq, choose t ∈ K such that K/Fq(t) is a

separable extension.

Let OK be the integral closure of Z or Fq[t](depending on K) in the field K. Almost

all primes/places lie in OK and since fraction field of OK is K, by changing X to cX

for some c ∈ OK , we may reduce the problem to f ∈ OK [T,X].

Considering f as polynomial over K(T ), let {X1, . . . , Xn} be roots of f and define

F := K(T )({Xi}). Let L be the algebraic closure of K in F . Since [F : K(T )] <∞,

we must have [L : K] <∞. Hence, tr(L/Fq(t)) = 1. Thus, by Lemma 2.7.5(c)[1], we

have that F/L is a regular extension.

K

E = K(T ) L

L(T ) L

F = K(T, x1, . . . , xn)
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Let F = L(T )(z) and g ∈ L(T )[X] be the irreducible polynomial of z. We

may assume that z is integral over OL[T ]. Thus, g ∈ OL[T ][X]. By regularity g is

absolutely irreducible.

By Lemma last one of CDT, the set of places A ⊂ P(K) such that LP = Kp is infinite.

After carefully choosing a set B ⊂ A, we consider f(T,X) ∈ Kp[T, x] where p ∈ B.

We want B to consist of primes such that

1. f(T,X) is defined.

2. f(T,X) remains absolutely irreducible

3. f(T,X) remains separable in X.

4. g(T,X) is defined.

5. g(T,X) remains absolutely irreducible

6. g(T,X) remains separable in X.

7. {X i} is defined.

8. z is defined.

Suppose there exist such a set B which is infinite.

Kp

E = Kp(T )

F = Kp(T )(x1, . . . , xn)

Let {xi} be roots of f in some algebraic closure. Then g(T,X) is the irreducible

polynomial for z and F = E(z). Since g(T,X) is absolutely irreducible, hence we

have that Kp is algebraically closed in F .

Since Gal(F/E(x1))  Gal(F/E), we can find σ ∈ Gal(F/E) such that σ(xi) 6= xi

for all i.
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Since q = |Kp|, for almost all prime p ∈ B, we can ensure that 10d2 degX(g) <
√
q

and hence by Lemma 0.1, we can find α ∈ Kp, such that (F/E
pα

) = Cσ. Call the set

C ⊂ B for which above is valid.

Thus for any element pα ∈ C, we have σ(x) ≡ xq and xi 6≡ xj. Moreover, this implies

that xi 6≡ xqi . Thus, f(α,X) has no roots in Kp.

Choose αp as a lift of α in OK . For α ≡ αp in OK/p, we must have that f(α,X) has

no root in OK and hence in K, otherwise we would get a root in Kp. Thus we are

done after showing the existence of set B as above.

For choosing the set B as above,

1. Since f ∈ OK [T,X] and OK ⊂ Op for all most all primes,f is defined for almost

all primes p ∈ P(K). Moreover, A1 = {p ∈ P(K) | f is defined and is absolutely

irreducible } is cofinite by Bertini-Noether Lemma. If disc(f(T )) =
∏

i 6=j(xi −
xj) = NF/E(fX(x1)) ∈ OK [T ], we have disc(f(T )) =

∏
i 6=j(xi−xj) ∈ Kp[T ]. For

primes p ∈ A1 which do not divide disc(f(T )), we get that f is separable. Thus,

the set of primes A′1 for which f is defined, absolutely irreducible, separable is

a cofinite set.

2. Almost similar argument as above gives that the set A′2 of primes in P(L) for

which g is defined, absolutely irreducible, separable is a cofinite set.

3. {xi} are polynomial combinations over z with coefficients as ratio of elements in

OL[T ]. Let A3 be the set of primes p which do not divide any of the denomiators,

and they are also cofinite.

4. z can be written as polynomial combination of {xi} with coefficients as ratios

of elements in OK [T ]. Let A′3 be the set of primes p ∈ P(L) which do not divide

any of the denominators, and this set is also cofinite.

5. Let B = A ∩ A′1 ∩ A′2 ∩ A3 ∩ A′3 and observe that B is infinite.

Theorem 6.2.5. Let K be a global field and H a separable Hilbert subset of K,

then H contains infinitely many elements. In particular, K is Hilbertian.

Proof. By Lemma(6.1.4), we may assume H(f) ⊂ H where f ∈ K[T,X] where f is

monic, separable in X and degX(f) ≥ 2. By (6.1.6), we may assume G(h1, . . . , hk) ⊂
H(f) where hi ∈ K[T,X] are absolutely irreducible, monic and separable in X such
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that degX(hi) ≥ 2. Hence, it is enough to show that G(h1, . . . , hk) contains infinitely

many points.

For each hi, by Lemma (6.2.4), choose a prime ideal pi ∈ OK for which there exists

api ∈ OK such that hi(api , X) has no zero in K. Thus, api ∈ G(hi). Let p1, . . . , pt be

distinct such primes. By Chinese remainder , choose an element a ∈ OK such that

a ≡ api mod pi and hence we get that a ∈ G(h1, . . . , hk). In particular all elements

b ∈ OK such that b− a ∈
∏t

i=1 pi lie in G(h1, . . . , hk).

Lemma 6.2.6. Let K/F be a finite Galois extension with Galois group G. Let R be

a subring of F with fraction field as F . Suppose K = F (α) and f(x) ∈ R[x] is the

monic, irreducible polynomial of degree n = [K : F ] such that f(α) = 0. Let A be a

finite subset of K containing α such that it is G-invariant. Let S = R[A].

There exists u ∈ R such that, for each ring homomorphism ω : R→ F ′,:

If ω(u) 6= 0, ω extends to ω′ : S → K ′ where K ′ is a finite Galois extension of F ′.

Moreover,

1. K ′ = F ′(α′) where α′ = ω′(α).

2. The polynomial f ′ = ω(f) is such that f ′(α′) = 0.

3. Suppose f ′ is irreducible, then Gal(K/F ) ∼= Gal(K ′/F ′).

Proof. Suppose R[A] = R[α] and f ′ = ω(f), then it is easy to see that R[α] ∼=
R[x]/(f).

Let g′ be an irreducible factor of f ′. Then there exists a map :

R[α] ∼= R[x]/(f)→ F ′[x]/(g′) (6.6)

Let ω′ be the composition of above maps.

Take K ′ = F ′[x]/(g) and then it is clear that K ′ = F ′(α′).

Let u = disc(f) and we observe that if ω(u) 6= 0 then ω(f) has distinct roots and

hence so does g. Thus, K ′/F ′ is separable.

Since K ′ = F ′(α′) and conjugates of g are contained in the conjugates of f ′ which are

contained in K ′. Hence K ′ is normal over F ′.

If f ′ is irreducible, then g′ = f ′.

For any σ′ ∈ Gal(K ′/F ′) is uniquely determined by its action on α′. If α1, α2, . . . , αn
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are roots of f in R[A], then α′1, α
′
2, . . . , α

′
n are roots of f ′ in K ′.

Given a σ′ ∈ Gal(K ′/F ′) such that σ′(α) = α′i, send σ′ to σ which sends α → αi.

This map is an isomorphism.

If R[A] 6= R[α], then we use the following trick.

Each element x ∈ A can be written as x =
∑m

i=0 aiα
i where ai ∈ F . Hence, we can

find a b ∈ R such that bx ∈ R[α] for all x ∈ A.

Now consider R′ = R(b) (localising at {bi | i ∈ N}). Then for u = b disc(f) ∈ R such

that ω(u) 6= 0, we can extend ω to ω̃ : R′ = R(b) → F ′.

We observe that R[A] ⊂ R′[A] and R′[A] = R′[α]. Now use the above case for

ω̃ : R′ → F ′.

Lemma 6.2.7. Let K be a Hilbertian field. If G can be represented as Galois group

over K(x1, . . . , xn) then there exists a finite Galois extension L of K for which G is

the Galois group.

Proof. Suppose L = K(x1, . . . , xn)(α) such that Gal(L/K(x1, . . . , xn)) = G. Suppose

R = K[x1, . . . , xn] and we may assume that α is integral over R. Consider A =

{ conjugates of α}.
Suppose the irreducible polynomial of α is f ∈ K[x1, . . . , xn][Y ] and let u ∈ R be as in

the Lemma(6.2.6). Consider the set Hn(f ;u), which is non-empty by Hilbertianity of

K. Then there exists b ∈ Kn such that f(b)(Y ) is irreducible in K[Y ] and u(b) 6= 0.

Consider ω : R → K which sends g(x) → g(b). By Lemma(6.2.6) we get that there

exists F a Galois extension of K such that G ∼= Gal(F/K).

Lemma 6.2.8. Sn is a Galois group over K where K is Hilbertian field.

Proof. If K is a Hilbertian field, then consider

f(y) = yn + x1y
n−1 + . . .+ xn−1y + xn (6.7)

a polynomial in K(x1, . . . , xn)[y] where xi are indeterminates, we look at the splitting

field of f(y), that is K(t1, t2, . . . , tn) where f(y) =
∏n

i=1(y − ti).
Thus,

[K(t1, . . . , tn) : K(x1, . . . , xn)] ≤ n!. (6.8)

Since Sn, the symmetric group on n letters acts on {t1, . . . , tn}, it extends to an

action of Sn on K(t1, . . . , tn). We observe that xi, for each 1 ≤ i ≤ n, is a symmetric
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polynomial in t1, . . . , tn and hence it is contained in the fixed field of Sn. We observe

that

K(x1, . . . , xn) ⊂ K(t1, . . . , tn)Sn , (6.9)

due to which we get that

[K(t1, . . . , tn) : K(x1, . . . , xn)] ≥ [K(t1, . . . , tn) : K(t1, . . . , tn)Sn ]. (6.10)

We also know that [K(t1, . . . , tn) : K(t1, . . . , tn)Sn ] =| Sn |= n!, by Artin’s theorem.

Hence [K(t1, . . . , tn) : K(x1, . . . , xn)] = n!. Consequently

Sn = Gal(K(t1, . . . , tn)/K(t1, . . . , tn)Sn) = Gal(K(t1, . . . , tn)/K(x1, . . . , xn)). (6.11)

Hence by Lemma(6.2.7),we can get Sn as Galois group over K.

Corollary 6.2.9. Sn is a Galois group over Q.

We showed that for G = Sn the field K(x)G is a purely transcendental function

field and hence the Galois group could be transferred to that over K. Emmy Noether

asked whether this is true for all groups G and field Q(x). If this was true then the

Inverse Galois Problem would have been solved. In 1969, Richard Swan came up with

a counterexample.

Theorem 6.2.10 (Swan). Let G be the cyclic group of order p acting transitively on

the indeterminates x1, . . . , xp. Let L be the fixed field Q(x1, . . . , xp)
G. Then L is not

a purely transcendental extension of Q for p = 47.

Proof. Refer [7].
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