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Synopsis 
 

Animals use sensory systems to detect and integrate stimuli features from their immediate 

environment to generate optimal behavioral responses. Understanding how sensory systems 

process stimulus-evoked neural activity to form decisions and commit to appropriate actions is a 

significant challenge in neuroscience. The olfactory system represents an excellent model to study 

the relationship between stimuli, neural activity dynamics, and decision-making behaviors. Almost 

all animals use their sense of smell to detect and differentiate between conspecifics and predators, 

locate potential mates and food sources. Moreover, impaired olfaction negatively impacts life as 

appetite is reduced, maintenance of personal hygiene becomes difficult, ability to detect warning 

odor is impaired, and fostering social relationships becomes challenging (1, 2). Over recent years, 

meticulous investigations have recognized the link between olfactory dysfunctions and 

neurodegenerative diseases (3–5). The high prevalence, early manifestation, and persistence 

throughout the disease progression have incited keen interest amongst the researchers to probe 

olfactory dysfunctions as a prognostic marker for different neurodegenerative diseases, like 

Parkinson’s (6, 7) and Alzheimer’s disease (8, 9). Recent data suggest that attention to maladaptive 

changes in smell may improve chances for early diagnosis of these neurodegenerative diseases (1). 

To achieve this, understanding the mechanisms underlying olfactory functions is of utmost 

importance.  

In nature, odor molecules vary in their physical and chemical properties and can exist either 

as monomolecular entities or combine to form complex molecule mixtures. The first step in odor 

perception initiates by inhaling odor molecules through the nose. Inside the nasal epithelium, 

odorants travel through a mucus layer to bind to odorant receptors (OR) present on olfactory 

sensory neurons (OSN). Most OSNs express one type of OR, and all OSNs expressing the same 

receptor converge together to neuropil-like structures in the olfactory bulb (OB), called glomeruli. 

Depending on odor chemical class, different odors activate distinct and complex spatiotemporal 

patterns of glomeruli (10–14). The similarity of glomerular activity patterns is higher for odors 

with high structural similarity like enantiomer pairs or when odorants are mixed in certain ratios 

(15–17). Within the glomerulus, OB’s major relay neurons, mitral and tufted cells (MTCs), make 

excitatory synaptic connections with axonal terminals of OSNs (18). MTCs also receive inhibitory 

inputs from periglomerular interneurons in the glomerular layer (GL) as well as interneurons in the 

external plexiform layer (EPL) and granule cell layer (GCL). Recent research has discovered that 

these inhibitory interneurons mediate progressive decorrelation in MTC odor representations 

during discrimination learning of similar odors (19–21).  
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 We set out to ask how olfactory representations change with differences in stimuli factors 

ultimately influencing odor-driven behavior in mice. By using sensitive behavioral readouts, this 

study’s first aim was to determine if odor similarity determines the speed with which animals 

discriminate between two odors. In the past, researchers have investigated how stimulus similarity 

influences odor reaction times in rodents. Since the early 2000s, a series of studies have debated 

this topic, with one school of thought claiming that animals improve their accuracy in 

discriminating complex odors when allowed to sample for longer durations (22–28). On the 

contrary, some believe that odor reaction times are invariant of task accuracies (29–

31), challenging the theory of speed-accuracy trade-off in olfactory decision-making. Many of 

these studies concluded their findings using a restricted set of odors, making a generalized 

conclusion correlating speed-accuracy trade-off with stimulus complexity, a highly debated topic 

in the olfaction field. Using odors belonging to various chemical classes, we attempted to overcome 

this limitation. We trained animals to discriminate simple (monomolecular) and complex (binary 

mixture) odors and measured odor discrimination times across various stimuli pairs. We observed 

that odor discrimination times change with odor complexities, and binary mixture discriminations 

require more time than monomolecular odor discriminations while performing with high accuracy. 

We further recorded animal’s sniffing behavior while they were performing odor discriminations 

and found that their sampling strategies did not change for different odors. However, animals 

learned to synchronize their breath initiations at a fixed latency from odor onset independent of the 

odor identity. The peak of breath initiation count coincided with the decision-making time window 

of simple odors. For complex discriminations, the breath initiation peak preceded the decision-

making time window. The temporal difference between breath peak latency and the decision-

making time window for complex discrimination reflected the additional time taken by OB neural 

circuits to process binary odor mixtures compared to monomolecular odor discriminations.  

Training mice with different odors gave us odor discrimination times ranging from ~200 

ms to ~350 ms. Our discrimination time measurements and other studies indicate that olfaction is 

a fast sense, with animals taking complex decisions within 350-400 ms (17, 22, 25, 32). However, 

olfactory representations dynamically change during and after the decision-making period. These 

representations carry odor-specific information and persist even after odor cessation (33, 34). Such 

post-stimulus activities are extensively studied in vision, observed in audition, touch, taste, and 

insect olfaction (35–40). Post-stimulus activities across different sensory systems indicate a 

functional relevance; however, in olfaction, the significance of post-stimulus representations in 

modulating olfactory functions remains unexplored. In vivo recordings from MTCs in awake, head-

restrained mice show that post-odor representations are stimulus duration-dependent. It is more 
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robust and prolonged for longer stimulus durations (33). We investigated the influence of stimulus 

and post-stimulus representations on different facets of olfactory behavior by training mice to 

different odor stimuli durations. Reducing the stimulus duration from 2 s to 0.5 s for complex odor 

discriminations impacted animals’ learning speed and long-term memory formation. 

Microendoscopic calcium (Ca2+) imaging from GCL interneurons revealed that population activity 

in GCs was stimulus duration-dependent. With an increase in stimulus duration, Ca2+ transients 

were more robust and persisted even after cessation of the stimulus compared to shorter stimuli.  

Previously, it has been shown that sustained activity of GCs brings about refinement in 

MTC ensemble activities (41). Additionally, stimulating or inhibiting local OB interneurons by 

optogenetic or chemogenetic approaches can alter pattern refinement in MTC ensembles, thereby 

influencing odor discrimination accuracies in a bidirectional way (14). As the interneurons are 

transiently active with shorter stimuli, it may lead to incomplete refinement in MTC ensembles, 

thereby impacting learning and long-term memory formation. To test this hypothesis, we aimed to 

modulate the inhibitory activity within OB during discrimination of olfactory stimuli with varying 

durations. To achieve this, we expressed light-activated excitatory cation channels 

(Channelrhodopsin) or inhibitory proton pumps (Archeorhodopsin) in glutamic acid decarboxylase 

(65-kDa isoform, GAD65) +ve interneurons, the major population of inhibitory interneurons in OB 

(42). By photostimulating GAD65 +ve interneurons during odor presentation, we observed an 

acceleration in the learning speed with short stimuli duration. Conversely, photoinhibition of 

GAD65 +ve interneurons during long odor presentation hindered learning efficacy. The 

bidirectional modification of OB interneurons during stimulus duration altered firing activities in 

MTC ensembles, thereby determining behavioral discrimination performance during the learning 

phase. Overall, pattern refinement in MTC ensembles appears to be an effective mechanism for 

disambiguating olfactory stimuli with overlapping representations, which aids in odor 

discrimination learning. We further investigated whether neural representations during the stimulus 

period influence long-term memory formation. We found that mice showed a long-term memory 

deficit when they were trained with short odor stimuli. Furthermore, even with optogenetic 

stimulations during the stimulus period, memory deficit persisted. 

Despite rescuing learning deficits by modulating odor representations during stimulus 

delivery, we observed impairment in long-term memory formation. This suggests a differential 

circuitry mechanism regulating long-term memory formation in the olfactory system. The 

prolonged post-odor responses may provide a mechanism to stabilize odor representations as a 

function of time, thereby controlling memory formation. To check this possibility, we modulated 

post-odor MTC activities by optogenetically controlling GAD65 +ve interneuron responses. When 
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we inhibited post-stimulus firing of MTCs, we observed impairment in long-term memory. Further, 

disinhibiting post-stimulus firing activities in MTCs rescued the deficits in long-term memory 

formation. In summary, post-odor representations help to strengthen odor information, which aids 

in forming long-term memories. The study of odor representations during the stimulus and post-

stimulus period improved our understanding of olfactory learning and long-term memory 

formation. Our results now pose a mechanistic question; how are post-odor activities maintained 

in OB? The potential sources contributing to post-odor activities may include lingering input from 

OSNs, recurrent activity within OB, or feedback from olfactory cortical areas. Recordings from 

OSNs have ruled out its involvement in maintaining these activities (33, 34). Our microendoscopic 

Ca2+ imaging data from anesthetized and awake animals show stimulus duration-dependent post-

odor activities in GCL interneurons. Such activities may be due to recurrent OB activities and 

feedback from higher cortical areas. More studies targeting specific subpopulations of neurons in 

OB and cortical regions will be required to dissect the circuit regulating post-odor activities. 

Finally, this study’s broad aim was to extend the knowledge of odor representations to study 

human olfactory dysfunctions. Anosmia, the loss of sense of smell, is a common symptom in many 

neurodegenerative disorders and a few upper respiratory tract diseases (43–48). Amidst the 

coronavirus disease 2019 (COVID-19) outbreak triggered by severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) virus, researchers across the globe identified that patients manifest 

anosmia as a prevalent symptom (49–54). Subsequently, single-cell sequencing studies revealed 

supporting (sustentacular) cells residing in the human olfactory epithelium as an entry point for 

SARS-CoV-2 virus, but not OSNs (55, 56). It is unclear how virus-induced damage to supporting 

cells affects the functioning of OSNs. The damage may be induced by the possible ionic imbalances 

in supporting cells or increased levels of inflammatory cytokines in the epithelium (57–59). 

Moreover, as OSNs are continuously replaced in the epithelium, virus-induced damage on the 

functioning of OSNs may have a gradual onset depending on the severity of infection (60). Thus, 

the magnitude of olfactory dysfunctions may vary in COVID-19 patients, and assessing minor 

reduction in the sense of smell may not be possible with traditionally used methods (53, 61, 62). 

One of the crucial observations from my work over the last few years has been the importance of 

maintaining stimulus precision while addressing the neural basis of different olfactory behaviors. 

Therefore, establishing a strategy for precise stimulus delivery and sensitive behavioral 

measurements becomes critical to assess olfactory dysfunctions in humans. To quantitatively 

evaluate olfactory abilities in asymptomatic COVID-19 patients, we developed an innovative 

olfactory-action meter that accurately measures olfactory acumen in human subjects. To suit the 

requirements for usage in COVID-19 clinics, we fitted the instrument with multiple membrane 



 8 

filters guarding it against any form of cross-contamination. After standardizing the test parameters 

with healthy subjects, we designed an olfactory function test, combining an odor detection test to 

measure the detectability towards different odors and an olfactory matching test that examines the 

patients’ cognitive skills.  

 Measurement of detectability indices at threshold odor concentrations revealed a 38-55% 

deficit in asymptomatic COVID-19 patients compared to normal healthy subjects for different 

odors tested. On averaging responses for all odors, asymptomatic COVID-19 patients had a 50% 

reduction in their detectability index. The use of detectability index as a sensitive measure of 

olfactory loss in patients was ratified after conducting a series of sensitivity analyses that included 

receiver operating characteristic (ROC) analysis, detection of outliers, and estimating the effects 

of confounding variables. Recent reports have indicated mild to severe neurological complications 

in certain COVID-19 patients (63–67). While long-term neurological effects from SARS-CoV-2 

infection are yet to be determined, temporary changes in the central nervous system (CNS) are 

extremely concerning. We devised an olfactory matching test that involves detection, 

discrimination, and memorizing the perceived odor information along with olfactory detection. The 

asymptomatic COVID-19 patients exhibited severe impairments in olfactory matching 

performance relative to normal healthy subjects. The quantification of matching accuracy in 

asymptomatic patients alludes to cognitive impairments caused by possible neurological changes 

in CNS followed by COVID-19 infection. By combining the readouts from odor detection abilities 

and matching skills, we observed olfactory deficits in 82% of asymptomatic COVID-19 patients 

(68). To summarize, quantitative estimation of olfactory function using our olfactory-action meter 

indicates severe olfactory dysfunctions among asymptomatic COVID-19 patients. As countries are 

slowly emerging from lockdown policies, our work lays the groundwork for developing a sensitive, 

quick, and cost-effective strategy for screening large populations to halt COVID-19’s further 

spread.   
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CHAPTER 1 

Introduction 
 

 Olfaction, the sense of smell, is one of the earliest senses to emerge during development 

(69, 70). Animals use their sense of smell to detect and distinguish between conspecifics and 

predators, as well as find prospective mates and food sources. As a result, olfaction is regarded as 

a crucial sense for survival and reproductive success. In mammals, the sense of smell starts as odor 

molecules are drawn inside the nasal cavity. Here, odorants traveling through nasal epithelium bind 

to ORs on OSNs, triggering a biochemical cascade to give a perception of a smell. Like other 

mammals, humans can distinguish amongst an incredible number of odors, and the sense of smell 

plays a vital role in attraction, mood, dietary preferences, and detection of danger. Intriguingly, a 

person’s ability to smell declines with age, but it can be exacerbated at an early age via inadvertent 

exposure to viruses and xenobiotics (4), as well as due to various neurological conditions (71–74). 

It is estimated that 3-20% of the world population suffers from a diminished sense of smell 

(hyposmia) or a total loss of sense of smell (anosmia) (75, 76). More recently, during the COVID-

19 pandemic, reports revealed that smell dysfunction is a major symptom and a significant 

predictor of COVID-19 infection worldwide (53, 77–79). These reports provide strong evidence 

that olfactory dysfunction is an early predictor of many disease conditions. Thus, a good 

understanding of circuitry mechanisms involved in forming odor representations will help develop 

olfactory tests for an early diagnosis of olfactory dysfunctions.  

 

1.1 Olfactory circuit 

Natural olfactory stimuli are almost always a mixture of diverse components varying in 

their physicochemical properties. How the brain perceives such complex multidimensional stimuli 

has been a topic of great interest. The odor processing circuit in mammals consists of nasal 

epithelium, OB, and olfactory cortical areas. Three types of cells line the nasal epithelium: OSNs, 

supporting cells, and basal cells (80). The ORs are expressed on the ciliary end of OSNs. The 

binding of odor molecules on ORs initiates a biochemical cascade, and electrical impulse is 

transmitted to OB. Within the OB, projection neurons receive the impulse and transmit odor 

information to upstream olfactory cortical areas of the brain. The activity of projection neurons is 

extensively modulated by diverse interneurons present within OB across different layers. The OB 

also receives inputs from the olfactory cortex (81–83) and neuro-modulatory inputs from different 

noradrenergic, cholinergic, and serotonergic systems of the brain (84–88). In the following 

sections, how odor stimulus is processed in each subsystem of the olfactory circuit is elaborated.  
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1.1.1 Odor processing in olfactory epithelium 

1.1.1.1 Sensory neurons comprise of multiple receptor types 

The Nobel laureates Linda Buck and Richard Axel, through their studies, provided a great 

impetus to the advancement in the field of olfaction research when they were successful in cloning 

ORs located on OSN’s cilia (89). The ORs expressed on OSNs are part of a superfamily of G-

protein coupled receptor (GPCR) proteins. The total number of receptor types deviates with 

species, ranging from ~50 in Drosophila melanogaster (90), ~140 in Danio rerio (91), ~400 in 

humans (92), and ~1000 in rodents (92, 93). The binding of ligands to OR evokes a series of 

biochemical reactions by activating specific G-proteins, which then activates adenylyl cyclase type 

III (89, 94) and facilitates the conversion of Adenosine triphosphate (ATP) to 3’,5’-cyclic 

adenosine monophosphate (cAMP). An increase in the intracellular concentration of cAMP opens 

cyclic nucleotide-gated (CNG) channels, causing an influx of Na+ and Ca2+ and activates a Cl- 

channel (95, 96). The net influx of Na+ as well as Ca2+ and efflux of Cl- causes OSN depolarization. 

The depolarization propagates by passive electrotonic spread to the soma and axon hillock of OSN 

and triggers action potentials. A single OR can bind to a wide range of odorants that share a 

common epitope, while a single odorant that contains multiple epitopes can activate different ORs 

(97, 98). The simultaneous activation of different types of OSNs by odorants has been termed 

combinatorial coding, which broadens the molecular receptive range of animals with a restricted 

number of ORs. 

In mammals, most OSNs follow a singular expression of ORs from a pool of different 

receptor types (89). The only exception is neurons expressing Membrane-spanning, four-pass A 

(MS4A) receptors. These four-pass transmembrane non-GPCRs are specifically expressed within 

necklace sensory neurons (99), and more than one receptor type can be expressed in a single 

sensory neuron (100). Although we lack a clear understanding of different molecular mechanisms 

controlling the singular expression of GPCRs in OSNs, some evidence points towards stringent 

expression profiling (101). The choice of OR to be expressed depends on the transcriptional 

availability of OR genes. The transcribed OR gene exhibits an H3K4me3 epigenetic mark, typical 

for transcriptionally active genes (102). Along with epigenetic marks, several cis-acting elements 

and OR-mediated feedback mechanisms prevent the co-transcription of other OR genes and help 

maintain monogenic expression (103–105). Although these models convincingly outline 

mechanisms that prevent co-expression of multiple ORs within a single chromosome, these models 

fail in explaining the suppression of ORs across different chromosomes. Apart from conventional 

GPCRs and MS4A type receptor, there are a few other broad classes of receptors expressed in the 

epithelium; trace amine-associated receptors (TAAR) (106) and Transient receptor potential 
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channel M5 (TRPM5) (107). Amines at low concentration selectively activate TAARs mapped to 

a discrete subset of glomeruli in OB’s dorsal surface, while TRPM5, a member of the melastatin-

related TRP channel family, is implicated in pheromone transduction.  

 

1.1.1.2 Functional organization of OSNs in olfactory epithelium 

OSNs expressing different ORs are not ambiguously scattered but are expressed in distinct 

zones across different areas of the epithelium (108, 109), and even within a zone, there is a mosaic 

expression of different receptor types. The expression profiling of several molecular markers 

demarcates dorsal and ventral zones across the epithelium. A tight connection between OR identity 

and the zonal organization of OSNs prompted the hypothesis that ORs help in spatially segregating 

sensory neurons. The expression pattern of ORs along the epithelium classified them into two broad 

classes – Class I and Class II ORs (110). The class I ORs are specifically expressed on the dorsal 

surface of OE, while class II ORs are expressed throughout the surface of OE (108, 110). Recently, 

transplantation studies have shown that progenitor neurons derived from the dorsal surface, when 

grafted onto a ventral surface, express ventral OR after progenitor cell engraftment (111). This 

study demonstrates that along with OR, exogenous spatial cues can direct the differentiation of 

OSNs. Furthermore, ORs belonging to a particular class also guides the projection of OSN axons 

to stereotypic positions in OB (112) (Figure 1-1). The OR genes regulate the expression of different 

axon guidance molecules, for e.g., Slit-1, Robo-2, Neuropilin-2, and Sema-3F (113, 114), which 

influences OSN axon projection in the dorsal and ventral areas of OB (104, 115, 116). 

 

1.1.2 Odor coding in olfactory bulb 

1.1.2.1 Connectivity from olfactory epithelium to olfactory bulb  

 The axons of OSNs expressing the same OR pass through basal lamina and cribriform plate 

to accurately project to two glomeruli, one each on the lateral and medial surface of OB (117). The 

specificity of axonal guidance is essential during OSN development and critical in recovering 

OSNs after injury (118, 119). The specific convergence of all OSNs expressing the same receptor 

is dependent on the spontaneous activity generated in OSNs. The temporal pattern of these 

activities controls the expression of certain axon-sorting molecules, which guide axons to specific 

glomeruli through their adhesive or repulsive interactions (120–122). Eliminating spontaneous 

activities by overexpressing the K+ channel Kir2.1 in OSNs leads to unrefined glomerular maps 

(123, 124). Further, optogenetically modulating spontaneous activity in OSNs can modulate levels 

of axon-guiding molecules, thereby modulating glomerular map formation (121). Along with ORs, 

olfactory marker protein (OMP) plays a role in OSN axonal convergence in OB. In OMP-/- null 
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mice, glomerular mistargeting occurs, leading to heterogenous glomeruli formation due to 

convergence of OSNs expressing different ORs (125).  

Figure 1-1: Axonal targeting of OSNs from OE to OB. 
The schematic diagram illustrates the distribution of OSNs expressing different ORs along the dorsal and ventral zones 

of the epithelium. These OSNs expressing different ORs specifically converge to glomeruli on corresponding areas in 

OB. The different subdivisions are colored, and corresponding zones in OB are represented with the same color. Within 

a zone, OSNs expressing different ORs are represented as circles with different colors. The mosaic representation of 

ORs within a zone can be appreciated. Adapted from Lodovichi C. 2021. Cell and Tissue Research (126). 

 

1.1.2.2 Activity-dependent glomerular map formation 

 Sensory experiences can modulate the connectivity between olfactory epithelium and OB. 

During early development, glomerular circuit refinement is highly sensitive to sensory experience 

(127). Accordingly, suppression of spontaneous neural activities in subsets of OSNs alters 

glomerular targeting and perturbs sensory map formation (124). In contrast, exposure to odors 

during the prenatal and early postnatal stages leads to enlarged glomerular size (128). In one study, 

mice expressing GFP-tagged ORs were exposed to odors cognate for the receptors during gestation 

and nursing. A significantly larger volume of tagged glomeruli was observed in these animals. In 

yet another study, postnatal chronic exposure to odors led to permanent supernumerary glomeruli 

formation in a time-dose-dependent manner. Compared to naive mice, in passively exposed 

animals, glomeruli were formed in the same region, but the number of glomeruli increased, which 

occupied small volumes (129). 
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1.1.2.3 Odor representation in OB 

 Each OB contains ~1,800 glomerular modules arranged in stereotypical positions (130, 

131). The axonal convergence of OSNs into specific glomeruli generates a meaningful topographic 

organization in OB. It has been discovered that odorant representations are preserved among 

animals of the same species, have bilateral symmetry across the two lobes of OB, and rely on odor 

identity and concentration. These investigations also revealed evidences for chemotopic maps 

based on the chemical characteristics of odorants. For example, glomeruli activated by odor 

molecules with same functional group but different carbon chain length tend to cluster together 

(15, 131–133). However, higher-resolution imaging studies have revealed that odorants belonging 

to a particular chemical class activate only a subset of the glomeruli present within a domain (134–

136). The other inactive glomeruli in such domains, however, readily respond to other odorant 

chemical classes (134). Such glomerular representations can be reflected by MTC activity within 

a local region showing diverse odor tuning properties (137). The following sections will go through 

various mechanisms by which odor activity patterns are transformed within the glomerulus and at 

the projection neuron level. 

 

1.1.2.4 Transformation of odor information in OB 

 In OB, about 20-30 MTCs send their primary dendrites to a single glomerulus, where they 

receive odor information from ~5000 OSNs (138, 139). This creates a high convergence ratio, 

which could represent a powerful means of signal amplification. Different interneurons in GL and 

EPL form lateral interactions with MTCs to transform odor information. Periglomerular (PG) cells, 

short-axon (SA) cells, as well as External Tufted (ET) cells are interneurons found in GL and are 

collectively known as Juxtaglomerular cells. The granule cells (GC) located in GCL and 

parvalbumin (PV) expressing interneurons located in EPL form lateral synaptic connections with 

MTCs in the EPL (140) (Figure 1-2). The vast dendritic arborization within a single glomerulus by 

Juxtaglomerular cells provides compelling evidence that substantial odor information is 

transformed even within GL. Interactions within a glomerulus are inhibitory as well as excitatory. 

The PG cells are inhibitory interneurons that release gamma-aminobutyric acid (GABA), 

dopamine, or both within a single glomerulus (139, 141). Molecular identification has revealed two 

subclasses of PG cells: one expressing GAD65 isoform while the other subclass expresses GAD67 

(142). PG cells expressing GAD67 are also Tyrosine hydroxylase positive and are thus 

dopaminergic-GABAergic neurons. GAD65 +ve PG cells are exclusively GABAergic in nature. 

OSNs and MTCs form a direct excitatory synapse with PG cells, and neurotransmitters released 

from PG cells mediate inhibition of MTCs, retrograde inhibition of OSNs, and lateral signaling 
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onto neighboring PG cells (141, 143–145). Along with the direct activation, OSNs can activate PG 

cells disynaptically via the OSN®ET®PG circuit. In fact, 67% of PG cells receive an excitatory 

drive from the OSN®ET®PG circuit, while the remaining 33% of cells receive direct excitation 

from OSNs (146). PG cells by presynaptically inhibiting OSNs or by postsynaptically inhibiting 

MTCs control odor-evoked sensory inputs to MTCs. Further, weak inputs to MTCs may be shunted 

by PG cells (147), sharpening its odor responses (148). Intraglomerular excitatory interneurons 

include ET cells. Within a glomerulus, ET cells receive glutamatergic inputs from OSNs, which 

can then provide monosynaptic glutamatergic inputs to SA and PG cells (143, 149). The glutamate 

spillover at ET synapses can evoke population bursts in MTCs (150–152). Moreover, the electrical 

coupling through gap junctions can also mediate ET®mitral cell signaling (153). Thus, ET cells 

can balance the excitation and inhibition of MTCs and allow a slow rhythmic activity to persist in 

the OB network. A subpopulation of ET cells is also responsible for forming an ‘intrabulbar 

associational system’ (IAS). The axonal projections of these ET cells are found in IPL on two sides 

of the same bulb, where they synapse with GC’s dendrites (154). These ET cells involved in the 

formation of IAS use cholecystokinin (CCK) as a neurotransmitter. As CCK is an excitatory 

neurotransmitter, it is considered to excite a discrete population of GCs, thereby exerting inhibition 

on a discrete population of MTCs.  

 More global modulation of glomerular activity is accomplished through interglomerular 

interactions mediated by SA cells. These cells are inhibitory interneurons due to their GABAergic 

and dopaminergic identity (142, 155). SA cells’ interesting feature is the long interglomerular 

axonal projections over long distances that form excitatory synapses with PG neurons as far as 20–

30 glomeruli away (156). Like PG cells, approximately 33% of SA cells are activated mono-

synaptically by OSNs, while the remaining 67% are activated di-synaptically by OSNs through the 

OSN®ET®SA circuit (142, 146). The interglomerular network mediated by SA cells allows an 

activated glomerulus to suppress activities of surrounding glomeruli through center-surround 

inhibition. This inhibition of surrounding glomerular units could be a key mechanism for increasing 

the spatial contrast between odor-evoked glomerular activity patterns.  

 EPL lies below the GL where MTCs extend several secondary lateral dendrites, which form 

dendrodendritic synapses with GC and PV cells (139). GABAergic GCs, which outnumber MTCs 

by a factor of 50 to 100, primarily contribute to the dendrodendritic inhibition in EPL (139). The 

inhibitory GCs have a small cell body (6-8 µm) (157), with their soma primarily located in GCL. 

Early morphological characterizations revealed three subpopulations of GCs depending on their 

dendritic arborization patterns in EPL (138). Type-I GC branch out its spiny dendrites across the 

EPL. The type-II GC extends its dendrites only in deep EPL, while type-III GC extends spiny 



 15 

dendrites primarily in the superficial EPL. Later, the fourth type of GC, type-S cell, was discovered, 

which forms reciprocal synapses with the peri-somatic region of MTCs (158). Recently, Merkle et 

al., 2014 characterized two more GCs differing from the earlier types, termed type-IV GC and type-

V GC (159). The type-IV GC shows frequent dendritic branching in GCL, rarely extending beyond 

the internal plexiform layer (IPL). Type-V has soma restricted to MCL and spread out its spiny 

shrub-like apical dendrites, specifically in the deep EPL. The GCs can also be classified as deep 

and superficial GCs depending on where the soma is localized in GCL (138, 160). 

Figure 1-2: Schematic diagram illustrating OB circuitry. 
Within a glomerulus, odor information is transmitted to MTCs. The activity of MTCs is heavily modulated by 

interneurons in GL, viz. periglomerular cells (PG), external tufted (ET) cells, and short-axon (SA) cells. The MTCs 

also receive inhibitory inputs from granule cells (GC) in the GCL. The excitatory and inhibitory contacts are 

represented as green and red arrows, respectively. 
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 When MTCs receive excitatory input from OSNs, action potentials are generated, which 

travel to the lateral dendrites and open voltage-gated Ca2+ channels. The Ca2+ influx triggers the 

dendritic release of glutamate, which activates ionotropic glutamate receptors on GCs. This 

produces stochastic Ca2+ transients in GC spines that cause GABA release from GCs (161–163). If 

GABA released inhibits the same MTC, it is known as recurrent inhibition, while GABA inhibiting 

neighboring MTCs is known as lateral inhibition (164, 165). The reciprocal dendrodendritic 

interactions between MTCs and GCs function to control the gain-output of OB. The GCs form 

inhibitory connections with MTCs in a spatially limited area and are usually odor specific, so the 

gain-output is likely to be spatially heterogeneous (166, 167). The GCs can decorrelate firing 

activities of MTCs by different network mechanisms. Firstly, due to the lateral inhibition between 

mitral and granule cells, a strongly-activated mitral cell can selectively reduce nearby weak MTC 

responses to certain odors. The selective inhibition of surrounding mitral cells can enhance the 

subtle differences between firing patterns evoked by similar odors (165, 168). Secondly, on odor 

stimulation, GCs are activated with different latencies (169). The GCs’ temporally distributed 

activity aids in increasing the temporal variability of MTC ensemble firing activities (41). Finally, 

by differentially acting on mitral and tufted cells, GC-mediated inhibition may orchestrate temporal 

synchrony amongst MTCs (170, 171).   

 In addition to dendrodendritic connections mediated by GCs, anatomical studies have 

indicated that EPL harbors another type of interneuron defined by the Ca2+ binding protein 

expression of parvalbumin (140). The cell bodies of PV cells lie in EPL and form inhibitory 

connections with MTCs over a large area and are broadly tuned to odors (172, 173). Thus, PV cells 

can bring about inhibition on a global scale. Further studies on understanding the role of PV cells 

in modulating MTC activity are warranted. These studies will also throw light on whether GCs and 

PVs work in a coordinated manner or are their roles mutually exclusive. Along with PV cells, there 

is another population of interneurons located in EPL, and these are axon-less cells that are 

immunoreactive to somatostatin (SST cells). These SST neurons are GABAergic in nature and 

extend their dendrites in deep EPL and connect specifically to MTC secondary dendrites (174).  

 For a long time, it was known that GCs receive GABAergic inputs; however, the intrabulbar 

source of such inhibition was unknown (139, 162). A study from the last decade demonstrated that 

GCs receive GABAA receptor-mediated inhibition from a sub-population of SA cells, known as 

Blanes cells (175). This opened up an avenue to find more such cell types that can contribute to 

GABAergic control of GCs. One subpopulation of SAs, called deep short-axon cells (dSA), has 

been found in inframitral layers, which are also GABAergic in nature. The dSA can be sub-

classified depending on axonal projections across the different layers of OB. The axon terminals 
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of dSA selectively innervate GABAergic GCs and PGs and evoke GABAA receptor-mediated 

IPSCs (176). One subclass of GL projecting dSA has been demonstrated to receive feed-forward 

sensory input from ET and tufted cells to inhibit apical dendritic tufts of ET and tufted cells across 

widespread glomeruli (177).   

 

1.1.2.5 The output neurons of OB 

 The mitral cell bodies (20-30 µm in diameter) lie in a thin mitral cell layer (MCL) 200-400 

µm from the bulb’s surface. Tufted cells are smaller (15-20 µm in diameter) and are classified 

depending on the soma localization (139). The middle-tufted cells lie in EPL, and internal tufted 

cells are located in MCL. The lateral dendrites of tufted cells extend mainly to the middle and 

superficial layers in EPL. The lateral dendrites of mitral cell (type-I) project tangentially in EPL’s 

deeper regions and spread in a radius of about 850 µm (138). There is a subpopulation of mitral 

cells, type-II mitral cells, which send their lateral dendrites to the middle layer of EPL. MTC 

responses are characterized by prolonged bursts of action potentials lasting >100 ms separated by 

equally long intervals in response to odor stimulation (178). On cessation of odor stimulus, these 

activities persist in the post-stimulus period and are shown to carry odor-specific information (33, 

34). The firing activities of MTCs can be heterogenous in several ways. On odor presentation, 

tufted cells exhibit high firing rates (>100 Hz), while mitral cells respond with relatively low firing 

rates (<100 Hz) (179). In vitro studies have shown that tufted cells exhibit short-latency responses 

that are maintained across a concentration gradient, whereas mitral cells respond only to stronger 

stimuli (180). Tufted cells increase their firing response amplitude as odor concentration rises, 

while mitral cells display phase progression with increasing concentration (171) (Figure 1-3 C). 

MTCs also exhibit respiration-phase-locked spontaneous spiking behavior. During exhalation, 

mitral cells are activated, while tufted cells become active during inhalation  (171) (Figure 1-3 A 

and B). The MTCs also differ in the nature of lateral inhibition they receive in response to 

glomerular activation in vitro. On separating the early (<250 ms after glomerular stimulation) and 

late (>250 ms after glomerular stimulation) components of inhibitory currents, it is observed that 

the amplitude of these inhibitory currents is larger in mitral cells than in tufted cells (170).  

 The morphological and functional variations indicate that MTCs differ substantially in their 

ability to decode odor information. When a specific odor is mixed with a structurally identical odor 

that activates neighboring glomeruli, mitral cell units are normally inhibited. On the other hand, 

the tufted cell units show a relatively weak inhibitory response to such odor mixtures activating 

similar sets of glomeruli (179). The differential inhibition can be explained by mitral cell’s 

extensive dendrodendritic synaptic contacts with neighboring glomerular columns, while tufted 



 18 

cells have limited lateral inhibition. These observations suggest that the output of mitral cells is 

determined by the combined excitatory input from its glomerulus and the surrounding glomeruli’s 

activity. The differential processing of odor information via these two cells may explain the fast 

but stimulus-dependent odor discrimination times observed in rodents. For dissimilar odors that 

evoke glomerular activity with little overlap, short-latency responses in tufted cell units may 

provide reliable information to make an accurate decision. In contrast, when odors evoke similar 

glomerular activities, accurate decisions would depend on the contrast in the activity of mitral cell 

units in neighboring glomeruli. 

 The MTCs also have distinct axonal projections in different cortical regions along with the 

functional differences in firing activities between mitral and tufted cells (Figure 1-3 D). The axons 

of these cells travel via the lateral olfactory tract (LOT) and primarily terminate on several olfactory 

cortical areas, including anterior olfactory nucleus (AON), olfactory tubercle (OT), piriform cortex 

(PCx), orbitofrontal cortex (OFC), amygdala and rostral entorhinal cortex (181). The tufted cells 

project densely to specific regions in anterior areas of olfactory cortex, while mitral cells project to 

all olfactory cortical areas (180, 181). In each of the anterior areas that receive both mitral and 

tufted cell inputs, axons of these cells project to distinct, non-overlapping areas. 
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Figure 1-3: Schematic illustration of distinct functional properties and axonal projection of mitral and tufted cells. 
A and B. Example of mitral and tufted cells show that firing activities are coupled to sniff phases. While tufted cells 

preferentially fire during inhalation, mitral cells fire during the exhalation of a breathing cycle. 

C. The phase-locked activities of MTCs are abolished when the inhibition on MTCs is blocked. In such a scenario, 

mitral cells start to fire during the inhalation phase while there is no change observed in the phasic properties of tufted 

D 

C 
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cells. The phase advancement in the firing of mitral cells is also observed when odor concentration is increased. On 

the other hand, increasing the odor concentration increases the firing rate of tufted cells. 

D. The mitral and tufted cells also differ in its axonal projections to different olfactory cortical areas. While mitral cells 

broadly project to all olfactory cortical areas, tufted cell projection is restricted to anterior areas of the cortex, 

specifically to anterior areas of AON, anterior PCx, and the cap region of OT. Adapted from Mori and Sakano 2011, 

Annual review of Neuroscience and Fukunaga I., 2012, Neuron (104, 171).    
 

1.1.3 Odor processing in olfactory cortex 

1.1.3.1 Structural organization of olfactory cortex 

 Out of the different cortical areas receiving axonal projections from MTCs, PCx forms the 

most extensive area (182, 183). The PCx is a laminar structure with three distinct layers. Layer I 

receives afferent fibers from OB, which spread across the surface (Layer Ia). Here they form 

synapses with dendrites extending from cells in the deeper layers. Layer II is a dense layer of 

pyramidal cells and neurons lacking basal dendrites known as semilunar cells. Layer III is the 

innermost moderately dense layer, with pyramidal cells situated in superficial areas. The 

association fiber system emerges within PCx and terminates primarily in deeper parts of layer I 

(layer Ib), and in layer III (182, 184). The pyramidal cells’ axons form synaptic contacts with < 1% 

of other pyramidal cells. Nonetheless, many pyramidal cells in PCx ensure that each cell receives 

excitatory inputs from thousands of other pyramidal cells (185). In fact, MTC input accounts for a 

small fraction of input to pyramidal cells, and the majority of odor-evoked responses are brought 

about by excitatory dendrodendritic contacts amongst pyramidal cells (186). In contrast, semilunar 

cells receive more robust afferent excitatory inputs from OB (187). The PCx also receives 

associational fibers from AON, OT, entorhinal cortex, and certain areas within the amygdala (188, 

189). In addition to afferent fibers and associational fibers, the brainstem, thalamus, hypothalamus, 

and basal forebrain are other regions that send inputs to PCx.  

AON is one region of the olfactory cortex that mediates interbulbar connections. It receives 

inputs from MTCs in the ipsilateral OB and sends feedback to GCL in the contralateral OB (190, 

191). AON is one of the initial recipients of odor information and stores odor engrams needed for 

behavioral expression of odor memories (192). Another cortical structure having direct 

connectivity with OB is OT. The OT is a cortical structure in the ventral striatum with extensive 

anatomical connections with brain reward areas (193, 194). Owing to this feature of OT, one can 

hypothesize its role in odor reward categorization. Indeed, it has been found that micro-stimulation 

of OT can regulate odor hedonics without modulating odor perception (195). It has been observed 

recently that neurons in OT are activated within 50-100 ms of inhalation and carry explicit 

representation of the reward category, independent of odor identity (196). The OFC, another 
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cortical region essential in odor characterization that receives direct olfactory information from 

PCx. OFC neurons show activity during trial initiation, odor sampling, and consumption of rewards 

(197).  

The AON and PCx, along with sending projections to other cortical areas, also send dense 

projections in the GC layer and periglomerular layer in OB (188, 198–200). The cortical feedback 

is dominated by inhibitory responses, which suppresses the firing rates of MTCs both in vitro and 

during in vivo odor stimulation. The inhibition is mediated by a disynaptic pathway wherein 

cortical projections excite inhibitory interneurons, thereby inhibiting MTC responses (199, 200). 

Along with GC and PG cells, SA cells in GL and GCL receive excitatory input from pyramidal 

cells in PCx. Since SA cells primarily inhibit GC and PG cells, cortical feedback projections can 

also disinhibit MTC responses. Further, Ca2+ imaging has revealed that wakefulness enhances both 

the magnitude and duration of cortical feedback projections compared to anesthetized conditions 

(201). Also, the feedback activity is odor-specific and can vary in the latency with respect to odor 

onset, and can persist long after the withdrawal of odor onset (202).  

Along with cortical feedback projections, OB also receives significant noradrenergic input 

from locus coeruleus (LC) (86, 87), cholinergic projection from the horizontal limb of the diagonal 

band of Broca (HDB) (139), and serotonergic input from the dorsal and medial raphe nuclei (88). 

Noradrenergic fibers terminate densely in IPL and GCL and moderately in EPL and MCL (203). 

Both GCs and MTCs express a1 and a2 receptors, and the direct application of norepinephrine 

(NE) in OB can hyperpolarize GABAergic GCs and thus inhibit mitral cell responses to weak OSN 

inputs (86, 204–206). Further, blocking noradrenergic receptors in OB reduces odor discrimination 

accuracies between similar odorant mixtures (87). Similarly, cholinergic inputs to OB have been 

demonstrated to potentiate olfactory habituation, improve short-term olfactory memory and 

increase the discriminability of bulbar responses generated by very similar odorants (85, 207). The 

third neuromodulatory input to OB is from the serotonergic system. Although OB receives dense 

serotonergic inputs, very little is understood about the serotonergic system’s specific role in 

olfactory information processing. 

 

1.1.3.2 Odor representation in olfactory cortex 

 The odor information on reaching PCx loses the spatially segregated chemotopic map 

observed in GL. A single pyramidal neuron receives overlapping inputs from axonal terminals of 

MTCs receiving sensory information from different glomeruli (208, 209). Also, MTCs from a 

single glomerulus sends their projection across the PCx without apparent spatial preference (210, 

211). Typically, an individual odorant activates only 3-15% of cells in PCx. Moreover, neurons 
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that respond to dissimilar odors often fail to respond to similar odors. Thus, the odor representation 

in PCx exhibit discontinuous receptive fields (210). Evidence for these overlapping clusters 

(individual neurons responding to structurally dissimilar odorants) is primarily observed in the 

posterior PCx and entorhinal cortex but not in OT and anterior PCx (212). As the neural activity in 

PCx is sparse in response to odor stimuli, it becomes interesting to determine how a limited set of 

neurons decodes odor information. One hypothesis relies on the Hopfield model, explaining the 

mechanism of encoding and decoding of odorant information in different olfactory cortical areas 

(213). This model predicts that the earliest activated MTCs and the ensemble of cells in PCx 

broadly define odor identity, while MTCs activated later are required for fine discriminations. 

Consistent with this prediction, it was observed that neurons in layer II/III of PCx respond reliably 

to early MTC activity. The late MTC activity is reduced due to the global inhibition brought about 

in PCx (211, 214, 215). Further, odor intensity is encoded within firing latencies in these early 

responsive MTCs. 

To understand how olfactory cortical areas conduct the balancing act of odor generalization 

and odor discriminations, in two separate studies, rats were trained to complex odor mixtures under 

different contexts (216, 217). In the first study, rats learned to discriminate between two odor 

mixtures containing ten odorants. It was observed that rats could discriminate between a target 

mixture of ten odorants (10C) with the other mixture in which one odorant was replaced with a 

novel odorant (10CR1). On the contrary, rats faced difficulties in discriminating the same target 

mixture (10C) from the other mixture in which one of the odorants was deleted (10C-1) (217). 

Single-unit recordings from the anterior piriform cortex (APC) showed that the extent of 

decorrelation was the governing factor in the discriminability of odors. When one of the 

components was replaced (10C vs. 10CR1), two mixtures formed decorrelated patterns in APC 

ensembles. On the other hand, 10C and 10C-1 formed very similar activity ensembles in APC, 

which was the cause of poor discrimination displayed by rats. In the second study (216), the authors 

trained rats to a difficult discrimination of 10C vs. 10C-1. Although animals had poor performance 

early on, accuracies increased significantly with time. APC recordings revealed that the activities 

were highly correlated initially; however, after the animals learned the task, activities for the two 

odors showed significant decorrelation. Following it up, they designed another task wherein rats 

had to discriminate 10C or 10CR1 from a third odor, vanillin. Like previously, 10C and 10CR1 

formed dissimilar ensemble activities in APC. However, on training rats on this task, a high 

correlation in the activities of 10C and 10CR1 was observed. These studies elegantly demonstrated 

that cortical systems could efficiently carry out odor generalization and discriminations in a 

context-dependent manner, with cortical network plasticity playing a pivotal role. 
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1.2 Approaches to assess functional relevance of odor representations: from molecules to 

behavior 

 In recent years, interest has grown in determining how olfactory representations change 

under different contexts. Technologies have helped open new horizons to study these 

representations from molecular to behavioral levels. At a molecular level, using Cre-lox and 

Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 systems to achieve gene 

manipulations in a spatially and temporally regulated manner has been crucial in studying single 

gene function in circuit activity and behavior (218, 219). Recombinant viral vectors such as adeno-

associated virus (AAV), and rabies virus (RV) have made efficient exogenous gene transfer 

possible. When these techniques are combined, a powerful tool for labeling, imaging, and 

genetically modifying cells can be developed. For example, by injecting AAV carrying a floxed 

gene into a specific brain area, it is possible to express gene-of-interest in a Cre-dependent manner 

(220–222). Prevalence of several OB-specific Cre-driver lines like GAD65-Cre (221), PV-Cre 

(223), Sst-Cre (221), CCK-Cre (221), Pcdh21-Cre (224), Tbx21-Cre (225), et cetra offer a robust 

approach to study odor-evoked activities in different cell types. Next-generation transcriptomic 

studies, in addition to molecular methods, have aided the identification of cell-type-specific 

markers in OB (226–228). Such studies have revealed transcriptionally diverse neuronal cell types 

and allowed us to track molecular changes during development and maturation. In vivo 

electrophysiological experiments have facilitated recording of odor-evoked activities across 

different olfactory areas with high temporal resolution (20, 215, 229, 230). Computational models 

have been developed on published human psychophysical data to predict how novel odor molecules 

would smell (231). All these approaches have contributed to a better understanding of circuit 

mechanisms of odor representations and its relevance in health and disease. However, covering all 

these methodologies is beyond the scope of this thesis. Thus, approaches to assess olfactory 

function that is relevant to this thesis’s goals are elaborated. 

 

1.2.1 Visualizing odor representations  

 In vivo neural imaging has been instrumental in understanding the neural basis of olfactory 

functions due to its capability to record neuronal dynamics distributed in space and time. It provides 

an opportunity to study: 

1. Different stages of OB circuit development (125, 232–234). 

2. Changes in real-time activity in response to odor stimulations (13–17, 22). 

3. Plasticity changes in response to odor learning (19, 20, 32, 235, 236). 

4. Changes due to infections or disease-associated degeneration (237–239). 
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 Analyzing neural basis of olfactory function using imaging methods widely include: 

1. Measuring glucose uptake with radiolabeled 2-deoxyglucose (2DG) to examine neuronal 

activity.  

2. Measuring intracellular Ca2+ dynamics using chelators like 1,2-bis(o-aminophenoxy)ethane-

N,N,N’,N’-tetraacetic acid (BAPTA), fluorescent Ca2+ indicators such as fura-2, fluo-2, and 

indo-1, or protein-based genetically encoded Ca2+ indicators like GCaMP6f. 

3. Measuring transmembrane voltage using fluorescent voltage-sensitive dyes. 

4. Measuring intrinsic optical properties of the tissue. 

 2-DG uptake patterns from glomerular units across hundreds of odors have revealed that 

odors with similar molecular characteristics activate glomeruli in specific zones of OB (15, 16). 

However, 2-DG imaging requires prolonged odor stimulation and is not suitable for measuring 

real-time odor-evoked activities. Intrinsic Optical Signal (IOS) imaging has been extensively used 

in several brain regions, including OB (13, 22, 32, 240, 241). In OB, following action potential 

propagation in OSNs, hemodynamic changes cause light scattering that is sensed by IOS imaging. 

Although IOSs can accurately map neuronal activity, this technique is limited to imaging 

superficial layers of the brain. Two-photon (2-P) Ca2+ imaging mitigates this problem as it allows 

super-resolution in vivo fluorescence microscopy in highly scattering brain tissues (242). 2-P 

microscopy is characterized by the incidence of two low-energy, short, near Infrared (IR) pulses 

on the biological sample. As excitation wavelength is within the IR spectrum, tissue penetration is 

better, and the stray fluorescence signal is very low. For these reasons, 2-P Ca2+ imaging is a 

favored technique for visualizing neuronal activities in deeper brain areas (243). Another promising 

way of capturing Ca2+ dynamics from deep brain regions involves inserting optical fibers and 

gradient refractive index (GRIN) lenses (244, 245). Custom designed microendoscope GRIN lens 

system enables chronic population recording from hundreds of neurons. By increasing effort to 

miniaturize the head-mounted imaging device, neural activity can be recorded from freely behaving 

mice (245, 246). Finally, the technological evolution of imaging techniques like magnetic 

resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), et 

cetra has been advantageous to track abnormalities in OB and cortex during the progression of 

different neurodegenerative diseases (247–249).  

 

1.2.2 Optogenetics: A powerful tool to establish a causal relationship between neuronal 

activity with odor perception. 

 In 1979, Nobel laureate Francis Crick suggested a need to selectively target one neuronal 

type to better understand how the brain works. He noted that electric stimuli using electrodes might 
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not be suitable as they non-selectively stimulate cells in its vicinity, and drugs are slow to act. 

Subsequently, he speculated that light could be used to precisely control the activity of selected 

neurons. Years later, this idea became a reality when scientists succeeded in exciting Drosophila 

melanogaster neurons with light flashes (250). Since then, this technique of photostimulating 

neurons, namely optogenetics, has been widely used in the neuroscience field. Optogenetics 

involves the exogenous expression of light-sensitive ion channels in neuronal membranes. When 

the light of a specific wavelength is flashed on such channels, there is a change in the membrane 

potential of the targeted neuronal population. Over the years, various photosensitive channels have 

been developed with distinct response kinetics or excitation wavelengths. The most commonly 

used excitatory channel, namely, Channelrhodopsin-2 (ChR2) was isolated from a marine 

organism, Chlamydomonas reinhardtii, in 2002 (251). ChR2 was the first ionotrophic 

transmembrane microbial opsin used to excite neurons by Deisseroth’s lab at Stanford University 

(252). ChR2 can rapidly open in response to optical stimulation, with its spectral response peaking 

at 480 nm, corresponding to blue light. It is a non-specific cation channel, permeable to Na+, K+, 

and Ca2+, resulting in a reversal potential near to 0 mV in neurons. Similarly, other opsins like 

chloride transporter halorhodopsin isolated from Natronomonas pharaonis and proton pump 

archeorhodopsin (Arch) isolated from Halobacterium salinarum have been used to silence 

neuronal activities.  

 The main advantage of optogenetics has been the possibility of precise control over the 

stimulation. Since the discovery in 2002, advancements have been directed towards improving the 

photocurrent properties, reducing deactivation and desensitization time (253). All of these features 

together have allowed exceptional spatiotemporal control over neural circuit stimulations. In recent 

years, studies have employed optogenetic tools to study the link between olfactory circuits and 

behavior. This is primarily due to the ease of access to the olfactory circuit and laminar organization 

of OB. Owing to this property, researchers are using optogenetics to imitate neuronal excitation or 

inhibition that is likely generated by odor stimuli. Optogenetic stimulation of a single glomerulus 

has shown that each glomerulus can transmit odor-related information that can be processed during 

odor discrimination tasks (254). In a recent study, patterned optogenetic stimulation has allowed 

researchers to create ‘synthetic’ odors. Such stimulations helped identify different spatiotemporal 

features of glomerular response contributing to odor perception (255).  

  However, while utilizing optogenetics as an investigative tool, researchers must also keep 

in mind a few drawbacks of the technique. First of all, the efficiency in controlling neural activity 

is dependent on light penetration across the brain. Thus, depending on the area which needs to be 

stimulated, one needs to wisely choose between dorsal surface illumination or deep tissue 
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stimulations using optical fibers. Secondly, odor representations formed in OB are pretty complex, 

and they change depending on factors such as the sniffing phase, odor concentration, and time. As 

a result, mimicking natural odor representations with light stimulation has limitations. Lastly, it is 

possible to get asymmetric effects of activation versus inhibition of the same subsets of neurons 

(256). However, this limitation can be overcome by being aware of their existence while 

interpreting results and having appropriate controls while designing experiments. 

 

1.2.3 Psychophysical measurement of odor perception 

 Psychophysics quantitatively measures the relationship between sensory stimulus and 

perception. In olfaction, psychophysical measurements can reveal (a) the relationship between 

odorant chemical structure and its perceived smell; (b) how olfactory stimuli of varying 

complexities can be discriminated against, and how this is accomplished in nose and brain; (c) what 

effect does odor have on our perception? The answer to these questions is uncomplicated in humans 

as we have acquired language. Human subjects can verbally express if they can detect a smell, 

characterize the smell, or decide if two odors are discriminable. There are certain constraints on 

experimentation performed on humans, such as genetic manipulation, invasive imaging, and 

electrophysiology, which raises the need for utilizing animal models. To study psychophysics of 

odor discrimination in mice, different conditioning paradigms are designed. In one such paradigm, 

namely, Go/No-go olfactory operant conditioning tasks, rodents discriminate between two 

odorants with different reward associations (e.g., one is rewarded and the other is not) (257). By 

measuring odor discrimination times, discrimination accuracies, and memory performance, the 

effect of task difficulty on neural processing can be studied in detail. A constant effort is directed 

towards developing automated behavioral paradigms based on temporally precise stimulus delivery 

(17, 25, 258, 259). The technological advancement has permitted coupling high-throughput 

behavioral paradigms with fast imaging techniques and optogenetics. These methodologies have 

been instrumental in establishing how neural representations are formed in rodent OB and lay down 

the causal relationship of such representations with different behavioral outputs. 

 Human olfactory psychophysics has traditionally relied on odor detection thresholds, odor 

identification, and discrimination using minimalistic instrumentation, for instance, semi-static 

olfactometry developed by Zwaardemaker in 1888 or blast olfactometry developed in 1935 (260). 

The modern-day olfactometry tests that are widely used are the University of Pennsylvania Smell 

Identification Test (UPSIT), Connecticut Chemosensory Clinical Research Center (CCCRC) 

Test, Sniffin’ Sticks (SS) test et cetra. The UPSIT is a multiple-choice odor identification test 

consisting of a booklet with forty suprathreshold concentration odorants embedded in 
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microencapsulated crystals. On each page, an odorant is accompanied by four alternative options 

naming the odor, and each subject chooses from one of these responses even if the smell is not 

detected (61). On similar lines,  CCCRC evaluates odor identification skills and odor detection 

threshold. The SS test utilizes felt-tip pens (sticks) dipped in odorants to investigate olfactory 

detection and discrimination performance (62). First, the threshold is assessed, then odors are 

presented in triplets to test odor discrimination. The total score from these tests classifies 

participants as normosmic, hyposmic or anosmic, and has proved to be useful as screening 

measures to identify many neurodegenerative disorders. However, these tests have shortcomings; 

(a) most odor identification and discrimination tests deliver odor at suprathreshold concentrations. 

However, odor perception changes with odor concentration (261); (b) due to lack of 

instrumentation, there is no control on stimulus delivery. Moreover, if these tests are self-

administered by subjects in the absence of a physician, it creates variability in the way the result is 

interpreted; (c) these tests have limitations in probing the cognitive skills of subjects. This is very 

critical as most of these tests are used to determine the olfactory loss in patients with 

neurodegenerative disorders who face challenges with cognitive abilities. Thus, there is a dire need 

to engineer olfactory tests that overcome existent olfactory tests’ limitations.  

 

1.3 Goals and achievements 

 To summarize the previous sections, many questions are still open concerning functional 

relevance of odor representations in health and disease: 

1. How do overlapping odor representations elicited by complex odors influence discrimination 

times? 

2. Do animals modulate their sampling behavior for different odorants during a decision-making 

task? 

3. What is the functional relevance of post-odor representations? How does it compare with the 

information coded during odor representations?  

4. Developing a method to precisely control stimulus delivery to quantitate human olfactory 

dysfunctions. 

 The main achievement of this thesis is to unravel the role of olfactory stimulus and post-

stimulus representations in health and disease, which are: 

1. By using odors of different chemical classes, our study revealed that the similarity and strength 

of glomerular activity patterns define the degree of olfactory processing required for odor 

discrimination. Apart from glomerular patterns, we observed a temporal relationship between 

breathing behavior and decision-making independent of odor identity. 
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2. By varying stimuli durations for different odor complexities, we studied the influence of neural 

representations in odor discrimination learning and long-term memory formation. 

Optogenetically modulating the inhibitory strength of OB circuitry unveiled differential 

mechanisms modulating odor discrimination learning and long-term memory formation. 

Precisely, decorrelation in MTC activities during stimulus duration controls odor 

discrimination learning, while post-odor MTC firing activities assist in the formation of long-

term odor memories. 

3. We developed a tool by which we can precisely control odor delivery pulses. Using such 

sophisticated instrumentation helped us understand how odor representations are formed under 

different stimuli conditions and their relevance at a behavioral level. Expanding that 

knowledge to human olfaction, we developed a quantitative way to probe human olfactory 

dysfunctions. Using our custom-built olfactory-action meter, we identified olfactory loss in 

82% of the total asymptomatic COVID-19 patients assessed. 
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CHAPTER 2 

Materials and methods 
 

All experimental procedures common to multiple chapters are outlined in this chapter. The 

section-wise material and methods explains experimental procedures specifically performed for 

those studies. 

 The experimental protocols used in this thesis have been approved by the Institutional 

Animal Ethics Committee (IAEC) at IISER Pune, and the Committee for the Purpose of Control 

and Supervision of Experiments on Animals (CPCSEA), Government of India (animal facility 

CPCSEA registration number 1496/GO/ReBi/S/11/CPCSEA). The usage of mice in the study 

described in chapter 3 was licensed under (IISER/IAEC/2017-02/003), and study described in 

chapter 4 was licensed under (IISER/IAEC/2017-02/007). 

 

2.1 Maintenance of mice used in the study 

 Adult male mice (4-6 weeks old) were used for all experiments. Mice were maintained on 

a 12 hrs day-light cycle (light phase: 9 A.M. till 9 P.M.; dark phase: 9 P.M. till 9 A.M.) and housed 

in individually ventilated cages (IVC). Each cage had a floor area of 800 cm2 and housed 3-5 mice. 

Mice were provided with standard rodent bedding and nesting material. The mouse holding room 

temperature was maintained at 22-25°C, and relative humidity was maintained at 45-55%. All 

behavioral experiments were performed during the light cycle. On behavioral training days, mice 

had ad libitum access to food but were on a water deprivation schedule designed to keep them at ≥ 

80% of their body weight. The water restriction schedule never extended beyond 12 hrs.  

 

2.2 Odors used in the study 

Odors used were Methyl benzoate (MB), Amyl acetate (AA), Ethyl butyrate (EB), 1,4-

Cineole (CI), Eugenol (EU), (+)-Carvone (C+), (-)-Carvone (C-), (+)-Octanol (O+), (-)-Octanol 

(O-), Hexanal (HX), 2-Pentanone (PN) and binary mixtures of these odorants (containing different 

relative fractions of two odors, e.g., 40% AA and 60% EB). MB was used in the task habituation 

phase for both the freely-moving and head-restrained behavioral paradigm. The odors were 

procured from Sigma-Aldrich and had high purity (>99%). For behavioral training, liquid dilution 

of odors was done in mineral oil (Paras Pharmaceuticals) and was further diluted by airflow.  
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2.3 Olfactory behavior 

2.3.1 Olfactory behavioral training using Go/No-Go (GNG) operant conditioning paradigm 

 For studying olfactory behavior, mice were trained on the GNG paradigm as described 

previously (22, 257). In brief, mice were trained to discriminate between two different odorants. 

One of the odorants was associated with a water reward (S+ odor), while the other was without a 

water reward (S- odor). The water reward of 3-4 µl was given if mice continuously licked at the 

lick port for S+ odor presentation. Mice weren’t supposed to lick for S- odor presentation. 

However, even if they licked during S- odor presentation, neither a reward nor any form of 

punishment was given. In our paradigm, the response time window coincided with the onset of 

odor presentation. The response time window was virtually segregated into four equal time bins. 

The criterion for a correct S+ trial was set as follows; mice had to lick at least once in 3 out of 4 

time bins. For S- odor, if mice registered a lick in less than or equal to two-time bins, the trial was 

recorded as a correct trial. In all experiments, mice were either trained under freely-moving or hear-

restrained conditions. The training rules were identical in both conditions, but mice were restrained 

on a platform when conducting the task under head-restricted conditions, as the name implies. The 

instrumental and experimentation details are described in the following sections. 

 

2.3.2 Behavioral training under Freely-Moving (FM) conditions 

2.3.2.1 Apparatus 

 All the FM olfactory behavioral training was performed using four 8-channel olfactometers 

(Knosys, Washington, USA) (257) controlled by a custom-written program in IgorPro 

(Wavemetrics, OR). The olfactometer comprises of the following components: 1. An operant 

chamber, 2. Flowmeters, 3. Solenoid valves, 4. Combined odor sampling/reward port, 5. Final 

Valve/Diversion Valve (DV), 6. Water valve, 7. Manual control box, and 8. Digital I/O board 

(Figure 2-1 A and B). The operant chamber was constructed from plexiglass and had a metallic 

platform. On one side of the chamber, a circular cutout opened into a sampling port, and on the 

opposite side, a fan was placed, which blew air inside the chamber. This inward flow of air 

prevented odorized air from entering the operant chamber. An IR beam and a photodiode guarded 

the sampling port entrance that helped us monitor head insertion by mice. Two flowmeters 

independently controlled the flow of clean and odorized air which was distributed to eight solenoid 

pinch valves. The S+ and S- odors were randomly connected to different valves. In a trial, odor 

from one of the channels was presented to mice in a combined odor sampling and reward port. 

Combining the odor and lick port ensured a tight association between water reward and presented 

odors. On trial initiation by mice, one of the odor valves opened along with a DV that diverted 
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odorized air away from the mouse to an exhaust chimney for an initial 500 ms. After 500 ms, DV 

closed, and the odor was presented to the mouse. Thus, DV minimized odor traveling time between 

odor onset and the first contact with the mouse’s nose. The lick responses were measured using a 

lick circuit connected to the lick port. When the mouse licked on the lick port, its body acted as a 

conductor, completing the circuit between the metallic platform and lick port. The licking and 

sampling behavior were recorded in microsecond resolution. However, data was stored as Igor 

waves in 125 time-bins (was set prior to the start of an experiment) with 20 ms resolution. The 

program written in IgorPro controlled all parameters and received all state changes in the circuit 

using a digital I/O peripheral board.  

 
Figure 2-1: Automated olfactometer for behavioral training under freely-moving condition. 

A. Schematic representation of an olfactometer with different components. In brief, air is pumped into the olfactometer 

by a compressor. Two flowmeters control the airflow and distribute air across different channels using a manifold. A 

mouse is placed in the operant chamber, where it samples the odor and registers an appropriate response depending on 

odor’s reward contingency. Adapted from Bodyak and Slotnick 1999. Chem. Senses (257). 

B. One of the olfactometers used for behavioral training sessions. 

 

2.3.2.2 Task habituation training 

 After beginning a water restriction schedule, mice were pre-trained to make them learn 

procedural rules during the first 2-3 days. In first phase, mice received water reward after poking 

their nose in the sampling port. After 15-20 such nose pokes, second phase started wherein the 

mouse had to initiate a lick at the lick port to receive a water reward. After 20 trials, a third phase 

began wherein head insertion opened one of the odor valves for 2 s, during which water reward 

was provided upon a successful lick. The ‘odor’ used in this phase was mineral oil used for odor 

dilutions. From fourth phase, 1% MB was used as a detection odor. Within this phase, the lick 
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criterion was progressively increased to train the mouse to lick continuously during odor 

presentation. Mice usually learned this task within 2-3 days (4-6 sessions of 20 min each).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-2: Schematic of an individual trial during behavioral training under freely-moving conditions. 

(1) A trial is initiated as mouse enters the sampling port and the IR beam is broken. (2) Mouse samples the presented 

odor. (3) If S+ odor is presented, correct licking response triggers water delivery. (4) For S- odor, a trained mouse 

retracts its head from the sampling port and the IR beam is resealed.  

 

2.3.2.3 Olfactory behavioral training 

 During odor discrimination training, a trial was initiated when the mouse broke the IR beam 

guarding the sampling port opening (Figure 2-2 A). After a 500 ms delay, an odor was delivered 

through the sampling port for a variable duration (odor presentation duration varied with 

experiments and is indicated in chapter-wise methods) (Figure 2-2 B). If the mouse continuously 

licked for the S+ trial satisfying the criteria set, it received a 3 µl water reward at the end of stimulus 

delivery (Figure 2-2 C). S- trials were marked correct if the mouse refrained from licking upon an 

S- odor presentation (Figure 2-2 D). A subsequent trial did not initiate unless an inter-trial interval 

(ITI) of at least 5 s had elapsed. The set ITI was sufficiently long to allow the mouse to retract 

quickly at the end of a trial. No rules were implemented to force the mouse to sample the odor for 

a minimal time before deciding. Further, no rules were set to prevent licking during the pre-odor 

period. Trials were grouped in blocks of 20 trials. Odors in each block were presented in a pseudo-

randomized order to avoid more than two successive delivery of the same odor. Also, all blocks 

contained an equal number of S+ and S- odor presentations. Each mouse was allowed to perform 
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150-250 trials each day across two sessions to maintain optimum motivation despite being on a 

water restriction schedule. Each mouse’s motivation was continuously monitored by measuring ITI 

and licking frequency.  

 

2.3.2.4 Measurement of behavioral parameters 

2.3.2.4.1 Measurement of learning progression 

 To analyze the progression of learning across different sessions we computed block-wise 

accuracies (20 trials/block). Next, by averaging accuracies across five blocks, we calculated the 

percentage of correct trials across 100 trials. We plotted these values to see if learning accuracies 

varied across different experimental conditions. 

 

2.3.2.4.2 Measurement of discrimination time 

 We defined odor discrimination time (ODT) as the time point after odor onset when the 

mouse’s response for S+ and S- odors significantly diverged. The sampling behavior of each mouse 

was monitored by tracking the status of the IR beam to determine ODT. The mouse’s sampling 

behavior evolved with learning and could be easily distinguished between untrained and well-

trained mice. With a trained mouse, after S+ odor onset, the IR beam was continuously broken as 

it remained inside the sampling chamber to lick on the lick port. During S- odor presentation, a 

mouse familiar with the odor usually retracted its head from the sampling port. The average 

difference in sampling response towards S+ and S- odor followed a sigmoidal curve and yielded a 

sensitive measure of odor discrimination performance. The ODT was determined as follows: First, 

we combined 300 successive trials (150 S+ and 150 S- trials) from blocks with ³80% accuracy. 

For each time bin, the IR beam status for S+ and S- odors were compared using a paired one-tailed 

t-test. The last time point yielding a statistically significant value (p = 0.05) was determined as 

ODT. In few cases, when this value did not correspond to the point of largest curvature in the log 

(p) vs. time plot, ODT was manually corrected.  

 

2.3.3 Behavioral training under Head-Restrained (HR) condition 

2.3.3.1 Preparation of animals for the experiment - Surgical implantation of head-post 

 For the head-restrained GNG task, mice were mounted in a Polyvinyl chloride (PVC) tube 

and restrained on it using a custom-made stainless steel bracket. This assembly was fixed on an 

articulating arm with a magnetic base. To restrain the mouse, a stainless steel head-post was 

surgically implanted on top of each mouse’s skull. The entire surgical procedure is explained 

below: 
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1. Mice were anesthetized by I.P. injection of a cocktail of Ketamine (50 µg/g body weight) and 

Xylazine (10 µg/g body weight). The extent of anesthesia was examined by checking the toe 

pinch reflex. 

2. Once the mouse reached an anesthetized state, the scalp was washed with sterile distilled water, 

and fur was shaved using a hair clipper. During the period of surgery, the eyes were continuously 

rehydrated by applying artificial tears. 

3. The mouse was then mounted on the stereotaxic instrument as follows; (i) ear bars were placed 

behind the arches of the ears, (ii) incisor teeth were placed on the incisor bar, and (iii) nose 

clamp was secured over the mouse’s nose.  

4. A local anesthetic gel (Lignocaine hydrochloride) was applied over the skin.  

5. A circular cut of skin over the skull was made using a scissor (Figure 2-3 A). The area was 

cleaned with artificial cerebrospinal fluid (ACSF composition: 125 mM NaCl, 5 mM KCl, 10 

mM Glucose, 10 mM HEPES, 2 mM CaCl2, 2 mM MgSO4, in 1 litre sterile Distilled water, pH 

= 7.4) using a cotton swab (Figure 2-3 B). A scalpel blade was used to gently scrape off 

periosteum on the skull and exposed muscles at the sides of the wound. This step aided dental 

cement to adhere to the skull. 

6. The skull was allowed to air dry. In case of minor bleeding, Gelfoam® (soaked in ACSF) was 

used to accelerate clotting.  

7. The skull was chemically etched using a dental etching agent to increase the surface’s 

roughness, which is critical for dental cement to adhere to the skull. The excess etching agent 

was cleaned with ACSF, and the surface was air-dried.  

8. A thin coat of cyanoacrylate gum was applied on the surface of the exposed skull and wound 

margins to prevent seepage of sero sanguinous fluid. This base of cyanoacrylate gum reinforced 

the skull surface to provide a better base for adherence to dental acrylic cement. 

9. A dental primer was applied to the skull and wound margin. After air-drying for 15 s, the primer 

was polymerized by flashing U.V. light for 10 – 20 s. The primer acts as an adhesive for U.V. 

polymerizing cement to attach onto the bone. 

10. A thin layer of U.V. polymerizing cement was spread over the skull, and the periphery of the 

cement layer was fused with the skull using a flat bottomed spatula (Figure 2-3 C). The cement 

layer was polymerized using U.V. light for 20 – 30 s (Figure 2-3 D). 

11. The U.V. polymerizing cement was applied onto the base of the head-post and was placed 

upright on the basal cement layer (Figure 2-3 E). The two layers of cement were properly fused 

using a spatula. The position of the head-post was adjusted accordingly. The cement layer was 

polymerized using U.V. light for 40 – 50 s. 
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12. The dental acrylic cement (DPI RR Cold Cure) was mixed with a polymerizing agent and a drop 

of cyanoacrylate gum and used to seal exposed areas on the skull (Figure 2-3 F). This mixture 

provided the best results in terms of stability and allowed experiments to be conducted over 2-

3 months. Once the cement dried, the mouse was unmounted from the stereotaxic instrument 

and was placed in the home cage.  

13. The cage was placed over a heating pad till the mouse recovered from anesthesia and moved 

freely in the cage. During this period, body temperature was continuously monitored.  

14. As post-operative care, mice were fed moistened food for one day after the surgery. Signs of 

inflammation were closely monitored for two days. Carprofen (5 µg/g body weight) was 

administered through water in case of any inflammation around the operated area.  

 

2.3.3.2 Apparatus 

 At the beginning of a training session, each mouse was mounted in the PVC tube. The PVC 

tube had a removable plexiglass platform wrapped in a metallic mesh. The mouse rested on this 

platform and the metallic mesh aided in providing electrical contact when it licked on the lick tube. 

The olfactory discrimination tasks under head-restrained conditions were performed using a 

custom-built 10-channel olfactometer that was integrated with a lickometer and a breathing 

detector. The lickometer is an interface between all individual components, which recorded and 

digitized lick and breath responses of mice toward different odorants. The olfactometer housed 

eleven mass flow controllers (10 mini MFC and 1 main MFC, Pneucleus Technologies LLC, 

Hollis, NH) and electromagnetic solenoid valves (SMC Pneumatik AG, Switzerland), which 

allowed us to achieve temporal precision during odor delivery. A manifold installed in the 

olfactometer split a clean air stream and diverted air to different MFCs. Air through mini MFCs 

entered odor bottles while air from the main MFC was controlled by solenoid valves and used as a 

dilution air stream. The dilution air stream and odorized air stream merged at the output through a 

T-tube before entering the odor delivery nozzle. The odor delivery nozzle used was a customized 

glass nozzle with seven channels and an exhaust outlet. Before the odor presentation, a set pre-

loading time of 3.2 s wherein odorized air passed through the nozzle into the exhaust to ensure that 

the odor plume attained a steady state (Figure 2-4 A). After 3.2 s, the exhaust switched off, allowing 

odorized air to be delivered to the mouse. This allowed us to obtain a sharp odor pulse with 

concentration stability during stimulus presentation. To minimize odor travel time, the nozzle was 

placed next to the nostrils. The lick tube was positioned near the mouse’s mouth. Water reward 

was delivered through this lick tube. A lick circuit was connected to the lick tube, which allowed 

us to record lick responses during behavioral training sessions. An airflow sensor (AWM2300V, 
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Honeywell) coupled with a custom-made digitizer was used to monitor breathing cycles during 

behavioral experiments continuously. 

 

2.3.3.3 Task habituation 

 Like the FM paradigm, after beginning the water restriction schedule for 2-3 days, mice 

were trained to acquaint themselves with the task’s procedural aspects. On the first day, the mouse 

was placed inside the PVC tube and fed free water to acquaint them with the setup. On the next 

day, the first phase of pretraining began (20 trials). In this phase, each trial’s onset was marked by 

a tone of 200 ms. Immediately after the tone, a water drop (3 µl) was given to the mouse. The delay 

between tone and water reward gradually increased to 1 s (15 trials) and 2 s (15 trials) in the next 

phase. This helped to train mice to wait for water rewards. The number of trials was varied 

depending on the motivation shown by mice. Once mice learned to wait for the reward, an odor 

pulse (mineral oil) was introduced for 2 s. A lick response during odor presentation was rewarded. 

Following the tone, a baseline licking was recorded for 1 s before odor presentation during the next 

stage. In this phase, mineral oil was replaced by 1% MB. If the mouse refrained from licking during 

the baseline period, water delivery criteria were based on the licking time during odor presentation. 

During odor presentation, the total licking time required for mice to receive water reward gradually 

increased from 40 ms to 240 ms (17). If mice licked during the baseline, a lick penalty was 

introduced, and the required licking time kept increasing from 100% to 200%. Most of the mice 

picked up the task’s procedural rules in 2-3 days (4-6 sessions of 20 min each). 

 

2.3.3.4 Olfactory behavioral paradigm 

 The odor discrimination task was carried out with a constant ITI of 13.2 s, including a 

preloading time of 3.2 s. The trial onset was marked with a tone of 200 ms (Figure 2-4 A). The 

onset of odor delivery was determined on the breath synchronization parameter. When breath 

synchronization was not implemented, odor onset was immediately after 3.2 s of preloading time. 

With breath synchronization, the program monitored an ongoing breathing cycle after preloading 

time and triggered the odor delivery in the middle of the exhalation period. This was done so that 

the odor reaches the mouse’s nose during the next inhalation phase. The duration of odor 

presentation was varied depending on experimental conditions. However, the reaction window was 

always set at 2 s, and its onset coincided with odor delivery (Figure 2-4 A). The total lick duration 

needed to earn a reward (3 µl) at the end of an S+ trial was determined by licking activity during 

the baseline period. The mouse had to lick twice the amount of time during the reaction window to 

receive a water reward if it licked during the baseline period. If the mouse refrained licking during 
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the baseline period, it had to lick for a total time of 80 ms in any of the three out of four time-bins 

to receive a water reward. Trials were recorded as correct if mice met the criteria as mentioned 

earlier for S+ odors. If mice did not lick during baseline in S- trials, a cumulative lick period of 80 

ms in two out of four time-bins was the qualification for a correct trial. If mice licked during the 

baseline, the S- trial was considered right if the total licking time during odor presentation did not 

exceed 25% of the baseline licking. The incorrect trials were not punished.  

 

 

 

Figure 2-3: Surgical procedure for head-post implantation. 

A. Mouse is mounted on the stereotaxic apparatus. B. The skin over the skull is removed, and the surface is cleaned. 

C. Base layer of U.V. polymerizing cement is applied. D. Polymerization of the cement using U.V. light. E. Head-post 

is fixed on the skull. E. The surrounding area is covered with acrylic dental cement.   
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 In a block of 20 trials, the odor sequence was pseudo-randomized. The pseudo-

randomization ensured that a given odor was not presented in more than two successive trials, and 

S+ and S- trials were equally presented within each block of 20 trials. Also, the order of 

presentation for two odors differed in consecutive blocks of trials. For different odors used in this 

study, mice did not show any intrinsic preference towards the odors. However, to exclude any bias 

caused by odor preferences, we counterbalanced S+ and S- trials amongst mice within a set. In 

total, mice performed 200-300 trials spanned across two sessions every day. The motivation of 

mice was controlled by monitoring the licking frequency. When mice lost motivation, they stopped 

licking for rewarded trials. 

Figure 2-4: Experimental set-up to study olfactory behavior under head-restrained condition. 

A. Structure of an individual trial when mice are trained under head-restrained conditions. B. Representative breathing 

trace acquired using a non-invasive airflow sensor placed near one nostril of the mouse. C. A threshold function 

converts the analog breathing pattern to a digital signal where a value of 0 corresponds inhalation and a value of 1 

represents exhalation. D. Breath initiations points are marked as blue dots. E. A mouse engaged in olfactory behavior 

experiment. 
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2.3.3.5 Measurement of breathing parameters 

  During behavioral training, the mouse’s respiratory rhythm was continuously acquired 

using a non-invasive airflow pressure sensor placed near the nostrils (Figure 2-4 E). The sensor fed 

real-time analog signals to the breathing circuit with a temporal resolution of 4 µs (Figure 2-4 B). 

The breathing circuit converted the raw analog signals to a digital signal by applying a threshold 

function. This converted the raw traces to a binary signal where a value of 0 corresponds to an 

inhalation and a value of 1 corresponded to an exhalation (Figure 2-4 C and D). The filtered traces 

were recorded continuously using the lickometer software. The breathing circuit parallelly relayed 

unfiltered traces to an oscilloscope (TBS 1072B-EDU, Tektronix) for visualization.  

 

2.3.3.6 Calculation of breathing frequencies and plotting histograms 

  For every trial, the breathing frequency was measured for the entire stimulus period. All 

breath initiation time-points were marked in a raster plot. The inhalation onset distribution over all 

trials across different animals was visualized by plotting a histogram with a bin resolution of 20 

ms. The mode of distribution of breath initiations was defined as the sniffing peak. Custom written 

codes in MATLAB and Python were used for analysis. 

 

2.3.3.7 Measurement of discrimination time 

 The licking response was acquired at a high temporal resolution and averaged into time 

bins of 2 ms resolution. When mice learned odor discrimination, upon S+ odor delivery, they 

continuously licked during the reaction window, whereas upon S- odor delivery, mice abstained 

from licking during the reaction window (Figure 2-5 A). Similar to behavioral experiments under 

FM conditions, only the blocks ≥80% accuracy were considered for discrimination time 

measurements. The discrimination time was determined as the first time point wherein lick 

response towards S+ and S- trials diverged significantly (Figure 2-5 B). In few cases, when this 

value did not correspond to the point of largest curvature in the log (p) vs. time plot, ODT was 

manually corrected.   
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Figure 2-5: ODT measurements from the licking behavior of mice towards S+ and S- odorants. 

A. Representative lick responses (averaged over 150 S+ and 150 S- trials) for AA vs. EB odor pair discrimination 

observed for an individual animal. Green traces represent licking responses for S+ odorants and magenta traces 

represent S- trials. 

B. Statistical difference calculated between 150 S+ and S- trials. The red dotted line represent a p-value of 0.05, while 

the black dotted line represents where the trace crosses the p-value of 0.05 and corresponds to the measured ODT. 

 

2.4 In vivo imaging of odor-evoked activities in GL and GCL 

2.4.1 Intrinsic optical imaging of glomerular activity 

 The detailed methodology is described in section 3.2.2. In brief, a cranial window was 

implanted over the surface of OB. During imaging sessions, the dorsal surface of OB was 

illuminated at 700 nm using a halogen lamp and a light guide system. Images were acquired at (i) 

5 Hz for 10 s using a Navitar macroscope with a 3001 Imager optical system, or (ii) 6.5 Hz for 9.3 

s using a modified Fuji camera with 2001VSD+ Imager controller. All images were realigned for 

analysis by comparing the blood vessel pattern and filtered using a custom MATLAB script. 

Further, the Euclidean distance between points on activity maps was calculated using a 

Pythagorean formula. 

 

2.4.2 Microendoscopic imaging of GCs 

 The procedure for chronic imaging of GC interneurons is described in section 4.2.11. In 

brief, a 1 mm cranial window was drilled at the center above one hemisphere of OB. A track of 1 

mm was created by inserting a blunt Hamilton needle. We then lowered the GRIN lens (1 mm 

protrusion) vertically until it reached the GCL (Figure 2-6 A and B). We used a combination of 

cyanoacrylate gum and acrylic dental cement to fix lens assembly on the skull surface. A  head-

post implanted posterior to the implanted lens allowed us to record the Ca2+ dynamics in head-

restrained mice (Figure 2-6 C). Mice were given 3-4 weeks to recover. Imaging was done in naive 

anesthetized and awake mice. During imaging sessions, images were acquired at 10 Hz for 10 s. 

An external TTL signal from the olfactometer was used to synchronize the recording of Ca2+ 

signals. Images were acquired at a spatial resolution of 350 µm ́  350 µm, which was further binned 

2 ´ 2 times. For analysis, images that had frame drops were detected and excluded. The relative 

change in fluorescence was measured and compared across different stimuli conditions. All image 

analyses were done using custom-written MATLAB scripts. 
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Figure 2-6: Illustration of microendoscopic imaging session. 
A. Field of view obtained using the microendoscope. B. Depth range of the imaging canula used for imaging GCs. C. 

Representation of an imaging session with an anesthetized mouse. 
 

2.5 Optogenetic modification of olfactory learning and long-term memory 

 In Chapter 4, one of the principal aims was to evaluate the influence of inhibition on MTCs 

in olfactory learning and long-term memory formation. To establish such a causal relationship, we 

took advantage of modulating the activity in a majority of OB’s inhibitory interneurons by 

expressing either ChR2 or Arch under the GAD65 promoter. We photostimulated/photoinhibited 

GAD65 +ve interneurons while mice were performing odor discrimination tasks to investigate the 

role of inhibition in olfactory learning and long-term memory formation. To activate the 

interneurons, we flashed pulses of blue light (473 nm) of 5 ms at 40 Hz frequency. We used 1000 

ms pulses of amber light (595 nm) at 1 Hz frequency to inhibit the interneurons. The light 

stimulations were synchronized to odor onset for these sets of experiments. Another important aim 

was to see whether light-driven modulation of MTC ensemble activities during the post-stimulus 

period could help form long-term memories. To study this, we manipulated MTC activity by 

controlling the activity of GAD65 interneurons. We overstimulated inhibitory interneurons in 

ChR2-expressing mice to fully shut down MTC activity during the post-stimulus period. To 

accomplish this, we timed the start of light pulses to correspond with the end of odor stimulation. 



 41 

The pulse width and frequency were kept similar to the previous condition. However, the duration 

of light stimulation was increased to 4 s. We inhibited interneuron activity in a separate batch of 

Arch expressing mice in order to sustain MTC ensemble activities in the post-stimulus period. We 

achieved this by giving four 1 s pulses of amber light at 1 Hz frequency at the end of odor 

stimulation. The detailed protocol for surgical preparation and light-driven olfactory behavior is 

described in sections 4.2.7 to 4.2.9 of this thesis. 
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CHAPTER 3 

Similarity and strength of glomerular odor representations define a 

neural metric of sniff-invariant discrimination time 
 

Adapted from: A. S. Bhattacharjee*, S. Konakamchi*, D. Turaev, R. Vincis, D. Nunes, A. A. 

Dingankar, H. Spors, A. Carleton, T. Kuner, N. M. Abraham, Similarity and Strength of 

Glomerular Odor Representations Define a Neural Metric of Sniff-Invariant Discrimination 

Time. Cell Rep. 28, 2966-2978 (2019). 

 

3.1 Introduction 

3.1.1 Sense of smell and odor reaction times 

 The olfactory system constantly processes complex odor mixtures in the environment, 

assisting in decision-making and, ultimately, guiding behavior. However, understanding the 

mechanisms involved in the neural processing of these odor mixtures is still an ongoing 

investigation. Odor mixture perception is influenced by relative intensities of different components 

(262), mixture complexity (263), and chemical structure (264, 265). Odor mixtures can exhibit 

either elemental, configurational, or overshadowing properties. Odor mixtures wherein each 

component is easily identifiable by an animal are considered elemental mixtures (264). 

Configurational mixtures are perceived as novel and distinct from each component, and animals 

fail to identify the mixture’s individual components (265, 266). When one odorant dominates and 

overshadows the other odorant in some mixtures, animals detect the dominant odorant but not the 

other odorants (264). To understand the neural mechanisms underlying processing of different 

kinds of odor mixtures, it is critical to employ psychophysical paradigms that quantitatively 

measures different behavioral readouts (14, 25, 30, 267). Reaction times and accuracy have proven 

successful across various species and sensory systems as sensitive behavioral readouts reflecting 

stimulus and task complexities. For difficult tasks such as discrimination between perceptually 

similar objects, if quick decisions are demanded, one would expect poor performance in 

discrimination of similar objects. Likewise, if high performance is to be maintained, one would 

take longer reaction times to make discriminations (268). In nature, animals make these speed-

accuracy tradeoffs in various ecologically important tasks, such as detecting prey and predators, 

pollinators choosing between flower species, and nest site exploration strategies (269). 

 In the context of olfaction, the concept of speed-accuracy tradeoff has been a subject of 

debate. Igniting this debate was a study to measure rats’ reaction times using a two-alternative 
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forced-choice olfactory discrimination task. Using odor mixtures of varying complexities, the study 

concluded that odor discrimination speed was independent of odor similarity (29). On the contrary, 

an odor discrimination study using a GNG paradigm showed that accurate decisions were 

significantly faster for simple odor discriminations than difficult discriminations (22). From the 

time of these two studies, few studies have found that olfactory performance depends on the 

stimulus properties (23–27). In contrast, other studies demonstrated uncoupling of decision-making 

accuracy from stimulus complexities (30, 31).  

 One reason for such contradictory conclusions can be attributed to a limited number of 

odorants used in studies uncoupling accuracy from stimulus complexity. This severely limits our 

interpretation as the high dimensionality of odor stimulus space was disregarded as a potential 

criterion influencing olfactory decision-making. In OB, odorants from different chemical classes 

evoke complex patterns of glomerular activity (166). While monomolecular odorants produce 

distinct glomerular activity patterns, their binary mixtures evoke similar activity patterns (22, 270). 

Mice can accurately discriminate monomolecular odor within hundreds of milliseconds, while 

binary mixture discrimination takes a longer duration (22–24). These observations raise the 

question of whether glomerular map similarity correlates to odor discrimination times for different 

classes of odorants. Establishing such a relationship would link odor representations to the degree 

of neural processing required to make well-informed decisions. 

 

3.1.2 Odor sampling behavior and sense of smell 

 The sense of smell is also influenced by odor sampling behavior. The volatile odor 

molecules are transported by air, and therefore, their location depends on air turbulences. For 

instance, in the moth, Manduca sexta, a change of odor plume direction in a turbulent air stream 

drastically impacts the response of OSNs and downstream neurons in the olfactory pathway (271, 

272). The constant change in odor stream is not ideal for optimally sampling odorant molecules. 

To counteract this problem, animals have developed strategies. For instance, lobster ORs are 

located on the flagellum of antennules, which form a dense brush layer. Under low flow conditions, 

this layer shields ORs from odorants, rendering its detection virtually impossible. Lobster flicks 

their antennules at around 4 Hz to drive water through the brush and allow odorants to be detected 

by OSNs (273). Similarly, rodents display high breathing frequency or sniffing while detecting 

novel odors in their surroundings, engaging in social interactions, or detecting and discriminating 

different odorants (230, 274–276).  

 It has been observed that rodents can vary their sniff frequency, and rapid changes in sniff 

frequencies can alter OSN’s response towards odorants. At low frequencies (< 3 Hz), OSN fire in 
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brief bursts that rapidly returns to baseline with each inhalation. On the contrary, at high-frequency 

sniffing (> 4 Hz), OSN firing appears mainly as tonic signals (277). At postsynaptic terminals, it 

has been shown that respiration can synchronize MTC activities (278), and the absence of nasal 

respiration can reduce mitral cell firing activities and abolish rhythmic spiking in tufted cells (279). 

At high sniffing frequencies, MTC excitability is reduced due to a combined outcome from the 

adaptation of sensory neuron responses (277, 280, 281) and an increase in the strength of inhibitory 

inputs onto MTC via GCL inhibitory circuits (147, 282). Such modulations in sniff frequencies 

thus bring about a significant change in odor responses in MTCs. Calculating Euclidean distances 

between MTC response vectors indicated a better discriminability when there is a positive change 

in breathing frequencies. Despite these results, less is known about whether sampling behavior in 

awake animals changes OB responses contributing towards olfactory decision-making.  

 This study investigated how glomerular activity and sampling behavior patterns relate to 

ODT. We selected odors that either specifically activated glomeruli on the dorsal surface (22, 283, 

284) or activated overlapping glomerular patterns (16, 29, 284). This facilitated odor-evoked 

functional activity imaging in anesthetized and awake mice. The correlation of IOS imaging data 

with behavioral measurements revealed that ODT is inversely correlated to the measured Euclidean 

distances between activated glomeruli patterns across different chemical classes. These results 

suggested that the strength and similarity of glomerular activity patterns can predict ODT for 

different chemical classes. Further, we observed a significant increase in sniff frequency during the 

decision-making period. However, the increase in ODT for binary mixtures compared to 

monomolecular odors did not depend on the sniffing frequency. This suggests that odor 

representations are invariant of the sampling behavior, thus allowing a stable percept formation.  

 

3.2 Materials and methods 

 In this chapter of thesis, mice were either trained to olfactory behavioral training using the 

GNG paradigm under FM or HR conditions. The detailed methodologies for these behavioral 

paradigms are explained in materials and methods chapter (2.3.2 and 2.3.3).   

 

3.2.1 Measurement of olfactory discrimination times for different odor pairs  

 The detailed procedure to calculate odor discrimination time is stated in sections 2.3.2.4 

and 2.3.3.7. Briefly, ODT measurement was done from tasks (blocks of 300 trials) with ≥ 80% 

accuracy. For mice trained under HR conditions, task-wise ODT was calculated by comparing lick 

responses towards 150 S+ and 150 S- trials. The time point where the licking response significantly 
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diverged for S+ and S- trials was defined as the odor discrimination time. ODT was calculated for 

mice trained under FM conditions by comparing odor sampling behavior towards S+ and S- trials. 

 The first three sets of mice were trained under FM conditions. The sequence of odorants 

used in set 1 was as follows (Figures 3-1 A-D, 3-2 A and B, numbers reflect the total number of 

trials performed): 1200 CI vs. EU, 600 AA vs. EB, 900 AA/EB 60/40 vs. AA/EB 40/60, 600 AA 

vs. EB, 900 AA/EB 60/40 vs. AA/EB 40/60, 600 CI vs. EU, 900 CI/EU 60/40 vs. CI/EU 40/60, 

600 CI vs. EU, 900 CI/EU 60/40 vs. CI/EU 40/60, 900 C+ vs. C–, 900 C+/C– 60/40 mix, 600 C+ 

vs. C–, 900 C+/C– 60/40 mix (n = 9-10 mice).  

 In the second set of experiments, odor pair sequences were as follows (Figures 3-1 E–H, 3-

2 A and B): 900 O+ vs. O–, 900 O+/O– mix, 600 O+ vs. O–, 900 O+/O– mix (n = 7 mice). In this 

set of experiments, 0.1% odor dilution was used. The 3rd set of mice (n = 6 mice) were trained on 

CI vs. EU (1200 trials), followed by O+/O- (900 trials) and O+/O- mix (1200 trials). In these 

experiments, 1% odor dilution (in mineral oil) was presented to mice. Learning performance and 

ODT were similar to those reported for set 2 (data pooled in Figure 3-3).  

 The 4th batch of mice was trained under HR conditions to investigate the sniffing behavior 

while mice were actively involved in behavioral training tasks (n = 7-8 mice, set 4). A noninvasive 

airflow pressure sensor was used to record the sampling behavior of mice. The detailed 

methodology for the measurement of breathing is provided in section 2.3.3.5 and 2.3.3.6. Mice 

were trained to the following sequence of odorants: CI vs. EU, CI/EU 60/40 vs. CI/EU 40/60, AA 

vs. EB, AA/EB 60/40 vs. AA/EB 40/60, C+ vs. C–, C+/C– 60/40 mix, O+ vs. O, O+/O– 60/40 

mix. We trained the 5th batch of naive mice on MO vs. MO task to study sampling behavior in the 

absence of odors (Figure 3-6, n = 8 mice, set 5). To identify the role of anticipation in controlling 

the sniffing behavior, a separate batch of mice was trained without a tone demarcating the onset of 

a trial (Figure 3-7, n = 8 mice, set 6). The odor sequence was identical to that used for the fourth 

batch of mice. 

 To study glomerular activity patterns for odorants used for behavioral training, another 

batch of naive mice (n = 5 mice, set 7) was used for IOS imaging. The eighth set of mice (n = 5 

mice) was trained on different dilutions of CI/EU and AA/EB ranging from 100 to 10-10 (% dilution 

in mineral oil). These mice were used for imaging under awake conditions (Figure 3-11). 

 

3.2.2 In Vivo Optical Imaging (This experiment was done by Dr. Nixon and our collaborators 

at the University of Heidelberg, Germany and University of Geneva, Switzerland)  

 The detailed protocol is mentioned in our published report (17). Briefly, using Intrinsic 

Optical imaging, glomerular activity patterns were recorded from awake and anesthetized mice (5 



 46 

mice in each set). Odorants were presented using olfactometers used for behavioral experiments, 

or a GC PAL robot system (CTC Analytics, Switzerland) was used. A light guide system with a 

halogen lamp and 700 nm interference filter was used to illuminate the OB surface. During each 

imaging session, a reference image of blood vessels was acquired using a 546 nm interference 

filter. This image allowed us to focus on the same field of view across multiple imaging sessions. 

Images were taken with a Navitar macroscope with a 3001 Imager optical system or a modified 

Fuji camera with a 2001VSD+ Imager controller. For a 10 s imaging window, sampling was done 

at 5 Hz, and for a 9.3 s imaging window, sampling was at 6.5 Hz. Irrespective of the imaging 

duration, a trial initiated with a short baseline followed by odor presentation for 4-5 s. A minimum 

of 60 s of ITI was provided between the trials to prevent adaptation and desensitization effects. The 

sequence of odor presentation was varied between experiments to minimize the influence of odor 

sequence on the analysis outcome. The image analysis was performed using custom-written scripts 

in MATLAB. To pre-process the images, all image frames were normalized to the reference frame, 

and a Gaussian filter was applied to remove non-specific signal and high-frequency artifacts. 

Regions surrounding the bulb were masked using a single exclusion mask. For each odor, images 

across different trials were averaged to obtain a single activity map. This was done to increase the 

signal-to-noise ratio. The Euclidean distance between points on the activity maps was calculated 

using a Pythagorean formula. The maps were compared only between the same mouse. However, 

for directly comparing activity maps for awake and anesthetized mice, Euclidean distance 

measured for a common odor pair (CI vs. EU) was used as a normalization factor. This was done 

to minimize the variability introduced by different imaging systems and movement artifacts that 

were more prominent in awake mice. 

 

3.2.3 Quantification and statistical analyses 

 For this chapter, all statistical analyses were performed using GraphPad Prism 7 and 8, 

Microsoft Excel, and MATLAB. We used one-way and two-way ANOVA and associated post-hoc 

tests, student’s t-test, and different non-parametric tests. The normality of data sets was determined 

using the Shapiro-Wilk test. To establish the relationship between Euclidean distance and measured 

ODTs for different odors, the following equation was applied: A1*exp(-x/t1) + y0.  
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3.3 Results 

3.3.1 Stimulus-dependent olfactory discrimination time for odor pairs of different chemical 

classes 

 To assess if odors of varying complexities exhibit stimulus-dependent ODTs, we trained 

mice on a GNG operant conditioning task using an automated olfactometer (22, 23, 257). Details 

of task habituation training and two-odor discrimination training are described in the materials and 

methods chapter (Section 2.3.2). Mice were sequentially trained to discriminate monomolecular 

odorants and binary mixtures across different chemical classes. Following task habituation, we first 

trained a group of mice for AA/EB, CI/EU, and C+/C- (set 1; see materials and methods). On 

training mice on CI/EU, within 600 trials, their performance stabilized at ≥90% accuracies, which 

continued till the end of 1200 trials (Figure 3-1 A). Next, we tested AA vs. EB following a 

previously published training scheme (22). Mice started performing AA vs. EB discrimination with 

>80% accuracy within 200 trials and reached asymptotic performance within 600 trials (Figure 3-

1 A and B). Learning AA/EB binary mixture discrimination, a more complex task, took longer. 

However, mice attained 95% accuracy by the end of the second task (end of 600 trials, figure 3-1 

A and B). ODTs were measured from the last 300 trials of each odor discrimination training 

paradigms (Figure 3-1 C). In 255 ± 16 ms, mice could discriminate between AA/EB 

monomolecular odor pair; nonetheless, they took significantly longer time for binary mixture 

discrimination (359 ± 16 ms; one-way repeated measures [RM] ANOVA, F = 31.2, p = 6.4 ´ 10-

9). 
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Figure 3-1: Odor discrimination time varies for odors pairs belonging to different chemical classes. 

(A) Training schedule and odor discrimination learning accuracies measured for different monomolecular odors and 

binary mixtures.  

Discrimination accuracies are shown as percentage correct responses averaged over 100 trials. Each data point is the 

average of nine or ten animals. The x-axis indicates the progression of time. The trials highlighted with a gray bar were 

used for ODT analysis. Odor pairs used were 1% CI vs. 1% EU, 1% AA vs. 1% EB, 1% C+ vs. 1% C-, and mixtures 

of these odorants as indicated (60/40 mixtures were used; e.g., the AA/EB mix is 0.6% AA + 0.4% EB vs. 0.4% AA 

+ 0.6% EB; all odor pairs were counterbalanced as described in materials and methods). The black dotted line running 

parallel to the x-axis indicates chance level. 

(B) Learning accuracies measured from blocks of trials indicated in (A) (gray bars).  

(C) ODTs measured from experimental blocks as in (B) for individual mice and for the population (gray and black 

lines, respectively). The ODTs were found to be longer for binary mixture odor pairs compared to monomolecular 

pairs of odorants (between AA/EB and their binary mixtures: one-way RM ANOVA, F = 31.2, p = 6.4 ´ 10–9, n = 10 

mice; CI/EU and their binary mixtures: one-way RM ANOVA, F = 17.5, p = 4.7 ´ 10–8, n = 10 mice; C+/C– and their 

binary mixtures: one-way RM ANOVA, F = 3.4, p = 0.03, n = 9 mice).  

(D) Inter-trial interval (ITI), a measure of motivation was not correlated odor similarity (AA/EB, CI/EU and their 

binary mixtures: R2 = 0.2, ANOVA F = 1.8, p = 0.2, n = 10 mice; C+/C– and their binary mixtures: R2 = 0.1, ANOVA, 

F = 0.6, p = 0.4, n = 9 mice).  

(E) Training schedule for O+/O- and its binary mixtures. Odor discrimination accuracy shown as percentage correct 

responses averaged across 100 trials. Each data point is an average of seven animals (different sets of mice as shown 

in A). Odor pairs used were 0.1% O+ vs. 0.1% O- and mixtures of O+ and O- (0.06% O+ and 0.04% O- vs. 0.04% O+ 

and 0.06% O-).  

(F) Learning accuracy was averaged for the blocks of trials indicated by gray bars.  

(G) ODTs corresponding to experimental blocks indicated in (E) (one-way RM ANOVA, F = 9.2, p = 6.3 ´ 10–4, n = 

7 mice).  

(H) ITI calculated for O+/O- monomolecular odor and binary mixtures tasks (R2 = 0.4, ANOVA, F = 1.4, p = 0.4, n = 

7 mice). Data are presented as mean ± SEM. 

  

 The training then continued with monomolecular discrimination of CI/EU and their binary 

mixtures. As this set of mice had been previously trained to CI/EU, mice discriminated CI/EU 

monomolecular discrimination with ≥90% accuracy (Figure 3-1 A). The performance transiently 

reduced upon the introduction of the CI/EU binary mixture. However, mice learned to perform 

with a ≥90% success rate by the second task (Figures 3-1 A and B). The ODTs were consistently 

longer for binary mixtures than monomolecular discrimination even after training mice to 

alternating tasks of these odors (Figure 3-1 C; n = 10 mice; one-way RM ANOVA, F = 17.5, p = 

4.7 ´ 10-8). Averaging ODT across the tasks, we observed that mice took 295 ± 10 ms to 

discriminate CI/EU monomolecular odor pair (mean ± SEM; n = 10 mice; data averaged over three 

blocks of 300 trials). However, mice took approximately 80 ms more to discriminate CI/EU binary 

mixture (373 ± 17 ms; data averaged over two blocks of 300 trials). The motivational states of mice 
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while engaged in discrimination tasks were monitored by measuring ITI. The ODT and ITI for 

different odor discriminations were not correlated (R2 = 0.2; ANOVA, F = 1.8, p = 0.2), indicating 

that ODT differences are independent of motivational factors.  

 We trained mice for C+/C- monomolecular discrimination and their binary mixtures to 

further increase the task complexity. This was specifically done as enantiomer pairs elicit 

overlapping patterns of OB activity. On measuring ODTs, we again observed a significantly faster 

reaction time for C+/C- monomolecular odorants compared to binary mixtures (345 ± 7 and 377 ± 

7 ms for C+/C- monomolecular and binary mixtures, respectively [mean ± SEM]; n = 9 mice; data 

averaged over two blocks of 300 trials; one-way RM ANOVA, F = 3.4, p = 0.03). The ITI for these 

discriminations was found to be similar, suggesting that the ODT difference between 

monomolecular odors and binary mixtures was unrelated to motivational levels in mice (Figure 3-

1 D; R2 = 0.1; ANOVA, F = 0.6, p = 0.4). Next, to examine if odor concentration affects ODT and 

test another class of odor, we trained mice to the enantiomer pair of O+/O-, and their binary 

mixtures at a lower dilution of 0.1%. This experiment was performed with a new batch of mice to 

reduce the confounding effects of previous training with 1% odor concentration. After pre-training, 

mice were trained for monomolecular discrimination of CI/EU, followed by O+/O- monomolecular 

odor discrimination and their associated binary mixtures. Mice quickly learned to perform O+/O- 

monomolecular discriminations and attained accuracies >90% by the end of 400 trials (Figure 3-1 

E). Given the complexity of binary discriminations, mice required 900 trials to reach a 90% 

performance level (Figures 3-1 E and F). Moreover, the learning performance for O+/O- binary 

mixture was similar to the previous mixture discriminations (Figures 3-1 A and B). Upon retraining 

mice to binary mixtures, there was a brief dip in learning performance. However, mice performed 

above the chance level, and accuracies peaked >95% in the last 300 trials (Figures 3-1 E and F). 

ODT calculated for O+/O- binary mixtures (355 ± 7 ms [mean ± SEM]) was significantly longer 

by ~30 ms compared to O+/O- monomolecular discriminations (Figure 3-1 G. 327 ± 13 ms; n = 7 

mice; data averaged over two blocks of 300 trials; one-way RM ANOVA, F = 9.2, p = 6.3 ´ 10-4). 

Stimulus complexity-dependent increase in ODT was independent of motivational levels of mice 

(Figure 3-1 H; R2 = 0.4; ANOVA, F = 1.4, p = 0.4). These experiments reliably reveal that mice 

need excess time for accurate discrimination of complex binary mixtures than simple 

monomolecular odorants. Also, the magnitude of ODT increase measured at a lower odor 

concentration and  a higher concentration was similar. To summarize, our results show that 

stimulus-dependent ODT is a general property of odor discrimination in mice. 
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3.3.2 Extent of stimulus dependency of ODTs varies for different odor pairs 

 Training mice to different odor classes, we observed that monomolecular odorant pairs 

were discriminated with discrete ODTs. The ODTs were measured from different batches of FM 

and HR mice. When comparing ODTs of each odor discrimination from the last 300 trials from the 

same number of mice, FM and HR mice did not show significant differences in ODTs (Figure 3-

2). Thus, we pooled ODTs across FM and HR mice to compare them across different odor classes 

(Figure 3-3). 

Figure 3-2: Comparison of ODTs for monomolecular odorants and binary mixtures measured under FM and HR 

conditions. 

Mice showed increased ODTs for binary mixtures compared to corresponding monomolecular odor discriminations 

for all odor pairs tested under FM and HR conditions. The ODTs are averaged across different experiments. Data are 

presented as mean ± SEM. DTAA/EB(FM) = 235 ± 14 ms, DTAA/EBmix(FM) = 341 ± 14 ms, DTAA/EB(HR) = 268 ± 19 ms, 

DTAA/EBmix(HR) = 333 ± 15 ms, DTCI/EU(FM) = 294 ± 14 ms, DTCI/EUmix(FM) = 365 ± 13 ms, DTCI/EU(HR) = 295 ± 13 ms, 

DTCI/EUmix(HR) = 330 ± 10 ms, DTC+/C–(FM) = 338 ± 13 ms, DTC+/C–mix(FM) = 374 ± 9 ms, DTC+/C–(HR) = 304 ± 20 ms, 

DTC+/C–mix(HR) = 344 ± 11 ms, DTO+/O–(FM) = 296 ± 10 ms, DTO+/O–mix(FM) = 335 ± 12 ms, DTO+/O–(HR) = 302 ± 12 ms, 

DTO+/O–mix(HR) = 359 ± 17 ms. Number of mice trained to different odor pairs is indicated on each bar. * Comparison 

of ODTs for monomolecular odorants with corresponding binary mixtures: Paired t-test, p < 0.05. Comparison of 

ODTs for monomolecular odorants and binary mixture discriminations under FM and HR conditions: Unpaired t-test, 

p > 0.05. 

 

We observed that AA/EB and CI/EU could be discriminated faster than monomolecular 

discriminations of carvone and octanol enantiomer pairs. In general, all monomolecular odor pair 

discrimination required distinct ODTs except the enantiomers, which showed similar ODTs 

(Figure 3-3 A. Comparison between the monomolecular odorants, ANOVA, F = 11.09, p < 0.0001; 

Fisher’s LSD: AA/EB vs. CI/EU, p < 0.05; AA/EB vs. C+/C-, p < 0.0001; AA/EB vs. O+/O, p < 

0.0001; CI/EU vs. C+/C-, p < 0.01; CI/EU vs. O+/O-, p < 0.05; C+/C- vs. O+/O-, p = 0.34). The 

results show that ODT is an odorant-specific property, with each odorant requiring a specific time 

to differentiate when performed with high accuracy. We further noticed a consistent increase in 
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ODT for binary mixtures tested compared to monomolecular odorants. However, the magnitude of 

increase in ODT differed between individual odor class (Figure 3-3 A; ANOVA, monomolecular 

odorants vs. binary mixtures, F = 12.81, p < 0.0001; Fisher’s LSD: AA/EB vs. AA/EB 60/40 mix, 

p < 0.0001; CI/EU vs. CI/EU 60/40 mix, p < 0.0001; C+/C- vs. Carvones 60/40 mix, p < 0.05; 

O+/O- vs. Octanols 60/40 mix, p < 0.01).  

Figure 3-3: Comparison of ODTs for monomolecular odorants and binary mixtures across different classes of odor 

molecules. 

(A) Average ODTs measured across different odor pair discriminations. Data are presented as mean ± SEM. DTAA/EB 

= 269 ± 9 ms, DTAA/EBmix = 346 ± 11 ms, DTCI/EU = 296 ± 6 ms, DTCI/EUmix =351 ± 9 ms, DTC+/C- = 333 ± 8 ms, DTC+/C-

mix =363 ± 7 ms, DTO+/O- = 322 ± 9 ms, DTO+/O-mix = 353 ± 7 ms. Number of mice is indicated inside each bar. The 

monomolecular odors are represented by filled bars while binary mixtures are represented by empty bars. *Comparison 

of ODTs for monomolecular odorants vs. binary mixtures: ANOVA, F = 12.81, p < 0.0001; Fisher’s LSD, p < 0.05. 

Data are presented as mean ± SEM.  
(B) The difference in ODT for binary mixtures and related monomolecular odors is inversely correlated to ODT for 

monomolecular odorants (linear regression: R2 = 0.98; ANOVA, p < 0.01).  
 

 To identify the pattern of increase in binary mixture ODTs compared to monomolecular 

ODTs, we plotted the difference in ODT between binary mixtures and monomolecular odorants 

against the ODT of monomolecular odorants. All data points were equally distributed near the 

regression line (Figure 3-3 B, R2 = 0.98, p < 0.01). This relation indicates that the increase in ODT 

for binary mixture from monomolecular odors is inversely correlated to the monomolecular 

ODTs. Furthermore, the point of crossing of the regression line with the x-axis may be defined as 

maximal ODT (~400 ms), within which the olfactory system is forced to process odor information 

in a decision-making task. This signifies that no excess time would be consumed for binary 

mixtures at maximal accuracies if the discrimination time of a monomolecular odor pair approaches 

400 ms. This observation indicates a probable upper limit for decision-making time for odor 

discriminations. 
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3.3.3 Sampling behavior does not influence the increase in ODT during binary mixture 

discrimination 

 Our results demonstrated an increase in ODT for binary mixtures compared to 

monomolecular odorants across different odor classes. We next explored the possibility of animals’ 

sampling behavior influencing the difference in ODT towards stimuli of varying complexities. To 

probe this question, we trained a batch of naive mice (set 4; see materials and methods) on different 

monomolecular odorants and their binary mixtures and measured their breathing frequency while 

involved in an odor discrimination task. Breathing patterns were measured non-invasively in HR 

mice using an airflow pressure sensor placed near one of the nostrils (refer to section 2.3.3.5).  

Figure 3-4: Sniffing behavior modulation during decision-making window. 
(A) Sniffing frequencies (SFs) were measured during the entire stimulus duration (i.e., for 2 s).  

We did not observe any difference in SF across the different odor chemical classes. Data are presented here as mean ± 

SEM. SFAA/EB = 3.56 ± 0.1 Hz, SFAA/EBmix = 3.54 ± 0.12 Hz, SFCI/EU = 4.11 ± 0.05 Hz, SFCI/EUmix = 4.13 ± 0.09 Hz, 

SFC+/C- = 4.08 ± 0.06 Hz, SFC+/C-mix = 3.99 ± 0.1 Hz, SFO+/O- = 4.15 ± 0.06 Hz, SFO+/O-mix = 4.09 ± 0.08 Hz. Comparison 

between monomolecular odors and binary mixtures (same odor pairs were used as in Figures 3-1, 3-2 and 3-3, but 
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behavioral training was done under HR conditions) was done using t-test with Welch’s correction; p > 0.05 for all odor 

pairs tested (n = 7 or 8 mice).  

(B) No difference in sniffing frequencies was observed during the decision-making window.  

The ODTs and corresponding SFs were calculated for each task (300 trials) where learning accuracy was ~80%. Data 

are presented as mean ± SEM. SFAA/EB = 3.97 ± 0.15 Hz, SFAA/EBmix = 4.14 ± 0.1 Hz, SFCI/EU = 4.53 ± 0.1 Hz, SFCI/EUmix 

= 4.79 ± 0.14 Hz, SFC+/C- = 4.63 ± 0.06 Hz, SFC+/C-mix = 4.70 ± 0.12 Hz, SFO+/O- = 4.49 ± 0.08 Hz, SFO+/O-mix = 4.70 ± 

0.1 Hz. SFs from decision-making periods for monomolecular odors and associated binary mixtures were compared 

using t-test with Welch’s correction, p > 0.05 for all odor pairs tested (n = 7 or 8 mice).  

(C) SFs calculated during, pre-, and post-decision-making periods.  

The SF increased specifically during the decision-making period for different odor pairs tested. *Comparison between 

pre-, during, and post-decision-making period: one-way ANOVA, p < 0.05; n = 7 or 8 mice. For naive mice trained on 

MO/MO discrimination task, we did not observe any significant differences during the three periods (one-way 

ANOVA, p > 0.05; n = 8 mice).  

 

 The average breathing frequency across different odors was 3.9 ± 0.05 Hz during the entire 

2 s odor application and 4.5 ± 0.05 Hz during the decision-making period (Figures 3-4 A and B; 

average ± SEM). Thus, the breathing frequency increased significantly during the decision-making 

window (Figure 3-4 C; comparison between pre-, during, and post-decision-making periods, one-

way ANOVA, p < 0.05; n = 7 or 8 mice). To check if this increase in breathing frequency is specific 

to odor discrimination, we trained another batch of naive mice to MO vs. MO discrimination task. 

Mineral oil is used as a solvent to dilute odorants for odor discrimination tasks. When breathing 

frequencies were measured in these mice, we did not observe any instances of stimulus-related 

increase in frequencies (one-way ANOVA, p > 0.05; n = 8 mice). Further, breathing frequencies 

for monomolecular odorants and associated binary mixtures were found to be similar (t-test with 

Welch’s correction, p > 0.05). This suggests that changes in sampling strategies can be confidently 

eliminated as a mechanism contributing to the increased ODT when discriminating two highly 

similar stimuli. Lastly, we did not find a difference in sniffing frequencies between different 

chemical classes except AA/EB monomolecular discrimination (ANOVA, F = 7.62, p < 0.0001; 

Fisher’s LSD: comparison of AA/EB and AA/EB 60/40 binary mixture vs. all other chemical 

classes, both monomolecular and binary mixtures, highest p < 0.01). In conclusion, sniffing 

frequency modulations during odor discrimination occur independently of odor complexity and do 

not contribute to enhanced ODT observed for binary mixtures compared to monomolecular 

odorants. 



 54 

 

Figure 3-5: Sniffing, licking, decision-making, and ODT under HR conditions. 

(A1–B4) The bottom half of each panel (raster plots of A1–B4) shows breathing initiation events of mice during the 

last 300 trials of training when performance accuracy was ≥80%. The top half of each panel (A1–B4) shows a 

histogram calculated by averaging data points with 20 ms bin resolution. The red dotted line and shaded region 

represent the mean ODT ± SD. Histograms for each odor pair have been compared with the histogram obtained from 

MO vs. MO task, which is shown for comparison in (A1) (gray line). Comparison between odor and MO histograms 

was made using Kolmogorov-Smirnov (K-S) test (p < 0.0001 for all odor pairs). The licking responses towards 

different odorants are represented as histogram distribution in green (combined from S+ and S- trials).  

 

3.3.4 Temporal relationship of sniffing and decision-making 

 On analyzing breathing frequencies throughout 2 s, we observed an increase in frequencies 

during the decision-making window. To probe the modulatory effect of breathing behavior on 

decision-making, we looked at inhalation onset incidences during the odor application period 

(Figure 3-5). By plotting all breath initiation events for the last 300 trials across all mice, a raster 

graph was plotted for different odor pairs. Each point in the raster was transformed into a histogram 

with a bin resolution of 20 ms. The breath initiation counts increased consistently for all odor 

discriminations around 250 ms after odor presentation (Figure 3-5, blue histogram). To identify if 

this increase in breath initiations is odor dependent, we compared it with a breath initiation 

histogram recorded from a naive batch of mice trained on MO vs. MO (Figure 3-6 A; ANOVA, F 

= 1.66, p = 0.16). On comparing the MO vs. MO breath initiation histogram (Figure 3-6 B, gray 

histogram) with odor discrimination task breath histogram, we observed a significant difference 
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(Figure 3-6 C; K-S test, p < 0.0001 for all odor pairs), implying that breath synchronization 

developed when mice were actively discriminating odors. To examine how breath synchronizations 

evolved during different learning phases, we categorized learning in low to high accuracy blocks 

(low accuracy blocks - ≤60% accuracy, mid accuracy blocks - 61-79%, high accuracy blocks - 

≥80%). To account for differences in the number of trials in different categories, we pooled 

monomolecular odors and binary mixtures and randomly plotted an equal number of trials. We 

observed that for a given odor discrimination, in the initial phase of training, when accuracies are 

low, multiple peaks are seen in the breath initiation count histogram (Figures 3-6 D and E). As the 

accuracies increase, mice learn to synchronize their breathing during the decision-making window. 

Figure 3-6: Naive mice show no specific sniffing peak but quickly learn to refine their breathing behavior when 

involved in an odor discrimination task. 
(A) Animals showed no learning for a MO vs. MO discrimination task (ANOVA, F = 1.66, p = 0.16). Odor 

discrimination learning accuracy is shown as percentage correct choices averaged over 100 trials. Each data point is 

an average of 8 animals. The x-axis reflects a progression of time. Data are presented as mean ± SEM.  

(B) Raster plot and histogram calculated and plotted from the last 300 trials of MO vs. MO discrimination task (n = 8 

mice). 

(C) Cumulative probability distribution plot of breath duration measured for pre- (red), post- (blue), and  decision-

making period (green). Breath duration remains unaltered during the three phases (K-S test, p = 0.11). 

(D and E) Normalized breath initiation histograms for monomolecular odors and binary mixtures. Normalization was 

done by randomly sampling 200 trials across three different accuracy blocks. The sampling was iterated over 30 times, 

and histograms for low accuracy (red), mid accuracy (green), and high accuracy (blue) blocks are plotted.  
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  A rapid switch in sniffing behavior can happen in awake animals in anticipation of odor 

and reward delivery (285, 286). We trained another set of mice (n = 8 mice, set 6) to different odor 

pairs in the absence of tone marking a trial’s onset. Without the tone, mice did not have any non-

olfactory cues to anticipate the beginning of odor delivery. By analyzing breathing behavior from 

the last 300 trials, we observed a consistent increase in breath initiation count similar to the previous 

experiment, which was conducted with tone (Figures 3-7 A1 and A2; a representative figure is 

shown for one monomolecular odor and a binary mixture). To check whether reward association 

influences the breathing behavior, we calculated breathing frequencies separately for S+ and S- 

odors. By pooling all odors, we observed that the breathing frequency was higher for S+ compared 

to S- odor trials. The increase was evident for the entire duration of odor presentation (Figure 3-7 

C1, cumulative probability, K-S test, p < 0.0001, n = 64) and during the decision-making window 

(Figure 3-7 C2, cumulative probability, K-S test, p < 0.0001, n = 64). Nevertheless, mice learned 

to increase their breathing frequency during the decision-making period for both odors independent 

of reward association (Figures 3-7 B1 and B2; representative breathing raster separately plotted for 

S+ and S- odors. Figure 3-7 D1 and D2, breathing frequencies calculated during, pre-, and post-

decision-making periods for S+ and S- odors. For S+ odors; one-way ANOVA, p < 0.0001; For S- 

odors; one-way ANOVA, p < 0.0001; n = 8 mice).  

Figure 3-7: Active modulation of breathing behavior during the decision-making window is not due to anticipation of 

odor or reward. 

(A1 and A2). Representative raster and histogram showing the breathing cycle pattern of mice during the last 300 trials 

of training for CI/EU monomolecular odor and binary mixture discriminations. Odor discrimination training was done 

in the absence of tone marking the start of a trial. 

(B1 and B2). Representative raster and histogram plotted separately for S+ and S- stimulus. For both monomolecular 

odor and binary mixtures, breathing cycle patterns show increased breath initiation counts for both rewarded and non-

rewarded stimuli. Green colored dots and histogram represent rewarded trials and magenta dots and histogram 

represent non-rewarded trials. 

C1. Comparison of sniffing frequency between S+ and S- odor trials during 2 s of odor presentation. The cumulative 

probability curve was plotted by combining all the odors. K-S test, p < 0.0001, n = 64.  
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C2. Comparison of sniffing frequency between S+ and S- odor trials during the decision-making period. The 

cumulative probability curve was plotted by combining all the odors. K-S test, p < 0.0001, n = 64. 

(D1 and D2). Breathing frequencies were calculated during, pre-, and post-decision-making periods for S+ and S- 

odors. The breathing frequencies increased specifically during the decision-making window during all S+ and S- odor 

trials. *Comparison between pre-, during, and post-decision-making period: one-way ANOVA, p < 0.0001; n =  8 

mice.  

 

 Further, to probe for the temporal relationship between sniffing and licking, we analyzed 

lick responses towards rewarded and non-rewarded stimuli. The findings show that random lick 

responses contribute only a small increase prior to the decision-making window while licking 

frequency peaks after the decision-making window. Thus, there is no obvious temporal relationship 

between sniffing and licking (Figures 3-5 and 3-8, green histogram; K-S test, p < 0.0001 for all 

odor pairs). 

Figure 3-8: Licking behavior of mice towards rewarded and non-rewarded odorants in a discrimination task. 
(A1-A4) Lick onset pattern for monomolecular odorants  

(B1-B4) Lick onset pattern for binary mixtures. Raster plots (bottom two rows of each panel, A1 – B4, n = 7-8 mice) 

show lick onset events during the last 300 trials of training across all mice, where performance accuracy was ≥80%. 

Histograms were (top row of each panel, A1 – B4, n = 7-8 mice) calculated from all trials with a bin resolution of 20 

ms. The red dotted line and shaded region represent mean ODT ± SD. Green colored dots and histogram represents 

lick onset events for rewarded trials, and magenta dots and histogram represent non-rewarded trials. K-S test comparing 
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lick initiation count histograms of rewarded and non-rewarded trials; p < 0.0001 for all odor pairs. Lick responses 

shown here are truncated between -250 to 1 s. 

 

 Interestingly, breath histograms reveal that breath initiation count peak coincides with the 

decision-making window for monomolecular odor discriminations and precedes the window for 

binary mixture discriminations. To investigate this, we analyzed and compared ODTs with sniffing 

peak latency (SPL) for each task when mice performed with ≥80% accuracy (for all tasks, mice 

had an overall accuracy ≥80 %. However, for one mouse, in one task of CI/EU he performed with 

76% accuracy). For all odor classes, binary mixture ODTs were considerably higher than 

monomolecular odorants but, the SPL remained unaltered (Figure 3-9 A, comparison between 

ODTs for monomolecular odors and related binary mixtures, paired t-test, p < 0.05; comparison 

between SPL for monomolecular odors and related binary mixtures, paired t-test, p > 0.05; Figure 

3-9 B, cumulative probability, K-S test, p = 0.8, n = 61). This indicates a substantial shift in ODTs 

compared to SPL for binary mixtures (Figure 3-9 D, cumulative probability, K-S test, p < 0.05, n 

= 61) but not for monomolecular odor discriminations (Figure 3-9 C, cumulative probability, K-S 

test, p = 0.8, n = 61). The difference between SPL to ODT for binary mixtures amounts to ~30 ms 
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Figure 3-9: Sniff-invariant odor discriminations for odor pairs of varying complexity. 

(A) Comparison between ODTs and SPL for odor pairs of varying complexity.  

The colored bars (filled – monomolecular odors, and empty – binary mixtures) are for ODTs, and gray bars represent 

the sniffing peak latency values for the corresponding ODTs. Data are presented as mean ± SEM. DTAA/EB = 286 ± 11 

ms, DTAA/EBmix = 328 ± 14 ms, DTCI/EU = 298 ± 12 ms, DTCI/EUmix = 322 ± 11 ms, DTC+/C- = 318 ± 15 ms, DTC+/C-mix = 

344 ± 7 ms, DTO+/O- = 299 ± 16 ms, DTO+/O-mix = 332 ± 13 ms, SPLAA/EB = 305 ± 9 ms, SPLAA/EBmix = 317 ± 14 ms, 

SPLCI/EU = 310 ± 9 ms, SPLCI/EUmix = 298 ± 6 ms, SPLC+/C- = 307 ± 11 ms, SPLC+/C-mix = 285 ± 19 ms, SPLO+/O- = 294 

± 18 ms, SPLO+/O-mix = 306 ± 8 ms. Comparison between ODTs for monomolecular odorants and related binary 

mixtures; paired t-test, p < 0.05. Comparison between sniffing peak latency for monomolecular odors and related 

binary mixtures; paired t-test, p > 0.05.  

(B) Comparison of SPL between monomolecular odors and binary mixtures by combining all odor pairs. The SPL 

frequency distribution is similar for monomolecular odors and binary mixtures (K-S test, p = 0.8; n = 61).  

(C and D) Comparison of cumulative probability distributions between ODT and SPL for monomolecular odors and 

binary mixtures. There is a significant shift in the distribution corresponding to the added time required to discriminate 

binary mixtures (compared with SPL, D; K-S test, p = 0.02; n = 61), but the cumulative distribution of ODTs and SPL 

remains unaltered for monomolecular odors (C; K-S test, p = 0.82; n = 61).  

(E) The difference between SPLs and ODTs for monomolecular odors and binary mixtures represented by cumulative 

probability distributions. The difference is greater for binary mixtures compared with monomolecular odors (K-S test, 

p = 0.003; n = 61). 

 

(Figure 3-9 E, cumulative probability, K-S test, p < 0.01, n = 61). The extra time needed to initiate 

a lick response for binary mixture discrimination could indicate the additional time required for 

OB circuitry to refine odor representations. In our task paradigm, we did not set any rules over the 

sampling behavior of mice. This meant that they could smell different odors according to their 

individual sniffing strategies. Due to this relaxed rule, first inhalation latencies ranged from 1 ms 

to almost the duration of one breathing cycle across different trials. Hence, we measured task-wise 

medians of first inhalation latencies for different odors, and these vary in the range of 100–200 ms. 

On a population level, first breath onset latencies were found to be similar for monomolecular odors 

and binary mixtures (Figure 3-10 A, cumulative probability, K-S test, p = 0.929, n = 61). For each 

task, we recalculated ODTs by correcting for first breath latencies. The recalculation again yielded 

longer ODTs for binary mixtures compared to monomolecular odors, corresponding to the time 

specifically required for complex odor discriminations (Figure 3-10 B, cumulative probability, K-

S test, p = 0.002, n = 61). 
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Figure 3-10: Reaction time differences between simple and complex odors are independent of first breath onset delays. 
(A) Comparison between first breath onset delays between monomolecular odors and binary mixtures.  

(B) Corrected ODT measurements after subtracting the first breath onset delay. Mice showed longer ODTs for binary 

mixtures than monomolecular odors. 

 

3.3.5 The odor discrimination time is correlated to the similarity and strength of odor-evoked 

glomerular activity patterns 

 Our findings show that variations in ODT between monomolecular odorants and their 

binary mixtures are not due to sampling behavior. Can the increased ODT be related to neural 

processing mechanisms in the olfactory system? Odors are first represented in the olfactory system 

as glomerular activity patterns. Thus, we probed if the pattern of glomerular activity with respect 

to number and activation strength correlates with ODT. We used IOS imaging to visualize 

glomerular activities in anesthetized mice for all odors used for discrimination tasks (Figure 3-11 

A). We calculated the Euclidean distance to measure the similarity between odor-evoked 

glomerular activity patterns. Across different odor pairs tested, odor-evoked glomerular activities 

were more overlapping for binary mixtures compared to monomolecular odors as calculated from 

the Euclidean distance (Figure 3-11 B; paired t-test, p < 0.0005; n = 5 mice). Amongst the 

monomolecular odors, carvones and octanols enantiomers evoked very similar glomerular 

activities compared to other odors (paired t-test, p = 0.1; n = 5 mice). The similarity in activated 

patterns reflected the longer ODT consumed for these odors during odor discrimination tasks. 

Overall, the high correlation between Euclidean distance measurements and corresponding ODTs 

establishes a robust relationship between glomerular activity patterns and discrimination times for 

monomolecular odors and binary mixtures. A strong negative correlation (Figure 3-11 C; R2 = 

0.96; ANOVA, p < 1 ´ 10-12) suggests that the time required for odor discrimination is based on 

the overlap observed for odor-evoked patterns of glomerular activity. 
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Figure 3-11: The Euclidean distance measured for odor-evoked glomerular activity maps in naive and awake trained 

mice correlates with the corresponding ODT measured for different odors. 
(A) The glomerular activity maps imaged for four pairs of monomolecular odors and related binary mixtures using 

IOS.  

(B) ED measured for glomerular activity patterns evoked by different odor pairs (comparison of monomolecular 

odorants with binary mixtures: paired t-test, p < 0.0005, n = 5 mice).  

(C) ODT measured for monomolecular odorants and binary mixtures are plotted as a function of ED for different odor 

pairs. Data were best fitted with a single exponential function (R2 = 0.96, ANOVA, p < 1 ´ 10–12) (see materials and 

methods).  

(D) ODTs measured during different discrimination tasks (10-6 IAA vs. 10-6 EB, 10-4 IAA vs. 10-4 EB, 10-2 IAA vs. 

10-2 EB, 100 IAA vs. 100 EB, 10-3 CI vs. 10-3 EU, 10-2 CI vs. 10-2 EU, 10-1 CI vs. 10-1 EU, 100 CI vs. 100 EU) are plotted 

against Euclidean distances measured for corresponding odor pairs for individual mice (R2 = 0.29, ANOVA, p < 1 ´ 

10–12). The high odor dilutions generated sparse representations in OB. Filled color bars indicate data collected from 

monomolecular odors, while empty bars correspond to binary mixtures for each individual mouse (n = 5).  

(E) The correlation between ODTs and ED averaged across mice (R2 = 0.81, ANOVA, p < 1 ´ 10–12, n = 5 mice).  

(F) ODTs measured for different odor pairs are plotted as a function of normalized ED, from both awake and 

anesthetized mice (normalized to 1% CI vs. EU, the common odor pair for both sets of experiments, R2 = 0.75, p < 1 

´ 10–12, n = 10 mice). Data are presented as mean ± SEM. 

 

 As we measured Euclidean distances for different odors in untrained anesthetized mice, we 

further tested if odor discrimination training influences this correlation. This is particularly 
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important as ODTs are generally measured when animals achieve high learning accuracies. Further, 

activation of a few glomeruli can assist mice in detecting and discriminating odorants (254). 

Therefore, we decided to test the discrimination abilities of mice across a wide range of odor 

concentrations designed to activate different numbers of glomerular units. We trained naive mice 

on different dilutions of CI/EU and IAA/EB ranging from 100 to 10-10. At the lowest concentration, 

these odors activated one or two glomeruli on the dorsal surface of OB. The training commenced 

from the lowest concentration for both odors. Mice started to learn to discriminate between the 

odors from 10-3 odor dilution of CI/EU and 10-6 odor dilution of IAA/EB. Once mice reached 

threshold accuracies, we acquired IOS images and measured the ODT for each dilution. We 

observed a negative correlation between the measured Euclidean distances and ODT on a single 

animal basis (Figure 3-11 D; R2 = 0.29; ANOVA, p < 1 ´ 10-12) and when averaged across all mice 

used for imaging (Figure 3-11 E; R2 = 0.81; ANOVA, p < 1 ´ 10-12). To substantiate the Euclidean 

distance measurements done under anesthetized and awake conditions, we normalized the 

measurements to a common odor pair 1% CI vs. EU. The negative correlation between Euclidean 

distances and ODTs occurred regardless of whether the imaging was performed in an anesthetized 

or awake state (Figure 3-11 F; R2 = 0.75; p < 1 ´ 10-12). These results indicate that the glomerular 

activity map similarity measured by Euclidean distance can accurately predict the time required for 

odor discrimination.    
 

3.4 Discussion 

 In this study, using odorants of varying physico-chemical properties, we show that mice 

take additional time to discriminate binary mixtures compared to monomolecular odors accurately. 

The sniff-invariant time taken by mice to discriminate between two odors is defined by the degree 

of similarity as well as the number and strength of glomerular representations in OB. Further, 

Euclidean distances measured between activated glomerular patterns established a metric to define 

odor pair specific ODTs. For odors evoking similar glomerular activity patterns, we predict an 

upper threshold limit of ~400–500 ms for the ODTs. This indicates that investing more time in 

sampling the odor may not improve discrimination performance. Overall, a time difference of 100-

150 ms was observed when comparing monomolecular odors with shortest and longest 

discrimination times or when comparing monomolecular odors and their associated binary 

mixtures. This difference alludes to the time needed to refine and integrate odor representations for 

complete percept formation, facilitating accurate odor discriminations. Interestingly, this 

processing time is independent of the sampling behavior for different odors. However, within a 

trial, mice learn to increase their sniffing frequencies independently of stimulus complexities 
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during the decision-making window. The results establish a neural metric of odor reaction time and 

define the temporal window for olfactory information processing while mice are involved in sniff-

invariant decision-making. 

 

3.4.1 Stimulus-dependent odor discrimination times 

 The stimulus dependency of odor reaction times remains an intensely debated topic (22, 23, 

27–31, 287–289). Using GNG behavioral paradigm, ODTs were determined for different odors. 

The ODTs varied in a stimulus-specific manner, with esters being discriminated considerably faster 

compared to enantiomers. The odor discrimination times or sampling times have been found to be 

malleable to multiple factors like reinforcement structure and motivation in decision tasks (290). 

The ITI is a parameter that indicates the urgency of animals to initiate the next trial. Animals had 

identical ITIs for all odor pairs, indicating that their motivational states had little effect on the 

variations in ODTs. The behavioral experiments under FM and HR conditions differ in motor 

responses shown by mice towards rewarded and non-rewarded odors. Discrimination times were 

measured in an FM behavioral task by comparing odor sampling patterns towards rewarded and 

non-rewarded odors. In contrast, for behavioral experiments under HR conditions, a difference in 

licking response towards rewarded and non-rewarded odors is used to calculate ODTs. Even with 

differences in motor response, our results show similar ODTs across FM and HR behavioral 

experiments. Further, in both experiments, mice were given the liberty to initiate a lick response 

within 1000 ms of odor presentation, allowing ample time to respond. Hence, our ODT 

measurements are not affected by the influence of urgency during decision-making. 

  

3.4.2 Speed-accuracy tradeoff in olfaction 

 Previously, studies reporting odor reaction times have argued both for and against stimulus-

dependent changes in odor sampling times. The speed-accuracy tradeoff concept in olfactory 

decision-making was recently challenged (30). Studying rats performing an odor categorization 

task, it was observed that accuracy improved with stimulus sampling time in a finite time window 

independent of the task complexity. Intriguingly, a difference of 30 ms was observed between the 

easiest and the most difficult mixture of octanol enantiomer pairs. In the paradigm we propose here, 

using different classes of olfactory stimuli, we observed a similar difference of ~30 ms in 

discrimination time between the monomolecular pairs and corresponding binary mixtures of 

enantiomers, revealing the time-window of olfactory information processing needed to make odor 

discrimination. In the study reported by Zariwala et al., 2013 (30), results were based on a binary 

mixture of a single odor pair of octanols. The use of a single odor pair limits the conclusion on the 
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existence of a speed-accuracy tradeoff in olfaction. Our study overcomes this limitation by 

demonstrating stimulus-dependent ODTs across different odor classes. In another recent study, 

results indicate that animals make speed-accuracy tradeoffs in odor-guided decision-making tasks 

when the task difficulty is increased either by lowering stimulus concentration or by introducing 

difficult odor mixtures (291). With these findings, there is enough evidence to conclude that odor 

reaction times in olfaction are stimulus complexity dependent.  

 

3.4.3 Sniff-invariant olfactory decisions 

 Rodents adjust their breathing behavior under different contexts as a strategy to collect 

maximum information for better odor discrimination. They show an increase in their breathing 

frequency when investigating a novel odor source or when involved in an odor operant task 

(275). The behavioral context in which animals are challenged determines the degree of such a 

change in sniff frequency. In a Two-Alternative Choice task, animals realize the possibility to 

receive a reward for all trials on performing the task accurately. In such a task, the transition in 

sniffing frequency is possibly driven by odor anticipation as animals enter into the odor-sampling 

port or by an expectation to obtain a reward (285). In the GNG paradigm, we observed that mice 

increase their sniffing frequency while making decisions, and then sniffing frequency returns to 

baseline (Figures 3-5 and 3-7). On comparing sniffing frequencies for S+ vs. S- odor trials, we 

observed increased sniffing frequencies during S+ odor presentation. The licking responses during 

S+ odor presentation may be one reason for increased sniffing frequency for S+ trials compared to 

S-trials. Further in-depth studies are needed to determine factors that influence sniffing behavior. 

However, synchronization of breathing during the decision-making window was not driven by odor 

or reward anticipation. The modulation of sniffing was invariant of the chemical class of odors, 

and in the absence of odor discrimination, sniff modulations did not occur (Figure 3-6). Thus, ODT 

for odors of varying similarity is independent of the sniffing behavior and places our result in 

agreement with a growing consensus of sniff independent odor coding in rodents (274, 280, 292).   

 

3.4.4 Determinants of the olfactory system governing discrimination time 

 The odor reaction time includes the time required for odor plumes to travel across the 

olfactory epithelium to bind onto odor receptors, odor processing in OB and olfactory cortical 

areas, decision-making, and execution of motor output. Although it is difficult to define the time 

required for each of these steps, odor-specific differences in ODT can arise from any single or 

combination of these steps. Although we used odors varying in their physicochemical properties, 

our results prove that animals’ sniffing behavior is not correlated with ODT differences between 
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monomolecular odors and binary mixtures (Figures 3-9 and 3-10). Hence, investigating odor 

sampling behavior in combination with ODT allowed us to precisely identify the time exclusively 

required for olfactory processing, as depicted in Figure 3-12. In the breath histogram example of 

AA vs. EB mixture (60/40) discrimination, breath initiations begin to rise at 250 ms and reach the 

peak around 280-300 ms. Considering that signal transduction in OSNs could start as late as the 

breath initiation curve peak (~280 ms), the time difference between monomolecular odor and 

binary mixtures ODTs (~290 ms for AA vs. EB to ~350 ms for Carvones mix; see Figure 3-10) 

stipulates the time needed to complete (1) odorant representation in OB and other olfactory cortical 

centers, (2) decision-making, and (3) execution of motor response. In that scenario, from the point 

of BIC rise, monomolecular discriminations take ~10–40 ms, and binary mixture discriminations 

need an additional 60–70 ms to attain high accuracy in odor discrimination tasks. Although it is 

hard to ascertain the time frame for different processes, subtracting the extreme ODT values 

provide the time exclusively needed for odor processing in OB and higher olfactory centers while 

discriminating complex stimuli. Based on the previous reports (14, 27), we predict that the bulk of 

this time is consumed by feed-forward and reciprocal inhibitory activities in OB. As a result, this 

means that processing in olfactory cortical areas happens on very short timescales. To conclude, 

the results indicate that odor representations are formed and refined in OB on a fast timescale 

ranging from 10-70 ms, consistent with a previous report (25). 

 

 

 

 

 

 

 

 

 

 
 

Figure 3-12: Odor discrimination on a fast timescale is supported by sniffing and licking behavior. 
An idealized sniffing curve derived from breath initiations (blue curve) and lick curves for monomolecular odors and 

binary mixtures (light and dark green curves, respectively). The first vertical blue line demarcates the time of sniffing 

increase, and the second line delineates the time for the sniffing curve to the peak. The red vertical lines depict 

monomolecular odor and binary mixtures ODT. The black arrows illustrate the times needed for odor representations 

to be formed and refined in OB, assuming that odor has activated OSNs latest by the time of peak sampling. The small 

black arrow illustrates a very brief decision-making time window for discriminating monomolecular odors (~10 ms), 



 66 

while the large black arrow represents the increased time window for discriminating binary mixtures (~30 ms). Finally, 

the time difference between the two arrows reflects only odor processing in OB and downstream olfactory regions 

since other processes like motor initiation, programming, and execution should be identical for all tasks, regardless of 

task complexity. 

 

3.4.5 A neural metric based on glomerular map similarity predicts ODT 

 The similarity of odor-evoked glomerular activity maps determines how two similar 

odorants are perceived. For different odors in our experiments, we used IOS imaging to record 

glomerular activity patterns formed on the dorsal surface of OB in awake and anesthetized mice. 

The similarity between glomerular activity patterns was quantified by measuring Euclidean 

distances (less distance reflects high similarity). This parameter reflects both geometrical 

distributions and the number and activation strength of patterns of glomerular activity. For different 

odor pairs used in this study, we observed that ODT differences lay within a range of up to 150 ms 

(Figure 3-11 C). Based on behavioral ODT measurements and patterns of glomerular activities, we 

introduce a neural metric, which describes an inverse relation between ODT and Euclidean 

distances measured for activity patterns (Figure 3-11 F). To test if the olfactory metric also applies 

to odors eliciting sparse glomerular patterns, we used diluted odorants activating only a few 

glomeruli. Even with these sparse odor representations, mice learned the discrimination task, and 

the measured ODTs were inversely correlated with Euclidean distance measurements (Figure 3-11 

D). Thus, the findings validate the neural olfactory metric that was implemented. 

 The increase in ODTs between binary mixtures and monomolecular odors was negatively 

correlated to the monomolecular ODT. Thus, the added time consumed for ODTs was more 

considerable for binary mixtures whose monomolecular components evoked dissimilar glomerular 

responses and were discriminated on a fast time scale (e.g., AA/EB). Alternatively, the increase in 

ODT was smaller for those odorant pairs that evoked highly similar maps (e.g., C+/C-) (Figure 3-

3). This result can seem implausible at first glance, but monomolecular odors, such as enantiomers, 

that elicit similar glomerular activity patterns require long discrimination times, and a small 

increase in the glomerular map similarity of associated binary mixtures will slightly increase the 

ODT. Subsequently, one can estimate an ODT of ~400–500 ms for odors activating identical 

glomerular patterns with small Euclidean distances (Figure 3-11 C). Within this time window, the 

olfactory system can make highly accurate decisions. For odor discrimination with many 

components such as white odors (293), the olfactory circuitry may fail to decorrelate activity 

patterns within the maximal ODT window. In such situations, behavioral responses are initiated on 

incomplete percepts, leading to more wrong decisions. Functionally, the upper threshold limit of 
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ODT may reflect a maximum processing time allotted towards neuronal mechanisms of pattern 

formation and decorrelation in OB and higher olfactory cortical areas before committing a decision. 

 

3.5 Future direction   
 One of the significant accomplishments of this work has been establishing a metric 

correlating glomerular activity map with ODTs. Although we used a panel of 16 odor pairs across 

different chemical classes, this falls short of the vast number of odors rodent olfactory system can 

detect and discriminate. To get around this constraint, an ideal situation would be to conduct 

chronic imaging of glomerular activity with a wide repertoire of odors and assess the corresponding 

ODTs. Patterned stimulation of discrete sets of glomeruli using optogenetics can create synthetic 

odor representations (254, 255, 294). Even though such artificial stimulation may not capture the 

full complexity of odor-evoked glomerular maps, this approach nevertheless offers a well-

controlled method to precisely modulate odor maps and can be used to establish basic principles 

of the olfactory code.  
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CHAPTER 4 

Post-odor neural activities in the olfactory bulb control long-term 

memory formation 
 

4.1 Introduction 

 When sensory systems are presented with a stimulus, neural representations are formed that 

dynamically change over time. These representations can persist for several seconds after stimulus 

cessation and are referred to as post-stimulus neural activity. Post-stimulus activities have been 

studied in many sensory systems, including mammalian olfaction (33–39, 295). The maintenance 

of post-stimulus activities depends either on intrinsic neuronal properties or on neural circuit 

connectivity (296). Even though these experiments have revealed features of post-stimulus 

responses, the physiological significance of such persistent post-stimulus activities is yet unknown. 

 In mammalian olfaction, MTCs receive odor-specific information from OSNs and transmit 

it to different olfactory cortical areas. MTC responses are dynamically modulated by inhibition 

from juxtaglomerular interneurons and lateral or dendro-dendritic inhibition in EPL and GCL (156, 

282, 297, 298). The reformatting of MTC ensemble activities helps separate overlapping odor 

inputs during odor discrimination learning, allowing animals to discriminate similar odors (14, 20). 

MTC odor responsiveness is not limited to the odor presentation period but persists even after 

cessation of the stimulus. Population analysis reveals that post-odor MTC responses are stimulus 

duration-dependent and are speculated to be primarily maintained by centrifugal inputs from the 

cortex (33, 34). However, it’s still unclear whether prolonged odor-induced MTC spiking activities 

facilitate olfactory-guided behavior. We hypothesized that sustained post-odor MTC activities 

might be a mechanism for regulating memory formation by strengthening odor representations as 

a function of time.  

  To investigate the relevance of stimulus and post-stimulus MTC activities in odor 

discrimination learning and long-term memory formation, we first trained mice to discriminate 

odorants of varying complexities by presenting stimuli for different durations. We found that 

reducing stimulus duration for complex odor stimuli led to impairment in odor discrimination 

learning and long-term memory formation. Microendoscopic imaging of GCL interneuron 

activities in awake and anesthetized mice revealed stimulus duration-dependent differences in 

interneuron activity. These differences, in part, can influence the firing activities of MTC 

ensembles during the stimulus and post-stimulus periods. We further developed a framework to 

manipulate stimulus and post-stimulus OB representations optogenetically and compared the 
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effects of these modulations on olfactory learning and long-term memory formation. Specifically, 

optogenetic modulation of OB inhibitory circuits proved that MTC spiking during odor stimulus 

controls discrimination learning while the information encoded by post-stimulus MTC spiking 

influences long-term memory formation. In conclusion, our results direct towards a novel 

mechanism for olfactory long-term memory formation, which depends on spiking activities of 

MTCs during the post-odor period.  

 

4.2 Materials and methods 

4.2.1 Animals used 

 Male C57BL6/J mice were used in behavioral experiments under FM conditions. Mice were 

6-8 weeks at the beginning of behavioral experiments. For optogenetic experiments under HR 

conditions, B6N.Cg-Gad2tm2(cre)Zjh/J line was crossed with B6.Cg-

Gt(ROSA)26Sortm32(CAGCOP4*H134R/EYFP)Hze/J or B6.129SGt(ROSA)26Sortm35.1(CAGaop3/GFP)Hze/J (The 

Jackson Laboratory) line to express ChR2 and Arch specifically in GAD2 (GAD65) positive cells. 

For GCL Ca2+ imaging, B6N.Cg-Gad2tm2(cre)Zjh/J line was crossed with 

B6.129SGt(ROSA)26Sortm95.1(CAGGCaMP6f)Hze/J for expression of GCaMP6f in GAD65 positive cells 

(Figure 4-1).  

 

 

 

 

 

 

 

 

 
Figure 4-1: Schema of genetic crosses used for experiments. 
Homozygous GAD65-Cre mice were crossed with homozygous loxP-flanked mouse lines to attain a stable expression 

of ChR2, Arch, and GCaMP6f in GAD65 +ve neurons in different sets of animals.  

 

4.2.2 Genotyping details  

 The GAD65-cre, ChR2-floxed, Arch-floxed, and GCaMP6f-floxed mice were maintained 

in homozygous conditions (as advised by Jackson Laboratories). Primer sequences for the mouse 

lines mentioned above were obtained from the Jackson Laboratories website and used for 

genotyping. Tail clips (2-3 mm in length) were collected from young mice (during weaning) for 
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genotyping, and homozygous mice were set for breeding. The F1 generation was genotyped, and 

one mouse from each litter was phenotyped to check for ChR2, Arch, and GCaMP6f expression 

by visualizing fluorescent signal under Leica SP8 confocal microscope.  

For genotyping, we isolated DNA from tissue using the KAPA Express Extract Kit (Kapa 

Biosystems), as recommended by Jackson Laboratories. We then used the KAPA2G Fast 

Genotyping Mix for setting PCR reactions (Kapa Biosystems).  

 

4.2.3 Gel electrophoresis 

2% agarose gel was prepared in standard TAE (Tris base, acetic acid, and EDTA) buffer. 

Each well of the gel was loaded with PCR product (14 µl) + loading dye (6x, 1 µl). 3-4 µL DNA 

ladder, with 100 base pair (bp) separation, was loaded into one of the wells. Since expected bands 

were far apart, operating the power unit at 100-120V for about 30-45 mins resolved the bands.  

 

4.2.4 Phenotyping details 

 GAD65-Cre mice were crossed with either ChR2-floxed or Arch-floxed mice, and one 

mouse from F1 generation was phenotyped for ChR2 or Arch protein expression in GAD65 +ve 

cells. Essentially, the brain was dissected following transcardial perfusion with 4% 

paraformaldehyde (PFA) in a 0.1 M phosphate buffer (PBS) (First, chilled PBS was injected 

throughout the system to flush out the blood. Then, 4% PFA was injected to fix the tissue). The 

dissected brain was stored overnight in 4% PFA for further fixation. The following day, the tissue 

was embedded into 2% low melting agarose (LMA, Sigma), and 50 µm free-floating coronal 

sections were taken using a vibratome (Leica VT 1200S). The sections were stained with DAPI 

(Sigma, 1:500), and confocal images were acquired to confirm the expression of ChR2 or Arch 

protein in GAD65 +ve neurons in OB (Figure 4-2 A1 and A2). 

 To check the expression of GCaMP6f, adult GAD65-GCaMP6f mice were perfused with 

20 ml chilled Dulbecco’s phosphate-buffered saline (DPBS), followed by fixing the tissue with 4% 

PFA. The saturating concentration of Ca2+ (0.9 mM) in DPBS enhances the fluorescence of 

GCaMP6f (299). After perfusion, the dissected brain was stored overnight in 4% PFA. Next, it was 

embedded in 2% low melting agarose in DPBS and cut into 50 µm free-floating coronal sections 

using a vibratome. To check co-localization with nuclei, sections were stained with 4’,6-diamidino-

2-phenylindole (DAPI) (Sigma, 1:500). Confocal images were acquired to confirm the expression 

of GCaMP6f in GAD65 +ve neurons in OB (Figure 4-2 B1 and B2). 
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Figure 4-2: Specific expression of transgenes in GAD65 +ve interneurons. 
A1 and A2. Example images of opsin expression in GAD65 +ve interneurons across different layers of OB. 

B1. Example image of GAD65 +ve interneurons in OB expressing GCaMP6f. Cell nuclei are stained with DAPI (blue).   

B2. GCaMP6f expression in GAD65 interneurons (green) in GCL.  

 

4.2.5 Training schemes for behavioral training under FM conditions 

 For behavioral training under FM conditions, mice (n = 21, divided into three groups 

containing seven mice) were trained on different stimuli duration (Figure 4-6 A). Irrespective of 

the stimulus duration, odor concentration was maintained at 1%. Odors were freshly prepared after 

each task (300 trials). Initially, mice were trained to discriminate AA vs. EB monomolecular odor 

to make them aware of the procedural rules of the task. For this experiment, stimulus duration was 

kept at 2 s across the groups. Because training parameters were kept constant, it allowed us to 

detect any cohort-specific differences in their olfactory abilities. Next, mice were trained to HX vs. 

PN monomolecular odor discrimination followed by binary mixture (60/40 mix) discrimination of 

three odor pairs (HX/PN, C+/C-, O+/O-). 
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4.2.6 Olfactory memory assessment 

 Once mice had attained maximal learning accuracy, they performed a partial reinforcement 

task that incorporated partial reinforcement theory guidelines. This task was carried out 

immediately following the completion of odor pair discrimination training. The partial 

reinforcement task helps to stabilize the reward association for a corresponding odor in a specific 

pair. This task comprised of 100 trials with 50 trials for S+ and S- odor each, and only 50% of S+ 

trials were reinforced. This was unlike the normal training paradigm in which each S+ trial is 

reinforced if performed correctly. The combination of reinforced and unreinforced trials increased 

the attention of mice. This is mainly due to the fact that the results of trials are unexpected for mice. 

The uncertainty introduced by the task in obtaining reward increases the association strength and 

allows memory to be more persistent (300). The long-term odor memory was checked for each 

odor pair one month post the partial reinforcement task. Before commencing the memory task, 

mice were trained to an unrelated odor pair of CI vs. EU until they reached high accuracy. This 

odor pair served as a background for memory assessment. The memory task was carried out once 

the CI vs. EU odor pair discrimination accuracy was consistently over 90% across all mice in the 

experimental set. The memory task comprised of 200 trials. In the first three blocks of 20 trials 

each, the background odor pair of CI vs. EU was presented. These trials allowed us to estimate the 

motivation levels of mice. In the following blocks of trials, odors whose memory was to be 

ascertained were interleaved (2 S+ and 2 S- trials) in each block of 20 trials of the background odor 

pair. In total, 14 S+ and 14 S- memory trials were presented across seven blocks of trials. None of 

the memory trials were rewarded. We monitored mice’s lick responses towards memory trials to 

calculate the memory score. 

 

4.2.7 Cranial window and light-emitting diode (LED) implantation 

 For optogenetic manipulation of olfactory behavior, LED was implanted on top of OB. This 

was done by implanting a cranial window to avoid direct contact of LED with brain tissue. Detailed 

surgical procedure for implanting cranial window and LED is explained below: 

1. Mice were anesthetized and prepared for surgery as described in section 2.3.3.1 (Steps 1-6).  

2. A circular area (window) on top of OB was marked using a 2.5 mm biopsy punch. 

3. A circular slit in the skull was made around the marked area using a blunt-ended dental drill 

bit. While thinning the skull, ACSF was regularly applied to avoid heating of the tissue 

underneath. Thinning continued till the cortical circuit vasculature became visible under the 

circular groove.  
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4. Once the slit was of desired depth, further cutting of the skull was continued using a 2.5 mm 

biopsy punch. This ensured a perfectly circular cut on the skull.  

5. Next, the tip of a sharp forcep was gently inserted on the exposed side of the slit. A sharp 

needle was kept in a horizontal position, and the central island was slowly lifted from the skull, 

exposing dura. Next, the brain surface was cleaned with ACSF. 

6.  A drop of dexamethasone, a glucocorticoid steroid, was applied to the dura surface to reduce 

inflammation. 

7. The exposed dura was covered with a circular coverslip (3 mm round, #1 thickness, Thomas 

Scientific). Dura was kept moist using ACSF, but the surrounding skull was dried using a 

cotton swab. The coverslip was sterilized with 70% isopropyl alcohol before use. 

8. The optical window was sealed to the skull with acrylic dental cement (mixed with one drop 

of cyanoacrylate gum) by covering coverslip edges.  

9. The cement was allowed to dry completely for 5-10 mins. The coverslip was then covered with 

hot-melt adhesive to avoid the mouse scratching on it. 

10. Following cranial window implantation, a head-post was implanted posterior to the window. 

For detailed protocol, refer to section 2.3.3.1 (Steps 7-12).  

11. Upon completing the surgery, the mouse was unmounted from the stereotaxic instrument and 

placed in the home cage. The cage was placed over a heating pad till the mouse regained senses 

and moved freely in the cage. During this period, body temperature was continuously 

monitored.  

12. As post-operative care, mice were fed moistened food for one day after the surgery. After a 7-

10 days recovery period, the mouse was anesthetized again using a mild dose of anesthesia. 

The mouse was mounted on the stereotaxic apparatus, and transparency of the cranial window 

was assessed and noted.  

13. The walls surrounding the cranial window was flattened using a dental drill and a ~2 mm LED 

(either blue LED (473 nm), NFSB036BT or amber LED (595 nm), NJSA172, Nichia Corp.) 

with the connector (ED11100 - ND, connector socket .207 100POS 0.050SMT, Digikey, and 

ED8250-ND Connector strip header 50POS, 0.050) was fixed on top of the cranial window 

with dental acrylic cement (Figure 4-3). Once cement dried, the mouse was unmounted from 

the stereotaxic instrument and was placed in the home cage. The same postoperative care was 

taken as mentioned previously. 
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Figure 4-3: LED implantation over the OB. 
A1. Schematic of a 473 nm blue LED with a connector fixed on top of a circular cranial window over OB in GAD65-

ChR2 expressing mouse used for optogenetic stimulations during odor discrimination tasks. A2. A 595 nm amber LED 

with a connector fixed on top of a circular cranial window over OB in GAD65-Arch expressing mouse. 

 

4.2.8 Standardization of LED power 

 The implanted LEDs were operated using a LED driver (LEDD1B, T-Cube LED Driver, 

ThorLabs) during optogenetic behavioral tasks. The goal of optogenetic experiments was to assess 

whether modulation of GAD65 +ve interneurons during different phases of stimulus presentation 

could influence odor discrimination learning and long-term memory formation. As the degree of 

transparency of the cranial window could vary amongst mice, optimal power needed to manipulate 

the majority of GAD65 +ve interneuron activity would also vary. Hence, we standardized the light 

power separately for each mouse to ensure illumination over a large area without increasing tissue 

temperature. For every light power setting, we measured the surface temperature of LED and 

wattage using a laser power and energy meter (LabMax-TOP, Coherent). We selected only those 

power settings which emitted heat around or below ambient body temperature.  

 To optimize LED power, mice were first trained to learn procedural aspects of odor 

detection tasks. We then modulated GAD65 +ve OB interneurons using different light stimulation 

protocols. Specifically, blocks of 20 trials with light stimulation were interleaved with trials 

involving no light stimulation. For the first optogenetic experiment with GAD65-ChR2 mice, we 

optimized the light power to photostimulate GAD65 +ve interneurons during odor stimulus of 0.5 

s duration. A 40 Hz stimulation of blue LED (473 nm) was synchronized during odor presentation. 

LED power was selected such that licking response during light trials matched licking response for 

trials without light stimulation (Figure 4-4 A1). In contrast, for experiments wherein we desired 

post-stimulus inhibition of MTC activities, the light stimulation protocol was modified. In this case, 

40 Hz stimulation of blue LED was paired with a 2 s odor presentation. Overstimulating inhibitory 
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activity has previously been shown to completely inhibit MTC activity, which in turn shuts down 

licking behavior (14). By progressively increasing the light power, we overstimulated GAD65 +ve 

interneurons. With increasing LED power, we saw a decrease in licking probabilities, and at the 

highest power, mice stopped licking (Figure 4-4 A2). For odor discrimination tasks to study the 

relevance of post-odor inhibition of MTC activities, we selected the highest light power, which 

preserved the licking response in mice. 

 The LED optimization protocol for GAD65-Arch mice was the same for both sets of 

experiments. Similar to previous experiments, mice were trained to odor detection tasks. Once they 

were aware of the procedural rules, light power was optimized by interleaving light trials with no 

light trials. During the light trials, 1 Hz stimulation of amber LED (595 nm) was synchronized 

during odor presentation for 2 s. The LED power was selected such that the licking response during 

light trials matched the licking response for trials without light stimulation (Figure 4-4 B1 and B2).   

 

  

 

 

 

 

 
 

Figure 4-4: Optimization of LED power for optogenetic modification of GAD65 +ve interneurons during odor 

discrimination behavior. 
A1. Licking response evoked by odor presentation (beginning at time 0) for GAD65-ChR2 expressing mice (n = 5 mice). 

The scheme for odor and photostimulation is provided above the graph. The LED power eliciting licking similar to no light 

trials was chosen for the odor discrimination experiment (red trace with the red shaded area). Note that licking response was 

averaged across mice. Each mouse exhibited differential licking at different LED powers; thus, LED power was individually 

determined. The solid lines and shaded areas represent mean and s.e.m., respectively.  
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A2. Adjustment of LED power for optogenetic inhibition of post-odor MTC firing activities in GAD65-ChR2 expressing 

mice. Licking patterns evoked by odor presentation with different light intensities for all mice (n = 7-8 mice for different 

powers). We observed that increasing LED power progressively suppressed licking behavior compared to the licking during 

no light trials (red trace). For each mouse, the highest power which preserved licking response during odor presentation was 

selected for odor discrimination tasks. 

B1. Licking response evoked by odor presentation (beginning at time 0) for GAD65-Arch expressing mice. The scheme for 

odor and photostimulation is provided above the graph. The LED power eliciting licking similar to no light trials is chosen 

for the odor discrimination experiment (blue trace with the blue shaded area). The licking response was subdued at higher 

light powers and avoided for optogenetic modulations. 

B2. Adjustment of LED power for optogenetic stimulation of post-odor MTC firing activities in GAD65-Arch expressing 

mice. The scheme for odor and photostimulation is provided above the graph. The power was selected such that licking 

remains similar to no light trials (blue trace with the blue shaded area). The lowest power, which evoked a licking response 

similar to light trials, was chosen to avoid heating issues as photostimulation during odor discriminations would subsequently 

be for 4 s at 1 Hz frequency.  
 

4.2.9 Optogenetic modulation of odor discrimination behavior 

 For optogenetic experiments, different photostimulation schemes were utilized for different 

experiments. In brief, for experiments with photostimulation during odor presentation, the 

breathing rhythm was monitored using a non-invasive airflow sensor to synchronize odor and light 

onset according to the respiratory cycle. Thus, for ChR2 expressing mice (n = 5) trained to 0.5 s 

odor stimulus, light stimulation and odor delivery initiated at the middle of an exhalation cycle and 

lasted for 0.5 s. In total, 20 pulses of 5 ms duration at a frequency of 40 Hz were flashed during the 

odor period. An external blue LED lit with tone and stayed lit until the odor stimulus ended to 

obscure light flashed on the mouse’s skull. The discrimination training paradigm was similar to 

previous chapters.  

 For photoinhibition of GAD65 +ve OB interneurons, Arch expressing mice (n = 7) were 

trained to 2 s odor stimulus. The amber LED pulses and odor delivery initiated at the middle of an 

exhalation cycle and lasted for 2 s. During the odor period, two 1000 ms pulses at a frequency of 

1 Hz were flashed in total. Light flashes were concealed by using an external amber LED that lit 

up with a tone and shut off when the odor stimulus was over. 

 For post-odor stimulations, LED was flashed at the end of odor stimulus and sustained for 

4 s. The stimulation frequency was kept the same as in previous experiments. The external LED 

turned on with tone and remained lit till the end of photostimulation. In ChR2 mice (n = 7-8), odor 

stimulus was for 2 s followed by 4 s post-odor stimulation. For Arch mice (n = 9), one 

discrimination task (HX vs. PN binary mixture task) was performed with 0.5 s stimulus and the 

other with 2 s odor stimulus (Octanols binary mixture task). In both cases, post-odor stimulation 

was for 4 s. 
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4.2.10 Scheme of training for optogenetic experiments 

 For all optogenetic experiments, the sequence of odor training was kept constant. First, 

mice were trained to HX vs. PN monomolecular odor discrimination task without any 

photostimulation. This task ensured that mice across different batches have similar olfactory 

abilities. Next, mice were trained to HX vs. PN binary mixture task with photostimulation. To 

assess if the behavior observed in this task was specific to photostimulation, Carvones binary 

mixture discrimination task was performed in the absence of light stimulation. To reaffirm the 

effects of photostimulation on olfactory behavior, Octanols binary mixture discrimination task was 

performed with photostimulation.  

 

4.2.11 Microendoscopic Ca2+ imaging 

 For Ca2+ imaging, two new sets of naive GAD65-GCaMP6f mice were used (5 mice used 

for imaging under anesthetized conditions while 7 mice used for imaging under awake conditions).  

 

4.2.11.1 Implantation of Imaging Canula 

1. The barrel on top of the dummy microscope body was rotated clockwise till resistance was felt, 

and then an additional ¼ turns were made. The left and the right clamp were pulled outwards 

using a snapping tool. Then the protective cannula was removed. 

2. To secure an imaging cannula on the dummy microscope body, it was inserted onto the dummy 

microscope body. The left and right clamps were clipped into place using the snapping tool. 

Next, the barrel was rotated anti-clockwise until it became loose. This ensured that clamps were 

tightly holding the cannula. The barrel was never unscrewed completely. 

3. Next, a Fluorescent microscope holder (FMH) was installed as follows; Connector caps from 

microscope M3 optical connector and FMH ferrule were removed. The ferrule was inserted 

into the M3 optical connector. This connection was secured by screwing the FMH extremity. 

The FMH was then attached to the stereotaxic apparatus using FMH clamps. When ready for 

use, the output protective cap was removed from the canula by unscrewing it.  

4. The surgical preparation and craniotomy were performed as described previously. A 1 mm 

circular piece of bone was removed over one hemisphere of the OB. 

5. To prepare for implantation, an adjustment ring was first screwed to the lens assembly. This 

was done by placing a couple of drops of slow-drying cyanoacrylate glue to secure the ring to 

the metal thread of the imaging cannula. Care was taken to avoid the application of glue on the 

imaging lens. The ring is used to stabilize the system on the skull when the implanted cannula 

is at an appropriate depth. For imaging OB, a reduced footprint adjustment ring was used.  
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6. A path was created for lens implantation to a desired depth by slowly lowering a blunt Hamilton 

needle using the stereotaxic arm for canula installation.  

7. Next, the imaging cannula attached to the dummy microscope was placed above the cranial 

window. The dummy microscope assembly was lowered into the craniotomy hole at an 

approximate velocity of 1 µm/sec to allow proper penetration.  

8. To secure the cannula on skull, a mixture of cyanoacrylate gum and dental acrylic cement was 

applied between the protrusion ring and surface of the skull. Once the cement dried, a head-

post was implanted posterior to the implanted lens (detailed protocol in section 2.3.3.1). 

9. After the surgery, the dummy microscope was unclamped from the imaging cannula. This was 

done by rotating the barrel in an anti-clockwise direction. Next, cannula clamps were unclipped 

using the snapping tool, and the dummy microscope was removed. The protective cap was 

placed onto the implanted cannula to protect the rod lens.  

10. A recovery time of at least three weeks was provided to mice after surgery and before beginning 

the imaging sessions. 

 

4.2.11.2 Image acquisition and image processing  

 A snap-in fluorescence microscope body (OSFM model L, Doric lenses Inc., Canada) 

mounted on the implanted GRIN cannula (1 mm length) was used to image GAD65 +ve 

interneurons in the GCL of OB. The working distance of the cannula was 80 µm, with a focal range 

of 50 µm. The CE:YAG fluorescence source (465 nm output, Doric Lenses Inc.) was tuned to 250-

700 mA. The field of view corresponding to 350 μm ´ 350 μm (further binned 2 ´ 2 times) was 

imaged at a frame rate of 10 Hz. For imaging in an anesthetized condition, an I.P. injection of 

Ketamine (50 mg/Kg body weight) and Xylazine (10 mg/Kg body weight) was administered before 

every session. In each session, 60-80 odor trials were presented to mice at an interval of 13.2 s. 

The sequence of odor presentation was pseudorandomized. For imaging under awake conditions, 

mice were pretrained to odor detection tasks mentioned in materials and methods. After pretraining, 

imaging was done while mice were passively exposed to different odors. Each odor was presented 

for 20 trials in this task, and each session consisted of 80 trials. The sequence of odor delivery was 

randomized. The imaging session spanned over two weeks, with one session a day. Ca2+ imaging 

was synchronized to the trial onset by an external TTL signal from the olfactometer. Specifically, 

a tone at the beginning of a trial triggered the microendoscope. The imaging continued for 10 s. 

Within this 10 s, the first 1.2 s was a baseline, followed by odor delivery either for 0.5 s or 2 s. The 

trial-by-trial imaging data was annotated by comparing the trial sequence generated by the 

olfactometer result file. 
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 Image analysis was done using custom scripts in MATLAB (Mathworks Inc.). Pre-

processing of images was performed by cropping images to 300 µm ´ 300 µm frames. This was 

done to remove vignettes that had developed around the edges of raw images. The whole image 

was considered as a global region-of-interest (ROI) to analyze population activity within the frame. 

In few images, the microscope dropped frames within a trial. Such trials were detected and 

excluded from the analysis. The relative changes in fluorescence for each frame were calculated 

by F(t)/F0 = [F(t) – F0]/F0, where F0 is the mean activity during the baseline. F0 was calculated 

separately for each trial. The latency to the peak was calculated by measuring the time to attain 

maximum amplitude from odor onset for a given trace. The maximum change in fluorescence was 

calculated by averaging the trials for a given odor. The overall activity for a single trial was 

measured by calculating the total area under curve (AUC). 

 

4.2.12 Immunohistochemical estimation of Arc protein in different areas of olfactory cortex 

 A new batch of WT, GAD65-ChR2, and GAD65-Arch mice (n = 4-5 mice) were trained to 

HX vs. PN monomolecular odor discrimination followed by binary mixture discrimination of 

Octanols enantiomer. For octanols binary mixture discrimination, odor stimulus was followed by 

post-odor photostimulation. To keep the conditions the same, even WT mice were trained with 

photostimulation. At the end of the training, three mice were randomly processed for 

immunohistochemical analyses. Mice were perfused using 4% PFA, and the dissected brain was 

stored in 4% PFA at 4°C for 16-18 hrs. Using a vibratome (Leica VT 1200S), 50 µm floating 

sagittal sections were taken. Three washes of 15 mins each were given to these sections using 1X 

Tris Buffered Saline (TBS). The sections were then incubated in blocking solution (5% Bovine 

Serum Albumin [BSA] in 1% Triton-X in TBS [TBST]) and placed on a rocker for 1.5 hrs. 

Following incubation, sections were transferred in 1° antibody (Rabbit anti-Arc, 156003, Synaptic 

Systems) diluted to 1:1250 in blocking solution (1% BSA in 0.1% TBST) for 12-14 hrs at 4°C. 

After the incubation, three washes of 15 mins with TBS were given to sections. Next, sections were 

incubated with a 2° antibody (Anti-Rabbit Alexa Fluor 594, Jackson Immunoresearch), diluted to 

1:500 in 1% BSA, and kept for incubation at RT for 2 hrs. After incubation with 2° antibody, 

sections were washed three times with TBS (15 mins each). In the last wash, DAPI (Sigma, 1:500) 

was added to TBS to label cell nuclei. Following the washes, sections were transferred to fresh 

TBS till they were mounted on slides. Vectashield® anti-fade mounting medium (Vector Labs, H-

1000) was used to retain the fluorescence for an extended period. Confocal imaging was done to 

visualize Arc labeled nuclei across different olfactory areas. Quantification of Arc +ve cells was 

done using FIJI software (US National Institutes of Health). Briefly, a 5 ´ 5 median filter was 
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applied to image stacks. Cells were then segmented from the background using a robust automatic 

threshold selection plugin. In the case of clustering, a watershed algorithm was applied. The total 

percentage of Arc +ve cells was estimated by comparing it with the total number of cells in the 

area labelled with DAPI. 

 

4.3 Results 

4.3.1 Olfactory stimulus duration influences odor discrimination learning and long-term 

memory formation 

To investigate how odor representations and olfactory discriminability change with 

stimulus time, we designed our behavioral paradigms by training mice to three different odor 

stimuli duration – 2 s, 1 s, and 0.5 s (Figure 4-6 A). The shortest stimulus duration of 0.5 s was 

chosen by considering the predicted upper limit of ODT at maximal accuracies (Figure 3-3 B). A 

set of 21 male mice were first trained to AA vs. EB monomolecular odor discrimination task with 

2 s stimulus duration. On training mice on AA vs. EB task, within 900 trials, their performance 

stabilized at ≥ 90% accuracies, which continued till the end of 1200 trials. Mice were then divided 

into three groups of seven mice each (to be conditioned on different stimuli durations). On random 

assignment, groups had similar learning accuracies for monomolecular discrimination of AA vs. 

EB (Figure 4-5, one-way ANOVA, p = 0.9384). The three groups of mice were then trained on a 

monomolecular odor discrimination task of HX vs. PN with different stimuli durations. All groups 

of mice started performing HX vs. PN discrimination with > 80% accuracy within 200 trials and 

reached asymptotic performance by the end of 400 trials. Overall, we observed that changing the 

stimulus duration did not influence learning accuracies for monomolecular odor discrimination task 

(Figure 4-6 B, a pairwise comparison made between each time point across three groups using two-

way ANOVA and Tukey’s multiple comparison test, F (22,216) = 0.5819, p = 0.9330). On the 

other hand, reducing the stimulus duration affected the learning efficiency for HX vs. PN binary 

mixture discrimination. Mice trained on 0.5 s stimulus displayed a slow learning pace compared to 

groups trained with 1 s and 2 s stimulus duration (Figure 4-6 C1, two-way ANOVA; for HX vs. 

PN binary mix, p = 0.0004). To increase the complexity of the task further, mice were trained on 

two different enantiomer mixtures. As shown in the previous chapter, enantiomer mixtures 

represent a class of odor with overlapping patterns of glomerular activity. Mice were sequentially 

trained to binary mixtures of C+/C- and O+/O-. With increasing complexity, learning deficits were 

observed in groups trained with shorter stimulus duration compared to the 2 s group. The extent of 

learning deficit was more severe for mice trained with 0.5 s stimulus with the accuracies reaching 
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~80% only after 1000 trials (Figure 4-6 C2 and C3, two-way ANOVA; for Octanols binary mix, p 

= 0.0157; for Carvones binary mix, p < 0.0001).  

 

 

 

 

 

 

 

 
Figure 4-5: Similar learning accuracies across different cohorts of mice. 
Training accuracies were measured for AA vs. EB monomolecular odor pair discrimination. Mice were trained with a 

stimulus duration of 2 s. After the completion of 1200 trials, mice were randomly segregated into different groups. On 

forming the groups, each group had similar learning accuracies (ordinary one-way ANOVA, p = 0.9384). 

 

 Our results demonstrate a decrease in the learning performance with short stimulus 

duration. Does odor discrimination training with different stimulus duration also influence the way 

animals form a memory of rewarded and non-rewarded stimulus? To investigate this, we assessed 

olfactory memory after thirty days of training in the same batch of mice. To assess memory, mice 

were trained to a non-related odor pair (CI vs. EU). Once mice reached asymptotic accuracies, 

memory trials were interleaved within CI/EU trials, and the response towards memory trials was 

assessed (Please refer to materials and methods). For the monomolecular odor (HX vs. PN), mice 

correctly responded towards memory trials, and all groups had a memory accuracy of > 90% 

(Figure 4-6 B2, one-way ANOVA, p = 0.3606, R2 = 1.08). Next, the memory for binary mixtures 

was checked and compared between the groups. For both the binary mixtures, we observed a 

significant reduction in long-term memory performance for mice trained with shorter stimuli 

durations (Figure 4-6 D1-3, one-way ANOVA; for HX vs. PN binary mix, p < 0.0001; for Octanols 

binary mix, p < 0.0001; for Carvones binary mix p < 0.0001). This observation suggests that a 

longer duration of odor stimulus during odor discrimination training helps in stabilizing long-term 

memory formation. 
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Figure 4-6: Olfactory learning and long-term memory formation are critically dependent on stimuli durations. 

A. Scheme of odor presentation for variable stimuli durations. Irrespective of the stimulus duration, the reaction time 

window was set at 2 s. Mice registered their lick response towards a rewarded odor during this reaction time window. 

B. For monomolecular odor discriminations, mice across three groups had similar learning accuracies and long-term 

memory performance. (1) Learning accuracies were measured for three different stimuli durations (2 s, 1 s, 0.5 s 

represented by red, yellow, and gray lines, respectively). Discrimination learning accuracy is shown as percentage 

correct choices averaged across 100 trials. Each data point is an average of 7 mice. A pairwise comparison was made 

between each time point across three groups using two-way ANOVA with Tukey’s multiple comparison test, F 

(22,216) = 0.5819, p = 0.9330. Comparisons were made keeping the 2 s group as a reference group. Each point indicates 

mean ± sem. (2) Memory responses were calculated for groups of mice presented with stimuli of different durations. 

No significant difference was observed for monomolecular odor discrimination of HX vs. PN (one-way ANOVA, F = 

1.08, p = 0.3606, R2 = 1.08). 

C. With increasing odor complexities, mice trained on 1 s and 0.5 s stimuli durations showed slower learning as 

compared to mice trained on 2 s stimulus (two-way ANOVA; (1) for HX vs. PN binary mix, F(16,162) = 2.861, p = 

0.0004; (2) for Carvones binary mix, F(22,216) = 8.219, p < 0.0001; (3) for Octanols binary mix, F(22,216) = 1.831, 

p = 0.0157). 
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D. For binary mixtures, the memory was significantly low for mice trained with 1s and 0.5s odor stimulus as compared 

to the 2 s group (one-way ANOVA; (1) for HX vs. PN binary mix, F = 24.86, p < 0.0001, R2 = 0.7031; (2) for Carvones 

binary mix, F = 26.78, p < 0.0001, R2 = 0.7485; (3) for Octanols binary mix, F = 34.14, p < 0.0001, R2 = 0.7914). (n 

= 7 mice). 

 

4.3.2 The OB GABAergic interneuron activity is dependent on odor stimulus duration 

 Having identified major differences in olfactory behavior with changing stimuli durations, 

we next asked how olfactory representations change with odor presentation time. The mice’ ability 

to discriminate between two similar odors depends on the extent of pattern separation in MTC 

activity ensembles (14, 20, 41). On odor stimulation, OB interneurons are activated with widely 

distributed firing responses which inhibit MTCs, decorrelating stimulus representations. We sought 

to elucidate OB inhibitory interneuron activity in response to odor stimuli of varying durations. To 

record from the majority of OB GABAergic interneurons, we expressed genetically encoded Ca2+ 

indicator GCaMP6f in GAD65 +ve interneurons. To record Ca2+ dynamics from GAD65 +ve 

interneurons, we implanted a microendoscopic GRIN lens in GCL of OB at a depth of -1 mm. 

Taking advantage of the dense expression of GCaMP6f throughout GCL, we recorded population 

activity within the field of view. We imaged Ca2+ transients from OB in separate batches of 

anesthetized and awake mice while passively exposing them to six odorants presented for either 

0.5 s or 2 s duration. In both sets of mice, each odor was presented for 20 trials in a 

pseudorandomized manner. This was done to minimize the effects of habituation, and we observed 

robust responses across different trials in both sets of mice when presented with different stimuli 

(Figure 4-7 A, B, C, and D). When GAD65 +ve interneuron activity was recorded under anesthesia, 

we routinely observed a slow rise and decay in Ca2+ transients independent of the stimulus duration 

(Figure 4-7 C). For 0.5 s stimulus, Ca2+ signals consistently peaked in the post-stimulus period 

(~850 ms, averaged across six different odors), while Ca2+ signals peaked at around 1900 ms when 

the odor was presented for 2 s. In comparison, the increase in Ca2+ signals was instantaneous in 

response to odor presentation in awake animals (Figure 4-7 D, E, and F. For 0.5 s stimulus, peak 

latency between awake and anesthetized mice, two-tailed t-test, p < 0.0001, t = 11.04, df = 10. For 

2 s stimulus, peak latency between awake and anesthetized mice, two-tailed t-test, p < 0.0001, t = 

21.69, df = 10). The fast kinetics of Ca2+ signals in awake conditions is probably due to higher 

breathing frequencies compared to basal breathing rates under anesthetized states. For 2 s stimulus, 

additionally, we observed a difference in the maximum fluorescence change of Ca2+ signals 

between awake and anesthetized animals (Figure 4-7 G. For 0.5 s stimulus, peak amplitude between 

awake and anesthetized mice, two-tailed t-test, p = 0.4843, t = 0.7264, df = 10. For 2 s stimulus, 

peak latency between awake and anesthetized mice, two-tailed t-test, p = 0.0017, t = 4.26, df = 10). 
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Further, the overall activity was compared by measuring the AUC. For the two stimuli duration, 

activity was found to be greater when imaged in mice under anesthesia compared to awake mice 

(Figure 4-7 H1 and H2. For 0.5 s stimulus, AUC between awake and anesthetized mice, K-S test, 

p = 5.15 ´ 10-30. For 2 s stimulus, AUC between awake and anesthetized mice, K-S test, p = 2.09 

´ 10-17).  

Figure 4-7: The response kinetics of GAD65 +ve OB interneurons under awake and anesthetized conditions. 

A and B. Example of GAD65 +ve OB interneuron response to a monomolecular odor and a binary mixture presented 

for two different stimuli duration under anesthetized (A) and awake (B) conditions. Each individual trace represents 

an odor-evoked GCaMP6f response to the odor stimulus. The trials are arranged in the sequence of odor presentation 

to the mouse.  
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C1 and C2. Pseudo-color heatmaps of Ca2+ dynamic responses evoked by either 0.5 s or 2 s odor application (black 

dotted lines) for a monomolecular odor and a binary mixture under anesthetized condition. Data were acquired from 5 

mice with 20 odor presentations. Data from all trials are arranged in decreasing order of Ca2+ response during odor 

application. 

D1 and D2. Pseudo-color heatmaps of Ca2+ dynamic responses evoked by either 0.5 s or 2 s odor application (black 

dotted lines) for a monomolecular odor and a binary mixture under awake condition. Data were acquired from 7 mice 

with 20 odor presentations. Data from all trials are arranged in decreasing order of Ca2+ response during odor 

application. 

E1 and E2. Average Ca2+ responses were used to measure response kinetics under different stimuli conditions. The 

different parameters calculated are the latency to peak, peak amplitude, and total response by measuring AUC.  

F. The latency to peak was calculated by measuring the time to reach the maximum signal after odor presentation. The 

latencies are calculated by averaging the response for each odor (Total odors used = 6). For 0.5 s stimulus, peak latency 

between awake and anesthetized, two-tailed t-test, p < 0.0001, t = 11.04, df = 10. For 2 s stimulus, peak latency between 

awake and anesthetized, two-tailed t-test, p < 0.0001, t = 21.69, df = 10. 

G. The peak amplitudes were measured for each odor and compared between awake and anesthetized mice across 

different stimuli durations. For 0.5 s stimulus, peak amplitude between awake and anesthetized, two-tailed t-test, p = 

0.4843, t = 0.7264, df = 10. For 2 s stimulus, peak latency between awake and anesthetized, two-tailed t-test, p = 

0.0017, t = 4.26, df = 10. 

H1 and H2. The total interneuron activity was compared between awake and anesthetized mice for two different stimuli 

durations. The AUC is plotted in the form of a cumulative probability curve. For 0.5 s stimulus, AUC between awake 

and anesthetized, K-S test, p = 5.15 ´ 10-30. For 2 s stimulus, AUC between awake and anesthetized, K-S test, p = 2.09 

´ 10-17. 

 

 We next investigated the kinetics of Ca2+ signals for different stimuli durations in awake 

mice. For all odors tested, differences in interneuron activities were consistently observed between 

0.5 s and 2 s stimulus duration (Figure 4-8 A1-6). To quantify stimuli duration-dependent 

differences, we measured AUC and peak amplitudes for different odors across seven mice. In 

awake conditions, OB inhibitory interneuron activity was higher when the stimulus duration was 2 

s. Both AUC and peak amplitudes were greater for 2 s stimulus when averaged across the different 

odors (Figure 4.8 B and C. For AUC between 2 s and 0.5 s stimulus, K-S test, p = 1.72 ´ 10-50. For 

peak amplitude between 2 s and 0.5 s stimulus, K-S test, p = 0.0031).  In summary, odor-evoked 

activities of GAD65 +ve interneurons are much stronger with longer stimuli durations, indicating 

the role of stimuli duration in driving inhibitory activity within OB and thereby modulating 

olfactory representations. 



 86 

Figure 4-8: Comparison of GAD65 +ve interneuron activity in awake animals for 0.5 s and 2 s stimulus. 

A1-6. Average Ca2+ responses for the six odors presented either for 0.5 s or 2 s stimulus (red and black traces, 

respectively). Irrespective of odor class and duration of the stimulus, onset latencies are very similar across different 

conditions. 

B. The total interneuron activity was compared between 0.5 s and 2 s stimulus durations. The AUC is plotted in the 

form of a cumulative probability curve (K-S test, p = 1.72 ´ 10-50). 

C. The peak amplitudes were measured for each odor and compared between 0.5 s and 2 s stimulus (K-S test, p = 

0.0031).    

 

4.3.3 Modulating OB inhibitory activity during stimulus presentation influences odor 

discrimination learning without affecting long-term memory formation 

  Our Ca2+ imaging data suggest considerable differences in the interneuron activity during 

odor application in response to a short and long stimulus. Can this difference in synaptic inhibition 

explain the olfactory discrimination learning and long-term memory deficits we observed under 

different stimuli conditions? We trained two sets of head-restrained mice (expressing either ChR2-

EYFP or Arch-GFP in the GAD65 +ve interneuron population) to study the causality between odor 

discrimination performance and synaptic inhibition on the same odor discrimination tasks. By 

expressing ChR2 and Arch in separate sets of mice, the aim was to increase the inhibitory strength 

when stimulus duration was short while reducing the inhibitory strength when stimulus duration 

was long. Initially, both the groups were trained to HX vs. PN monomolecular odor discrimination 

to assess their olfactory abilities. Both sets of mice performed with similar accuracy compared to 

WT control mice (Figure 4-9 A1, two-way ANOVA, p = 0.9006). Mice were next trained on two 

different binary odor mixture discrimination tasks. Specifically, ChR2 expressing mice were 

trained to 0.5 s stimulus duration, and Arch expressing mice were trained to 2 s of stimulus duration 
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(See materials and methods for detailed protocol). In either case, photostimulation was restricted 

to the period of odor presentation. Photostimulating GAD65 +ve interneurons during short odor 

presentation improved the learning efficacy in ChR2 expressing mice. Additionally, they learned 

complex odor discriminations with the same efficiency as the control WT mice trained to 2 s 

stimulus (Figure 4-9 B, two-way ANOVA, (1) for HX vs. PN binary mix, p = 0.0004; (2) for 

Octanols binary mix, p = 0.0012). On the other hand, Arch expressing mice had difficulties in 

learning complex discrimination tasks even with 2 s of odor stimulus and managed to reach 

accuracies similar to WT animals only in the last task. The specificity of photostimulation was 

assessed by training mice to Carvones binary mixture task without photostimulation. Without light 

stimulation, ChR2 animals had slower learning compared to WT and Arch animals (Figure 4-9 B3, 

two-way ANOVA, p < 0.0001). In conclusion, optogenetically controlling the inhibitory strength 

during odor presentation resulted in bidirectional modulation of olfactory learning performance. 
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Figure 4-9: Optogenetic manipulation of GAD65 +ve interneurons during stimulus presentation influences odor 

discrimination learning without affecting long-term memory formation. 
A. (1) Training ChR2 and Arch expressing mice to HX vs. PN monomolecular odor discrimination without 

photostimulation. ChR2 animals were trained to 0.5 s odor (blue trace, n = 5) while Arch animals were trained to 2 s 

odor duration (amber trace, n = 7). The performance was compared with WT control mice trained to 2 s odor application 

(gray trace, n = 7). All three groups of mice had similar learning efficiencies (two-way ANOVA, F(2, 192) = 0.1047, 

p = 0.9006). (2) Memory responses were similar across the groups (one-way ANOVA, F = 1.714, p = 0.2136). 

B. Increasing the inhibition on MTCs by photostimulating GAD65 +ve interneurons increased the learning pace in 

ChR2 expressing mice while disinhibiting the MTCs led to learning impairment as compared to control WT mice. 

*Pairwise comparison was made between each time point across three groups using two-way ANOVA and Tukey’s 

multiple comparison test ((1) for HX vs. PN binary mix, F(22, 192) = 2.523, p = 0.0004; (2) for Octanols binary mix, 

F(22, 180) = 2.341, p = 0.0012).  

B3. In the absence of photostimulation, an opposite trend was observed wherein ChR2 expressing mice had learning 

impairment while Arch expressing animals had learning efficiencies similar to WT mice (ordinary two-way ANOVA, 

F(22, 192) = 8.431, p < 0.0001). 

C. Despite the rescue of learning deficits, no improvement was observed in memory responses with optogenetic 

stimulation as compared to the control WT mice (one-way ANOVA, (1) for HX vs. PN binary mix, F = 22.93, p < 

0.0001, R2 = 0.7535; (2) for Octanols binary mix, F = 23.62, p < 0.0001, R2 = 0.747).  

C3. Without photostimulation, Arch expressing mice had memory similar to WT mice while ChR2 expressing mice 

had memory impairment (one-way ANOVA, F = 16.84, p = 0.0001, R2 = 0.6779). 

 

 We next examined whether modulating synaptic inhibitory strength during odor 

presentation controls long-term memory formation. First, memory for HX vs. PN monomolecular 

odors was assessed across the groups. All the groups had similar memory performance for 

monomolecular odor trained with different stimuli duration (Figure 4-9 A2, one-way ANOVA, F 

= 1.714, p = 0.2136). Interestingly, photostimulation of GAD65 +ve interneurons during short odor 

presentation did not influence long-term memory formation. For binary mixtures, ChR2 expressing 

mice displayed long-term memory deficits although they learned odor discrimination with high 

accuracies (Figure 4-9 C, one-way ANOVA, (1) for HX vs. PN binary mix, p < 0.0001; (2) for 

Octanols binary mix, p < 0.0001). When the memory was assessed in Arch expressing animals, it 

was observed that these mice had a poor memory performance for these mixtures (Figure 4-9 C, 

comparison with WT mice, one-way ANOVA, (1) for HX vs. PN binary mix, p < 0.0001; (2) for 

Octanols binary mix, p < 0.0001). Memory loss following slow learning in odor discrimination 

tasks is congruent with the previous data (Figure 4-6 D). However, Arch animals had a high 

memory performance for Carvones binary mixture task in the absence of photostimulation (Figure 

4-9 C3, one-way ANOVA, p = 0.0001). These findings show that modifying neural representations 

formed during odor presentation can regulate odor discrimination learning while having no effect 

on long-term memory formation.  
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4.3.4 Post-stimulus neural activity in OB circuitries controls long-term memory formation 

 Despite improvement in learning, long-term memory impairment indicates the possibility 

for separate neural mechanisms controlling odor discrimination learning and long-term memory 

formation. Within a general scheme, memory formation happens by stabilizing neural activities as 

a function of time (301). As odor-induced neural responses outlast the stimulus duration, it raises 

a question of whether post-odor responses are involved in memory formation. To probe the 

relevance of post-odor responses in memory formation, we trained a new batch of ChR2 and Arch 

expressing mice. To achieve global silencing of MTC activities, we adopted an approach to 

increase the inhibitory strength of GAD65 +ve interneurons in ChR2 expressing mice. Thus, we 

calibrated LED intensities to overstimulate GAD65 +ve interneurons to shut down MTC activities. 

On the contrary, by inhibiting OB interneurons, we aimed to disinhibit MTC responses in the post-

stimulus period using Arch expressing mice. Combining these two experiments, we investigated 

the role of post-odor responses in olfactory long-term memory formation. 

 Post-stimulus firing activities in MTC ensembles show a correlation with odor activities 

elicited by the stimulus for up to 10 breaths (34). To target post-odor responses, we photo-

stimulated ChR2 and Arch for 4 s following odor stimulation (For ChR2 activation – 40 Hz 

stimulation for 4 s. For Arch activation – 1 Hz stimulation for 4 s).  Mice were first trained to 

discriminate HX vs. PN monomolecular odor with a 2 s stimulus duration. Mice achieved >80% 

accuracy within the first 300 trials, and the accuracy was comparable to previous data sets. After 

assessing the olfactory competence of mice, ChR2 expressing mice were sequentially trained to 

discriminate two complex binary mixtures with post-odor stimulation of GAD65 +ve interneurons. 

The odor stimulus duration was set to 2 s. Although Arch expressing mice were trained to the same 

odor, the stimulus duration was 0.5 s for HX vs. PN binary mixture while the stimulus duration 

was 2 s for Octanols binary mixture. Training ChR2 expressing mice with post-stimulus inhibition 

of MTC firing activity did not affect the learning efficacy in binary mixture discriminations when 

compared to the control WT group (Figure 4-10 A1 and A2, for HX vs. PN binary mix, two-way 

ANOVA, p = 0.6126. For Octanols binary mix, two-way ANOVA, p = 0.0921). When these mice 

were trained to discriminate Carvones binary mixture without photostimulation, we observed a 

reduced performance in the discrimination task compared to WT mice (Figure 4-10 A3, comparison 

between ChR2 and WT mice, two-way ANOVA, p < 0.0001). However, by the end of the third 

task, their accuracies reached >90 % and matched with the other groups. Reduced performance in 

initial trials may be a result of cohort-specific differences in the learning performance. Comparing 

learning accuracies with a previous batch of WT mice trained on the same odor pair under head-

restricted conditions (set 4 used in chapter 3), we observed similar learning in both the groups (two-
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way ANOVA, p = 0.1073). Further, comparing learning performances across all the groups (ChR2, 

Arch, and WT control mice), we did not find any difference in their learning accuracies (Figure 4-

10 A3, two-way ANOVA, F (2, 240) = 1.335, p = 0.1495). Next, the effect of disinhibiting MTC 

firing activities in the post-stimulus period on the learning performance was evaluated. Training 

Arch expressing mice with post-stimulus disinhibition of MTC firing activity did not impact the 

learning efficacy for HX vs. PN and Octanols binary mixtures when compared with the control WT 

group (Figure 4-10 A, (1) for HX vs. PN binary mixture, two-way ANOVA, p = 0.3588; (2) for 

Octanols binary mixture, two-way ANOVA, p = 0.3241). Also, in the absence of any stimulation, 

Arch expressing mice had similar learning accuracies for Carvones binary mixture task compared 

to WT animals (Figure 4-10 A3, two-way ANOVA, p = 0.9230). 

Figure 4-10: Post-odor MTC spiking activity controls long-term memory formation. 

A. Modulating post-odor MTC firing activities do not influence olfactory learning accuracies. On comparing learning 

accuracies of ChR2 and Arch expressing mice with WT control mice, we observed that bidirectional modulation of 

post-odor MTC firing activities did not affect binary mixture discriminations ((1) For HX vs. PN binary mixtures, 

ordinary two-way ANOVA, F (2, 240) = 1.133, p = 0.3238. (2) For Octanols binary mixture, ordinary two-way 

ANOVA, F (2, 228) = 1.426, p = 0.1033). (3) Learning accuracies of three groups of mice (ChR2, Arch, and WT 

control mice) were similar for Carvones binary mixture discrimination without photostimulation (two-way ANOVA, 

F (2, 240) = 1.335, p = 0.1495). 

B. The long-term memory was degraded for ChR2 expressing mice trained under conditions wherein post-odor MTC 

firing activities were inhibited (two-tailed t-test, (1) for HX vs. PN binary mix, p = 0.0006; (2) for Octanols binary 

mix, p < 0.0001). 



 91 

C. (1) Post-odor disinhibition of MTC firing activities following 0.5 s of odor stimulus improved long-term memory 

as compared to WT control mice trained to 0.5 s odor stimulus (two-tailed t-test, p = 0.0077). (2). With post-odor 

disinhibition of MTC firing activities following 2 s of odor stimulus, long-term memory performance was similar to 

WT mice (two-tailed t-test, p = 0.9030). 

D. Without photostimulation, long-term memory performance was similar across three groups of mice (one-way 

ANOVA, p = 0.362). 

 

 We finally examined whether modulating post-odor MTC firing activities would have any 

influence on long-term memory formation. Inhibiting post-odor MTC firing activities in ChR2 

expressing mice during training resulted in degradation of long-term memory formation for 

complex odor discriminations (Figure 4-10 B, two-tailed t-test, (1) for HX vs. PN binary mix, p = 

0.0006; (2) for Octanols binary mix, p < 0.0001). This effect was specific to tasks with light 

stimulation, as the memory performance of Carvones binary mixtures in the absence of light 

stimulation was comparable to control WT mice (Figure 4-10 D, ordinary one-way ANOVA, p = 

0.362). Further, disinhibiting post-odor MTC activities in Arch expressing mice facilitated long-

term memory formation with a 0.5 s stimulus (Figure 4-10 C1, two-tailed t-test, p = 0.0077). For a 

2 s stimulus, a high memory score was observed in WT mice. To check if post-odor disinhibition 

of MTC firing activities can further improve memory performance, we examined Arch expressing 

mice’s memory performance for Octanols binary mixture with 2 s stimulus. We observed that these 

mice had memory performance similar to WT animals (Figure 4-10 C2, two-tailed t-test, p = 

0.9030). The result suggests a possible upper limit for memory performance towards complex 

mixtures beyond which the memory performance doesn’t improve further. Collectively, these 

results revealed the role of post-odor MTC activities in controlling long-term memory formation.  

 In conclusion, our results establish that bidirectional modification of OB GABAergic 

GAD65 +ve interneurons influences the degree of decorrelation in MTC ensemble activity patterns. 

Such manipulations during stimulus delivery control the ability of mice to learn to discriminate 

similar odorants while the information coded by post-stimulus firing activity of projection neurons 

controls the formation of long-term olfactory memories.  

  

4.3.5 Olfactory performance-dependent refinement in sniffing behavior 

 One of the key findings from this work was the bidirectional modulation of olfactory 

learning and long-term memory performance by manipulating OB inhibitory activity during 

different stimuli presentation phases. In the previous chapter, we observed a refinement in sniffing 

behavior with learning. Thus, we were interested in studying whether modulation of olfactory 

performance by the inhibitory network influenced sniffing behavior in mice. We analyzed sniffing 



 92 

frequencies during the decision-making period while mice were trained with optogenetic 

stimulations. When the learning speed was improved by photostimulating GAD65 +ve 

interneurons, mice displayed higher sniffing frequencies during the decision-making period (Figure 

4-11 A, for HX vs. PN binary mix, two-tailed t-test, p = 0.0097, t = 3.268, df = 9. For Octanols 

binary mix, two-tailed t-test, p = 0.0088, t = 3.329, df = 9). Further, sniffing frequencies were 

measured during memory trials for mice trained to odor discrimination tasks with post-odor 

manipulation of MTC activities. When the memory performance was high, mice exhibited higher 

sniffing frequencies during memory trials (Figure 4-11 B, for HX vs. PN binary mix, two-tailed t-

test, p = 0.004, t = 4.827, df = 12. For Octanols binary mix, two-tailed t-test, p = 0.0026, t = 3.872, 

df = 11). For Carvones binary mix, when mice were trained without photostimulation, we did not 

observe any difference in breathing frequencies during memory trials irrespective of the stimulus 

duration (two-tailed t-test, p = 0.4156, t = 0.8432, df = 12). In conclusion, our results suggest a 

strong association between OB network activity, olfactory performance, and sniffing behavior. The 

learning and memory-dependent modulation of sniffing behavior also hint towards a neural 

pathway connecting olfactory centers with respiratory centers.  

 

  

 

 

 

 

 

 

 
Figure 4-11: Modulation of sniffing frequencies with learning and memory. 
A. Increase in sniffing frequencies observed during the decision-making window when learning pace was accelerated 

by stimulating GAD65 +ve interneurons (for HX vs. PN binary mix, two-tailed t-test, p = 0.0097, t = 3.268, df = 9. 

For Octanols binary mix, two-tailed t-test, p = 0.0088, t = 3.329, df = 9). The stimulus duration is mentioned beneath 

the box and whiskers.  
B. During memory trials, breathing frequencies during odor presentation was higher when the memory performance 

was high (for HX vs. PN binary mix, two-tailed t-test, p = 0.004, t = 4.827, df = 12. For Octanols binary mix, two-

tailed t-test, p = 0.0026, t = 3.872, df = 11). For Carvones binary mix, when both groups of mice are trained without 

photostimulation, no difference in breathing frequencies was observed during memory trials (two-tailed t-test, p = 

0.4156, t = 0.8432, df = 12).  
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4.4 Discussion 

 Although it has been shown that olfactory discriminations can take place within 350-400 

ms, no study has focused on the relevance of extra stimulus information in different facets of 

olfactory behavior. We trained mice on freely-moving odor discrimination tasks with different 

stimuli durations. Our results show the critical role of odor stimulus duration in setting the pace of 

discrimination learning and forming long-term odor memories. To understand the mechanistic 

differences, using Ca2+ imaging, we recorded from GCL interneurons in anesthetized and awake 

head-restrained animals by presenting odors for varying durations. Between short and long stimuli 

durations, we observed critical differences in interneuron responses. At a population level, this 

indicates that the degree of reformatting of MTC ensembles varies when stimulus duration is 

reduced, thereby influencing odor-driven behaviors. While odor representations formed during 

stimulus presentation guide discrimination learning, post-odor MTC activities help in stabilizing 

these representations leading to the formation of long-term olfactory memories. Thus, our results 

provide a novel MTC activity-dependent mechanism controlling odor discrimination learning and 

long-term memory formation. 

 

4.4.1 Stimulus duration sets the pace of odor discrimination learning and long-term memory 

formation  

 Learning an olfactory discrimination task requires a comparison between alternating odor 

cues and the reward value of odors, and acquisition of rule learning. With repeated odor experience, 

there is a reduction of both excitatory and inhibitory MTC responses and dynamic reformatting of 

ensemble odor representations that accumulate over days (20, 235). This sort of plasticity enhances 

pattern separation, which is observed during active learning (20). When a stimulus is provided for 

2 s, animals quickly learn odor discriminations independent of task complexities. In the previous 

chapter, we have shown that animals can perform odor discriminations within 350-400 ms when 

performing at maximal accuracy (Figure 3.3B). Whether this time is sufficient to make accurate 

decisions during the initial phases of odor discrimination learning is yet unclear. We trained mice 

to novel odor discriminations by shortening the stimulus duration. On reducing the time of odor 

presentation, mice efficiently performed monomolecular odor discriminations. However, when the 

odor similarity was increased, mice made more mistakes in the early stages of learning. With 

repetitive odor exposure, mice slowly picked up odor discriminations; however, maximal 

accuracies reached by these mice were significantly lower compared to mice trained on long 

stimulus duration. The results presented here illustrate that there is a temporal limit to the neural 

reformatting in MTC ensembles. As a consequence, when the stimulus length is reduced for 
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complex odors, the pattern separation process may be incomplete, resulting in animals making 

incorrect decisions. With repetitive odor presentations, neural responses sharpen within OB 

circuitry, which primes the system for faster temporal patterning of MTC spiking (19, 235). This 

allows for learning at a later stage of training when an odor is presented for short durations.  

 The refinement in MTC activities can be attributed to the circuit within and beyond OB. 

Within a glomerulus, the OSN-MTC synapse formed is capable of undergoing long-term 

potentiation (LTP) (302). Following high-frequency OSN stimulation, N-methyl-D-aspartate 

(NMDA) receptors on MTCs get activated, and cells display prolonged, increased spiking. At the 

same time, low-frequency OSN stimulation can exhibit long-term depression (LTD) on the same 

synapse (303). The interaction between MTCs and GABAergic interneurons within OB has been 

shown to improve pattern separation and aid in odor discrimination learning (14, 41, 304). Along 

with these changes, feedback from PCx can enhance the separation between overlapping MTC 

ensemble responses (202). Indeed paired stimulation on proximal synapses formed between 

piriform cortical neurons and GCs has been shown to release Mg2+ block from NMDA receptors 

at distal dendrodendritic synapses formed between MTCs and GCs (305, 306).  

 The changes in OB odor representations with learning (20, 32, 235, 307) have been shown 

to stabilize over time (40, 308). Once mice had learned the task, retrieval of memories of the 

previously learned task was checked thirty days post-training. Mice trained with a short stimulus 

duration had a consistent deficit in long-term memory formation for all complex odors tested. One 

may argue that this deficit is attributed to poor learning performance with short stimuli durations. 

To analyze this, we compared learning accuracies from the last 100 trials with memory scores. The 

percentage reduction in olfactory performance was determined by calculating the difference in 

percentage correct responses between the last 100 trials of training with memory trials. The 

percentage reduction was ~40% for mice trained to short stimuli compared to 5-15% reduction 

observed for mice trained to 2 s stimulus (Figure 4-12). This showcases an explicit deficit in 

memory performances with short stimuli.  

 

 

 

 

 

 

 
Figure 4-12: The reduction in olfactory performance is aggravated with a lowering of stimuli duration. 
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To quantify the reduction in olfactory performance, learning accuracy from the last 100 trials of training was subtracted 

from the memory score, and the percentage difference was measured. For a simple odor, across different stimuli 

durations, the percentage reduction was less than 5%. On the other hand, for binary mixtures, the percentage reduction 

in olfactory performance was ~40% for mice trained to short stimuli compared to 5-15% reduction observed for mice 

trained to 2 s stimulus. 

 

4.4.2 Enhanced activity of inhibitory GCs with increasing odor duration    

 On odor stimulation, widely distributed granule cell activities provide an intuitive 

mechanism for increasing temporal variability in MTC ensembles that promote discriminability 

(41). We used a microendoscopic imaging technique to record population GAD65 +ve interneuron 

activity. This technique offers a possibility to image from a large field, which is difficult with two-

photon Ca2+ imaging. On comparing GAD65 +ve interneuron activity under anesthetized and 

awake conditions, we found differences in the kinetics of odor-evoked interneuron responses. For 

the two stimuli durations across different odors, the rise in activity was slow in anesthetized mice, 

and the activity sustained for a longer duration in the post-stimulus period. Further, we observed a 

slight attenuation in odor-evoked interneuron activities under awake conditions compared to the 

anesthetized state. In awake mice, passive sensory experiences have shown to recruit non-

responsive MTCs, thus causing a reorganization of MTC ensemble activities (20). The robust odor-

evoked reformatting in MTCs under awake condition, at least in part, can explain the weakening 

of interneuron activity that we observe under awake state.  

 In awake animals with 0.5 s stimulus presentation, Ca2+ dynamics measured from GCL 

interneurons showed a subdued interneuron activity compared to 2 s stimulus duration. Strikingly, 

in these naive animals, interneuron activity peaked at the same time for 0.5 s and 2 s stimulus; 

however, the maximum fluorescence change was less for 0.5 s stimulus when averaged across six 

different odors. Further, in comparison with a 2 s stimulus, overall activity was less when the 

stimulus was presented for 0.5 s (Figure 4-8 B). Thus, time-dependent differences in interneuron 

activities were observed both under anesthesia and awake states. Overall, reduced interneuron 

activity in response to short stimulus presentation provides solid evidence supporting the lack of 

temporal refinement in MTC ensembles, thereby leading to slow learning and impairments in 

memory formation. 

 

4.4.3 Optogenetic modulation of odor discrimination learning 

 To improve the extent of pattern separation in MTC ensembles during short stimulus 

presentation, we optogenetically stimulated the activity of OB GABAergic interneurons using 

GAD65-ChR2 mice. Genetically targeted light-gated ChR2 allows optical activation of neurons 
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with high spatial and temporal resolution (252, 309, 310). Consistent with previous results (14), 

we observed that optogenetic stimulation improved the learning of binary odor mixtures. In a 

separate set of experiments, using GAD65-Arch mice, in which all GAD65 +ve interneurons 

expressed Arch, we hyperpolarized OB interneurons while odors were presented for a long 

duration. Notably, under these conditions, mice had difficulties in performing odor discriminations 

which were reflected in their learning accuracy (Figure 4-9 B1 and B2). The internal control 

experiment with Carvones binary mixture ensured that the effect we observed was specific to 

optogenetic modification of neural representations (Figure 4-9 B3). Our results suggest that 

GAD65-ChR2 photostimulation forces a global, yet specific, GABA release mimicking an increase 

in synaptic inhibition (21), favoring pattern separation in MTC ensembles, thus improving odor 

discrimination accuracies. In contrast, upon Arch photostimulation, MTCs receiving sparse 

inhibition may tend to fire more regularly (41). When two similar odors are presented under these 

conditions, population responses of MTCs are identical, and odor discrimination becomes difficult. 

In conclusion, our findings support the functional importance of OB-mediated pattern separation 

during odor presentation in the processing of similar odorants. 

 

4.4.4 Post-stimulus firing activity controls long-term memory formation  

 Rodents display a change in behavior towards rewarded and non-rewarded stimuli in 

response to odor experience. The persistence of neural network changes leading to a behavioral 

shift with time can be defined as odor memory. Previous studies have implicated the role of 

hippocampus (311, 312), amygdala (313), PCx (314, 315), AON (192), and OFC (197) in odor 

memories. In addition, considerable efforts are being made to elucidate mechanisms contributing 

to odor memories within OB. There is evidence to prove that turnover of GCs in OB by the process 

of adult neurogenesis and its survival is sensitive to learning and memory (316–318). The impact 

of adult-born neurons in olfactory processing has been demonstrated by selectively expressing 

ChR2 in adult-born neurons. Activating adult-born GCs accelerated complex odor discrimination 

learning and improved memory (319).   

 In mouse OB, following odor presentation, a fraction of MTCs maintain their odor-evoked 

responses even after stimulus delivery cessation. Using optogenetic manipulations, we developed 

a novel way to manipulate post-odor MTC activities and study its role in memory formation. Using 

optogenetic tools to artificially manipulate memory formation processes has been progressively 

used by neuroscientists. In a recent study, optogenetic manipulation of the experience-tagged 

neuronal population within AON has revealed that odor engrams are stored within AON, and their 

activity is necessary for the behavioral expression of odor memories (192). Another study used 
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paired optogenetic stimulation of specific subsets of glomeruli and distinct inputs into the ventral 

tegmental area to create fully artificial memory in the absence of stimuli in mice (320).  

 Our optogenetic manipulations of MTC activities during the post-odor period showcase that 

attenuation of MTC output during this period can negatively impact long-term memory formation. 

In an attempt to promote long-term memory formation, we disinhibited MTC activities during the 

post-odor period. Such manipulation led to improvement in long-term memory compared to 

animals trained without photostimulation. Hence, our results delineate the role of post-odor neural 

representations in long-term memory formation. Our study now raises an important question. How 

do post-odor MTC activities store long-term memories? It is likely that MTC post-odor activities 

might be accelerating the long-term plasticity of synapses formed between (1) OB interneurons 

and MTCs, and (2) cortical neurons and OB interneurons. 

 

4.4.5 Sustained high-frequency sampling correlates with odor discrimination learning and 

long-term memory formation 

 We now know that animals learn to increase their sniffing frequency, specifically during 

the decision-making period (Figure 3-4 C). There exists a close relationship between respiration 

and intrinsic network functioning in OB (321–323). Active respiration can synchronize MTC 

activities (278), and the absence of nasal airflow in double tracheotomized rats can abolish 

respiration-coupled spiking in MTCs (279). Further, odor sampling at sustained higher frequencies 

can lead to increased decorrelation of MTC population activities over time (280). At the population 

level, nasal respiration drives neural activity oscillations in OB that reaches PCx and further 

downstream to the hippocampus (321, 324–326). These oscillations have been implicated in linking 

sensory and memory networks that underlie cognitive functioning (325). Direct evidence has been 

provided by studies in human subjects that correlate nasal respiration to memory encoding and 

recall (326, 327). Using optogenetic modulation of inhibitory interneuron activity during the 

stimulus and post-stimulus period, we observed specific differences in discrimination learning and 

memory formation. Strikingly, improvement in learning and long-term memory performance 

coincided with increased sniffing frequency (Figure 4-11 A and B). When taken together, these 

findings establish a connection between breathing and neural activity patterns associated with 

olfactory learning and long-term memory formation. 

 

4.5 Limitations 

 This study has some limitations. First, we modulated the firing activities of MTC by 

manipulating inhibitory interneurons in OB. Although we targeted the majority of the interneuron 
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population, this approach fails to consider the role of other interneurons in tuning MTC responses. 

A more direct approach would be to manipulate MTCs directly using cell-type-specific markers 

like Pcdh-21 and Tbet-21, specific to mitral and tufted cells. Direct manipulation of MTC activities 

during different odor presentation phases may improve our understanding of these responses in 

different odor-related behaviors. Secondly, while imaging Ca2+ dynamics of inhibitory 

interneurons, we could not distinguish individual cells due to a high expression of Ca2+ sensors in 

the densely populated GCs in GCL. Although such imaging provides us with the knowledge of the 

population dynamics of these neurons in response to odor presentation, it is difficult to know how 

odor information is coded in individual cells.  

 

4.6 Future direction 

 This study demonstrates that post-odor responses aid in the formation of long-term odor 

memories. However, how these post-odor activities are maintained remains unanswered. With little 

or no contribution from sensory neurons, maintenance of MTC post-odor activities may be 

attributed to intrinsic mechanisms within the bulb (33, 34) and top-down centrifugal inputs from 

olfactory cortical areas. As post-odor activities are stronger and persist longer in awake mice than 

anesthetized mice, the role of cortical inputs in maintaining such activities can be strongly 

hypothesized. As a preliminary study to locate synaptic plasticity events in different areas of the 

olfactory cortex, Activity-regulated cytoskeleton-associated protein (Arc) expression was checked 

after training mice to protocols that either attenuated or enhanced post-stimulus MTC activities. 

Following an increase in synaptic activity, Arc expression is upregulated in a range of behavioral 

paradigms (328–330). Arc, therefore, provides a means to identify cells undergoing synaptic 

plasticity, a process essential for memory consolidation. Training mice to odor discrimination task 

with post-odor inhibition of GAD65 +ve interneurons significantly increased the Arc expression 

in PCx, OT, and OFC compared to mice trained with post-odor stimulation of GAD65 +ve 

interneurons (Figure 4-13 C2, one-way ANOVA with Tukey’s multiple comparison test. Between 

Control vs. Post-odor stimulation, p = 0.1577. Between Control vs. Post-odor inhibition, p < 

0.0001. Between Post-odor inhibition vs. Post-odor stimulation, p < 0.0001. (E2). One-way 

ANOVA with Tukey’s multiple comparison test. Between Control vs. Post-odor stimulation, p = 

0.2348. Between Control vs. Post-odor inhibition, p < 0.0001. Between Post-odor inhibition vs. 

Post-odor stimulation, p = 0.0002). PCx sends out most of the centrifugal inputs to OB and maybe 

one of the potential sites controlling MTC activities following odor stimulation (180, 331). 

Specifically, PCx has direct projections to widespread portions of the prefrontal cortex and OFC 

(180, 189, 210). Such reciprocal connections of PCx with higher cognitive areas make it a potential 
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site contributing to memory formation. OT is an important center for decoding the odor reward 

category and relaying this information to higher cognitive areas (196). OFC is strongly and 

reciprocally connected with perirhinal and entorhinal areas and is involved in odor identification 

and memory representations of specific stimuli (197, 332–334). Hence, it would be interesting to 

study and compare the neural activities in PCx, OT, and OFC during and after odor presentation. 

 
Figure 4-13: Expression of Arc protein in different areas of olfactory cortex following odor discrimination training 

coupled with post-odor manipulation of GAD65 +ve interneurons. 
A. Learning accuracies for Octanols binary mixture show that manipulating the post-odor GAD65 +ve OB interneuron 

responses does not influence the learning efficacy (two-way ANOVA, F(22,108) = 0.4884, p = 0.9723) ( n = 4-5 mice). 

B1. Representative image of Arc protein expression in AON. 

B2. The expression profile of Arc protein in AON shows a noticeably increase when post-odor responses are inhibited 

compared to control mice. However, no difference is observed when GAD65 +ve interneurons are stimulated in the 

post-odor period (one-way ANOVA with Tukey’s multiple comparison test. Between Control vs. Post-odor 

stimulation, p = 0.2456. Between Control vs. Post-odor inhibition, p = 0.042. Between Post-odor inhibition vs. Post-

odor stimulation, p = 0.4730). 

C1. Representative image of Arc protein expression in PCx. 

C2. The expression profile of Arc protein in PCx shows a noticeably increase when post-odor responses are inhibited 

compared to control mice and in mice where post-odor responses are stimulated (one-way ANOVA with Tukey’s 

multiple comparison test. Between Control vs. Post-odor stimulation, p = 0.1577. Between Control vs. Post-odor 

inhibition, p < 0.0001. Between Post-odor inhibition vs. Post-odor stimulation, p < 0.0001). 

D1. Representative image of Arc protein expression in OT. 

D2. The expression profile of Arc protein in OT shows a significant decrease when post-odor responses are stimulated 

compared to control mice and in mice where post-odor responses are inhibited. The Arc expression of animals trained 

with post-odor inhibition was similar to control mice (one-way ANOVA with Tukey’s multiple comparison test. 

Between Control vs. Post-odor stimulation, p = 0.02. Between Control vs. Post-odor inhibition, p = 0.5283. Between 

Post-odor inhibition vs. Post-odor stimulation, p = 0.0008). 
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E1. Representative image of Arc protein expression in OFC. 

E2. The expression profile of Arc protein in OFC shows a noticeably increase when post-odor responses are inhibited 

compared to control mice and in mice where post-odor responses are stimulated (one-way ANOVA with Tukey’s 

multiple comparison test. Between Control vs. Post-odor stimulation, p = 0.2348. Between Control vs. Post-odor 

inhibition, p < 0.0001. Between Post-odor inhibition vs. Post-odor stimulation, p = 0.0002). 

 

 Another important observation from this work is the modulation of sampling behavior with 

learning and memory formation. Till date, there is no information available regarding direct 

connectivity between olfactory centers with respiratory centers. However, our results strongly 

suggest a link between these centers. Although the proposition of a direct link between the 

respiratory and olfactory center is alluring, we propose the existence of an intermediate locus 

linking these two regions (Figure 4-14). Such a neural locus should receive olfactory information 

and also have direct input from respiratory centers. As our behavioral paradigm is reward-oriented, 

Lateral Hypothalamus (LH) emerges as a potential site as it is a vital feeding center (335). The 

preBötzinger Complex, a structure in the medial medulla responsible for respiratory rhythm 

generation, has projections throughout the hypothalamus, including LH (336). Further, projection 

neurons in the olfactory cortex send inhibitory output to LH, modulating odor-guided behaviors 

(337). Additional work is demanded to study this circuit in detail. 

   

 

 

 

 

 

 

  

  
 

Figure 4-14: Putative pathway connecting respiratory centers with olfactory centers via LH. 
To identify the pathway connecting respiratory centers to olfactory centers, a projection mapping image atlas provided 

by Allen Brain atlas was used. This tool provides serial two-photon tomography data detailing axonal projections 

labeled by rAAV tracers. Pink spots in the above figure represent areas in respiratory centers which have axonal 

connectivity with LH. The red spots are loci within LH which have connectivity with olfactory cortex and respiratory 

centers. The green spots represent areas of olfactory circuit receiving axonal projections from LH. 
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CHAPTER 5 

Quantitative assessment of olfactory dysfunction accurately detects 

asymptomatic COVID-19 carriers 
 

Adapted from: A. S. Bhattacharjee, S. V. Joshi, S. Naik, S. Sangle, N. M. Abraham, 

Quantitative assessment of olfactory dysfunction accurately detects asymptomatic COVID-19 

carriers. EClinicalMedicine. 28, 1-13 (2020). 

 

5.1 Introduction 

 In humans, olfactory dysfunctions have been described in several neurodegenerative 

diseases like Alzheimer’s disease (71), Down syndrome (73), and dementia (74); motor diseases 

like Parkinson’s disease (72), and amyotrophic lateral sclerosis (338); and other disorders like 

depression (339) and Wilson’s disease (340). Some obstructive or inflammatory processes 

triggered by upper respiratory tract viral and bacterial infections can also impair olfactory function 

(4). The occurrence and severity of olfactory dysfunctions may be related to changes in sensory 

perception and cognitive abilities that occur during the progression of these diseases. For precise 

quantification of olfactory fitness in these patients, there is a need to develop methodologies that 

test sensory as well as cognitive skills in human subjects. 

 In December 2019, SARS-CoV-2 triggered an outbreak in Wuhan, China. COVID-19 

subsequently spread rapidly to several countries, and as of April 27th, 2021, 147,539,302 cases have 

been confirmed worldwide, and over 3,116,444 deaths have been attributed to the virus 

(https://covid19.who.int/). A plethora of symptoms characterize COVID-19 ranging from serious 

complications such as pneumonia with respiratory failure, mild-to-moderate flu-like symptoms, 

and asymptomatic forms of the disease (341, 342). While it is easy to identify people who have 

flu-like symptoms, the lack of widespread population testing makes identifying a large number of 

asymptomatic COVID-19 carriers difficult (343). With an increasing number of cases, reports 

suggested smell loss as a predominant symptom for COVID-19 (49, 50, 54, 77, 78, 344, 345).  

 How does SARS-CoV-2 infection cause olfactory dysfunction? As discussed in chapter 1, 

odor sensation begins when odorants bind to ORs expressed on OSNs in the olfactory epithelium. 

The supporting (sustentacular) cells in the olfactory epithelium express high levels of angiotensin-

converting enzyme 2 (ACE2) and Transmembrane Protease Serine 2 (TMPRSS2), two proteins 

needed for SARS-CoV-2 cellular entry (55, 56, 346). Damage to supporting cells in the olfactory 

epithelium results in inflammatory changes (57) that may indirectly impair OSN functioning and
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cause subsequent OSN damage. The virus-induced disruption of OSN activity through the 

malfunctioning of supporting cells can attribute to smell loss in COVID-19 patients.  

 In light of reports indicating the onset of anosmia as a prevalent symptom in COVID-19 

patients (77, 79, 347, 348), testing olfactory dysfunctions can be an effective method for detecting 

and isolating these patients. Assessing minor dysfunctions may not be feasible using conventional 

approaches, owing to the lack of accuracy in administering odor stimuli to individuals (62, 349). 

Therefore, we custom-built an olfactory-action meter with mass-flow controllers to provide well-

defined odor pulses to human subjects. Our olfactory-action meter, which was designed initially to 

quantitate the olfactory function of healthy subjects, was modified to meet the safety requirements 

for usage in COVID-19 clinics. Using this olfactory-action meter, we designed a quantitative 

olfactory function test to assess olfactory capabilities in asymptomatic COVID-19 patients. 

Considering the virus-induced impairments of the olfactory epithelium, we assessed the detection 

threshold for various odorants to estimate olfactory sensitivity in asymptomatic COVID-19 

patients. Further, we developed a novel test paradigm that evaluated olfactory matching accuracy, 

reflecting neurophysiological problems diagnosed in COVID-19 patients (63, 64, 67, 350, 351). 

By refining the test parameters with healthy subjects, we optimized the duration of the olfactory 

function test to twenty minutes. On evaluating sensory-cognitive olfactory defects, we observed 

that 82% of asymptomatic COVID-19 patients displayed distinct olfactory dysfunctions compared 

to normal healthy subjects. Therefore, this method can efficiently provide a systematic sensitive 

evaluation that can be used in clinics to quantify the extent of olfactory dysfunction in 

asymptomatic carriers. 

 

5.2 Materials and methods 

5.2.1 Study population 

 Our study had distinct cohorts of normal healthy subjects (Table 5-1) and asymptomatic 

COVID-19 patients (Table 5-2). The healthy subjects who participated in this study were residents 

of  the IISER-Pune campus. These individuals did not manifest any symptoms of COVID-19 when 

they were tested for olfactory functioning. The inclusion criteria for normal healthy subjects were: 

1. Subjects’ willingness to participate in the study without any monetary expectations. 

Participants were fully briefed about the study’s design and signed a consent form to 

participate in the study. 

2. No travel history or movement outside the city 14 days before the test session.  

3. No inadvertent interaction with COVID-19 positive patients.  

4. No active respiratory tract infection or any nasal blockage.  
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5. No signs of COVID-19 (fever, rhinorrhea, dry cough, sore throat, and dyspnea) were observed 

(Table 5-3). 

 The asymptomatic COVID-19 patients were individuals with an active infection of SARS-

CoV-2 who were admitted to Byramjee Jeejeebhoy Government Medical College and Sassoon 

General Hospitals’ (BJGMC & SGH) COVID-19 isolation wards. The SARS-CoV-2 infection was 

confirmed by real-time reverse-transcriptase polymerase chain reaction (RT-PCR) based detection 

of the virus from nasal and throat swab. The confirmatory test protocol for detection of COVID-

19 was approved by the Indian Council of Medical Research (ICMR). Patients who registered for 

the test became infected as a result of inadvertent contact with COVID-19 patients in their 

neighborhood or at work, or as healthcare workers (clinicians and support staff) who became 

infected while on the job. At the time of the test, none of these patients were diagnosed with 

Parkinson’s disease, Alzheimer’s diseases, or other neurological disorders, as smell dysfunctions 

are an early indicator of these diseases. 

Inclusion/exclusion criteria for asymptomatic COVID-19 patients were: 

1. Patients who were asymptomatic on the day of olfactory function test (Table 5-3). 

2. The patients who were willing to participate in the research study were included. Before the 

study began, participants signed a consent form. 

3. Patients with persistent symptoms were excluded from the study. 

4. One patient (BJMC P24) took part in the study, but on the day of the olfactory function test, 

the patient received a negative RT-PCR result. As a result, patient’s data was not included in 

the study. 

5. One patient (BJMC P4) was not eager to participate for the entire duration of the test. Hence, 

detectability at 50% (v/v) concentration was first evaluated. Due to good detection at 50 % 

concentration (Refer to Table 5-2 for details), the patient was requested to participate in the 

olfactory matching test. The patient declined further participation. Due to incomplete data 

points, patient’s data were excluded from the analysis. 

In total, thirty-seven normal healthy subjects and thirty-four asymptomatic COVID-19 

patients enlisted for olfactory function test. To prevent any bias arising due to subject’s lack of 

interest, only the individuals who willingly enrolled in the study were called for the olfactory 

function test.  
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Table 5-1: Tabulation of olfactory function scores calculated from normal healthy subjects. 

5.2.2 Ethics committee approval information  

 The experimental protocols used in this study were authorized by the IISER Ethics 

Committee for Human Research (IECHR/Admin/2020/001), Biosafety Committee at IISER-Pune, 

and the Ethics Committee at BJGMC & SGH, Pune, India (BJGMC /IEC/Pharmac/ND-Dept 

0420053-053). 
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* The data for BJMC P4 was not analyzed because the subject refused to take part in the entire test. 

Table 5-2: Tabulation of olfactory function scores calculated from asymptomatic COVID-19 patients. 

 

5.2.3 Sample size determination  

 To determine the sample size needed to detect some effect with inferential statistics, we 

performed a priori power analysis. We hypothesized that the detectability at different threshold 

concentrations and olfactory matching accuracy would return a minimum difference of 10% 

between the study groups. On running the analysis, we realized a minimum of twenty subjects are 

required in each cohort to expect a 10% difference for the different readouts we propose here.  

Median	of	detection	
indices	measured	for	

normal	healthy	subjects		

0.5	 0.7	 0.8	 1	 	 	

Concentration	tested				
(%	v/v)	

9.1	 16.6	 23.1	 50	 Normalized	
olfactory	
matching	

performance	
index	

Olfactory	deficits	

Patient	ID	

BJMC	P1	 0.0	 0.0	 	 0.1	 	 Yes	
BJMC	P2	 0.0	 0.0	 0.0	 0.0	 	 Yes	
BJMC	P3	 0.0	 0.0	 0.0	 0.3	 	 Yes	
BJMC	P4*	 	 	 	 0.9	 	 Not	evaluated	
BJMC	P5	 0.0	 0.0	 0.0	 0.0	 	 Yes	
BJMC	P6	 0.0	 0.0	 0.0	 0.4	 	 Yes	
BJMC	P7	 0.5	 0.5	 0.6	 0.6	 0.66	 Yes	
BJMC	P8	 0.4	 0.6	 0.6	 0.4	 	 Yes	
BJMC	P9	 0.8	 0.6	 0.6	 1.0	 0.89	 Yes	
BJMC	P10	 0.4	 0.4	 0.6	 0.7	 0.44	 Yes	
BJMC	P11	 0.7	 0.9	 1.0	 1.0	 0.89	 No	
BJMC	P12	 0.0	 0.3	 0.3	 0.5	 	 Yes	
BJMC	P13	 	 	 	 0.0	 	 Yes	
BJMC	P14	 0.1	 0.1	 0.2	 1.0	 0.44	 Yes	
BJMC	P15	 0.0	 0.0	 0.0	 0.0	 	 Yes	
BJMC	P16	 0.0	 0.2	 0.1	 0.8	 1.12	 Yes	
BJMC	P17	 0.1	 0.6	 0.2	 0.7	 0.56	 Yes	
BJMC	P18	 0.6	 0.6	 1.0	 1.0	 1.30	 No	
BJMC	P19	 0.0	 0.2	 0.3	 0.8	 0.89	 Yes	
BJMC	P20	 0.8	 0.8	 0.7	 0.8	 0.89	 Yes	
BJMC	P21	 0.6	 1.0	 1.0	 1.0	 0.89	 No	
BJMC	P22	 0.1	 0.2	 0.3	 0.1	 	 Yes	
BJMC	P23	 0.0	 0.5	 0.7	 0.8	 1.30	 Yes	
BJMC	P25	 0.0	 0.0	 0.0	 0.0	 	 Yes	
BJMC	P26	 0.0	 0.0	 0.0	 0.4	 	 Yes	
BJMC	P27	 0.4	 0.6	 0.5	 0.7	 0.66	 Yes	
BJMC	P28	 0.6	 0.5	 0.4	 0.7	 0.82	 Yes	
BJMC	P29	 0.4	 0.3	 0.8	 1.0	 1.32	 No	
BJMC	P30	 0.4	 0.8	 0.8	 1.0	 0.74	 No	
BJMC	P31	 0.8	 0.7	 0.7	 0.9	 0.89	 Yes	
BJMC	P32	 0.8	 0.7	 0.9	 1.0	 1.04	 No	
BJMC	P33	 0.0	 0.1	 0.2	 0.5	 	 Yes	
BJMC	P34	 0.0	 0.0	 0.1	 0.7	 0.18	 Yes	
BJMC	P35	 0.0	 0.0	 0.0	 0.8	 0.56	 Yes	
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Table 5-3: Details of normal healthy subjects and asymptomatic COVID-19 patients included in the study. 

 

5.2.4 Study location  

 Instrumentation, standardization, and PID measurements were performed at the Laboratory 

of Neural Circuits and Behavior (LNCB) at IISER Pune. The olfactory function test for healthy 

subjects was performed in the common area of the IISER Pune Biology Department, which 

matched the indoor environment of COVID-19 isolation wards at BJGMC & SGH. This was 

deliberately done to minimize the variability of odor profiles with differing temperatures and 

humidity. The olfactory function test for healthy subjects was carried out between 22nd April 2020 

and 10th May 2020. To assess olfactory abilities of asymptomatic COVID-19 patients, we relocated 

the instrument to the COVID-19 isolation ward at BJGMC & SGH. Here, the study was conducted 

between 12th May 2020 and 21st May 2020. During this time, asymptomatic COVID-19 patients 

admitted in two separate wards were tested for olfactory proficiency. 

 

5.2.5 Olfactory-action meter design  

 We developed a novel ten-channel olfactory-action meter that allows participants to smell 

different odors through a low-cost disposable odor delivery unit. High-efficiency particulate air 

(HEPA) is pumped at a rate of 5 l/min in the olfactory-action meter. The sterile air passes through 

a filter that traps residual background odor before reaching the olfactory-action meter. The sterile 

air on entering the olfactory-action meter is divided into eleven channels by a metallic manifold, 

and the channels are attached to ten mini Mass Flow Controllers (MFC) (Pneucleus Inc.) and one 

Main MFC. The functioning of these MFCs is software-driven, and the experimenter can 

independently control the amount of air flowing through each of them. The main MFC output is 

bifurcated into ten channels with a solenoid valve assembly (one valve for each odor channel). The 

software can regulate sterile air distribution using these solenoid valves. Each of the ten mini MFCs 

is connected to ten different odor tanks. 15 ml borosilicate glass bottles were used as odor tanks 

with a customized glass cap filled with 4 ml of pure, undiluted odorants. The glass cap has separate 
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channels for the input of sterile air and output of odorized air. The odorized air from the odor tank 

passes through an inert Tygon tube and mixes with a channel of deodorized sterile air (controlled 

by the main MFC) before entering the glass nozzle. The total air output from the nozzle is the sum 

of the volume of odorized and deodorized sterile air. The concentration of odor in the output air 

stream can be calculated by taking a ratio of the volume of odor vapors to the volume of total 

odorized airflow and is defined as volumetric odor concentration (% v/v). Hence, by changing the 

volumetric concentration ratio, we selected a concentration range between 9.1% to 50% (v/v). The 

odor delivery unit is a 15 cm long and 0.8 cm wide tube with a suction outlet. Four separate layers 

of a surgical mask-grade filter are placed along the odor delivery unit’s length, and the suction 

outlet is guarded by a 0.2 µm Polyethersulfone (PES) filter membrane (Whatman Uniflow). A 

vacuum pump operating at ~450 mbar was attached to the PES filter at the suction outlet of the 

odor delivery unit. The exhaust from suction outlet passes through two 0.2 µm HEPA filters and 

one 0.2 µm PES filter before getting discharged to a 60 cm long activated carbon filter. The risks 

of cross-contamination between participants and contamination of the instrument are nullified by 

the combined effect of vacuum suction and use of a sterile odor delivery unit for each subject. 

During a trial, air through the odor delivery unit is diverted to the exhaust for the entire duration, 

except during the odor delivery period. During odor presentation, vacuum switches off, enabling 

odorized air to pass from the odor nozzle to the tip of the odor delivery unit. A plexiglass separating 

wall is wrapped around the instrument to prevent a patient from making physical contact with the 

instrument. A port is designed for the tip of the odor delivery unit to emerge from the separating 

wall. The height of this port is fixed at 160 cm, which is the average height found in the Indian 

population. Participants always wore surgical masks while performing olfactory function tests. We 

reduced the risk of any viral particle entering the device through these safety measurements and 

made it ideal for use in clinical settings (See Results, Figure 5-1A). 

 

5.2.6 Odors used  

 The odors used in olfactory function tests were monomolecular odorants, widely used in 

human olfactory psychophysical studies (293, 352). Odors used were Acetophenone, (-)-Carvone,   

1,4-Cineole,  Ethyl butyrate, Eugenol, Hexanal, Isoamyl acetate, (+)-Limonene, (-)-Limonene, and 

Octanal. All these odors were purchased from Sigma Aldrich and had ~99% purity. The odor 

profiles were measured using miniPID (Aurora Scientific) at 50% concentration (v/v). 

Measurements were made by placing the miniPID probe at the tip of odor delivery unit.  
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5.2.7 Olfactory function test  

 At the beginning of the test session, subjects were briefed about the study paradigm and 

were asked to read the consent form carefully. Consent forms were available in three different 

languages (English, Hindi, and Marathi). Once subjects were acquainted with the test’s procedural 

aspects, odor detection indices measurements were obtained from them, followed by the olfactory 

matching test. 

 

5.2.8 Measurements of odor detection indices  

 For measuring odor detectability at threshold concentration, we delivered different odors in 

ascending order of concentration, and the odor sequence was pseudo-randomized at each 

concentration level. The measurements were repeated until the odor was detected for two 

successive concentrations in normal healthy subjects, with the lower concentration being reported 

as a detection threshold for that odor. We also checked the detectability at 50% (v/v) odor 

concentration. It was observed that the majority of participants detected all odors at the lowest three 

concentrations (9.1%, 16.6%, and 23.1% [v/v]). For asymptomatic COVID-19 patients, these three 

dilutions were used to probe their detection abilities at threshold concentrations. 

 In a given trial, odors were presented for 4 s, followed by an ITI of 17.2 s. During the 

preloading time of 3.2 s before odor presentation, odorized air passed through the odor delivery 

unit’s suction line into the exhaust. At the end of the preloading period, vacuum was turned off, 

allowing odorized air to be delivered to the subject. The preloading time minimized the odor 

delivery delay, and a well-defined pulse was obtained. At the time of odor presentation, subjects 

were asked to breathe normally and assess whether they could detect the odors. The participants 

were specifically instructed to detect and avoid identifying the odors. A 200 ms tone was played 1 

s prior to odor delivery to alert participants of trial onset. At the end of odor delivery, the participant 

verbally responded ‘YES’ or ‘NO’ depending on whether they detected any odor. After delivering 

odors at three different concentrations, a short interval of two minutes was provided to each 

participant. After the interval, the detection abilities of the participant were examined at 50% odor 

concentration. However, the participant was unaware of the increased odor concentration, which 

prevented any preconceived responses towards odorants at higher concentrations. We calculated 

the detectability index for each odor and overall detection accuracy at each concentration level at 

the end of the tests. Detection accuracy was calculated by measuring the fraction of odors detected 

at a given concentration level. The percentage reduction in detection abilities of asymptomatic 

COVID-19 patients was evaluated by calculating the AUC measured for different concentrations 

of ten odorants. For 38.2% of the patients (13 out of 34), the detection accuracy was found to be 
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≤50% at 50% v/v odor concentration. To check the detectability for pure odorants, these thirteen 

patients were requested to further participate in detecting pure, undiluted odors. Ten patients agreed 

to participate, and we proceeded to measure detection accuracies by presenting paper strips dipped 

in pure odors. This additional step was not conducted for healthy participants as all of them were 

able to detect more than five odors at a 50% concentration level.  

 The median detectability indices at each concentration level were calculated for healthy 

participants. The median scores were then used as threshold values with which the patient’s 

detection indices were compared. To categorize patients with ‘olfactory deficits’, stringent criteria 

were applied as follows: Condition 1 – detection scores of patients were less than median scores at 

all four concentrations tested. Condition 2 – detection scores were less for two or more 

concentrations and normalized olfactory matching performance index of less than 100 (explained 

in the next session). To check the sensitivity of our classification scheme, we performed receiver 

operating characteristic (ROC) analysis on detection indices measured from healthy subjects and 

asymptomatic COVID-19 patients. 

 

5.2.9 Measurements of odor matching performance index  

 Participants were asked to participate in the olfactory matching test if they attained ≥60% 

detection accuracy at 50% v/v odor concentration level (1 out of 21 COVID-19 patients declined 

participation). The odor matching test measured how well participants remembered the first odor 

in order to compare it to the second. The olfactory matching test consisted of ten trials. Each odor 

was presented at 50% odor concentration, and the trial sequence was randomized. The trial was 

initiated with a 200 ms tone, and the first odor was delivered after 1 s. Two odors were delivered 

for 4 s, with an inter-stimulus interval (ISI) of 5 s. In a trial, two odors introduced may either be 

the same or different, and participants were required to determine whether the odor sequence was 

‘same’ or ‘different.’ The participants were given 10 s to register a verbal response after the second 

odor delivery onset. The response was recorded in a data book after the experimenter entered it 

into a response console. 

 Two pairs of odors were used for the olfactory matching test. Out of the two pairs, one pair 

had a significant difference in their PID response amplitudes (Hexanal vs. Acetophenone) while 

the other pair had identical response amplitudes (Isoamyl acetate vs. 1,4-Cineole) (Figure 5-3 A). 

All healthy participants completed the olfactory matching test with these two odor pairs. The 

majority of COVID-19 patients carried out the test with these two odor pairs. If any of these odors 

were undetected by patients at 50 % (v/v), another odor with similar PID response amplitudes was 

substituted. 
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 We calculated the average olfactory matching accuracy of healthy subjects for analyzing 

the olfactory performance index. The individual olfactory matching score of each participant 

(including normal subjects and patients) was then normalized to this average value (transformed to 

100), and the data was plotted as normalized matching accuracy (Figure 5-3 B). 

 

5.2.10 Calculation of olfactory function score (OFS) 

 We pooled the measured detection and olfactory matching performance index to quantify 

the degree of olfactory dysfunctions in COVID-19 patients relative to normal healthy subjects 

(Table 5-1 and Table 5-2). We assigned equal weighting to olfactory detection and olfactory 

matching performance index to measure the olfactory function score. OFS was determined by 

combining the detection scores measured at all four concentrations (9.1%, 16.6%, 23.1%, and 50% 

v/v) and the normalized olfactory matching index. For patients who did not qualify for the olfactory 

matching test, their OFS was calculated on the basis of the average value of their detection indices 

obtained at various concentration levels. The efficiency of using OFS to detect individuals with 

olfactory deficits was evaluated by performing ROC analysis. Separate analyzes were conducted 

to assess the impact of confounding variables such as age and gender (see Results, Figure 5-5) and 

incomplete variables (see Results, Figure 5-7). 

 

5.2.11 Statistical analyses  

 All statistical analyses were done using Microsoft Excel, GraphPad Prism 8, and 

MATLAB. We used ANOVA and associated post-hoc tests, Student’s t-tests, ROC analysis for 

sensitivity and specificity, and other sensitivity analyses to assess the influence of confounding 

variables and incomplete variables on the dataset.  

 

5.3 Results 

5.3.1 Optimization of olfactory-action meter and designing quantitative olfactory function 

test for COVID-19 patients 

 The establishment of a diagnostic test for an infectious disease involves optimizing the test 

parameters to make it sensitive, specific, user-friendly, rapid, and cost-effective. The challenge is 

to achieve this by preventing cross-contamination between patients. We developed an advanced 

olfactory-action meter with a removable low-cost odor delivery unit. The odor delivery unit was 

fabricated by introducing multiple layers of filters, ensuring utmost safety (Figure 5-1 A, see 

materials and methods). We used a 3.2 s pre-loading period during which odorized air was 

redirected from the odor delivery tube to exhaust, resulting in a well-defined odor pulse. The 
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vacuum was turned off at the end of the pre-loading period, and a precise odor pulse was delivered 

to the participant’s nose. We selected ten monomolecular odorants of varying volatilities to record 

olfactory responses of healthy subjects and asymptomatic COVID-19 patients. PID measurements 

at 50% odor concentration confirmed the varying physical properties of these odorants  (Figure 5-

1 B, PID amplitudes, two-way ANOVA, F (9,40) = 18.49, p < 0.0001). These measurements also 

revealed that this olfactory-action meter could reliably generate two odor pulses in rapid succession 

with an ISI of 5 s (Figure 5-3 A).  

 We collected olfactory responses from 37 normal healthy subjects (23 males and 14 

females, check Table 5-1 for details of the subjects) towards different odorants to determine criteria 

for a clinically appropriate olfactory function test. First, we assessed detectability of ten different 

odorants at various concentrations (9.1%, 16.6%, 23.1% and 50% v/v) in these subjects. On testing 

the detectability, as a group, normal healthy subjects detected eight out of ten odorants at 16.6% 

concentration, and the remaining two odorants were detected at 23.1% concentration (Figure 5-1 

C and Table 5-1). These results established criteria for asymptomatic COVID-19 patients’ olfactory 

fitness examination.  
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Figure 5-1: Fabrication of olfactory-action meter and optimization of olfactory function test parameters for use in 

COVID-19 clinics.  
A. Schema of the olfactory-action meter.  

The different components of the olfactory-action meter are as follows: 1. Air Pump (5 L/min). 2. 0.2 µm HEPA filter. 

3. Air filter. 4. Manifold. 5. Main Mass flow controller (200 uccm). 6. Mini Mass flow controller (for each odor line, 

20-200 uccm). 7. Solenoid valves. 8. Odor box containing ten odor bottles. 9. Glass odor nozzle. 10. Filter made from 

surgical mask material. 11. T-joint (Replaceable odor delivery unit consists of 10, 11, and 13). 12. Separating wall. 13. 

0.2 µm PES filter (Whatman uniflow). 14. Electromagnetic valve. 15. Vacuum pump (~450 mbar). 16. Carbon filter 

(60 cm in length). To ensure optimal safety requirements for use in COVID-19 clinic, HEPA-sterilized air was pumped 

into the instrument. The sterile air was bifurcated into eleven channels (into ten mini MFCs and to main MFC) using 

a metallic manifold. Using custom-written software, the experimenter controlled the volumetric airflow through these 

MFCs. The main MFC’s output was distributed into ten channels, using a battery of solenoid valves (one for each odor 

channel). The precise timing of sterile air delivery was made possible using these solenoid valves. During the 

preloading time, odorized air from odor bottles traveled through the odor nozzle and into the odor delivery unit. A 

vacuum suction (~450 mbar) attached to the odor delivery unit extracted odorized air through a series of three 0.2 µm 

filters (refer to materials and methods for details) into a carbon filter. The vacuum was turned off during odor 

presentation, and the odorized air was presented to subjects via the odor delivery unit. During the test, participants 

wore surgical masks, and the odor delivery unit was changed after each session to avoid cross-contamination. The 

multiple layers of filters that ran the length of the odor delivery unit prevented virus particles from entering the 

instrument.  

B. Ten odorants with varying physicochemical properties were chosen for the olfactory function test.  

We chose odors that are commonly used in human psychophysical studies. To assess the kinetics of odor pulses, PID 

measurements were taken for each of the ten odorants. The use of vacuum during the preloading period ensured a well-

defined odor pulse with minimal delay (100-200 ms onset latency). Depending on the physicochemical properties of 

each odor, amplitude and rise time varied across different odors (PID amplitudes, two-way ANOVA, F [9,40] = 18.49, 

p < 0.0001). Traces averaged across five trials and represented as mean ± SEM. 

C. Odor detection thresholds of healthy subjects for all the odorants.  

Healthy subjects detected eight out of ten odors at 16.6 % odor concentration. For the enantiomer pair of limonene, 

the detection threshold was found to be 23.1 %. The line within the box plot shows the median detection value for each 

odorant. Whiskers represent the highest detection thresholds for different odorants in healthy subjects (n = 37 subjects). 

 

5.3.2 Olfactory detection abilities are significantly weakened in asymptomatic COVID-19 

patients 

 To test olfactory function in asymptomatic COVID-19 patients, we registered 34 patients 

(21 males and 13 females) admitted in two COVID-19 isolation wards at BJGMC & SGH. These 

patients either contacted the disease due to their inadvertent interaction with COVID-19 patients 

or were healthcare workers involved in managing COVID-19 in the city (For details of patients: 

Table 5-3). All the patients were positive for COVID-19 infection, confirmed by their RT-PCR 

testing. To perform the olfactory function test, the patients’ medical history was documented to 
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ensure that none of these patients had any symptoms of COVID-19 (see materials and methods, 

Table 5-3). The test paradigm was thoroughly explained, and signed consent was obtained before 

starting the olfactory function test with a patient. Before carrying out the olfactory function test, 

we enquired about the patient’s general ability to smell and taste. In response to the enquiry, 85% 

of the total patient population stated that their smelling abilities were intact, and 91% indicated that 

they had not experienced taste loss post-infection. 

 

 

 

Figure 5-2: Asymptomatic COVID-19 patients show severely compromised olfactory detection abilities. 
A. Asymptomatic COVID-19 patients displayed reduced olfactory detectability for all odorants. The fraction of odors 

detected by subjects at a given concentration was used to measure the detectability index. For different odors tested, 

healthy subjects had better detection at lower concentrations than asymptomatic COVID-19 patients (two-way 

ANOVA; for Hexanal, F (1, 260) = 20.72, p < 0.0001, for Isoamyl acetate, F (1, 265) = 68.21, p < 0.0001, for Octanal, 

F (1, 258) = 52.74, p < 0.0001, for 1,4-Cineole, F (1, 257) = 26.2, p < 0.0001, for (+)-Limonene, F (1, 258) = 20.62, p 

< 0.0001, for (-)-Limonene, F (1, 260) = 26.84, p < 0.0001, for Acetophenone, F (1, 260) = 31.64, p < 0.0001, for (-)-

Carvone, F (1, 259) = 30.82, p < 0.0001, for Ethyl butyrate, F (1, 259) = 45.22, p < 0.0001, for Eugenol, F (1, 261) = 

28.45, p < 0.0001). Data is represented as mean ± SEM.  

B. Estimation of olfactory dysfunctions at threshold odor concentration. Detectability indices were pooled for all 

odorants to probe the extent of olfactory dysfunction in asymptomatic COVID-19 patients (two-way ANOVA, F 

(1,200) = 82.8, p < 0.0001). Data is represented as mean ± SEM.  

C. Asymptomatic COVID-19 patients show olfactory deficits at threshold concentrations.  
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The detection indices of asymptomatic patients were compared with the median detectability index calculated from 

healthy subjects. Asymptomatic patients showed 72%, 81%, and 81% reduction in scores compared to normal healthy 

subjects.  

D. Comparison of detectability at 50% odor concentration and with pure, undiluted odorants.  

Measurement of detectability index at 50% odor concentration showed that healthy subjects had an overall detectability 

of 96%. However, the detectability was considerably compromised in the COVID-19 patient cohort, with an average 

detection of 61%. (two-tailed t-test, p < 0.0001, t = 5.8, df = 69). Patients who were unable to detect at 50% 

concentration were presented with paper strips saturated in pure, undiluted odors. These patients displayed a high 

detection rate of 82% for pure odors. Data is represented as mean ± SEM.  

E. ROC analysis for predicting olfactory dysfunction in asymptomatic COVID-19 patients using detection indices 

measured at different concentrations. 

The ROC analysis shows an AUC of 0.86, specificity of 0.81, and sensitivity of 0.81 for prediction based on detection 

indices measured from healthy subjects and asymptomatic COVID-19 patients. The different values extracted from 

ROC analyses indicating the sensitivity of the classifier are mentioned in the figure. 95% confidence interval bound is 

marked by a gray shaded area. 

 

 When testing detectability at low concentrations for all odors, we observed that 

asymptomatic COVID-19 patients had substantially reduced detection capabilities relative to 

normal healthy subjects (Figure 5-2 A, pooled analysis for all ten odors, two-way ANOVA, p < 

0.0001). These patients displayed a 38% - 55% reduction in detection indices for the ten odorants 

tested (Figure 5-2 A, comparison of area under curves, Table 5-4) and a 50% reduction for the 

combined detection threshold at lower three concentration levels (Figure 5-2 B, comparison of area 

under curves, Table 5-4). To assess the proportion of patients with olfactory dysfunctions at lower 

concentrations, pooled detection scores of normal healthy subjects were compared with that of 

asymptomatic COVID-19 patients for all ten odorants (Figure 5-2 B, two-way ANOVA, F (1, 200) 

= 82.77, p < 0.0001). We observed that 81% of the patients showed low detection scores at 

threshold odor concentration when compared with normal healthy subjects (Figure 5-2 C). Further, 

65% (20 out of 31) of these patients showed lower detection scores for all three concentrations 

tested (Table 5-2).  

 To explore the degree of olfactory dysfunction in patients, we further assessed their 

detectability at 50% (v/v) odor concentration. At this concentration, normal healthy subjects 

showed detection accuracy of 96% (participants could detect on average 9.6/10 odors), while 

asymptomatic patients demonstrated a significantly reduced detection accuracy of 61% (Figure 5-

2 D, comparison of detection accuracies at 50% (v/v) odor concentration, two-tailed t-test, p < 

0.0001, t = 5.8, df = 69). We provided patients with paper strips soaked in pure odorants and 

assessed their detection accuracies if they were unable to detect ≤5 odors at 50% odor 

concentration. At this high concentration, 82% of these asymptomatic patients could detect pure 
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odorants with high accuracy (Figure 5-2 D, comparison of detection accuracies at 50% (v/v) 

concentration (n = 34 patients) with pure odorants (n = 10 patients), one-tailed t-test, p < 0.05, t = 

1.7, df = 42). To determine the sensitivity of our categorization of subjects with olfactory 

dysfunction, we performed ROC analysis with detection indices at different concentration levels 

(at 9.1%, 16.6%, 23.1%, and 50% v/v). The high accuracy of using detection threshold indices as 

an olfactory diagnostic parameter is reflected in the AUC of 0.86, sensitivity, and specificity at 

81% (Figure 5-2 E). These findings demonstrate transient olfactory dysfunctions in asymptomatic 

COVID-19 patients can be evaluated at low odor concentrations. This emphasizes the importance 

of using sensitive and accurate methods to diagnose olfactory dysfunctions in COVID-19 patients. 

Importantly, self-assessment findings or outcomes from crude methods using less defined stimuli 

such as paper strips dipped in odors at a suprathreshold concentration (see materials and methods, 

~100%) must be viewed with caution. 
 

 

 

 

 

 

 

 

 

Table 5-4: Percentage reduction in the detection abilities of COVID-19 patients compared to normal healthy subjects. 
AUC analysis done for detection indices measured for different concentrations of ten odorants used in this study. 
 

5.3.3 Asymptomatic COVID-19 patients show impairments in performing olfactory matching 

test 

 The nasal epithelium is one of the SARS-CoV-2 entry sites where it binds to and interacts 

with ACE2 and TMPRSS2 receptors expressed on non-neuronal supporting cells (55, 56). Recent 

reports suggest that infection is not restricted to the sensory periphery, as many patients display 

neurological conditions after a COVID-19 diagnosis (63, 66, 237, 351, 353). Although the exact 

mechanism of viral invasion of the brain is unknown, several brain regions may be affected 

depending on the severity of infection, potentially increasing the risk of neurological and 
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psychiatric disorders. Thus, it is quite possible that cognitive skills could be affected due to 

neurological alterations in higher brain centers of asymptomatic COVID-19 patients.  

 To assess patients’ cognitive abilities, we devised an olfactory matching test that assesses 

detection and discrimination abilities and working memory while matching two odors presented 

with a specific delay. The parameters such as stimulus duration, ISI, and ITI for the matching test 

have been optimized from 265 healthy subjects (Bhowmik et al., unpublished data). These 

optimized parameters were used to probe olfactory matching skills in asymptomatic COVID-19 

patients. Participants were given two consecutive 4 s odor stimulations separated by a 5 s ISI in 

this matching test. After sampling both stimuli, participants determined whether they were the same 

or different and gave a verbal response to the experimenter. Only those with a detection index of 

≥60% at 50% odor concentration were allowed to participate in the olfactory matching test. The 

odors used for the matching test were selected by considering patients’ detectability towards these 

odors. Each session consisted of ten trials, and matching accuracy was normalized to the mean 

accuracy of healthy subjects. Compared to normal healthy subjects, asymptomatic COVID-19 

patients showed a significant reduction in olfactory matching accuracy (Figure 5-3 B, comparing 

normalized olfactory matching accuracy between normal healthy subjects and COVID-19 patients 

two-tailed t-test, p = 0.015, t = 2.5, df = 54). This necessitates detailed clinical and diagnostic 

analysis to help identify the signs and severity of neurological disorders caused by SARS-CoV-2. 

 
Figure 5-3: Decreased olfactory matching performance is seen in asymptomatic COVID-19 patients. 

A. Precise odor delivery pulses achieved in an olfactory matching trial. For the odor matching test, two pairs of odors 

were picked from the list of odors detected by each patient. 

Odors were selected such that one odor pair had a difference in odor profile (Hexanal vs. Acetophenone) while the 

other odor pair had a similar odor profile (Isoamyl acetate vs. 1,4-Cineole). For the olfactory matching test, the two 

odors were delivered for 4 s with an ISI of 5 s. For ‘same’ odor trials, an ISI of 5 s was adequate to saturate the vapor 



 117 

phase in odor bottles, which is evident from the PID odor profile of the same odor delivered twice in sequence. 

Representative traces of ‘same’ and ‘different’ trials are averaged over 4-5 trials and illustrated. Data are represented 

as mean ± SEM.  

B. Normalized odor matching accuracies.  

The odor matching accuracy was normalized to the mean accuracy displayed by healthy subjects. COVID-19 patients 

demonstrated reduced odor matching accuracies relative to healthy subjects (two-tailed t-test, p = 0.015, t = 2.5, df = 

54). Data are represented as mean ± SEM. 

 

5.3.4 Asymptomatic COVID-19 patients show severe olfactory dysfunctions 

 To arrive at a unitary readout to define olfactory dysfunctions at sensory and cognitive 

level, a cumulative analysis on detectability scores at 9.1%, 16.6%, 23.1%, and 50% v/v and 

normalized matching accuracies was performed. Subjects were classified as having olfactory 

dysfunctions if they had a deficiency in detectability indices for all four concentrations tested or 

had a deficiency in detectability indices for two or more concentrations and normalized olfactory 

matching accuracy. Such analysis revealed 82% of the patient population (27 out of 33) and 13% 

normal healthy subjects (5 out of 37) with olfactory deficits (Figure 5-4 A, B, Tables 5-1 and 5-

2). Further, to check the efficiency of our categorization, we calculated the sensitivity, specificity, 

and accuracy by calculating the number of true positives (TP), false positives (FP), true negatives 

(TN), and false negatives (FN). This analysis revealed a sensitivity [TP/(TP+FN)] of 82%, 

specificity [TN/(TN+FP)] of 87%, and accuracy [(TP+TN)/(TP+TN+FP+FN)] of 85%.  

 Further, we formulated OFS by assigning equal weightage to all behavioral readouts. OFS 

was calculated by averaging detectability indices and normalized olfactory matching performance 

index. One patient (BJMC P13) declined to participate for the entire duration of the test. We, 

therefore, measured detection indices at 50% (v/v) concentration and for pure odorants wherein the 

patient had 0 and 0.6 detectability indices, respectively. Thus, OFS was not calculated for this 

patient but was classified as a patient with an olfactory deficiency. By calculating OFS for healthy 

subjects and asymptomatic COVID-19 patients, we show significantly reduced OFSs in the patient 

cohort relative to healthy subjects. Further, the OFS of 85% of the patient population (28 out of 

33) was found to be lower than the median score shown by healthy subjects (Figure 5-4 C, two-

tailed unpaired t-test, p < 0.0001, t = 6.4, df = 68). ROC analysis with OFS values provides a good 

predictive AUC value of 0.83, revealing the applicability of OFS as a good olfactory fitness 

indicator for the diagnosis of COVID-19 (Figure 5-4 D). Also, ROC analysis returned a sensitivity 

and specificity above 70% and 90%, respectively. This signifies the effectiveness of different 

behavioral readouts and strategies we recommend for assessing olfactory function across 

individuals. 
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 To test the dependency of olfactory function scores towards different variables, we 

analyzed various confounding factors. To ensure optimal motivation of subjects while performing 

the olfactory function test, we evaluated only those willing to participate in the study. Before 

beginning the test, care was taken to ensure that participants completely understood the paradigm. 

Moreover, none of the participants had any experience of smell loss. To determine whether the 

gender and age of participants affected test readings, we analyzed the association of these variables 

with olfactory detection indices and OFS. Our analyses revealed no correlation between these 

confounding variables and test readouts and thus confirmed the robustness of the data (Figure 5-

5).  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 5-4: Quantification of olfactory function can accurately identify asymptomatic COVID-19 carriers. 
A. Majority of asymptomatic COVID-19 patients have an olfactory deficiency.  

To measure the number of patients with olfactory deficits, we compared their detectability indices at 9.1%, 16.6%, 

23.1%, and 50% odor concentrations and the normalized matching accuracy with normal healthy subjects. If patients 

had a deficiency in detectability indices at all the concentration levels or showed deficiency in detectability indices at 

two or more concentrations and decreased olfactory matching score, they were classified as ‘with olfactory deficits.’ 

With such strict criteria, 82% of asymptomatic patients were found to be experiencing olfactory dysfunctions.  

B. Most normal healthy subjects did not have olfactory deficits. 

The criteria for classifying subjects with olfactory deficits was applied to the normal healthy subject cohort. The 

analysis revealed that 87% of the healthy subject population did not show any olfactory deficits.  
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C. Olfactory function scores reflect a broad spectrum of olfactory deficits in COVID-19 patients.  

In order to establish a robust readout representing olfactory dysfunctions, the OFS for each participant was determined 

by averaging detectability indices and normalized olfactory matching performance index. Asymptomatic COVID-19 

patients have substantially decreased OFS relative to normal healthy subjects (median for normal subjects = 0.8, and 

median for patients = 0.44, two-tailed unpaired t-test, p < 0.0001, t = 6.4, df = 68).  

D. ROC analysis was used to test the sensitivity of using olfactory function scores to predict olfactory deficits in 

asymptomatic COVID-19 patients. 

ROC analysis indicates an AUC of 0.83, specificity of 92%, and sensitivity of 73% for the classifier based on OFS for 

subjects with olfactory dysfunctions. The different values extracted from ROC analyses indicating the sensitivity of 

the classifier are mentioned in the figure. 95% confidence interval bound is marked by a gray shaded area. 

 

 To evaluate the robustness of OFSs as a parameter to determine olfactory fitness, we carried 

out different sensitivity analyzes. Firstly, we tested the existence of outliers in our data by doing a 

box-plot analysis. None of the data points were present beyond a 1.5-fold interquartile range, 

suggesting no outliers in the dataset for healthy subjects and patients. (Figure 5-4 C) (354). 

Simultaneously, even the Grubb’s test to identify outliers revealed the absence of outliers in normal 

healthy subjects and patients’ dataset (Alpha = 0.05, Normal healthy subjects: Mean OFS = 0.794, 

SD = 0.1, Critical value of Z = 3.002, G = 2.250; Patients: Mean OFS = 0.426, SD = 0.32, Critical 

value of Z = 2.952, G = 1.482) (355). Since our data contains no outliers, the measured OFS is a 

fair representation of the sample set and is not skewed by a few data points. Further, as we observed 

a wide range of detection indices at 50% odor concentration in asymptomatic COVID-19 patients, 

the association between detection indices at 50% concentration and OFS was evaluated. There is a 

strong correlation between these variables, indicating that changes in detection indices are very 

well represented in OFS (Pearson Correlation coefficient r = 0.8). This is evident from the logistic 

growth function curve plotted for OFS and detection indices (Figure 5-6, R2 = 0.8165).  

 As mentioned above, OFS was determined by averaging detectability indices and a 

normalized olfactory matching performance index. However, only subjects with a detectability 

index of ≥0.6 at 50% (v/v) odor concentration participated in the olfactory matching test. For those 

participants who were not eligible for the olfactory matching test, OFS was determined by 

averaging only the detectability indices. To see if these missing readouts could influence OFS 

measurement, OFS was re-analyzed only for patients (20 participants) who completed the olfactory 

matching test. The comparison was made with randomly selected OFS values from twenty healthy 

subject data. Even after removing the data points with missing variables, the asymptomatic 

COVID-19 patient cohort displayed substantially reduced olfactory function scores relative to 

healthy subjects. This finding shows the robustness and sensitivity of OFS used to quantify 

olfactory function in asymptomatic COVID-19 patients (Figure 5-7, two-tailed unpaired t-test, p < 
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0.0044, t = 3.031, df = 38). To summarize, the OFS we propose in this study reflects a reliable 

parameter for the olfactory fitness of subjects. Low OFS can be used to recognize subjects with 

potential issues arising at the sensory periphery and higher brain centers due to COVID-19 

infection. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5-5: The olfactory function score and detection indices are not sensitive to the age and gender of subjects. 
(A-D). The olfactory performance of normal healthy subjects and asymptomatic COVID-19 patients was plotted 

against the age of participants. Linear fit with least square regression (orange lines) on the data shows that olfactory 

performance does not correlate with the age of subjects (For normal healthy subjects, (A) comparison between age and 

OFS: R2 = 0.01191 and (C) comparison between age and detection indices at 50% concentration: R2 = 0.1311. For 

asymptomatic COVID-19 patients, (B) comparison between age and OFS: R2 = 0.3273 and (D) comparison between 

age and detection indices at 50% concentration: R2 = 0.3984).  

(E-H). The olfactory performance was analyzed separately for males and females in normal healthy subjects and 

asymptomatic COVID-19 patients.  

No difference was observed between male and female participants within the two datasets (For normal healthy subjects, 

(E) comparison of OFS between males and females: two-tailed t-test, p = 0.1504, t = 1.470, df = 35  and  (G) comparison 
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of detection indices at 50% concentration between males and females: two-tailed t-test, p = 0.7953, t = 0.2614, df = 

35. For asymptomatic COVID-19 patients, (F) comparison of OFS between males and females: two-tailed t-test, p = 

0.5080, t = 0.6697, df = 31 and  (H) comparison of detection indices at 50% concentration between males and females: 

two-tailed t-test, p = 0.4730, t = 0.7261, df = 31). 

 

5.4 Discussion 

 This chapter aimed to establish a novel strategy for sensitive behavioral assessment of 

olfactory dysfunctions in human subjects. In the last few years, our lab’s collective effort has been 

instrumental in setting up an innovative ‘Olfactory-Action Meter.’ Using this instrument, we began 

estimating the olfactory fitness of the healthy Indian population (Bhowmik et al., manuscript under 

preparation). In February 2020, anecdotal reports of smell loss associated with COVID-19 started 

to emerge worldwide, and scientific investigations began in March 2020. We realized that most of 

these studies relied on subjective self-reports of symptoms that are sensitive to individual bias. To 

overcome this limitation, we modified our olfactory-action meter to measure the olfactory fitness 

of asymptomatic COVID-19 patients objectively. We developed an olfactory function test that 

would challenge subjects’ detection abilities at threshold levels and probe olfactory matching skills. 

As a result, the olfactory function test can detect sensory-cognitive deficits caused by SARS-CoV-

2 infection. We realized that 82% of asymptomatic COVID-19 patients had varying degrees of 

olfactory dysfunctions on performing the olfactory function test. However, only 15% of these 

patients had self-awareness of their olfactory deficiency before taking the olfactory function test. 

The disparity between self-reporting and objective assessment accurately shows the urgency of 

using reliable quantitative olfactory screening tests to diagnose olfactory deficits in unwitting silent 

spreaders of COVID-19 (53, 54, 356).  

 

  

 

 
 

 

 

Figure 5-6: Olfactory function score correlates with detection indices measured at 50% concentration for different 

odors. 
A. The olfactory function score is high for asymptomatic COVID-19 patients who perform better in detecting odors at 

50% odor concentration. The orange line is a fit of a logistic sigmoidal growth model to the data. 
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B. Pearson’s correlation analysis shows that the olfactory function score and detection indices at 50% odor 

concentration is highly correlated for asymptomatic COVID-19 patients (Pearson Correlation coefficient r = 0.8).  

  

 SARS-CoV-2 infection is characterized by a broad spectrum of symptoms that ranges from 

extreme cases, including acute respiratory distress syndrome, to mild symptoms like cough, 

shortness of breath, fever, body ache, and sore throat (341, 342, 357). To control this infection 

that spread across the world, it was critical to find a well-defined prognostic marker for early 

diagnosis and preventive treatment in patients. An online survey conducted in Iran with more than 

10,000 individuals found a tight association between anosmia and COVID-19 positivity (358). 

Following this, formal studies conducted in Italy with hospitalized patients found that 19.4-33.9% 

of the patients reported olfactory disorders, and 60% of these patients had smell loss before 

hospitalization (49, 359). Subsequent studies suggested a much higher prevalence of olfactory 

deficits in COVID-19. A multicenter study in Europe with 417 COVID-19 patients found that 

85.6% of patients subjectively reported a reduced sense of smell, while 79.6% reported complete 

loss of smell (77). The increasing reports of smell loss that seemed to be more present in 

asymptomatic or paucisymptomatic subjects made anosmia an important indicator for COVID-19 

infection across different countries. In fact, world health authorities believe that anosmia or 

hyposmia in the absence of other respiratory diseases should be a direct sign of COVID-19 

infection. Individuals with these symptoms should seriously consider self-isolation and get 

themselves tested. 

 

  

 

 

 

 

 

 

 
Figure 5-7: Comparison of olfactory function scores from COVID-19 patients who participated in the olfactory 

matching test with 20 randomly picked healthy subjects. 
To establish that inclusion or exclusion of olfactory matching score does not influence OFS measurements, OFS from 

twenty COVID-19 patients who participated in olfactory matching was compared with twenty randomly picked normal 

healthy subjects. These asymptomatic COVID-19 patients displayed substantially decreased olfactory function scores 

relative to normal healthy subjects (two-tailed unpaired t-test, p < 0.0044, t = 3.031, df = 38). 
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 The invasion of the olfactory system had been proven for two other species of virus 

belonging to the coronavirus family, namely Middle East Respiratory Syndrome-related 

Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome-related Coronavirus (SARS-

CoV) (360–362). To explain neuronal mechanisms of anosmia associated with COVID-19, several 

experiments have begun to decode the path of SARS-CoV-2 entry into the olfactory system. The 

SARS-CoV-2 entry into a host cell relies on the co-expression of two genes, ACE2 and TMPRSS2 

receptors. While the ACE2 receptor acts as a docking site for the binding of viral spike protein, 

TMPRSS2 facilitates cleavage and enables membrane fusion. These two genes are expressed in 

sustentacular cells of the epithelium but not in OSNs (55, 56, 58, 363). In specific individuals, who 

experience a reduced sense of smell, elevated levels of inflammatory cytokines (57), or the possible 

ionic imbalances in sustentacular cells may affect the functioning of OSNs, contributing to 

olfactory dysfunctions of differing magnitude (58, 59). Furthermore, as OSNs in the human OE are 

continuously replaced (228, 364), olfactory dysfunctions due to OSN malfunctions can have a 

gradual onset and vary in the degree of severity. To assess such wide spectrum of olfactory deficits, 

precise quantitative methods with better control on stimulus properties are required.  

 To address the drawbacks of subjective assessment of olfaction, few objective approaches 

have been implemented to quantify olfactory deficits in COVID-19 patients. These include 

household odorous object identification (365), University of Pennsylvania smell identification tests 

(50),  Connecticut Chemosensory Clinical Research Center (CCCRC) Test (366), Sniffin’ Sticks 

(SS) test (367), and n-butanol threshold tests (366). In our study, the quantification of olfactory 

dysfunction using the olfactory-action meter detected smell deficits of varying degrees in 82% of 

asymptomatic COVID-19 patients. These objective methods were more efficient in detecting 

individuals with smell dysfunctions compared to subjective evaluations. In addition to the results 

we present here, the studies listed above highlight the need for sensitive olfactory tests to be carried 

out to identify several asymptomatic carriers of COVID-19. Although the application of such a 

large-scale screening technique presents many logistical challenges, a potential low-cost odor 

screening test may be carried out using odor arrays with concentrations near detection thresholds. 

Increasing odor diversity when using such techniques will compensate for precision. Adopting such 

protocols at workplaces and checkpoints would make it easier to scan large groups of people, and 

it would be a more sensitive indicator than body temperature monitoring.  

 Recently neurological complications of COVID-19 have been identified, ranging from mild 

to severe, in specific case reports and case series (63–67). A study using Diffusion Tensor Imaging 

found microstructural changes in CNS after patients recovered from COVID-19 infection (237). 

While long-term neurological changes attributable to SARS-CoV-2 infection are not specifically 
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identified, temporary changes in CNS are very worrying. We devised an olfactory matching test 

that involves detection, discrimination, and memorizing the perceived information of olfactory 

stimuli. Asymptomatic patients with good detectability indices at 50% odor concentrations were 

asked to do an olfactory matching test. The COVID-19 patients demonstrated dramatically 

decreased olfactory matching accuracy relative to normal healthy subjects. The reduced accuracies 

in the olfactory matching test imply potential cognitive dysfunctions in COVID-19 patients. To 

create an effective metric representing sensory and cognitive abilities, we proposed OFS, which 

assumes equal weighting to the various parameters evaluated. When measuring OFS, we found that 

it may be a strong indicator of olfactory deficiencies in asymptomatic COVID-19 patients. Further, 

the efficiency of using OFS was determined by performing ROC analysis. The AUC value of 0.83 

signifies OFS as an accurate indicator of olfactory deficits in asymptomatic COVID-19 patients. 

Further analysis has shown that OFS is impervious to missing data points and not biased by the 

population's mean age and gender ratio. This illustrates the reliability of using an olfactory-action 

meter for accurate detection of asymptomatic COVID-19 carriers.  

 To summarize, quantitative estimation of olfactory function using the olfactory-action 

meter indicates serious olfactory dysfunctions among asymptomatic COVID-19 patients. Such 

dysfunctions may otherwise remain undetected by conventional approaches due to a lack of 

sensitivity. As countries are slowly emerging from lockdown policies, contact-tracing of infectious 

individuals is crucial. Thus, our work provides a blueprint to devise a sensitive, fast, and economic 

strategy that can be used as an efficient approach for screening large populations to curb the rapid 

spread of COVID-19. 

 

5.5 Future direction 

 Using the innovative Olfactory-Action Meter, we successfully screened asymptomatic 

COVID-19 patients for their olfactory abilities. Our measurements precisely detected olfactory 

dysfunctions in 82% of these patients, demonstrating the utility of using quantitative methods to 

assess olfactory fitness in humans. The results provide a great impetus to expand the olfactory-

action meter usage to probe the olfactory abilities of patients suffering from various 

neurodegenerative disorders. As an initial step, we have already begun measuring the olfactory 

function in a healthy Indian population. These measurements will allow us to estimate olfactory 

abilities in healthy individuals. The olfactory function of patients suffering from various 

neurodegenerative disorders will be then compared with healthy individuals’ data.  
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CHAPTER 6  

Summary 

 
Optimal decision-making necessitates the ability to respond to different features of sensory 

stimulus flexibly. In mammalian olfaction, odor representations dynamically change with time and 

persist even after cessation of the stimulus. In this thesis, we examined how odor representations 

influence different facets of olfactory behavior by combining automated behavioral assays with 

optogenetics and in vivo imaging techniques. Further, to extend our understanding of circuit 

mechanisms in human olfactory dysfunctions, we devised a method to probe sensory and cognitive 

olfactory skills of normal healthy subjects and asymptomatic COVID-19 patients with olfactory 

deficits. The quantification of olfactory dysfunctions in these patients proved that olfactory fitness 

could be used to detect diseased conditions with high sensitivity. 

 

1. Sniff-invariant odor discrimination times are correlated to the strength and similarity of 

glomerular activity patterns. 

 Active sniffing behavior is a primary step in encoding different features of olfactory 

stimuli. However, it remained unclear whether mice learn to modulate their sniffing behavior when 

involved in odor discrimination tasks. We quantified sniffing behavior in mice using a non-invasive 

breath sensor while they were conditioned to distinguish between odors belonging to different 

chemical classes. It was observed that mice rapidly learned to increase their sniffing frequency at 

a fixed latency after odor initiation. This increase was invariant of chemical classes and difficulty 

of the tasks, and it did not occur in the absence of odor stimuli. With a rise in breathing frequency, 

monomolecular odorants were discriminated within 10–40 ms, while complex binary mixtures 

required an additional 60–70 ms. Further, IOS imaging of glomerular activity revealed that 

Euclidean distances measured between activity patterns are inversely correlated to odor 

discrimination time. Thus, the similarity and strength of glomerular activity patterns rather than the 

sampling behavior define the extent of neural processing required for accurate olfactory decision-

making.   

 

2. Post-stimulus OB neural activities control olfactory long-term memory formation. 

 The inhibitory activity of OB interneurons during odor presentation brings about temporal 

patterning in MTC ensembles that improve odor discrimination. To study how neural 

representations change with time and their relevance in olfactory processing, we needed a method 
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to control stimulus properties precisely. Therefore, we designed a behavioral task wherein mice 

were presented with odor stimulus of varying duration. Equipped with automated behavioral 

paradigms, we observed that reducing the stimulus duration negatively impacted olfactory 

performance in mice. Further, in vivo Ca2+ imaging in awake and anesthetized mice revealed a 

robust and sustained interneuron activity with long stimulus duration compared to short stimuli. To 

investigate how this difference in interneuron activity influenced MTC ensemble activities, we 

employed an optogenetic approach to modulate MTC activities during stimulus presentation and 

in the post-stimulus period. The optogenetic modulation of OB inhibitory circuits proved that MTC 

spiking during odor presentation controls discrimination learning while the information encoded 

by post-stimulus spiking controls long-term memory formation. Now, the challenge lies in 

dissecting neural mechanisms involved in maintaining firing activities of MTCs during the post-

stimulus period. 

 

3. Using olfaction to probe sensory and cognitive deficits 

The importance of establishing a precise behavioral paradigm to study odor representations 

has been one of the major highlights during my graduate studies. In the last chapter of this thesis, 

we extended our understanding of odor representations to study olfactory functional changes in 

human subjects. Olfactory dysfunction is one of the primary symptoms observed in individuals 

suffering from upper respiratory tract infections and many neurodegenerative disorders. Therefore, 

establishing a paradigm for precise quantification of olfactory deficits in these individuals becomes 

essential. To quantitatively evaluate olfactory functions in patients, we developed a sophisticated 

olfactory-action meter that can accurately measure olfactory acumen in human subjects. Global 

reports suggested loss of smell as an early indicator of COVID-19 infection, and early identification 

of asymptomatic COVID-19 carriers has been the pressing priority during the ongoing pandemic. 

To evaluate olfactory dysfunction in asymptomatic COVID-19 patients, we introduced the 

olfactory function test that probes the subjects’ detection abilities at threshold concentrations as 

well as their olfactory matching skills. Quantification using our method revealed that 82% of the 

asymptomatic COVID-19 patient population showed olfactory dysfunctions compared to healthy 

individuals. Thus, the quantification of olfactory function provides a blueprint for developing a 

rapid and economical strategy to screen large populations efficiently. 

To summarize, dissecting neural circuit mechanisms controlling odor discrimination 

learning and long-term memory formation has provided a range of intriguing observations and new 

directions for future research. We have been privileged to contribute to society by proposing a 



 127 

sensitive tool to detect olfactory function in human subjects, which we believe will provide a great 

impetus to the scientific community in the near future. 
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