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Abstract

In this thesis, motivated by the Inverse Galois Problem, we prove the occurence of
S, as Galois group over any global field. While Hilbert’s Irreducibility Theorem,
the main ingredient of this proof, can be proved(for Q) using elementary methods of
complex analysis, we do not follow this approach. We give a general form of Hilbert’s
Irreducibility Theorem which says that all global fields are Hilbertian. Proving this
takes us to Riemann hypothesis for curves and Chebotarev Density Theorem for
function fields. In addition we prove the Chebotarev Density Theorem for Number
Fields. The main reference for this thesis is [1] and the proofs are borrowed from the

same.
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Chapter 1

Introduction

Given a field K and a finite group G, the Inverse Galois Problem is to find a
Galois extension L of K such that Gal(L/K) = G. While the problem is still open
over Q, it has an affirmative solution over C(¢). We are interested in extensions of Q.
It is easy to see that IGP has a solution over QQ for any finite abelian group G. Indeed,
if G is a finite abelian group, then by the structure theorem for finitely generated

abelian groups,
G=ZZ/m\Z X Z]mol X ... X L] myZ (1.1)

where my | mo | ... | my.

By Dirichlet’s theorem, which we will prove in the next chapter, there are infinitely
many primes congruent to 1 mod m; for each 1 < ¢ < k. Choose primes pi,...,p
such that p;, =1 mod m;. Thus, corresponding to each m; we obtain a subgroup H;
of (Z/p;Z)* of index m;.

We know that

Gal(Q(Gp1..p)/Q) = Gal(Q(G,)/Q) x Gal(Q((p,)/Q) x ... x Gal(Q(¢p,)/Q)

(1.2)
~ (Z/mZ)* x (Z/psZ)* % ... x (Z/ )’

Since Hy x Hy X ... X Hj is a subgroup of the RHS of index my ...my, there exists
H a subgroup of Gal(Q((,,..,,)/Q) of the same index. Being an abelian extension,

1



2 CHAPTER 1. INTRODUCTION

every subgroup is normal and hence

Gal(Q(¢p,. )/ Q)

Gal(@" /@) = “H2en
LT -VZ Bm-DE L)
- H H, H, (1.3)
= Z/le X Z/?TLQZ X ... X Z/me
=G

In following chapters we will build enough theory to show that IGP can be solved

over QQ for S, for any positive integer n.



Chapter 2

Chebotarev Density Theorem for
Number Fields

In this chapter we will give an elementary proof of the Chebotarev Density Theorem.
In particular we do not assume any knowledge of class field theory. All fields occuring
in this chapter are number fields. The exposition follows more or less Chapter 6 of
[1].

Let L/K be a finite Galois extension of fields. By fixing an unramified prime ideal p
in Ok, we know that the Frobenius elements living over p form a conjugacy class C
in Gal(L/K).

Suppose we start with an arbitrary conjugacy class C in Gal(L/K) and ask whether
we can find an unramified prime ideal p such that its associated conjugacy class is C.
The Chebotarev Density Theorem answers this question in the affirmative and more-
over also proves that there are infinitely many such prime ideals.

Let P(K) be the set of prime ideals in O and A C P(K), we define

. Ypea(Np)~—®
S(A) = lim ——P<A
(4) Siﬂ* Ypep(r)(Np)~s

whenever the limit exists.

Remark 2.0.1. 1. For every p € P(K) there lies a prime p € Z such that p | p

3



4 CHAPTER 2. CHEBOTAREV DENSITY THEOREM FOR NUMBER FIELDS

and there can be at most [K : Q] prime ideals above a give prime p € Z. Thus,

> p)m= > > (Np)T

pEP(K) peP(Z) plp

<> Y

pEP(Z) Plp (2.2)

<IK:Q ) p

pEP(Z)

< [K :Q¢(x) < oo,
where = € R such that > 1 and ((z) is the Riemann-Zeta function.

2. We observe that for z as above

1
1+ (Np)—* = (Np)~

— < 1+2(Np)~™. (2.3)

Thus we may conclude that [],cp(x) (1 — (Np)™®)~! converges.

3. We also note that

| Akl = [{p € P(K); Np < k}| < o0 (2.4)

4. Thus,
[T a-@p)y™"=> (Na)™ (2.5)

peEP(K);Np<k aeT

where T is the set of all ideals in Ok such that only primes in Ay occur in its

factorization.

5. Taking k — oo, we get that

Y oy = [ =)™, (2.6)

a peP(K)

where a runs over all non-zero ideals in Q. This is also referred to as Euler

factorization.

6. If 6(A) exists and is non-zero, then A is infinite. Moreover, whenever the limit

exists it is a real number lying between 0 and 1.



Theorem 2.0.2 (Chebotarev Density Theorem). Let L/K be a finite Galois

extension and suppose C is a conjugacy class in Gal(L/K) and let

A= {p € P(K), (L/TK> = C}. (2.7)

Then 0(A) exists and equals %

The proof of the above theorem is given in steps. Sequentially, we prove the CDT

for:

1. Cyclotomic extensions.

2. Abelian extension by Chebotarev’s field crossing argument.

3. Arbitrary Galois extension by reducing to the cylic case.

We mention a lemma which will be used a couple of times.
Lemma 2.0.3. Let a,b,n € N such that (a,n) = (b,n) = 1. Then (* =’ & (* = ¢°
in Og()/p, where p is a prime lying over p € Z such that (p,n) = 1 and ( is a
primitive n* root of unity.
Proof. The direction = is clear.

< Let K = Q(¢) and if ¢* # ¢” and ¢(* = ¢* mod p where p is as in the Lemma.
Then (* — ¢? € p.

But . .
I «-¢)=Eny'a
1<i,5<n,i#j
o (2.8)
11 (¢" = ¢Y) = dise(K/Q).
1<4,5<n,i#3,(4,n)=1,(j,n)=1
Thus,
n"Ok C disc(K/Q)Ok C (¢* — ¢")Ok C p 29)

n"Ox Cp=n0Oxg Cp=>nOxkNZCpNZ=p|n.

This is a contradiction. O
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2.1 Cyclotomic extension

Now we begin our proof of the density theorem for cyclotomic extensions. An exten-
sion L/K is called cyclotomic if L C K((,) for some primitive n'* root of unity ¢,.

Let ¢ C Ok be a non-zero ideal and define
J(e) == {pT" ... 0" | e € Z,pi f c}. (2.10)

In other words, J(¢) is the multiplicative subgroup of all fractional ideals coprime to
.

For L/K an abelian extension, we define an integral ideal ¢ C Ok to be admissible if
the following holds:

If p a prime ideal in Ok and p ramifies in Of then ¢ C p.

The ideal generated by the discriminant of the extension is an example of an admis-

sible ideal. For ¢ an admissible ideal, we define the Artin map as follows:
we : J(¢) = Gal(L/K), (2.11)

where w.(p) = [L/TK} The symbol [L/TK] is the corresponding Frobenius element in
Gal(L/K). Note that it is unique since the conjugacy classes are singleton.

Also, J(c) is free on prime ideals which do not occur in the prime factorization of ¢
and hence a map defined on primes extends uniquely to all of J(c).

If M/L is also an abelian extension and ¢ is admissible for M /K, then ¢ is also
admissible for L/K, and thus we have the following maps and the diagram commutes

(since the restriction of a Frobenius is still a Frobenius).

We,L/K
J(¢) Gal(M/K)
We,M/K res
Id
Gal(L/K) Gal(L/K)

For a cyclotomic extension, we will show that the Artin map is surjective. To this
end, we define the following.
Let K. C K* be the subgroup of all elements x € K* which satisfy:
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1. If p| ¢, then 2 € Ogy and 2 =1 in Ok, /O p.
2. For all real embeddings o : K — R, we have o(x) > 0.

Let P(¢c) = {20k | ¢ € K.}. It is easy to see that P(c) C J(c¢). We denote
G(c) = J(c)/P(c) and note that G(c) is finite (Theorem 1, Chapter 6, [2]).
For KL € G(¢), we denote j(IC,n) = {a an integral ideal, [a] = KC, N(a) < n}.
We note that
(K, n)| = pen + O(n' " w ), (2.12)

where p, is a constant which is independent of K. (Theorem 3, Chapter 6, [2])

Lemma 2.1.1. Suppose K C L C K((,) where (,, is a primitive m root of 1 and
¢ an ideal in Ok such that ¢ € mOg. Then ¢ is admissible and w, factors through

G(c).

Proof. We need to show that P(c) C ker(wer/x)-
Since the above diagram commutes, it is enough to show that P(c) C ker(we x(c,.)/x)-
Also, if a prime p ramifies in K((,,) then p | disc(K((,,)/K) and we know that
disc(K (¢n)/K) | m™. Hence p | m. Thus, we have p | ¢. Thus, ¢ is admissible.
We know that

i:Gal(K(Cn)/K) = (Z/mZ)* (2.13)

defined by i(0) = a mod m where o((,,) = (% is an injection.

For a prime ideal p € J(c), we see that

We, K (¢o)/K (0)(Gn) = CNP mod b, (2.14)

where b is any prime ideal lying above p. By Lemma(2.0.3), we get that the same
relation holds in K((,,) and hence

i 0 We k(cn)/k(P) = Np  mod m. (2.15)
Thus, for any fractional ideal a € P(c), we have

i 0 We K (¢cm)/Kk (@) = Na  mod m. (2.16)
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For z = § € K, such that a,b € Ok, we see that a —b € cOg, N Ok = ¢ (this is true
for Dedekind domains). Thus, a — b € ¢ C mOk.

To compute Nk q(z), we can take the normal closure of K/Q say as T', then Ny q(x) =
[I,cx 0(x) where H contains the coset representatives of Gal(7/Q)/ Gal(T/K).
Since a —b € mOk = a — b € mOr and hence o(a) — o(b) € mOr. But then

o(a) = a(b) in Or/mOr. (2.17)

Hence
H o(a) = H a(b) in Op/mOr. (2.18)

Thus,
NK/Q((I) = NK/Q(b) mn (’)T/mOT. (219)

But both LHS and RHS lie in Z and hence
Nk g(a) = Nk jg(b) in Z/mZ. (2.20)

Thus, we have

a .

Ngo(x) = NK/Q(E) = 11in Z/mZ. (2.21)
Then,

N(zOk) = Ngjg(r) =1 mod m. (2.22)

(here we use the 2" defining condition of K).

Thus,

P(C) C ker(wc’K(Cm)/K). (223)

[l

Our next aim is to show that the above map @, : G(¢) — Gal(L/K) is surjective.
In order to do this, we define L-series and analytically continue it to a larger space

and make some observations.

Let G be a finite abelian group. A character y of G is a group homomorphism
from G to C*. The set of all characters on a group G is represented by G and it is
easy to see that |G| = |G|. We also note the following orthogonality relations are

satisfied by the characters:
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G =1

L > cax(g) = Il s
0 g#1
Gl x=1

2. Y geax(9) = Gl x
X 71

3. [[ee(l—x(9)Y) = (1 - YH)IG/ where t = ord(g).

o~

In order to prove the last relation, suppose G = (g), then polynomial on LHS is

separable and

Roots of LHS = {x(g)"!|x € G}
Roots of LHS C Roots of RHS
|G| = |Roots of LHS| < |Roots of RHS| < |G]

Thus identity follows in cyclic case.

—

(2.24)

For any G and g € G, if x € (g), then we observe that since C* is divisible abelian

group, it is injective Z-module and hence
X9 = C
can be lifted to a map
x1:G—C*
As a result there exists a split exact sequence
1 H—G— @ — 1

where H = {x € G|x(g) = 1}.

~ o~

Thus, G = (g)H and

~

G:X1H UXQHUUthlHUH

is the coset decomposition, where

o~

(9) ={Lx1, - xe-1}

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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We observe that

(1= x(g)Y))lV?

I
—

—

X€(g)

=(1— yt)IG\/t.

The last equality follows from the cyclic case.

For ¢ as above and x a character on G(c), we define

L(s.x)= > xUah) oy o (2.31)

(a,0)=1

The summation runs over all integral ideals coprime to c.

Remark 2.1.2. 1. For defining an L-series and its convergence we do not require

¢ to be admissible.
2. Convergence of the L-series can be seen by comparing with equation 6.

3. L-series for the trivial character is called Dedekind zeta function of K with
respect to the ideal ¢ and denoted by ((s, K).

G5 K) = S e R(s) > 1 (2.32)

(a,0)=1

The function x is multiplicative on J(¢) and by using the argument similar to (6),

we derive an Euler factorization

1
L(s,x) = [ [ e R(s) > 1 (2.33)
pfc (Np)®

We take the following Lemma (Chapter 5, [2]) for granted.

Lemma 2.1.3. Let {a;};en be a sequence of complex numbers for which there is a
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0 <o <1 and a complex number p such that
Zai =pn+0(n?%),n — . (2.34)
i=1

Then -
f(s) = Z(Jcnrf‘S (2.35)
n=1

defined for R(s) > 1 analytically continues to R(s) > o except for a simple pole at
s = 1 with residue p.

Corollary 2.1.4. The L-series L(s, x) has an analytic continuation to $(s) > 1 —
1

[K:Q]”
Moreover, if y = 1, then it has a simple pole with residue h.p, and if x # 1, it is
analytic on whole of (s) > 1 — m

Proof. Define a, := 3, ;) no=n X([a]) and observe that |a,| < co . Then,

n

Sa= Y )

i=1 acJ(c),Na<n
=Y Y )
KEG(c) agj(K,n) (2.36)
=) xKk) > 1
KeG(c) acj(k,n)
KeG(c)

By plugging in the estimates of j(K,n) in the above equation we get
For xy =1,

n

3" 4y = hepen + O(n' ), (2.37)

i=1

For x # 1, by using the orthogonality relations,

Y 4= 0+ 0" w9, (2.38)
i=1
1

Hence, by above lemma, L(s, 1) analytically extends to R(s) > 1— o] with a simple

pole at s = 1 with residue h.p. and L.(s, x), for x # 1, can be analytically continued
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to the entire half plane R(s) > 1 — 5.

Recalling the context we are in i.e K C L C K((,) and ¢ an admissible ideal
(since it was divisible by mOp) we will relate the Dedekind zeta function of ¢Oy, to

L-series over K.
Denote G := w.(G(c)) and denote n := [Gal(L/K) : G]. We observe that any
character x of G lifts to a character y oW, on G(c).

Lemma 2.1.5. Let € := ¢O;, and n as above. Then

Ce(s, L) = [ ] Le(s, x owe)™ (2.39)

xe@

1
(Np)®
We observe that, any prime ideal p such that p 1 ¢, is unramified and hence splits into

Proof. We will use orthogonality relation 3 with Y = and group G as above.

g primes in Op, each with inertia f. Thus, [L: K] = fg.

But
ord(we(p)) = ord(we(p))

L/K

= ord(] ) (2.40)

= |Dg| = f,
1

where B is any prime lying above p. Using 3 with ¥ = e we get

H(l B X(wc(p))) _ (1 _ (N;)sf)m’/f‘ (2‘41)

CX@ ) Y e L g 1
10 =G = 0 ) 0= ) = 1O - Gggy)- 242
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But then .
C€(S7L)_1 = g(l - (N%)s)_l
1 -1
pte %Ip
X(Wc n

= 1;[ ];[G (Vo) X(@lp)) - (2.43)
. X( c( )

Xll,l;[ (Np)*
=] Le(s. xome)™

xeG

]

Now we will show surjectivity of the map w, by showing n = 1 by using above

lemma.

Lemma 2.1.6. Let x be a nontrivial character of GG, then:

1. L(1,xow,) # 0.
2. log(.(s,K) = —log(s — 1)+ O(1),s — 17.
3. n=1

Proof. 1. If x is nontrivial, so is y o, thus if L (1, yow,) = 0, then Lemma(2.1.5)
product on the RHS would be analytic at s = 1. Indeed, since the n'"* power of
Dedekind zeta function on RHS has a pole of order n which is cancelled by zero
of order n of L(s,x ow,)". Every other term on RHS is analytic at s = 1 and
hence it is forced that the LHS is also analytic at s = 1 which contradicts our

earlier assertion about Dedekind zeta function always having a pole at s = 1.

2. This is basically the restatement that Dedekind zeta function has a pole at
s=1.

3. Since the RHS has a pole of order n at s = 1, so should the LHS. Thus, n = 1.
[
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Suppose we prove that

1
log G(s, K) =) ~ (1),s — 1%, (2.44)
p
Then we make the observation that
D pea(Np)~°
o | _ | 2ot o
ZpeA(Np)_s 10g<8 — 1)
>, (Np)~—s
3, (Np)~* + log(s — 1)|
B llog(s — 1) (2.45)
3, (Np)™* — log (s, K)|
log(s — 1)
llog (.(s, K) + log(s — 1)|
log(s —1)]

As s — 17, we see that numerators of both the sums are bounded and since denomi-

nators tends to infinity, we get that

N —S
5(A) = 2pealNP) (2.46)
log(s — 1)
Lemma 2.1.7. If y is a character of G = Gal(L/K), then
log Le(s, x 0 @) ZXWC O(1),s — 17, (2.47)
pfe
Proof. Using the Euler factorization of L-series,
L = ! 2.48
(s, x) = H 1 XD (2.48)

pfe (Np)#

converges on the right side of 1.
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Taking logarithm on both sides we get,

log L(s, x) Zlog 1— IJ])Z) (2.49)
pfe

Close to 1, we can use the power series expansion of complex logarithm i.e

log(l—2z)=—-) —. (2.50)

Thus,
log L) = 103 AT
pfe n=1
- Z ; —;ﬁin (2.51)
n=1 pfc
MRS x([pD)"
=2 ey T 2 2 ave

Hence, it is enough to show that close to 1

ZZ Xl (2.52)

n=2 pic
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is bounded. We let o = R(s)

>3 ;

n=2 pfc

2

oo

1
: Z Zn(Np)M

peEP(K) n=2

—~ 1
S Z ZZ(NP)O’H

peEP(Q) plp n=2

AN
]
=
=]
WE
=

3 —

(2.53)

g
s
]
3

Hence we are done.

Using the above Lemma(2.1.7) for the trivial character we get

log G(s, K) = Y (Np)™* +O(1),s — 17 (2.54)
pte
Thus,

log(e(s, K) = Y (Np)~ +0(1),s — 1%, (2.55)
PEP(K)
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Hence, we can say that

Np)—s
sty = SoealNo)
—log(s —1)
Now, we observe that for a given o € Gal(L/K)

i~ fero 1]

Consider

ZX Ylog(L(s, x o@,)), R(s) > 1

xEG

In this expression,

f(s) =log(C(s, K)) + D x(07") log(L(s, x 0@c)).

XEG x#1

_ a} _ {p € P(K),3p) = o).

17

(2.56)

(2.57)

(2.58)

(2.59)

We observe that the L.(s, x) is analytic at 1 for all y # 1 and hence is bounded close

to 1. We also know that
log((c(s, K)) = —log(s — 1) + O(1)
in a suitable neighbourhood of 1. Thus,

f(s)=—log(s — 1)+ O(1),s — 17.

On the other hand, using the Lemma(2.1.5), close to 1

= e K + o)

x€G pfe

=3 S g o)
xe@ pfe )
= Y MTEE L on
XEG Pfe

- Sy M fo‘ +o()

pfe x

(2.60)

(2.61)

(2.62)
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But orthogonality relation2 dictate that the sum will always be zero for p ¢ A and
for p € A we will get [L : K|, thus we get

f(s)=[L: K] (Np)™* +0(1) (2.63)
peA
Thus,

D pea(Np™?) 1| L K] ,ea(Np™) +log(s — 1)
- '_‘ [L : K]log(s — 1) ‘

—log(s—1) [L:K]
1L KT eaNo™) = F9)| [ 4(s) + log(s — 1)]

< .
- I[L: K]log(s—1)| I[L: K]log(s —1)|
(2.64)
Both of the terms in the above sum are bounded and hence as s — 11, we get that
S(A) = — (2.65)
L K] '

Thus, we have proved CDT for the special case of cyclotomic extensions.

Corollary 2.1.8 (Dirichlet’s theorem). Let a, n be positive integers such that (a,n) =
1, then there exist infintely many rational primes p in the arithmetic progession
{a+1tn|teZ}.

Proof. Consider the sets

A={pePQ) |p=a modn} (2.66)
) Q] _
B = {p € P(Q) | { ) ] = d } : (2.67)

Since Gal(Q(¢,)/Q) = (Z/nZ)*, where the isomorphism is decided after fixing a
primitive n'* root of unity (but here we do have a canonical choice which we represent
by ¢, = €2™/™ and it sends o — ¢ where ¢((,) = (¢ and it is through this identification
that we write Frobenius elements as elements of (Z/nZ)*.

It is obvious that B C A and the other inclusion follows from Lemma(2.0.3) for
abelian extensions, thus A = B.

But CDT for cycltomic extensions gives that §(4) = 6(B) = -+ and hence A is

é(n)
infinite. OJ
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2.2 Abelian extension

Lemma 2.2.1. Let L/K be a finite abelian extension and m be a positive integer.
Then there exists a cyclotomic field M of degree m such that M N L = K.

Proof. Suppose K = Q, then let L' be the maximal cyclotomic extension contained
in L. Then L' C Q((x) for some positive integer k.

Then, find a prime ¢ such that ¢ > k and ¢ =1 mod m by Dirichlet’s theorem.
Thus, m | ¢—1 and hence there is a unique subfield M C Q(¢,) such that [M : Q] =m
and the Galois group is cyclic. Also, Q C M NL" C Q(¢) NQ(¢k) = Q(Cged(g,r)) = Q.
Thus, M N L' = Q and since LN M C M C Q(¢,), we infer that LN M C L' as L' is
maximal cyclotomic. Thus L N M = Q.

Now for the general case,
We find M’ which is cyclotomic and cyclic of degree m, then choose M = K M’'. Since
LN M =Q, we have that K N M’ = Q and hence [KM' : K| = [M’' : Q] = m and

their Galois groups are isomorphic.

L KM

NS
K M
NS
Q

Since, L and M’ are linearly disjoint over Q, by Theorem 20.12 in [3], K and M’ are
linearly disjoint over Q and L and KM’ are linearly disjoint over K. Since, L and
KM’ are linearly disjoint over K, we get that LN KM’ = K. O

For each M as above Gal(M/K) = (7) and 7™ = 1.
Now, we begin the proof of CDT for abelian extension.
Suppose L/K is an abelian extension and ¢ € Gal(L/K) and we know that ord(o) |
ord(7). In other words, if ord(r) = m = p}*...p* and ord(c) = n = p{* ... p{* we

have a; S bl

Consider the set
T(M/K) = {r",ord(c) | ord(7")} (2.68)
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Then we calculate the size of T(M/K).

Let I =m/n and A = {1 <i <m,ged(i,m)|l}. We get a bijection from T'(M/K) to
A by sending 7 — 1.

Let B = {1 <i<1,i|l}.

Then we get a surjective map 0 : A — B by sending ¢ — ged(i, m).

The cardinality of each fibre can be computed easily. More precisely, for d € B,
07H(d)] = d(m/d).

Thus, [T(M/K)| = [A] = Sqié(m/d).

But ¢(m/d) == [[i_, 2t

We get

k
A=Y o(m/d) = zdu% 1%~ !
=1

djl pi

Pi

:meifl(Z %) (2.69)

djl
m 4 pi— 1 [
=711 . Q)
i=1 djl
. . .. . . l pyi+1—1
But if z = p{" ... p}", then sum of its divisors is given by [],_, e
Hence,
K o bi—aitl K
m pi—1 p;t T~ 1 b; a;—
LYy L i e
i=1 ' =1 ! i=1

Fix v € Gal(M/K).
Let F' = LM and find p, € Gal(F/K) such that p,|y = v and p,|;, = o and consider
E=F<»>={zeF|p,(x)=x}

F

N
N

K
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Then we claim that F'/E is a cyclotomic extension. Indeed, since
ENM=F""NM=M""=M =K (2.71)

and hence Gal(M/K) = Gal(F/E).
But

ord(y) = [F: E] = [F: ME|[ME : E] = [F : ME|[M : K] = [F : ME]ord(~).

(2.72)
Thus, F'= ME.
AAKCMCK{)=KECMECK{)E=ECFCE(Q).
Thus, F'/F is a cyclotomic extension.
Thus,
A =faepm) [ =,) (2.73)

has a density by the CDT for cyclotomic extensions and 6(A,) = ﬁ

We also note that if v # 3, then A, N Ag = 0.

We will show that primes in A, with non-trivial inertia do not count from a density
perspective, they form a “thin” set.

Let AL ={q € A, | p:=qN K is unramified for /K and Np = Nq}.

Y (Nt <a+dy (Ng)

qeAL\AL qeB

—2s
<at+ Y p (2.74)

In above inequalties « is the sum of all Nq~=® for which q N K ramifies in E and there
are finitely many such.
Let

B ={q € A,, qN Kis unramified andNq > N(q N K)}. (2.75)

Thus, §(A,) = §(AL) + 6(A, \ AL) = §(AL).
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We know that

Afy ={q€ P(E)|p:=qN K is unramified for £/K and Np = Nq, {E] = py}.
| (2.76)

Let B! = {p € P(K) | p is unramified , [F/TK} =p,}.

Again, B, N Bs = () whenever v # f.

Consider the restriction map res : AL, — B/ which sends q — q N K.

Since q N K is unramified for £'/K and q is unramified for F'/E, we have q N K is

unramified for F'/K and since Nq = N(q N K), the Frobenius for F//E is also the

Frobenius for F//K as the inertia of E/K is trivial and hence the residue fields are

same.

Moreover, if p € B!, then there exists a prime b € P(L) lying above p such that

[F/TK] = py, then it is easy to see that bN E' € A..

We calculate the cardinality of the fibres in the above restriction map.

If p € B/, then it splits into r primes in E such that ref = [E : K] but since

p is unramified we have e = 1. Thus, for each prime p in B’ there are exactly r

primes lying above p such that pOgr = q;...q,. Also, for each such q;, we see that

[E/TK] = [F/TKHE = py|p = 1g and hence f = |D,,| = ord([E/TK]) = 1. Thus, Np = Nq

for each q which lies above p, we get that f = 1 and hence r = [E : K].

Thus, A, =[], B A, where A, contains [E : K] primes which lie above p.

Pick a representative from each fibre and form the set D (which is bijective to B!).

Y (Ng)yT =) (N@nK)™ = (Np)™ (2.77)

qeD qeD peBLY

But AY = U, ccam/x) oD and the union is disjoint. Thus,

[F%E]:(S(A;): > 6(oD)=[E: K|§(D) = [E : K|3(B,)
: veGal(E/K) 1 X (2.78)

0B, = [E:K|[F:E] [F:K]




2.2. ABELIAN EXTENSION 23
Now, consider

0(Uyerou/r)BY) = Z (B
YET(M/K)

1
= 2 [F: K]

VET(M/K)

[ T(M/EK)|[F : K] (2.79)

(i =P HIF : K]

—.

1=1

k
1 i
_ [F‘K][M:K]H(l—pi' 1=ty
' i=1
L/K . e Lo
T ={p e PK)| o = o}, then since the restriction of a Frobenius is also a
Frobenius, we get that ey By C T
Thus,
1 k
6(T) > 0(Uyerm/x) B,) > F: K] (M : K] H(l —pith
' i=1
1 k
- Tmr e Ke - es)
' i=1
1 k
- e lla-m™)
i=1
But as
m=|Gal(M/K) — oo = (1 —p»'7%) = 1. (2.81)
Thus,
1
5(T) > T (2.82)
But since
d(Upccarr/mTy) =1, (2.83)
we must have )
oT) = . 2.84

Remark 2.2.2. This proof is not entirely correct as we have assumed §(7") exists.
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To do away with that, show that the equations above for §(7) are valid for partial

sums and take limit.

Thus, we have proved CDT for the abelian case.

2.3 Arbitrary extension

Now we will prove CDT for arbitrary Galois extensions.

Suppose L/K is a finite Galois extensions and C C Gal(L/K) is a conjugacy class
and A= {p € P(K) | (4%) =C}.

Consider 7 € C, and look at F:= L< ={z € L | 7(x) = x}.

K

Then L/E is an abelian (in fact cyclic) extension and hence we know that for

L/E
D'~ {qe P() | (5] = ), (2.85)
we have )
§(D'") = . 2.
For a prime @ above q € D', we have ref = [L : E] = ord(7). But e = 1 and
f =1Dg|l =| <1 >| = ord(r) and hence r = 1. Thus, there is a one to one

correspondence between primes in L having 7 as their Frobenius element and primes
lying below such primes.
Consider the set

D ={qe D'|(qgN K) unramified forE/K, Nq= N(qnN K)}. (2.87)
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Then, we claim that the set D"\ D does not contribute to the density.

> (Ng) < > (Ng)™

qeD’'\D qeP(E),N(qNK)<N(q)

IN

(N@N K))™*
qeP(E),N(qNK)<N(q)

> (N@@nQ))™* (2.88)

q€P(E),N(aNQ)<N(q)

2. 2 Wane)

PEP(Q) plg,p?<N(q)

<[E: K] Z p 2 < 0.

IN

IN

pEP(Q)
Thus,
5D = 8(D) = 1 & (2.89)
Now, for the set
B fpeP(r)] (L5 <o, (2.90)

consider the restriction map 6 : D — B.

Note that if 7 is the Frobenius element over q € D for L/F, it is also the Frobenius
element over N K of L/K, since residue of E/K is trivial for ¢ € D. Thus, the map
6 makes sense.

Moreover, given p € B, there exists b € P(L) such that [L/TK] = 7 and take g :=bNE
and observe that q € D as restriction of a Frobenius is also a Frobenius and in this
case T|gp = 1 which means that the inertia is one and Np = N(bN E).

We compute the cardinality of the fibres in the above map.

If g and t are elements of D such that they lie over the same prime in B. Then find
unique primes ) and T in P(L) such that they lie over q and t respectively. Then
their exists o € Gal(L/K) such that ¢(Q) =T and

LIS PR (LTS [N S5 [ O
QT e@ T Q

where G = Gal(L/K).
The group Cg(7) acts transitively on 67(p) = {b € D,p | b}. Thus, the orbit size,

the cardinality of 671(p), is \CG(T)| ordl((";r|)|C\

[ Joot = 0 € Cq(r), (2.91)

where ¢ is any prime lying above p with
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7 as the Frobenius element.
Thus,

D=1]¢ ") (2.92)

peEB

Pick a representative from each fibre and call that set R. Then R is bijective to B

and
S (Vo) = S (N@n K)) = S (V) (2.93)
geR qgeER peB
Thus, <l
1 1 G
SRR WY /7 — L 757
ordt [E: K]’C| ord(7)[C| (2.94)
oB) = [L: K]

Hence, we have proved CDT for an arbitrary Galois extension.

Now we will see some cool applications of the CDT.

Lemma 2.3.1. Suppose L/K is a finite Galois extension of number fields. Then
there are infinitely many primes p € P(K) such that for any prime b lying above p
we have Np = Nb.

Proof. Consider
L/K
¢~ fpe PRIELE - 1y (2.95)
Then §(C) = ﬁ For any p € C,e,f, = Dy = 1. Thus, Np = Nb. Thus, there
are infinitely many primes p € P(K) such that Np = Nb where b is any prime lying

above p. O

Lemma 2.3.2. Suppose L/K is a finite Galois extension of number fields and C a
conjugacy class of Gal(L/K). Then there are infinitely many primes p € P(K) such

that for any prime Np is a prime number and [L{'fK] =C.

Proof. For
A={pe P(K);Np>pp|p} (2.96)
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we have

Y (Np) =) (pF)

peEA peEA

<> p

peA

< > )p_h (2.97)

peP(K
<[L:Q ) p™
pEP(Q)

<[L:Q] Z p 2 < o0.

pEP(Q)

Hence, §(A) = 0. For C, any conjugacy class in Gal(L/K), and

LK

C={pe PK);( " )=C}. (2.98)
By CDT, we know that 6(C') = %
But c
ﬁzé(C’)z(S(C’ﬂA)—M(CDAC) =0+ d(CNA°. (2.99)

Thus, there are infinitely many primes p such that there corresponding conjugacy
class is C and Np = p. m

Lemma 2.3.3. Let f(z) € Z[z| be an irreducible polynomial of degree n > 1. Then
there are infinitely many primes p such that f has no root in Z/pZ.

Proof. Let K = Q(ay,...,a,) where «; are distinct roots of f(x) in C. The Galois
group Gal(K/Q) acts transitively on roots {a;} and each permutation specifies the
element of the Galois group uniquely.

Hence we may think of Gal(K/Q) as a subgroup of S,,. For T = Q(«) we see that
Gal(K/Ty) is a proper subgroup of Gal(K/Q) and its conjugates o Gal(K/T})o~! =
Gal(K/T;) where o(a;) = ;. As a finite group cannot be written as union of con-
jugates of a proper subgroup, find o ¢ |JGal(K/T;). By CDT, there are infinitely
many primes p € Z such that there exists a prime p above p and [KT/Q] = 0. The cycle
type of o tells us the irreducible decomposition of f in the quotient field. For p as
above, if there was a root of f in the residue field of p, then ¢ must fix a root of f i.e
for some i we must have o(«;) = «;, which implies o € Gal(K/T;). This contradicts

our choice of o. O
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Chapter 3

Chebotarev Density Theorem for
Function Fields

In this chapter we formulate and give an elementary proof of the Chebotarev Density
Theorem for function fields of one variable defined over finite fields.

We assume familiarity with Theory of function fields over one variable and Riemann
hypothesis for finite fields. A good reference is [4] and we assume knowledge of
Chapter 1,3,5.

Over function fields, role of primes is played by places and hence we will use the term
prime/place interchangeably.

Let ¢ be a power of a prime and K be function field of F,. Given a divisor A € Div(K),
we define N'A = ¢%°&(4)_ For a place P, this turns out to be N'P = ¢&(") which is
the cardinality of the residue field Kp = Op /P.

A special consequence of Riemann hypothesis is the Hasse-Weil bound on the

number of places of degree 1.

Theorem 3.0.4 (Hasse-Weil bound). Let F' be a function field and N(F) be the
number of places F'/F, of degree 1 and g be the genus of the function field. Then

IN(F) = (q+1)] < 2¢q"2. (3.1)
Proof. Refer to Theorem 5.2.3 [4]. O

Suppose L/K is a Galois extension and Fn is the constant field inside L. By

fixing an unramified place P in K, we know that the Frobenius elements living over

29
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P form a conjugacy class C in Gal(L/K).

Let P(K) be the set of places in K and A C P(K), we define

5(A) = lim > peaNP)*

= —, (3.2)
s—1+ ZPEHD(K)<NP) S
whenever the limit exists.
Remark 3.0.5. 1. The convergence of numerator (a subseries of denominator)
and denominator is seen as follows:
>, WP = ) X (NP
PeP(K) pEP(Fq(t)) Plp
OISR
peP(Fq(t)) Plp
DD SR
peP(Fq(t)) Plp
<[K :TF,(t s deg(p)
PEP(Fy (1))
< [K 2 Fy(t)] Z g ) 4 (K Fy(t)]g™

fEFq[t]
firreducible,monic

0] Y a I+ [KF()]g

feFq[t],
fmonic

1

<[K: Fq(t)]l_—ql_s

+ [K :Fy(t)]g™° < 0.

2. We may assume that K/F,(t) is a separable extension.

Theorem 3.0.6 (Chebotarev Density Theorem). Let L/K be a finite Galois

extension of function fields and C be a conjugacy class in Gal(L/K) and consider the

A= {rerun (45 <), "

Then 0(A) exists and equals i I|(']

We set up the notation as follows:
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Let 7 € Gal(L/K) and we assume the set up to be inside some algebraically closed

field .

P'(K) ={P € P(K) | Pis unramified below and above}
Py(K) = {P € P(K) | deg(P) = k}

Py(K) = P(K) N By(K)
LK

Adr/.0) = 1P e B(R) | (25— ¢)
PUL/K.) = {Q € B(L) | QN K € Ri(R), 2] = 1)
A= G Au(L/K,C)

gr = genus of K

Frob, = Frobenius endomorphism of Gal(F,)

We know that P'(K) is cofinite subset of P(K) and hence A’ is a cofinite subset

of A and it is enough to show that the density of A’ is %

We introduce some new degrees as the following:

e

K KF Fon(t)

/

Fy(t) —— Fyn(t)

L

d

Lemma 3.0.7. Let k be a positive integer and P € Ay(L/K,C) and 7 € C.

[L:K]

1. There are ;5e5 places of P(L) living over P.

2. If Ay, C Ap(L/K,C) and By(1) ={Q € Bi(L/K,7) | Q N K € A}, then

_[Clord(7)|By(7)|
Al = [L: K]

(3.13)
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Proof. 1. For () any place above P, we know that ord(7) = |Dg| = fo,p.

Since P is unramified ref = [L : K] and r = (Eféfi]).

2. We observe that o By,(L/K,T) = B(L/K,oto™"). Moreover, if 7, # 73, then

Bi(L/K, 1) N By(L/K,75) =0 (3.14)
The same is true for By (7), hence |Bg(7)| = |Bg(o7o™")|. The restriction map
U Bi(1) = Ag (3.15)
TeC
Q- QnK (3.16)
is surjective and each fibre has cardinality (Efd—fj]) Thus,
[L: K]
B = |Ag|—— 3.17
U B = 1A S (317)
TeC
[L: K]
C||B =|A . 3.18
C11B.(7)] = A4l S (318)
[l

Lemma 3.0.8. Let K C M C L and 7 € Gal(L/M). Suppose F is the full constant
field of M and r | k. Then

Bu(L/K,7) = By (LM, )N {Q € P(L) | deg(QN K) =k} (3.19)

Proof. We see that since 7 € Gal(L/M), we have 7(x) = x for all € K p where
P'=Qn M.
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If Q € By(L/K,7), then 7(z) = 29'Vz € K.
Since, Kp' C Kq, 29 = 7(z) = z.
Thus, Kp/ - ]Fqk.
Also, deg(Q N K) = k, hence K p = F .
But, Fr = Kp C Kpr C Fyp.
Thus, Fr = Kp = Fyrdesr).
Hence, deg(P') = £.

Thus, Q € By (L/M,T).

On the other hand, if Q € By, (L/M,7) N {Q € P(L) | deg(Q N K) = k}, then
deg(P') = %, due to which Kp = Kp and hence Q € By(L/K, 7).
[

Lemma 3.0.9. Let K C¢ M C L and 7 € Gal(L/M). Suppose F, is the full
constant field of M and r | k. Suppose C and C’ are the conjugacy classes of 7 in
Gal(L/K),Gal(L/M), respectively. Then, consider the set

Ay = Agp(L/M,CY\{P' € P(M) | deg(P' N K) < =.} (3.20)

o |

Then we have

(el
ALK € = e Vg (3.21)
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Proof. Consider the set
By (1) = By (L/M,7) N {Q € P(L) | deg(Q N K) = k}. (3.22)
Then, by Lemma(5.0.11)
Bi.(1) = Bi(L/K,T). (3.23)

Also, places in L which lie over A} Jr and have 7 as their Frobenius elements are

precisely members of By (7). More precisely,
By(1) ={Q € Byr(L/M,7) | QN M € A, }. (3.24)

Thus, we can use Lemma(5.0.10) to get

_ ¢l ord(n)|By(7)|

| Ayl = L M] ; (3.25)

By = |Bu(L /K. 7)) = DI (3.2
Cl|Al

Thus, |Ax(L/K,C)| = \C||[|]’\4—WK] (3.27)

L]

Theorem 3.0.10. Suppose L/K is Galois extension and F,» is the constant field of
L. Let k be a positive integer such that

7|p,» = Frob |Il§qn. (3.28)

For n" € N such that n | n/, we consider the constant field extension L' = FynL.
Then, for each 7 € C, we can find a unique 7" € Gal(L'/K) such that 7’|, = 7 and
g, =Froblk .

q q

Moreover,
1. C"={7"| 7 € C} is a conjugacy class of Gal(L'/K)
2. ord(7") = lem(ord(7), [F . : Fow NF )

3. Au(L'/K.C') = Ay(L/K,C)
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Proof. Let n’ = nt. We first show how to extend 7 to L.

L/

We know that (Frob [ ) = Gal(F ./ /F¢n) = Gal(L'/L) = (¢) where the isomor-
phism is given by the restriction map. Moreover, 7 can be extended to 7 € Gal(L'/K)

and all other extensions are related by elements of Gal(L’/L). More precisely,
{(Fo' |1 <i <t} (3.29)
are all the extensions of 7 to L. We need to pick the right one. Suppose

7le ,, = Frob|p . (3.30)

q

But we also know that
Frob \qun = T|r,. = Frob ]{;qn. (3.31)

Thus, we must have kK =1 mod n. Suppose nr = [ — k then
¢ "|r , =7|r , Frob|z™ =Frob|; , Frob|z"" = Frob|5™ =Frob|} . (3.32)
q q qn qn qn q'n, qn

Hence choose 7/ :=T¢™".
Moreover such a 7' is unique. Indeed, since L' = F . L, any extension which agrees
on F v and L, neccesarily agrees on L.

Now we show other properties.

1

1. If 7{ and 7} are extensions of 7y, 75, respectively such that oo™ = 75, then 7

and o't{0’~1 agree on L where ¢’ is any lift of o. Also, 75 and o/7]0’~! agree on
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F v since the Gal(F ./ /F,) is abelian. Hence, by uniqueness 75 = o'm{o'~".

Fv

2. ord(7’) = lem(ord(7),0 (Frob\]F )
But ord(Frob HP? )= lcm (n%)

Thus, ord(7") = lcm(ord(T), W) = lem(ord(7), [F w2 F o N Fg]).

3. A(L'/K,C") = A(L/K,C)
Fixa 7 e C. If P e A(L'/K,C'), then for some Q € P(L'), we have [Z£E] = 7/

Q

thus restricting both sides to L, we get [QAL] =7, and hence P € A,(L/K,C).

On the other hand, if P € A(L/K,C), then [Lgf] — 7 and for Q' a lift of place Q
in P(L'), we have 7’|z (z) = 29" and 7/ (x) = 29" and since K¢ = F,Kq

’

we must have 7/(z) = 29 for all z € K. Thus, [ZE) = 7/ and hence

Q/
P e AJL/K,C).

[
Corollary 3.0.11. Let L =F» K and 7 € Gal(L/K) such that
7lr,. = Frob|f , (3.33)
then
Ap(K/K,{1}) = A(L/ K A{7}). (3.34)

Proof. We apply the above Theorem(3.0.10) to the set up where L = K and L' =
FnK. ]
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Theorem 3.0.12. Suppose L = F» K and C = {7} and 7'|1Fqn = Frob |Fqn, then

[AL(L/K,C)| —q‘ <2(92v/q + g1 + d). (3.35)

Proof. We observe that A;(L/K,C) = P|(K). Indeed, since L/K is a constant field
extension, for any place P € P(K) and Q a place above P in L, we have Ko = F . K p

Thus, if P is a place in K and @ is any place in L lying over P, we have 7|z, (7) =
7lr, () = 27 and 7|, (x) = 29. Thus, 7(z) = 27 for all € K and hence 7 = [L(TK]
Consequently, @ € A;(L/K,C).

Moreover, P;(K) \ P} (K) is the set of all primes of degree 1 ramified over F,(t) as
there is no ramification over a constant field extension. But, the set of ramified primes
is precisely the support of the Different i.e Diff (K/F,(t)).

Recalling Hurwitz genus formula,
29k — 2 = —2[K : F,(t)] + deg(Diff (K/F,(t))). (3.36)
For our case the above equation can be re-written as
deg(Diff (K/F,(t))) = 2(9x +d — 1). (3.37)
By Hasse-Weil(3.0.4), we have a bound on places of degree 1 given by

BA(K) — g — 1] < 29 /3. (3.38)
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Thus, we get ¢ — 1 — 29x,/q < |P1(K)| < ¢— 1+ 29x./q,

q — 1= 2gx/q < |P1(K) N Supp(Diff (K/F,(t)))| + [P (K)] < g —1+29k./q,
But,

¢ — 1= 2gx/q < |P1(K) N Supp(Diff (K/F,(t)))| + [P (X))

< deg(Diff (K /IFo(t))) + [Py (K],

q—1—29x\/q <29k +2d — 2+ |P{(K)],

q—2(9x /a2 + 9k +d) < g+ 1 —29x/q — 29K — 2d < |P(K)|.

Also [PY(K)| < |Pi(K)| < q—1+29k/q < q+ 29x/q + 29K + 2d. (3.39)

But since the genus does not change for constant field extensions, we have gx = gz,

and hence we are done. O

Lemma 3.0.13. Let [K’: K| = km such that F,« C K'.Then

{Q € P(K');deg(Q N K) | k;deg(Q N K) # k}| < 2m(¢"* + (29 + 1)¢**). (3.40)

Proof.

{Q € P(K"); deg(QNK) | k; deg(QNK) # k} = {Q € P(K"); deg(QNK) | k; deg(QNK) <

(3.41)
Note that equation is trivially true when k£ = 1 so we may assume k > 2.
The main ingredient of this proof is Lemma(5.1.9) [4] which tells us the ramification
of place in a constant field extension over a finite field.

For any j|k, we have F,; C F .

N |

}.
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K/

e

KFx Fx

q q
KF; Fx

q q
K ]qu

/

If P € P;(K), then there are ged(j,j) = j places lying above P in P(KTF,;) and
each of them has degree j/j = 1.

F

q

For any prime P’ € P(KF,) lying above P € IP;(K), remains prime of degree 1 in
P(KTF ) since ged(j, k) = j and there can be at most m lifts of P’ in K’. Thus,

Q@ € BK"):des(@ N K) | ks des(@ N K) < )]
< m{Q € P(KF,0): des(Q N K) | k; de(@ N K) < )]

<m| |J {QeP(KFu);deg(QnK) = j}

Jlk,i<k/2
<m {Q € P(KF,);deg(Q N K) = j}|
jlk%/z (3.42)
<m Y  |{Q€P(KF,);deg(QNK) = j}
Jlk,j<k/2

<m Yy [Py(KFy)

Jlkj<k/2

<m Z (¢ + 1+ 29x¢"?).
Jlk,j<k/2

The last inequality is a consequence of Theorem(3.0.4) applied to KT, .
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S@ 14250 <)+ )1+ D> 291477

jlk.i<k/2 J<k/2 J<k/2 J<k/2
< 2¢"2 + /2 + dgr g™ (3.43)
< 22 4 24 + 4quk/4

The last inequality follows from ngk/g ¢ < 2¢"? k/2 < 2¢"* and Zjékﬂ @2 <
2¢*/*, all of which can be proved easily.

]

Theorem 3.0.14. Suppose L/K is finite Galois extension such that m = [L : K|
and d = [K : Fy(t)]. Let a € N such that

T|r,0 = Frob g .. (3.44)

for each 7 € C. For k € N, if £ #Z a mod n, then Ay(L/K,C) = (), otherwise

C 2|C
4L/K.0) L) < 2 1 g0 2+ 10 4 gy 4 dm]. (345

Proof. 1f P € Aix(L/K,C), then there exists a place @ lying over P such that [L(TK] =
7. But
Frob g, = 7|r,. = Frob |[’§qn. (3.46)

Thus, k = a mod n.

Let n' = nord(r)k and consider L' = LF ..

Now suppose k = a mod n, then 7 is an in Theorem(3.0.10). Extend 7 to get 7" such
that 7|, = 7 and 7’ ‘Fqn/ = Frob |F - Consider the subfield fixed field of 7" in L" and
call it Ly i.e Ly = L7, '

We observe that L1 NF v = Fg almost by definition and hence Fg is the full constant
subfield of L;. Moreover,

~

[L: Ly] = ord(7") = lem(ord(7), —) = lem(ord(7),nord(7)) = nord(r).  (3.47)

|3
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Thus,

nord(7) = [I': i) = [I': LiF ] [IiFy : L] = [L' : LyF | [F s : Fp] = [L' - Lqun/]%.
(3.48)

Thus, L' = LiF ... By Corollary 3.6.7 of [4], we get that [L; : KFg| = [L": KF u].

Also, by same Corollary, we get [L' : KF /] = [L : KFgpn]. Thus, [Ly : KFg] = [L :

KF | =m. Thus, [L; : K| = km.

Applying Lemma(3.0.9), where M = L; C := (' is the conjugacy class of 7" and

C':={7'} and r = k, we get

el el

AL K.C)| = { s = (3.49)
But
Ay = A (L)L, (D) \ (P € P(L) | des(P' 1 K) < ). (3.50)
Since,
Ay (L' )Ly AT'Y) = (AL /Ly A7) NP € P(Ly) | deg(P'NK) < g}) U (3.50)
(AL /Lo, 7)) A (P € B(L) | deg(P' N E) < 5.

We get that

[AL(L /Ly A7 D] = [A(L/ Ly A7) NP € P(Ly) | deg(P N K) < g}l

+A (L' )Ly, {7'}) N {P" € P(L;) | deg(P'NK) < §}|

AT S - K]|A|Z(|L//K’ Cl’)+'{P’ € P(Ly) | deg(P'NK) < g;deg( PAK) = 13
C| , / o
‘[leKﬂAl(L/Lh{T} — AL /K, C)|| <

T

%‘{P/ € P(L1) | deg(P'NK) <

But then we can apply Lemma(3.0.13) to get an upper bound of the set on right side.

;deg(PPNK) = 1}‘
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Take K’ := Ly, then we get

%‘{P' € P(Ly) | deg(P'NK) <
K] ‘{P’ € P(Ly) | deg(P' N K)| < g;deg(P’ﬂK) | kj}‘

C] k/2 k/4
< 70
ST oK 2m(q™ " + (29x + 1)¢""")

_2e
"k

g;deg(P’ NK)= 1}’

<
[Ly (3.52)

("% + (2gx + 1)g"").

By Theorem(3.0.12), where K = L, and L = L', we get that
”Al(L//Ll, {T/}>| - qk‘ < 2(gL/qk/2 + qr’ + dm) (353)

Now, using both the above equations

1A /5.0) - 1€l

\|Ak<L'/K, e -

< \|Ak<L’/K,6/>| L gt ’}>|\
R =7 (354)
2/C|
=%
c|

+ %2(quk/2 + g+ dm).

("% + (2gx + 1)g"*)

But g, = g1/ being a constant field extension.

Rearranging the right side gives us the proposition.

Lemma 3.0.15. Let a,n € N,then

a+gn

i = —llog(l —z)+0(1), v =17, (3.55)

a+jn
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Proof. Consider ¢ a primitive n'" root of unity. For |z| < 1, we have

n—1 n—1 ] Ckl k
Zlog(l—éix)ffmz —Z <Z kx )Cw
1=0 k=0

1=0

n-1 , o C(k—a)ixk
()
=0 k=0

__ i ( ':1 C(’“];“”>xk (3.56)

xa—i—jn
jzoa—i—jn
But
o) $a+jn n—1 4 '
log(1 — = — log(1 — C'x)(*. 3.57
g ”f””;aﬂn ;og< Co)¢ (3.57)

But log(1 — ¢'z) for i # 0 is holomorphic(at 1) and hence bounded close to 1.
[l

Assuming the set up as in the beginning of the chapter we have the following

theorem.

Theorem 3.0.16. Suppose L/K is finite Galois extension such that m = [L : K|
and d = [K : F,(t)]. If a € N such that a < n and

7|p,.» = Frob |§qn, (3.58)

for each 7 € C. Then,

Z(NP)_S = — [L|C|K] log(1 —¢*) +O(1), s — 1T, (3.59)
PeA ’

Proof. Since A’ and A differ by only finitely many elements, equation about A" would
imply the same equation about A. Moreover, Ay(L/K,C) = () whenever k # a

mod n.
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Now

Swrr=y Y

PeA k=0 PEA,(L/KC)

= Z | A(L/K,C)lg~* (3.60)

=3 [Auign(L/K.C) g,

J=0

Moreover for s — 17, we have |¢'™*| < 1 and hence we can use above Lemma3.0.15

Now

2 NPT A ’ log(1 ¢~ i’AaJr'n(L/K C)|gs(atin) — |C| i g-o)(tim
PeA’ 0
|C| q 1—-s)(a+jn)
log(1 — £
7 |8l ¢ +n§ o

(3.61)
Close to 1 and s such that R(s) > 1, we have |¢'™*| < 1 and hence by above
Lemma3.0.15 the second term is bounded. Hence it is enough to show that the
first term is bounded.

o c| > (1-s)a+in)
arin(L/K,C s(atjn) _ | E
+j (L/ g J:O atjn
S |
Aa n L K C a+]n sa+]n
> (| (LK€ = e ) (3.62)
S e
Aa n L K C a—i-]n) sa+]n
> (HAaenlr/i.0)] = o L germ)
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Using Theorem(3.0.14)

S €] : ) “s(atd
Aprin(L/K,C)| — — L glatin) s(a+jn)
> (140esn(2/6,0)) = =L giosan ) steom)
| ,(1/2=5)(a+jn)
q
< -
- j; “ a—+jn
e q1/4=s)(atin)
P
0 a+jn
s g(—9)atin)
P
s a-+Jn
=— <log(1 — ¢/ )+
calog(1 —q"* ")+
c3log(1 — q"”)).
(3.63)
where © = R(s). But all the three terms are bounded as s — 1%. O
Corollary 3.0.17. If L = K then
> (NP) =—log(1-¢"*) +0(1), s > 1. (3.64)
PeP(K)
Corollary 3.0.18.
NP)—®
5(A) = lim 2resN'P) : (3.65)
s—1+ —log(1l — ¢'—*)
Proof.
2 peaWNP)~* —s
e | [Sren WP
2 peaWNP)~* | —log(1 — ¢')
> pep(i)y NP)~* (3.66)
B > pep(i) N P) ™% +log(1 — q'~)
N —log(1 —¢'~) ‘

As s — 17 the numerator is bounded and denominator becomes arbitarily large. [

Theorem 3.0.19 (Chebotarev Density Theorem). Let L/K be a finite Galois

extension of function fields and C be a conjugacy class in Gal(L/K) and consider the
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A= {P € P(K) | (L/TK) = c} . (3.67)

Then 0(A) exists and equals [L\c_[|q

set

Proof.

2 peaNP)™* C] ’

—log(1—¢'*) [L:K]

1 ' [L: K] ZPGA(NP)_S + [C[log(1 — q1_8>

<

~[L: K] log(1 — ¢'—*)

< | > peaNP)™* + % log(1 —¢'~)]
- log(1 —¢'~*) '

(3.68)
The numerator of the first term is bounded by the previous theorem and as s — 17,
the denominator increases arbitarily and hence we get
2 peaWNP)™ C|

o) =tim = =g L. K] (3:69)

[]



Chapter 4

Nullstellensatz and

Bertini-Noether Theorem

In this chapter we give a model theoretic proof of Hilbert’s Nullstellensatz and a
theorem of Bertini and Noether. We assume familiarity with Chapter 2 and Chapter
3 of [5]. We write ACF for the theory of algebraically closed fields.

4.1 Introduction

Theorem 4.1.1. Let A = {ay,...,a,} and p € Prop(A), then there exists k > 1

such that = p <> p1 V...V p, where p; = a7 A... AaS where e;; € {1, —1} where

al:= —a;.

(2

This form of proposition p is known as disjunctive normal form or DNF.
Before proving the above we prove a lemma.

Lemma 4.1.2. Assuming the set up as in the above theorem. If p is in DNF, then

S0 is —p.
Proof. Assuming p is a proposition in DNF i.e
Ep e VD (4.1)
Then applying negation operation and de Morgan’s law we get,
E w2 (VD) < AL i (4.2)

47
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But expanding out the proposition p we get,

/

. X €
—pi = (a7 AL Aa) < Vi (a7), where e = —ej;.
Thus we observe that,

-p _'(\/lepi)
Ae Af:l_‘pi

AR S (a§t AL A at)
!

e}

Ae /\le(\/?zl(aj "))
k

A V?:l(/\lebil%

!
€ijn

where by € {a;”}7_;.

Now it is enough to show that /\lebil can be brought into the form ai“ A

for suitable ¢;;.

In order to do that we refer to the following procedure:

(4.3)

t;
AN

1. Eliminating the proposition containing both an atomic formula and its negation

as it can never hold.

2. Removing an extra atomic formula if it occurs multiple times.

3. Whichever als do not occur we take all combinations of it and its negation.

For example if we have

a% A al_1 A
we remove this as it can never hold and if we have

ai/\&l/\an

we take
Vizrizn(@1 Na2 Ao AN af Ao AN a A ay),

(2

where (e, ..., ¢€;,...,e,) €[0,1]" 2

Hence we get that the negation of a proposition in DNF is also in DNF.

Proof. We prove the above by induction on length of proposition.

ftk=1p=aorp=Torp= 1.
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j €j(i— €5 in
For p = a;, let p; = a7 Aa;” 7" Aal Aail'i"V AL a™ where we take each of the

271 possible such propositions and note that = a; < V¥ p;.

For p = T, take all possible 2" propositions and observe that T < VZ_ p;.

For p = 1 then p <> =T and T is in DNF.

Assuming the induction hypothesis, p can be ¢ A7 or ¢ V r or =g where g,r can be
written in DNF.

If p=qV r, then it is obvious that p is also in DNF.

If p = —q, then we have done it above.

If p=gqAr, where ¢ <> V" ,q; and r < Vi1 then
p < (Vitiqi) A (ViZirs) <> Vijai A1y (4.5)

But ¢; Ar; = (a$' A...AaS) A(al' A... Aafr). This can also be brought into the

desired form by the same argument in the proof of converting —p in DNF. O]

Lemma 4.1.3. For every quantifier free formula ¢ we have a set of atomic formulas
A ={¢1,...,¢r} such that ¢ € Prop(A).

Proof. We induct on the number of connectives n in the formula ¢.

If n =0, then ¢ is an atomic formula and it is a proposition on itself. Assuming the
induction hypothesis, if ¢ =1 A0 or ¢ =1V O or ¢ = =) then these are propositions
on atomic formulas. Note that we are done since ¢ cannot be of the form 3z or V)

as it is quantifier free. O

By Lemma 2.7.2 in [5], we have that if p(aq,...,a,) € Prop({aq,...,a,}) is a
tautology then p(¢y, ..., ¢,) is valid in all L-structures A for any formulas ¢4, ..., ¢,.
Thus, given any quantifier free formula ¢, by the above lemma ¢ = p(¢1,...,¢,) €
Prop(¢1, ..., ¢,) where ¢; are atomic formulas. By Theorem(4.1.1), we have that
= ¢ << p1 V... Vp, where p; = @7 AL A @S
Thus, ¢ <> VE_ p; is valid in all L-structures A by Lemma 2.7.2.

1=

4.2 Model completeness

Definition 4.2.1. Let A and B be two L-structures, and h : A — B be a set theoretic

map between the underlying sets. We say h is an embedding if
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(a) For each m-ary relation symbol R, (a1, ...,a,) € R C A™ & (hay, ..., hay,) €
RB C B™.

(b) For each m-ary function symbol f, we have hf(ai, ..., an) = f2(hay, ..., hay).
(c) h is injective.

Lemma 4.2.1. For any term ¢(x1,...,z,,) of the language, and any embedding h :
A— Band (a,...,a,) € A™, we have ht(ay, ..., a,) = tP(hay, ..., hay,).

Proof. Induct on the length of the term t. O

Definition 4.2.2. Given a theory X, we say that ¥ is model complete if for every
embedding h : A — B between models A, B of ¥ and given any formula ¢(z1, ..., z,,)

and any collection (ay,...,a,) € A™, we have

AE é(ar, ... an) < BE ¢(hay,. .., hay).

Let La, = (0,+,—) be the language of abelian groups and ¥ be the theory of
abelian groups. Then for models Z and Q and the natural injective map between
them is an embedding as is easy to see, but for the formula ¢(y) = Jz(x+2 = y) and
y = 3, we have Z ¥ ¢(3) but Q = ¢(3) for x = 3/2. Hence we see that the theory of

abelian groups is not model complete.

Definition 4.2.3. Given a theory X, we say that ¥ has quantifier elimination

if for any formula ¢(xy,...,x,,) there exists a quantifier free formula ¢’ such that
SEood.
Theorem 4.2.2. If 3 has quantifier elimination, then ¥ is model complete.

Proof. Let A, B be models of ¥, and h an embedding between them. Let ¢(xq, ..., z,,)

be a formula and fix (a4, ...,a,) € A™, we need to show that
A élar, ... an) < BE ¢(hay,. .., hay). (4.6)

We will do this by induction on the number of connectives in ¢.

If n =0, then ¢ is an atomic formula,

Case 1: ¢(x1,...,2y) = Rty ... 1

A= olay, ... am) <= (a1,...,an) € R4

4.7
B = ¢(hay, ..., hay,) <= (hay,..., ha,) € RP. (4.7)



4.2. MODEL COMPLETENESS 51

But the equations on RHS are equivalent by the definition of embedding.

Case 2: ¢(x1,...,Tm) = (t1(x1, ..., Tm) =ta(T1, ..., Tm))

AEd(ar, ... am) <= tiar, ... am) =15 (a1, ..., an)
— hti(ay,...,am) = hts (a1, ..., ap) (48)
<« tP(hay, ..., hay) = t8(ha, ... hay) .

<~ BE ¢(hay,..., hay).

Assuming the induction hypothesis,
(a) If ¢ =1 V 0 then,
AEdlar,....an) <= AEY(a1,...,an) or AE60(ar,... an)

<— BEY(hay,..., hay) or BE60(hay,..., hay,) (4.9)
<~ BE ¢(hay,..., hay).

(b) If ¢ = A D
Similar to (a)
(c) If ¢ = ),
AEolar,...,an) <= AFY(ay,... an)
< BEY(hay,..., hay) (4.10)
< B ¢(hay,..., hay).
(@ Tt 6 = Jow,

As ¥ has quantifier elimination, there exists quantifier free ¢’ equivalent to ).
Thus,
YE¢« ) <= AkEo(ar,. .. am, )
<— AEY(ay,...,an,b) for somebe A (4.11)
— AEY(a1,...,am,D).
But ¢’ being quantifier independent is a proposition on some atomic formulas,

and we have already dealt with that case.

(d) Similarly for the case where ¢ = V1.
Note that we have used the fact that X has quantifier elimination in only the last two

cases. ]
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4.3 Quantifier elimination

Lemma 4.3.1. If K is a model of ACF, and p(z),q(z) € K|x],then p(z) divides

q(x)3°8? iff every root of p(x) is also a root of q(x).

Proof. If p|g®®e? and (z — «) is a root of p, then (x — «)|p|¢!®e?, thus (z — a)|q and
is root of gq.

If every root of p is also a root of ¢ and let p = [[;_, (x — a;)", whereq; are distinct

roots of multiplicity ;.

¢" | ¢", where n = deg p.

" =plqd -

Since (r — ;) is a root of q, (x — a;) | ¢ = (7 — ;)"
Thus, []i_,(z — ;)"

Henceforth, R always stands for an integral domain. We will show that the theory
of ACF is model complete but more can be said. We extend the language Lpi,, to
L Ring(R) where we include one constant for each element in R (elements of R become
constants) and consider theory ACF(R) in which we include the following sentences:
(i) @ + b = ¢ where a,b,c € R and the same relation holds in R
(i) a.b = ¢ where a,b,c € R and the same relation holds in R
Then models of ACF(R) are algebraically closed fields which contain a homomorphic
copy of R. Note that this is not same as ACF. If R = Z, then models of ACF(R) are
same as models of ACF. On the other hand if R = Z/pZ, then models of ACF(R)
contain algebraically closed fields of characteristic p while those of char 0 are not
models of ACF(R). Thus, we are clearly dealing with a more general situation. We
will show that ACF(R) is model complete.

Theorem 4.3.2. ACF(R) has quantifier elimination. In particular, ACF(R) is model

complete.

Proof. We want to show that given any Lpg;,(R)-formula ¢, we can find ¢’ which is
quantifier free and ¥ = ¢ <> ¢/. We will proof this by induction on the number of
quantifiers in the formula ¢.

If n =0, then ¢ is an atomic formula and is quantifier free.

Suppose n = k > 1, then ¢ can be one of the following:

(a) ¢ = A6 and ¢ <> ¢ and 0 <> @', where ¢/ and ' are quantifier free. Then
oY NO.

(b) ¢ = ¢V 6 and we have quantifier free ¢/ and 6" as in the above case. Then
o YVe.



4.3. QUANTIFIER ELIMINATION 53

(¢) ¢ = =) and quantifier free ¢/, then ¢ <> =)',

(d) ¢ = Jx1h, where ¥ <> ¢’ with ¢’ quantifier free. Then ¢ <> Jzv)’.

We have ¢ <+ p1 V...V p, where p; = @7 A.. . A¢Sn, where ¢; are atomic L-formulas.
Thus, ¢ <> Jx(p1 V...V pg) <> Jzp1 V... Jxp,.

It is enough to show that each dxp; is equivalent to a quantifier free formula.

Let p=p; = Y7 A ... A& but we know that any atomic formula ¢ in Lg;,(R) is

equivalent to p(xy,...,x;) = 0 where p(xy,...,2;) € R[xy,...,2;]. Consequently
Jrp < Jx((Aypi = 0) A (AfLyg; # 0)) (4.12)

But AJL,q; # 0 <+ ¢ # 0 where ¢ =[]}, ¢;. Thus

Jrp ¢ Jz((ALypi = 0) A g # 0) (4.13)

We may assume p; € R[xq,...,z;, x| for each p; and if some p; is independent of z,
then

Fz((Nizpi = 0) A g # 0) < pj AJz((ALy izpi = 0) Agq # 0) (4.14)

Thus it is enough to show that formula appearing on right side of above wedge is
equivalent to a quantifier free forumla. In that sense, we may assume that each p; is

a polynomial in x. Suppose X!, deg,(p;)-

Suppose,
p1=ai0+ ...+ amm,x™ (4.15)
P2 = Qoo + ...+ CLQle’mQ
We define
D1j :alo—i—...—i—aljxj for1<j<m. (4.16)
WLOG we may assume deg, (ps) > deg,(p1) > deg(p1;) > 1.
We observe that
a1;P2 = Aamy @™ p1j + (a1;p2 — A2my ™ I p1j) = t(2)p1; (@) + 1r5(2), (4.17)

where deg,(r;) < deg,(p1;)-
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We observe that in any model of ACF(R),

P11 = 0/\]?2 =0+« v;”:ll(/\k>ja1k = O/\Cllj 7é O/\plj = O/\?"j = 0)\/(/\;’1:10&1]' = O/\p2 = O)

(4.18)
Thus, the equation (9) above can be simplied so as to reduce the degree by at least
1 Let

wj = (Agsjarg =0 Aay; #0Ap; =0A1; =0)

- (4.19)
Wo = (/\j:loalj =0 /\p2 = 0)

Fr((NZipi = 0) Aq # 0) > Fz((pr = 0 Apa = 0) A (Ajsap; = 0 A g # 0))
& Fa((Vyw; = 0) A (Aysap; = 0N g £ 0)) (4.20)
< V;3z(w; = 0A (Ajsap; = 0) A g #0).
Thus we see that we have reduced equation on the left to mutiple equations with

fewer number of polynomials.

Hence we may assume that the problem is of the following kind.
Jx(p=0Agq#0). (4.21)

Let
p=ay+... +au? (4.22)

And define

pj:a0+...+ajxjf0r0§j§d (4.23)
a;q = hp; +r; where deg,(r;) < deg,(p;). '

For any ACF model A and @ € A’,

1. If p(@,z) = 0 then the validity of Jz(p(d@,xz) = 0 A q(a@, z) # 0) is equivalent to
finding a non-root of ¢(a@, z). This is always possible when ¢(@, z) # 0 i.e some

coefficient of ¢(d@, =) is non-zero.

2. If p(a, z) # 0 then there exists j such that some a;(@) # 0 and ay(@) = 0 for all
k > j. We have p(@,zo) = 0 and ¢(@, x¢) # 0 for some xy € A iff p(@,z) does
not divide ¢(a@, x)? iff a;(d) # 0 and r;(d,yo) # 0 for some yy € A.

Indeed, if p(d,z) does not divide ¢(d,z)’, then p = p; and a;(@) # 0 and
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ri(d, zo) # 0.

Ifr;(d,y0) # 0and p; | ¢7, then p;(@, z)t(z) = ¢/ (@, z). But then a;(d, z)p;(d@, z)t(z) =
a;(@)¢’ (@, z) = h(d,z)p;(d@,z) + r;(@ x). Thus, we get p;(d@,x)(a;(a, z)t(z) —
h(d,z)) = r;(d,x). By comparing the degrees w.r.t  on both sides we get that

the equation in brackets must be zero, which forces r;(d, z) = 0 for all x. This

is a contradiction.

Thus,

EI:L’(pZO/\q%O)<—>\/§:1(al:0/\al_1:O/\.../\ajH:0/\aj750/\5|xrj7é0)
V(iag=0ANa; =0A...Aai-1 =0Aa; =0A (V,q; #0))
(4.24)

where ¢; are coefficients of g.
Thus, we can reduce the case Jz(p = 0 A ¢ # 0) to a quantifier free formula.

(e) For ¢ = Va1, we may assume that ¢ is quantifier free.
=V <> dr— (4.25)

As the above equation is a tautology and since v is quantifier free, so is =)

and hence we can find by (d), a quantifier free formula 6 such that

dx—) < 6. (4.26)
Hence,
Va < -V
v v (4.27)
0.
O]

Corollary 4.3.3. Let R be an integral domain and € be a sentence in Lg;n,(R), then
there exists a constant ¢ € R such that ACF(R) U {c¢ # 0} F 0 or ACF(R) U {c #
0} k .

Proof. A sentence does not contain any free variables but it might contain bound
occurences of variables. But since ACF(R) has quantifier elimination we may assume
that 6 does not contain any variables and hence 6 < ViL,((AlLpij = 0) A g; # 0)

where p;; and ¢; are constants in R(this is obvious from the above proof technique).
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Let ¢ = [[pij [] ¢ where p;j, ¢; € R are non-zero elements in R and if all of the them
are zero take ¢ = 1.
If @ holds in R then 6 holds in K where K is the fraction field of R. For any model A of
ACF(R) in which ¢ # 0, 6 is valid in the homomorphic image R of R contained in A as
the equation 6 is imported as is in R. Consequently A F 6 and ACF(R)U{c # 0} F 6.
On the other hand, if 6 is not valid in R, then it is not valid in K and hence K F —0.
Since =6 is valid in R, then by above paragraph =6 is valid in all models A of ACF(R)
for which ¢ # 0 holds.

m

Theorem 4.3.4 (Nullstellensatz). Let k be a field, k an algebraic closure of k
and pq,...,p, a collection of polynomials in k[zi,...,x,]. Suppose that the ideal
(p1,...,pr) generated by them is a proper ideal in k[zy,...,x,], then there exists

a=(ay,...,a,) € A"(k) such that p;(@) =0 for all 1 <i <r.

Proof. Let ¢ = Jzy3xy. ..z, (A_pi(x1,...,2,) = 0) and m be a maximal ideal
containing (py, ..., p,) and denote L = k[zy, ..., x,]/m and L be its algebraic closure,
then we have an embedding k — k[z1,...,2,] — L — L. But we know that k—T
is an embedding and L }= ¢(Z). By model completeness of ACF, we have k = ¢. [

We say that f(xy,z2,...,2,) € Rlx1,29,...,2,] is of degree d if the maximum
total degree of monomials is d. We know that f is irreducible if it is not possible to
write f = gh where g and h are polynomials of degree strictly less than that of f.
For any polynomial f(z1,xs,...,2Z,) € Rlxy,z2,...,2,], we can express the irre-
ducibility of f as a sentence in Lp;n,(R).

Indeed, it is enough to produce a sentence which gives the reducibility of f. We know
that f is reducible if there exist polynomials g, h of degree strictly less than that of
fand f=gh. If f,g,h are as below:

F=> ( > aa X .X§3) . (4.28)

p=0 i1+...+is=p

-3 ¥ ntxt) (129
t
h= ( > cklmkstl...st>. (4.30)

ki+..+ks=r



4.3. QUANTIFIER ELIMINATION 57

And f = gh, then by comparing coefficients we infer that for each s-tuple (i1, ..., )
where 0 <4, <pand ) i, = p, we must have

ail...is — Z bj1...jsck1...l€sa (43]‘)

where sum on the right side runs over all indices j, for which > j, = ¢ and k,, for
which > k,=rand ¢g+r=pand iy = j1 +ki,...,1is = js + ks.

This can be expressed as

f=gh+ /\ /\ (H 3bi, . H Ack, k. (Z bji 3Chyky = ail...is)) ;

0<p<n {q,r|g+r=p,¢>0,r>0}

(4.32)
and [[3eg,. x, represents writing 3b;, ;. and ey, j, for all indices

where []3b;,..5.
(jl, Ce 7js) and (1{71, cey ]{ZS> for which jl -+ kl = il,jg -+ ]{32 = ig, Ce ;js -+ ]{Zs = is.

We take 6 as the conjuction of above statement for g and h, where (deg(g), deg(h)) €
{(4,j) e NxN|i>0,7>0,i<n,i+j=mn}. This gives a statement 6 to express
reducibility of f.

Definition 4.3.1. Let R be an integral domain, K its fraction field and suppose
f € R[xy,...,2,). Then f is called absolutely irreducible if f is irreducible as an

element of K[z1,...,z,] where K is an algebraic closure of K.

Theorem 4.3.5 (Bertini-Noether). Assuming the notation as in the above defini-
tion let f(x1,...,x,) € R[z1,...,2,] be an absolutely irreducible polynomial. Then
there exists a non-zero element ¢ € R such that for any homomorphism of domains
¢ R — S for which ¢(c) # 0, ¢(f) remains absolutely irreducible.

Proof. Let 6; be the statement that f is irreducible in R. Let ¢ € R be as in the
Lemma(4.3.3) for the sentence ;. Since K E 6 and ¢ # 0 in K, by Lemma(4.3.3)
we get ACF(R) U {c # 0} E 6;. Also, since ¢(c) # 0, we get that F, where F is the
fraction field of S, is a model of ACF(R) and hence F' £ 6. This means that o(f) is
absolutely irreducible. O]

Corollary 4.3.6. Let f(z1,...,x,) € Z[x1,...,x,] be an absolutely irreducible poly-
nomial. Then there exists a non-zero integer ¢ such that for all p which do not divide

¢, f(xy,...,xy,) is irreducible in Z/pZ[xy, . . ., x,)
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The above corollary can be stated in a more general context of global fields.

Theorem 4.3.7. Let f1, fo,..., fr,g € K[X1,...,X,] and suppose ¢ vanishes on on
each point a of K™ for which fy(a) = ... = f.(a) = 0. Then there exists r € N such
that ¢" € (fi,..., fr) C K[X1,..., X,)].

Proof. We may assume g # 0. Consider the ring K[Xj, ..., X,,, Y] and the polynomial
MX,Y) =1 — g(X)Y. We observe that there is no point (a,b) € K"*! for which
fia) =...= fu(a) = h(a,b) =0.
Hence by (4.3.4) we must have that (f1,..., fao,h) = K[X1,..., X,,,Y].
Thus, we have a relation:

1= a;(X,Y)fi(X) + b(X,Y)h(X,Y)

i=1

Consider the ring K[X7, ..., X,]) which is K[X7, ..., X,] localised at S = {g(X)" |
i > 0}. Now define the evaluation map K[X,,..., X, Y] = K[X,..., X,]) sending
F(X,Y) to F(X, (X)),
Then under this map, above equation becomes:

n

L= a(X, g(X)™) fi(X) (4.33)

i=1
We can find r € N large enough so that

n

g =Y a(X)fi(X), (4.34)

i=1

where a}(X) € K[Xy,...,X,]. Thus, the above relation also holds in K[Xj, ..., X,].



Chapter 5
Conjugate Lemma

For any ideal I C K[X1,...,X,], we associate a K-algebraic set V(1) defined as
V(I):={ac K" | f(a)=0V f €I} (5.1)

A subset V of K™ is called K-defined if V = V/(I) for some ideal I in K[X1, ..., X,].
On the other hand, given a subset A € K" we define:

I(A) == {f € K[X),....X,] | f(a) = 0 Va € A} (5.2)

On the space K™, the set {V/(I)} satisfy axioms of a closed sets and hence they
form a topological space. We call the topology Zariski K-topology.

It is easy to see the following properties:
1. If I C J, then V(J) C V(I).
2. I(A) is a radical ideal.

3. I(V(I)) = VI (by (4.3.7)).

4. V(I(A)) = A (by above)

We call a K-algebraic set V a K-variety if it is irreducible as a toplogical space.
We observe that V' is a K-variety iff I(V') is a prime ideal.

We define the dim(V') as the dimension of it as a topological space. Closed ir-

reducible subsets in V' correspond to prime ideals in the coordinate ring I'(V) =

59
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K[Xi,...,X,]/I(V) and hence we get that dim(V) = dim(I'(V')). If V' is a variety
then the coordinate ring is a domain and then we have that dimension of the coordi-
nate ring is same as the transcendence degree of fraction field of I'(V') over K.

Any K-closed set V' can be written as V = |JV; where V; are irreducible closed

sets. Moreover, this decomposition is unique. It is easy to show that dim(V) =

max(dim(V})).
Lemma 5.0.8. If V] C V, are K-varieties of the same dimension, then V; = V5.

Proof. For any chain of prime ideals in I'(V3) can be pulled back to a chain in
K[Xy,...,X,], we know that dimension is bounded by n.
Let p; := I(V1) and py := I(V3). Since Vi C V5, we have py C p; and there is a

canonical surjection
¢:K[Xla"an}/pQ_»K[Xla"'vXn]/pl (53)

We claim that the above canonical map is injective. Indeed, for any chain of prime
ideals in T'(1});
OCms...Ca,

we get a chain in I'(V%);

0)Co((0) S (q) S-S ¢ )

But since ¢1((0)) = ker(¢) is a prime ideal, the chain length increases by 1 if and
only if the map is not injective. We know that dim(V}) = dim(V2) and hence it is
forced that ¢ is injective.
Thus, if p, C p1, then there exists f € p; such that f ¢ py. But then f # 0 in T'(V3)
but ¢(f) = f = 0in I'(V;). This contradicts the fact that ¢ is an isomorphism. Hence
p1 = po, we have V) = V(py) = V(ps) = Va.

[

Lemma 5.0.9. If V and W are K-varieties such that V Q W and W g V. Then
dim(V NW) < min(dim(V'), dim(W)).

Proof. Suppose dim(V N W) = dim(V). Decompose V N W into irreducible com-
ponents and let T be an irreducible component with maximum dimension. Then.

TcVnWcCV and dim(7T) = dim(V).
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By (5.0.8) we get that T'=V. Thus V. =T Cc VNW C W. This is a contradic-
tion. [l

We denote Gal(K/K) as G. Given v € G we get an K-linear bijection

v AMEK) — AY(K), (5.4)

where v'((aq,...,a,)) = (yai, ..., vay).
Moreover, for an ideal I C K[xy, ..., x,],V(y(I)) = v (V(I)) we get that the map is
continuous and closed. Thus a homeomorphism. Since the association between + and

~" is unique we will refer to 7 as v too.

Lemma 5.0.10. Let K C L be a Galois extension with Galois group G and W be a
G-stable L-subspace of L-space V. If W& = 0 then W = 0.

Proof. Suppose W # 0, and let {e;} be an L-basis of W which we extend to a
basis of V.Choose u € W such that it has minimum number of non-zero coefficients.
Then, u = Eleciei where ¢; € L and ¢; # 0 and we may assume ¢; = 1. But
gu =Y gcie; = u—gu=(1—g)csea +...(1 — g)cpe,. By minimality, we get that
¢; = gc; for all ¢ and since g was arbitrary, ¢; € K. We thus get ©u = gu for all g.
Thus w € W& = 0. This is a contradiction.

O
Lemma 5.0.11. If K C L is a Galois extension of with Galois group G and J
an ideal of K[zy,...,x,], then (J¢)¢ = J where J¢ is the extension of the ideal in
Lixy, ..., x,].

Proof. Tt is easy to see that J¢ = J®g L. Let {e;} be a K-basis of J, then {e; @1} is
a L-basis of J ® L, and hence {e;} is an L-basis of J¢. It is obvious that J C (J¢)C.
If ue (JE)G, then u = ¥¥_cie; and gu = XF_gcie;. But gu = u = ¢; = ge; for all
g € G, then ¢; € K and hence u € J.

O

Let V be a K-variety in A"(K). Suppose V = Ule U, is the decomposition of V'
into K-components i.e U; are K-closed and irreducible subset in A™(K).
For V is invariant under the action of G, then V = ~y(V)) = v(UL_, Us) = U™, +(U;).
By uniqueness of decomposition, we get that G acts on {U; | 1 <i < k} by permuting
them.
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Lemma 5.0.12. U; as above are G conjugates i.e V = J,.;7(U1). In other words,

the action is transitive.

Proof. We sketch the outline of the proof.

1.

Write V =W, UW,LU...UW, where W; = Ugeg gU; and observe that each W;

is invariant under the G-action.

. Observe that only finitely many unions appear in W; as there are only finitely

many K-irreducible components.

Now it is enough to show that each W; is defined over K, as we know V is

K-irreducible which will force V' = W, for some i.

. Fix a W; and call it W. Since W is K-closed we get that W = V(I) for some

ideal I C Klz1,...,2,]. We note that V(gI) = gV(I) = gW = W = V(I).

Thus, g/ = I and hence [ is invariant under the action of the Galois group.

Let J be the complementary subspace of I¢:= 1N K|xy,...,z,] ie
Klzy,...,z,)=1°D J. (5.5)
By Lemma(5.0.11) we have (J¢)¢ = J. Thus,

{0} c(INnJY cI®n(J)Y =1nJ={0} (5.6)

By Lemma(5.0.10), I N J¢ = 0.

. Extending ideals in K[z, ..., x,], we see that
Koy, ... 2, = Klzy, ..., 2, = (I°® J)* = (I + J* = (I @ J°.  (5.7)
But /N J¢ = 0, which means that I = K[zy,...,z,|(I N K[z, ..., 2,]) = (I°)°.

Thus, W =V(I) = V(K|zy, ...,z ]I N K[z1,...,2.)) = VI N K[z, ..., 2,])

and is defined over K.
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Hilbert Irreducibility Theorem

In this chapter, we define what it means for a field to be Hilbertian. We prove that
all global fields are Hilbertian.

6.1 Hilbertian fields

Let fi, fo, -y fm € K(T1,..., T,)[X1,...,X,] be a collection of irreducible polyno-
mials and g € K[T},...,T,] is a non-zero polynomial, then define H,(fi,..., fm;9)
as the subset of A"(K) for which f;(as,...,a,, X1,...,X,) is defined and irreducible
in K[Xy,...,X,] and g(ay,...,a.) #0. H.(f1,..., fm;g) is called a Hilbert set of
A"(K). If n = 1 and each f; is separable in X, then call H,.(f1,..., fm;g) a separable
Hilbert set of A!(K).

A field K is called Hilbertian if every separable Hilbert set of A"(K) is non-empty.

Lemma 6.1.1. Each separable Hilbert set H(f1, ..., f;g) contains H(hy, ..., hp;g')
where h; is irreducible in K[T1,...,T,, X]|, separable in X and h; ¢ K[Ty,...,T,].

Proof. Suppose

nj

~—

S

o (T
fi= = bi(T)

where T = (T3, ...,T,). Multiply by b;(T) =[]

J

X7,

o
S

b;(T) on both sides to get

b(T)f; = a;(T)X?
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Now let d;(T) = ged(a;(T);0 < j <n;). Then

b(T) f; = d(T) Y (T)X? = d(T)h. (6.1)

Jj=0

such that h; = Y77 a}(T)X7 is primitive (has 1 as the ged of coefficients)

Now it is easy to see that {h;} are irreducible polynomials in KI[T},...,T,, X].
Take ¢’ =[], b:(T)d;(T)g(T) and observe that H(hi,...,hp;¢") C H(f1,. .y fm; 9)-
Also, h; are separable in X as root of f; and h; are same over K(T) by equation
1. 0

Before proving the next theorem we recall a lemma from Lang[3,9.1]

Lemma 6.1.2. Let K be a field and n > 2,a € K*. Suppose for all primes p | n, a
does not have a p* root in K and if 4 | n, then a ¢ —4K*, then X" — q is irreducible
in K[X].

Theorem 6.1.3. Let H = Hg(f1,..., fm;g) be a Hilbert subset of A"(K) with f;
irreducible in K[T7,...,T,, X] and degy(f;) > 1. Then H contains a Hilbert set of the
form H(hy, ..., hy)in which h; are monic, irreducible polynomials in K[71,...,T,, X]
such that degy (h;) > 2.

Moreover, if f; are separable then so is h;.

Proof. Let ¢;(T) be the leading coefficients of f; as polynomial over X and n; =
degx (f:). Consider ¢(T) =[], c;:(T)g(T).

If degs.(q) = O for all 7, then ¢; € K* and g € K*. Then Hg(f1,...,fm;9) =
Hg(f1,..., fm) Since ¢; € K*, we may assume f; are monic. Moreover, if for some 1,
we have deg (f;) = 1, then f; = X —a;(T) for some a; € K[T], then it is also true that
Hx(f1,- s fm) = Hx(f1,. .., fi_1, fix1,- -, fm). Hence by this reduction, we may as-

sume all deg(f;) > 2 for all i and f; are monic, irreducible polynomials. Take h; = f;

On the other hand, if degs(¢) > 1 for some 4, then take b, a prime such that
b > degy, (¢) and note that X* — ¢(T") has no solution in K [T]. Indeed, if for some
p(T) € K[T], we have p(T)" = ¢(T). But then, degy, (p(T)?) = bdegy, (p(T)) =
degy. (¢(T)), which implies b < degy, (¢(T)). Thus, from above lemma we get that
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Xt —¢(T) is irreducible in K[Ty,...,Ti_1, i1, ..., T,][T;] but being monic it is irre-
ducible in K[T].
Now for degy(f;) = 1, take h; = X® — ¢(T) and for deg(f;) > 2, take

hi = q(T)"c;(T) "' fi( T, ¢(T) "' X). (6.2)

Then, by expanding out h;, it is easy to see that h; is monic. Moreover, if h; =
a(T, X)b(T, X) then

It is evident that degy (a(T, ¢(T)X)) = degx (a(T, X)).
By comparing above equation, we get that WLOG degy(a(T,q(T)X)) > 1. If
degy(a(T,q(T)X)) < ny, then degy(b(T,q(T)X)) > 1 which would imply a non-
trivial factorization of f in the polynomial ring K (T)[X] which can be brought to a
non-trivial facotrization in K [T|[X] by Gauss Lemma. This contradicts irreducibility
of f. Thus h; is irreducible.
Now we see that H(hy,...,hn) C H(f1,..., fm;9)-
Suppose a € H(hy, ..., hy), then
If n; = 1, then X® — g(a) is irreducible, then g(a) # 0. As a result ¢;(a) # 0 and
fi = ci(a)X — d is irreducible.
If n; > 2, then

hi(a, X) = q(a)"ci(a) " fi(a,q(a) ' X)

then g(a) # 0, ¢;(a) # 0 and f;(a, g(a) "' X) is defined and irreducible.
In either case, g(a) # 0 and hence g(a) # 0.

The claim about separability is obvious from equation (2). O

Lemma 6.1.4. Let H be a separable Hilbert set in A"(K), then there exists an
irreducible polynomial f € K[T},...,T,, X] such that H(f) C H, where f is monic,
separable in X and degy(f) > 2.

Proof. By lemma 1, we may assume that H = H(f1,..., fg; g) where f; € K[T},...,T,, X]
is irreducible,separable in X and f; ¢ K[T3,...,T,] and g # 0. Let r;(T) be the lead-
ing term of f; as polynomial over X.

Let z; be roots of f; as polynomial in K (T)[X] and consider L' = K(T)(z1,...,z).

If degy(f;) = 1 for all @ € {1,...,k}, then [L' : K] = 1. Then choose a prime
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[ # char(K), and consider L := K(T)(Tll/l), then [L : K] > 1 and is a separable
extension.

Otherwise [L' : K] > 1 and let L := L'. Since L/K(T) is a finite separable exten-
sion,we may assume L = K (T)(z) for some z separable and integral over K[T]|. Let
h € K[T, X] be the monic, irreducible polynomial for which h(z) = 0.

Since K(T)(z) = K(T)[2], we may write z; = Y™ ZZ((Q = p;(()(T;)).

Let h; € K(T)[x;][X] be the monic, irreducible polynomial such that h;(z) = 0.
We note that h; is separable in X. Then h; = ¢;(T)g; where g; € K[T,x;, X| and
%(T) # 0.

Now let b = g(T) [T ¢:(T)po(T) [, 7:(T) and we observe that degx(f;) = degx(fi(a, X))
and degy (h) = degy h(a, X).

Now we prove that H(h;b) C H(f1,..., fx;9)-

Suppose a € H(h;b) and suppose ¢ € K is a root of h(a, X). Let ¢ : K[T] — K(a)
be the evaluation map i.e ¢(T;) = a;. By (??) extend ¢ to a place ¢ : K(T) —
K(a) U {oo}. By (4.1) we can extend this place, also denoted by ¢, from K(T)(z)
where ¢(z) = c.

K(T)(2) K(a)(c) U{oo}

K(T)

K(a) U{oo}

Thus, ¢(f(T, X)) = f(a, X) and hence 229 is a root of f(a, X).

po(a)
[K(c) : K] - (de%x(h) = [K(T)(z) : K(T)]. Moreover, [K(229) : K] < deg(f;)
and [K(c) : K(%)] < degy (h;).
We infer that above inequalities are actually equalities and hence f;(a, X) is irre-
ducible.

Now, use above lemma to eliminate b.
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Given fi,..., f, € KI[T, X] be irreducible elements such that degy(f;) > 2, fi is
separable in X and g € K[T] be a non zero polynomial. Then define

G(fry fuig) = {a € K| [T fila.0) # 0¥ b € K, g(a) # 0}.

Theorem 6.1.5. Let G := G(f1,..., fm;g) be a subset of A"(K) with f; absolutely
irreducible in K[T1,...,T,, X], degx(f;) > 2 and separable in X. Then G contains
a set of the form G(hy, ..., h,) in which h; are monic, absolutely irreducible polyno-
mials in KTy, ..., T, X]| such that degy(h;) > 2 and h; separable in X.

Proof. Let ¢;(T) be the leading coefficients of f; as polynomial over X and n; =

degx(f;). Consider ¢(T) =[], ¢;(T)g(T).
We give a prescription for h; as follows:

hi = q(T)"¢;(T)~" fi(T,¢(T)"' X). (6.3)

Then, by expanding out h;, it is easy to see that h; is monic. Moreover, if h; =
a(T, X)b(T, X) with constant from K then
¢(T)
WG(T’ q(T)X)b(T, ¢(T)X) = fi(T, X)
It is evident that degy(a(T, ¢(T)X)) = degx(a(T, X)).
By comparing above equation, we get that WLOG degy(a(T,q(T)X)) > 1. If
degy(a(T,q(T)X)) < n;, then degy(b(T,q(T)X)) > 1 which would imply a non-
trivial factorization of f in the polynomial ring K (T)[X] which can be brought to
a non-trivial facotrization in K[T][X] by Gauss Lemma. This contradicts absolute
irreducibility of f;. Thus h; is absolutely irreducible.
Now we see that G(hy,...,hy) C G(f1,-- -, fm; 9)-
Suppose a € G(hy, ..., hy), then

g(a)"ci(a)” fi(a, q(a)~'b) = hi(a,b) # 0

then g(a) # 0,c¢i(a) # 0 and fi(a,q(a)™'b) #0
In either case, g(a) # 0 and hence g(a) # 0.

The claim about separability is obvious from equation (5). O
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If K is Hilbertian then H(f1,..., fu; g) is non-empty which implies G(fi, ..., fu; 9)

is non-empty. We prove the converse.

Lemma 6.1.6. Suppose f € K[T3,...,T,,X]| be an irreducible polynomial, monic
and separable in X such that degy (f) > 2. Then there exists f1,..., f, € K[T1,...,T,, X]

where f; is absoutely irreducible, monic and separable in X and degy(f;) > 2 such

that G(f1,- ... fn) C H(f).

Proof. Let {x;} be roots of f as a polynomial over the field K(T). Then E =
K(T)(x1,...,x,) is a finite separable extension of K (T) and f(T, X) = [}, (X —xz;).
For any non-empty proper subset / C {1,...,n}, we know that f; = [[,.;(X — ;) is
not an element of K (T)[X], otherwise f is reducible. Thus, there exists a coefficient
yr of frsuch that yy ¢ K(T). Let g € K(T)[X] be the monic, irreducible polynomial
such that ¢g;(T,y;) = 0. Since y; is a polynomial in z; and x; are integral over K[T],
we may assume that g; € K[T][X]. For the same reason, g is separable polynomial
in X and degy(g7) > 2.

Suppose g; is reducible in K [T, X], i.e gr = [[; h; where h; are monic, irreducible
polynomials in K[T, X|. Note that since g; is separable, each h; is distinct.

Since h; # h; = V(h;) € V(h;). This is because I(V(p)) = p if p is a prime ideal in
KT, X]. Let Wy = (), V(h) = V(ha, ... hy).

For any ¢, we must have dim(V'(h;)) = dim(K [T, X]/(h;)) < r since height of (h;) is
at least 1 because of the chain (0) C (h;).

By Lemmab.0.8, dim(WW;) < r—1. For all proper non-empty subsets of I for which
gr is reducible in K[T, X] let W := |J W, where W; is as above. Since dim(W) =
max(dim(W;)) we get that dim(W) <r — 1.

Project m : W — A"(K) and let A be the K-closure of 7(W). Since 7’ : W — A
is a dominant map, the induced map between function fields K(A) — K(W) is a
injection and hence dim(A4) < dim(W) <r — 1 and hence (0) & I(A).

Thus, there exists ¢ € K[T] such that ¢ is non-zero and vanishes on A. For [

non-empty proper subsets of {1,...,n} for which g; is absolutely irreducible, denote

them by h;. Then we claim that
G(hr;g) CGlgr | T AL, ..., n})

Indeed, if a € A"(K) such that h;(a,b) # 0 for all b € K and g(a) # 0. Suppose



6.2. GLOBAL FIELDS ARE HILBERTIAN 69

gr(a,b) = 0 for some I a non-empty proper subset of {1,...,n}.

Suppose gr = [, hy, then 0 = g;(a,b) = []; h;(a,b). Thus, WLOG hy(a,b) = 0.
Thus, (a,b) € V(hy).

By Lemma(5.0.12), we know that V(h;) = o(V(h;)) for some o0 € Gal(K/K) and
hence (a,b) € V(h;) for all i. Consequently, (a,b) € W; and hence a € A. By choice
of g, we have g(a) = 0. This is a contradiction.

Now we show that

Suppose a € LHS and f(a, X) is reducible i.e f(a, X) = fi1(X)f2(X).
Consider the place ¢ : K(T) — K(a) U {oc} generated by application of (??) to the
ring map K[T] — K(a) where T} is sent to a;. By (??) we can extend ¢ to a place
o K(T)(xq,...,2,) = K(a)(cy,...,c,) U{oc} where ¢; are roots of ¢(f(T, X)) =
f(a, X). Note that since degy(o(f(T,X))) = degx(f(T, X)) no root is sent to oo.
Since f(a, X) = [[(X — ¢;) we infer that there exists a proper non-empty subset I of
{1,...,n} such that f, = [[,c (X —¢).
Let ¢*(y;) = d for I as in above line. Then since g;(T,y;) = 0, by applying ¢* we
infer that g;(a,d) = 0. But since ¢; € K and y; is a polynomial combination of z;, it
is true that d is a polynomial combination of ¢; and hence d € K. But it contradicts
our choice of a. Thus, G(hr;g) C H(f). Use (6.1.5) to eliminate g.

O]

6.2 Global fields are Hilbertian

Lemma 6.2.1. A finite group G cannot be union of conjugates of its proper subgroup.

Lemma 6.2.2. For L/K a finite separable extension of global fields, there are in-
finitely many places p € P(K) for which Ly = K, where % is any prime lying above
p.

L/K
Proof. WLOG we may assume L/K is finite Galois. Consider A = {p | (/T) =

{1}} and we know by CDT A is infinite. Primes in A exactly correspond to primes
which split completely in L. O]

Lemma 6.2.3. Let ¢ be a prime power and K = F, and consider E = K (T) where

T is an indeterminate. Consider a Galois extension F' = K(T)(z) where g(T, X) is
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the monic irreducible polynomial for z and suppose K is algebraically closed in F.
Let d = deg(g),m = degy(g) and C be a conjugacy class in Gal(F/K). Then the
number N of degree 1, unramified primes p € P(K') such that (FJ/TK) = C satisfies

‘N — %‘ < 10d*C|\/q. (6.5)

Proof. We use Theorem(3.0.14) coupled with the inequality gz < (‘i_léﬂ. O

Lemma 6.2.4. Let K be a global field and f € KT, X] be an absolutely irreducible
polynomial such that f is monic, separable in in the variable X and deg(f) > 1.
Then there are infinitely many primes p € P(K') such that there exists a, € Ok with

the following property:
If a € Ok such that a = @, mod p, then f(a,b) #0V b € K.

Proof. In case K is a function field over F,, choose t € K such that K/F,(t) is a
separable extension.

Let Ok be the integral closure of Z or F[t](depending on K) in the field K. Almost
all primes/places lie in Ok and since fraction field of Ok is K, by changing X to ¢X
for some ¢ € Ok, we may reduce the problem to f € O[T, X].

Considering f as polynomial over K(T'), let {Xy,..., X, } be roots of f and define
F:= K(T)({X;}). Let L be the algebraic closure of K in F'. Since [F : K(T)] < oo,
we must have [L : K] < oo. Hence, tr(L/F,(t)) = 1. Thus, by Lemma 2.7.5(c)[1], we

have that F'/L is a regular extension.

F=K(T,x,...,x,)

/

L(T) L

i |
o
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Let FF = L(T)(z) and g € L(T)[X] be the irreducible polynomial of z. We
may assume that z is integral over Op[T]. Thus, g € OL[T][X]. By regularity g is
absolutely irreducible.

By Lemma last one of CDT, the set of places A C P(K) such that Ly = K, is infinite.

After carefully choosing a set B C A, we consider f(T, X) € K,[T,r] wherep € B.

We want B to consist of primes such that

1. f(T,X) is defined.

2. f(T, X) remains absolutely irreducible
3. f(T, X) remains separable in X.

4. g(T, X) is defined.

5. g(T, X) remains absolutely irreducible
6. (T, X) remains separable in X.

7. {X;} is defined.

8. Z is defined.

Suppose there exist such a set B which is infinite.

Let {Z;} be roots of f in some algebraic closure. Then g(T, X) is the irreducible
polynomial for Z and F = E(%). Since g(T, X) is absolutely irreducible, hence we
have that Ep is algebraically closed in F.

Since Gal(F/E(Z,)) ¢ Gal(F/E), we can find o € Gal(F/FE) such that o(%;) # Z;

for all 7.
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Since q = | K|, for almost all prime p € B, we can ensure that 10d> degy(g) < V4

and hence by Lemma 0.1, we can find a € K, such that (I%E) = C,. Call the set
C C B for which above is valid.

Thus for any element p,, € C, we have o(Z) = 77 and T; # T;. Moreover, this implies
that 7; £ 7. Thus, f(a, X) has no roots in K.

Choose oy as a lift of a in Ok. For a = oy in Ok /p, we must have that f(a, X) has
no root in Ok and hence in K, otherwise we would get a root in Fp. Thus we are
done after showing the existence of set B as above.

For choosing the set B as above,

1. Since f € Og[T, X] and Ok C O, for all most all primes, f is defined for almost
all primes p € P(K). Moreover, A; = {p € P(K) | f is defined and is absolutely
irreducible } is cofinite by Bertini-Noether Lemma. If disc(f(7')) = [[,;(zi —
zj) = Np/p(fx(21)) € Ok[T], we have disc(f(T)) = [Ii;@i—7;) € K,[T)]. For
primes p € A; which do not divide disc(f (7)), we get that f is separable. Thus,
the set of primes A’ for which f is defined, absolutely irreducible, separable is

a cofinite set.

2. Almost similar argument as above gives that the set A} of primes in P(L) for

which g is defined, absolutely irreducible, separable is a cofinite set.

3. {z;} are polynomial combinations over z with coefficients as ratio of elements in
OL[T]. Let As be the set of primes p which do not divide any of the denomiators,

and they are also cofinite.

4. z can be written as polynomial combination of {z;} with coefficients as ratios
of elements in Ok[T]. Let A} be the set of primes p € P(L) which do not divide

any of the denominators, and this set is also cofinite.
5. Let B=AnNA; N A, N A3 N A} and observe that B is infinite.

Theorem 6.2.5. Let K be a global field and H a separable Hilbert subset of K,

then H contains infinitely many elements. In particular, K is Hilbertian.

Proof. By Lemma(6.1.4), we may assume H(f) C H where f € K[T, X| where f is
monic, separable in X and degy(f) > 2. By (6.1.6), we may assume G(hq, ..., h;) C
H(f) where h; € K[T, X] are absolutely irreducible, monic and separable in X such
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that degy (h;) > 2. Hence, it is enough to show that G(hq, ..., hy) contains infinitely
many points.
For each h;, by Lemma (6.2.4), choose a prime ideal p; € Ok for which there exists
ap, € Ok such that h;(ap,, X') has no zero in K. Thus, a,, € G(h;). Let py,...,p; be
distinct such primes. By Chinese remainder , choose an element a € Ok such that
a = ap, mod p; and hence we get that a € G(hy,...,hy). In particular all elements
b € Ok such that b —a € Hle p; lie in G(hq, ..., hy).

O

Lemma 6.2.6. Let K/F be a finite Galois extension with Galois group G. Let R be
a subring of F' with fraction field as F. Suppose K = F(«a) and f(x) € R[z] is the
monic, irreducible polynomial of degree n = [K : F| such that f(a) =0. Let A be a
finite subset of K containing a such that it is G-invariant. Let S = R[A].

There exists u € R such that, for each ring homomorphism w : R — F',:

If w(u) # 0, w extends to w' : S — K’ where K’ is a finite Galois extension of F.

Moreover,
1. K' = F'(a/) where o = w'(«).
2. The polynomial f' = w(f) is such that f'(a/) = 0.
3. Suppose f’ is irreducible, then Gal(K/F') = Gal(K'/F").

Proof. Suppose R[A] = R|a] and " = w(f), then it is easy to see that Rla] =
R[]/ (f)-

Let ¢’ be an irreducible factor of f’. Then there exists a map :

Rla] = R[z]/(f) = F'[z]/(¢") (6.6)

Let w' be the composition of above maps.

Take K’ = F'[z]/(g) and then it is clear that K’ = F'(«/).

Let u = disc(f) and we observe that if w(u) # 0 then w(f) has distinct roots and
hence so does g. Thus, K'/F" is separable.

Since K’ = F’'(a’) and conjugates of g are contained in the conjugates of f* which are
contained in K’. Hence K’ is normal over F”.

If f’is irreducible, then ¢’ = f'.

For any o’ € Gal(K'/F") is uniquely determined by its action on o/. If oy, as, ..., o,
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are roots of f in R[A], then o), ), ..., o/, are roots of f' in K.
Given a ¢’ € Gal(K'/F") such that ¢'(a) = o, send o’ to ¢ which sends a@ — a;.
This map is an isomorphism.

If R[A] # R|a], then we use the following trick.
Each element x € A can be written as ¢ = ZZZO a;o' where a; € F. Hence, we can
find a b € R such that bz € R[a] for all z € A.
Now consider R = R (localising at {b* | i € N}). Then for u = bdisc(f) € R such
that w(u) # 0, we can extend w to @ : R’ = Ry — F.
We observe that R[A] C R'[A] and R'[A] = R'[a). Now use the above case for
w:R — F'. O

Lemma 6.2.7. Let K be a Hilbertian field. If G can be represented as Galois group
over K(xq,...,x,) then there exists a finite Galois extension L of K for which G is

the Galois group.

Proof. Suppose L = K(xy,...,x,)(a) such that Gal(L/K (z1,...,2,)) = G. Suppose
R = Klzy,...,z,] and we may assume that « is integral over R. Consider A =
{ conjugates of a}.

Suppose the irreducible polynomial of o is f € K{zy,...,x,][Y] and let u € R be as in
the Lemma(6.2.6). Consider the set H,(f;u), which is non-empty by Hilbertianity of
K. Then there exists b € K™ such that f(b)(Y) is irreducible in K[Y] and u(b) # 0.
Consider w : R — K which sends g(x) — ¢(b). By Lemma(6.2.6) we get that there
exists F' a Galois extension of K such that G = Gal(F/K).

]
Lemma 6.2.8. 5, is a Galois group over K where K is Hilbertian field.
Proof. 1f K is a Hilbertian field, then consider
f) =y "+ . F ey, (6.7)
a polynomial in K(z1, ..., x,)[y] where x; are indeterminates, we look at the splitting
field of f(y), that is (1, ts, ..., t,) where f(y) =[], (y — t;)-
Thus,
KC(ty, ... tn) : K(z1, ..., 2,)] < nl. (6.8)
Since S,, the symmetric group on n letters acts on {ti,...,%,}, it extends to an

action of S, on K(ty,...,t,). We observe that z;, for each 1 <i < n, is a symmetric
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polynomial in ¢y, ..., ¢, and hence it is contained in the fixed field of S,,. We observe
that
Kz, ... 20) CK(ty, ... 1), (6.9)

due to which we get that
(Kt .. otn) : Kz, 2n)] > [K(t, o tn) s Kt t)57). (6.10)

We also know that [K(ty,...,t,) : K(t1,...,t,)%"] =| S, |= n!, by Artin’s theorem.
Hence [K(t1,...,t,) : K(z1,...,2,)] = nl. Consequently

Sy = Gal(K(t, . t2) /K (b1, ... £2)%") = Gal(K(tr, ..., t2) /K (1, ... 22)). (6.11)

Hence by Lemma(6.2.7),we can get S,, as Galois group over K.

Corollary 6.2.9. 5, is a Galois group over Q.

We showed that for G = S, the field K (x)% is a purely transcendental function
field and hence the Galois group could be transferred to that over K. Emmy Noether
asked whether this is true for all groups G' and field Q(x). If this was true then the
Inverse Galois Problem would have been solved. In 1969, Richard Swan came up with

a counterexample.

Theorem 6.2.10 (Swan). Let G be the cyclic group of order p acting transitively on
the indeterminates zy,...,z,. Let L be the fixed field Q(z1,...,2,)¢. Then L is not

a purely transcendental extension of Q for p = 47.

Proof. Refer [7]. O
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