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Abstract
The key objective of this yearlong project was to learn serveral concepts in commuta-

tive algebra and algebraic geometry. We started with learning concepts in commuta-

tive algebra, which included primary decomposition, Noetherian and Artinian Rings,

regular local rings and dimension theory of Noetherian local rings. After that we

studied concepts in algebraic geometry, which included varieties and morphisms of

varieties, sheaves and schemes. We concluded by stating the Riemann-Roch theorem

and how that result is used to solve Riemann-Roch problem for the curves.
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Chapter 1

Commutative Algebra

1.1 Primary Decomposition

A prime number in a ring is generalization of a prime number and primary ideal is

generalization of power of a prime number.

Definition 1.1.1. Primary Ideal. An ideal q is primary if

xy ∈ q =⇒ x ∈ q or yn ∈ q for somen ∈ Z
+.

Theorem 1.1.2. q is primary ⇐⇒ A/q 6= 0 and every zero divisor in A/q is

nilpotent.

Proof. =⇒ Let first assume that q is primary, and assume that 0 6= x ∈ A/q is zero

divisor, i.e. there exists y ∈ A/q such that xy = 0 = yx in A/q. So we have that

yx ∈ q, and because q is primary, we have y ∈ q or xn ∈ q and as y 6= 0 in A/q we

have that xn = 0, and so x is nilpotent.

⇐= Let xy ∈ q and x 6∈ q. Then xy = 0 in A/q, and thus yn = 0 in A/q for some

n > 0. And so yn ∈ q and we are done.

Note that every prime ideal is primary. It is easy to prove that radical ideal
√
q of

primary ideal q is prime ideal, as if xy ∈ √
q, then (xy)m ∈ q for some m > 0. So we

have xm ∈ q or ymn ∈ q for some n > 0. And thus we have that x ∈ √
q or y ∈ √

q,

and we are done. If p =
√
q, then q is said to be p−primary.

Now we give some examples of primary ideals.

1) Consider A to be the ring of polynomials in two variables x and y with coefficients

1



2 CHAPTER 1. COMMUTATIVE ALGEBRA

in field k. Then the ideal q = (x2, y2) is primary. Now if Ã = A/q = k[x, y]/(x2, y2), if

an element t in this ring is zero divisor, it will be of the form t = a(x, y).x+ b(x, y).y,

and note that t3 = 0. So we have that (x2, y2) is a primary ideal. Similarly we can

prove that in the same ring ideal (x, y2) is a primary ideal.

Note that powers of a prime ideals may note be primary ideals but powers of a

maximal ideal m are indeed m−primary. For the example of a power of a prime ideal

not being primary, consider the ring A = k[x, y, z]/(xy− z2) and let x, y, z denote the

images of x, y, z respectively in A. Then (x, z) is a prime ideal in A as A/(x, z) ∼= k[y].

Then we have that xy ∈ (x, z)2 as xy = z2 but x 6∈ (x, z)2 and y 6∈
√

(x, z)2. And

we are done. For the result concerning the maximal ideals we have the following

theorem:

Theorem 1.1.3. Powers of a maximal ideal m are m−primary.

Proof. Let a = mn. for some n > 0. This gives us that
√
a = m. Then the image of m

in A/a is nilradical of A/a and thus m is the only prime ideal of A/a. Thus A/a is a

local ring and it’s every element is either a nilpotent or unit. So every zero divisor in

A/a is a unit.

Theorem 1.1.4. Intersection of finite number of p− primary ideals is p−primary.

Proof. Let qi (1 ≤ i ≤ n) be p−primary ideals, and let q =
⋂n
i=1 qi. We first prove

that radical of q is p.
√
q =

√⋂n
i=1 qi =

⋂n
i=1

√
qi = p. Now let xy ∈ q. Then for some

i we have xy ∈ qi and y 6∈ qi. So we have x ∈ p and thus power of x belongs to qi for

all i, and taking suitable power of x, xk ∈ q for some k > 0 and we are done.

Theorem 1.1.5. Let q be a p− primary ideal and x ∈ A. Then

1) if x ∈ q, then (q : x) = (1).

2) if x 6∈ q, then (q : x) is p−primary.

3) if x 6∈ p, then (q : x) = q.

Proof. 1) From the definition (q : x) = {t ∈ A : t(x) ⊆ q}, this part is clear.
2) Let assume we have yz ∈ (q : x) with y 6∈ p, then xzy ∈ q =⇒ xz ∈ q =⇒ z ∈
(q : x). So we have proved that it is a primary ideal. Now we calculate it’s radical.

If t ∈ (q : x) =⇒ tx ∈ q. and as x 6∈ q, we have t ∈ p. So q ⊆ (q : x) ⊆ p, and thus

we have
√

(q : x) = p.

3) If t ∈ (q : x), then tx ∈ q =⇒ t ∈ q as x 6∈ p and we have (q : x) ⊆ q. Now if

t ∈ q =⇒ tx ∈ q =⇒ q ⊆ (q : x).
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Definition 1.1.6. Primary Decomposition. Primary decomposition of an ideal a of

ring A is expression of a as a finite intersection of primary ideals, as

a =
n⋂

i=1

qi.

A primary decomposition is said to be minimal if

1)All the
√
qi are distinct, and

2) qi 6⊇
⋂

j 6=i qj(1 ≤ i ≤ n) ∀i.

Note that we can obtain minimal primary decomposition from primary decom-

position for an ideal. We do it in two steps: 1) By using 1.1.3 to club together the

primary ideals whose radical is the same prime ideal and 2) By getting rid of the

redundant terms.

Also note that in general primary decomposition for an ideal need not exist. But in

next chapter we will prove that in a Notherian ring, every ideal has a primary decom-

position. An ideal a is said to be decomposable if it has a primary decomposition.

Now some examples.

1) Let A = k[x, y] and a = (x2, xy), then (x2, xy) = (x)
⋂
(x, y)2. By theorem 1.1.2

we have that (x, y)2 is a primary ideal.

2) In the same ring we have the following primary decomposition

(xy, x3 − x2, x2y − xy) = (x)
⋂

(x− 1, y)
⋂

(x2, y).

Theorem 1.1.7. 1st uniqueness theorem. Let a be a decomposable ideal in ring A and

let a =
⋂n
i=1 qi be primary decomposition of a with

√
qi = pi. Then pi are exactly the

ideals which occur in the set of ideals
√

(a : x), (x ∈ A), and hence are independent

of the particular decomposition of a.

Proof. Let x ∈ A, then (a : x) = (
⋂

qi : x) =
⋂
(qi : x). Now

√

(a : x) =
√⋂

(qi : x) =
⋂√

(q : x) =
⋂

x 6∈qj
pj (by previous theorem.). If we assume that

√

(a : x) is prime, then by theorem (1.11) in Introduction to Commutative Algebra

by Atiyah and MacDonald, we have that
√

(a : x) = pj for some j. So we have

proved that every ideal of the form
√

(a : x) is one of the pj. Conversely, take qi for

some i. Now we choose xj ∈ a such that xj 6∈ qj, and thus xj ∈ ⋂

j 6=i qj,. Then
√

(a : xi) = pi.
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In above proof, we have implicitly shown that for each i there exists xi ∈ a, such

that (a : xi) is pi−primary.

The prime ideals pi are said to be the ideals associated to a. The minimal elements

of the set {p}ni=1 are said to be minimal or isolated primes associated to a and the

other prime ideals are called embedded prime ideals.

Also note that, though the prime associated to a decomposable ideal are uniquely

determined as proven in the 1st uniqueness theorem above, the ideal many not have

a unique primary decomposition. For example: (x2, xy) = (x)
⋂
(x, y)2 = (x)

⋂
(x2, y)

are two different primary decomposition of the same ideal. However, there are some

uniqueness properties which we will explore further in this chapter (2nd uniqueness

theorem).

Theorem 1.1.8. Let a be a decomposable ideal and p be a prime ideal such that

p ⊇ a, then p contains a minimal prime ideal belonging to a. In other words, minimal

prime ideals belonging to a are minimal ideals of set of prime ideals which contain a.

Proof. a ⊆ p =⇒ ⋂n
i=1 qi ⊆ p =⇒

√⋂
qi ⊆

√
p =⇒ ⋂√

qi ⊆ p =⇒ ⋂
pi ⊆

p. Again by theorem (1.11) in Introduction to Commutative Algebra by Atiyah and

MacDonald, we have that pi ⊆ p. And hence p contains a minimal prime belonging

to a.

Geometric Interpretation of Primary Ideals. LetA be the ring k[x1, x2, · · · , xn]
and a be an ideal in A. Then ideal a corresponds to a algebraic set X in A

n. In alge-

braic geometry, algebraic sets correspond to radical ideals and irreducible algebraic

sets correspond to prime ideals. We know that any algebraic set can be decomposed

as a union of irreducible algebraic sets, and the decomposition of algebraic sets into

union of irreducible ones corresponds to writing radical ideal as intersection of primary

ideals. In this correspondence, the minimal primes correspond to irreducible compo-

nents of X, and the embedded primes correspond to subvarieties of the irreducible

components, i.e., varieties embedded in the irreducible components, and hence the

name. For example: let a = (x2, xy) in A = k[x, y]. Then primary decomposition of

a is a = (x)
⋂
(x, y)2. Here the ideal (x) is prime(primary) and prime ideal associated

to (x, y)2 is (x, y). Now here (x) ⊂ (x, y). So here (x) is minimal prime associated to

a, and (x, y) is embedded prime. Thus here the variety corresponding to a is the line

x = 0, and the embedded prime (x, y) corresponds to the origin (0, 0).
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Here is another example: let a = (x3 − xy3) in A = k[x, y]. The primary decomposi-

tion is a = (x)
⋂
(x2 − y3). It is easy to see that both these primary ideals are prime

ideals, and in fact it is actually an prime decomposition of a. Both of these ideals are

minimal prime ideals associated to a. Here the algebraic set corresponding to ideal a

is union of the vertical line x = 0 and the curve x2 − y3 = 0.

Now we probe for the properties of primary decomposition under localization:

Theorem 1.1.9. Let S be a multiplicatively closed set in A and let q be a p−primary
ideal, then

1) If S
⋂

p 6= ∅, then S−1A = S−1q.

2) If S
⋂

p = ∅, then S−1q is S−1p primary and it’s contraction in A is q.

Hence there is one to one correspondence between primary ideals in S−1A and pri-

mary ideals in A whose radical ideals don’t meet S (or primary ideals in S−1A and

contracted ideals in A).

Proof. 1) Let’s assume t ∈ S
⋂

p, then for some n > 0, we have tn ∈ S
⋂

q. And thus

tn/1 ∈ S−1q. Now 1/tn ∈ S−1A and thus S−1A = S−1q.

2) Now assume that S
⋂

p = ∅, then s ∈ S for, and as ∈ q =⇒ a ∈ q. Now from

3.11 from Atiyah and MacDonald, we have that qec =
⋃

s∈S(q : s) = q. Again using

the same theorem we will calculate the radical of S−1q, as follows:
√
S−1q = S−1√q =

S−1p. Now we prove that S−1q is primary. We know that S−1A/S−1q ∼= S−1(A/q).

Assume that a/s ∈ S−1(A/q) is zero divisor every zero divisor, then ∃b/t ∈ S−1(A/q)

such that ab/st = 0 in S−1(A/q), i.e. ∃ s′ ∈ S such that s′ab = 0, then a(s′b) = 0 in

A/q. As every zero divisor in A/q is nilpotent, we have that ak = 0 for some k > 0 in

A/q. Now sk ∈ S, as we have 0 = (a/s)k ∈ S−1(A/q), and we are done.

For the next theorem, S(a) denotes the contraction of ideal S−1a in A for any ideal

a and any multiplicatively closed set S in A. Now suppose that in the minimal primary

decomposition of a, qi are numbered in such a way that S
⋂

pi = ∅ (1 ≤ i ≤ m) and

S
⋂

pi 6= ∅ (m+ 1 ≤ i ≤ n). Then

Theorem 1.1.10. Let a be a decomposable ideal with minimal primary decomposition

a =
⋂n
i=1 qi (with pi =

√
qi ∀i), and let S be a multiplicatively closed subset of A. Now

suppose that in the minimal primary decomposition of a, qi are numbered in such a

way that S
⋂

pi = ∅ (1 ≤ i ≤ m) and S
⋂

pi 6= ∅ (m+ 1 ≤ i ≤ n). Then

S−1a =
m⋂

i=1

S−1qi, S(a) =
m⋂

i=1

qi,
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and these decompositions are minimal primary decompositions.

Proof. S−1a = S−1
⋂n
i=1 qi =

⋂n
i=1 S

−1qi =
⋂m
i=1 S

−1qi (using previous theorem.)

Now S−1qi is a S
−1pi− primary ideal for 1 ≤ i ≤ m, and because S−1pi are diffenent

ideals, this is the minimal decomposition for S−1a. Now for the second part

S(a) = (S−1a)c = (
m⋂

i=1

S−1qi)
c =

m⋂

i=1

(S−1qi)
c =

m⋂

i=1

qi

and we are done.

Definition 1.1.11. A set
∑

of prime ideals belonging to a is said to be isolated if

p′ is a prime ideal belonging to a and if p′ ⊆ p for some prime ideal p ∈ ∑
, then

p′ ∈ ∑
.

Theorem 1.1.12. 2nd uniqueness theorem. Let a be a decomposable ideal, and let

a =
⋂n
i=1 qi be the minimal primary decomposition of a. Let {pi1 , pi2 , · · · , pim} be an

isolated set of primary ideals belonging to a. Then qi1
⋂

qi2
⋂ · · ·⋂ qim is independent

of decomposition.

Proof. Here let
∑

= {pi1 , pi2 , · · · , pim}.Now assume that S = A−pi1
⋂

pi2
⋂ · · ·⋂ pim .

Now for any prime p belonging to a, we have that

p ∈
∑

=⇒ p
⋂

S = ∅;

p 6∈
∑

=⇒ p 6⊆
⋃

p′∈
∑
p′ =⇒ p

⋂

S 6= ∅.

Now here

S(a) = qi1

⋂

qi2

⋂

· · ·
⋂

qim ,

hence it only depends on a.

Note that the above theorem implies that the primary components qi corresponding

to minimal prime ideals pi are uniquely determined by a, but the embedded primary

components are not in general uniquely determined by a.

Primary Decomposition of Modules. In the first part of this section we studied

the primary decomposition of decomposable ideals of a ring. In the same way we can



1.1. PRIMARY DECOMPOSITION 7

study primary decomposition of modules. Here we will study primary decomposition

of modules by proving theorems which are analogous to the first part of this section.

Definition 1.1.13. Radical of a submodule. Let A be a commutative ring and let

N be a submodule of A−module M . Then radical of N is

rM(N) = {x ∈ A : xtM ⊆ N for some t > 0}.

Theorem 1.1.14. show that rM(N) =
√

(M : N) =
√

(Ann(M/N)).

Proof. We are given that

rM(N) = {x ∈ A : xtM ⊆ N for some t > 0}.

if N is a submodule of M, the radical of N in M is defined to be Now x ∈
rM(N) ⇐⇒ for someq > 0, xqM ⊆ N ⇐⇒ for someq > 0, xq ∈ (M : N) ⇐⇒ x ∈
√

(M : N).

Now we know that (N : M) = Ann((N + M)/N), and since N ⊆ M, we have

that (N : M) = Ann(M/N). Now taking radicals on both sides, we have that
√

(M : N) =
√

(Ann(M/N)).

Now proving formulas analogous to (1.13):

2)
√

rM(N) = rM(N). x ∈
√

rM(N) ⇐⇒ ∃q > 0 such that xq ∈ rM(N) ⇐⇒
∃ p, q > 0 such that xpqM ⊆ N ⇐⇒ x ∈ rM(N).

3) rM(N
⋂
P ) = rM(N)

⋂
rM(P ). If x ∈ rM(N

⋂
P ), for some p > 0, xpM ⊆ N

⋂
P =⇒

xpM ⊆ N xpM ⊆ P =⇒ rM(N
⋂
P ) ⊆ rM(N)

⋂
rM(P ).

If x ∈ rM(N)
⋂
rM(P ) =⇒ ∃ p, q > 0 such that xpM ⊆ N and xqM ⊆ P . Taking

t = max{p, q}, we have that x ∈ rM(N
⋂
P ) and thus rM(N

⋂
P ) ⊇ rM(N)

⋂
rM(P ).

4) rM(N) = (1) ⇐⇒ M = N. If 1 ∈
√

(Ann(M/N)) ⇐⇒ 1 ∈ Ann(M/N) ⇐⇒
M/N = 0 ⇐⇒ M = N.

5) rM(N + P ) ⊇
√

(rM(N) + rM(P )). P ⊆ (N + P ) =⇒ rM(P ) ⊆ rM(N + P ) as

xpM ⊆ P =⇒ xpM ⊆ (N +P ). Similarly we have that rM(N) ⊆ rM(N +P ). So we

have that rM(N) + rM(P ) ⊆ rM(N + P ). Now taking radicals
√

rM(N) + rM(P ) ⊆
√

rM(N + P ). Using 2), we have
√

rM(N) + rM(P ) ⊆ rM(N + P ).

Solution 21. We are given that a submodule Q of M is primary if Q 6= M and
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every zero divisor in M/Q is nilpotent. We show that (Q : M) is a primary ideal as

follows: suppose xy ∈ (Q : M) and y 6∈ (Q : M) = Ann(M/Q), so thus we have that

xy(M/Q) = 0, but y(M/Q) 6= 0. Thus the endomorphism ofM/Q, φxy = 0 = φx ◦φy.
Note also that φy 6= 0. These statements imply that φx has non empty kernel. Thus

x is zero-divisor in M/Q. Now as Q is primary in M , thus by definition we have that

x is nilpotent in M/Q, which is equivalent to φx ◦ · · · ◦ φx
︸ ︷︷ ︸

n times

= φxn :M/Q //M/Q

is zero endomorphism. Equivalently, the endomorphism of M , φxn :M //M has

image in Q, so we have that xn ∈ (Q :M), and thus (Q :M) is primary.

Theorem 4.3*. LetQi, (1 ≤ i ≤ n) be p−primary inM , then
⋂n
i=1Qi is p−primary

in M .

Proof. Let Q =
⋂n
i=1Qi. Now as Qi 6= M ∀ i, we have that M 6= Q. Now let x ∈ A

is a zero-divisor of M/Q =⇒ ∃y ∈ M such xy ∈ Q =⇒ xy ∈ Qi ∀i =⇒ x is

a zero-divisor of M/Qi =⇒ xniM ⊆ Qi. Taking n = maxi{ni}, xnM ⊆ Qi ∀i, and
hence xnM ⊆ Q. This implies that x is nilpotent in M/Q. Now calculating radical of

Q, rM(Q) = rM(
⋂n
i=1Qi) =

√

(
⋂n
i=1Qi :M) =

√⋂n
i=1(Qi :M) =

⋂n
i=1

√

(Qi :M) =

p.

Theorem 4.4*. Let N ⊆ M be a p − primary submodule, where M and N are

A−modules, and let m be an element of M . Then

1) If m ∈ N , then (N : m) = (1).

2) If m 6∈ N, then (N : m) is p− primary.

3) Let x ∈ A and x 6∈ q, (N : x) = {m ∈M : mx ∈ N} = N.

Proof. 1) Using (N : m) = {a ∈ A : am ∈ N}, we have that (N : m) = (1).

2) Suppose that xy ∈ (N : m) and y 6∈ (N : m), then we have that xym ∈ N and

ym 6∈ N. This implies that x is a zero-divisor in M/N , and ∃n > 0 such that xn and

φxn :M/N //M/N is zero endomorphism of M/N, thus we have that xnM ⊆ N,

and this implies that xnm ∈ N =⇒ xn ∈ (N : m). Thus we have that (N : m) is

primary.

Now we calculate the radical of primary ideal (N : m). Note that m ∈ M implies

that (N : M) ⊆ (N : m). Now taking radicals implies that p ⊆
√

(N : m). Now if

x ∈
√

(N : m) =⇒ ∃n > 0, xn ∈ (N : m) =⇒ xnm ∈ N =⇒ 0 = xnm̄ ∈
M/N =⇒ x is a zero-divisor of M/N. So there exists p > 0 such that φxp is zero

endormorphism ofM/N , i.e. xpM ⊆ N. And so x ∈ rM(N) = p =⇒ p ⊇
√

(N : m).

So we have that (N : m) is p− primary.

3) If m ∈ N, then xm ∈ N =⇒ N ⊆ (N : x). Now we assume that m ∈ (N : x)/N ,
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then we have that xm ∈ N and m̄ 6= 0 in M/N. This means that x is zero-divisor in

M/N, and for some n > 0, we have that xnM ⊆ N, but then x ∈ rM(N) = p, which

is a contradiction.

Solution 22. In this question we prove analogs of theorem 4.5.

Theorem 4.5*. Let N be a decomposable submodule of M , with minimal primary

decomposition, N =
⋂n
i=1Qi and pi = rM(Qi), (1 ≤ i ≤ n), then pi are exactly the

ideal which occur in the set of ideals r(N : m),m ∈M, and hence are independent of

particular decomposition of N.

Proof. We have that that Qi 6⊇
⋂

j 6=iQj, which implies ∃m ∈ ⋂

j 6=iQj/Qi. Consider

(N : m) = (
⋂

iQi : m) = (Qi : m)
⋂
(∩i 6=jQj : m). Now using theorem 4.4*, we have

that (N : m) is pi − primary. Thus each pi is
√

(N : m) for some m ∈M.

Now assume that
√

(N : m) is a prime p for some m ∈ M. Then
√

(N : m) =
√

(
⋂n
i=1Qi : m) =

⋂

i

√

(Qi : m) =⇒ p =
⋂

i pi =⇒ p = pi for some i.

1.2 Chain Conditions on Rings

Let
∑

be a partially ordered set with partial order≤. Then we can prove the following

theorem on
∑
.

Theorem 1.2.1. The following two conditions on
∑

are equivalent:

1) Any increasing chain x1 ≤ x2 ≤ · · · of elements of
∑

stabilizes.

2) Any non-empty subset of
∑

has a maximal element.

Proof. 1) =⇒ 2). Let say 2) is not true. Then there exists a set which contains

no maximal element, and we can create a strictly increasing chain of elements of
∑

which doesn’t stabilize.

2) =⇒ 1). Here consider the non-empty set {xn}n≥1. By condition 2, it will have a

maximal element, and thus this chain will stabilize.

If the set of submodules of a moduleM is ordered by ⊆ relation, then 1) in theorem

1.2.1 is called the ascending chain condition, and if they are ordered by ⊇ relation,

then 1) in theorem 1.2.1 is called descending chain condition.

Definition 1.2.2. Noetherian and Artinian Modules. If a module M satisfies the

ascending chain condition, then it is called Noetherian module, and if it satisfies the

descending chain condition, it is called Artinian module.
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Here are some examples of Noetherian and Artinian modules:

Example1. Consider Z as a Z−module, then it satisfies the ascending chain condition

but not descending chain condition. This can be seen as follows: If a ∈ Z and a 6= 0,

then we have a sequence which doesn’t satisfy the d.c.c.: (a) ⊃ (a2) ⊃ (a3) ⊃ · · · ⊃
· · · . Now it is easy to see that any ascending chain of modules will stabilize: If we

have a submodule (a) ⊂ Z, and a 6= 0, then (a) ⊆ (b) ⇐⇒ b|a, now we can’t have

infinitely many b dividing a.

Example2. k[x], where k is a field, satisfies ascending chain condition on ideals. This

follows from the fact that k[x] is a principal ideal domain, and if (f(x)) ⊂ (g(x))(a

proper inclusion), then deg g(x) < deg f(x), which implies that any strictly increasing

chain of ideals in k[x] must be finite. But k[x] doesn’t satisfy d.c.c on ideals: (x) ⊃
(x2) ⊃ (x3) ⊃ . . . ⊃ (xn) ⊃ . . . is a descending chain of ideals which doesn’t stabilize.

Theorem 1.2.3. M is a Noetherian A−module. ⇐⇒ Every submodule of M is

finitely generated.

Proof. =⇒ Let N be a submodule of M , then consider the set
∑

of all finitely

generated submodules of N . Then this set will be nonempty as 0 is finitely generated.

Then by theorem 1.2.1, there exists a maximal element in
∑

, let say Ñ . If N

is not finitely generated, then N 6= Ñ . Then take x̄ ∈ N/Ñ, so we have another

finitely generated submodule Ñ + Ax of N such that Ñ ⊂ Ñ + Ax ⊂ N , which is a

contradiction.

⇐= Let’s assume we have a ascending chain of submodules of M : M1 ⊆M2 ⊆M3 ⊆
. . ., then

⋃∞

i=1Mi will be a submodule of M , and thus will be finitely generated, let’s

say
⋃∞

i=1Mi = 〈x1, x2, . . . , xr〉. Now let xi ∈ Mi, and take n = maxni1≤i≤r. Then

Mn =
⋃∞

i=1Mi, and thus the above chain is stationary.

Theorem 1.2.4. LetM,M ′ and ′′ be A−modules with 0 //M ′ α //M
β //M ′′ // 0

is an exact sequence. Then we have the following:

1) M is Noetherian ⇐⇒ M ′ and M ′′ are Noetherian modules.

2) M is Artinian ⇐⇒ M ′ and M ′′ are Artinian modules.

Proof. 1) =⇒ Let M ′
1 ⊆ M ′

2 ⊆ M ′
3 ⊆ . . . be an ascending chain of submodules of

M ′. Then (α(M ′
i))

∞
i=1 is a chain in M , which will stabilize. Now α(M ′

n) = α(M ′
n+1)

=⇒ M ′
n = M ′

n+1 as follows: We already know that M ′
n ⊆ M ′

n+1. Now if x ∈ M ′
n+1,

then x ∈ α(M ′
n), and because α is injective, we have that x ∈ M ′

n. And thus M ′
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is Noetherian. Now let M ′′
1 ⊆ M ′′

2 ⊆ M ′′
3 ⊆ . . . be an ascending chain of sub-

modules of M ′′, then (β−1(M ′′
i ))

∞
i=1 will be a chain in M, and thus it will stabilize.

Now β−1(M ′′
n) = β−1(M ′′

n+1) =⇒ M ′′
n = M ′′

n+1 as follows: we already know that

M ′′
n ⊆Mn+1′′ . If x ∈Mn+1′′ , then β

−1(x) ∈ β−1(M ′′
n) =⇒ x ∈M ′′

n . Thus the original

chain also stabilizes in M ′′.

⇐= For an ascending chain of submodules (Mi)
∞
i=1 in M , we have two corresponding

ascending chains: (α(M ′)
⋂
Mi)

∞
i=1 inM

′ and (β(Mi))
∞
i=1 inM

′′. Here we are identify-

ing α(M ′)
⋂
Mi as submodules of M ′. Note that as both M ′ and M ′′ are Noetherian,

both of these chains will stabilize. So proving that M is Noetherian boils down to

the following: For submodules M1 ⊆M2 ⊂M ,

α(M ′)
⋂

M1 = α(M ′)
⋂

M2 and β(M1) = β(M2) =⇒ M1 =M2.

Let x ∈ M2, then β(x) ∈ β(M1). Thus there exists y ∈ M1, such that β(y) = β(x),

thus β(x−y) = 0 Thus (x−y) ∈ ker β = imα = α(M ′). Now (x−y) ∈M2 =⇒ (x−
y) ∈ α(M ′)

⋂
M1 = α(M ′)

⋂
M2 =⇒ (x − y) ∈ M1 =⇒ x ∈ M1 =⇒ M1 = M2,

and thus we are done

2) Similar to the first part.

Definition 1.2.5. Noetherian and Artinian Rings. A ring A is said to be Noetherian

ring if it is an Noetherian as an A−module. Similarly we can define Artinian rings.

Theorem 1.2.6. Finitely generated modules of a Noetherian(resp. Artinian) ring

are Noetherian(resp. Artinian) modules.

Proof. LetM be a finitely generated module of Noetherian ring A. Then we will have

a surjective morphism A⊕ A⊕ . . .⊕ A
︸ ︷︷ ︸

n times

//M for some n > 0. So M ∼= An/I,

where I is the kernel of previous homomorphism. Thus we have an exact sequence

I // // An // //M , and using the previous theorem, we have our result.

Statement for Artinian rings can be proven similarly.

Theorem 1.2.7. Quotients of Noetherian(resp. Artinian) are Noetherian(resp. Ar-

tinian) rings.

Proof. Let a be an ideal of A, then we have an exact sequence a // // A // // A/a .

So again theorem 1.2.4, we have that A/a is A module. Now using the fact that A/a

is an A−module, we can give it a canonical A/a−module structure.
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Definition 1.2.8. Chain and Length of a Chain. A chain of submodules of a module

M is a sequence (Mi) (0 ≤ i ≤ n) of submodules such that we have:

M =M0 ⊃M1 ⊃ · · · ⊃Mn = 0

The length of such a chain is n.

Definition 1.2.9. Composition Series. A chain of submodules of a module M is

called composition series if no extra module can be inserted within the chain. This is

equivalent to the following condition: For all 0 ≤ i ≤ n, Mi−1/Mi is a simple module.

Theorem 1.2.10. Let M be a module, then every composition chain of M has equal

length and any chain of submodules of M can be extended to a composition series.

Proof. Let l(M) denote the length of a composition series of a module M . Thus if

M doesn’t has a composition series, then l(M) = +∞.

We first prove that N ⊂ M =⇒ l(N) =⇒ l(M). Let (Mi) be a composition

series of M of finite length. Then Ni = N
⋂
Mi are submodules of N . Now we

have a homomorphism Ni−1
//

33Mi−1
//Mi−1/Mi and Ni lies in the kernel of

this homomorphism. Thus Ni−1/Ni is isomorphic to a subring ofMi−1/Mi, and hence

Ni−1/Ni ⊆Mi−1/Mi. And because latter is a simple module, we have that Ni−1 = Ni

or Ni−1/Ni =Mi−1/Mi. This means that in (Ni) there may be some repeating terms,

and after removing the repeating terms, we will have a composition series of N , and so

l(N) ≤ l(M). Now we prove that if l(N) = l(M), then N =M . If l(M) = l(N), then

Ni−1/Ni = Mi−1/Mi for each i, and so Mn−1 = Nn−1, and thus Mn−2 = Nn−2, . . . ,

and thus we have that M = N.

Now we prove that any chain inM has length ≤ l(M). LetM =M0 ⊃M1 ⊃M2 ⊃ . . .

be a chain of length k, then as proven, we will have l(M) > l(M1) > l(M2) > . . . >

l(Mk) = 0, and hence l(M) ≥ l.

Consider any composition series of M . If it’s length is k, then as proven above, we

will have k ≤ l(M), and by the definition of l(M), we have k = l(M). Thus every

composition series inM has the same length. Now if a chain inM doesn’t have length

l(M), it is not a maximal chain, and thus we can insert submodules in the chain to

make it a maximal chain, and thus extend it to a composition series.

Theorem 1.2.11. Let M be a module. Then M has a composition series ⇐⇒ M

satisfies both chain conditions.
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Proof. =⇒ If M has a composition series, then all chains of submodules of M are

of bounded lengths, and hence they satisfy both a.c.c. and d.c.c.

⇐= We will prove this part by constructing a composition series ofM . LetM =M0.

Now asM is Noetherian, it has a maximal submodule, let it beM1. SimilarlyM1 has

a maximal submodule, call it M2. Thus we have a chain M =M0 ⊃M1 ⊃M2 ⊃ . . . .

As M also satisfies d.c.c., this chain must be finite, and hence M has a composition

series.

We define the length of a module M to be length of (any) composition series in

M and denote it by l(M).

Theorem 1.2.12. The length of a module l(M) is an additive function on the class

of all A−modules with l(M) finite.

Proof. Let M,M ′ and M ′′ be A−modules of finite length such that we have the

following exact sequence: M ′ // α //M
β // //M ′′ . Now to prove this theorem we have

to show that l(M) = l(M ′) + l(M ′′). Let l(M ′) = n and l(M ′′) = m, then let

M ′ ⊃ M ′
1 ⊃ M ′

2 ⊃ . . . ⊃ M ′
n = 0 be a composition series in M ′ and let M ′′ ⊃ M ′′

1 ⊃
M ′′

2 ⊃ . . . ⊃ M ′′
m = 0 be a composition series in M ′′. Then M = β−1M ′′ ⊃ β−1M ′′

1 ⊃
β−1M ′′

2 ⊃ . . . β−10 = αM ′ ⊃ αM ′
1 ⊃ αM ′

2 ⊃ . . . ⊃ αM ′
n = 0 is a composition series

in M , and thus l(M) = l(M ′) + l(M ′′).

Primary Decomposition in Noetherian Rings. We studied primary decompo-

sition in the first section of this chapter. Here we will prove that every ideal in a

Noetherian ring has a primary decomposition. Note that ideals in a ring may not be

primary decomposable.

Definition 1.2.13. Irreducible ideal. An ideal a is a ring A is called irreducible if

whenever

a = b
⋂

c =⇒ a = b or a = c.

Here a and b are ideals of A.

In the next two theorems we will prove that every ideal in a Noetherian ring is

primary decomposable.

Theorem 1.2.14. In a Noetherian ring every ideal is finite intersection of irreducible

ideals.
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Proof. Let’s assume that the above statement is not true, then there exists a set
∑

of ideals of Noetherian ring A for which the statement of theorem is not true. As the

ring is Noetherian, the set
∑

has a maximal ideal, let’s say a. As a is reducible, we

have that a = b
⋂

c, such that a ⊂ b and a ⊂ c. Then b and c can be represented

as finite intersection of irreducible ideals, and therefore a can also be represented as

finite intersection of irreducible ideals, which is a contradiction.

Theorem 1.2.15. In a Noetherian ring every irreducible ideal is primary.

Proof. Let a be a irreducible ideal Noetherian ring A, then to prove the above state-

ment, it is enough to show that if zero ideal in A/a is irreducible, then it is primary.

Now assume that xy = 0 with y 6= 0 in A/a. Now consider the following ascending

chain of ideals Ann (x) ⊆ Ann (x2) ⊆ Ann (x3) ⊆ . . .. By a.c.c., this chain will be

stationary, therefore for some n > 0, Ann (xn) = Ann (xn+1) = . . .. Now we have that

(xn)
⋂
(y) = 0. To prove this statement let’s assume that a ∈ (xn)

⋂
(y), then a = ty

for some t ∈ A/a, and thus ax = txy = 0. Now as a ∈ (xn) =⇒ a = bxn =⇒ ax =

bxn + 1 = 0 =⇒ b ∈ Ann (xn) = Ann (xn+1). And thus we have that a = bxn = 0.

So we have proven that (xn)
⋂
(y) = 0. Now we have the following representation for

zero ideal (0) = (xn)
⋂
(y). Now as (0) is irreducible in A/a, we have that xn = 0 as

y 6= 0. Thus zero ideal in A/a is irreducible =⇒ it is primary.

From the above two theorems, it is clear that every ideal in a Noetherian ring is

primary decomposable. So all the results of the first section of this chapter are appli-

cable to Noetherian rings. Now we prove some other theorems concerning Noetherian

rings.

Theorem 1.2.16. In a Noetherian ring A, every ideal contains a power of its radical.

Proof. Assume that a is an ideal in Noetherian ring A, and let
√
a be the radical

ideal of a. Then let
√
a = 〈x1, x2, . . . , xr〉. Now let xni

i ∈ a for each i. Now let

m =
∑r

i=1(ni − 1) + 1, then we have that (
√
a)m will be generated by monomials of

the form xk11 x
k2
2 . . . xkrr with

∑
ki = m. Then the way we have defined m implies that

ki < ni for at least one index i, hence all of the monomials which generate (
√
a)m, lie

in a, and therefore (
√
a)m ⊆ a.

If in the above theorem 1.2.16 we take a to be the zero ideal, then some power of

nilradical will be zero. So in a Noetherian ring, nilradical is nilpotent.
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Theorem 1.2.17. Let A be a Noetherian ring, and let m be a maximal ideal of A,

and let q be any ideal in A, then the following statements are equivalent:

1) q is m−primary.

2)
√
q = m

3) mn ⊆ q ⊆ m for some n > 0.

Proof. 1) =⇒ 2). Follows from the definition of a primary ideal.

2) =⇒ 1). Follows from theorem 1.2.16 and theorem 1.1.3.

2) =⇒ 3). Follows from theorem 1.2.16.

3) =⇒ 2). mn ⊆ q ⊆ m =⇒
√
mn ⊆ √

q ⊆ √
m =⇒ m ⊆√

q ⊆ m.

1.3 Dimension Theory

Definition 1.3.1. Graded Rings and Modules. A graded ring is a ring A together

with a family of subgroups (An)n≥0 of additive group of A such that

1) A =
⊕∞

n=0An

2) AmAn ⊆ Am+n for all m,n ≥ 0.

If A is a graded ring, then a graded A−module is an A−module M together with a

family of subgroups (Mn)n≥0 such that

1) M =
⊕∞

n=0Mn

2) AmMn ⊆Mm+n for all m,n ≥ 0.

Note that it follows from the above definition that A0 is a subring of A, and An

andMn are A0 modules for each n. An example of graded ring is A = k[x1, x2, · · · , xr]
with An being set of all homogeneous polynomials of degree n. An element y of M

is called homogeneous if y ∈Mn for some n > 0. Any element y ∈M can be written

as
∑

n yn where yn ∈ Mn and all but finitely many yn are zero. Also note that

A+ =
⊕

n>0An is an ideal of A.

A homomorphism of graded A−modules M and N is an A−module homomorphism

f :M // N such that f(Mn) ⊆ Nn for all n ≥ 0.

Theorem 1.3.2. In a graded ring A the following two statements are equivalent:

1) A is a Noetherian ring.

2) A0 is Noetherian and A is finitely generated as an A0−algebra.
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Proof. 1) =⇒ 2). As A0
∼= A/A+, and A is a Noetherian ring implies that A0 is

Noetherian ring. As A+ is an ideal in A, it is finitely generated, A+ = 〈x1, x2, . . . , xs〉,
which we can take to be homogeneous elements of A, with degree of xi to be ki. Now

let A′ be the subring of A generated by x1, x2, . . . , xs over A0. Now we will use

induction to show that An ⊆ A′ for all n ≥ 0. For n = 0, it is obvious. Now we

assume it is true for ≤ (n− 1) and prove it for n > 0. Let y ∈ An, then y ∈ A+, and

thus y is a linear combination of xi, let say y =
∑s

i=1 aixi, where ai ∈ An−ki . Now

using the inductive hypothesis shows that a′is are polynomials in x′is, with coefficient

in A0, and thus y also is a polynomial in x′is with coefficients in A0, and therefore

y ∈ A′, and thus An ⊆ A′ for all n ≥ 0, and thus A = A′, and thus the latter part of

the theorem is true.

2) =⇒ 1). In this case, we will have that A ∼= A0[x1, x2, . . . , xn]/I, for some n > 0.

Now as A0 is a Noetherian ring, by Hilbert’s basis theorem, we have that A is a

Noetherian ring.

Hilbert Functions Let A be a Noetherian graded ring with A =
⊕∞

n=0An. By

theorem 1.3.2 we can take A to be a finitely generated A0−algebra, generated by

elements x1, x2, · · · , xs, i.e. A = A0[x1, x2, · · · , xs] and we can take all the xi, (1 ≤
i ≤ s) to be homogeneous. Let say degree of xi is ki for 1 ≤ i ≤ s.

Let M be a finitely generated graded A−module. Then M is generated by finite

number of homogeneous elements, say mj(1 ≤ j ≤ t), and let degmj = rj. Thus

is y ∈ Mn, then y =
∑

j fj(x)mj, where fj(x) is a homogeneous element of A of

degree n−rj. Now as we have proven previously in theorem 1.3.2 that A is an finitely

generated A0 algebra, we can replace fj(x) by monomials in x′is with coefficients in

A0. Thus Mn is finitely generated as an A0−module and is genereated by gj(x)mj,

where gj(x) is a monomial in xi of total degree n− ri.

Definition 1.3.3. Poincare Series. Let λ be an additive function on the class of

all finitely generated A0−modules, which takes values in Z. The Poincare series of

M(with respect to λ) is the following power series:

P (M, t) =
∞∑

n=0

λ(Mn)t
n ∈ Z[[t]].

Theorem 1.3.4. The Poincare series P (M, t) of the above describe finitely generated
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gradedA−module M , is a rational function in t of the form

P (M, t) =
f(t)

∏s
i=1(1− tki)

,where f(t) ∈ Z[t].

Proof. we prove this theorem by inducting on the number of generators s of A over

A0. If s = 0, then A = A0, and An = 0 for all n > 0. Thus we have that M is a

finitely generated A0−module. Then there will exists n > 0 such that for all m ≥ n,

Mm = 0, and thus in this case P (M, t) will be a polynomial in t.

Now suppose that s > 0 and the theorem is true for s−1. Now we have an A−module

homomorphism given by Mn
xs //Mn+ks , which is multiplication by xs, which gives

rise to the following exact sequence:

0 // Kn
//Mn

xs //Mn+ks
// Ln+ks // 0 (1.1)

Let K =
⊕

nKn, and let L =
⊕

n Ln. Then both these modules are finitely generated

A−moduels, as K is a submodule of M and L is a quotient module of M . These

are also A0[x1, x2, . . . , xs−1] module as xs annihilates both of these modules. Now

applying λ to the above exact sequence (1.1), we have the following

λ(Kn)− λ(Mn) + λ(Mn+ks)− λ(Ln+ks) = 0. (1.2)

Now multiplying by tn+ks and summing up with respect to n

∑

n

tn+ksλ(Kn) −
∑

n

tn+ksλ(Mn) +
∑

n

tn+ksλ(Mn+ks) −
∑

n

tn+ksλ(Ln+ks) = 0

tksP (K, t)− tksP (M, t) + [P (M, t) + g1(t)]− [P (L, t) + g2(t)] = 0

here g1(t) and g2(t) both are polynomials in t

(1− tks)P (M, t) = P (L, t)− tksP (K, t) + g(t) (1.3)

here g(t) = g2(t)− g1(t). Now applying the inductive hypothesis, we will have

P (L, t) =
f1(t)

∏s−1
i=1 (1− tki)

, P (K, t) =
f2(t)

∏s−1
i=1 (1− tki)

, where f1(t), f2(t) ∈ Z[t].
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Now putting the expressions for P (L, t) and P (K, t) in 1.3, we get P (M, t) in the

desired form.

The order of the pole of P (M, t) at t = 1 is denoted by d(M). In the next theorem

we will denote d(M) by d

Theorem 1.3.5. If each ki = 1, then for n ≫ 0, λ(Mn) is a polynomial in n, with

rational coefficients of degree d− 1.

Proof. Using theorem 1.3.4, we have that

λ(Mn) = coefficient of tn in
f(t)

(1− t)s
.

Now we cancel powers of (1− t) from the above expression we may assume that s = d

and f(t) is not divisible by (1− t), which is equivalent to f(1) 6= 0. Now assume that

polynomial f(t) =
∑N

k=0 akt
k, and using the following binomial expansion

1

(1− t)d
= (1− t)−d =

∞∑

k=0

(
d+ k − 1

d− 1

)

tk.

Thus for n≫ N, we have that

λ(Mn) =

N∑

k=0

ak

(
d+ n− k − 1

d− 1

)

.

And thus we have an expression for λ(Mn) as a polynomial in variable n.

Remark. The polynomial obtained in theorem 1.3.5 is called the Hilbert func-

tion or Hilbert polynomial of M with respect to λ.

Theorem 1.3.6. If x ∈ Ak is not a zero-divisor in M , then d(M/xM) = d(M)− 1.

Proof. If x ∈ Ak is not a zero-divisor inM , then in equation 1.1 Kn = 0. Thus K = 0,

and from equation 1.3 it follows that d(M/xM) = d(M)− 1.
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Now we will study the Hilbert functions obtained from a local ring by passing to

the associative graded rings.

Theorem 1.3.7. Let A be a Noetherian local ring, m its maximal ideal, q be a

m−primary ideal, M be a finitely generated A−module, (Mn) be a stable q−filtration

of M . Then we have the following statements:

1) For each n ≥ 0, the length of M/Mn is finite.

2) For n ≫ 0, this length is a polynomial g(n) in n, whose degree is ≤ s, where s

denotes the least number of generators of q.

3) For the polynomial g(n), degree and leading coefficients are independent of chosen

filtration, but depends on M and q.

Proof. 1) Consider associated graded ring G(A) =
⊕

n q
n/qn+1. Now from the fil-

tration (Mn), we get a G(A)−module, G(M) =
⊕

nMn/Mn+1. Now we state some

properties of these algebraic structures: by theorem 8.5, Introduction to Commuta-

tive Algebra by Atiyah and MacDonald, which states that a ring A is Artinian ⇐⇒
it is Noetherian and dim A = 0. Using this statement we have that G0(A) = A/q

is an Artinian ring, as A is Noetherian local ring. Now theorem 10.22 of the same

book states that: 1) G(A) is Noetherian, and 2) G(M) is a finitely generated graded

G(A)−module. Now as each of the Noetherian A−modules Gn(M) = Mn/Mn+1 are

annihilated by ideal q, we can give these A/q−module structures. Hence these are

Noetherian A/q−modules. Now using theorem 1.2.10, we have that Mn/Mn+1 satis-

fies both d.c.c. and a.c.c. Now from theorem 1.2.11, we have that these are of finite

length. Now from the exact sequences:

Mr
// //Mr−1

// //Mr−1/Mr

we can deduce that (because l is an additive function, as we have already proven in

theorem 1.2.12.)

ln = l

(
M

Mn

)

=

n∑

r=1

l

(
Mr−1

Mr

)

(1.4)

Thus using the fact that for each r, l
(
Mr−1

Mr

)

is finite, we will have that l
(
M
Mn

)

is

finite from above equation.

2) Assume that q = 〈x1, x2, . . . , xs〉, and assume that x̄i is the image of xi in q/q2.
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Now from theorem 1.3.2 we will have that G(A) is generated as an A/q−algebra by

x̄i
′s. As each of the x̄i has degree 1, (this follows directly from the fact that each

x̄i ∈ G1(A) = q/q2.) we have from theorem 1.3.5 that l(Mn/Mn+1) is a polynomial,

let’s say f(n), of degree ≤ s − 1 for all n ≫ 0. Now we have the following exact

sequence
Mn

Mn+1

// // M
Mn+1

// // M
Mn

, which implies that ln+1 − ln = f(n), and thus it follows that ln is a polynomial g(n)

of degree ≤ s, for n≫ 0.

3) Let’s we have another stable q−filtration ofM , (M̃n), and define g̃(n) = l(M/M̃n).

Now theorem 10.6 in Introduction to Commutative Algebra by Atiyah and Mac-

Doanald states that any two stable q−filtrations have bounded difference, i.e., there

exists an integer n0 such that for all n ≥ 0, we have that Mn+n0 ⊆ M̃n and M̃n+n0 ⊆
Mn. Thus it follows easily that g(n + n0) ≥ g̃(n), and g̃(n + n0) ≥ g(n). Thus for

all large n we have that limn→∞ g(n)/g̃(n) = 1. And because g(n) and g̃(n) both

are polynomials in n, we have that g and g̃ have the same degree and leading coeffi-

cient.

The polynomial g(n) for the filtration (qnM) is denoted by χMq (n), and if M = A,

then we write χq in place of χAq and term it as the characteristic polynomial of the

m−primary ideal q.

Theorem 1.3.8. The degree of χq(n) is equal for different m−primary ideals of A.

Proof. Let q be a m−primary ideal. Then to prove the above statement, we prove that

deg χm(n) = deg χq(n). As A is Noetherian, we have that mr ⊆ q ⊆ m, and therefore

we have that mnr ⊆ qn ⊆ mn, and this implies that χm(n) ≤ χq(n) ≤ χm(rn), and

letting n // ∞ , we have our result.

Now the common degree of χq(n) will be denoted by d(A). Also δ(A) denotes the

least number of generators of a m−primary ideal. Also dim A denotes the supremum

of the lengths of the all chains of prime ideals in A.

Dimension Theorem for Noetherian Local Rings. In this section we will prove

that for a Noetherian local ring A, the numerical values of d(A), δ(A) and dim (A)

are equal. We will prove this by showing that δ(A) ≤ dimA ≤ d(A) ≤ δ(A).
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Theorem 1.3.9. d(A) ≤ δ(A).

Proof. It follows from the part 2) of theorem 1.3.7 and theorem 1.3.8. Note that in

theorem 1.3.7, we are taking M = A and stable filtration (Mn) = (qnA) for proving

this theorem.

Theorem 1.3.10. Let A, q and m be as before. LetM be a finitely generated A−module,

x ∈ A a non-zero-divisor in M and let M ′ = M/xM, then we have the following re-

lation in polynomials

degχM
′

q ≤ degχMq − 1.

Proof. Assume N = xM , then we have the following exact sequence

0 // N //M //M ′ // 0

Now the ideal qn will give rise to the following exact sequence

0 // N

N
⋂

qnM
// M

qnM
// M

′

qnM ′
// 0

Now if we assume that g(n) = l
(

N
N

⋂
qnM

)

, we will have for n≫ 0

g(n)− χMq (n) + χM
′

q (n) = 0.

Now theorem 10.9 in Introduction to Commutative Algebra by Atiyah and Mac-

Doanald states that if M ′ is a submodule of finitely generated module M and (Mn)

a stable filtration, then (M ′
⋂
Mn) is also a stable filtration of M ′. Applying this

theorem here, we have that (N
⋂

qnM) is a stable filtration of N . Also note that

M ∼= N (via the map m 7→ xm, and isomorphism because x is non-zero-divisor in

M .), thus from theorem part 3) of theorem 1.3.7, g(n) and χqM have the same leading

coefficient, and the statement of the theorem follows.

If we put M = A in the above theorem, and follow the notation described previ-

ously, we get the following statement

Corollary 1.3.11. If A is a Noetherian local ring and x is a non-zero-divisor in A,

then

d

(
A

(x)

)

≤ d(A)− 1.
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Now we prove the second determining result of this section:

Theorem 1.3.12. dim A ≤ d(A).

Proof. We prove this theorem by induction on d(A). If d(A) = 0, then for n ≫ 0,

l(A/mn) will be constant, thus for some n, we will have mn = mn+1, and thus by

Nakayama’s lemma we have that mn = 0. And now because A is a Noetherian ring,

and 0 is a product of maximal ideals, we have that A is Artin ring, and thus dimA = 0.

Now assume that d(A) > 0, and take any chain p0 ⊂ p1 ⊂ . . . ⊂ pr of prime ideals in

A. Take x ∈ p1/p0. Now let A′ = A/p0, and let x′ be the image of x in A′. Then as

A′ is an integral domain and x′ 6= 0 in A′, we have by corollary 1.3.11 that

d

(
A′

(x′)

)

≤ d(A′)− 1.

Now if m′ is a maximal ideal of A′, then A′/m′n is isomorphic to a subring of A/mn

and so

l

(
A′

m′n

)

≤ l

(
A

mn

)

and thus we have that d(A′) ≤ d(A). So then we have that

d

(
A′

(x′)

)

≤ d(A)− 1.

Now, we use the inductive hypothesis to conclude our proof. By inductive hypothesis,

any chain of prime ideals in A′/(x′) is of length ≤ d(A) − 1, but also the images of

p1, . . . , pr for a chain of length r − 1 in A′/(x′), thus we have that r − 1 ≤ d(A) −
1 =⇒ r ≤ d(A). As we have taken any arbitrary chain of primes, we have that

dimA ≤ d(A).

Now we prove the last theorem to prove the main theorem of this section.

Theorem 1.3.13. dim A ≥ δ(A).

Proof. Assume that dim A = d. Then we prove this theorem by showing that there

exists an m−primary ideal in A generated by d elements. We construct these gen-

erators x1, . . . , xd in such a way such that for each i, every prime ideal containing

(x1, . . . , xi) has height ≥ i. For i = 0 it is obvious. Now assume i > 0 and we

have constructed x1, . . . , xi−1. Suppose we have (if there exists) minimal prime ide-

als {pj}1≤j≤s which contain (x1, . . . , xi−1) and are of height exactly i − 1. We have
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pj 6= m∀j as i − 1 < d = heightm, and thus it follows that m 6= ⋃s
j=1 pj. Now take

xi ∈ m/
⋃s
j=1 pj. Now let q be any prime ideal which contains (x1, . . . , xi). Thus q will

contain some minimal prime ideal p associated with (x1, . . . , xi−1). Now there are two

possibilities, first that if p = pj for some j, then xi ∈ q and xi 6∈ p, and hence q ⊃ p,

and thus height q ≥ i. Now if p 6= pj for all j, then height q ≥ i and thus p ≥ i. Thus

we have proven that every prime ideal containing (x1, . . . , xi) has height ≥ i.

Now we prove that (x1, . . . , xd) is primary. We will prove that it’s radical is m. Now

if p is a prime ideal and it contains (x1, . . . , xd), then height p ≥ d, but that implies

that p = m as height m = d. And thus we are done.

Now we give the main theorem of this section.

Theorem 1.3.14. Dimension theorem. For a Noetherian local ring A, the numerical

values of these three integers are equal:

1) The supremum of the lengths of all the chains of prime ideals in A.

2) The degree of characteristic polynomial χm(n), d(A).

3) Least number of generators of a m−primary ideal of A, δ(A).

Proof. Follows directly from theorems 1.3.9, 1.3.12 and 1.3.13.
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Chapter 2

Varieties

Proofs of theorems in this chapter are omitted. For their proofs refer to Algebraic

Geometry by Robin Hartshorne.

2.1 Affine and Projective Varieties

In this section we studied affine varieties and projective varieties from section

1 and section 2 of chapter 1 Algebraic Geometry by Robin Hartshorne. Some of the

important theorems of which we studied proofs in this section are stated below.

Theorem 2.1.1. There is one-to-one correspondence between inclusion reversing cor-

respondence between algebraic sets in A
n and radical ideals in A = k[x1, . . . , xn]. Fur-

thermore an algebraic set is irreducible iff its corresponding radical ideal is a prime

ideal.

Theorem 2.1.2. Every algebraic set Y in A
n can be represented as union of varieties

Y = Y1
⋃
Y2

⋃
. . .

⋃
Yn. If we assume that Yj 6⊆ Yi, for each i 6= j, then these varieties

Yi are uniquely determined.

Theorem 2.1.3. Let Y ⊂ A
n be an affine algebraic set and let A(Y ) be it’s coordinate

ring. Then dimension of Y is equal to the dimension of A(Y ).

If f ∈ k[x0, x1, . . . , xn] is a linear homogeneous polynomial, then the solution set

of f is called a hyperplane. Now if f = xi, then we denote this hyperplane by Hi,

for 0 ≤ i ≤ n. Now define open subsets Ui ∈ P
n to be P

n − Hi. Then P
n is covered

25
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by U ′
is. Now we define a mapping ϕi : Ui // An as follows: If (a0, a1, . . . , an) ∈ Ui,

then

(a0, a1, . . . , an) 7→
(
a0
ai
, . . . ,

an
ai

)

.

Note that in the above map we have omitted ai/ai. Now we have the following theo-

rem:

Theorem 2.1.4. The map ϕi gives a homeomorphism between Ui and A
n, where Ui

inherits topology from P
n and A

n has Zariski topology.

Note that the above theorem implies that any projective (quasi-projective) can

be covered by affine (quasi-affine) varieties. It can also be proven that ϕi is indeed

isomorphism of varieties for all i.

2.2 Morphisms

Theorem 2.2.1. If f and g are two regular functions on a variety X such that they

agree on a open subset U ⊆ X, then f = g agree on X.

Theorem 2.2.2. Let Y ⊆ A
n be an affine variety with A(Y ) being it’s coordinate

ring. Then the following statements are true:

1) Ring of all regular functions on Y , O(Y ) is isomorphic to A(Y ), i.e., O(Y ) ∼=
A(Y ).

2) For each point P ∈ Y , we define mP ⊆ A(Y ) to be the ideal of all vanishing at P .

Then there is a one to one correspondence between points of Y and maximal ideals of

A(Y ), given by P 7→ mP .

3) OP
∼= A(Y )mP

, and dimOP = dimY.

4) The function field of Y , K(Y ) is isomorphic to the quotient field of A(Y ).

Now we state a similar theorem for projective varieties, but before that some

notation: If S is a graded ring, then S(p) denotes the subring of elements of degree 0

in the localization of S with respect to multiplicative subset T of S, which contains

all the homogeneous elements of S which are not in p. Now if f ∈ S, we denote by

S(f) the subring of elements of degree 0 in the ring Sf .

Theorem 2.2.3. Let Y ⊆ P
n be a projective variety with homogeneous coordinate

ring S(Y ), then
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1) O(Y ) ∼= k.

2) For any point P ∈ Y , we define mP ⊆ S(Y ) to be ideal generated by homogeneous

functions f ∈ S(Y ) which vanish at P , then OP
∼= S(Y )(mP ).

3)K(Y ) ∼= S(Y )((0)).

Theorem 2.2.4. Let X be any variety and let Y be an affine variety. Then we have

a natural bijection between the following set

Homvarieties(X, Y ) oo //Homk−algebra((A(Y ),O(X))) .

Theorem 2.2.5. Let X and Y be two affine varieties, then X and Y are isomorphic

as varieties ⇐⇒ A(X) and A(Y ) are isomorphic as k−algebras.

2.3 Rational Maps

Theorem 2.3.1. Let X and Y be two varieties and let ϕ and ψ be two morphisms

from X to Y such that they agree on some nonempty open subset U of X, then they

agree on whole of X.

Definition 2.3.2. Let X and Y be two varieties, then a rational map ϕ : X // Y

is an equivalence class of pairs 〈U, ϕU〉, where ϕU is a morphism from U to Y , and

〈U, ϕU〉 ∼ 〈V, ϕV 〉 if ϕU |U∩V = ϕV |U∩V . A rational map is called birational if it has

an inverse rational map.

Theorem 2.3.3. For any two varieties X and Y , the following are equivalent.

1) X and Y are birationally equivalent.

2) There exists open subsets U ⊆ X and V ⊆ V such that U ∼= V.

3) Function fields of X and Y are isomorphic as k−algebras.

2.4 Nonsingular Varieties

Definition 2.4.1. Nonsingular Variety. Let Y ⊆ A
n be an affine variety, and let

I(Y ) = 〈f1, f2, . . . , ft〉, where fi ∈ k[x1, x2, . . . , xn] for all i. Then Y is called non-
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singular at a point P ∈ Y, if the matrix






∂f1
∂x1

|P . . . ∂f1
∂xn

|P
...

. . .
...

∂ft
∂xn

|P . . . ∂ft
∂xn

|P






has rank n− r, where r is the dimension of Y . Variety Y is called non-singular if it

is non-singular at every point.

Definition 2.4.2. Regular Local Ring. Noetherian local ring A with maximal ideal

m and residue field k = A/m is regular local ring if dimkm/m
2 = dimA.

Theorem 2.4.3. Let P ∈ Y ⊆ A
n, where Y is an affine variety. Then Y is non-

singular at P ⇐⇒ OP,Y is a regular local ring.

Multiplicity and Intersection Multiplicity.

Definition 2.4.4. Intersection Multiplicity. If Y and Z are two curves in A
2, given

by equations f = 0 and g = 0 respectively, and if P ∈ Y ∩ Z, then we define the

intersection multiplicity (Y.Z)P to be length of OP -module OP

(f,g)
.

Here are some examples:

Example1. Let x = 0 and y = 0 be two curves in A
2, then intersection multiplicity of

these two curves at at (0, 0) is the length of k[x, y](x,y) module
k[x,y](x,y)

(x,y)
∼= k, length of

which is 1.

Example2. Let the curves Y and Z be given by y = x2 and y2 = x3 respectively.

These two curves intersect at (0, 0) and (1, 1). At (0, 0)

(Y.Z)(0,0) = length of k[x, y](x,y) module
k[x, y](x,y)

(y2 − x3, y − x2)

k[x, y](x,y)
(y2 − x3, y − x2)

∼= k[x](x)
(x4 − x3)

∼= k ⊕ k[x]⊕ k[x2]

Definition 2.4.5. Multiplicities. Let Y ⊆ A
2 be a curve defined by f(x, y) = 0.

Let P = (a, b) ∈ A
2. Make a liner change x 7−→ x − a, y 7−→ y − b. and f ′(x, y) =

f(x + a, y + b) and write f ′ = f ′
0 + f ′

1 + f ′
2 + · · · f ′

l , where f
′
i is the homogeneous

polynomial of degree i in x and y. Then the multiplicity of P in Y , denoted by

µP (Y ) is the least l such that f ′
l 6= 0.
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Also note that P = (a, b) ∈ Z(f) ⇐⇒ f ′
0(0, 0) = 0 ⇐⇒ µ(a,b)(Y ) > 0. Thus we

have that P ∈ Y ⇐⇒ µP (Y ) > 0.

Theorem 2.4.6. Let Y ⊆ A
2 be defined by equation f(x, y) = 0, then (0, 0) is a

smooth point ⇐⇒ µ(0,0)(Y ) = 1.

Proof. We can write f(x, y) as

f(x, y) = 0 +
∂f

∂x

∣
∣
∣
∣
(0,0)

x+
∂f

∂y

∣
∣
∣
∣
(0,0)

y + higher order terms

f(x, y) =

[

∂f
∂x

∣
∣
∣
∣
(0,0)

∂f
∂y

∣
∣
∣
∣
(0,0)

] [

x

y

]

+ higher order terms.

Now if (0, 0) is a smooth point, we will have Rank

[

∂f
∂x

∣
∣
∣
∣
(0,0)

∂f
∂y

∣
∣
∣
∣
(0,0)

]

= 1, and thus

µ(0,0)(Y ) = 1.

And if µ(0,0)(Y ) = 1, then either ∂f
∂x

∣
∣
∣
∣
(0,0)

6= 0 or ∂f
∂y

∣
∣
∣
∣
(0,0)

6= 0, and thus rank of matrix

[

∂f
∂x

∣
∣
∣
∣
(0,0)

∂f
∂y

∣
∣
∣
∣
(0,0)

]

will be one, and thus (0, 0) is a non-singular point.



30 CHAPTER 2. VARIETIES



Chapter 3

Schemes

Proofs of some theorems in this chapter are omitted. For their proofs refer to Algebraic

Geometry by Robin Hartshorne.

3.1 Sheaves

Definition 3.1.1. Presheaf. Let X be a topological space. A presheaf F of abelian

groups on X is a rule which assigns to each open set U ⊂ X an abelian group F(U )

and to each inclusion V ⊂ V , a morphism of abelian groups ρUV : F(U ) // F(V )

such that the following conditions are met:

1) ρUU is the identity map F(U ) // F(U ) .

2) For W ⊂ V ⊂ U , we have ρUW = ρVW ◦ ρUV .

Note that we also require F(∅) = ∅.

If F is a presheaf on X , we refer to F(U ) as sections of the presheaf F on U and

we refer the maps ρUV as restriction maps. If s ∈ F(U ), we sometimes write s|V is

place of ρUV (s).

Definition 3.1.2. Sheaf. A sheaf F on a topological space X is a presheaf which

satifies the following additional properties:

1) Let U = {Ui}i∈I be a open covering of open set U of X and if ∃s ∈ F(U) such

that s|Ui
= 0 ∀ i, then s = 0.

2) Let U = {Ui}i∈I be a open covering of open set U ofX and there exists a collections

si ∈ F(Ui) such that

si|Ui∩Uj
= sj|Ui∩Uj

31
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then ∃s ∈ F(U) such that s|Ui
= si.

Alternative Definition: A presheaf F is a sheaf if for any open cover {Ui}i∈I of

open subset U of X, the following diagram is an equalizer diagram.

F(U) //
∏

i∈I F(Ui)
//
//
∏

i,j∈I F(Ui
⋂
Uj)

Now we give an example of a presheaf that is not a sheaf. Let X be a topological

space and for an open set U ⊆ X, we define a rule F(U) = { f : U // R |f is constant}
and for V ⊂ U , define the restriction to be usual restriction of function. Then it is

clear that it is a presheaf. Now we prove that it is not a sheaf. Let U1 and U2 be

two disjoint nonempty open subsets of X and let U = U1

⋃
U2 and define f1 ∈ F(U1)

such that f1(u1) = 0 ∀u1 ∈ U1 and f2 ∈ F(U2) such that f2(u2) = 1 ∀u2 ∈ U2. Then

the overlap condition f1|U1
⋂
U2 = f2|U1

⋂
U2 is true because the intersection is empty.

But the gluing condition that ∃f ∈ F(U) such that f |U1 = f1 and f |U2 = f2 is not

true because f must be a constant ∀u ∈ U = U1

⋃
U2.

Now in next theorem we give an example of a sheaf.

Theorem 3.1.3. Let X be a variety over a field k. Assign open set U ⊂ X,

set O(U), the ring of ring of regular functions from U to k and for V ⊂ U , let

ρUV : O(U) // O(V ) be the usual restriction map. Then O is a sheaf of rings on

X.

Proof. It is clear that it is a presheaf.

Definition 3.1.4. Stalk of a presheaf. The stalk of a presheaf F on a topological

space X at a point P ∈ X is

FP = lim
P∈U

F(U)

where lim denotes direct limit. The elements of FP are called germs of sections of F
at P .

Note that for any open set U ⊆ X, there is a canonical map:

F(U) //
∏

P∈U FP

given by s ✤ //
∏

P∈U < U, s > .

Theorem 3.1.5. Let X be a topological space and F be a sheaf on X. Then for every

open set U ⊆ X, the map F(U) //
∏

P∈U FP is injective.
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Proof. Let s, s′ ∈ F(U) map to the same element in
∏

P∈U FP . This means that for

all P ∈ U, s and s′ have the same image in the stalks FP . So for every P ∈ U,

there exists a neighborhood VP of P such that P ∈ VP ⊆ U , with the property that

s|VP = s′|VP . Now U = {VP}P∈U is an open covering of U . As (s − s′)|VP = 0 for all

P ∈ U, by the uniqueness condition of being a F sheaf, we have that s = s′, and thus

the map is injective.

Definition 3.1.6. Morphism of presheaves. Amorphism φ : F // G of presheaves(or

sheaves) is a rule which assigns each open set U ⊂ X a morphism φ(U) : F(U) // G(U)
of abelian groups such that for inclusion of open set V ⊂ U the following diagram

commutes

F(U)
φ(U) //

ρUV

��

G(U)
ρ′UV

��
F(V )

φ(V )
// G(V )

Note that ρ and ρ′ are restriction maps of F and G respectively. And also that

morphism φ : F // G induces a morphism φP : FP
// GP on stalk level for each

P ∈ X.

Theorem 3.1.7. A morphism φ : F // G of sheaves is isomorphism ⇐⇒ the

induced morphism on stalk level φP : FP
// GP is isomorphism for each P ∈ X.

Proof. We first assume that φP is an isomorphism. We show that for any open

subset U ⊆ X, φ(U) : F(U) // G(U) is an isomorphism and then define the inverse

morphism ψ for φ by ψ(U) = φ(U)−1 for open U ⊆ X. Injectivity of φ(U). Let

s ∈ F(U) such that φ(U)(s) = 0 in G(U). Thus for every point P ∈ U, we have that

image of φ(U)(s), φ(U)(s)P ≡< U, φ(U)(s) > in the stalk GP is zero as φ(U)(s) is

zero. As φP is injective, we have that sP ≡< U, s > in FP is zero. Now sP being

zero means that there exists a neighborhood WP of P such that sP ≡< WP , 0 >,

and thus there exists a neighborhood YP ⊆ U, such that s|YP = 0. Now U can be

covered by these neighborhoods YP by varying P , and thus the first sheaf property

we have that s = 0. Surjectivity of φ(U). Assume that t ∈ G(U). For P ∈ U, let

tP denotes its germ at P . Now since φP is surjective, there exists sP ∈ FP such

that φP (sP ) = tP . Now let sP ∈ FP be denoted by < VP , s(P ) >, where VP is a

neighborhood of P and s(P ) ∈ F(VP ). Then φ(VP )(s(P )) and t|VP are two elements

of G(VP ) such that both of them have same germ at P . Hence they agree on an open
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subset of VP . So, if necessary, replacing VP by a smaller neighborhood of VP , we may

assume that φ(VP )(s(P )) = t|VP in G(VP ). Now U is covered by such neighborhoods

VP and each F(VP ) contains a section s(P ). Now if P,Q ∈ X, then note that their

restriction s(P )|VP ⋂
VQ and s(P )|VP ⋂

VQ in F(VP
⋂
VQ) maps to t|VP ⋂

VQ by φ. And

since φ is injective as proven above, we have that s(P )|VP ⋂
VQ = s(Q)|VP ⋂

VQ . Now by

sheaf property 2), there exists s ∈ F(U) such that s|VP = s(P ) for all P ∈ X. Now it

is easy to prove that φ(U)(s) = t.

Now assume that φ is isomorphism and we try to show that φP : FP
// GP is an

isomorphism ∀P ∈ X. Injectivity of φP . Let sP ∈ FP such that φP (sP ) = 0. Let sP be

denoted by < VP , s >, where VP is neighborhood of P and s ∈ F(VP ). Then φP (sP )

is given by < VP , φ(VP )(s) >. As φP (sP ) = 0, we have that, if needed restricting to

a neighborhood UP ⊆ VP of P , φ(VP )(s)|UP
= 0, or φ(UP )(s|UP

) = 0 because φ is

injective, we have that s|UP
= 0, which will imply that sP = 0. Surjectivity of φP .

Let tP ∈ GP . Let < VP , t(P ) >, where VP is a neighborhood of P . As φ is surjective,

there exists s(P ) such that φ(VP )(s(P )) = t(P ). Now let the germ of s(P ) of P, be

denoted by sP , < VP , s(P ) >≡ sP . Then φP (sP ) =< VP , t(P ) >= tP .

Definition 3.1.8. kernel, cokernel, image. Let φ : F // G be a morphism of

presheaves. Then we define presheaf kernel of φ to be presheaf given by U 7→
ker (φ(U)). Similarly we define presheaf cokernel and presheaf image of φ to be

presheaves given by U 7→ coker (φ(U)) and U 7→ image (φ(U)) respectively.

Note that U 7→ ker (φ(U)) satifies all the conditions of being a presheaf as follows.

We define restriction map for V ⊂ U , from ker (φ(U)) to ker (φ(V )) such that the

following diagram commutes

0 // ker (φ(U)) //

T
��

F(U)
φ(U) //

ρUV

��

G(U)
ρ′UV

��
0 // ker (φ(V )) // F(V )

φ(V )
// G(V )

The above diagram commutes because for x ∈ ker (φ(U)) ⊂ F(U), we have φ(V ) ◦
ρUV (x) = ρ′UV ◦ φ(U)(x) = 0. Note that the map T can be viewed as restriction of

restriction map of F and it is easy to see that U 7→ ker (φ(U)) satisfies all the presheaf

criterion via this map.

Theorem 3.1.9. The presheaf kernel of a sheaf morphism φ : F // G is a sheaf.
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Proof. Let U be a open set of X and let {Ui}i∈I be an open cover of U .

1) Let s ∈ ker (φ(U)) ⊆ F(U) such that s|i = 0 ∀i. Then F is sheaf =⇒ s = 0.

2) Let for each i, let si ∈ ker (φ(Ui)) such that si|Ui∩Uj
= sj|Ui∩Uj

. Then as above,

as F is a sheaf ∃s ∈ F(U) such that s|i = si, and φ(U)(s) ∈ G(U). Now see the

following commutative diagram

0 // ker (φ(U)) //

��

F(U)
φ(U) //

ρUUi

��

G(U)
ρ′UUi

��
0 // ker (φ(Ui)) // F(Ui)

φ(Ui)
// G(Ui)

Then for each i

φ(U)(s)|Ui
= ρ′UUi

◦ φ(U)(s) = φ(Ui) ◦ ρUUi
(s) = φ(Ui)(si) = 0

So by sheaf property of G, we have that φ(U)(s) = 0 =⇒ s ∈ ker (φ(U)) and we are

done.

Sheafification. Here we will define sheaf associated to a presheaf.

Theorem 3.1.10. Given a presheaf F , there exists a sheaf F+ and a morphism

θ : F // F+ , with the following universal property: For any given sheaf G and any

morphism γ : F // G , the following diagram commutes

F γ //

θ
��

G

F+
∃!ψ

>>

Furthermore the pair (F+, θ) is unique upto unique isomorphism.

Proof. The sheaf F+ is constructed as follows: For any open subset U ⊆ X define

F+(U) = {(sP ) ∈
∏

P∈U

FP such that (∗)}

where (∗) is the following condition:

(∗) For every P ∈ U , there exists a neighborhood P ∈ V ⊂ U and a section σ ∈ F(V )

such that for all Q ∈ V, we have that sQ =< V, σ > in FQ.
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For V ⊂ U ⊂ X open, we have the projection map

∏

P∈U

FP
//
∏

Q∈V

FQ

the above projection map maps the element of F+(U) to F+(V ). Now it is clear that

this induced map gives F+ structure of a presheaf.

Note that the map F(U) //
∏

P∈U FP defined in theorem 3.1.2 has the image in

F+(U). For open subsets V ⊂ U ⊂ X we have the following commutative diagram

F(U) //

��

F+(U) //

��

∏

P∈U FP

��
F(V ) // F+(V ) //

∏

Q∈V FQ

Here the vertical maps are restriction mappings. Note that thus we have a canon-

ical morphism of presheaves F // F+ . Now we prove that it is a sheaf as fol-

lows(assuming theat
∏
(F) is a sheaf.): first condition. Let U =

⋃

i∈I Ui be a open

cover, and s = (su)u∈U ∈ F+(U) such that s|Ui
= (su)u∈Ui

= 0 for all i. Now

s ∈ ∏

u∈U Fu as F+(U) ⊆ ∏

u∈U Fu. As s|Ui
= 0 in

∏

u∈Ui
Fu∈Ui

and
∏
(F) is a sheaf,

we have that s = 0, and we are done. Second condition. Again let U =
⋃

i∈I Ui be

an open cover. Suppose we have that si = (si,u)u∈Ui
∈ F+(Ui) for each i, and for

each i and j, si and sj agree over Ui
⋂
Uj. Now as

∏

P∈U FP is a sheaf, there exists

s = (su)u∈U ∈ ∏

u∈U Fu such that s|Ui
= si. We check property (∗) defined above for

s. Now if u ∈ U, then u ∈ Ui for some i. Then by (∗) for si, there exists open subset

V , such that u ∈ V ⊂ Ui and also σ ∈ F(V ), with the property that for all v ∈ V,

si,v =< V, σ > in Fv. Now by the restriction map, we have that sv = si,v, and thus

the (∗) is satisfied for s, and so s ∈ F+(U), and second condition for being a sheaf is

also satisfied by F+.

Now let (F ′+, θ′) be another tuple such that it satifies the condition given in the

theorem. Then we have the following two commutative diagrams

F θ′ //

θ
��

F ′+

F+

∃! Ψ

<< F θ //

θ′
��

F+

F ′+
∃! Ψ′

<<
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So we have that Ψ ◦ θ = θ′ and Ψ′ ◦ θ′ = θ. Thus we have that Ψ′ ◦ Ψ = idF+ and

Ψ ◦Ψ′ = idF
′+ , and now it is easy to see that the uniqueness condition is satisfied.

For any sheaf G, and any morphism F // G factors through F+ uniquely, we will

prove after proving theorem 3.1.6.

Sheaf F+ is call sheaf associated to presheaf F .

Theorem 3.1.11. Let F be a presheaf on topological space X, then for any P ∈ X,

we have that FP = F+
P . Here F+ is the sheaf associated to prehseaf F .

Proof. As the map FP
//
∏
(F)P is injective, we have that FP

// F+
P is injec-

tive. Now we show that this map is surjective. Assume that s̄ ∈ F+
P , then there exists

open neighborhood U with P ∈ U such that s̄ ≡< U, s > with s ∈ F+(U). Now using

property (∗), there exists an open neighborhood P ∈ V ⊂ U , and a section σ ∈ F(V )

such that s|V = σ in F+(V ). Now equivalence class of < V, σ >, which is an element

of FP and it maps to s̄.

Now we prove remaining part of theorem 3.1.5, that is if G is any sheaf, then any

morphism F // G will factor uniquely as F // F+ // G . For these we have

the following commutative diagram:

F //

��

F+

��

//
∏
(F)

��
G // G+ //

∏
(G)

If we show that G = G+, the we will be done, as that will show that morphism

F // G factors uniquely through F+. For this we show G ∼= G+, and thus using

theorem 3.1.7, it is enough to show that ∀x ∈ X, Gx ∼= G+
x . And this follows from

theorem 3.1.11.

Definition 3.1.12. Subsheaf of a Sheaf. A subsheaf of a sheaf F is a sheaf F ′ such

that for any open subset U ⊆ X, F ′(U) is a subset of F(U) and the restriction maps

of sheaf F ′ are induced by those of F .

Note that for a morphism of sheaves φ : F // G , we define the kernel of φ to

be the presheaf kernel of φ. For the same morphism, we define the image of φ to be

the sheaf associated to the presheaf image of φ.
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A sequence · · · // F i−1 φi−1
// F i φi // F i+1 // · · · of sheaves is exact if imageφi−1 =

kerφi.

Definition 3.1.13. Direct image sheaf, inverse image sheaf. Let f : X // Y be a

continuous function and let F is a sheaf on X. Then direct image sheaf f∗F of F on

Y as follows

f∗F(V ) = F(f−1(V ))

for any open set V ⊂ Y.

If G is a given sheaf on Y , we define inverse image sheaf f−1G on X to be the sheaf

associated to presheaf U 7→ limf(U)⊂V G(V ), where U is any open set of X and limit

is taken over all the open sets of Y which contain f(U).

3.2 Schemes

Let A be a given ring. We define SpecA to be the set of all prime ideals of A. Now if

a ⊂ A is an ideal of A, we define V (a) to be set of all prime ideals of A which contain

a.

Theorem 3.2.1. The set V satisfies the following criterion:

1) For two ideals a and b of A, we have V (ab) = V (a)
⋃
V (b).

2) For a set {ai}i∈I of ideals of A, we have V (
∑

ai) =
⋂
V (ai).

3) For two ideals a and b of A, V (a) ⊆ V (b) ⇐⇒ √
a ⊇

√
b.

Proof. 1) If p ∈ V (ab) =⇒ ab ⊆ p. Assume that b 6⊆ p, then ∃b ∈ b and b 6∈ b and

a ∈ a, then ab ∈ ab ⊆ p =⇒ a ∈ p =⇒ a ⊆ p =⇒ V (ab) ⊆ V (a)
⋃
V (b).

If a ⊆ p or b ⊆ p =⇒ ab ⊆ p =⇒ V (a)
⋃
V (b) ⊆ V (ab).

2) Let
∑

ai ⊆ p, then ai ⊆ p ∀i as ∑ ai is the smallest ideal of A containing all the

ideals ai. If ai ⊆ p ∀i, then ∑
ai ⊆ p.

3) It can be inferred from the fact that radical of an ideal a is equal to the intersection

of all prime ideals which contain a.

Note that we can define a topology on SpecA by taking all the subsets of the

form V (a) to be closed subsets for the topology on SpecA. All the axioms of being a

topological space follow from the previous theorem.

In the previous section of this chapter we defined the sheaf of abelian groups. In this

section we will define the sheaf of rings O on SpecA.
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Definition 3.2.2. Sheaf of rings on SpecA. For a open set U ⊆ SpecA define

O(U) = { s : U //
∐

p∈U Ap|s(p) ∈ Ap for all p and s is locally a quotient of elements ofA. }

Here Ap is localization of A at p, and by being locally a quotient of elements of A

we mean that ∀ p ∈ U , there exists a neighborhood of p, V such that V ⊆ U , and

elements a, f ∈ A such that for each q ∈ V, f 6∈ q, and s(q) = a/f in Aq.

It is obvious that it is a ring and for V ⊆ U with the restriction map O(U) // O(V )

is the homomorphism of rings, it is a sheaf.

Definition 3.2.3. Spectrum of a ring. Let A be a ring. The Spectrum of ring A is

topological space SpecA together with the sheaf of rings O on SpecA.

Let f ∈ A, and D(f) denotes the open subset of SpecA defined by complement

of V ((f)). All the open sets of the form D(f), form a base for topology on SpecA

defined above.

Theorem 3.2.4. Let A be a ring and (SpecA,O) its spectrum.

1) For any p ∈ SpecA, Op
∼= Ap.

2) For any element f ∈ A, O(D(f)) ∼= Af .

3) O(SpecA) ∼= A.

Definition 3.2.5. Ringed Space. A ringed space is a pair (X,OX), consisting of a

topological space X and a sheaf of rings OX on X. A morphism of ringed spaces

(X,OX) and (Y,OY ) is a pair of maps (f, f#), where f : X // Y is a continuous

map and f# : OY
// f∗OX is a morphism of sheaves of rings on Y. The ringed

space (X,OX) is a locally ringed space if for each point P ∈ X, the stalk OX,P is

a local ring. A morphism of locally ringed spaces is a morphism (f, f#) of ringed

spaces, such that for each point P , the map of local rings f#
P : OY,f(P )

// OX,P is

local homomorphism of local rings.

Now we probe into the last condition of above definition. Assume we are given a

point P ∈ X, and we have morphism of sheaves f# : OY
// f∗OX . Thus for every

open set V ⊆ Y, we have a homomorphism of rings, OY (V ) // OX(f
−1V ) . Now

as V ranges over all the neighborhoods of f(P ), f−1(V ) ranges over a subset of the

neighborhoods of P . Thus we have a map:

OY,f(P ) = lim
−→

V

OY (V ) // lim
−→

f−1V

OX(f
−1V ),
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and the latter limit above maps to the stalk at point P , OX,P . In this way, we have a

morphism f#
P : OY,f(P )

// OX,P .We require this morphism to be a local morphism.

A morphism (f, f#) is isomorphism if f is a homeomorphism of underlying topological

spaces and f# is isomorphism of sheaves.

Theorem 3.2.6. We have the following for rings A,B and ring homomorphism

φ : A // B :

1) (SpecA,O) is locally ringed space.

2) φ induces a morphism of locally ringed spaces:

(f, f#) : (SpecB,OSpecB) // (SpecA,OSpecA) .

3) Any morphism of locally ringed spaces is induced by a ring homomorphism A // B.

Definition 3.2.7. Affine Scheme. An affine scheme is a locally ringed space (X,OX)

which is isomorphic as a locally ringed space to the spectrum of some ring. A scheme

is a locally ringed space (X,OX) in which every point has an open neighborhood

U such that the topological space U , together with the restricted sheaf OX |U , is an
affine scheme.

We call X the underlying topological space of the scheme, and OX is structure

sheaf. A morphism of schemes is morphism of locally ringed spaces.

3.3 First Properties of Schemes

Definition 3.3.1. Connedted, Irreducible and Reduced Schemes. A scheme is con-

nected if the topological space is connected and a scheme is irreducible if the under-

lying topological space is irreducible. A scheme X is reduced if for every open set U,

the ring OX(U) has no nilpotent elements. A scheme X is integral if for every open

set U ⊆ X, the ring OX(U) is an integral domain.

Definition 3.3.2. Locally Noetherian Schemes. A scheme X is locally noetherian if

it can be covered by open affine subsets SpecAi, where each Ai is noetherian ring. X

is noetherian if it is locally noetherian and quasi-compact.

Definition 3.3.3. Morphism of finite type. A morphism f : X // Y of schemes

is called locally of finite type if there exists a covering of Y by open affine subsets
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Vi = SpecBi, such that f−1(Vi) can be covered by open affine subsets Uij = SpecAij

for each i, where Aij is finitely generated Bi−algebra. The morphism f is of finite

type for each i, f−1(Vi) can be covered by finite number of Uij.

Definition 3.3.4. Open Subscheme and Open Immersion. An open subscheme of a

scheme X is a scheme U , whose topological space is an open subset of X, and whose

structure sheaf OU is isomorphic to the OX |U , the restriction of OX , the structure

sheaf of X. An open immersion is a morphism f : X // Y , such that there exists

a isomorphism between X and an open subscheme of Y.

Definition 3.3.5. Closed immersion and Closed Subscheme. A closed immersion is

a morphism f : Y // X of schemes such that f induces an isomorphism between

topological space Y and a closed subset of topological space X and also that the

map f# : OX
// f∗OY of sheaves is surjective. A closed subscheme of a scheme X

is a equivalence class of closed immersions, with the following equivalence relation:

f : Y // X ∼ f ′ : Y // X if there exists an isomorphism i : Y ′ // Y such

that the following diagram commutes

Y
f // X

Y ′

i

OO

f ′

>>

Definition 3.3.6. Dimension of a Scheme. The dimension of a scheme X, denoted

dim X, is its dimension as a topological space. If Z is an irreducible closed subset of

X, then the codimension of Z in X, denoted by codim(Z,X) is the supremum of the

lengths of the chain of following type

Z = Z0 < Z1 < · · · < Zn

where Zi are distinct closed irreducible subsets of X. If Y is any closed subset of X,

we define

codim (Y,X) = infZ⊆Y codim (Z,X)

here infimum is taken over all closed irreducible subsets of Y .

Definition 3.3.7. Fibred Product. Let X, Y be schemes over another scheme S, then

we define fibred product of X and Y over S, denoted by X ×S Y, to be a scheme, to-

gether with morphisms p1 : X ×S Y // X and p2 : X ×S Y // Y , which make a
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commutative diagram with the given morphisms X // S and Y // S , such that

given any scheme Z over S, and given morphisms f : Z // X and g : Z // Y

which make a commutative diagram with the given morphism X // S and Y // S ,

then there exists unique morphism θ : Z // X ×S Y such that f = p1 ◦ θ and

g = p2 ◦ θ.
Z //

��
++

X ×S Y

zz $$
X

$$

Y

zz
S

3.4 Separated and Proper Morphisms

Definition 3.4.1. Seprated Morphism. Let f : X // Y be a morphism of schemes.

The diagonal morphism is the unique morphism ∆ : X // X ×Y X , whose com-

position with the projection maps p1, p2 : X ×Y X // X is the identity map of

X // X . Then morphism f is separated if ∆ is a closed immersion. In that case

X is said to be separated over Y. A scheme Y is called separated if it is separated

over SpecZ.

A morphism is closed if the image of any closed subset is closed.

Definition 3.4.2. Universally Closed Morphism. A morphism f : X // Y is uni-

versally closed if it is closed, and for any morphism Y ′ // Y , the corresponding

morphism f ′ : X ′ // Y ′ obtained by base extension is also closed.

Definition 3.4.3. Proper Morphism. A morphism f : X // Y is proper if it is

separated, of finite type and universally closed.

3.5 Differentials

Let A be a commutative ring with 1, and let B be an A−algebra, and let M be a

B−module.

Definition 3.5.1. A-derivation of B. An A − derivation of B into M is a map

d : B //M such that 1) d(a1b1 + a2b2) = a1d(b1) + a2d(b2), 2) d(b1b2) = b1d(b2) +

b2d(b1).
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Note that d(a) = 0 for all a ∈ A as follows: d(1B) = d(1B.1B) = 1Bd(1B) +

1Bd(1B) =⇒ d(1B) = 0. Now d(a) = ad(1B) = 0.

Definition 3.5.2. Module of Relative Differential Forms. The module of relative

differential forms of B over A is a B−module ΩB/A, together with A−derivation

d : B // ΩB/A , which satifies the following universal property: for any B−module

M , and any given A−derivation d′ : B //M , there exists a unique B−module

homomorphism f : ΩB/A
//M such that the following diagram commutes:

B
d′ //

d
��

M

ΩB/A

∃!f

<<

Let B be an A−algebra. Now consider the homomorphism f : B ⊗A B // B

defined by b⊗ b′ ✤ // bb′ and let I be its kernel. Now we give B⊗AB an B−module

structure by multiplication on left as follows: b(b1 ⊗ b2)
✤ // bb1 ⊗ b2 . This gives

I/I2 a B−module structure. Now we say that ΩB/A = I/I2 and define A−derivation

of B into ΩB/A by d : B // ΩB/A by b ✤ // 1⊗ b− b⊗ 1 (mod I2). Now we prove

that d satisfies all the condition of being an A−derivation as follows:

1) d(a1b1 + a2b2) = 1 ⊗ (a1b1 + a2b2) − (a1b1 + a2b2) ⊗ 1 = 1 ⊗ a1b1 + 1 ⊗ a2b2 −
a1b1 ⊗ 1− a2b2 ⊗ 1 = a1(1⊗ b1 − b1 ⊗ 1) + a2(1⊗ b2 − b2 ⊗ 1) = a1d(b1) + a2d(b2).

2) Lebiniz Rule. d(bb′) = 1 ⊗ bb′ − bb′ ⊗ 1 = 1 ⊗ bb′ − b ⊗ b′ + b ⊗ b′ − bb′ ⊗ 1.

Now we have that b⊗ b′ − bb′ ⊗ 1 = b(1⊗ b′ − b′ ⊗ 1) = bd(b′). Now we will try prove

that 1 ⊗ bb′ − b ⊗ b′ − b′d(b) ∈ I2. Note that 1 ⊗ bb′ − b ⊗ b′ − b′(1 ⊗ b − b ⊗ 1) =

(1⊗ b− b⊗ 1)(1⊗ b′ − b′ ⊗ 1) ∈ I.I = I2. And so d(bb′) = bd(b′) + b′d(b), and we are

done.

Now we prove define a map f : ΩB/A
//M given by

∑

i(bi ⊗ b′i) 7→ ∑

i bid
′(b′i),

where d′ is A−derivation from B to M . It is easy to prove that this map f satisfies

the universal property defined in definition 3.5.2.

3.6 Abelian Categories

Definition 3.6.1. Monomorphism, Epimorphism, Isomorphism. Let U be a category
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and A,B,C ∈ ObU. A morphism f ∈ HomU(B,C) is called a monomorphism if

∀g, h ∈ HomU(A,B) with f ◦ g = f ◦ h =⇒ g = h. f ∈ HomU(A,B) is called an

epimorphism if ∀g, h ∈ HomU(B,C) with g ◦ f = h ◦ f =⇒ g = h. f ∈ HomU(A,B)

is called an isomorphism if there is morphism g ∈ HomU(B,A) such that f ◦ g = idB

and g ◦ f = idA.

Definition 3.6.2. Products, Coproducts, Biproducts. Let U be a category and let

{Ui|i ∈ I} be a collection of objects in U.

• A product of the family {Ui|i ∈ I} is an object P (often denoted
∏

i Ui) is an object

of U together with a family of morphisms {πi : P −→ Ui|i ∈ I} such that for any

object Q and any collection of morphisms {φi : Q −→ Ui|i ∈ I}, there is a unique

morphism ψ : Q −→ P such that πi ◦ ψ = φi. For I = {1, 2} this looks like

Q
φ1

{{
∃!ψ

��

φ2

$$
U1 U1 × U2π1

oo
π2

// U2

• A coproduct for the family {Ui|i ∈ I} is an object C (often denoted
∑

i Ui)in the

category U together with a family of morphisms {ci : Ui −→ C|i ∈ I}, such that for

any object D and family of morphisms {di : Ui −→ D|i ∈ I}, there exists a unique

homomorphism d : C −→ D such that d ◦ ci = di. This can be shown in the diagram

for I = {1, 2} as

U1

d1 $$

c1 // U1 + U2

∃! d
��

U2
c2oo

d2zz
D

• Suppose now that U has a zero object. A biproduct of the family {Ui|i = 1, 2, · · · , n}
is an object B (often denoted

⊕

i Ui) of U which is both product and coproduct of

the family and for which the collection of morphisms πi and cj satisfy

πi ◦ cj =







idUi
, i = j

0, i 6= j

Definition 3.6.3. Kernels/co-kernels and Image/co-image. Let U be a category with

zero objects. Then, ∀A,B ∈ ObU and ∀f ∈ HomU(A,B),

• the kernel of f : A // B is pair (K, k) with K ∈ ObU and k : K // A such
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that f ◦ k = 0 and if there is a g ∈ HomU(P,A) such that f ◦ g = 0, there exists a

unique h ∈ HomU(P,K) such that g = k ◦ h, that is

K k // A
f // B

P

g

OO

∃!h

``

Equivalently the kernel of f : A // B given by the following pullback diagram

K //

k
��

0

��
A

f
// B

• The cokernel of f is a pair (C, c) where C ∈ ObU and c : B // C such that

c◦f = 0 and if there is a q ∈ HomU(B,Q) such that q◦f = 0, then ∃!d ∈ HomU(C,Q)

such that d ◦ c = q, that is

A
f // B

q

��

c // C

∃! d��
Q

• The image of f is kernel of its cokernel and coimage of f is the cokernel of its kernel.

Theorem 3.6.4. The kernel of an monomorphism is isomorphic to 0, and the cok-

ernel of an epimorphism is isomorphic to 0.

Definition 3.6.5. Pull Back or Fibred Product. Let M be a metacategory. Let

f : A // C and f : B // C be two morphisms with common codomain. The

pullback of the morphisms f and g consists of an object P and two morphisms

p1 : P // A and p2 : P // B for which the following diagram

P
p2 //

p1
��

B

g
��

A
f

// C

commutes subject to the following universal mapping property:
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For any commutative diagram

Q
q2 //

q1
��

B

g

��
A

f
// C

there is a unique morphism u : Q // P making the following diagram commute:

Q

q1

��

q2

""

u

��
P

p2 //

p1
��

B

g
��

A
f

// C

Note that pullback P is also denoted by A×C B.

Definition 3.6.6. Abelian Category. An abelian category is a category U such that:

1) For each A,B ∈ ObU,Hom (A,B) has structure of an abelian group, and the com-

position law is linear.

2) Finite direct sums exits.

3) Every morphism has kernel and cokernel.

4) Every monomorphism is the kernel of its cokernel, every epimorphism is the cok-

ernel of its kernel.

5) Every morphism can be factored into an epimorphism followed by a monomor-

phism.

Following are the examples of abelian categories:

1) Ub, the category of abelian groups.

Theorem 3.6.7. Let U be an abelian category.Then a morphism which is both a

monomorphism and an epimorphism is an isomorphism.

Theorem 3.6.8. The kernel of an monomorphism is isomorphic to 0, and the cok-

ernel of an epimorphism is isomorphic to 0.

Definition 3.6.9. Injective Object: An object I in abelian category U is injective

if for every injective morphism A // B and for every morphism A // I there
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exists a morphism g : B // I which makes the following diagram commute:

0 // A //

��

B

∃ g��
I

Equivalently an object I in U is injective if functor Hom (·, I) is exact. In an abelian

category {0} is an injective object.

Definition 3.6.10. Short Exact Sequence. We say a sequence

0 // A
φ // B

ψ // C // 0

is a short exact sequence if A
φ // B is isomorphic to kernel of ψ and B

ψ // C is

isomorphic to the cokernel of φ.

Definition 3.6.11. Chain Complex. A complex A· in a abelian category U is a

collection of objects Ai, i ∈ Z and morphisms di : Ai // Ai+1

· · · d−3
// A−2 d−2

// A−1 d−1
// A0 d0 // A1 d1 // · · ·

such that di+1 ◦ di = 0 ∀i. A morphism of complexes f : A· // B· is a set of mor-

phisms f i : Ai // Bi for each i, which commutes with the co-boundary maps di.

Definition 3.6.12. The ith degree cohomology object. The ith degree cohomology

object hi(A·) of the complex A· is defined as following

hi(A·) =
ker di

image di−1

Amorphism of complexs f · : A· // B· induces a morphism hi(f) : hi(A·) // hi(B· ).

Definition 3.6.13. Homotopy. Let f, g : (A·, dA) // (B·, dB) be two morphisms of

two complexs. A homotopy between f, g is a collection of morphisms ki : Ai // Bi−1
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for each i such that in the following diagram

· · · // Ai−1

��

// Ai

ki

|| ��

diA // Ai+1

��

ki+1

||

// · · ·

· · · // Bi−1

di−1
B

// Bi // Bi+1 // · · ·

We have f i − gi = ki+1 ◦ diA − di−1
B ◦ ki.

Definition 3.6.14. Functors in an abelian category: A covariant functor F : U // B

from one abelian category to another is additive if for any two objects A,A′ ∈ ObU,

the induced map Hom (A,A′) // Hom (FA, FA′) is a homomorphism of abelian

groups. F is left exact if it is additive and for every short exact sequence

0 // A′ // A // A′′ // 0

in U, the sequence

0 // FA′ // FA // F ′′

is exact in B. Similarly we can define right exact.

Definition 3.6.15. Injective Resolution: A resolution of an object A of U is a complex

I ·, defined in degrees i ≥ 0, together with an injective morphism ǫ : A // I0 , such

that I i is a object of U for each i ≥ 0, and such the sequence

0 // A
ǫ // I0 // I1 // · · ·

is exact. If I i is injective object of U ∀i ≥ 0, then the resolution is called injective

resolution.

Definition 3.6.16. Sufficiently many injective objects: An abelian category U is

said to have sufficiently many injectives if for each A ∈ ObU, there exists an injective

object I and a morphism j : A // I which is injective.

Theorem 3.6.17. If U has sufficiently many injectives, then every object has an

injective resolution.

Proof. Let A be an object in U. As U has sufficiently many injective objects, there

exists an injective object I0 with injective morphism j : A // I0. Suppose that we
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have the following sequence

0 // A
j // I0 d0 // I1 // · · · dk−1

// Ik

Now we can find an injective object Ik+1 such that coker dk−1 // Ik+1 is injective.

And using this injective map we can extend the above exact sequence as follows

0 // A
j // I0

d0 // I1 // · · · dk−1
// Ik

��

dk // Ik+1

coker dk−1

99

and here dk ◦ dk−1 = 0

Theorem 3.6.18. Let I ·, i : A �

� // I0 be a resolution of A and let J ·, j : B �

� // J0

be a resolution of B and let φ : A // B be a morphism. Then if the second res-

olution is injective, there exists a morphism of complexes φ· : I · // J · satisfying

φ0 ◦ i = j ◦ φ. Moreover if we have two such morphisms φ· and ψ·, there exists a

homotopy H · between φ· and ψ·.
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Chapter 4

Curves

4.1 Riemann-Roch Theorem

In this section we will assume the Serre duality theorem, and then state the Riemann-

Roch theorem.

Theorem 4.1.1. The Serre Duality Theorem. Let X be a projective variety of di-

mension n over algebraically closed field k, and let ΩX/k be the canonical sheaf, then

there exists a natural homomorphism

H i(X,F) // H i−1(X,F∨ ⊗ ΩX/k)

Here F∨ is the dual of sheaf F .

Let X be non-singular, projective and complete curve. Note that now as X has

dimension 1, then the sheaf of relative differentials of X over k, ΩX/k it is an invertible

sheaf. Now let K be divisor such that line bundle corresponding to K is ΩX/k. If D

is a divisor, then

l(D) = dimk Γ(X,OX(D))

which is a positive integer.

Theorem 4.1.2. Riemann Roch. Let X be a projective curve of genus g and let D

be a divisor on X, then

l(D)− l(K −D) = degD + 1− g

51
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The ’Riemann-Roch’ theorem enables us to solve ’Riemann-Roch’ problem for a

divisor D on a curve on a curve X. Let D be a divisor on curve X. Then for any

n > 0 consider the complete linear system |nD|. Then the ’Riemann-Roch’ problem

is to determine dim |nD| as a function of n and it’s behavior as n≫ 0.

Thus according to ’Riemann-Roch’ theorem it follows that: If degD < 0, then |nD|
is empty for all n > 0. If degD = 0, then if nD is linearly equivalent to 0, then

dim |nD| = 1, otherwise |nD| is empty. And for the last case, if degD > 0, then if

n. deg D > deg K, then we will have l(K−nD) = 0, and thus for n≫ 0 we will have

dim |nD| = n. degD − g.
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